if_iwn.c revision 1.72 1 /* $NetBSD: if_iwn.c,v 1.72 2014/10/30 13:05:58 nonaka Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.72 2014/10/30 13:05:58 nonaka Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120
121 /*
122 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123 */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 { 4, { 2, 4, 11, 22 } };
129
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132
133 static int iwn_match(device_t , struct cfdata *, void *);
134 static void iwn_attach(device_t , device_t , void *);
135 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void iwn_radiotap_attach(struct iwn_softc *);
138 static int iwn_detach(device_t , int);
139 #if 0
140 static void iwn_power(int, void *);
141 #endif
142 static bool iwn_resume(device_t, const pmf_qual_t *);
143 static int iwn_nic_lock(struct iwn_softc *);
144 static int iwn_eeprom_lock(struct iwn_softc *);
145 static int iwn_init_otprom(struct iwn_softc *);
146 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 void **, bus_size_t, bus_size_t);
149 static void iwn_dma_contig_free(struct iwn_dma_info *);
150 static int iwn_alloc_sched(struct iwn_softc *);
151 static void iwn_free_sched(struct iwn_softc *);
152 static int iwn_alloc_kw(struct iwn_softc *);
153 static void iwn_free_kw(struct iwn_softc *);
154 static int iwn_alloc_ict(struct iwn_softc *);
155 static void iwn_free_ict(struct iwn_softc *);
156 static int iwn_alloc_fwmem(struct iwn_softc *);
157 static void iwn_free_fwmem(struct iwn_softc *);
158 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 int);
163 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void iwn5000_ict_reset(struct iwn_softc *);
166 static int iwn_read_eeprom(struct iwn_softc *);
167 static void iwn4965_read_eeprom(struct iwn_softc *);
168
169 #ifdef IWN_DEBUG
170 static void iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void iwn5000_read_eeprom(struct iwn_softc *);
173 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void iwn_newassoc(struct ieee80211_node *, int);
177 static int iwn_media_change(struct ifnet *);
178 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void iwn_iter_func(void *, struct ieee80211_node *);
180 static void iwn_calib_timeout(void *);
181 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 struct iwn_rx_data *);
183 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 struct iwn_rx_data *);
188 #endif
189 static void iwn5000_rx_calib_results(struct iwn_softc *,
190 struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 struct iwn_rx_data *);
193 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 struct iwn_rx_data *);
195 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 struct iwn_rx_data *);
197 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 uint8_t);
199 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void iwn_notif_intr(struct iwn_softc *);
201 static void iwn_wakeup_intr(struct iwn_softc *);
202 static void iwn_fatal_intr(struct iwn_softc *);
203 static int iwn_intr(void *);
204 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 uint16_t);
206 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 uint16_t);
208 #ifdef notyet
209 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int iwn_tx(struct iwn_softc *, struct mbuf *,
212 struct ieee80211_node *, int);
213 static void iwn_start(struct ifnet *);
214 static void iwn_watchdog(struct ifnet *);
215 static int iwn_ioctl(struct ifnet *, u_long, void *);
216 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
217 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
218 int);
219 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
220 int);
221 static int iwn_set_link_quality(struct iwn_softc *,
222 struct ieee80211_node *);
223 static int iwn_add_broadcast_node(struct iwn_softc *, int);
224 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int iwn_set_critical_temp(struct iwn_softc *);
226 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void iwn4965_power_calibration(struct iwn_softc *, int);
228 static int iwn4965_set_txpower(struct iwn_softc *, int);
229 static int iwn5000_set_txpower(struct iwn_softc *, int);
230 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
231 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
232 static int iwn_get_noise(const struct iwn_rx_general_stats *);
233 static int iwn4965_get_temperature(struct iwn_softc *);
234 static int iwn5000_get_temperature(struct iwn_softc *);
235 static int iwn_init_sensitivity(struct iwn_softc *);
236 static void iwn_collect_noise(struct iwn_softc *,
237 const struct iwn_rx_general_stats *);
238 static int iwn4965_init_gains(struct iwn_softc *);
239 static int iwn5000_init_gains(struct iwn_softc *);
240 static int iwn4965_set_gains(struct iwn_softc *);
241 static int iwn5000_set_gains(struct iwn_softc *);
242 static void iwn_tune_sensitivity(struct iwn_softc *,
243 const struct iwn_rx_stats *);
244 static int iwn_send_sensitivity(struct iwn_softc *);
245 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
246 static int iwn5000_runtime_calib(struct iwn_softc *);
247
248 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
249 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
250 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
251 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
252
253 static int iwn_config(struct iwn_softc *);
254 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
255 uint8_t);
256 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
257 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
258 static int iwn_scan(struct iwn_softc *, uint16_t);
259 static int iwn_auth(struct iwn_softc *);
260 static int iwn_run(struct iwn_softc *);
261 #ifdef IWN_HWCRYPTO
262 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
263 struct ieee80211_key *);
264 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
265 struct ieee80211_key *);
266 #endif
267 static int iwn_wme_update(struct ieee80211com *);
268 #ifndef IEEE80211_NO_HT
269 static int iwn_ampdu_rx_start(struct ieee80211com *,
270 struct ieee80211_node *, uint8_t);
271 static void iwn_ampdu_rx_stop(struct ieee80211com *,
272 struct ieee80211_node *, uint8_t);
273 static int iwn_ampdu_tx_start(struct ieee80211com *,
274 struct ieee80211_node *, uint8_t);
275 static void iwn_ampdu_tx_stop(struct ieee80211com *,
276 struct ieee80211_node *, uint8_t);
277 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
278 struct ieee80211_node *, uint8_t, uint16_t);
279 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
280 uint8_t, uint16_t);
281 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
282 struct ieee80211_node *, uint8_t, uint16_t);
283 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
284 uint8_t, uint16_t);
285 #endif
286 static int iwn5000_query_calibration(struct iwn_softc *);
287 static int iwn5000_send_calibration(struct iwn_softc *);
288 static int iwn5000_send_wimax_coex(struct iwn_softc *);
289 static int iwn6000_temp_offset_calib(struct iwn_softc *);
290 static int iwn2000_temp_offset_calib(struct iwn_softc *);
291 static int iwn4965_post_alive(struct iwn_softc *);
292 static int iwn5000_post_alive(struct iwn_softc *);
293 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
294 int);
295 static int iwn4965_load_firmware(struct iwn_softc *);
296 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
297 const uint8_t *, int);
298 static int iwn5000_load_firmware(struct iwn_softc *);
299 static int iwn_read_firmware_leg(struct iwn_softc *,
300 struct iwn_fw_info *);
301 static int iwn_read_firmware_tlv(struct iwn_softc *,
302 struct iwn_fw_info *, uint16_t);
303 static int iwn_read_firmware(struct iwn_softc *);
304 static int iwn_clock_wait(struct iwn_softc *);
305 static int iwn_apm_init(struct iwn_softc *);
306 static void iwn_apm_stop_master(struct iwn_softc *);
307 static void iwn_apm_stop(struct iwn_softc *);
308 static int iwn4965_nic_config(struct iwn_softc *);
309 static int iwn5000_nic_config(struct iwn_softc *);
310 static int iwn_hw_prepare(struct iwn_softc *);
311 static int iwn_hw_init(struct iwn_softc *);
312 static void iwn_hw_stop(struct iwn_softc *);
313 static int iwn_init(struct ifnet *);
314 static void iwn_stop(struct ifnet *, int);
315
316 /* XXX MCLGETI alternative */
317 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
318 struct ifnet *, u_int);
319 #ifdef IWN_USE_RBUF
320 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
321 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
322 static int iwn_alloc_rpool(struct iwn_softc *);
323 static void iwn_free_rpool(struct iwn_softc *);
324 #endif
325
326 /* XXX needed by iwn_scan */
327 static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
328 static u_int8_t *ieee80211_add_rates(u_int8_t *,
329 const struct ieee80211_rateset *);
330 static u_int8_t *ieee80211_add_xrates(u_int8_t *,
331 const struct ieee80211_rateset *);
332
333 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
334
335 #ifdef IWN_DEBUG
336 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
337 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
338 int iwn_debug = 0;
339 #else
340 #define DPRINTF(x)
341 #define DPRINTFN(n, x)
342 #endif
343
344 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
345 iwn_detach, NULL);
346
347 static int
348 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
349 {
350 struct pci_attach_args *pa = aux;
351 size_t i;
352
353 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
354 return 0;
355
356 for (i = 0; i < __arraycount(iwn_devices); i++)
357 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
358 return 1;
359
360 return 0;
361 }
362
363 static void
364 iwn_attach(device_t parent __unused, device_t self, void *aux)
365 {
366 struct iwn_softc *sc = device_private(self);
367 struct ieee80211com *ic = &sc->sc_ic;
368 struct ifnet *ifp = &sc->sc_ec.ec_if;
369 struct pci_attach_args *pa = aux;
370 const char *intrstr;
371 pci_intr_handle_t ih;
372 pcireg_t memtype, reg;
373 int i, error;
374 char intrbuf[PCI_INTRSTR_LEN];
375
376 sc->sc_dev = self;
377 sc->sc_pct = pa->pa_pc;
378 sc->sc_pcitag = pa->pa_tag;
379 sc->sc_dmat = pa->pa_dmat;
380 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
381
382 callout_init(&sc->calib_to, 0);
383 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
384
385 pci_aprint_devinfo(pa, NULL);
386
387 /*
388 * Get the offset of the PCI Express Capability Structure in PCI
389 * Configuration Space.
390 */
391 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
392 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
393 if (error == 0) {
394 aprint_error(": PCIe capability structure not found!\n");
395 return;
396 }
397
398 /* Clear device-specific "PCI retry timeout" register (41h). */
399 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
400 if (reg & 0xff00)
401 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
402
403 /* Enable bus-mastering and hardware bug workaround. */
404 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
405 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
406 reg |= PCI_COMMAND_MASTER_ENABLE;
407 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
408 DPRINTF(("PCIe INTx Disable set\n"));
409 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
410 }
411 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
412
413 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
414 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
415 &sc->sc_sh, NULL, &sc->sc_sz);
416 if (error != 0) {
417 aprint_error(": can't map mem space\n");
418 return;
419 }
420
421 /* Install interrupt handler. */
422 if (pci_intr_map(pa, &ih) != 0) {
423 aprint_error(": can't map interrupt\n");
424 return;
425 }
426 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
427 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
428 if (sc->sc_ih == NULL) {
429 aprint_error(": can't establish interrupt");
430 if (intrstr != NULL)
431 aprint_error(" at %s", intrstr);
432 aprint_error("\n");
433 return;
434 }
435 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
436
437 /* Read hardware revision and attach. */
438 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
439 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
440 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
441 else
442 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
443 if (error != 0) {
444 aprint_error(": could not attach device\n");
445 return;
446 }
447
448 if ((error = iwn_hw_prepare(sc)) != 0) {
449 aprint_error(": hardware not ready\n");
450 return;
451 }
452
453 /* Read MAC address, channels, etc from EEPROM. */
454 if ((error = iwn_read_eeprom(sc)) != 0) {
455 aprint_error(": could not read EEPROM\n");
456 return;
457 }
458
459 /* Allocate DMA memory for firmware transfers. */
460 if ((error = iwn_alloc_fwmem(sc)) != 0) {
461 aprint_error(": could not allocate memory for firmware\n");
462 return;
463 }
464
465 /* Allocate "Keep Warm" page. */
466 if ((error = iwn_alloc_kw(sc)) != 0) {
467 aprint_error(": could not allocate keep warm page\n");
468 goto fail1;
469 }
470
471 /* Allocate ICT table for 5000 Series. */
472 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
473 (error = iwn_alloc_ict(sc)) != 0) {
474 aprint_error(": could not allocate ICT table\n");
475 goto fail2;
476 }
477
478 /* Allocate TX scheduler "rings". */
479 if ((error = iwn_alloc_sched(sc)) != 0) {
480 aprint_error(": could not allocate TX scheduler rings\n");
481 goto fail3;
482 }
483
484 #ifdef IWN_USE_RBUF
485 /* Allocate RX buffers. */
486 if ((error = iwn_alloc_rpool(sc)) != 0) {
487 aprint_error_dev(self, "could not allocate RX buffers\n");
488 goto fail3;
489 }
490 #endif
491
492 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
493 for (i = 0; i < sc->ntxqs; i++) {
494 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
495 aprint_error(": could not allocate TX ring %d\n", i);
496 goto fail4;
497 }
498 }
499
500 /* Allocate RX ring. */
501 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
502 aprint_error(": could not allocate RX ring\n");
503 goto fail4;
504 }
505
506 /* Clear pending interrupts. */
507 IWN_WRITE(sc, IWN_INT, 0xffffffff);
508
509 /* Count the number of available chains. */
510 sc->ntxchains =
511 ((sc->txchainmask >> 2) & 1) +
512 ((sc->txchainmask >> 1) & 1) +
513 ((sc->txchainmask >> 0) & 1);
514 sc->nrxchains =
515 ((sc->rxchainmask >> 2) & 1) +
516 ((sc->rxchainmask >> 1) & 1) +
517 ((sc->rxchainmask >> 0) & 1);
518 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
519 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
520 ether_sprintf(ic->ic_myaddr));
521
522 ic->ic_ifp = ifp;
523 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
524 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
525 ic->ic_state = IEEE80211_S_INIT;
526
527 /* Set device capabilities. */
528 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
529 * and IEEE80211_C_PMGT too. */
530 ic->ic_caps =
531 IEEE80211_C_IBSS | /* IBSS mode support */
532 IEEE80211_C_WPA | /* 802.11i */
533 IEEE80211_C_MONITOR | /* monitor mode supported */
534 IEEE80211_C_TXPMGT | /* tx power management */
535 IEEE80211_C_SHSLOT | /* short slot time supported */
536 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
537 IEEE80211_C_WME; /* 802.11e */
538
539 #ifndef IEEE80211_NO_HT
540 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
541 /* Set HT capabilities. */
542 ic->ic_htcaps =
543 #if IWN_RBUF_SIZE == 8192
544 IEEE80211_HTCAP_AMSDU7935 |
545 #endif
546 IEEE80211_HTCAP_CBW20_40 |
547 IEEE80211_HTCAP_SGI20 |
548 IEEE80211_HTCAP_SGI40;
549 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
550 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
551 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
552 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
553 else
554 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
555 }
556 #endif /* !IEEE80211_NO_HT */
557
558 /* Set supported legacy rates. */
559 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
560 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
561 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
562 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
563 }
564 #ifndef IEEE80211_NO_HT
565 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
566 /* Set supported HT rates. */
567 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
568 if (sc->nrxchains > 1)
569 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
570 if (sc->nrxchains > 2)
571 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
572 }
573 #endif
574
575 /* IBSS channel undefined for now. */
576 ic->ic_ibss_chan = &ic->ic_channels[0];
577
578 ifp->if_softc = sc;
579 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 ifp->if_init = iwn_init;
581 ifp->if_ioctl = iwn_ioctl;
582 ifp->if_start = iwn_start;
583 ifp->if_stop = iwn_stop;
584 ifp->if_watchdog = iwn_watchdog;
585 IFQ_SET_READY(&ifp->if_snd);
586 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
587
588 if_attach(ifp);
589 ieee80211_ifattach(ic);
590 ic->ic_node_alloc = iwn_node_alloc;
591 ic->ic_newassoc = iwn_newassoc;
592 #ifdef IWN_HWCRYPTO
593 ic->ic_crypto.cs_key_set = iwn_set_key;
594 ic->ic_crypto.cs_key_delete = iwn_delete_key;
595 #endif
596 ic->ic_wme.wme_update = iwn_wme_update;
597 #ifndef IEEE80211_NO_HT
598 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
599 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
600 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
601 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
602 #endif
603
604 /* Override 802.11 state transition machine. */
605 sc->sc_newstate = ic->ic_newstate;
606 ic->ic_newstate = iwn_newstate;
607 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
608
609 sc->amrr.amrr_min_success_threshold = 1;
610 sc->amrr.amrr_max_success_threshold = 15;
611
612 iwn_radiotap_attach(sc);
613
614 /*
615 * XXX for NetBSD, OpenBSD timeout_set replaced by
616 * callout_init and callout_setfunc, above.
617 */
618
619 if (pmf_device_register(self, NULL, iwn_resume))
620 pmf_class_network_register(self, ifp);
621 else
622 aprint_error_dev(self, "couldn't establish power handler\n");
623
624 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
625 ieee80211_announce(ic);
626
627 return;
628
629 /* Free allocated memory if something failed during attachment. */
630 fail4: while (--i >= 0)
631 iwn_free_tx_ring(sc, &sc->txq[i]);
632 #ifdef IWN_USE_RBUF
633 iwn_free_rpool(sc);
634 #endif
635 iwn_free_sched(sc);
636 fail3: if (sc->ict != NULL)
637 iwn_free_ict(sc);
638 fail2: iwn_free_kw(sc);
639 fail1: iwn_free_fwmem(sc);
640 }
641
642 int
643 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
644 {
645 struct iwn_ops *ops = &sc->ops;
646
647 ops->load_firmware = iwn4965_load_firmware;
648 ops->read_eeprom = iwn4965_read_eeprom;
649 ops->post_alive = iwn4965_post_alive;
650 ops->nic_config = iwn4965_nic_config;
651 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
652 ops->update_sched = iwn4965_update_sched;
653 ops->get_temperature = iwn4965_get_temperature;
654 ops->get_rssi = iwn4965_get_rssi;
655 ops->set_txpower = iwn4965_set_txpower;
656 ops->init_gains = iwn4965_init_gains;
657 ops->set_gains = iwn4965_set_gains;
658 ops->add_node = iwn4965_add_node;
659 ops->tx_done = iwn4965_tx_done;
660 #ifndef IEEE80211_NO_HT
661 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
662 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
663 #endif
664 sc->ntxqs = IWN4965_NTXQUEUES;
665 sc->ndmachnls = IWN4965_NDMACHNLS;
666 sc->broadcast_id = IWN4965_ID_BROADCAST;
667 sc->rxonsz = IWN4965_RXONSZ;
668 sc->schedsz = IWN4965_SCHEDSZ;
669 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
670 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
671 sc->fwsz = IWN4965_FWSZ;
672 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
673 sc->limits = &iwn4965_sensitivity_limits;
674 sc->fwname = "iwlwifi-4965-2.ucode";
675 /* Override chains masks, ROM is known to be broken. */
676 sc->txchainmask = IWN_ANT_AB;
677 sc->rxchainmask = IWN_ANT_ABC;
678
679 return 0;
680 }
681
682 int
683 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
684 {
685 struct iwn_ops *ops = &sc->ops;
686
687 ops->load_firmware = iwn5000_load_firmware;
688 ops->read_eeprom = iwn5000_read_eeprom;
689 ops->post_alive = iwn5000_post_alive;
690 ops->nic_config = iwn5000_nic_config;
691 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
692 ops->update_sched = iwn5000_update_sched;
693 ops->get_temperature = iwn5000_get_temperature;
694 ops->get_rssi = iwn5000_get_rssi;
695 ops->set_txpower = iwn5000_set_txpower;
696 ops->init_gains = iwn5000_init_gains;
697 ops->set_gains = iwn5000_set_gains;
698 ops->add_node = iwn5000_add_node;
699 ops->tx_done = iwn5000_tx_done;
700 #ifndef IEEE80211_NO_HT
701 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
702 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
703 #endif
704 sc->ntxqs = IWN5000_NTXQUEUES;
705 sc->ndmachnls = IWN5000_NDMACHNLS;
706 sc->broadcast_id = IWN5000_ID_BROADCAST;
707 sc->rxonsz = IWN5000_RXONSZ;
708 sc->schedsz = IWN5000_SCHEDSZ;
709 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
710 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
711 sc->fwsz = IWN5000_FWSZ;
712 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
713
714 switch (sc->hw_type) {
715 case IWN_HW_REV_TYPE_5100:
716 sc->limits = &iwn5000_sensitivity_limits;
717 sc->fwname = "iwlwifi-5000-2.ucode";
718 /* Override chains masks, ROM is known to be broken. */
719 sc->txchainmask = IWN_ANT_B;
720 sc->rxchainmask = IWN_ANT_AB;
721 break;
722 case IWN_HW_REV_TYPE_5150:
723 sc->limits = &iwn5150_sensitivity_limits;
724 sc->fwname = "iwlwifi-5150-2.ucode";
725 break;
726 case IWN_HW_REV_TYPE_5300:
727 case IWN_HW_REV_TYPE_5350:
728 sc->limits = &iwn5000_sensitivity_limits;
729 sc->fwname = "iwlwifi-5000-2.ucode";
730 break;
731 case IWN_HW_REV_TYPE_1000:
732 sc->limits = &iwn1000_sensitivity_limits;
733 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
734 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
735 sc->fwname = "iwlwifi-100-5.ucode";
736 else
737 sc->fwname = "iwlwifi-1000-3.ucode";
738 break;
739 case IWN_HW_REV_TYPE_6000:
740 sc->limits = &iwn6000_sensitivity_limits;
741 sc->fwname = "iwlwifi-6000-4.ucode";
742 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
743 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
744 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
745 /* Override chains masks, ROM is known to be broken. */
746 sc->txchainmask = IWN_ANT_BC;
747 sc->rxchainmask = IWN_ANT_BC;
748 }
749 break;
750 case IWN_HW_REV_TYPE_6050:
751 sc->limits = &iwn6000_sensitivity_limits;
752 sc->fwname = "iwlwifi-6050-5.ucode";
753 break;
754 case IWN_HW_REV_TYPE_6005:
755 sc->limits = &iwn6000_sensitivity_limits;
756 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
757 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
758 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
759 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
760 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
761 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
762 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
763 sc->fwname = "iwlwifi-6000g2b-6.ucode";
764 ops->config_bt_coex = iwn_config_bt_coex_adv1;
765 }
766 else
767 sc->fwname = "iwlwifi-6000g2a-5.ucode";
768 break;
769 case IWN_HW_REV_TYPE_2030:
770 sc->limits = &iwn2000_sensitivity_limits;
771 sc->fwname = "iwlwifi-2030-6.ucode";
772 ops->config_bt_coex = iwn_config_bt_coex_adv2;
773 break;
774 case IWN_HW_REV_TYPE_2000:
775 sc->limits = &iwn2000_sensitivity_limits;
776 sc->fwname = "iwlwifi-2000-6.ucode";
777 break;
778 case IWN_HW_REV_TYPE_135:
779 sc->limits = &iwn2000_sensitivity_limits;
780 sc->fwname = "iwlwifi-135-6.ucode";
781 ops->config_bt_coex = iwn_config_bt_coex_adv2;
782 break;
783 case IWN_HW_REV_TYPE_105:
784 sc->limits = &iwn2000_sensitivity_limits;
785 sc->fwname = "iwlwifi-105-6.ucode";
786 break;
787 default:
788 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
789 return ENOTSUP;
790 }
791 return 0;
792 }
793
794 /*
795 * Attach the interface to 802.11 radiotap.
796 */
797 static void
798 iwn_radiotap_attach(struct iwn_softc *sc)
799 {
800 struct ifnet *ifp = sc->sc_ic.ic_ifp;
801
802 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
803 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
804 &sc->sc_drvbpf);
805
806 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
807 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
808 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
809
810 sc->sc_txtap_len = sizeof sc->sc_txtapu;
811 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
812 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
813 }
814
815 static int
816 iwn_detach(device_t self, int flags __unused)
817 {
818 struct iwn_softc *sc = device_private(self);
819 struct ifnet *ifp = sc->sc_ic.ic_ifp;
820 int qid;
821
822 callout_stop(&sc->calib_to);
823
824 /* Uninstall interrupt handler. */
825 if (sc->sc_ih != NULL)
826 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
827
828 /* Free DMA resources. */
829 iwn_free_rx_ring(sc, &sc->rxq);
830 for (qid = 0; qid < sc->ntxqs; qid++)
831 iwn_free_tx_ring(sc, &sc->txq[qid]);
832 #ifdef IWN_USE_RBUF
833 iwn_free_rpool(sc);
834 #endif
835 iwn_free_sched(sc);
836 iwn_free_kw(sc);
837 if (sc->ict != NULL)
838 iwn_free_ict(sc);
839 iwn_free_fwmem(sc);
840
841 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
842
843 ieee80211_ifdetach(&sc->sc_ic);
844 if_detach(ifp);
845
846 return 0;
847 }
848
849 #if 0
850 /*
851 * XXX Investigate if clearing the PCI retry timeout could eliminate
852 * the repeated scan calls. Also the calls to if_init and if_start
853 * are similar to the effect of adding the call to ifioctl_common .
854 */
855 static void
856 iwn_power(int why, void *arg)
857 {
858 struct iwn_softc *sc = arg;
859 struct ifnet *ifp;
860 pcireg_t reg;
861 int s;
862
863 if (why != PWR_RESUME)
864 return;
865
866 /* Clear device-specific "PCI retry timeout" register (41h). */
867 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
868 if (reg & 0xff00)
869 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
870
871 s = splnet();
872 ifp = &sc->sc_ic.ic_if;
873 if (ifp->if_flags & IFF_UP) {
874 ifp->if_init(ifp);
875 if (ifp->if_flags & IFF_RUNNING)
876 ifp->if_start(ifp);
877 }
878 splx(s);
879 }
880 #endif
881
882 static bool
883 iwn_resume(device_t dv, const pmf_qual_t *qual)
884 {
885 return true;
886 }
887
888 static int
889 iwn_nic_lock(struct iwn_softc *sc)
890 {
891 int ntries;
892
893 /* Request exclusive access to NIC. */
894 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
895
896 /* Spin until we actually get the lock. */
897 for (ntries = 0; ntries < 1000; ntries++) {
898 if ((IWN_READ(sc, IWN_GP_CNTRL) &
899 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
900 IWN_GP_CNTRL_MAC_ACCESS_ENA)
901 return 0;
902 DELAY(10);
903 }
904 return ETIMEDOUT;
905 }
906
907 static __inline void
908 iwn_nic_unlock(struct iwn_softc *sc)
909 {
910 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
911 }
912
913 static __inline uint32_t
914 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
915 {
916 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
917 IWN_BARRIER_READ_WRITE(sc);
918 return IWN_READ(sc, IWN_PRPH_RDATA);
919 }
920
921 static __inline void
922 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
923 {
924 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
925 IWN_BARRIER_WRITE(sc);
926 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
927 }
928
929 static __inline void
930 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
931 {
932 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
933 }
934
935 static __inline void
936 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
937 {
938 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
939 }
940
941 static __inline void
942 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
943 const uint32_t *data, int count)
944 {
945 for (; count > 0; count--, data++, addr += 4)
946 iwn_prph_write(sc, addr, *data);
947 }
948
949 static __inline uint32_t
950 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
951 {
952 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
953 IWN_BARRIER_READ_WRITE(sc);
954 return IWN_READ(sc, IWN_MEM_RDATA);
955 }
956
957 static __inline void
958 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
959 {
960 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
961 IWN_BARRIER_WRITE(sc);
962 IWN_WRITE(sc, IWN_MEM_WDATA, data);
963 }
964
965 #ifndef IEEE80211_NO_HT
966 static __inline void
967 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
968 {
969 uint32_t tmp;
970
971 tmp = iwn_mem_read(sc, addr & ~3);
972 if (addr & 3)
973 tmp = (tmp & 0x0000ffff) | data << 16;
974 else
975 tmp = (tmp & 0xffff0000) | data;
976 iwn_mem_write(sc, addr & ~3, tmp);
977 }
978 #endif
979
980 static __inline void
981 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
982 int count)
983 {
984 for (; count > 0; count--, addr += 4)
985 *data++ = iwn_mem_read(sc, addr);
986 }
987
988 static __inline void
989 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
990 int count)
991 {
992 for (; count > 0; count--, addr += 4)
993 iwn_mem_write(sc, addr, val);
994 }
995
996 static int
997 iwn_eeprom_lock(struct iwn_softc *sc)
998 {
999 int i, ntries;
1000
1001 for (i = 0; i < 100; i++) {
1002 /* Request exclusive access to EEPROM. */
1003 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1004 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1005
1006 /* Spin until we actually get the lock. */
1007 for (ntries = 0; ntries < 100; ntries++) {
1008 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1009 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1010 return 0;
1011 DELAY(10);
1012 }
1013 }
1014 return ETIMEDOUT;
1015 }
1016
1017 static __inline void
1018 iwn_eeprom_unlock(struct iwn_softc *sc)
1019 {
1020 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1021 }
1022
1023 /*
1024 * Initialize access by host to One Time Programmable ROM.
1025 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1026 */
1027 static int
1028 iwn_init_otprom(struct iwn_softc *sc)
1029 {
1030 uint16_t prev = 0, base, next;
1031 int count, error;
1032
1033 /* Wait for clock stabilization before accessing prph. */
1034 if ((error = iwn_clock_wait(sc)) != 0)
1035 return error;
1036
1037 if ((error = iwn_nic_lock(sc)) != 0)
1038 return error;
1039 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1040 DELAY(5);
1041 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1042 iwn_nic_unlock(sc);
1043
1044 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1045 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1046 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1047 IWN_RESET_LINK_PWR_MGMT_DIS);
1048 }
1049 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1050 /* Clear ECC status. */
1051 IWN_SETBITS(sc, IWN_OTP_GP,
1052 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1053
1054 /*
1055 * Find the block before last block (contains the EEPROM image)
1056 * for HW without OTP shadow RAM.
1057 */
1058 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1059 /* Switch to absolute addressing mode. */
1060 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1061 base = 0;
1062 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1063 error = iwn_read_prom_data(sc, base, &next, 2);
1064 if (error != 0)
1065 return error;
1066 if (next == 0) /* End of linked-list. */
1067 break;
1068 prev = base;
1069 base = le16toh(next);
1070 }
1071 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1072 return EIO;
1073 /* Skip "next" word. */
1074 sc->prom_base = prev + 1;
1075 }
1076 return 0;
1077 }
1078
1079 static int
1080 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1081 {
1082 uint8_t *out = data;
1083 uint32_t val, tmp;
1084 int ntries;
1085
1086 addr += sc->prom_base;
1087 for (; count > 0; count -= 2, addr++) {
1088 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1089 for (ntries = 0; ntries < 10; ntries++) {
1090 val = IWN_READ(sc, IWN_EEPROM);
1091 if (val & IWN_EEPROM_READ_VALID)
1092 break;
1093 DELAY(5);
1094 }
1095 if (ntries == 10) {
1096 aprint_error_dev(sc->sc_dev,
1097 "timeout reading ROM at 0x%x\n", addr);
1098 return ETIMEDOUT;
1099 }
1100 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1101 /* OTPROM, check for ECC errors. */
1102 tmp = IWN_READ(sc, IWN_OTP_GP);
1103 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1104 aprint_error_dev(sc->sc_dev,
1105 "OTPROM ECC error at 0x%x\n", addr);
1106 return EIO;
1107 }
1108 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1109 /* Correctable ECC error, clear bit. */
1110 IWN_SETBITS(sc, IWN_OTP_GP,
1111 IWN_OTP_GP_ECC_CORR_STTS);
1112 }
1113 }
1114 *out++ = val >> 16;
1115 if (count > 1)
1116 *out++ = val >> 24;
1117 }
1118 return 0;
1119 }
1120
1121 static int
1122 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1123 bus_size_t size, bus_size_t alignment)
1124 {
1125 int nsegs, error;
1126
1127 dma->tag = tag;
1128 dma->size = size;
1129
1130 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1131 &dma->map);
1132 if (error != 0)
1133 goto fail;
1134
1135 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1136 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1137 if (error != 0)
1138 goto fail;
1139
1140 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1141 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1142 if (error != 0)
1143 goto fail;
1144
1145 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1146 BUS_DMA_NOWAIT);
1147 if (error != 0)
1148 goto fail;
1149
1150 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1151 memset(dma->vaddr, 0, size);
1152 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1153
1154 dma->paddr = dma->map->dm_segs[0].ds_addr;
1155 if (kvap != NULL)
1156 *kvap = dma->vaddr;
1157
1158 return 0;
1159
1160 fail: iwn_dma_contig_free(dma);
1161 return error;
1162 }
1163
1164 static void
1165 iwn_dma_contig_free(struct iwn_dma_info *dma)
1166 {
1167 if (dma->map != NULL) {
1168 if (dma->vaddr != NULL) {
1169 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1170 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1171 bus_dmamap_unload(dma->tag, dma->map);
1172 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1173 bus_dmamem_free(dma->tag, &dma->seg, 1);
1174 dma->vaddr = NULL;
1175 }
1176 bus_dmamap_destroy(dma->tag, dma->map);
1177 dma->map = NULL;
1178 }
1179 }
1180
1181 static int
1182 iwn_alloc_sched(struct iwn_softc *sc)
1183 {
1184 /* TX scheduler rings must be aligned on a 1KB boundary. */
1185 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1186 (void **)&sc->sched, sc->schedsz, 1024);
1187 }
1188
1189 static void
1190 iwn_free_sched(struct iwn_softc *sc)
1191 {
1192 iwn_dma_contig_free(&sc->sched_dma);
1193 }
1194
1195 static int
1196 iwn_alloc_kw(struct iwn_softc *sc)
1197 {
1198 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1199 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1200 4096);
1201 }
1202
1203 static void
1204 iwn_free_kw(struct iwn_softc *sc)
1205 {
1206 iwn_dma_contig_free(&sc->kw_dma);
1207 }
1208
1209 static int
1210 iwn_alloc_ict(struct iwn_softc *sc)
1211 {
1212 /* ICT table must be aligned on a 4KB boundary. */
1213 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1214 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1215 }
1216
1217 static void
1218 iwn_free_ict(struct iwn_softc *sc)
1219 {
1220 iwn_dma_contig_free(&sc->ict_dma);
1221 }
1222
1223 static int
1224 iwn_alloc_fwmem(struct iwn_softc *sc)
1225 {
1226 /* Must be aligned on a 16-byte boundary. */
1227 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1228 sc->fwsz, 16);
1229 }
1230
1231 static void
1232 iwn_free_fwmem(struct iwn_softc *sc)
1233 {
1234 iwn_dma_contig_free(&sc->fw_dma);
1235 }
1236
1237 static int
1238 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1239 {
1240 bus_size_t size;
1241 int i, error;
1242
1243 ring->cur = 0;
1244
1245 /* Allocate RX descriptors (256-byte aligned). */
1246 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1247 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1248 (void **)&ring->desc, size, 256);
1249 if (error != 0) {
1250 aprint_error_dev(sc->sc_dev,
1251 "could not allocate RX ring DMA memory\n");
1252 goto fail;
1253 }
1254
1255 /* Allocate RX status area (16-byte aligned). */
1256 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1257 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1258 if (error != 0) {
1259 aprint_error_dev(sc->sc_dev,
1260 "could not allocate RX status DMA memory\n");
1261 goto fail;
1262 }
1263
1264 /*
1265 * Allocate and map RX buffers.
1266 */
1267 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1268 struct iwn_rx_data *data = &ring->data[i];
1269
1270 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1271 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1272 &data->map);
1273 if (error != 0) {
1274 aprint_error_dev(sc->sc_dev,
1275 "could not create RX buf DMA map\n");
1276 goto fail;
1277 }
1278
1279 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1280 if (data->m == NULL) {
1281 aprint_error_dev(sc->sc_dev,
1282 "could not allocate RX mbuf\n");
1283 error = ENOBUFS;
1284 goto fail;
1285 }
1286
1287 error = bus_dmamap_load(sc->sc_dmat, data->map,
1288 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1289 BUS_DMA_NOWAIT | BUS_DMA_READ);
1290 if (error != 0) {
1291 aprint_error_dev(sc->sc_dev,
1292 "can't not map mbuf (error %d)\n", error);
1293 goto fail;
1294 }
1295
1296 /* Set physical address of RX buffer (256-byte aligned). */
1297 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1298 }
1299
1300 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1301 BUS_DMASYNC_PREWRITE);
1302
1303 return 0;
1304
1305 fail: iwn_free_rx_ring(sc, ring);
1306 return error;
1307 }
1308
1309 static void
1310 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1311 {
1312 int ntries;
1313
1314 if (iwn_nic_lock(sc) == 0) {
1315 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1316 for (ntries = 0; ntries < 1000; ntries++) {
1317 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1318 IWN_FH_RX_STATUS_IDLE)
1319 break;
1320 DELAY(10);
1321 }
1322 iwn_nic_unlock(sc);
1323 }
1324 ring->cur = 0;
1325 sc->last_rx_valid = 0;
1326 }
1327
1328 static void
1329 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1330 {
1331 int i;
1332
1333 iwn_dma_contig_free(&ring->desc_dma);
1334 iwn_dma_contig_free(&ring->stat_dma);
1335
1336 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1337 struct iwn_rx_data *data = &ring->data[i];
1338
1339 if (data->m != NULL) {
1340 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1341 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1342 bus_dmamap_unload(sc->sc_dmat, data->map);
1343 m_freem(data->m);
1344 }
1345 if (data->map != NULL)
1346 bus_dmamap_destroy(sc->sc_dmat, data->map);
1347 }
1348 }
1349
1350 static int
1351 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1352 {
1353 bus_addr_t paddr;
1354 bus_size_t size;
1355 int i, error;
1356
1357 ring->qid = qid;
1358 ring->queued = 0;
1359 ring->cur = 0;
1360
1361 /* Allocate TX descriptors (256-byte aligned). */
1362 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1363 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1364 (void **)&ring->desc, size, 256);
1365 if (error != 0) {
1366 aprint_error_dev(sc->sc_dev,
1367 "could not allocate TX ring DMA memory\n");
1368 goto fail;
1369 }
1370 /*
1371 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1372 * to allocate commands space for other rings.
1373 * XXX Do we really need to allocate descriptors for other rings?
1374 */
1375 if (qid > 4)
1376 return 0;
1377
1378 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1379 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1380 (void **)&ring->cmd, size, 4);
1381 if (error != 0) {
1382 aprint_error_dev(sc->sc_dev,
1383 "could not allocate TX cmd DMA memory\n");
1384 goto fail;
1385 }
1386
1387 paddr = ring->cmd_dma.paddr;
1388 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1389 struct iwn_tx_data *data = &ring->data[i];
1390
1391 data->cmd_paddr = paddr;
1392 data->scratch_paddr = paddr + 12;
1393 paddr += sizeof (struct iwn_tx_cmd);
1394
1395 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1396 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1397 &data->map);
1398 if (error != 0) {
1399 aprint_error_dev(sc->sc_dev,
1400 "could not create TX buf DMA map\n");
1401 goto fail;
1402 }
1403 }
1404 return 0;
1405
1406 fail: iwn_free_tx_ring(sc, ring);
1407 return error;
1408 }
1409
1410 static void
1411 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1412 {
1413 int i;
1414
1415 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1416 struct iwn_tx_data *data = &ring->data[i];
1417
1418 if (data->m != NULL) {
1419 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1420 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1421 bus_dmamap_unload(sc->sc_dmat, data->map);
1422 m_freem(data->m);
1423 data->m = NULL;
1424 }
1425 }
1426 /* Clear TX descriptors. */
1427 memset(ring->desc, 0, ring->desc_dma.size);
1428 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1429 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1430 sc->qfullmsk &= ~(1 << ring->qid);
1431 ring->queued = 0;
1432 ring->cur = 0;
1433 }
1434
1435 static void
1436 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1437 {
1438 int i;
1439
1440 iwn_dma_contig_free(&ring->desc_dma);
1441 iwn_dma_contig_free(&ring->cmd_dma);
1442
1443 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1444 struct iwn_tx_data *data = &ring->data[i];
1445
1446 if (data->m != NULL) {
1447 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1448 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1449 bus_dmamap_unload(sc->sc_dmat, data->map);
1450 m_freem(data->m);
1451 }
1452 if (data->map != NULL)
1453 bus_dmamap_destroy(sc->sc_dmat, data->map);
1454 }
1455 }
1456
1457 static void
1458 iwn5000_ict_reset(struct iwn_softc *sc)
1459 {
1460 /* Disable interrupts. */
1461 IWN_WRITE(sc, IWN_INT_MASK, 0);
1462
1463 /* Reset ICT table. */
1464 memset(sc->ict, 0, IWN_ICT_SIZE);
1465 sc->ict_cur = 0;
1466
1467 /* Set physical address of ICT table (4KB aligned). */
1468 DPRINTF(("enabling ICT\n"));
1469 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1470 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1471
1472 /* Enable periodic RX interrupt. */
1473 sc->int_mask |= IWN_INT_RX_PERIODIC;
1474 /* Switch to ICT interrupt mode in driver. */
1475 sc->sc_flags |= IWN_FLAG_USE_ICT;
1476
1477 /* Re-enable interrupts. */
1478 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1479 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1480 }
1481
1482 static int
1483 iwn_read_eeprom(struct iwn_softc *sc)
1484 {
1485 struct iwn_ops *ops = &sc->ops;
1486 struct ieee80211com *ic = &sc->sc_ic;
1487 uint16_t val;
1488 int error;
1489
1490 /* Check whether adapter has an EEPROM or an OTPROM. */
1491 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1492 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1493 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1494 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1495 "OTPROM" : "EEPROM"));
1496
1497 /* Adapter has to be powered on for EEPROM access to work. */
1498 if ((error = iwn_apm_init(sc)) != 0) {
1499 aprint_error_dev(sc->sc_dev,
1500 "could not power ON adapter\n");
1501 return error;
1502 }
1503
1504 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1505 aprint_error_dev(sc->sc_dev,
1506 "bad ROM signature\n");
1507 return EIO;
1508 }
1509 if ((error = iwn_eeprom_lock(sc)) != 0) {
1510 aprint_error_dev(sc->sc_dev,
1511 "could not lock ROM (error=%d)\n", error);
1512 return error;
1513 }
1514 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1515 if ((error = iwn_init_otprom(sc)) != 0) {
1516 aprint_error_dev(sc->sc_dev,
1517 "could not initialize OTPROM\n");
1518 return error;
1519 }
1520 }
1521
1522 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1523 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1524 /* Check if HT support is bonded out. */
1525 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1526 sc->sc_flags |= IWN_FLAG_HAS_11N;
1527
1528 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1529 sc->rfcfg = le16toh(val);
1530 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1531 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1532 if (sc->txchainmask == 0)
1533 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1534 if (sc->rxchainmask == 0)
1535 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1536
1537 /* Read MAC address. */
1538 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1539
1540 /* Read adapter-specific information from EEPROM. */
1541 ops->read_eeprom(sc);
1542
1543 iwn_apm_stop(sc); /* Power OFF adapter. */
1544
1545 iwn_eeprom_unlock(sc);
1546 return 0;
1547 }
1548
1549 static void
1550 iwn4965_read_eeprom(struct iwn_softc *sc)
1551 {
1552 uint32_t addr;
1553 uint16_t val;
1554 int i;
1555
1556 /* Read regulatory domain (4 ASCII characters). */
1557 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1558
1559 /* Read the list of authorized channels (20MHz ones only). */
1560 for (i = 0; i < 5; i++) {
1561 addr = iwn4965_regulatory_bands[i];
1562 iwn_read_eeprom_channels(sc, i, addr);
1563 }
1564
1565 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1566 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1567 sc->maxpwr2GHz = val & 0xff;
1568 sc->maxpwr5GHz = val >> 8;
1569 /* Check that EEPROM values are within valid range. */
1570 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1571 sc->maxpwr5GHz = 38;
1572 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1573 sc->maxpwr2GHz = 38;
1574 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1575
1576 /* Read samples for each TX power group. */
1577 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1578 sizeof sc->bands);
1579
1580 /* Read voltage at which samples were taken. */
1581 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1582 sc->eeprom_voltage = (int16_t)le16toh(val);
1583 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1584
1585 #ifdef IWN_DEBUG
1586 /* Print samples. */
1587 if (iwn_debug > 0) {
1588 for (i = 0; i < IWN_NBANDS; i++)
1589 iwn4965_print_power_group(sc, i);
1590 }
1591 #endif
1592 }
1593
1594 #ifdef IWN_DEBUG
1595 static void
1596 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1597 {
1598 struct iwn4965_eeprom_band *band = &sc->bands[i];
1599 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1600 int j, c;
1601
1602 aprint_normal("===band %d===\n", i);
1603 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1604 aprint_normal("chan1 num=%d\n", chans[0].num);
1605 for (c = 0; c < 2; c++) {
1606 for (j = 0; j < IWN_NSAMPLES; j++) {
1607 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1608 "power=%d pa_det=%d\n", c, j,
1609 chans[0].samples[c][j].temp,
1610 chans[0].samples[c][j].gain,
1611 chans[0].samples[c][j].power,
1612 chans[0].samples[c][j].pa_det);
1613 }
1614 }
1615 aprint_normal("chan2 num=%d\n", chans[1].num);
1616 for (c = 0; c < 2; c++) {
1617 for (j = 0; j < IWN_NSAMPLES; j++) {
1618 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1619 "power=%d pa_det=%d\n", c, j,
1620 chans[1].samples[c][j].temp,
1621 chans[1].samples[c][j].gain,
1622 chans[1].samples[c][j].power,
1623 chans[1].samples[c][j].pa_det);
1624 }
1625 }
1626 }
1627 #endif
1628
1629 static void
1630 iwn5000_read_eeprom(struct iwn_softc *sc)
1631 {
1632 struct iwn5000_eeprom_calib_hdr hdr;
1633 int32_t volt;
1634 uint32_t base, addr;
1635 uint16_t val;
1636 int i;
1637
1638 /* Read regulatory domain (4 ASCII characters). */
1639 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1640 base = le16toh(val);
1641 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1642 sc->eeprom_domain, 4);
1643
1644 /* Read the list of authorized channels (20MHz ones only). */
1645 for (i = 0; i < 5; i++) {
1646 addr = base + iwn5000_regulatory_bands[i];
1647 iwn_read_eeprom_channels(sc, i, addr);
1648 }
1649
1650 /* Read enhanced TX power information for 6000 Series. */
1651 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1652 iwn_read_eeprom_enhinfo(sc);
1653
1654 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1655 base = le16toh(val);
1656 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1657 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1658 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1659 sc->calib_ver = hdr.version;
1660
1661 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1662 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1663 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1664 sc->hw_type == IWN_HW_REV_TYPE_105) {
1665 sc->eeprom_voltage = le16toh(hdr.volt);
1666 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1667 sc->eeprom_temp = le16toh(val);
1668 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1669 sc->eeprom_rawtemp = le16toh(val);
1670 }
1671
1672 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1673 /* Compute temperature offset. */
1674 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1675 sc->eeprom_temp = le16toh(val);
1676 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1677 volt = le16toh(val);
1678 sc->temp_off = sc->eeprom_temp - (volt / -5);
1679 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1680 sc->eeprom_temp, volt, sc->temp_off));
1681 } else {
1682 /* Read crystal calibration. */
1683 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1684 &sc->eeprom_crystal, sizeof (uint32_t));
1685 DPRINTF(("crystal calibration 0x%08x\n",
1686 le32toh(sc->eeprom_crystal)));
1687 }
1688 }
1689
1690 static void
1691 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1692 {
1693 struct ieee80211com *ic = &sc->sc_ic;
1694 const struct iwn_chan_band *band = &iwn_bands[n];
1695 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1696 uint8_t chan;
1697 int i;
1698
1699 iwn_read_prom_data(sc, addr, channels,
1700 band->nchan * sizeof (struct iwn_eeprom_chan));
1701
1702 for (i = 0; i < band->nchan; i++) {
1703 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1704 continue;
1705
1706 chan = band->chan[i];
1707
1708 if (n == 0) { /* 2GHz band */
1709 ic->ic_channels[chan].ic_freq =
1710 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1711 ic->ic_channels[chan].ic_flags =
1712 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1713 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1714
1715 } else { /* 5GHz band */
1716 /*
1717 * Some adapters support channels 7, 8, 11 and 12
1718 * both in the 2GHz and 4.9GHz bands.
1719 * Because of limitations in our net80211 layer,
1720 * we don't support them in the 4.9GHz band.
1721 */
1722 if (chan <= 14)
1723 continue;
1724
1725 ic->ic_channels[chan].ic_freq =
1726 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1727 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1728 /* We have at least one valid 5GHz channel. */
1729 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1730 }
1731
1732 /* Is active scan allowed on this channel? */
1733 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1734 ic->ic_channels[chan].ic_flags |=
1735 IEEE80211_CHAN_PASSIVE;
1736 }
1737
1738 /* Save maximum allowed TX power for this channel. */
1739 sc->maxpwr[chan] = channels[i].maxpwr;
1740
1741 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1742 chan, channels[i].flags, sc->maxpwr[chan]));
1743 }
1744 }
1745
1746 static void
1747 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1748 {
1749 struct iwn_eeprom_enhinfo enhinfo[35];
1750 uint16_t val, base;
1751 int8_t maxpwr;
1752 int i;
1753
1754 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1755 base = le16toh(val);
1756 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1757 enhinfo, sizeof enhinfo);
1758
1759 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1760 for (i = 0; i < __arraycount(enhinfo); i++) {
1761 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1762 continue; /* Skip invalid entries. */
1763
1764 maxpwr = 0;
1765 if (sc->txchainmask & IWN_ANT_A)
1766 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1767 if (sc->txchainmask & IWN_ANT_B)
1768 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1769 if (sc->txchainmask & IWN_ANT_C)
1770 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1771 if (sc->ntxchains == 2)
1772 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1773 else if (sc->ntxchains == 3)
1774 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1775 maxpwr /= 2; /* Convert half-dBm to dBm. */
1776
1777 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1778 sc->enh_maxpwr[i] = maxpwr;
1779 }
1780 }
1781
1782 static struct ieee80211_node *
1783 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1784 {
1785 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1786 }
1787
1788 static void
1789 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1790 {
1791 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1792 struct iwn_node *wn = (void *)ni;
1793 uint8_t rate;
1794 int ridx, i;
1795
1796 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1797 /* Start at lowest available bit-rate, AMRR will raise. */
1798 ni->ni_txrate = 0;
1799
1800 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1801 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1802 /* Map 802.11 rate to HW rate index. */
1803 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1804 if (iwn_rates[ridx].rate == rate)
1805 break;
1806 wn->ridx[i] = ridx;
1807 }
1808 }
1809
1810 static int
1811 iwn_media_change(struct ifnet *ifp)
1812 {
1813 struct iwn_softc *sc = ifp->if_softc;
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 uint8_t rate, ridx;
1816 int error;
1817
1818 error = ieee80211_media_change(ifp);
1819 if (error != ENETRESET)
1820 return error;
1821
1822 if (ic->ic_fixed_rate != -1) {
1823 rate = ic->ic_sup_rates[ic->ic_curmode].
1824 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1825 /* Map 802.11 rate to HW rate index. */
1826 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1827 if (iwn_rates[ridx].rate == rate)
1828 break;
1829 sc->fixed_ridx = ridx;
1830 }
1831
1832 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1833 (IFF_UP | IFF_RUNNING)) {
1834 iwn_stop(ifp, 0);
1835 error = iwn_init(ifp);
1836 }
1837 return error;
1838 }
1839
1840 static int
1841 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1842 {
1843 struct ifnet *ifp = ic->ic_ifp;
1844 struct iwn_softc *sc = ifp->if_softc;
1845 int error;
1846
1847 callout_stop(&sc->calib_to);
1848
1849 switch (nstate) {
1850 case IEEE80211_S_SCAN:
1851 /* XXX Do not abort a running scan. */
1852 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1853 if (ic->ic_state != nstate)
1854 aprint_error_dev(sc->sc_dev, "scan request(%d) "
1855 "while scanning(%d) ignored\n", nstate,
1856 ic->ic_state);
1857 break;
1858 }
1859
1860 /* XXX Not sure if call and flags are needed. */
1861 ieee80211_node_table_reset(&ic->ic_scan);
1862 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1863 sc->sc_flags |= IWN_FLAG_SCANNING;
1864
1865 /* Make the link LED blink while we're scanning. */
1866 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1867
1868 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1869 aprint_error_dev(sc->sc_dev,
1870 "could not initiate scan\n");
1871 return error;
1872 }
1873 ic->ic_state = nstate;
1874 return 0;
1875
1876 case IEEE80211_S_ASSOC:
1877 if (ic->ic_state != IEEE80211_S_RUN)
1878 break;
1879 /* FALLTHROUGH */
1880 case IEEE80211_S_AUTH:
1881 /* Reset state to handle reassociations correctly. */
1882 sc->rxon.associd = 0;
1883 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1884 sc->calib.state = IWN_CALIB_STATE_INIT;
1885
1886 if ((error = iwn_auth(sc)) != 0) {
1887 aprint_error_dev(sc->sc_dev,
1888 "could not move to auth state\n");
1889 return error;
1890 }
1891 break;
1892
1893 case IEEE80211_S_RUN:
1894 if ((error = iwn_run(sc)) != 0) {
1895 aprint_error_dev(sc->sc_dev,
1896 "could not move to run state\n");
1897 return error;
1898 }
1899 break;
1900
1901 case IEEE80211_S_INIT:
1902 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1903 sc->calib.state = IWN_CALIB_STATE_INIT;
1904 break;
1905 }
1906
1907 return sc->sc_newstate(ic, nstate, arg);
1908 }
1909
1910 static void
1911 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1912 {
1913 struct iwn_softc *sc = arg;
1914 struct iwn_node *wn = (struct iwn_node *)ni;
1915
1916 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1917 }
1918
1919 static void
1920 iwn_calib_timeout(void *arg)
1921 {
1922 struct iwn_softc *sc = arg;
1923 struct ieee80211com *ic = &sc->sc_ic;
1924 int s;
1925
1926 s = splnet();
1927 if (ic->ic_fixed_rate == -1) {
1928 if (ic->ic_opmode == IEEE80211_M_STA)
1929 iwn_iter_func(sc, ic->ic_bss);
1930 else
1931 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1932 }
1933 /* Force automatic TX power calibration every 60 secs. */
1934 if (++sc->calib_cnt >= 120) {
1935 uint32_t flags = 0;
1936
1937 DPRINTF(("sending request for statistics\n"));
1938 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1939 sizeof flags, 1);
1940 sc->calib_cnt = 0;
1941 }
1942 splx(s);
1943
1944 /* Automatic rate control triggered every 500ms. */
1945 callout_schedule(&sc->calib_to, hz/2);
1946 }
1947
1948 /*
1949 * Process an RX_PHY firmware notification. This is usually immediately
1950 * followed by an MPDU_RX_DONE notification.
1951 */
1952 static void
1953 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1954 struct iwn_rx_data *data)
1955 {
1956 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1957
1958 DPRINTFN(2, ("received PHY stats\n"));
1959 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1960 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1961
1962 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1963 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1964 sc->last_rx_valid = 1;
1965 }
1966
1967 /*
1968 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1969 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1970 */
1971 static void
1972 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1973 struct iwn_rx_data *data)
1974 {
1975 struct iwn_ops *ops = &sc->ops;
1976 struct ieee80211com *ic = &sc->sc_ic;
1977 struct ifnet *ifp = ic->ic_ifp;
1978 struct iwn_rx_ring *ring = &sc->rxq;
1979 struct ieee80211_frame *wh;
1980 struct ieee80211_node *ni;
1981 struct mbuf *m, *m1;
1982 struct iwn_rx_stat *stat;
1983 char *head;
1984 uint32_t flags;
1985 int error, len, rssi;
1986
1987 if (desc->type == IWN_MPDU_RX_DONE) {
1988 /* Check for prior RX_PHY notification. */
1989 if (!sc->last_rx_valid) {
1990 DPRINTF(("missing RX_PHY\n"));
1991 return;
1992 }
1993 sc->last_rx_valid = 0;
1994 stat = &sc->last_rx_stat;
1995 } else
1996 stat = (struct iwn_rx_stat *)(desc + 1);
1997
1998 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
1999 BUS_DMASYNC_POSTREAD);
2000
2001 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2002 aprint_error_dev(sc->sc_dev,
2003 "invalid RX statistic header\n");
2004 return;
2005 }
2006 if (desc->type == IWN_MPDU_RX_DONE) {
2007 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2008 head = (char *)(mpdu + 1);
2009 len = le16toh(mpdu->len);
2010 } else {
2011 head = (char *)(stat + 1) + stat->cfg_phy_len;
2012 len = le16toh(stat->len);
2013 }
2014
2015 flags = le32toh(*(uint32_t *)(head + len));
2016
2017 /* Discard frames with a bad FCS early. */
2018 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2019 DPRINTFN(2, ("RX flags error %x\n", flags));
2020 ifp->if_ierrors++;
2021 return;
2022 }
2023 /* Discard frames that are too short. */
2024 if (len < sizeof (*wh)) {
2025 DPRINTF(("frame too short: %d\n", len));
2026 ic->ic_stats.is_rx_tooshort++;
2027 ifp->if_ierrors++;
2028 return;
2029 }
2030
2031 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2032 if (m1 == NULL) {
2033 ic->ic_stats.is_rx_nobuf++;
2034 ifp->if_ierrors++;
2035 return;
2036 }
2037 bus_dmamap_unload(sc->sc_dmat, data->map);
2038
2039 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2040 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2041 if (error != 0) {
2042 m_freem(m1);
2043
2044 /* Try to reload the old mbuf. */
2045 error = bus_dmamap_load(sc->sc_dmat, data->map,
2046 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2047 BUS_DMA_NOWAIT | BUS_DMA_READ);
2048 if (error != 0) {
2049 panic("%s: could not load old RX mbuf",
2050 device_xname(sc->sc_dev));
2051 }
2052 /* Physical address may have changed. */
2053 ring->desc[ring->cur] =
2054 htole32(data->map->dm_segs[0].ds_addr >> 8);
2055 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2056 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2057 BUS_DMASYNC_PREWRITE);
2058 ifp->if_ierrors++;
2059 return;
2060 }
2061
2062 m = data->m;
2063 data->m = m1;
2064 /* Update RX descriptor. */
2065 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2066 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2067 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2068 BUS_DMASYNC_PREWRITE);
2069
2070 /* Finalize mbuf. */
2071 m->m_pkthdr.rcvif = ifp;
2072 m->m_data = head;
2073 m->m_pkthdr.len = m->m_len = len;
2074
2075 /* Grab a reference to the source node. */
2076 wh = mtod(m, struct ieee80211_frame *);
2077 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2078
2079 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2080 /* NetBSD does decryption in ieee80211_input. */
2081
2082 rssi = ops->get_rssi(stat);
2083
2084 /* XXX Added for NetBSD: scans never stop without it */
2085 if (ic->ic_state == IEEE80211_S_SCAN)
2086 iwn_fix_channel(ic, m);
2087
2088 if (sc->sc_drvbpf != NULL) {
2089 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2090
2091 tap->wr_flags = 0;
2092 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2093 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2094 tap->wr_chan_freq =
2095 htole16(ic->ic_channels[stat->chan].ic_freq);
2096 tap->wr_chan_flags =
2097 htole16(ic->ic_channels[stat->chan].ic_flags);
2098 tap->wr_dbm_antsignal = (int8_t)rssi;
2099 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2100 tap->wr_tsft = stat->tstamp;
2101 switch (stat->rate) {
2102 /* CCK rates. */
2103 case 10: tap->wr_rate = 2; break;
2104 case 20: tap->wr_rate = 4; break;
2105 case 55: tap->wr_rate = 11; break;
2106 case 110: tap->wr_rate = 22; break;
2107 /* OFDM rates. */
2108 case 0xd: tap->wr_rate = 12; break;
2109 case 0xf: tap->wr_rate = 18; break;
2110 case 0x5: tap->wr_rate = 24; break;
2111 case 0x7: tap->wr_rate = 36; break;
2112 case 0x9: tap->wr_rate = 48; break;
2113 case 0xb: tap->wr_rate = 72; break;
2114 case 0x1: tap->wr_rate = 96; break;
2115 case 0x3: tap->wr_rate = 108; break;
2116 /* Unknown rate: should not happen. */
2117 default: tap->wr_rate = 0;
2118 }
2119
2120 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2121 }
2122
2123 /* Send the frame to the 802.11 layer. */
2124 ieee80211_input(ic, m, ni, rssi, 0);
2125
2126 /* Node is no longer needed. */
2127 ieee80211_free_node(ni);
2128 }
2129
2130 #ifndef IEEE80211_NO_HT
2131 /* Process an incoming Compressed BlockAck. */
2132 static void
2133 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2134 struct iwn_rx_data *data)
2135 {
2136 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2137 struct iwn_tx_ring *txq;
2138
2139 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2140 BUS_DMASYNC_POSTREAD);
2141
2142 txq = &sc->txq[le16toh(ba->qid)];
2143 /* XXX TBD */
2144 }
2145 #endif
2146
2147 /*
2148 * Process a CALIBRATION_RESULT notification sent by the initialization
2149 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2150 */
2151 static void
2152 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2153 struct iwn_rx_data *data)
2154 {
2155 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2156 int len, idx = -1;
2157
2158 /* Runtime firmware should not send such a notification. */
2159 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2160 return;
2161
2162 len = (le32toh(desc->len) & 0x3fff) - 4;
2163 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2164 BUS_DMASYNC_POSTREAD);
2165
2166 switch (calib->code) {
2167 case IWN5000_PHY_CALIB_DC:
2168 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2169 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2170 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2171 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2172 sc->hw_type == IWN_HW_REV_TYPE_105)
2173 idx = 0;
2174 break;
2175 case IWN5000_PHY_CALIB_LO:
2176 idx = 1;
2177 break;
2178 case IWN5000_PHY_CALIB_TX_IQ:
2179 idx = 2;
2180 break;
2181 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2182 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2183 sc->hw_type != IWN_HW_REV_TYPE_5150)
2184 idx = 3;
2185 break;
2186 case IWN5000_PHY_CALIB_BASE_BAND:
2187 idx = 4;
2188 break;
2189 }
2190 if (idx == -1) /* Ignore other results. */
2191 return;
2192
2193 /* Save calibration result. */
2194 if (sc->calibcmd[idx].buf != NULL)
2195 free(sc->calibcmd[idx].buf, M_DEVBUF);
2196 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2197 if (sc->calibcmd[idx].buf == NULL) {
2198 DPRINTF(("not enough memory for calibration result %d\n",
2199 calib->code));
2200 return;
2201 }
2202 DPRINTF(("saving calibration result code=%d len=%d\n",
2203 calib->code, len));
2204 sc->calibcmd[idx].len = len;
2205 memcpy(sc->calibcmd[idx].buf, calib, len);
2206 }
2207
2208 /*
2209 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2210 * The latter is sent by the firmware after each received beacon.
2211 */
2212 static void
2213 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2214 struct iwn_rx_data *data)
2215 {
2216 struct iwn_ops *ops = &sc->ops;
2217 struct ieee80211com *ic = &sc->sc_ic;
2218 struct iwn_calib_state *calib = &sc->calib;
2219 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2220 int temp;
2221
2222 /* Ignore statistics received during a scan. */
2223 if (ic->ic_state != IEEE80211_S_RUN)
2224 return;
2225
2226 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2227 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2228
2229 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2230 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2231
2232 /* Test if temperature has changed. */
2233 if (stats->general.temp != sc->rawtemp) {
2234 /* Convert "raw" temperature to degC. */
2235 sc->rawtemp = stats->general.temp;
2236 temp = ops->get_temperature(sc);
2237 DPRINTFN(2, ("temperature=%dC\n", temp));
2238
2239 /* Update TX power if need be (4965AGN only). */
2240 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2241 iwn4965_power_calibration(sc, temp);
2242 }
2243
2244 if (desc->type != IWN_BEACON_STATISTICS)
2245 return; /* Reply to a statistics request. */
2246
2247 sc->noise = iwn_get_noise(&stats->rx.general);
2248
2249 /* Test that RSSI and noise are present in stats report. */
2250 if (le32toh(stats->rx.general.flags) != 1) {
2251 DPRINTF(("received statistics without RSSI\n"));
2252 return;
2253 }
2254
2255 /*
2256 * XXX Differential gain calibration makes the 6005 firmware
2257 * crap out, so skip it for now. This effectively disables
2258 * sensitivity tuning as well.
2259 */
2260 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2261 return;
2262
2263 if (calib->state == IWN_CALIB_STATE_ASSOC)
2264 iwn_collect_noise(sc, &stats->rx.general);
2265 else if (calib->state == IWN_CALIB_STATE_RUN)
2266 iwn_tune_sensitivity(sc, &stats->rx);
2267 }
2268
2269 /*
2270 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2271 * and 5000 adapters have different incompatible TX status formats.
2272 */
2273 static void
2274 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2275 struct iwn_rx_data *data)
2276 {
2277 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2278
2279 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2280 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2281 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2282 }
2283
2284 static void
2285 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2286 struct iwn_rx_data *data)
2287 {
2288 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2289
2290 #ifdef notyet
2291 /* Reset TX scheduler slot. */
2292 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2293 #endif
2294
2295 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2296 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2297 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2298 }
2299
2300 /*
2301 * Adapter-independent backend for TX_DONE firmware notifications.
2302 */
2303 static void
2304 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2305 uint8_t status)
2306 {
2307 struct ieee80211com *ic = &sc->sc_ic;
2308 struct ifnet *ifp = ic->ic_ifp;
2309 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2310 struct iwn_tx_data *data = &ring->data[desc->idx];
2311 struct iwn_node *wn = (struct iwn_node *)data->ni;
2312
2313 /* Update rate control statistics. */
2314 wn->amn.amn_txcnt++;
2315 if (ackfailcnt > 0)
2316 wn->amn.amn_retrycnt++;
2317
2318 if (status != 1 && status != 2)
2319 ifp->if_oerrors++;
2320 else
2321 ifp->if_opackets++;
2322
2323 /* Unmap and free mbuf. */
2324 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2325 BUS_DMASYNC_POSTWRITE);
2326 bus_dmamap_unload(sc->sc_dmat, data->map);
2327 m_freem(data->m);
2328 data->m = NULL;
2329 ieee80211_free_node(data->ni);
2330 data->ni = NULL;
2331
2332 sc->sc_tx_timer = 0;
2333 if (--ring->queued < IWN_TX_RING_LOMARK) {
2334 sc->qfullmsk &= ~(1 << ring->qid);
2335 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2336 ifp->if_flags &= ~IFF_OACTIVE;
2337 (*ifp->if_start)(ifp);
2338 }
2339 }
2340 }
2341
2342 /*
2343 * Process a "command done" firmware notification. This is where we wakeup
2344 * processes waiting for a synchronous command completion.
2345 */
2346 static void
2347 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2348 {
2349 struct iwn_tx_ring *ring = &sc->txq[4];
2350 struct iwn_tx_data *data;
2351
2352 if ((desc->qid & 0xf) != 4)
2353 return; /* Not a command ack. */
2354
2355 data = &ring->data[desc->idx];
2356
2357 /* If the command was mapped in an mbuf, free it. */
2358 if (data->m != NULL) {
2359 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2360 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2361 bus_dmamap_unload(sc->sc_dmat, data->map);
2362 m_freem(data->m);
2363 data->m = NULL;
2364 }
2365 wakeup(&ring->desc[desc->idx]);
2366 }
2367
2368 /*
2369 * Process an INT_FH_RX or INT_SW_RX interrupt.
2370 */
2371 static void
2372 iwn_notif_intr(struct iwn_softc *sc)
2373 {
2374 struct iwn_ops *ops = &sc->ops;
2375 struct ieee80211com *ic = &sc->sc_ic;
2376 struct ifnet *ifp = ic->ic_ifp;
2377 uint16_t hw;
2378
2379 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2380 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2381
2382 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2383 while (sc->rxq.cur != hw) {
2384 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2385 struct iwn_rx_desc *desc;
2386
2387 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2388 BUS_DMASYNC_POSTREAD);
2389 desc = mtod(data->m, struct iwn_rx_desc *);
2390
2391 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2392 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2393
2394 if (!(desc->qid & 0x80)) /* Reply to a command. */
2395 iwn_cmd_done(sc, desc);
2396
2397 switch (desc->type) {
2398 case IWN_RX_PHY:
2399 iwn_rx_phy(sc, desc, data);
2400 break;
2401
2402 case IWN_RX_DONE: /* 4965AGN only. */
2403 case IWN_MPDU_RX_DONE:
2404 /* An 802.11 frame has been received. */
2405 iwn_rx_done(sc, desc, data);
2406 break;
2407 #ifndef IEEE80211_NO_HT
2408 case IWN_RX_COMPRESSED_BA:
2409 /* A Compressed BlockAck has been received. */
2410 iwn_rx_compressed_ba(sc, desc, data);
2411 break;
2412 #endif
2413 case IWN_TX_DONE:
2414 /* An 802.11 frame has been transmitted. */
2415 ops->tx_done(sc, desc, data);
2416 break;
2417
2418 case IWN_RX_STATISTICS:
2419 case IWN_BEACON_STATISTICS:
2420 iwn_rx_statistics(sc, desc, data);
2421 break;
2422
2423 case IWN_BEACON_MISSED:
2424 {
2425 struct iwn_beacon_missed *miss =
2426 (struct iwn_beacon_missed *)(desc + 1);
2427
2428 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2429 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2430 /*
2431 * If more than 5 consecutive beacons are missed,
2432 * reinitialize the sensitivity state machine.
2433 */
2434 DPRINTF(("beacons missed %d/%d\n",
2435 le32toh(miss->consecutive), le32toh(miss->total)));
2436 if (ic->ic_state == IEEE80211_S_RUN &&
2437 le32toh(miss->consecutive) > 5)
2438 (void)iwn_init_sensitivity(sc);
2439 break;
2440 }
2441 case IWN_UC_READY:
2442 {
2443 struct iwn_ucode_info *uc =
2444 (struct iwn_ucode_info *)(desc + 1);
2445
2446 /* The microcontroller is ready. */
2447 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2448 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2449 DPRINTF(("microcode alive notification version=%d.%d "
2450 "subtype=%x alive=%x\n", uc->major, uc->minor,
2451 uc->subtype, le32toh(uc->valid)));
2452
2453 if (le32toh(uc->valid) != 1) {
2454 aprint_error_dev(sc->sc_dev,
2455 "microcontroller initialization "
2456 "failed\n");
2457 break;
2458 }
2459 if (uc->subtype == IWN_UCODE_INIT) {
2460 /* Save microcontroller report. */
2461 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2462 }
2463 /* Save the address of the error log in SRAM. */
2464 sc->errptr = le32toh(uc->errptr);
2465 break;
2466 }
2467 case IWN_STATE_CHANGED:
2468 {
2469 uint32_t *status = (uint32_t *)(desc + 1);
2470
2471 /* Enabled/disabled notification. */
2472 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2473 sizeof (*status), BUS_DMASYNC_POSTREAD);
2474 DPRINTF(("state changed to %x\n", le32toh(*status)));
2475
2476 if (le32toh(*status) & 1) {
2477 /* The radio button has to be pushed. */
2478 aprint_error_dev(sc->sc_dev,
2479 "Radio transmitter is off\n");
2480 /* Turn the interface down. */
2481 ifp->if_flags &= ~IFF_UP;
2482 iwn_stop(ifp, 1);
2483 return; /* No further processing. */
2484 }
2485 break;
2486 }
2487 case IWN_START_SCAN:
2488 {
2489 struct iwn_start_scan *scan =
2490 (struct iwn_start_scan *)(desc + 1);
2491
2492 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2493 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2494 DPRINTFN(2, ("scanning channel %d status %x\n",
2495 scan->chan, le32toh(scan->status)));
2496
2497 /* Fix current channel. */
2498 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2499 break;
2500 }
2501 case IWN_STOP_SCAN:
2502 {
2503 struct iwn_stop_scan *scan =
2504 (struct iwn_stop_scan *)(desc + 1);
2505
2506 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2507 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2508 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2509 scan->nchan, scan->status, scan->chan));
2510
2511 if (scan->status == 1 && scan->chan <= 14 &&
2512 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2513 /*
2514 * We just finished scanning 2GHz channels,
2515 * start scanning 5GHz ones.
2516 */
2517 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2518 break;
2519 }
2520 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2521 ieee80211_end_scan(ic);
2522 break;
2523 }
2524 case IWN5000_CALIBRATION_RESULT:
2525 iwn5000_rx_calib_results(sc, desc, data);
2526 break;
2527
2528 case IWN5000_CALIBRATION_DONE:
2529 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2530 wakeup(sc);
2531 break;
2532 }
2533
2534 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2535 }
2536
2537 /* Tell the firmware what we have processed. */
2538 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2539 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2540 }
2541
2542 /*
2543 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2544 * from power-down sleep mode.
2545 */
2546 static void
2547 iwn_wakeup_intr(struct iwn_softc *sc)
2548 {
2549 int qid;
2550
2551 DPRINTF(("ucode wakeup from power-down sleep\n"));
2552
2553 /* Wakeup RX and TX rings. */
2554 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2555 for (qid = 0; qid < sc->ntxqs; qid++) {
2556 struct iwn_tx_ring *ring = &sc->txq[qid];
2557 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2558 }
2559 }
2560
2561 /*
2562 * Dump the error log of the firmware when a firmware panic occurs. Although
2563 * we can't debug the firmware because it is neither open source nor free, it
2564 * can help us to identify certain classes of problems.
2565 */
2566 static void
2567 iwn_fatal_intr(struct iwn_softc *sc)
2568 {
2569 struct iwn_fw_dump dump;
2570 int i;
2571
2572 /* Force a complete recalibration on next init. */
2573 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2574
2575 /* Check that the error log address is valid. */
2576 if (sc->errptr < IWN_FW_DATA_BASE ||
2577 sc->errptr + sizeof (dump) >
2578 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2579 aprint_error_dev(sc->sc_dev,
2580 "bad firmware error log address 0x%08x\n", sc->errptr);
2581 return;
2582 }
2583 if (iwn_nic_lock(sc) != 0) {
2584 aprint_error_dev(sc->sc_dev,
2585 "could not read firmware error log\n");
2586 return;
2587 }
2588 /* Read firmware error log from SRAM. */
2589 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2590 sizeof (dump) / sizeof (uint32_t));
2591 iwn_nic_unlock(sc);
2592
2593 if (dump.valid == 0) {
2594 aprint_error_dev(sc->sc_dev,
2595 "firmware error log is empty\n");
2596 return;
2597 }
2598 aprint_error("firmware error log:\n");
2599 aprint_error(" error type = \"%s\" (0x%08X)\n",
2600 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2601 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2602 dump.id);
2603 aprint_error(" program counter = 0x%08X\n", dump.pc);
2604 aprint_error(" source line = 0x%08X\n", dump.src_line);
2605 aprint_error(" error data = 0x%08X%08X\n",
2606 dump.error_data[0], dump.error_data[1]);
2607 aprint_error(" branch link = 0x%08X%08X\n",
2608 dump.branch_link[0], dump.branch_link[1]);
2609 aprint_error(" interrupt link = 0x%08X%08X\n",
2610 dump.interrupt_link[0], dump.interrupt_link[1]);
2611 aprint_error(" time = %u\n", dump.time[0]);
2612
2613 /* Dump driver status (TX and RX rings) while we're here. */
2614 aprint_error("driver status:\n");
2615 for (i = 0; i < sc->ntxqs; i++) {
2616 struct iwn_tx_ring *ring = &sc->txq[i];
2617 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2618 i, ring->qid, ring->cur, ring->queued);
2619 }
2620 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2621 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2622 }
2623
2624 static int
2625 iwn_intr(void *arg)
2626 {
2627 struct iwn_softc *sc = arg;
2628 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2629 uint32_t r1, r2, tmp;
2630
2631 /* Disable interrupts. */
2632 IWN_WRITE(sc, IWN_INT_MASK, 0);
2633
2634 /* Read interrupts from ICT (fast) or from registers (slow). */
2635 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2636 tmp = 0;
2637 while (sc->ict[sc->ict_cur] != 0) {
2638 tmp |= sc->ict[sc->ict_cur];
2639 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2640 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2641 }
2642 tmp = le32toh(tmp);
2643 if (tmp == 0xffffffff) /* Shouldn't happen. */
2644 tmp = 0;
2645 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2646 tmp |= 0x8000;
2647 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2648 r2 = 0; /* Unused. */
2649 } else {
2650 r1 = IWN_READ(sc, IWN_INT);
2651 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2652 return 0; /* Hardware gone! */
2653 r2 = IWN_READ(sc, IWN_FH_INT);
2654 }
2655 if (r1 == 0 && r2 == 0) {
2656 if (ifp->if_flags & IFF_UP)
2657 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2658 return 0; /* Interrupt not for us. */
2659 }
2660
2661 /* Acknowledge interrupts. */
2662 IWN_WRITE(sc, IWN_INT, r1);
2663 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2664 IWN_WRITE(sc, IWN_FH_INT, r2);
2665
2666 if (r1 & IWN_INT_RF_TOGGLED) {
2667 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2668 aprint_error_dev(sc->sc_dev,
2669 "RF switch: radio %s\n",
2670 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2671 }
2672 if (r1 & IWN_INT_CT_REACHED) {
2673 aprint_error_dev(sc->sc_dev,
2674 "critical temperature reached!\n");
2675 }
2676 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2677 aprint_error_dev(sc->sc_dev,
2678 "fatal firmware error\n");
2679 /* Dump firmware error log and stop. */
2680 iwn_fatal_intr(sc);
2681 ifp->if_flags &= ~IFF_UP;
2682 iwn_stop(ifp, 1);
2683 return 1;
2684 }
2685 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2686 (r2 & IWN_FH_INT_RX)) {
2687 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2688 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2689 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2690 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2691 IWN_INT_PERIODIC_DIS);
2692 iwn_notif_intr(sc);
2693 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2694 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2695 IWN_INT_PERIODIC_ENA);
2696 }
2697 } else
2698 iwn_notif_intr(sc);
2699 }
2700
2701 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2702 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2703 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2704 wakeup(sc); /* FH DMA transfer completed. */
2705 }
2706
2707 if (r1 & IWN_INT_ALIVE)
2708 wakeup(sc); /* Firmware is alive. */
2709
2710 if (r1 & IWN_INT_WAKEUP)
2711 iwn_wakeup_intr(sc);
2712
2713 /* Re-enable interrupts. */
2714 if (ifp->if_flags & IFF_UP)
2715 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2716
2717 return 1;
2718 }
2719
2720 /*
2721 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2722 * 5000 adapters use a slightly different format).
2723 */
2724 static void
2725 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2726 uint16_t len)
2727 {
2728 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2729
2730 *w = htole16(len + 8);
2731 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2732 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2733 sizeof (uint16_t),
2734 BUS_DMASYNC_PREWRITE);
2735 if (idx < IWN_SCHED_WINSZ) {
2736 *(w + IWN_TX_RING_COUNT) = *w;
2737 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2738 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2739 (char *)(void *)sc->sched_dma.vaddr,
2740 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2741 }
2742 }
2743
2744 static void
2745 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2746 uint16_t len)
2747 {
2748 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2749
2750 *w = htole16(id << 12 | (len + 8));
2751 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2752 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2753 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2754 if (idx < IWN_SCHED_WINSZ) {
2755 *(w + IWN_TX_RING_COUNT) = *w;
2756 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2757 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2758 (char *)(void *)sc->sched_dma.vaddr,
2759 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2760 }
2761 }
2762
2763 #ifdef notyet
2764 static void
2765 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2766 {
2767 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2768
2769 *w = (*w & htole16(0xf000)) | htole16(1);
2770 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2771 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2772 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2773 if (idx < IWN_SCHED_WINSZ) {
2774 *(w + IWN_TX_RING_COUNT) = *w;
2775 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2776 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2777 (char *)(void *)sc->sched_dma.vaddr,
2778 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2779 }
2780 }
2781 #endif
2782
2783 static int
2784 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2785 {
2786 struct ieee80211com *ic = &sc->sc_ic;
2787 struct iwn_node *wn = (void *)ni;
2788 struct iwn_tx_ring *ring;
2789 struct iwn_tx_desc *desc;
2790 struct iwn_tx_data *data;
2791 struct iwn_tx_cmd *cmd;
2792 struct iwn_cmd_data *tx;
2793 const struct iwn_rate *rinfo;
2794 struct ieee80211_frame *wh;
2795 struct ieee80211_key *k = NULL;
2796 struct mbuf *m1;
2797 uint32_t flags;
2798 u_int hdrlen;
2799 bus_dma_segment_t *seg;
2800 uint8_t tid, ridx, txant, type;
2801 int i, totlen, error, pad;
2802
2803 const struct chanAccParams *cap;
2804 int noack;
2805 int hdrlen2;
2806
2807 wh = mtod(m, struct ieee80211_frame *);
2808 hdrlen = ieee80211_anyhdrsize(wh);
2809 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2810
2811 hdrlen2 = (ieee80211_has_qos(wh)) ?
2812 sizeof (struct ieee80211_qosframe) :
2813 sizeof (struct ieee80211_frame);
2814
2815 if (hdrlen != hdrlen2)
2816 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2817 hdrlen, hdrlen2);
2818
2819 /* XXX OpenBSD sets a different tid when using QOS */
2820 tid = 0;
2821 if (ieee80211_has_qos(wh)) {
2822 cap = &ic->ic_wme.wme_chanParams;
2823 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2824 }
2825 else
2826 noack = 0;
2827
2828 ring = &sc->txq[ac];
2829 desc = &ring->desc[ring->cur];
2830 data = &ring->data[ring->cur];
2831
2832 /* Choose a TX rate index. */
2833 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2834 type != IEEE80211_FC0_TYPE_DATA) {
2835 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2836 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2837 } else if (ic->ic_fixed_rate != -1) {
2838 ridx = sc->fixed_ridx;
2839 } else
2840 ridx = wn->ridx[ni->ni_txrate];
2841 rinfo = &iwn_rates[ridx];
2842
2843 /* Encrypt the frame if need be. */
2844 /*
2845 * XXX For now, NetBSD swaps the encryption and bpf sections
2846 * in order to match old code and other drivers. Tests with
2847 * tcpdump indicates that the order is irrelevant, however,
2848 * as bpf produces unencrypted data for both ordering choices.
2849 */
2850 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2851 k = ieee80211_crypto_encap(ic, ni, m);
2852 if (k == NULL) {
2853 m_freem(m);
2854 return ENOBUFS;
2855 }
2856 /* Packet header may have moved, reset our local pointer. */
2857 wh = mtod(m, struct ieee80211_frame *);
2858 }
2859 totlen = m->m_pkthdr.len;
2860
2861 if (sc->sc_drvbpf != NULL) {
2862 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2863
2864 tap->wt_flags = 0;
2865 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2866 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2867 tap->wt_rate = rinfo->rate;
2868 tap->wt_hwqueue = ac;
2869 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2870 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2871
2872 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2873 }
2874
2875 /* Prepare TX firmware command. */
2876 cmd = &ring->cmd[ring->cur];
2877 cmd->code = IWN_CMD_TX_DATA;
2878 cmd->flags = 0;
2879 cmd->qid = ring->qid;
2880 cmd->idx = ring->cur;
2881
2882 tx = (struct iwn_cmd_data *)cmd->data;
2883 /* NB: No need to clear tx, all fields are reinitialized here. */
2884 tx->scratch = 0; /* clear "scratch" area */
2885
2886 flags = 0;
2887 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2888 /* Unicast frame, check if an ACK is expected. */
2889 if (!noack)
2890 flags |= IWN_TX_NEED_ACK;
2891 }
2892
2893 #ifdef notyet
2894 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2895 if ((wh->i_fc[0] &
2896 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2897 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2898 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2899 #endif
2900
2901 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2902 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2903
2904 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2905 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2906 /* NB: Group frames are sent using CCK in 802.11b/g. */
2907 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2908 flags |= IWN_TX_NEED_RTS;
2909 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2910 ridx >= IWN_RIDX_OFDM6) {
2911 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2912 flags |= IWN_TX_NEED_CTS;
2913 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2914 flags |= IWN_TX_NEED_RTS;
2915 }
2916 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2917 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2918 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2919 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2920 flags |= IWN_TX_NEED_PROTECTION;
2921 } else
2922 flags |= IWN_TX_FULL_TXOP;
2923 }
2924 }
2925
2926 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2927 type != IEEE80211_FC0_TYPE_DATA)
2928 tx->id = sc->broadcast_id;
2929 else
2930 tx->id = wn->id;
2931
2932 if (type == IEEE80211_FC0_TYPE_MGT) {
2933 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2934
2935 #ifndef IEEE80211_STA_ONLY
2936 /* Tell HW to set timestamp in probe responses. */
2937 /* XXX NetBSD rev 1.11 added probe requests here but */
2938 /* probe requests do not take timestamps (from Bergamini). */
2939 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2940 flags |= IWN_TX_INSERT_TSTAMP;
2941 #endif
2942 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2943 /* changes here. These are not needed (from Bergamini). */
2944 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2945 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2946 tx->timeout = htole16(3);
2947 else
2948 tx->timeout = htole16(2);
2949 } else
2950 tx->timeout = htole16(0);
2951
2952 if (hdrlen & 3) {
2953 /* First segment length must be a multiple of 4. */
2954 flags |= IWN_TX_NEED_PADDING;
2955 pad = 4 - (hdrlen & 3);
2956 } else
2957 pad = 0;
2958
2959 tx->len = htole16(totlen);
2960 tx->tid = tid;
2961 tx->rts_ntries = 60;
2962 tx->data_ntries = 15;
2963 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2964 tx->plcp = rinfo->plcp;
2965 tx->rflags = rinfo->flags;
2966 if (tx->id == sc->broadcast_id) {
2967 /* Group or management frame. */
2968 tx->linkq = 0;
2969 /* XXX Alternate between antenna A and B? */
2970 txant = IWN_LSB(sc->txchainmask);
2971 tx->rflags |= IWN_RFLAG_ANT(txant);
2972 } else {
2973 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2974 flags |= IWN_TX_LINKQ; /* enable MRR */
2975 }
2976 /* Set physical address of "scratch area". */
2977 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2978 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2979
2980 /* Copy 802.11 header in TX command. */
2981 /* XXX NetBSD changed this in rev 1.20 */
2982 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2983
2984 /* Trim 802.11 header. */
2985 m_adj(m, hdrlen);
2986 tx->security = 0;
2987 tx->flags = htole32(flags);
2988
2989 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2990 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2991 if (error != 0) {
2992 if (error != EFBIG) {
2993 aprint_error_dev(sc->sc_dev,
2994 "can't map mbuf (error %d)\n", error);
2995 m_freem(m);
2996 return error;
2997 }
2998 /* Too many DMA segments, linearize mbuf. */
2999 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3000 if (m1 == NULL) {
3001 m_freem(m);
3002 return ENOBUFS;
3003 }
3004 if (m->m_pkthdr.len > MHLEN) {
3005 MCLGET(m1, M_DONTWAIT);
3006 if (!(m1->m_flags & M_EXT)) {
3007 m_freem(m);
3008 m_freem(m1);
3009 return ENOBUFS;
3010 }
3011 }
3012 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3013 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3014 m_freem(m);
3015 m = m1;
3016
3017 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3018 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3019 if (error != 0) {
3020 aprint_error_dev(sc->sc_dev,
3021 "can't map mbuf (error %d)\n", error);
3022 m_freem(m);
3023 return error;
3024 }
3025 }
3026
3027 data->m = m;
3028 data->ni = ni;
3029
3030 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3031 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3032
3033 /* Fill TX descriptor. */
3034 desc->nsegs = 1 + data->map->dm_nsegs;
3035 /* First DMA segment is used by the TX command. */
3036 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3037 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3038 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3039 /* Other DMA segments are for data payload. */
3040 seg = data->map->dm_segs;
3041 for (i = 1; i <= data->map->dm_nsegs; i++) {
3042 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3043 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3044 seg->ds_len << 4);
3045 seg++;
3046 }
3047
3048 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3049 BUS_DMASYNC_PREWRITE);
3050 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3051 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3052 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3053 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3054 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3055 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3056
3057 #ifdef notyet
3058 /* Update TX scheduler. */
3059 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3060 #endif
3061
3062 /* Kick TX ring. */
3063 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3064 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3065
3066 /* Mark TX ring as full if we reach a certain threshold. */
3067 if (++ring->queued > IWN_TX_RING_HIMARK)
3068 sc->qfullmsk |= 1 << ring->qid;
3069
3070 return 0;
3071 }
3072
3073 static void
3074 iwn_start(struct ifnet *ifp)
3075 {
3076 struct iwn_softc *sc = ifp->if_softc;
3077 struct ieee80211com *ic = &sc->sc_ic;
3078 struct ieee80211_node *ni;
3079 struct ether_header *eh;
3080 struct mbuf *m;
3081 int ac;
3082
3083 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3084 return;
3085
3086 for (;;) {
3087 if (sc->qfullmsk != 0) {
3088 ifp->if_flags |= IFF_OACTIVE;
3089 break;
3090 }
3091 /* Send pending management frames first. */
3092 IF_DEQUEUE(&ic->ic_mgtq, m);
3093 if (m != NULL) {
3094 ni = (void *)m->m_pkthdr.rcvif;
3095 ac = 0;
3096 goto sendit;
3097 }
3098 if (ic->ic_state != IEEE80211_S_RUN)
3099 break;
3100
3101 /* Encapsulate and send data frames. */
3102 IFQ_DEQUEUE(&ifp->if_snd, m);
3103 if (m == NULL)
3104 break;
3105 if (m->m_len < sizeof (*eh) &&
3106 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3107 ifp->if_oerrors++;
3108 continue;
3109 }
3110 eh = mtod(m, struct ether_header *);
3111 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3112 if (ni == NULL) {
3113 m_freem(m);
3114 ifp->if_oerrors++;
3115 continue;
3116 }
3117 /* classify mbuf so we can find which tx ring to use */
3118 if (ieee80211_classify(ic, m, ni) != 0) {
3119 m_freem(m);
3120 ieee80211_free_node(ni);
3121 ifp->if_oerrors++;
3122 continue;
3123 }
3124
3125 /* No QoS encapsulation for EAPOL frames. */
3126 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3127 M_WME_GETAC(m) : WME_AC_BE;
3128
3129 bpf_mtap(ifp, m);
3130
3131 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3132 ieee80211_free_node(ni);
3133 ifp->if_oerrors++;
3134 continue;
3135 }
3136 sendit:
3137 bpf_mtap3(ic->ic_rawbpf, m);
3138
3139 if (iwn_tx(sc, m, ni, ac) != 0) {
3140 ieee80211_free_node(ni);
3141 ifp->if_oerrors++;
3142 continue;
3143 }
3144
3145 sc->sc_tx_timer = 5;
3146 ifp->if_timer = 1;
3147 }
3148 }
3149
3150 static void
3151 iwn_watchdog(struct ifnet *ifp)
3152 {
3153 struct iwn_softc *sc = ifp->if_softc;
3154
3155 ifp->if_timer = 0;
3156
3157 if (sc->sc_tx_timer > 0) {
3158 if (--sc->sc_tx_timer == 0) {
3159 aprint_error_dev(sc->sc_dev,
3160 "device timeout\n");
3161 ifp->if_flags &= ~IFF_UP;
3162 iwn_stop(ifp, 1);
3163 ifp->if_oerrors++;
3164 return;
3165 }
3166 ifp->if_timer = 1;
3167 }
3168
3169 ieee80211_watchdog(&sc->sc_ic);
3170 }
3171
3172 static int
3173 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3174 {
3175 struct iwn_softc *sc = ifp->if_softc;
3176 struct ieee80211com *ic = &sc->sc_ic;
3177 const struct sockaddr *sa;
3178 int s, error = 0;
3179
3180 s = splnet();
3181
3182 switch (cmd) {
3183 case SIOCSIFADDR:
3184 ifp->if_flags |= IFF_UP;
3185 #ifdef INET
3186 struct ifaddr *ifa = (struct ifaddr *)data;
3187 if (ifa->ifa_addr->sa_family == AF_INET)
3188 arp_ifinit(&ic->ic_ac, ifa);
3189 #endif
3190 /* FALLTHROUGH */
3191 case SIOCSIFFLAGS:
3192 /* XXX Added as it is in every NetBSD driver */
3193 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3194 break;
3195 if (ifp->if_flags & IFF_UP) {
3196 if (!(ifp->if_flags & IFF_RUNNING))
3197 error = iwn_init(ifp);
3198 } else {
3199 if (ifp->if_flags & IFF_RUNNING)
3200 iwn_stop(ifp, 1);
3201 }
3202 break;
3203
3204 case SIOCADDMULTI:
3205 case SIOCDELMULTI:
3206 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3207 error = (cmd == SIOCADDMULTI) ?
3208 ether_addmulti(sa, &sc->sc_ec) :
3209 ether_delmulti(sa, &sc->sc_ec);
3210
3211 if (error == ENETRESET)
3212 error = 0;
3213 break;
3214
3215 default:
3216 error = ieee80211_ioctl(ic, cmd, data);
3217 }
3218
3219 if (error == ENETRESET) {
3220 error = 0;
3221 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3222 (IFF_UP | IFF_RUNNING)) {
3223 iwn_stop(ifp, 0);
3224 error = iwn_init(ifp);
3225 }
3226 }
3227
3228 splx(s);
3229 return error;
3230 }
3231
3232 /*
3233 * Send a command to the firmware.
3234 */
3235 static int
3236 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3237 {
3238 struct iwn_tx_ring *ring = &sc->txq[4];
3239 struct iwn_tx_desc *desc;
3240 struct iwn_tx_data *data;
3241 struct iwn_tx_cmd *cmd;
3242 struct mbuf *m;
3243 bus_addr_t paddr;
3244 int totlen, error;
3245
3246 desc = &ring->desc[ring->cur];
3247 data = &ring->data[ring->cur];
3248 totlen = 4 + size;
3249
3250 if (size > sizeof cmd->data) {
3251 /* Command is too large to fit in a descriptor. */
3252 if (totlen > MCLBYTES)
3253 return EINVAL;
3254 MGETHDR(m, M_DONTWAIT, MT_DATA);
3255 if (m == NULL)
3256 return ENOMEM;
3257 if (totlen > MHLEN) {
3258 MCLGET(m, M_DONTWAIT);
3259 if (!(m->m_flags & M_EXT)) {
3260 m_freem(m);
3261 return ENOMEM;
3262 }
3263 }
3264 cmd = mtod(m, struct iwn_tx_cmd *);
3265 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3266 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3267 if (error != 0) {
3268 m_freem(m);
3269 return error;
3270 }
3271 data->m = m;
3272 paddr = data->map->dm_segs[0].ds_addr;
3273 } else {
3274 cmd = &ring->cmd[ring->cur];
3275 paddr = data->cmd_paddr;
3276 }
3277
3278 cmd->code = code;
3279 cmd->flags = 0;
3280 cmd->qid = ring->qid;
3281 cmd->idx = ring->cur;
3282 memcpy(cmd->data, buf, size);
3283
3284 desc->nsegs = 1;
3285 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3286 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3287
3288 if (size > sizeof cmd->data) {
3289 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3290 BUS_DMASYNC_PREWRITE);
3291 } else {
3292 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3293 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3294 totlen, BUS_DMASYNC_PREWRITE);
3295 }
3296 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3297 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3298 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3299
3300 #ifdef notyet
3301 /* Update TX scheduler. */
3302 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3303 #endif
3304 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3305
3306 /* Kick command ring. */
3307 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3308 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3309
3310 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3311 }
3312
3313 static int
3314 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3315 {
3316 struct iwn4965_node_info hnode;
3317 char *src, *dst;
3318
3319 /*
3320 * We use the node structure for 5000 Series internally (it is
3321 * a superset of the one for 4965AGN). We thus copy the common
3322 * fields before sending the command.
3323 */
3324 src = (char *)node;
3325 dst = (char *)&hnode;
3326 memcpy(dst, src, 48);
3327 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3328 memcpy(dst + 48, src + 72, 20);
3329 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3330 }
3331
3332 static int
3333 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3334 {
3335 /* Direct mapping. */
3336 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3337 }
3338
3339 static int
3340 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3341 {
3342 struct iwn_node *wn = (void *)ni;
3343 struct ieee80211_rateset *rs = &ni->ni_rates;
3344 struct iwn_cmd_link_quality linkq;
3345 const struct iwn_rate *rinfo;
3346 uint8_t txant;
3347 int i, txrate;
3348
3349 /* Use the first valid TX antenna. */
3350 txant = IWN_LSB(sc->txchainmask);
3351
3352 memset(&linkq, 0, sizeof linkq);
3353 linkq.id = wn->id;
3354 linkq.antmsk_1stream = txant;
3355 linkq.antmsk_2stream = IWN_ANT_AB;
3356 linkq.ampdu_max = 31;
3357 linkq.ampdu_threshold = 3;
3358 linkq.ampdu_limit = htole16(4000); /* 4ms */
3359
3360 /* Start at highest available bit-rate. */
3361 txrate = rs->rs_nrates - 1;
3362 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3363 rinfo = &iwn_rates[wn->ridx[txrate]];
3364 linkq.retry[i].plcp = rinfo->plcp;
3365 linkq.retry[i].rflags = rinfo->flags;
3366 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3367 /* Next retry at immediate lower bit-rate. */
3368 if (txrate > 0)
3369 txrate--;
3370 }
3371 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3372 }
3373
3374 /*
3375 * Broadcast node is used to send group-addressed and management frames.
3376 */
3377 static int
3378 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3379 {
3380 struct iwn_ops *ops = &sc->ops;
3381 struct iwn_node_info node;
3382 struct iwn_cmd_link_quality linkq;
3383 const struct iwn_rate *rinfo;
3384 uint8_t txant;
3385 int i, error;
3386
3387 memset(&node, 0, sizeof node);
3388 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3389 node.id = sc->broadcast_id;
3390 DPRINTF(("adding broadcast node\n"));
3391 if ((error = ops->add_node(sc, &node, async)) != 0)
3392 return error;
3393
3394 /* Use the first valid TX antenna. */
3395 txant = IWN_LSB(sc->txchainmask);
3396
3397 memset(&linkq, 0, sizeof linkq);
3398 linkq.id = sc->broadcast_id;
3399 linkq.antmsk_1stream = txant;
3400 linkq.antmsk_2stream = IWN_ANT_AB;
3401 linkq.ampdu_max = 64;
3402 linkq.ampdu_threshold = 3;
3403 linkq.ampdu_limit = htole16(4000); /* 4ms */
3404
3405 /* Use lowest mandatory bit-rate. */
3406 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3407 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3408 linkq.retry[0].plcp = rinfo->plcp;
3409 linkq.retry[0].rflags = rinfo->flags;
3410 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3411 /* Use same bit-rate for all TX retries. */
3412 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3413 linkq.retry[i].plcp = linkq.retry[0].plcp;
3414 linkq.retry[i].rflags = linkq.retry[0].rflags;
3415 }
3416 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3417 }
3418
3419 static void
3420 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3421 {
3422 struct iwn_cmd_led led;
3423
3424 /* Clear microcode LED ownership. */
3425 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3426
3427 led.which = which;
3428 led.unit = htole32(10000); /* on/off in unit of 100ms */
3429 led.off = off;
3430 led.on = on;
3431 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3432 }
3433
3434 /*
3435 * Set the critical temperature at which the firmware will stop the radio
3436 * and notify us.
3437 */
3438 static int
3439 iwn_set_critical_temp(struct iwn_softc *sc)
3440 {
3441 struct iwn_critical_temp crit;
3442 int32_t temp;
3443
3444 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3445
3446 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3447 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3448 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3449 temp = IWN_CTOK(110);
3450 else
3451 temp = 110;
3452 memset(&crit, 0, sizeof crit);
3453 crit.tempR = htole32(temp);
3454 DPRINTF(("setting critical temperature to %d\n", temp));
3455 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3456 }
3457
3458 static int
3459 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3460 {
3461 struct iwn_cmd_timing cmd;
3462 uint64_t val, mod;
3463
3464 memset(&cmd, 0, sizeof cmd);
3465 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3466 cmd.bintval = htole16(ni->ni_intval);
3467 cmd.lintval = htole16(10);
3468
3469 /* Compute remaining time until next beacon. */
3470 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3471 mod = le64toh(cmd.tstamp) % val;
3472 cmd.binitval = htole32((uint32_t)(val - mod));
3473
3474 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3475 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3476
3477 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3478 }
3479
3480 static void
3481 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3482 {
3483 /* Adjust TX power if need be (delta >= 3 degC). */
3484 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3485 if (abs(temp - sc->temp) >= 3) {
3486 /* Record temperature of last calibration. */
3487 sc->temp = temp;
3488 (void)iwn4965_set_txpower(sc, 1);
3489 }
3490 }
3491
3492 /*
3493 * Set TX power for current channel (each rate has its own power settings).
3494 * This function takes into account the regulatory information from EEPROM,
3495 * the current temperature and the current voltage.
3496 */
3497 static int
3498 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3499 {
3500 /* Fixed-point arithmetic division using a n-bit fractional part. */
3501 #define fdivround(a, b, n) \
3502 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3503 /* Linear interpolation. */
3504 #define interpolate(x, x1, y1, x2, y2, n) \
3505 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3506
3507 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3508 struct ieee80211com *ic = &sc->sc_ic;
3509 struct iwn_ucode_info *uc = &sc->ucode_info;
3510 struct ieee80211_channel *ch;
3511 struct iwn4965_cmd_txpower cmd;
3512 struct iwn4965_eeprom_chan_samples *chans;
3513 const uint8_t *rf_gain, *dsp_gain;
3514 int32_t vdiff, tdiff;
3515 int i, c, grp, maxpwr;
3516 uint8_t chan;
3517
3518 /* Retrieve current channel from last RXON. */
3519 chan = sc->rxon.chan;
3520 DPRINTF(("setting TX power for channel %d\n", chan));
3521 ch = &ic->ic_channels[chan];
3522
3523 memset(&cmd, 0, sizeof cmd);
3524 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3525 cmd.chan = chan;
3526
3527 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3528 maxpwr = sc->maxpwr5GHz;
3529 rf_gain = iwn4965_rf_gain_5ghz;
3530 dsp_gain = iwn4965_dsp_gain_5ghz;
3531 } else {
3532 maxpwr = sc->maxpwr2GHz;
3533 rf_gain = iwn4965_rf_gain_2ghz;
3534 dsp_gain = iwn4965_dsp_gain_2ghz;
3535 }
3536
3537 /* Compute voltage compensation. */
3538 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3539 if (vdiff > 0)
3540 vdiff *= 2;
3541 if (abs(vdiff) > 2)
3542 vdiff = 0;
3543 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3544 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3545
3546 /* Get channel attenuation group. */
3547 if (chan <= 20) /* 1-20 */
3548 grp = 4;
3549 else if (chan <= 43) /* 34-43 */
3550 grp = 0;
3551 else if (chan <= 70) /* 44-70 */
3552 grp = 1;
3553 else if (chan <= 124) /* 71-124 */
3554 grp = 2;
3555 else /* 125-200 */
3556 grp = 3;
3557 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3558
3559 /* Get channel sub-band. */
3560 for (i = 0; i < IWN_NBANDS; i++)
3561 if (sc->bands[i].lo != 0 &&
3562 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3563 break;
3564 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3565 return EINVAL;
3566 chans = sc->bands[i].chans;
3567 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3568
3569 for (c = 0; c < 2; c++) {
3570 uint8_t power, gain, temp;
3571 int maxchpwr, pwr, ridx, idx;
3572
3573 power = interpolate(chan,
3574 chans[0].num, chans[0].samples[c][1].power,
3575 chans[1].num, chans[1].samples[c][1].power, 1);
3576 gain = interpolate(chan,
3577 chans[0].num, chans[0].samples[c][1].gain,
3578 chans[1].num, chans[1].samples[c][1].gain, 1);
3579 temp = interpolate(chan,
3580 chans[0].num, chans[0].samples[c][1].temp,
3581 chans[1].num, chans[1].samples[c][1].temp, 1);
3582 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3583 c, power, gain, temp));
3584
3585 /* Compute temperature compensation. */
3586 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3587 DPRINTF(("temperature compensation=%d (current=%d, "
3588 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3589
3590 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3591 /* Convert dBm to half-dBm. */
3592 maxchpwr = sc->maxpwr[chan] * 2;
3593 if ((ridx / 8) & 1)
3594 maxchpwr -= 6; /* MIMO 2T: -3dB */
3595
3596 pwr = maxpwr;
3597
3598 /* Adjust TX power based on rate. */
3599 if ((ridx % 8) == 5)
3600 pwr -= 15; /* OFDM48: -7.5dB */
3601 else if ((ridx % 8) == 6)
3602 pwr -= 17; /* OFDM54: -8.5dB */
3603 else if ((ridx % 8) == 7)
3604 pwr -= 20; /* OFDM60: -10dB */
3605 else
3606 pwr -= 10; /* Others: -5dB */
3607
3608 /* Do not exceed channel max TX power. */
3609 if (pwr > maxchpwr)
3610 pwr = maxchpwr;
3611
3612 idx = gain - (pwr - power) - tdiff - vdiff;
3613 if ((ridx / 8) & 1) /* MIMO */
3614 idx += (int32_t)le32toh(uc->atten[grp][c]);
3615
3616 if (cmd.band == 0)
3617 idx += 9; /* 5GHz */
3618 if (ridx == IWN_RIDX_MAX)
3619 idx += 5; /* CCK */
3620
3621 /* Make sure idx stays in a valid range. */
3622 if (idx < 0)
3623 idx = 0;
3624 else if (idx > IWN4965_MAX_PWR_INDEX)
3625 idx = IWN4965_MAX_PWR_INDEX;
3626
3627 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3628 c, ridx, idx));
3629 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3630 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3631 }
3632 }
3633
3634 DPRINTF(("setting TX power for chan %d\n", chan));
3635 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3636
3637 #undef interpolate
3638 #undef fdivround
3639 }
3640
3641 static int
3642 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3643 {
3644 struct iwn5000_cmd_txpower cmd;
3645
3646 /*
3647 * TX power calibration is handled automatically by the firmware
3648 * for 5000 Series.
3649 */
3650 memset(&cmd, 0, sizeof cmd);
3651 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3652 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3653 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3654 DPRINTF(("setting TX power\n"));
3655 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3656 }
3657
3658 /*
3659 * Retrieve the maximum RSSI (in dBm) among receivers.
3660 */
3661 static int
3662 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3663 {
3664 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3665 uint8_t mask, agc;
3666 int rssi;
3667
3668 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3669 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3670
3671 rssi = 0;
3672 if (mask & IWN_ANT_A)
3673 rssi = MAX(rssi, phy->rssi[0]);
3674 if (mask & IWN_ANT_B)
3675 rssi = MAX(rssi, phy->rssi[2]);
3676 if (mask & IWN_ANT_C)
3677 rssi = MAX(rssi, phy->rssi[4]);
3678
3679 return rssi - agc - IWN_RSSI_TO_DBM;
3680 }
3681
3682 static int
3683 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3684 {
3685 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3686 uint8_t agc;
3687 int rssi;
3688
3689 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3690
3691 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3692 le16toh(phy->rssi[1]) & 0xff);
3693 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3694
3695 return rssi - agc - IWN_RSSI_TO_DBM;
3696 }
3697
3698 /*
3699 * Retrieve the average noise (in dBm) among receivers.
3700 */
3701 static int
3702 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3703 {
3704 int i, total, nbant, noise;
3705
3706 total = nbant = 0;
3707 for (i = 0; i < 3; i++) {
3708 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3709 continue;
3710 total += noise;
3711 nbant++;
3712 }
3713 /* There should be at least one antenna but check anyway. */
3714 return (nbant == 0) ? -127 : (total / nbant) - 107;
3715 }
3716
3717 /*
3718 * Compute temperature (in degC) from last received statistics.
3719 */
3720 static int
3721 iwn4965_get_temperature(struct iwn_softc *sc)
3722 {
3723 struct iwn_ucode_info *uc = &sc->ucode_info;
3724 int32_t r1, r2, r3, r4, temp;
3725
3726 r1 = le32toh(uc->temp[0].chan20MHz);
3727 r2 = le32toh(uc->temp[1].chan20MHz);
3728 r3 = le32toh(uc->temp[2].chan20MHz);
3729 r4 = le32toh(sc->rawtemp);
3730
3731 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3732 return 0;
3733
3734 /* Sign-extend 23-bit R4 value to 32-bit. */
3735 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3736 /* Compute temperature in Kelvin. */
3737 temp = (259 * (r4 - r2)) / (r3 - r1);
3738 temp = (temp * 97) / 100 + 8;
3739
3740 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3741 return IWN_KTOC(temp);
3742 }
3743
3744 static int
3745 iwn5000_get_temperature(struct iwn_softc *sc)
3746 {
3747 int32_t temp;
3748
3749 /*
3750 * Temperature is not used by the driver for 5000 Series because
3751 * TX power calibration is handled by firmware. We export it to
3752 * users through the sensor framework though.
3753 */
3754 temp = le32toh(sc->rawtemp);
3755 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3756 temp = (temp / -5) + sc->temp_off;
3757 temp = IWN_KTOC(temp);
3758 }
3759 return temp;
3760 }
3761
3762 /*
3763 * Initialize sensitivity calibration state machine.
3764 */
3765 static int
3766 iwn_init_sensitivity(struct iwn_softc *sc)
3767 {
3768 struct iwn_ops *ops = &sc->ops;
3769 struct iwn_calib_state *calib = &sc->calib;
3770 uint32_t flags;
3771 int error;
3772
3773 /* Reset calibration state machine. */
3774 memset(calib, 0, sizeof (*calib));
3775 calib->state = IWN_CALIB_STATE_INIT;
3776 calib->cck_state = IWN_CCK_STATE_HIFA;
3777 /* Set initial correlation values. */
3778 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3779 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3780 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3781 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3782 calib->cck_x4 = 125;
3783 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3784 calib->energy_cck = sc->limits->energy_cck;
3785
3786 /* Write initial sensitivity. */
3787 if ((error = iwn_send_sensitivity(sc)) != 0)
3788 return error;
3789
3790 /* Write initial gains. */
3791 if ((error = ops->init_gains(sc)) != 0)
3792 return error;
3793
3794 /* Request statistics at each beacon interval. */
3795 flags = 0;
3796 DPRINTF(("sending request for statistics\n"));
3797 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3798 }
3799
3800 /*
3801 * Collect noise and RSSI statistics for the first 20 beacons received
3802 * after association and use them to determine connected antennas and
3803 * to set differential gains.
3804 */
3805 static void
3806 iwn_collect_noise(struct iwn_softc *sc,
3807 const struct iwn_rx_general_stats *stats)
3808 {
3809 struct iwn_ops *ops = &sc->ops;
3810 struct iwn_calib_state *calib = &sc->calib;
3811 uint32_t val;
3812 int i;
3813
3814 /* Accumulate RSSI and noise for all 3 antennas. */
3815 for (i = 0; i < 3; i++) {
3816 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3817 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3818 }
3819 /* NB: We update differential gains only once after 20 beacons. */
3820 if (++calib->nbeacons < 20)
3821 return;
3822
3823 /* Determine highest average RSSI. */
3824 val = MAX(calib->rssi[0], calib->rssi[1]);
3825 val = MAX(calib->rssi[2], val);
3826
3827 /* Determine which antennas are connected. */
3828 sc->chainmask = sc->rxchainmask;
3829 for (i = 0; i < 3; i++)
3830 if (val - calib->rssi[i] > 15 * 20)
3831 sc->chainmask &= ~(1 << i);
3832 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3833 sc->rxchainmask, sc->chainmask));
3834
3835 /* If none of the TX antennas are connected, keep at least one. */
3836 if ((sc->chainmask & sc->txchainmask) == 0)
3837 sc->chainmask |= IWN_LSB(sc->txchainmask);
3838
3839 (void)ops->set_gains(sc);
3840 calib->state = IWN_CALIB_STATE_RUN;
3841
3842 #ifdef notyet
3843 /* XXX Disable RX chains with no antennas connected. */
3844 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3845 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3846 #endif
3847
3848 /* Enable power-saving mode if requested by user. */
3849 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3850 (void)iwn_set_pslevel(sc, 0, 3, 1);
3851 }
3852
3853 static int
3854 iwn4965_init_gains(struct iwn_softc *sc)
3855 {
3856 struct iwn_phy_calib_gain cmd;
3857
3858 memset(&cmd, 0, sizeof cmd);
3859 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3860 /* Differential gains initially set to 0 for all 3 antennas. */
3861 DPRINTF(("setting initial differential gains\n"));
3862 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3863 }
3864
3865 static int
3866 iwn5000_init_gains(struct iwn_softc *sc)
3867 {
3868 struct iwn_phy_calib cmd;
3869
3870 memset(&cmd, 0, sizeof cmd);
3871 cmd.code = sc->reset_noise_gain;
3872 cmd.ngroups = 1;
3873 cmd.isvalid = 1;
3874 DPRINTF(("setting initial differential gains\n"));
3875 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3876 }
3877
3878 static int
3879 iwn4965_set_gains(struct iwn_softc *sc)
3880 {
3881 struct iwn_calib_state *calib = &sc->calib;
3882 struct iwn_phy_calib_gain cmd;
3883 int i, delta, noise;
3884
3885 /* Get minimal noise among connected antennas. */
3886 noise = INT_MAX; /* NB: There's at least one antenna. */
3887 for (i = 0; i < 3; i++)
3888 if (sc->chainmask & (1 << i))
3889 noise = MIN(calib->noise[i], noise);
3890
3891 memset(&cmd, 0, sizeof cmd);
3892 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3893 /* Set differential gains for connected antennas. */
3894 for (i = 0; i < 3; i++) {
3895 if (sc->chainmask & (1 << i)) {
3896 /* Compute attenuation (in unit of 1.5dB). */
3897 delta = (noise - (int32_t)calib->noise[i]) / 30;
3898 /* NB: delta <= 0 */
3899 /* Limit to [-4.5dB,0]. */
3900 cmd.gain[i] = MIN(abs(delta), 3);
3901 if (delta < 0)
3902 cmd.gain[i] |= 1 << 2; /* sign bit */
3903 }
3904 }
3905 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3906 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3907 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3908 }
3909
3910 static int
3911 iwn5000_set_gains(struct iwn_softc *sc)
3912 {
3913 struct iwn_calib_state *calib = &sc->calib;
3914 struct iwn_phy_calib_gain cmd;
3915 int i, ant, div, delta;
3916
3917 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3918 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3919
3920 memset(&cmd, 0, sizeof cmd);
3921 cmd.code = sc->noise_gain;
3922 cmd.ngroups = 1;
3923 cmd.isvalid = 1;
3924 /* Get first available RX antenna as referential. */
3925 ant = IWN_LSB(sc->rxchainmask);
3926 /* Set differential gains for other antennas. */
3927 for (i = ant + 1; i < 3; i++) {
3928 if (sc->chainmask & (1 << i)) {
3929 /* The delta is relative to antenna "ant". */
3930 delta = ((int32_t)calib->noise[ant] -
3931 (int32_t)calib->noise[i]) / div;
3932 /* Limit to [-4.5dB,+4.5dB]. */
3933 cmd.gain[i - 1] = MIN(abs(delta), 3);
3934 if (delta < 0)
3935 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3936 }
3937 }
3938 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3939 cmd.gain[0], cmd.gain[1], sc->chainmask));
3940 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3941 }
3942
3943 /*
3944 * Tune RF RX sensitivity based on the number of false alarms detected
3945 * during the last beacon period.
3946 */
3947 static void
3948 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3949 {
3950 #define inc(val, inc, max) \
3951 if ((val) < (max)) { \
3952 if ((val) < (max) - (inc)) \
3953 (val) += (inc); \
3954 else \
3955 (val) = (max); \
3956 needs_update = 1; \
3957 }
3958 #define dec(val, dec, min) \
3959 if ((val) > (min)) { \
3960 if ((val) > (min) + (dec)) \
3961 (val) -= (dec); \
3962 else \
3963 (val) = (min); \
3964 needs_update = 1; \
3965 }
3966
3967 const struct iwn_sensitivity_limits *limits = sc->limits;
3968 struct iwn_calib_state *calib = &sc->calib;
3969 uint32_t val, rxena, fa;
3970 uint32_t energy[3], energy_min;
3971 uint8_t noise[3], noise_ref;
3972 int i, needs_update = 0;
3973
3974 /* Check that we've been enabled long enough. */
3975 if ((rxena = le32toh(stats->general.load)) == 0)
3976 return;
3977
3978 /* Compute number of false alarms since last call for OFDM. */
3979 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3980 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3981 fa *= 200 * 1024; /* 200TU */
3982
3983 /* Save counters values for next call. */
3984 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3985 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3986
3987 if (fa > 50 * rxena) {
3988 /* High false alarm count, decrease sensitivity. */
3989 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3990 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3991 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3992 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3993 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3994
3995 } else if (fa < 5 * rxena) {
3996 /* Low false alarm count, increase sensitivity. */
3997 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
3998 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
3999 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4000 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4001 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4002 }
4003
4004 /* Compute maximum noise among 3 receivers. */
4005 for (i = 0; i < 3; i++)
4006 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4007 val = MAX(noise[0], noise[1]);
4008 val = MAX(noise[2], val);
4009 /* Insert it into our samples table. */
4010 calib->noise_samples[calib->cur_noise_sample] = val;
4011 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4012
4013 /* Compute maximum noise among last 20 samples. */
4014 noise_ref = calib->noise_samples[0];
4015 for (i = 1; i < 20; i++)
4016 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4017
4018 /* Compute maximum energy among 3 receivers. */
4019 for (i = 0; i < 3; i++)
4020 energy[i] = le32toh(stats->general.energy[i]);
4021 val = MIN(energy[0], energy[1]);
4022 val = MIN(energy[2], val);
4023 /* Insert it into our samples table. */
4024 calib->energy_samples[calib->cur_energy_sample] = val;
4025 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4026
4027 /* Compute minimum energy among last 10 samples. */
4028 energy_min = calib->energy_samples[0];
4029 for (i = 1; i < 10; i++)
4030 energy_min = MAX(energy_min, calib->energy_samples[i]);
4031 energy_min += 6;
4032
4033 /* Compute number of false alarms since last call for CCK. */
4034 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4035 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4036 fa *= 200 * 1024; /* 200TU */
4037
4038 /* Save counters values for next call. */
4039 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4040 calib->fa_cck = le32toh(stats->cck.fa);
4041
4042 if (fa > 50 * rxena) {
4043 /* High false alarm count, decrease sensitivity. */
4044 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4045 calib->cck_state = IWN_CCK_STATE_HIFA;
4046 calib->low_fa = 0;
4047
4048 if (calib->cck_x4 > 160) {
4049 calib->noise_ref = noise_ref;
4050 if (calib->energy_cck > 2)
4051 dec(calib->energy_cck, 2, energy_min);
4052 }
4053 if (calib->cck_x4 < 160) {
4054 calib->cck_x4 = 161;
4055 needs_update = 1;
4056 } else
4057 inc(calib->cck_x4, 3, limits->max_cck_x4);
4058
4059 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4060
4061 } else if (fa < 5 * rxena) {
4062 /* Low false alarm count, increase sensitivity. */
4063 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4064 calib->cck_state = IWN_CCK_STATE_LOFA;
4065 calib->low_fa++;
4066
4067 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4068 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4069 calib->low_fa > 100)) {
4070 inc(calib->energy_cck, 2, limits->min_energy_cck);
4071 dec(calib->cck_x4, 3, limits->min_cck_x4);
4072 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4073 }
4074 } else {
4075 /* Not worth to increase or decrease sensitivity. */
4076 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4077 calib->low_fa = 0;
4078 calib->noise_ref = noise_ref;
4079
4080 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4081 /* Previous interval had many false alarms. */
4082 dec(calib->energy_cck, 8, energy_min);
4083 }
4084 calib->cck_state = IWN_CCK_STATE_INIT;
4085 }
4086
4087 if (needs_update)
4088 (void)iwn_send_sensitivity(sc);
4089 #undef dec
4090 #undef inc
4091 }
4092
4093 static int
4094 iwn_send_sensitivity(struct iwn_softc *sc)
4095 {
4096 struct iwn_calib_state *calib = &sc->calib;
4097 struct iwn_enhanced_sensitivity_cmd cmd;
4098 int len;
4099
4100 memset(&cmd, 0, sizeof cmd);
4101 len = sizeof (struct iwn_sensitivity_cmd);
4102 cmd.which = IWN_SENSITIVITY_WORKTBL;
4103 /* OFDM modulation. */
4104 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4105 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4106 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4107 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4108 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4109 cmd.energy_ofdm_th = htole16(62);
4110 /* CCK modulation. */
4111 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4112 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4113 cmd.energy_cck = htole16(calib->energy_cck);
4114 /* Barker modulation: use default values. */
4115 cmd.corr_barker = htole16(190);
4116 cmd.corr_barker_mrc = htole16(390);
4117 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4118 goto send;
4119 /* Enhanced sensitivity settings. */
4120 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4121 cmd.ofdm_det_slope_mrc = htole16(668);
4122 cmd.ofdm_det_icept_mrc = htole16(4);
4123 cmd.ofdm_det_slope = htole16(486);
4124 cmd.ofdm_det_icept = htole16(37);
4125 cmd.cck_det_slope_mrc = htole16(853);
4126 cmd.cck_det_icept_mrc = htole16(4);
4127 cmd.cck_det_slope = htole16(476);
4128 cmd.cck_det_icept = htole16(99);
4129 send:
4130 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4131 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4132 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4133 calib->energy_cck));
4134 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4135 }
4136
4137 /*
4138 * Set STA mode power saving level (between 0 and 5).
4139 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4140 */
4141 static int
4142 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4143 {
4144 struct iwn_pmgt_cmd cmd;
4145 const struct iwn_pmgt *pmgt;
4146 uint32_t maxp, skip_dtim;
4147 pcireg_t reg;
4148 int i;
4149
4150 /* Select which PS parameters to use. */
4151 if (dtim <= 2)
4152 pmgt = &iwn_pmgt[0][level];
4153 else if (dtim <= 10)
4154 pmgt = &iwn_pmgt[1][level];
4155 else
4156 pmgt = &iwn_pmgt[2][level];
4157
4158 memset(&cmd, 0, sizeof cmd);
4159 if (level != 0) /* not CAM */
4160 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4161 if (level == 5)
4162 cmd.flags |= htole16(IWN_PS_FAST_PD);
4163 /* Retrieve PCIe Active State Power Management (ASPM). */
4164 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4165 sc->sc_cap_off + PCIE_LCSR);
4166 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4167 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4168 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4169 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4170
4171 if (dtim == 0) {
4172 dtim = 1;
4173 skip_dtim = 0;
4174 } else
4175 skip_dtim = pmgt->skip_dtim;
4176 if (skip_dtim != 0) {
4177 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4178 maxp = pmgt->intval[4];
4179 if (maxp == (uint32_t)-1)
4180 maxp = dtim * (skip_dtim + 1);
4181 else if (maxp > dtim)
4182 maxp = (maxp / dtim) * dtim;
4183 } else
4184 maxp = dtim;
4185 for (i = 0; i < 5; i++)
4186 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4187
4188 DPRINTF(("setting power saving level to %d\n", level));
4189 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4190 }
4191
4192 int
4193 iwn5000_runtime_calib(struct iwn_softc *sc)
4194 {
4195 struct iwn5000_calib_config cmd;
4196
4197 memset(&cmd, 0, sizeof cmd);
4198 cmd.ucode.once.enable = 0xffffffff;
4199 cmd.ucode.once.start = IWN5000_CALIB_DC;
4200 DPRINTF(("configuring runtime calibration\n"));
4201 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4202 }
4203
4204 static int
4205 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4206 {
4207 struct iwn_bluetooth bluetooth;
4208
4209 memset(&bluetooth, 0, sizeof bluetooth);
4210 bluetooth.flags = IWN_BT_COEX_ENABLE;
4211 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4212 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4213
4214 DPRINTF(("configuring bluetooth coexistence\n"));
4215 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4216 }
4217
4218 static int
4219 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4220 {
4221 uint8_t prio_table[16];
4222
4223 memset(&prio_table, 0, sizeof prio_table);
4224 prio_table[ 0] = 6; /* init calibration 1 */
4225 prio_table[ 1] = 7; /* init calibration 2 */
4226 prio_table[ 2] = 2; /* periodic calib low 1 */
4227 prio_table[ 3] = 3; /* periodic calib low 2 */
4228 prio_table[ 4] = 4; /* periodic calib high 1 */
4229 prio_table[ 5] = 5; /* periodic calib high 2 */
4230 prio_table[ 6] = 6; /* dtim */
4231 prio_table[ 7] = 8; /* scan52 */
4232 prio_table[ 8] = 10; /* scan24 */
4233
4234 DPRINTF(("sending priority lookup table\n"));
4235 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4236 &prio_table, sizeof prio_table, 0);
4237 }
4238
4239 static int
4240 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4241 size_t len)
4242 {
4243 struct iwn_btcoex_prot btprot;
4244 int error;
4245
4246 basic->bt.flags = IWN_BT_COEX_ENABLE;
4247 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4248 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4249 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4250 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4251 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4252 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4253 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4254 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4255 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4256 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4257 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4258 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4259 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4260 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4261 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4262 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4263 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4264 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4265 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4266 basic->reduce_txpower = 0; /* as not implemented */
4267 basic->valid = IWN_BT_ALL_VALID_MASK;
4268
4269 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4270 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4271 if (error != 0) {
4272 aprint_error_dev(sc->sc_dev,
4273 "could not configure advanced bluetooth coexistence\n");
4274 return error;
4275 }
4276
4277 error = iwn_config_bt_coex_prio_table(sc);
4278 if (error != 0) {
4279 aprint_error_dev(sc->sc_dev,
4280 "could not configure send BT priority table\n");
4281 return error;
4282 }
4283
4284 /* Force BT state machine change */
4285 memset(&btprot, 0, sizeof btprot);
4286 btprot.open = 1;
4287 btprot.type = 1;
4288 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4289 if (error != 0) {
4290 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4291 return error;
4292 }
4293
4294 btprot.open = 0;
4295 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4296 if (error != 0) {
4297 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4298 return error;
4299 }
4300 return 0;
4301 }
4302
4303 static int
4304 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4305 {
4306 struct iwn_bt_adv1 d;
4307
4308 memset(&d, 0, sizeof d);
4309 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4310 d.tx_prio_boost = 0;
4311 d.rx_prio_boost = 0;
4312 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4313 }
4314
4315 static int
4316 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4317 {
4318 struct iwn_bt_adv2 d;
4319
4320 memset(&d, 0, sizeof d);
4321 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4322 d.tx_prio_boost = 0;
4323 d.rx_prio_boost = 0;
4324 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4325 }
4326
4327 static int
4328 iwn_config(struct iwn_softc *sc)
4329 {
4330 struct iwn_ops *ops = &sc->ops;
4331 struct ieee80211com *ic = &sc->sc_ic;
4332 struct ifnet *ifp = ic->ic_ifp;
4333 uint32_t txmask;
4334 uint16_t rxchain;
4335 int error;
4336
4337 error = ops->config_bt_coex(sc);
4338 if (error != 0) {
4339 aprint_error_dev(sc->sc_dev,
4340 "could not configure bluetooth coexistence\n");
4341 return error;
4342 }
4343
4344 /* Set radio temperature sensor offset. */
4345 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4346 error = iwn6000_temp_offset_calib(sc);
4347 if (error != 0) {
4348 aprint_error_dev(sc->sc_dev,
4349 "could not set temperature offset\n");
4350 return error;
4351 }
4352 }
4353
4354 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4355 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4356 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4357 sc->hw_type == IWN_HW_REV_TYPE_105) {
4358 error = iwn2000_temp_offset_calib(sc);
4359 if (error != 0) {
4360 aprint_error_dev(sc->sc_dev,
4361 "could not set temperature offset\n");
4362 return error;
4363 }
4364 }
4365
4366 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4367 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4368 /* Configure runtime DC calibration. */
4369 error = iwn5000_runtime_calib(sc);
4370 if (error != 0) {
4371 aprint_error_dev(sc->sc_dev,
4372 "could not configure runtime calibration\n");
4373 return error;
4374 }
4375 }
4376
4377 /* Configure valid TX chains for 5000 Series. */
4378 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4379 txmask = htole32(sc->txchainmask);
4380 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4381 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4382 sizeof txmask, 0);
4383 if (error != 0) {
4384 aprint_error_dev(sc->sc_dev,
4385 "could not configure valid TX chains\n");
4386 return error;
4387 }
4388 }
4389
4390 /* Set mode, channel, RX filter and enable RX. */
4391 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4392 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4393 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4394 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4395 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4396 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4397 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4398 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4399 switch (ic->ic_opmode) {
4400 case IEEE80211_M_STA:
4401 sc->rxon.mode = IWN_MODE_STA;
4402 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4403 break;
4404 case IEEE80211_M_MONITOR:
4405 sc->rxon.mode = IWN_MODE_MONITOR;
4406 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4407 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4408 break;
4409 default:
4410 /* Should not get there. */
4411 break;
4412 }
4413 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4414 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4415 sc->rxon.ht_single_mask = 0xff;
4416 sc->rxon.ht_dual_mask = 0xff;
4417 sc->rxon.ht_triple_mask = 0xff;
4418 rxchain =
4419 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4420 IWN_RXCHAIN_MIMO_COUNT(2) |
4421 IWN_RXCHAIN_IDLE_COUNT(2);
4422 sc->rxon.rxchain = htole16(rxchain);
4423 DPRINTF(("setting configuration\n"));
4424 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4425 if (error != 0) {
4426 aprint_error_dev(sc->sc_dev,
4427 "RXON command failed\n");
4428 return error;
4429 }
4430
4431 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4432 aprint_error_dev(sc->sc_dev,
4433 "could not add broadcast node\n");
4434 return error;
4435 }
4436
4437 /* Configuration has changed, set TX power accordingly. */
4438 if ((error = ops->set_txpower(sc, 0)) != 0) {
4439 aprint_error_dev(sc->sc_dev,
4440 "could not set TX power\n");
4441 return error;
4442 }
4443
4444 if ((error = iwn_set_critical_temp(sc)) != 0) {
4445 aprint_error_dev(sc->sc_dev,
4446 "could not set critical temperature\n");
4447 return error;
4448 }
4449
4450 /* Set power saving level to CAM during initialization. */
4451 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4452 aprint_error_dev(sc->sc_dev,
4453 "could not set power saving level\n");
4454 return error;
4455 }
4456 return 0;
4457 }
4458
4459 static uint16_t
4460 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4461 uint8_t n_probes)
4462 {
4463 /* No channel? Default to 2GHz settings */
4464 if (flags & IEEE80211_CHAN_2GHZ)
4465 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4466 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4467
4468 /* 5GHz dwell time */
4469 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4470 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4471 }
4472
4473 /*
4474 * Limit the total dwell time to 85% of the beacon interval.
4475 *
4476 * Returns the dwell time in milliseconds.
4477 */
4478 static uint16_t
4479 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4480 {
4481 struct ieee80211com *ic = &sc->sc_ic;
4482 struct ieee80211_node *ni = ic->ic_bss;
4483 int bintval = 0;
4484
4485 /* bintval is in TU (1.024mS) */
4486 if (ni != NULL)
4487 bintval = ni->ni_intval;
4488
4489 /*
4490 * If it's non-zero, we should calculate the minimum of
4491 * it and the DWELL_BASE.
4492 *
4493 * XXX Yes, the math should take into account that bintval
4494 * is 1.024mS, not 1mS..
4495 */
4496 if (bintval > 0)
4497 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4498
4499 /* No association context? Default */
4500 return IWN_PASSIVE_DWELL_BASE;
4501 }
4502
4503 static uint16_t
4504 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4505 {
4506 uint16_t passive;
4507 if (flags & IEEE80211_CHAN_2GHZ)
4508 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4509 else
4510 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4511
4512 /* Clamp to the beacon interval if we're associated */
4513 return iwn_limit_dwell(sc, passive);
4514 }
4515
4516 static int
4517 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4518 {
4519 struct ieee80211com *ic = &sc->sc_ic;
4520 struct iwn_scan_hdr *hdr;
4521 struct iwn_cmd_data *tx;
4522 struct iwn_scan_essid *essid;
4523 struct iwn_scan_chan *chan;
4524 struct ieee80211_frame *wh;
4525 struct ieee80211_rateset *rs;
4526 struct ieee80211_channel *c;
4527 uint8_t *buf, *frm;
4528 uint16_t rxchain, dwell_active, dwell_passive;
4529 uint8_t txant;
4530 int buflen, error, is_active;
4531
4532 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4533 if (buf == NULL) {
4534 aprint_error_dev(sc->sc_dev,
4535 "could not allocate buffer for scan command\n");
4536 return ENOMEM;
4537 }
4538 hdr = (struct iwn_scan_hdr *)buf;
4539 /*
4540 * Move to the next channel if no frames are received within 10ms
4541 * after sending the probe request.
4542 */
4543 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4544 hdr->quiet_threshold = htole16(1); /* min # of packets */
4545
4546 /* Select antennas for scanning. */
4547 rxchain =
4548 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4549 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4550 IWN_RXCHAIN_DRIVER_FORCE;
4551 if ((flags & IEEE80211_CHAN_5GHZ) &&
4552 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4553 /* Ant A must be avoided in 5GHz because of an HW bug. */
4554 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4555 } else /* Use all available RX antennas. */
4556 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4557 hdr->rxchain = htole16(rxchain);
4558 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4559
4560 tx = (struct iwn_cmd_data *)(hdr + 1);
4561 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4562 tx->id = sc->broadcast_id;
4563 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4564
4565 if (flags & IEEE80211_CHAN_5GHZ) {
4566 hdr->crc_threshold = 0xffff;
4567 /* Send probe requests at 6Mbps. */
4568 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4569 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4570 } else {
4571 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4572 /* Send probe requests at 1Mbps. */
4573 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4574 tx->rflags = IWN_RFLAG_CCK;
4575 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4576 }
4577 /* Use the first valid TX antenna. */
4578 txant = IWN_LSB(sc->txchainmask);
4579 tx->rflags |= IWN_RFLAG_ANT(txant);
4580
4581 /*
4582 * Only do active scanning if we're announcing a probe request
4583 * for a given SSID (or more, if we ever add it to the driver.)
4584 */
4585 is_active = 0;
4586
4587 essid = (struct iwn_scan_essid *)(tx + 1);
4588 if (ic->ic_des_esslen != 0) {
4589 essid[0].id = IEEE80211_ELEMID_SSID;
4590 essid[0].len = ic->ic_des_esslen;
4591 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4592
4593 is_active = 1;
4594 }
4595 /*
4596 * Build a probe request frame. Most of the following code is a
4597 * copy & paste of what is done in net80211.
4598 */
4599 wh = (struct ieee80211_frame *)(essid + 20);
4600 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4601 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4602 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4603 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4604 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4605 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4606 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4607 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4608
4609 frm = (uint8_t *)(wh + 1);
4610 frm = ieee80211_add_ssid(frm, NULL, 0);
4611 frm = ieee80211_add_rates(frm, rs);
4612 #ifndef IEEE80211_NO_HT
4613 if (ic->ic_flags & IEEE80211_F_HTON)
4614 frm = ieee80211_add_htcaps(frm, ic);
4615 #endif
4616 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4617 frm = ieee80211_add_xrates(frm, rs);
4618
4619 /* Set length of probe request. */
4620 tx->len = htole16(frm - (uint8_t *)wh);
4621
4622
4623 /*
4624 * If active scanning is requested but a certain channel is
4625 * marked passive, we can do active scanning if we detect
4626 * transmissions.
4627 *
4628 * There is an issue with some firmware versions that triggers
4629 * a sysassert on a "good CRC threshold" of zero (== disabled),
4630 * on a radar channel even though this means that we should NOT
4631 * send probes.
4632 *
4633 * The "good CRC threshold" is the number of frames that we
4634 * need to receive during our dwell time on a channel before
4635 * sending out probes -- setting this to a huge value will
4636 * mean we never reach it, but at the same time work around
4637 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4638 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4639 *
4640 * This was fixed in later versions along with some other
4641 * scan changes, and the threshold behaves as a flag in those
4642 * versions.
4643 */
4644
4645 /*
4646 * If we're doing active scanning, set the crc_threshold
4647 * to a suitable value. This is different to active veruss
4648 * passive scanning depending upon the channel flags; the
4649 * firmware will obey that particular check for us.
4650 */
4651 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4652 hdr->crc_threshold = is_active ?
4653 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4654 else
4655 hdr->crc_threshold = is_active ?
4656 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4657
4658 chan = (struct iwn_scan_chan *)frm;
4659 for (c = &ic->ic_channels[1];
4660 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4661 if ((c->ic_flags & flags) != flags)
4662 continue;
4663
4664 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4665 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4666 chan->flags = 0;
4667 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4668 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4669 if (ic->ic_des_esslen != 0)
4670 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4671
4672 /*
4673 * Calculate the active/passive dwell times.
4674 */
4675
4676 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4677 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4678
4679 /* Make sure they're valid */
4680 if (dwell_passive <= dwell_active)
4681 dwell_passive = dwell_active + 1;
4682
4683 chan->active = htole16(dwell_active);
4684 chan->passive = htole16(dwell_passive);
4685
4686 chan->dsp_gain = 0x6e;
4687 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4688 chan->rf_gain = 0x3b;
4689 } else {
4690 chan->rf_gain = 0x28;
4691 }
4692 hdr->nchan++;
4693 chan++;
4694 }
4695
4696 buflen = (uint8_t *)chan - buf;
4697 hdr->len = htole16(buflen);
4698
4699 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4700 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4701 free(buf, M_DEVBUF);
4702 return error;
4703 }
4704
4705 static int
4706 iwn_auth(struct iwn_softc *sc)
4707 {
4708 struct iwn_ops *ops = &sc->ops;
4709 struct ieee80211com *ic = &sc->sc_ic;
4710 struct ieee80211_node *ni = ic->ic_bss;
4711 int error;
4712
4713 /* Update adapter configuration. */
4714 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4715 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4716 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4717 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4718 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4719 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4720 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4721 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4722 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4723 switch (ic->ic_curmode) {
4724 case IEEE80211_MODE_11A:
4725 sc->rxon.cck_mask = 0;
4726 sc->rxon.ofdm_mask = 0x15;
4727 break;
4728 case IEEE80211_MODE_11B:
4729 sc->rxon.cck_mask = 0x03;
4730 sc->rxon.ofdm_mask = 0;
4731 break;
4732 default: /* Assume 802.11b/g. */
4733 sc->rxon.cck_mask = 0x0f;
4734 sc->rxon.ofdm_mask = 0x15;
4735 }
4736 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4737 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4738 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4739 if (error != 0) {
4740 aprint_error_dev(sc->sc_dev,
4741 "RXON command failed\n");
4742 return error;
4743 }
4744
4745 /* Configuration has changed, set TX power accordingly. */
4746 if ((error = ops->set_txpower(sc, 1)) != 0) {
4747 aprint_error_dev(sc->sc_dev,
4748 "could not set TX power\n");
4749 return error;
4750 }
4751 /*
4752 * Reconfiguring RXON clears the firmware nodes table so we must
4753 * add the broadcast node again.
4754 */
4755 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4756 aprint_error_dev(sc->sc_dev,
4757 "could not add broadcast node\n");
4758 return error;
4759 }
4760 return 0;
4761 }
4762
4763 static int
4764 iwn_run(struct iwn_softc *sc)
4765 {
4766 struct iwn_ops *ops = &sc->ops;
4767 struct ieee80211com *ic = &sc->sc_ic;
4768 struct ieee80211_node *ni = ic->ic_bss;
4769 struct iwn_node_info node;
4770 int error;
4771
4772 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4773 /* Link LED blinks while monitoring. */
4774 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4775 return 0;
4776 }
4777 if ((error = iwn_set_timing(sc, ni)) != 0) {
4778 aprint_error_dev(sc->sc_dev,
4779 "could not set timing\n");
4780 return error;
4781 }
4782
4783 /* Update adapter configuration. */
4784 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4785 /* Short preamble and slot time are negotiated when associating. */
4786 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4787 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4788 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4789 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4790 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4791 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4792 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4793 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4794 if (error != 0) {
4795 aprint_error_dev(sc->sc_dev,
4796 "could not update configuration\n");
4797 return error;
4798 }
4799
4800 /* Configuration has changed, set TX power accordingly. */
4801 if ((error = ops->set_txpower(sc, 1)) != 0) {
4802 aprint_error_dev(sc->sc_dev,
4803 "could not set TX power\n");
4804 return error;
4805 }
4806
4807 /* Fake a join to initialize the TX rate. */
4808 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4809 iwn_newassoc(ni, 1);
4810
4811 /* Add BSS node. */
4812 memset(&node, 0, sizeof node);
4813 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4814 node.id = IWN_ID_BSS;
4815 #ifdef notyet
4816 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4817 IWN_AMDPU_DENSITY(5)); /* 2us */
4818 #endif
4819 DPRINTF(("adding BSS node\n"));
4820 error = ops->add_node(sc, &node, 1);
4821 if (error != 0) {
4822 aprint_error_dev(sc->sc_dev,
4823 "could not add BSS node\n");
4824 return error;
4825 }
4826 DPRINTF(("setting link quality for node %d\n", node.id));
4827 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4828 aprint_error_dev(sc->sc_dev,
4829 "could not setup link quality for node %d\n", node.id);
4830 return error;
4831 }
4832
4833 if ((error = iwn_init_sensitivity(sc)) != 0) {
4834 aprint_error_dev(sc->sc_dev,
4835 "could not set sensitivity\n");
4836 return error;
4837 }
4838 /* Start periodic calibration timer. */
4839 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4840 sc->calib_cnt = 0;
4841 callout_schedule(&sc->calib_to, hz/2);
4842
4843 /* Link LED always on while associated. */
4844 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4845 return 0;
4846 }
4847
4848 #ifdef IWN_HWCRYPTO
4849 /*
4850 * We support CCMP hardware encryption/decryption of unicast frames only.
4851 * HW support for TKIP really sucks. We should let TKIP die anyway.
4852 */
4853 static int
4854 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4855 struct ieee80211_key *k)
4856 {
4857 struct iwn_softc *sc = ic->ic_softc;
4858 struct iwn_ops *ops = &sc->ops;
4859 struct iwn_node *wn = (void *)ni;
4860 struct iwn_node_info node;
4861 uint16_t kflags;
4862
4863 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4864 k->k_cipher != IEEE80211_CIPHER_CCMP)
4865 return ieee80211_set_key(ic, ni, k);
4866
4867 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4868 if (k->k_flags & IEEE80211_KEY_GROUP)
4869 kflags |= IWN_KFLAG_GROUP;
4870
4871 memset(&node, 0, sizeof node);
4872 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4873 sc->broadcast_id : wn->id;
4874 node.control = IWN_NODE_UPDATE;
4875 node.flags = IWN_FLAG_SET_KEY;
4876 node.kflags = htole16(kflags);
4877 node.kid = k->k_id;
4878 memcpy(node.key, k->k_key, k->k_len);
4879 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4880 return ops->add_node(sc, &node, 1);
4881 }
4882
4883 static void
4884 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4885 struct ieee80211_key *k)
4886 {
4887 struct iwn_softc *sc = ic->ic_softc;
4888 struct iwn_ops *ops = &sc->ops;
4889 struct iwn_node *wn = (void *)ni;
4890 struct iwn_node_info node;
4891
4892 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4893 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4894 /* See comment about other ciphers above. */
4895 ieee80211_delete_key(ic, ni, k);
4896 return;
4897 }
4898 if (ic->ic_state != IEEE80211_S_RUN)
4899 return; /* Nothing to do. */
4900 memset(&node, 0, sizeof node);
4901 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4902 sc->broadcast_id : wn->id;
4903 node.control = IWN_NODE_UPDATE;
4904 node.flags = IWN_FLAG_SET_KEY;
4905 node.kflags = htole16(IWN_KFLAG_INVALID);
4906 node.kid = 0xff;
4907 DPRINTF(("delete keys for node %d\n", node.id));
4908 (void)ops->add_node(sc, &node, 1);
4909 }
4910 #endif
4911
4912 /* XXX Added for NetBSD (copied from rev 1.39). */
4913
4914 static int
4915 iwn_wme_update(struct ieee80211com *ic)
4916 {
4917 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4918 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4919 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4920 const struct wmeParams *wmep;
4921 struct iwn_edca_params cmd;
4922 int ac;
4923
4924 /* don't override default WME values if WME is not actually enabled */
4925 if (!(ic->ic_flags & IEEE80211_F_WME))
4926 return 0;
4927 cmd.flags = 0;
4928 for (ac = 0; ac < WME_NUM_AC; ac++) {
4929 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4930 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4931 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4932 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4933 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4934
4935 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4936 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4937 cmd.ac[ac].cwmin,
4938 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4939 }
4940 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4941 #undef IWN_USEC
4942 #undef IWN_EXP2
4943 }
4944
4945 #ifndef IEEE80211_NO_HT
4946 /*
4947 * This function is called by upper layer when an ADDBA request is received
4948 * from another STA and before the ADDBA response is sent.
4949 */
4950 static int
4951 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4952 uint8_t tid)
4953 {
4954 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4955 struct iwn_softc *sc = ic->ic_softc;
4956 struct iwn_ops *ops = &sc->ops;
4957 struct iwn_node *wn = (void *)ni;
4958 struct iwn_node_info node;
4959
4960 memset(&node, 0, sizeof node);
4961 node.id = wn->id;
4962 node.control = IWN_NODE_UPDATE;
4963 node.flags = IWN_FLAG_SET_ADDBA;
4964 node.addba_tid = tid;
4965 node.addba_ssn = htole16(ba->ba_winstart);
4966 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4967 ba->ba_winstart));
4968 return ops->add_node(sc, &node, 1);
4969 }
4970
4971 /*
4972 * This function is called by upper layer on teardown of an HT-immediate
4973 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4974 */
4975 static void
4976 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4977 uint8_t tid)
4978 {
4979 struct iwn_softc *sc = ic->ic_softc;
4980 struct iwn_ops *ops = &sc->ops;
4981 struct iwn_node *wn = (void *)ni;
4982 struct iwn_node_info node;
4983
4984 memset(&node, 0, sizeof node);
4985 node.id = wn->id;
4986 node.control = IWN_NODE_UPDATE;
4987 node.flags = IWN_FLAG_SET_DELBA;
4988 node.delba_tid = tid;
4989 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4990 (void)ops->add_node(sc, &node, 1);
4991 }
4992
4993 /*
4994 * This function is called by upper layer when an ADDBA response is received
4995 * from another STA.
4996 */
4997 static int
4998 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4999 uint8_t tid)
5000 {
5001 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5002 struct iwn_softc *sc = ic->ic_softc;
5003 struct iwn_ops *ops = &sc->ops;
5004 struct iwn_node *wn = (void *)ni;
5005 struct iwn_node_info node;
5006 int error;
5007
5008 /* Enable TX for the specified RA/TID. */
5009 wn->disable_tid &= ~(1 << tid);
5010 memset(&node, 0, sizeof node);
5011 node.id = wn->id;
5012 node.control = IWN_NODE_UPDATE;
5013 node.flags = IWN_FLAG_SET_DISABLE_TID;
5014 node.disable_tid = htole16(wn->disable_tid);
5015 error = ops->add_node(sc, &node, 1);
5016 if (error != 0)
5017 return error;
5018
5019 if ((error = iwn_nic_lock(sc)) != 0)
5020 return error;
5021 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5022 iwn_nic_unlock(sc);
5023 return 0;
5024 }
5025
5026 static void
5027 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5028 uint8_t tid)
5029 {
5030 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5031 struct iwn_softc *sc = ic->ic_softc;
5032 struct iwn_ops *ops = &sc->ops;
5033
5034 if (iwn_nic_lock(sc) != 0)
5035 return;
5036 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5037 iwn_nic_unlock(sc);
5038 }
5039
5040 static void
5041 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5042 uint8_t tid, uint16_t ssn)
5043 {
5044 struct iwn_node *wn = (void *)ni;
5045 int qid = 7 + tid;
5046
5047 /* Stop TX scheduler while we're changing its configuration. */
5048 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5049 IWN4965_TXQ_STATUS_CHGACT);
5050
5051 /* Assign RA/TID translation to the queue. */
5052 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5053 wn->id << 4 | tid);
5054
5055 /* Enable chain-building mode for the queue. */
5056 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5057
5058 /* Set starting sequence number from the ADDBA request. */
5059 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5060 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5061
5062 /* Set scheduler window size. */
5063 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5064 IWN_SCHED_WINSZ);
5065 /* Set scheduler frame limit. */
5066 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5067 IWN_SCHED_LIMIT << 16);
5068
5069 /* Enable interrupts for the queue. */
5070 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5071
5072 /* Mark the queue as active. */
5073 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5074 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5075 iwn_tid2fifo[tid] << 1);
5076 }
5077
5078 static void
5079 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5080 {
5081 int qid = 7 + tid;
5082
5083 /* Stop TX scheduler while we're changing its configuration. */
5084 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5085 IWN4965_TXQ_STATUS_CHGACT);
5086
5087 /* Set starting sequence number from the ADDBA request. */
5088 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5089 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5090
5091 /* Disable interrupts for the queue. */
5092 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5093
5094 /* Mark the queue as inactive. */
5095 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5096 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5097 }
5098
5099 static void
5100 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5101 uint8_t tid, uint16_t ssn)
5102 {
5103 struct iwn_node *wn = (void *)ni;
5104 int qid = 10 + tid;
5105
5106 /* Stop TX scheduler while we're changing its configuration. */
5107 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5108 IWN5000_TXQ_STATUS_CHGACT);
5109
5110 /* Assign RA/TID translation to the queue. */
5111 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5112 wn->id << 4 | tid);
5113
5114 /* Enable chain-building mode for the queue. */
5115 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5116
5117 /* Enable aggregation for the queue. */
5118 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5119
5120 /* Set starting sequence number from the ADDBA request. */
5121 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5122 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5123
5124 /* Set scheduler window size and frame limit. */
5125 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5126 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5127
5128 /* Enable interrupts for the queue. */
5129 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5130
5131 /* Mark the queue as active. */
5132 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5133 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5134 }
5135
5136 static void
5137 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5138 {
5139 int qid = 10 + tid;
5140
5141 /* Stop TX scheduler while we're changing its configuration. */
5142 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5143 IWN5000_TXQ_STATUS_CHGACT);
5144
5145 /* Disable aggregation for the queue. */
5146 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5147
5148 /* Set starting sequence number from the ADDBA request. */
5149 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5150 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5151
5152 /* Disable interrupts for the queue. */
5153 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5154
5155 /* Mark the queue as inactive. */
5156 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5157 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5158 }
5159 #endif /* !IEEE80211_NO_HT */
5160
5161 /*
5162 * Query calibration tables from the initialization firmware. We do this
5163 * only once at first boot. Called from a process context.
5164 */
5165 static int
5166 iwn5000_query_calibration(struct iwn_softc *sc)
5167 {
5168 struct iwn5000_calib_config cmd;
5169 int error;
5170
5171 memset(&cmd, 0, sizeof cmd);
5172 cmd.ucode.once.enable = 0xffffffff;
5173 cmd.ucode.once.start = 0xffffffff;
5174 cmd.ucode.once.send = 0xffffffff;
5175 cmd.ucode.flags = 0xffffffff;
5176 DPRINTF(("sending calibration query\n"));
5177 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5178 if (error != 0)
5179 return error;
5180
5181 /* Wait at most two seconds for calibration to complete. */
5182 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5183 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5184 return error;
5185 }
5186
5187 /*
5188 * Send calibration results to the runtime firmware. These results were
5189 * obtained on first boot from the initialization firmware.
5190 */
5191 static int
5192 iwn5000_send_calibration(struct iwn_softc *sc)
5193 {
5194 int idx, error;
5195
5196 for (idx = 0; idx < 5; idx++) {
5197 if (sc->calibcmd[idx].buf == NULL)
5198 continue; /* No results available. */
5199 DPRINTF(("send calibration result idx=%d len=%d\n",
5200 idx, sc->calibcmd[idx].len));
5201 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5202 sc->calibcmd[idx].len, 0);
5203 if (error != 0) {
5204 aprint_error_dev(sc->sc_dev,
5205 "could not send calibration result\n");
5206 return error;
5207 }
5208 }
5209 return 0;
5210 }
5211
5212 static int
5213 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5214 {
5215 struct iwn5000_wimax_coex wimax;
5216
5217 #ifdef notyet
5218 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5219 /* Enable WiMAX coexistence for combo adapters. */
5220 wimax.flags =
5221 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5222 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5223 IWN_WIMAX_COEX_STA_TABLE_VALID |
5224 IWN_WIMAX_COEX_ENABLE;
5225 memcpy(wimax.events, iwn6050_wimax_events,
5226 sizeof iwn6050_wimax_events);
5227 } else
5228 #endif
5229 {
5230 /* Disable WiMAX coexistence. */
5231 wimax.flags = 0;
5232 memset(wimax.events, 0, sizeof wimax.events);
5233 }
5234 DPRINTF(("Configuring WiMAX coexistence\n"));
5235 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5236 }
5237
5238 static int
5239 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5240 {
5241 struct iwn6000_phy_calib_temp_offset cmd;
5242
5243 memset(&cmd, 0, sizeof cmd);
5244 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5245 cmd.ngroups = 1;
5246 cmd.isvalid = 1;
5247 if (sc->eeprom_temp != 0)
5248 cmd.offset = htole16(sc->eeprom_temp);
5249 else
5250 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5251 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5252 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5253 }
5254
5255 static int
5256 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5257 {
5258 struct iwn2000_phy_calib_temp_offset cmd;
5259
5260 memset(&cmd, 0, sizeof cmd);
5261 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5262 cmd.ngroups = 1;
5263 cmd.isvalid = 1;
5264 if (sc->eeprom_rawtemp != 0) {
5265 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5266 cmd.offset_high = htole16(sc->eeprom_temp);
5267 } else {
5268 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5269 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5270 }
5271 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5272 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5273 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5274 le16toh(cmd.burnt_voltage_ref)));
5275 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5276 }
5277
5278 /*
5279 * This function is called after the runtime firmware notifies us of its
5280 * readiness (called in a process context).
5281 */
5282 static int
5283 iwn4965_post_alive(struct iwn_softc *sc)
5284 {
5285 int error, qid;
5286
5287 if ((error = iwn_nic_lock(sc)) != 0)
5288 return error;
5289
5290 /* Clear TX scheduler state in SRAM. */
5291 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5292 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5293 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5294
5295 /* Set physical address of TX scheduler rings (1KB aligned). */
5296 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5297
5298 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5299
5300 /* Disable chain mode for all our 16 queues. */
5301 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5302
5303 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5304 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5305 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5306
5307 /* Set scheduler window size. */
5308 iwn_mem_write(sc, sc->sched_base +
5309 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5310 /* Set scheduler frame limit. */
5311 iwn_mem_write(sc, sc->sched_base +
5312 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5313 IWN_SCHED_LIMIT << 16);
5314 }
5315
5316 /* Enable interrupts for all our 16 queues. */
5317 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5318 /* Identify TX FIFO rings (0-7). */
5319 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5320
5321 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5322 for (qid = 0; qid < 7; qid++) {
5323 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5324 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5325 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5326 }
5327 iwn_nic_unlock(sc);
5328 return 0;
5329 }
5330
5331 /*
5332 * This function is called after the initialization or runtime firmware
5333 * notifies us of its readiness (called in a process context).
5334 */
5335 static int
5336 iwn5000_post_alive(struct iwn_softc *sc)
5337 {
5338 int error, qid;
5339
5340 /* Switch to using ICT interrupt mode. */
5341 iwn5000_ict_reset(sc);
5342
5343 if ((error = iwn_nic_lock(sc)) != 0)
5344 return error;
5345
5346 /* Clear TX scheduler state in SRAM. */
5347 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5348 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5349 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5350
5351 /* Set physical address of TX scheduler rings (1KB aligned). */
5352 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5353
5354 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5355
5356 /* Enable chain mode for all queues, except command queue. */
5357 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5358 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5359
5360 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5361 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5362 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5363
5364 iwn_mem_write(sc, sc->sched_base +
5365 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5366 /* Set scheduler window size and frame limit. */
5367 iwn_mem_write(sc, sc->sched_base +
5368 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5369 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5370 }
5371
5372 /* Enable interrupts for all our 20 queues. */
5373 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5374 /* Identify TX FIFO rings (0-7). */
5375 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5376
5377 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5378 for (qid = 0; qid < 7; qid++) {
5379 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5380 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5381 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5382 }
5383 iwn_nic_unlock(sc);
5384
5385 /* Configure WiMAX coexistence for combo adapters. */
5386 error = iwn5000_send_wimax_coex(sc);
5387 if (error != 0) {
5388 aprint_error_dev(sc->sc_dev,
5389 "could not configure WiMAX coexistence\n");
5390 return error;
5391 }
5392 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5393 struct iwn5000_phy_calib_crystal cmd;
5394
5395 /* Perform crystal calibration. */
5396 memset(&cmd, 0, sizeof cmd);
5397 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5398 cmd.ngroups = 1;
5399 cmd.isvalid = 1;
5400 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5401 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5402 DPRINTF(("sending crystal calibration %d, %d\n",
5403 cmd.cap_pin[0], cmd.cap_pin[1]));
5404 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5405 if (error != 0) {
5406 aprint_error_dev(sc->sc_dev,
5407 "crystal calibration failed\n");
5408 return error;
5409 }
5410 }
5411 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5412 /* Query calibration from the initialization firmware. */
5413 if ((error = iwn5000_query_calibration(sc)) != 0) {
5414 aprint_error_dev(sc->sc_dev,
5415 "could not query calibration\n");
5416 return error;
5417 }
5418 /*
5419 * We have the calibration results now, reboot with the
5420 * runtime firmware (call ourselves recursively!)
5421 */
5422 iwn_hw_stop(sc);
5423 error = iwn_hw_init(sc);
5424 } else {
5425 /* Send calibration results to runtime firmware. */
5426 error = iwn5000_send_calibration(sc);
5427 }
5428 return error;
5429 }
5430
5431 /*
5432 * The firmware boot code is small and is intended to be copied directly into
5433 * the NIC internal memory (no DMA transfer).
5434 */
5435 static int
5436 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5437 {
5438 int error, ntries;
5439
5440 size /= sizeof (uint32_t);
5441
5442 if ((error = iwn_nic_lock(sc)) != 0)
5443 return error;
5444
5445 /* Copy microcode image into NIC memory. */
5446 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5447 (const uint32_t *)ucode, size);
5448
5449 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5450 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5451 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5452
5453 /* Start boot load now. */
5454 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5455
5456 /* Wait for transfer to complete. */
5457 for (ntries = 0; ntries < 1000; ntries++) {
5458 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5459 IWN_BSM_WR_CTRL_START))
5460 break;
5461 DELAY(10);
5462 }
5463 if (ntries == 1000) {
5464 aprint_error_dev(sc->sc_dev,
5465 "could not load boot firmware\n");
5466 iwn_nic_unlock(sc);
5467 return ETIMEDOUT;
5468 }
5469
5470 /* Enable boot after power up. */
5471 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5472
5473 iwn_nic_unlock(sc);
5474 return 0;
5475 }
5476
5477 static int
5478 iwn4965_load_firmware(struct iwn_softc *sc)
5479 {
5480 struct iwn_fw_info *fw = &sc->fw;
5481 struct iwn_dma_info *dma = &sc->fw_dma;
5482 int error;
5483
5484 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5485 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5486 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5487 BUS_DMASYNC_PREWRITE);
5488 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5489 fw->init.text, fw->init.textsz);
5490 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5491 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5492
5493 /* Tell adapter where to find initialization sections. */
5494 if ((error = iwn_nic_lock(sc)) != 0)
5495 return error;
5496 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5497 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5498 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5499 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5500 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5501 iwn_nic_unlock(sc);
5502
5503 /* Load firmware boot code. */
5504 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5505 if (error != 0) {
5506 aprint_error_dev(sc->sc_dev,
5507 "could not load boot firmware\n");
5508 return error;
5509 }
5510 /* Now press "execute". */
5511 IWN_WRITE(sc, IWN_RESET, 0);
5512
5513 /* Wait at most one second for first alive notification. */
5514 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5515 aprint_error_dev(sc->sc_dev,
5516 "timeout waiting for adapter to initialize\n");
5517 return error;
5518 }
5519
5520 /* Retrieve current temperature for initial TX power calibration. */
5521 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5522 sc->temp = iwn4965_get_temperature(sc);
5523
5524 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5525 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5526 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5527 BUS_DMASYNC_PREWRITE);
5528 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5529 fw->main.text, fw->main.textsz);
5530 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5531 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5532
5533 /* Tell adapter where to find runtime sections. */
5534 if ((error = iwn_nic_lock(sc)) != 0)
5535 return error;
5536 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5537 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5538 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5539 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5540 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5541 IWN_FW_UPDATED | fw->main.textsz);
5542 iwn_nic_unlock(sc);
5543
5544 return 0;
5545 }
5546
5547 static int
5548 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5549 const uint8_t *section, int size)
5550 {
5551 struct iwn_dma_info *dma = &sc->fw_dma;
5552 int error;
5553
5554 /* Copy firmware section into pre-allocated DMA-safe memory. */
5555 memcpy(dma->vaddr, section, size);
5556 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5557
5558 if ((error = iwn_nic_lock(sc)) != 0)
5559 return error;
5560
5561 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5562 IWN_FH_TX_CONFIG_DMA_PAUSE);
5563
5564 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5565 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5566 IWN_LOADDR(dma->paddr));
5567 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5568 IWN_HIADDR(dma->paddr) << 28 | size);
5569 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5570 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5571 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5572 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5573
5574 /* Kick Flow Handler to start DMA transfer. */
5575 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5576 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5577
5578 iwn_nic_unlock(sc);
5579
5580 /* Wait at most five seconds for FH DMA transfer to complete. */
5581 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5582 }
5583
5584 static int
5585 iwn5000_load_firmware(struct iwn_softc *sc)
5586 {
5587 struct iwn_fw_part *fw;
5588 int error;
5589
5590 /* Load the initialization firmware on first boot only. */
5591 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5592 &sc->fw.main : &sc->fw.init;
5593
5594 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5595 fw->text, fw->textsz);
5596 if (error != 0) {
5597 aprint_error_dev(sc->sc_dev,
5598 "could not load firmware %s section\n", ".text");
5599 return error;
5600 }
5601 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5602 fw->data, fw->datasz);
5603 if (error != 0) {
5604 aprint_error_dev(sc->sc_dev,
5605 "could not load firmware %s section\n", ".data");
5606 return error;
5607 }
5608
5609 /* Now press "execute". */
5610 IWN_WRITE(sc, IWN_RESET, 0);
5611 return 0;
5612 }
5613
5614 /*
5615 * Extract text and data sections from a legacy firmware image.
5616 */
5617 static int
5618 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5619 {
5620 const uint32_t *ptr;
5621 size_t hdrlen = 24;
5622 uint32_t rev;
5623
5624 ptr = (const uint32_t *)fw->data;
5625 rev = le32toh(*ptr++);
5626
5627 /* Check firmware API version. */
5628 if (IWN_FW_API(rev) <= 1) {
5629 aprint_error_dev(sc->sc_dev,
5630 "bad firmware, need API version >=2\n");
5631 return EINVAL;
5632 }
5633 if (IWN_FW_API(rev) >= 3) {
5634 /* Skip build number (version 2 header). */
5635 hdrlen += 4;
5636 ptr++;
5637 }
5638 if (fw->size < hdrlen) {
5639 aprint_error_dev(sc->sc_dev,
5640 "firmware too short: %zd bytes\n", fw->size);
5641 return EINVAL;
5642 }
5643 fw->main.textsz = le32toh(*ptr++);
5644 fw->main.datasz = le32toh(*ptr++);
5645 fw->init.textsz = le32toh(*ptr++);
5646 fw->init.datasz = le32toh(*ptr++);
5647 fw->boot.textsz = le32toh(*ptr++);
5648
5649 /* Check that all firmware sections fit. */
5650 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5651 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5652 aprint_error_dev(sc->sc_dev,
5653 "firmware too short: %zd bytes\n", fw->size);
5654 return EINVAL;
5655 }
5656
5657 /* Get pointers to firmware sections. */
5658 fw->main.text = (const uint8_t *)ptr;
5659 fw->main.data = fw->main.text + fw->main.textsz;
5660 fw->init.text = fw->main.data + fw->main.datasz;
5661 fw->init.data = fw->init.text + fw->init.textsz;
5662 fw->boot.text = fw->init.data + fw->init.datasz;
5663 return 0;
5664 }
5665
5666 /*
5667 * Extract text and data sections from a TLV firmware image.
5668 */
5669 static int
5670 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5671 uint16_t alt)
5672 {
5673 const struct iwn_fw_tlv_hdr *hdr;
5674 const struct iwn_fw_tlv *tlv;
5675 const uint8_t *ptr, *end;
5676 uint64_t altmask;
5677 uint32_t len;
5678
5679 if (fw->size < sizeof (*hdr)) {
5680 aprint_error_dev(sc->sc_dev,
5681 "firmware too short: %zd bytes\n", fw->size);
5682 return EINVAL;
5683 }
5684 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5685 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5686 aprint_error_dev(sc->sc_dev,
5687 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5688 return EINVAL;
5689 }
5690 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5691 le32toh(hdr->build)));
5692
5693 /*
5694 * Select the closest supported alternative that is less than
5695 * or equal to the specified one.
5696 */
5697 altmask = le64toh(hdr->altmask);
5698 while (alt > 0 && !(altmask & (1ULL << alt)))
5699 alt--; /* Downgrade. */
5700 DPRINTF(("using alternative %d\n", alt));
5701
5702 ptr = (const uint8_t *)(hdr + 1);
5703 end = (const uint8_t *)(fw->data + fw->size);
5704
5705 /* Parse type-length-value fields. */
5706 while (ptr + sizeof (*tlv) <= end) {
5707 tlv = (const struct iwn_fw_tlv *)ptr;
5708 len = le32toh(tlv->len);
5709
5710 ptr += sizeof (*tlv);
5711 if (ptr + len > end) {
5712 aprint_error_dev(sc->sc_dev,
5713 "firmware too short: %zd bytes\n", fw->size);
5714 return EINVAL;
5715 }
5716 /* Skip other alternatives. */
5717 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5718 goto next;
5719
5720 switch (le16toh(tlv->type)) {
5721 case IWN_FW_TLV_MAIN_TEXT:
5722 fw->main.text = ptr;
5723 fw->main.textsz = len;
5724 break;
5725 case IWN_FW_TLV_MAIN_DATA:
5726 fw->main.data = ptr;
5727 fw->main.datasz = len;
5728 break;
5729 case IWN_FW_TLV_INIT_TEXT:
5730 fw->init.text = ptr;
5731 fw->init.textsz = len;
5732 break;
5733 case IWN_FW_TLV_INIT_DATA:
5734 fw->init.data = ptr;
5735 fw->init.datasz = len;
5736 break;
5737 case IWN_FW_TLV_BOOT_TEXT:
5738 fw->boot.text = ptr;
5739 fw->boot.textsz = len;
5740 break;
5741 case IWN_FW_TLV_ENH_SENS:
5742 if (len != 0) {
5743 aprint_error_dev(sc->sc_dev,
5744 "TLV type %d has invalid size %u\n",
5745 le16toh(tlv->type), len);
5746 goto next;
5747 }
5748 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5749 break;
5750 case IWN_FW_TLV_PHY_CALIB:
5751 if (len != sizeof(uint32_t)) {
5752 aprint_error_dev(sc->sc_dev,
5753 "TLV type %d has invalid size %u\n",
5754 le16toh(tlv->type), len);
5755 goto next;
5756 }
5757 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5758 sc->reset_noise_gain = le32toh(*ptr);
5759 sc->noise_gain = le32toh(*ptr) + 1;
5760 }
5761 break;
5762 case IWN_FW_TLV_FLAGS:
5763 if (len < sizeof(uint32_t))
5764 break;
5765 if (len % sizeof(uint32_t))
5766 break;
5767 sc->tlv_feature_flags = le32toh(*ptr);
5768 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5769 break;
5770 default:
5771 DPRINTF(("TLV type %d not handled\n",
5772 le16toh(tlv->type)));
5773 break;
5774 }
5775 next: /* TLV fields are 32-bit aligned. */
5776 ptr += (len + 3) & ~3;
5777 }
5778 return 0;
5779 }
5780
5781 static int
5782 iwn_read_firmware(struct iwn_softc *sc)
5783 {
5784 struct iwn_fw_info *fw = &sc->fw;
5785 firmware_handle_t fwh;
5786 int error;
5787
5788 /*
5789 * Some PHY calibration commands are firmware-dependent; these
5790 * are the default values that will be overridden if
5791 * necessary.
5792 */
5793 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5794 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5795
5796 /* Initialize for error returns */
5797 fw->data = NULL;
5798 fw->size = 0;
5799
5800 /* Open firmware image. */
5801 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5802 aprint_error_dev(sc->sc_dev,
5803 "could not get firmware handle %s\n", sc->fwname);
5804 return error;
5805 }
5806 fw->size = firmware_get_size(fwh);
5807 if (fw->size < sizeof (uint32_t)) {
5808 aprint_error_dev(sc->sc_dev,
5809 "firmware too short: %zd bytes\n", fw->size);
5810 firmware_close(fwh);
5811 return EINVAL;
5812 }
5813
5814 /* Read the firmware. */
5815 fw->data = firmware_malloc(fw->size);
5816 if (fw->data == NULL) {
5817 aprint_error_dev(sc->sc_dev,
5818 "not enough memory to stock firmware %s\n", sc->fwname);
5819 firmware_close(fwh);
5820 return ENOMEM;
5821 }
5822 error = firmware_read(fwh, 0, fw->data, fw->size);
5823 firmware_close(fwh);
5824 if (error != 0) {
5825 aprint_error_dev(sc->sc_dev,
5826 "could not read firmware %s\n", sc->fwname);
5827 goto out;
5828 }
5829
5830 /* Retrieve text and data sections. */
5831 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5832 error = iwn_read_firmware_leg(sc, fw);
5833 else
5834 error = iwn_read_firmware_tlv(sc, fw, 1);
5835 if (error != 0) {
5836 aprint_error_dev(sc->sc_dev,
5837 "could not read firmware sections\n");
5838 goto out;
5839 }
5840
5841 /* Make sure text and data sections fit in hardware memory. */
5842 if (fw->main.textsz > sc->fw_text_maxsz ||
5843 fw->main.datasz > sc->fw_data_maxsz ||
5844 fw->init.textsz > sc->fw_text_maxsz ||
5845 fw->init.datasz > sc->fw_data_maxsz ||
5846 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5847 (fw->boot.textsz & 3) != 0) {
5848 aprint_error_dev(sc->sc_dev,
5849 "firmware sections too large\n");
5850 goto out;
5851 }
5852
5853 /* We can proceed with loading the firmware. */
5854 return 0;
5855 out:
5856 firmware_free(fw->data, fw->size);
5857 fw->data = NULL;
5858 fw->size = 0;
5859 return error ? error : EINVAL;
5860 }
5861
5862 static int
5863 iwn_clock_wait(struct iwn_softc *sc)
5864 {
5865 int ntries;
5866
5867 /* Set "initialization complete" bit. */
5868 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5869
5870 /* Wait for clock stabilization. */
5871 for (ntries = 0; ntries < 2500; ntries++) {
5872 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5873 return 0;
5874 DELAY(10);
5875 }
5876 aprint_error_dev(sc->sc_dev,
5877 "timeout waiting for clock stabilization\n");
5878 return ETIMEDOUT;
5879 }
5880
5881 static int
5882 iwn_apm_init(struct iwn_softc *sc)
5883 {
5884 pcireg_t reg;
5885 int error;
5886
5887 /* Disable L0s exit timer (NMI bug workaround). */
5888 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5889 /* Don't wait for ICH L0s (ICH bug workaround). */
5890 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5891
5892 /* Set FH wait threshold to max (HW bug under stress workaround). */
5893 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5894
5895 /* Enable HAP INTA to move adapter from L1a to L0s. */
5896 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5897
5898 /* Retrieve PCIe Active State Power Management (ASPM). */
5899 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5900 sc->sc_cap_off + PCIE_LCSR);
5901 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5902 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5903 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5904 else
5905 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5906
5907 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5908 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5909 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5910
5911 /* Wait for clock stabilization before accessing prph. */
5912 if ((error = iwn_clock_wait(sc)) != 0)
5913 return error;
5914
5915 if ((error = iwn_nic_lock(sc)) != 0)
5916 return error;
5917 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5918 /* Enable DMA and BSM (Bootstrap State Machine). */
5919 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5920 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5921 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5922 } else {
5923 /* Enable DMA. */
5924 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5925 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5926 }
5927 DELAY(20);
5928 /* Disable L1-Active. */
5929 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5930 iwn_nic_unlock(sc);
5931
5932 return 0;
5933 }
5934
5935 static void
5936 iwn_apm_stop_master(struct iwn_softc *sc)
5937 {
5938 int ntries;
5939
5940 /* Stop busmaster DMA activity. */
5941 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5942 for (ntries = 0; ntries < 100; ntries++) {
5943 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5944 return;
5945 DELAY(10);
5946 }
5947 aprint_error_dev(sc->sc_dev,
5948 "timeout waiting for master\n");
5949 }
5950
5951 static void
5952 iwn_apm_stop(struct iwn_softc *sc)
5953 {
5954 iwn_apm_stop_master(sc);
5955
5956 /* Reset the entire device. */
5957 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5958 DELAY(10);
5959 /* Clear "initialization complete" bit. */
5960 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5961 }
5962
5963 static int
5964 iwn4965_nic_config(struct iwn_softc *sc)
5965 {
5966 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5967 /*
5968 * I don't believe this to be correct but this is what the
5969 * vendor driver is doing. Probably the bits should not be
5970 * shifted in IWN_RFCFG_*.
5971 */
5972 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5973 IWN_RFCFG_TYPE(sc->rfcfg) |
5974 IWN_RFCFG_STEP(sc->rfcfg) |
5975 IWN_RFCFG_DASH(sc->rfcfg));
5976 }
5977 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5978 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5979 return 0;
5980 }
5981
5982 static int
5983 iwn5000_nic_config(struct iwn_softc *sc)
5984 {
5985 uint32_t tmp;
5986 int error;
5987
5988 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5989 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5990 IWN_RFCFG_TYPE(sc->rfcfg) |
5991 IWN_RFCFG_STEP(sc->rfcfg) |
5992 IWN_RFCFG_DASH(sc->rfcfg));
5993 }
5994 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5995 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5996
5997 if ((error = iwn_nic_lock(sc)) != 0)
5998 return error;
5999 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6000
6001 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6002 /*
6003 * Select first Switching Voltage Regulator (1.32V) to
6004 * solve a stability issue related to noisy DC2DC line
6005 * in the silicon of 1000 Series.
6006 */
6007 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6008 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6009 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6010 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6011 }
6012 iwn_nic_unlock(sc);
6013
6014 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6015 /* Use internal power amplifier only. */
6016 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6017 }
6018 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6019 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6020 /* Indicate that ROM calibration version is >=6. */
6021 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6022 }
6023 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6024 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6025 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6026 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6027 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6028 sc->hw_type == IWN_HW_REV_TYPE_105)
6029 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6030 return 0;
6031 }
6032
6033 /*
6034 * Take NIC ownership over Intel Active Management Technology (AMT).
6035 */
6036 static int
6037 iwn_hw_prepare(struct iwn_softc *sc)
6038 {
6039 int ntries;
6040
6041 /* Check if hardware is ready. */
6042 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6043 for (ntries = 0; ntries < 5; ntries++) {
6044 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6045 IWN_HW_IF_CONFIG_NIC_READY)
6046 return 0;
6047 DELAY(10);
6048 }
6049
6050 /* Hardware not ready, force into ready state. */
6051 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6052 for (ntries = 0; ntries < 15000; ntries++) {
6053 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6054 IWN_HW_IF_CONFIG_PREPARE_DONE))
6055 break;
6056 DELAY(10);
6057 }
6058 if (ntries == 15000)
6059 return ETIMEDOUT;
6060
6061 /* Hardware should be ready now. */
6062 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6063 for (ntries = 0; ntries < 5; ntries++) {
6064 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6065 IWN_HW_IF_CONFIG_NIC_READY)
6066 return 0;
6067 DELAY(10);
6068 }
6069 return ETIMEDOUT;
6070 }
6071
6072 static int
6073 iwn_hw_init(struct iwn_softc *sc)
6074 {
6075 struct iwn_ops *ops = &sc->ops;
6076 int error, chnl, qid;
6077
6078 /* Clear pending interrupts. */
6079 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6080
6081 if ((error = iwn_apm_init(sc)) != 0) {
6082 aprint_error_dev(sc->sc_dev,
6083 "could not power ON adapter\n");
6084 return error;
6085 }
6086
6087 /* Select VMAIN power source. */
6088 if ((error = iwn_nic_lock(sc)) != 0)
6089 return error;
6090 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6091 iwn_nic_unlock(sc);
6092
6093 /* Perform adapter-specific initialization. */
6094 if ((error = ops->nic_config(sc)) != 0)
6095 return error;
6096
6097 /* Initialize RX ring. */
6098 if ((error = iwn_nic_lock(sc)) != 0)
6099 return error;
6100 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6101 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6102 /* Set physical address of RX ring (256-byte aligned). */
6103 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6104 /* Set physical address of RX status (16-byte aligned). */
6105 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6106 /* Enable RX. */
6107 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6108 IWN_FH_RX_CONFIG_ENA |
6109 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6110 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6111 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6112 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6113 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6114 iwn_nic_unlock(sc);
6115 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6116
6117 if ((error = iwn_nic_lock(sc)) != 0)
6118 return error;
6119
6120 /* Initialize TX scheduler. */
6121 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6122
6123 /* Set physical address of "keep warm" page (16-byte aligned). */
6124 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6125
6126 /* Initialize TX rings. */
6127 for (qid = 0; qid < sc->ntxqs; qid++) {
6128 struct iwn_tx_ring *txq = &sc->txq[qid];
6129
6130 /* Set physical address of TX ring (256-byte aligned). */
6131 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6132 txq->desc_dma.paddr >> 8);
6133 }
6134 iwn_nic_unlock(sc);
6135
6136 /* Enable DMA channels. */
6137 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6138 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6139 IWN_FH_TX_CONFIG_DMA_ENA |
6140 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6141 }
6142
6143 /* Clear "radio off" and "commands blocked" bits. */
6144 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6145 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6146
6147 /* Clear pending interrupts. */
6148 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6149 /* Enable interrupt coalescing. */
6150 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6151 /* Enable interrupts. */
6152 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6153
6154 /* _Really_ make sure "radio off" bit is cleared! */
6155 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6156 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6157
6158 /* Enable shadow registers. */
6159 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6160 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6161
6162 if ((error = ops->load_firmware(sc)) != 0) {
6163 aprint_error_dev(sc->sc_dev,
6164 "could not load firmware\n");
6165 return error;
6166 }
6167 /* Wait at most one second for firmware alive notification. */
6168 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6169 aprint_error_dev(sc->sc_dev,
6170 "timeout waiting for adapter to initialize\n");
6171 return error;
6172 }
6173 /* Do post-firmware initialization. */
6174 return ops->post_alive(sc);
6175 }
6176
6177 static void
6178 iwn_hw_stop(struct iwn_softc *sc)
6179 {
6180 int chnl, qid, ntries;
6181
6182 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6183
6184 /* Disable interrupts. */
6185 IWN_WRITE(sc, IWN_INT_MASK, 0);
6186 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6187 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6188 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6189
6190 /* Make sure we no longer hold the NIC lock. */
6191 iwn_nic_unlock(sc);
6192
6193 /* Stop TX scheduler. */
6194 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6195
6196 /* Stop all DMA channels. */
6197 if (iwn_nic_lock(sc) == 0) {
6198 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6199 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6200 for (ntries = 0; ntries < 200; ntries++) {
6201 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6202 IWN_FH_TX_STATUS_IDLE(chnl))
6203 break;
6204 DELAY(10);
6205 }
6206 }
6207 iwn_nic_unlock(sc);
6208 }
6209
6210 /* Stop RX ring. */
6211 iwn_reset_rx_ring(sc, &sc->rxq);
6212
6213 /* Reset all TX rings. */
6214 for (qid = 0; qid < sc->ntxqs; qid++)
6215 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6216
6217 if (iwn_nic_lock(sc) == 0) {
6218 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6219 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6220 iwn_nic_unlock(sc);
6221 }
6222 DELAY(5);
6223 /* Power OFF adapter. */
6224 iwn_apm_stop(sc);
6225 }
6226
6227 static int
6228 iwn_init(struct ifnet *ifp)
6229 {
6230 struct iwn_softc *sc = ifp->if_softc;
6231 struct ieee80211com *ic = &sc->sc_ic;
6232 int error;
6233
6234 mutex_enter(&sc->sc_mtx);
6235 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6236 goto out;
6237 if ((error = iwn_hw_prepare(sc)) != 0) {
6238 aprint_error_dev(sc->sc_dev,
6239 "hardware not ready\n");
6240 goto fail;
6241 }
6242
6243 /* Check that the radio is not disabled by hardware switch. */
6244 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6245 aprint_error_dev(sc->sc_dev,
6246 "radio is disabled by hardware switch\n");
6247 error = EPERM; /* :-) */
6248 goto fail;
6249 }
6250
6251 /* Read firmware images from the filesystem. */
6252 if ((error = iwn_read_firmware(sc)) != 0) {
6253 aprint_error_dev(sc->sc_dev,
6254 "could not read firmware\n");
6255 goto fail;
6256 }
6257
6258 /* Initialize interrupt mask to default value. */
6259 sc->int_mask = IWN_INT_MASK_DEF;
6260 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6261
6262 /* Initialize hardware and upload firmware. */
6263 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6264 error = iwn_hw_init(sc);
6265 firmware_free(sc->fw.data, sc->fw.size);
6266 sc->fw.data = NULL;
6267 sc->fw.size = 0;
6268 if (error != 0) {
6269 aprint_error_dev(sc->sc_dev,
6270 "could not initialize hardware\n");
6271 goto fail;
6272 }
6273
6274 /* Configure adapter now that it is ready. */
6275 if ((error = iwn_config(sc)) != 0) {
6276 aprint_error_dev(sc->sc_dev,
6277 "could not configure device\n");
6278 goto fail;
6279 }
6280
6281 ifp->if_flags &= ~IFF_OACTIVE;
6282 ifp->if_flags |= IFF_RUNNING;
6283
6284 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6285 ieee80211_begin_scan(ic, 0);
6286 else
6287 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6288
6289 sc->sc_flags |= IWN_FLAG_HW_INITED;
6290 out:
6291 mutex_exit(&sc->sc_mtx);
6292 return 0;
6293
6294 fail: mutex_exit(&sc->sc_mtx);
6295 iwn_stop(ifp, 1);
6296 return error;
6297 }
6298
6299 static void
6300 iwn_stop(struct ifnet *ifp, int disable)
6301 {
6302 struct iwn_softc *sc = ifp->if_softc;
6303 struct ieee80211com *ic = &sc->sc_ic;
6304
6305 if (!disable)
6306 mutex_enter(&sc->sc_mtx);
6307 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6308 ifp->if_timer = sc->sc_tx_timer = 0;
6309 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6310
6311 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6312
6313 /* Power OFF hardware. */
6314 iwn_hw_stop(sc);
6315
6316 if (!disable)
6317 mutex_exit(&sc->sc_mtx);
6318 }
6319
6320 /*
6321 * XXX MCLGETI alternative
6322 *
6323 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6324 * as long as there are available free buffers then it uses MEXTMALLOC.,
6325 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6326 * The MCLGET4K code is used for testing an alternative mbuf cache.
6327 */
6328
6329 static struct mbuf *
6330 MCLGETIalt(struct iwn_softc *sc, int how,
6331 struct ifnet *ifp __unused, u_int size)
6332 {
6333 struct mbuf *m;
6334 #ifdef IWN_USE_RBUF
6335 struct iwn_rbuf *rbuf;
6336 #endif
6337
6338 MGETHDR(m, how, MT_DATA);
6339 if (m == NULL)
6340 return NULL;
6341
6342 #ifdef IWN_USE_RBUF
6343 if (sc->rxq.nb_free_entries > 0 &&
6344 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6345 /* Attach buffer to mbuf header. */
6346 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6347 m->m_flags |= M_EXT_RW;
6348 }
6349 else {
6350 MEXTMALLOC(m, size, how);
6351 if ((m->m_flags & M_EXT) == 0) {
6352 m_freem(m);
6353 return NULL;
6354 }
6355 }
6356
6357 #else
6358 #ifdef MCLGET4K
6359 if (size == 4096)
6360 MCLGET4K(m, how);
6361 else
6362 panic("size must be 4k");
6363 #else
6364 MEXTMALLOC(m, size, how);
6365 #endif
6366 if ((m->m_flags & M_EXT) == 0) {
6367 m_freem(m);
6368 return NULL;
6369 }
6370 #endif
6371
6372 return m;
6373 }
6374
6375 #ifdef IWN_USE_RBUF
6376 static struct iwn_rbuf *
6377 iwn_alloc_rbuf(struct iwn_softc *sc)
6378 {
6379 struct iwn_rbuf *rbuf;
6380 mutex_enter(&sc->rxq.freelist_mtx);
6381
6382 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6383 if (rbuf != NULL) {
6384 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6385 sc->rxq.nb_free_entries --;
6386 }
6387 mutex_exit(&sc->rxq.freelist_mtx);
6388 return rbuf;
6389 }
6390
6391 /*
6392 * This is called automatically by the network stack when the mbuf to which
6393 * our RX buffer is attached is freed.
6394 */
6395 static void
6396 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6397 {
6398 struct iwn_rbuf *rbuf = arg;
6399 struct iwn_softc *sc = rbuf->sc;
6400
6401 /* Put the RX buffer back in the free list. */
6402 mutex_enter(&sc->rxq.freelist_mtx);
6403 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6404 mutex_exit(&sc->rxq.freelist_mtx);
6405
6406 sc->rxq.nb_free_entries ++;
6407 if (__predict_true(m != NULL))
6408 pool_cache_put(mb_cache, m);
6409 }
6410
6411 static int
6412 iwn_alloc_rpool(struct iwn_softc *sc)
6413 {
6414 struct iwn_rx_ring *ring = &sc->rxq;
6415 struct iwn_rbuf *rbuf;
6416 int i, error;
6417
6418 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6419
6420 /* Allocate a big chunk of DMA'able memory... */
6421 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6422 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6423 if (error != 0) {
6424 aprint_error_dev(sc->sc_dev,
6425 "could not allocate RX buffers DMA memory\n");
6426 return error;
6427 }
6428 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6429 SLIST_INIT(&ring->freelist);
6430 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6431 rbuf = &ring->rbuf[i];
6432
6433 rbuf->sc = sc; /* Backpointer for callbacks. */
6434 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6435 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6436
6437 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6438 }
6439 ring->nb_free_entries = IWN_RBUF_COUNT;
6440 return 0;
6441 }
6442
6443 static void
6444 iwn_free_rpool(struct iwn_softc *sc)
6445 {
6446 iwn_dma_contig_free(&sc->rxq.buf_dma);
6447 }
6448 #endif
6449
6450 /*
6451 * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
6452 * Copyright (c) 2001 Atsushi Onoe
6453 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
6454 * Copyright (c) 2007-2009 Damien Bergamini
6455 * All rights reserved.
6456 */
6457
6458 /*
6459 * Add an SSID element to a frame (see 7.3.2.1).
6460 */
6461 static u_int8_t *
6462 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
6463 {
6464 *frm++ = IEEE80211_ELEMID_SSID;
6465 *frm++ = len;
6466 memcpy(frm, ssid, len);
6467 return frm + len;
6468 }
6469
6470 /*
6471 * Add a supported rates element to a frame (see 7.3.2.2).
6472 */
6473 static u_int8_t *
6474 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6475 {
6476 int nrates;
6477
6478 *frm++ = IEEE80211_ELEMID_RATES;
6479 nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
6480 *frm++ = nrates;
6481 memcpy(frm, rs->rs_rates, nrates);
6482 return frm + nrates;
6483 }
6484
6485 /*
6486 * Add an extended supported rates element to a frame (see 7.3.2.14).
6487 */
6488 static u_int8_t *
6489 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
6490 {
6491 int nrates;
6492
6493 KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
6494
6495 *frm++ = IEEE80211_ELEMID_XRATES;
6496 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
6497 *frm++ = nrates;
6498 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
6499 return frm + nrates;
6500 }
6501
6502 /*
6503 * XXX: Hack to set the current channel to the value advertised in beacons or
6504 * probe responses. Only used during AP detection.
6505 * XXX: Duplicated from if_iwi.c
6506 */
6507 static void
6508 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
6509 {
6510 struct ieee80211_frame *wh;
6511 uint8_t subtype;
6512 uint8_t *frm, *efrm;
6513
6514 wh = mtod(m, struct ieee80211_frame *);
6515
6516 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6517 return;
6518
6519 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6520
6521 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6522 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6523 return;
6524
6525 frm = (uint8_t *)(wh + 1);
6526 efrm = mtod(m, uint8_t *) + m->m_len;
6527
6528 frm += 12; /* skip tstamp, bintval and capinfo fields */
6529 while (frm < efrm) {
6530 if (*frm == IEEE80211_ELEMID_DSPARMS)
6531 #if IEEE80211_CHAN_MAX < 255
6532 if (frm[2] <= IEEE80211_CHAN_MAX)
6533 #endif
6534 ic->ic_curchan = &ic->ic_channels[frm[2]];
6535
6536 frm += frm[1] + 2;
6537 }
6538 }
6539
6540 #ifdef notyetMODULE
6541
6542 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6543
6544 #ifdef _MODULE
6545 #include "ioconf.c"
6546 #endif
6547
6548 static int
6549 if_iwn_modcmd(modcmd_t cmd, void *data)
6550 {
6551 int error = 0;
6552
6553 switch (cmd) {
6554 case MODULE_CMD_INIT:
6555 #ifdef _MODULE
6556 error = config_init_component(cfdriver_ioconf_if_iwn,
6557 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6558 #endif
6559 return error;
6560 case MODULE_CMD_FINI:
6561 #ifdef _MODULE
6562 error = config_fini_component(cfdriver_ioconf_if_iwn,
6563 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6564 #endif
6565 return error;
6566 case MODULE_CMD_AUTOUNLOAD:
6567 #ifdef _MODULE
6568 /* XXX This is not optional! */
6569 #endif
6570 return error;
6571 default:
6572 return ENOTTY;
6573 }
6574 }
6575 #endif
6576