Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.74
      1 /*	$NetBSD: if_iwn.c,v 1.74 2014/11/09 14:40:54 nonaka Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.74 2014/11/09 14:40:54 nonaka Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 /*
    122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    123  */
    124 static const struct ieee80211_rateset iwn_rateset_11a =
    125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    126 
    127 static const struct ieee80211_rateset iwn_rateset_11b =
    128 	{ 4, { 2, 4, 11, 22 } };
    129 
    130 static const struct ieee80211_rateset iwn_rateset_11g =
    131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    132 
    133 static int	iwn_match(device_t , struct cfdata *, void *);
    134 static void	iwn_attach(device_t , device_t , void *);
    135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    137 static void	iwn_radiotap_attach(struct iwn_softc *);
    138 static int	iwn_detach(device_t , int);
    139 #if 0
    140 static void	iwn_power(int, void *);
    141 #endif
    142 static bool	iwn_resume(device_t, const pmf_qual_t *);
    143 static int	iwn_nic_lock(struct iwn_softc *);
    144 static int	iwn_eeprom_lock(struct iwn_softc *);
    145 static int	iwn_init_otprom(struct iwn_softc *);
    146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    148 		    void **, bus_size_t, bus_size_t);
    149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    150 static int	iwn_alloc_sched(struct iwn_softc *);
    151 static void	iwn_free_sched(struct iwn_softc *);
    152 static int	iwn_alloc_kw(struct iwn_softc *);
    153 static void	iwn_free_kw(struct iwn_softc *);
    154 static int	iwn_alloc_ict(struct iwn_softc *);
    155 static void	iwn_free_ict(struct iwn_softc *);
    156 static int	iwn_alloc_fwmem(struct iwn_softc *);
    157 static void	iwn_free_fwmem(struct iwn_softc *);
    158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    162 		    int);
    163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    165 static void	iwn5000_ict_reset(struct iwn_softc *);
    166 static int	iwn_read_eeprom(struct iwn_softc *);
    167 static void	iwn4965_read_eeprom(struct iwn_softc *);
    168 
    169 #ifdef IWN_DEBUG
    170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    171 #endif
    172 static void	iwn5000_read_eeprom(struct iwn_softc *);
    173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    176 static void	iwn_newassoc(struct ieee80211_node *, int);
    177 static int	iwn_media_change(struct ifnet *);
    178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    179 static void	iwn_iter_func(void *, struct ieee80211_node *);
    180 static void	iwn_calib_timeout(void *);
    181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 #ifndef IEEE80211_NO_HT
    186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 #endif
    189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    192 		    struct iwn_rx_data *);
    193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    194 		    struct iwn_rx_data *);
    195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    196 		    struct iwn_rx_data *);
    197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    198 		    uint8_t);
    199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    200 static void	iwn_notif_intr(struct iwn_softc *);
    201 static void	iwn_wakeup_intr(struct iwn_softc *);
    202 static void	iwn_fatal_intr(struct iwn_softc *);
    203 static int	iwn_intr(void *);
    204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    205 		    uint16_t);
    206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    207 		    uint16_t);
    208 #ifdef notyet
    209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    210 #endif
    211 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    212 		    struct ieee80211_node *, int);
    213 static void	iwn_start(struct ifnet *);
    214 static void	iwn_watchdog(struct ifnet *);
    215 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    216 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    217 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    218 		    int);
    219 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    220 		    int);
    221 static int	iwn_set_link_quality(struct iwn_softc *,
    222 		    struct ieee80211_node *);
    223 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    225 static int	iwn_set_critical_temp(struct iwn_softc *);
    226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    228 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    229 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    230 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    231 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    232 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    233 static int	iwn4965_get_temperature(struct iwn_softc *);
    234 static int	iwn5000_get_temperature(struct iwn_softc *);
    235 static int	iwn_init_sensitivity(struct iwn_softc *);
    236 static void	iwn_collect_noise(struct iwn_softc *,
    237 		    const struct iwn_rx_general_stats *);
    238 static int	iwn4965_init_gains(struct iwn_softc *);
    239 static int	iwn5000_init_gains(struct iwn_softc *);
    240 static int	iwn4965_set_gains(struct iwn_softc *);
    241 static int	iwn5000_set_gains(struct iwn_softc *);
    242 static void	iwn_tune_sensitivity(struct iwn_softc *,
    243 		    const struct iwn_rx_stats *);
    244 static int	iwn_send_sensitivity(struct iwn_softc *);
    245 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    246 static int	iwn5000_runtime_calib(struct iwn_softc *);
    247 
    248 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    249 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    250 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    251 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    252 
    253 static int	iwn_config(struct iwn_softc *);
    254 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    255 		    uint8_t);
    256 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    257 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    258 static int	iwn_scan(struct iwn_softc *, uint16_t);
    259 static int	iwn_auth(struct iwn_softc *);
    260 static int	iwn_run(struct iwn_softc *);
    261 #ifdef IWN_HWCRYPTO
    262 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    263 		    struct ieee80211_key *);
    264 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    265 		    struct ieee80211_key *);
    266 #endif
    267 static int	iwn_wme_update(struct ieee80211com *);
    268 #ifndef IEEE80211_NO_HT
    269 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    270 		    struct ieee80211_node *, uint8_t);
    271 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    272 		    struct ieee80211_node *, uint8_t);
    273 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    274 		    struct ieee80211_node *, uint8_t);
    275 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    276 		    struct ieee80211_node *, uint8_t);
    277 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    278 		    struct ieee80211_node *, uint8_t, uint16_t);
    279 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    280 		    uint8_t, uint16_t);
    281 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    282 		    struct ieee80211_node *, uint8_t, uint16_t);
    283 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    284 		    uint8_t, uint16_t);
    285 #endif
    286 static int	iwn5000_query_calibration(struct iwn_softc *);
    287 static int	iwn5000_send_calibration(struct iwn_softc *);
    288 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    289 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    290 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    291 static int	iwn4965_post_alive(struct iwn_softc *);
    292 static int	iwn5000_post_alive(struct iwn_softc *);
    293 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    294 		    int);
    295 static int	iwn4965_load_firmware(struct iwn_softc *);
    296 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    297 		    const uint8_t *, int);
    298 static int	iwn5000_load_firmware(struct iwn_softc *);
    299 static int	iwn_read_firmware_leg(struct iwn_softc *,
    300 		    struct iwn_fw_info *);
    301 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    302 		    struct iwn_fw_info *, uint16_t);
    303 static int	iwn_read_firmware(struct iwn_softc *);
    304 static int	iwn_clock_wait(struct iwn_softc *);
    305 static int	iwn_apm_init(struct iwn_softc *);
    306 static void	iwn_apm_stop_master(struct iwn_softc *);
    307 static void	iwn_apm_stop(struct iwn_softc *);
    308 static int	iwn4965_nic_config(struct iwn_softc *);
    309 static int	iwn5000_nic_config(struct iwn_softc *);
    310 static int	iwn_hw_prepare(struct iwn_softc *);
    311 static int	iwn_hw_init(struct iwn_softc *);
    312 static void	iwn_hw_stop(struct iwn_softc *);
    313 static int	iwn_init(struct ifnet *);
    314 static void	iwn_stop(struct ifnet *, int);
    315 
    316 /* XXX MCLGETI alternative */
    317 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    318 		    struct ifnet *, u_int);
    319 #ifdef IWN_USE_RBUF
    320 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    321 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    322 static int	iwn_alloc_rpool(struct iwn_softc *);
    323 static void	iwn_free_rpool(struct iwn_softc *);
    324 #endif
    325 
    326 /* XXX needed by iwn_scan */
    327 static u_int8_t	*ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
    328 static u_int8_t	*ieee80211_add_rates(u_int8_t *,
    329     const struct ieee80211_rateset *);
    330 static u_int8_t	*ieee80211_add_xrates(u_int8_t *,
    331     const struct ieee80211_rateset *);
    332 
    333 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *);
    334 
    335 #ifdef IWN_DEBUG
    336 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    337 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    338 int iwn_debug = 0;
    339 #else
    340 #define DPRINTF(x)
    341 #define DPRINTFN(n, x)
    342 #endif
    343 
    344 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    345 	iwn_detach, NULL);
    346 
    347 static int
    348 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    349 {
    350 	struct pci_attach_args *pa = aux;
    351 	size_t i;
    352 
    353 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    354 		return 0;
    355 
    356 	for (i = 0; i < __arraycount(iwn_devices); i++)
    357 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    358 			return 1;
    359 
    360 	return 0;
    361 }
    362 
    363 static void
    364 iwn_attach(device_t parent __unused, device_t self, void *aux)
    365 {
    366 	struct iwn_softc *sc = device_private(self);
    367 	struct ieee80211com *ic = &sc->sc_ic;
    368 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    369 	struct pci_attach_args *pa = aux;
    370 	const char *intrstr;
    371 	pci_intr_handle_t ih;
    372 	pcireg_t memtype, reg;
    373 	int i, error;
    374 	char intrbuf[PCI_INTRSTR_LEN];
    375 
    376 	sc->sc_dev = self;
    377 	sc->sc_pct = pa->pa_pc;
    378 	sc->sc_pcitag = pa->pa_tag;
    379 	sc->sc_dmat = pa->pa_dmat;
    380 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    381 
    382 	callout_init(&sc->calib_to, 0);
    383 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    384 
    385 	pci_aprint_devinfo(pa, NULL);
    386 
    387 	/*
    388 	 * Get the offset of the PCI Express Capability Structure in PCI
    389 	 * Configuration Space.
    390 	 */
    391 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    392 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    393 	if (error == 0) {
    394 		aprint_error_dev(self,
    395 		    "PCIe capability structure not found!\n");
    396 		return;
    397 	}
    398 
    399 	/* Clear device-specific "PCI retry timeout" register (41h). */
    400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    401 	if (reg & 0xff00)
    402 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    403 
    404 	/* Enable bus-mastering and hardware bug workaround. */
    405 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    406 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    407 	reg |= PCI_COMMAND_MASTER_ENABLE;
    408 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    409 		DPRINTF(("PCIe INTx Disable set\n"));
    410 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    411 	}
    412 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    413 
    414 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    415 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    416 	    &sc->sc_sh, NULL, &sc->sc_sz);
    417 	if (error != 0) {
    418 		aprint_error_dev(self, "can't map mem space\n");
    419 		return;
    420 	}
    421 
    422 	/* Install interrupt handler. */
    423 	if (pci_intr_map(pa, &ih) != 0) {
    424 		aprint_error_dev(self, "can't map interrupt\n");
    425 		return;
    426 	}
    427 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    428 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    429 	if (sc->sc_ih == NULL) {
    430 		aprint_error_dev(self, "can't establish interrupt");
    431 		if (intrstr != NULL)
    432 			aprint_error(" at %s", intrstr);
    433 		aprint_error("\n");
    434 		return;
    435 	}
    436 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    437 
    438 	/* Read hardware revision and attach. */
    439 	sc->hw_type =
    440 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    441 	      >> IWN_HW_REV_TYPE_SHIFT;
    442 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    443 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    444 	else
    445 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    446 	if (error != 0) {
    447 		aprint_error_dev(self, "could not attach device\n");
    448 		return;
    449 	}
    450 
    451 	if ((error = iwn_hw_prepare(sc)) != 0) {
    452 		aprint_error_dev(self, "hardware not ready\n");
    453 		return;
    454 	}
    455 
    456 	/* Read MAC address, channels, etc from EEPROM. */
    457 	if ((error = iwn_read_eeprom(sc)) != 0) {
    458 		aprint_error_dev(self, "could not read EEPROM\n");
    459 		return;
    460 	}
    461 
    462 	/* Allocate DMA memory for firmware transfers. */
    463 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    464 		aprint_error_dev(self,
    465 		    "could not allocate memory for firmware\n");
    466 		return;
    467 	}
    468 
    469 	/* Allocate "Keep Warm" page. */
    470 	if ((error = iwn_alloc_kw(sc)) != 0) {
    471 		aprint_error_dev(self, "could not allocate keep warm page\n");
    472 		goto fail1;
    473 	}
    474 
    475 	/* Allocate ICT table for 5000 Series. */
    476 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    477 	    (error = iwn_alloc_ict(sc)) != 0) {
    478 		aprint_error_dev(self, "could not allocate ICT table\n");
    479 		goto fail2;
    480 	}
    481 
    482 	/* Allocate TX scheduler "rings". */
    483 	if ((error = iwn_alloc_sched(sc)) != 0) {
    484 		aprint_error_dev(self,
    485 		    "could not allocate TX scheduler rings\n");
    486 		goto fail3;
    487 	}
    488 
    489 #ifdef IWN_USE_RBUF
    490 	/* Allocate RX buffers. */
    491 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    492 		aprint_error_dev(self, "could not allocate RX buffers\n");
    493 		goto fail3;
    494 	}
    495 #endif
    496 
    497 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    498 	for (i = 0; i < sc->ntxqs; i++) {
    499 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    500 			aprint_error_dev(self,
    501 			    "could not allocate TX ring %d\n", i);
    502 			goto fail4;
    503 		}
    504 	}
    505 
    506 	/* Allocate RX ring. */
    507 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    508 		aprint_error_dev(self, "could not allocate RX ring\n");
    509 		goto fail4;
    510 	}
    511 
    512 	/* Clear pending interrupts. */
    513 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    514 
    515 	/* Count the number of available chains. */
    516 	sc->ntxchains =
    517 	    ((sc->txchainmask >> 2) & 1) +
    518 	    ((sc->txchainmask >> 1) & 1) +
    519 	    ((sc->txchainmask >> 0) & 1);
    520 	sc->nrxchains =
    521 	    ((sc->rxchainmask >> 2) & 1) +
    522 	    ((sc->rxchainmask >> 1) & 1) +
    523 	    ((sc->rxchainmask >> 0) & 1);
    524 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    525 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    526 	    ether_sprintf(ic->ic_myaddr));
    527 
    528 	ic->ic_ifp = ifp;
    529 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    530 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    531 	ic->ic_state = IEEE80211_S_INIT;
    532 
    533 	/* Set device capabilities. */
    534 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    535 	 * and IEEE80211_C_PMGT too. */
    536 	ic->ic_caps =
    537 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    538 	    IEEE80211_C_WPA |		/* 802.11i */
    539 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    540 	    IEEE80211_C_TXPMGT |	/* tx power management */
    541 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    542 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    543 	    IEEE80211_C_WME;		/* 802.11e */
    544 
    545 #ifndef IEEE80211_NO_HT
    546 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    547 		/* Set HT capabilities. */
    548 		ic->ic_htcaps =
    549 #if IWN_RBUF_SIZE == 8192
    550 		    IEEE80211_HTCAP_AMSDU7935 |
    551 #endif
    552 		    IEEE80211_HTCAP_CBW20_40 |
    553 		    IEEE80211_HTCAP_SGI20 |
    554 		    IEEE80211_HTCAP_SGI40;
    555 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    556 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    557 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    558 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    559 		else
    560 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    561 	}
    562 #endif	/* !IEEE80211_NO_HT */
    563 
    564 	/* Set supported legacy rates. */
    565 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    566 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    567 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    568 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    569 	}
    570 #ifndef IEEE80211_NO_HT
    571 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    572 		/* Set supported HT rates. */
    573 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    574 		if (sc->nrxchains > 1)
    575 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    576 		if (sc->nrxchains > 2)
    577 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    578 	}
    579 #endif
    580 
    581 	/* IBSS channel undefined for now. */
    582 	ic->ic_ibss_chan = &ic->ic_channels[0];
    583 
    584 	ifp->if_softc = sc;
    585 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    586 	ifp->if_init = iwn_init;
    587 	ifp->if_ioctl = iwn_ioctl;
    588 	ifp->if_start = iwn_start;
    589 	ifp->if_stop = iwn_stop;
    590 	ifp->if_watchdog = iwn_watchdog;
    591 	IFQ_SET_READY(&ifp->if_snd);
    592 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    593 
    594 	if_attach(ifp);
    595 	ieee80211_ifattach(ic);
    596 	ic->ic_node_alloc = iwn_node_alloc;
    597 	ic->ic_newassoc = iwn_newassoc;
    598 #ifdef IWN_HWCRYPTO
    599 	ic->ic_crypto.cs_key_set = iwn_set_key;
    600 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    601 #endif
    602 	ic->ic_wme.wme_update = iwn_wme_update;
    603 #ifndef IEEE80211_NO_HT
    604 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    605 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    606 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    607 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    608 #endif
    609 
    610 	/* Override 802.11 state transition machine. */
    611 	sc->sc_newstate = ic->ic_newstate;
    612 	ic->ic_newstate = iwn_newstate;
    613 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    614 
    615 	sc->amrr.amrr_min_success_threshold =  1;
    616 	sc->amrr.amrr_max_success_threshold = 15;
    617 
    618 	iwn_radiotap_attach(sc);
    619 
    620 	/*
    621 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    622 	 * callout_init and callout_setfunc, above.
    623 	*/
    624 
    625 	if (pmf_device_register(self, NULL, iwn_resume))
    626 		pmf_class_network_register(self, ifp);
    627 	else
    628 		aprint_error_dev(self, "couldn't establish power handler\n");
    629 
    630 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    631 	ieee80211_announce(ic);
    632 
    633 	return;
    634 
    635 	/* Free allocated memory if something failed during attachment. */
    636 fail4:	while (--i >= 0)
    637 		iwn_free_tx_ring(sc, &sc->txq[i]);
    638 #ifdef IWN_USE_RBUF
    639 	iwn_free_rpool(sc);
    640 #endif
    641 	iwn_free_sched(sc);
    642 fail3:	if (sc->ict != NULL)
    643 		iwn_free_ict(sc);
    644 fail2:	iwn_free_kw(sc);
    645 fail1:	iwn_free_fwmem(sc);
    646 }
    647 
    648 int
    649 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    650 {
    651 	struct iwn_ops *ops = &sc->ops;
    652 
    653 	ops->load_firmware = iwn4965_load_firmware;
    654 	ops->read_eeprom = iwn4965_read_eeprom;
    655 	ops->post_alive = iwn4965_post_alive;
    656 	ops->nic_config = iwn4965_nic_config;
    657 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    658 	ops->update_sched = iwn4965_update_sched;
    659 	ops->get_temperature = iwn4965_get_temperature;
    660 	ops->get_rssi = iwn4965_get_rssi;
    661 	ops->set_txpower = iwn4965_set_txpower;
    662 	ops->init_gains = iwn4965_init_gains;
    663 	ops->set_gains = iwn4965_set_gains;
    664 	ops->add_node = iwn4965_add_node;
    665 	ops->tx_done = iwn4965_tx_done;
    666 #ifndef IEEE80211_NO_HT
    667 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    668 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    669 #endif
    670 	sc->ntxqs = IWN4965_NTXQUEUES;
    671 	sc->ndmachnls = IWN4965_NDMACHNLS;
    672 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    673 	sc->rxonsz = IWN4965_RXONSZ;
    674 	sc->schedsz = IWN4965_SCHEDSZ;
    675 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    676 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    677 	sc->fwsz = IWN4965_FWSZ;
    678 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    679 	sc->limits = &iwn4965_sensitivity_limits;
    680 	sc->fwname = "iwlwifi-4965-2.ucode";
    681 	/* Override chains masks, ROM is known to be broken. */
    682 	sc->txchainmask = IWN_ANT_AB;
    683 	sc->rxchainmask = IWN_ANT_ABC;
    684 
    685 	return 0;
    686 }
    687 
    688 int
    689 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    690 {
    691 	struct iwn_ops *ops = &sc->ops;
    692 
    693 	ops->load_firmware = iwn5000_load_firmware;
    694 	ops->read_eeprom = iwn5000_read_eeprom;
    695 	ops->post_alive = iwn5000_post_alive;
    696 	ops->nic_config = iwn5000_nic_config;
    697 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    698 	ops->update_sched = iwn5000_update_sched;
    699 	ops->get_temperature = iwn5000_get_temperature;
    700 	ops->get_rssi = iwn5000_get_rssi;
    701 	ops->set_txpower = iwn5000_set_txpower;
    702 	ops->init_gains = iwn5000_init_gains;
    703 	ops->set_gains = iwn5000_set_gains;
    704 	ops->add_node = iwn5000_add_node;
    705 	ops->tx_done = iwn5000_tx_done;
    706 #ifndef IEEE80211_NO_HT
    707 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    708 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    709 #endif
    710 	sc->ntxqs = IWN5000_NTXQUEUES;
    711 	sc->ndmachnls = IWN5000_NDMACHNLS;
    712 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    713 	sc->rxonsz = IWN5000_RXONSZ;
    714 	sc->schedsz = IWN5000_SCHEDSZ;
    715 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    716 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    717 	sc->fwsz = IWN5000_FWSZ;
    718 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    719 
    720 	switch (sc->hw_type) {
    721 	case IWN_HW_REV_TYPE_5100:
    722 		sc->limits = &iwn5000_sensitivity_limits;
    723 		sc->fwname = "iwlwifi-5000-2.ucode";
    724 		/* Override chains masks, ROM is known to be broken. */
    725 		sc->txchainmask = IWN_ANT_B;
    726 		sc->rxchainmask = IWN_ANT_AB;
    727 		break;
    728 	case IWN_HW_REV_TYPE_5150:
    729 		sc->limits = &iwn5150_sensitivity_limits;
    730 		sc->fwname = "iwlwifi-5150-2.ucode";
    731 		break;
    732 	case IWN_HW_REV_TYPE_5300:
    733 	case IWN_HW_REV_TYPE_5350:
    734 		sc->limits = &iwn5000_sensitivity_limits;
    735 		sc->fwname = "iwlwifi-5000-2.ucode";
    736 		break;
    737 	case IWN_HW_REV_TYPE_1000:
    738 		sc->limits = &iwn1000_sensitivity_limits;
    739 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    740 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    741 			sc->fwname = "iwlwifi-100-5.ucode";
    742 		else
    743 			sc->fwname = "iwlwifi-1000-3.ucode";
    744 		break;
    745 	case IWN_HW_REV_TYPE_6000:
    746 		sc->limits = &iwn6000_sensitivity_limits;
    747 		sc->fwname = "iwlwifi-6000-4.ucode";
    748 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    749 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    750 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    751 			/* Override chains masks, ROM is known to be broken. */
    752 			sc->txchainmask = IWN_ANT_BC;
    753 			sc->rxchainmask = IWN_ANT_BC;
    754 		}
    755 		break;
    756 	case IWN_HW_REV_TYPE_6050:
    757 		sc->limits = &iwn6000_sensitivity_limits;
    758 		sc->fwname = "iwlwifi-6050-5.ucode";
    759 		break;
    760 	case IWN_HW_REV_TYPE_6005:
    761 		sc->limits = &iwn6000_sensitivity_limits;
    762 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    763 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    764 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    765 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    767 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    768 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    769 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    770 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    771 		}
    772 		else
    773 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    774 		break;
    775 	case IWN_HW_REV_TYPE_2030:
    776 		sc->limits = &iwn2000_sensitivity_limits;
    777 		sc->fwname = "iwlwifi-2030-6.ucode";
    778 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    779 		break;
    780 	case IWN_HW_REV_TYPE_2000:
    781 		sc->limits = &iwn2000_sensitivity_limits;
    782 		sc->fwname = "iwlwifi-2000-6.ucode";
    783 		break;
    784 	case IWN_HW_REV_TYPE_135:
    785 		sc->limits = &iwn2000_sensitivity_limits;
    786 		sc->fwname = "iwlwifi-135-6.ucode";
    787 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    788 		break;
    789 	case IWN_HW_REV_TYPE_105:
    790 		sc->limits = &iwn2000_sensitivity_limits;
    791 		sc->fwname = "iwlwifi-105-6.ucode";
    792 		break;
    793 	default:
    794 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    795 		return ENOTSUP;
    796 	}
    797 	return 0;
    798 }
    799 
    800 /*
    801  * Attach the interface to 802.11 radiotap.
    802  */
    803 static void
    804 iwn_radiotap_attach(struct iwn_softc *sc)
    805 {
    806 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    807 
    808 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    809 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    810 	    &sc->sc_drvbpf);
    811 
    812 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    813 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    814 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    815 
    816 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    817 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    818 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    819 }
    820 
    821 static int
    822 iwn_detach(device_t self, int flags __unused)
    823 {
    824 	struct iwn_softc *sc = device_private(self);
    825 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    826 	int qid;
    827 
    828 	callout_stop(&sc->calib_to);
    829 
    830 	/* Uninstall interrupt handler. */
    831 	if (sc->sc_ih != NULL)
    832 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    833 
    834 	/* Free DMA resources. */
    835 	iwn_free_rx_ring(sc, &sc->rxq);
    836 	for (qid = 0; qid < sc->ntxqs; qid++)
    837 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    838 #ifdef IWN_USE_RBUF
    839 	iwn_free_rpool(sc);
    840 #endif
    841 	iwn_free_sched(sc);
    842 	iwn_free_kw(sc);
    843 	if (sc->ict != NULL)
    844 		iwn_free_ict(sc);
    845 	iwn_free_fwmem(sc);
    846 
    847 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    848 
    849 	ieee80211_ifdetach(&sc->sc_ic);
    850 	if_detach(ifp);
    851 
    852 	return 0;
    853 }
    854 
    855 #if 0
    856 /*
    857  * XXX Investigate if clearing the PCI retry timeout could eliminate
    858  * the repeated scan calls.  Also the calls to if_init and if_start
    859  * are similar to the effect of adding the call to ifioctl_common .
    860  */
    861 static void
    862 iwn_power(int why, void *arg)
    863 {
    864 	struct iwn_softc *sc = arg;
    865 	struct ifnet *ifp;
    866 	pcireg_t reg;
    867 	int s;
    868 
    869 	if (why != PWR_RESUME)
    870 		return;
    871 
    872 	/* Clear device-specific "PCI retry timeout" register (41h). */
    873 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    874 	if (reg & 0xff00)
    875 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    876 
    877 	s = splnet();
    878 	ifp = &sc->sc_ic.ic_if;
    879 	if (ifp->if_flags & IFF_UP) {
    880 		ifp->if_init(ifp);
    881 		if (ifp->if_flags & IFF_RUNNING)
    882 			ifp->if_start(ifp);
    883 	}
    884 	splx(s);
    885 }
    886 #endif
    887 
    888 static bool
    889 iwn_resume(device_t dv, const pmf_qual_t *qual)
    890 {
    891 	return true;
    892 }
    893 
    894 static int
    895 iwn_nic_lock(struct iwn_softc *sc)
    896 {
    897 	int ntries;
    898 
    899 	/* Request exclusive access to NIC. */
    900 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    901 
    902 	/* Spin until we actually get the lock. */
    903 	for (ntries = 0; ntries < 1000; ntries++) {
    904 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    905 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    906 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    907 			return 0;
    908 		DELAY(10);
    909 	}
    910 	return ETIMEDOUT;
    911 }
    912 
    913 static __inline void
    914 iwn_nic_unlock(struct iwn_softc *sc)
    915 {
    916 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    917 }
    918 
    919 static __inline uint32_t
    920 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    921 {
    922 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    923 	IWN_BARRIER_READ_WRITE(sc);
    924 	return IWN_READ(sc, IWN_PRPH_RDATA);
    925 }
    926 
    927 static __inline void
    928 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    929 {
    930 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    931 	IWN_BARRIER_WRITE(sc);
    932 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    933 }
    934 
    935 static __inline void
    936 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    937 {
    938 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    939 }
    940 
    941 static __inline void
    942 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    943 {
    944 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    945 }
    946 
    947 static __inline void
    948 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    949     const uint32_t *data, int count)
    950 {
    951 	for (; count > 0; count--, data++, addr += 4)
    952 		iwn_prph_write(sc, addr, *data);
    953 }
    954 
    955 static __inline uint32_t
    956 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    957 {
    958 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    959 	IWN_BARRIER_READ_WRITE(sc);
    960 	return IWN_READ(sc, IWN_MEM_RDATA);
    961 }
    962 
    963 static __inline void
    964 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    965 {
    966 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    967 	IWN_BARRIER_WRITE(sc);
    968 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    969 }
    970 
    971 #ifndef IEEE80211_NO_HT
    972 static __inline void
    973 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    974 {
    975 	uint32_t tmp;
    976 
    977 	tmp = iwn_mem_read(sc, addr & ~3);
    978 	if (addr & 3)
    979 		tmp = (tmp & 0x0000ffff) | data << 16;
    980 	else
    981 		tmp = (tmp & 0xffff0000) | data;
    982 	iwn_mem_write(sc, addr & ~3, tmp);
    983 }
    984 #endif
    985 
    986 static __inline void
    987 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    988     int count)
    989 {
    990 	for (; count > 0; count--, addr += 4)
    991 		*data++ = iwn_mem_read(sc, addr);
    992 }
    993 
    994 static __inline void
    995 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    996     int count)
    997 {
    998 	for (; count > 0; count--, addr += 4)
    999 		iwn_mem_write(sc, addr, val);
   1000 }
   1001 
   1002 static int
   1003 iwn_eeprom_lock(struct iwn_softc *sc)
   1004 {
   1005 	int i, ntries;
   1006 
   1007 	for (i = 0; i < 100; i++) {
   1008 		/* Request exclusive access to EEPROM. */
   1009 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1010 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1011 
   1012 		/* Spin until we actually get the lock. */
   1013 		for (ntries = 0; ntries < 100; ntries++) {
   1014 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1015 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1016 				return 0;
   1017 			DELAY(10);
   1018 		}
   1019 	}
   1020 	return ETIMEDOUT;
   1021 }
   1022 
   1023 static __inline void
   1024 iwn_eeprom_unlock(struct iwn_softc *sc)
   1025 {
   1026 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1027 }
   1028 
   1029 /*
   1030  * Initialize access by host to One Time Programmable ROM.
   1031  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1032  */
   1033 static int
   1034 iwn_init_otprom(struct iwn_softc *sc)
   1035 {
   1036 	uint16_t prev = 0, base, next;
   1037 	int count, error;
   1038 
   1039 	/* Wait for clock stabilization before accessing prph. */
   1040 	if ((error = iwn_clock_wait(sc)) != 0)
   1041 		return error;
   1042 
   1043 	if ((error = iwn_nic_lock(sc)) != 0)
   1044 		return error;
   1045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1046 	DELAY(5);
   1047 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1048 	iwn_nic_unlock(sc);
   1049 
   1050 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1051 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1052 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1053 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1054 	}
   1055 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1056 	/* Clear ECC status. */
   1057 	IWN_SETBITS(sc, IWN_OTP_GP,
   1058 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1059 
   1060 	/*
   1061 	 * Find the block before last block (contains the EEPROM image)
   1062 	 * for HW without OTP shadow RAM.
   1063 	 */
   1064 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1065 		/* Switch to absolute addressing mode. */
   1066 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1067 		base = 0;
   1068 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1069 			error = iwn_read_prom_data(sc, base, &next, 2);
   1070 			if (error != 0)
   1071 				return error;
   1072 			if (next == 0)	/* End of linked-list. */
   1073 				break;
   1074 			prev = base;
   1075 			base = le16toh(next);
   1076 		}
   1077 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1078 			return EIO;
   1079 		/* Skip "next" word. */
   1080 		sc->prom_base = prev + 1;
   1081 	}
   1082 	return 0;
   1083 }
   1084 
   1085 static int
   1086 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1087 {
   1088 	uint8_t *out = data;
   1089 	uint32_t val, tmp;
   1090 	int ntries;
   1091 
   1092 	addr += sc->prom_base;
   1093 	for (; count > 0; count -= 2, addr++) {
   1094 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1095 		for (ntries = 0; ntries < 10; ntries++) {
   1096 			val = IWN_READ(sc, IWN_EEPROM);
   1097 			if (val & IWN_EEPROM_READ_VALID)
   1098 				break;
   1099 			DELAY(5);
   1100 		}
   1101 		if (ntries == 10) {
   1102 			aprint_error_dev(sc->sc_dev,
   1103 			    "timeout reading ROM at 0x%x\n", addr);
   1104 			return ETIMEDOUT;
   1105 		}
   1106 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1107 			/* OTPROM, check for ECC errors. */
   1108 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1109 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1110 				aprint_error_dev(sc->sc_dev,
   1111 				    "OTPROM ECC error at 0x%x\n", addr);
   1112 				return EIO;
   1113 			}
   1114 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1115 				/* Correctable ECC error, clear bit. */
   1116 				IWN_SETBITS(sc, IWN_OTP_GP,
   1117 				    IWN_OTP_GP_ECC_CORR_STTS);
   1118 			}
   1119 		}
   1120 		*out++ = val >> 16;
   1121 		if (count > 1)
   1122 			*out++ = val >> 24;
   1123 	}
   1124 	return 0;
   1125 }
   1126 
   1127 static int
   1128 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1129     bus_size_t size, bus_size_t alignment)
   1130 {
   1131 	int nsegs, error;
   1132 
   1133 	dma->tag = tag;
   1134 	dma->size = size;
   1135 
   1136 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1137 	    &dma->map);
   1138 	if (error != 0)
   1139 		goto fail;
   1140 
   1141 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1143 	if (error != 0)
   1144 		goto fail;
   1145 
   1146 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1147 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1148 	if (error != 0)
   1149 		goto fail;
   1150 
   1151 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1152 	    BUS_DMA_NOWAIT);
   1153 	if (error != 0)
   1154 		goto fail;
   1155 
   1156 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1157 	memset(dma->vaddr, 0, size);
   1158 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1159 
   1160 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1161 	if (kvap != NULL)
   1162 		*kvap = dma->vaddr;
   1163 
   1164 	return 0;
   1165 
   1166 fail:	iwn_dma_contig_free(dma);
   1167 	return error;
   1168 }
   1169 
   1170 static void
   1171 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1172 {
   1173 	if (dma->map != NULL) {
   1174 		if (dma->vaddr != NULL) {
   1175 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1176 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1177 			bus_dmamap_unload(dma->tag, dma->map);
   1178 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1179 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1180 			dma->vaddr = NULL;
   1181 		}
   1182 		bus_dmamap_destroy(dma->tag, dma->map);
   1183 		dma->map = NULL;
   1184 	}
   1185 }
   1186 
   1187 static int
   1188 iwn_alloc_sched(struct iwn_softc *sc)
   1189 {
   1190 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1191 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1192 	    (void **)&sc->sched, sc->schedsz, 1024);
   1193 }
   1194 
   1195 static void
   1196 iwn_free_sched(struct iwn_softc *sc)
   1197 {
   1198 	iwn_dma_contig_free(&sc->sched_dma);
   1199 }
   1200 
   1201 static int
   1202 iwn_alloc_kw(struct iwn_softc *sc)
   1203 {
   1204 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1205 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1206 	    4096);
   1207 }
   1208 
   1209 static void
   1210 iwn_free_kw(struct iwn_softc *sc)
   1211 {
   1212 	iwn_dma_contig_free(&sc->kw_dma);
   1213 }
   1214 
   1215 static int
   1216 iwn_alloc_ict(struct iwn_softc *sc)
   1217 {
   1218 	/* ICT table must be aligned on a 4KB boundary. */
   1219 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1220 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1221 }
   1222 
   1223 static void
   1224 iwn_free_ict(struct iwn_softc *sc)
   1225 {
   1226 	iwn_dma_contig_free(&sc->ict_dma);
   1227 }
   1228 
   1229 static int
   1230 iwn_alloc_fwmem(struct iwn_softc *sc)
   1231 {
   1232 	/* Must be aligned on a 16-byte boundary. */
   1233 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1234 	    sc->fwsz, 16);
   1235 }
   1236 
   1237 static void
   1238 iwn_free_fwmem(struct iwn_softc *sc)
   1239 {
   1240 	iwn_dma_contig_free(&sc->fw_dma);
   1241 }
   1242 
   1243 static int
   1244 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1245 {
   1246 	bus_size_t size;
   1247 	int i, error;
   1248 
   1249 	ring->cur = 0;
   1250 
   1251 	/* Allocate RX descriptors (256-byte aligned). */
   1252 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1253 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1254 	    (void **)&ring->desc, size, 256);
   1255 	if (error != 0) {
   1256 		aprint_error_dev(sc->sc_dev,
   1257 		    "could not allocate RX ring DMA memory\n");
   1258 		goto fail;
   1259 	}
   1260 
   1261 	/* Allocate RX status area (16-byte aligned). */
   1262 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1263 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1264 	if (error != 0) {
   1265 		aprint_error_dev(sc->sc_dev,
   1266 		    "could not allocate RX status DMA memory\n");
   1267 		goto fail;
   1268 	}
   1269 
   1270 	/*
   1271 	 * Allocate and map RX buffers.
   1272 	 */
   1273 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1274 		struct iwn_rx_data *data = &ring->data[i];
   1275 
   1276 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1277 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1278 		    &data->map);
   1279 		if (error != 0) {
   1280 			aprint_error_dev(sc->sc_dev,
   1281 			    "could not create RX buf DMA map\n");
   1282 			goto fail;
   1283 		}
   1284 
   1285 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1286 		if (data->m == NULL) {
   1287 			aprint_error_dev(sc->sc_dev,
   1288 			    "could not allocate RX mbuf\n");
   1289 			error = ENOBUFS;
   1290 			goto fail;
   1291 		}
   1292 
   1293 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1294 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1295 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1296 		if (error != 0) {
   1297 			aprint_error_dev(sc->sc_dev,
   1298 			    "can't not map mbuf (error %d)\n", error);
   1299 			goto fail;
   1300 		}
   1301 
   1302 		/* Set physical address of RX buffer (256-byte aligned). */
   1303 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1304 	}
   1305 
   1306 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1307 	    BUS_DMASYNC_PREWRITE);
   1308 
   1309 	return 0;
   1310 
   1311 fail:	iwn_free_rx_ring(sc, ring);
   1312 	return error;
   1313 }
   1314 
   1315 static void
   1316 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1317 {
   1318 	int ntries;
   1319 
   1320 	if (iwn_nic_lock(sc) == 0) {
   1321 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1322 		for (ntries = 0; ntries < 1000; ntries++) {
   1323 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1324 			    IWN_FH_RX_STATUS_IDLE)
   1325 				break;
   1326 			DELAY(10);
   1327 		}
   1328 		iwn_nic_unlock(sc);
   1329 	}
   1330 	ring->cur = 0;
   1331 	sc->last_rx_valid = 0;
   1332 }
   1333 
   1334 static void
   1335 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1336 {
   1337 	int i;
   1338 
   1339 	iwn_dma_contig_free(&ring->desc_dma);
   1340 	iwn_dma_contig_free(&ring->stat_dma);
   1341 
   1342 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1343 		struct iwn_rx_data *data = &ring->data[i];
   1344 
   1345 		if (data->m != NULL) {
   1346 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1347 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1348 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1349 			m_freem(data->m);
   1350 		}
   1351 		if (data->map != NULL)
   1352 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1353 	}
   1354 }
   1355 
   1356 static int
   1357 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1358 {
   1359 	bus_addr_t paddr;
   1360 	bus_size_t size;
   1361 	int i, error;
   1362 
   1363 	ring->qid = qid;
   1364 	ring->queued = 0;
   1365 	ring->cur = 0;
   1366 
   1367 	/* Allocate TX descriptors (256-byte aligned). */
   1368 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1369 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1370 	    (void **)&ring->desc, size, 256);
   1371 	if (error != 0) {
   1372 		aprint_error_dev(sc->sc_dev,
   1373 		    "could not allocate TX ring DMA memory\n");
   1374 		goto fail;
   1375 	}
   1376 	/*
   1377 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1378 	 * to allocate commands space for other rings.
   1379 	 * XXX Do we really need to allocate descriptors for other rings?
   1380 	 */
   1381 	if (qid > 4)
   1382 		return 0;
   1383 
   1384 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1385 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1386 	    (void **)&ring->cmd, size, 4);
   1387 	if (error != 0) {
   1388 		aprint_error_dev(sc->sc_dev,
   1389 		    "could not allocate TX cmd DMA memory\n");
   1390 		goto fail;
   1391 	}
   1392 
   1393 	paddr = ring->cmd_dma.paddr;
   1394 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1395 		struct iwn_tx_data *data = &ring->data[i];
   1396 
   1397 		data->cmd_paddr = paddr;
   1398 		data->scratch_paddr = paddr + 12;
   1399 		paddr += sizeof (struct iwn_tx_cmd);
   1400 
   1401 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1402 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1403 		    &data->map);
   1404 		if (error != 0) {
   1405 			aprint_error_dev(sc->sc_dev,
   1406 			    "could not create TX buf DMA map\n");
   1407 			goto fail;
   1408 		}
   1409 	}
   1410 	return 0;
   1411 
   1412 fail:	iwn_free_tx_ring(sc, ring);
   1413 	return error;
   1414 }
   1415 
   1416 static void
   1417 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1418 {
   1419 	int i;
   1420 
   1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1422 		struct iwn_tx_data *data = &ring->data[i];
   1423 
   1424 		if (data->m != NULL) {
   1425 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1426 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1427 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1428 			m_freem(data->m);
   1429 			data->m = NULL;
   1430 		}
   1431 	}
   1432 	/* Clear TX descriptors. */
   1433 	memset(ring->desc, 0, ring->desc_dma.size);
   1434 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1435 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1436 	sc->qfullmsk &= ~(1 << ring->qid);
   1437 	ring->queued = 0;
   1438 	ring->cur = 0;
   1439 }
   1440 
   1441 static void
   1442 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1443 {
   1444 	int i;
   1445 
   1446 	iwn_dma_contig_free(&ring->desc_dma);
   1447 	iwn_dma_contig_free(&ring->cmd_dma);
   1448 
   1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1450 		struct iwn_tx_data *data = &ring->data[i];
   1451 
   1452 		if (data->m != NULL) {
   1453 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1454 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1455 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1456 			m_freem(data->m);
   1457 		}
   1458 		if (data->map != NULL)
   1459 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1460 	}
   1461 }
   1462 
   1463 static void
   1464 iwn5000_ict_reset(struct iwn_softc *sc)
   1465 {
   1466 	/* Disable interrupts. */
   1467 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1468 
   1469 	/* Reset ICT table. */
   1470 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1471 	sc->ict_cur = 0;
   1472 
   1473 	/* Set physical address of ICT table (4KB aligned). */
   1474 	DPRINTF(("enabling ICT\n"));
   1475 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1476 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1477 
   1478 	/* Enable periodic RX interrupt. */
   1479 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1480 	/* Switch to ICT interrupt mode in driver. */
   1481 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1482 
   1483 	/* Re-enable interrupts. */
   1484 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1485 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1486 }
   1487 
   1488 static int
   1489 iwn_read_eeprom(struct iwn_softc *sc)
   1490 {
   1491 	struct iwn_ops *ops = &sc->ops;
   1492 	struct ieee80211com *ic = &sc->sc_ic;
   1493 	uint16_t val;
   1494 	int error;
   1495 
   1496 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1497 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1498 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1499 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1500 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1501 	    "OTPROM" : "EEPROM"));
   1502 
   1503 	/* Adapter has to be powered on for EEPROM access to work. */
   1504 	if ((error = iwn_apm_init(sc)) != 0) {
   1505 		aprint_error_dev(sc->sc_dev,
   1506 		    "could not power ON adapter\n");
   1507 		return error;
   1508 	}
   1509 
   1510 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1511 		aprint_error_dev(sc->sc_dev,
   1512 		    "bad ROM signature\n");
   1513 		return EIO;
   1514 	}
   1515 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1516 		aprint_error_dev(sc->sc_dev,
   1517 		    "could not lock ROM (error=%d)\n", error);
   1518 		return error;
   1519 	}
   1520 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1521 		if ((error = iwn_init_otprom(sc)) != 0) {
   1522 			aprint_error_dev(sc->sc_dev,
   1523 			    "could not initialize OTPROM\n");
   1524 			return error;
   1525 		}
   1526 	}
   1527 
   1528 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1529 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1530 	/* Check if HT support is bonded out. */
   1531 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1532 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1533 
   1534 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1535 	sc->rfcfg = le16toh(val);
   1536 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1537 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1538 	if (sc->txchainmask == 0)
   1539 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1540 	if (sc->rxchainmask == 0)
   1541 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1542 
   1543 	/* Read MAC address. */
   1544 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1545 
   1546 	/* Read adapter-specific information from EEPROM. */
   1547 	ops->read_eeprom(sc);
   1548 
   1549 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1550 
   1551 	iwn_eeprom_unlock(sc);
   1552 	return 0;
   1553 }
   1554 
   1555 static void
   1556 iwn4965_read_eeprom(struct iwn_softc *sc)
   1557 {
   1558 	uint32_t addr;
   1559 	uint16_t val;
   1560 	int i;
   1561 
   1562 	/* Read regulatory domain (4 ASCII characters). */
   1563 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1564 
   1565 	/* Read the list of authorized channels (20MHz ones only). */
   1566 	for (i = 0; i < 5; i++) {
   1567 		addr = iwn4965_regulatory_bands[i];
   1568 		iwn_read_eeprom_channels(sc, i, addr);
   1569 	}
   1570 
   1571 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1572 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1573 	sc->maxpwr2GHz = val & 0xff;
   1574 	sc->maxpwr5GHz = val >> 8;
   1575 	/* Check that EEPROM values are within valid range. */
   1576 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1577 		sc->maxpwr5GHz = 38;
   1578 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1579 		sc->maxpwr2GHz = 38;
   1580 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1581 
   1582 	/* Read samples for each TX power group. */
   1583 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1584 	    sizeof sc->bands);
   1585 
   1586 	/* Read voltage at which samples were taken. */
   1587 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1588 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1589 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1590 
   1591 #ifdef IWN_DEBUG
   1592 	/* Print samples. */
   1593 	if (iwn_debug > 0) {
   1594 		for (i = 0; i < IWN_NBANDS; i++)
   1595 			iwn4965_print_power_group(sc, i);
   1596 	}
   1597 #endif
   1598 }
   1599 
   1600 #ifdef IWN_DEBUG
   1601 static void
   1602 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1603 {
   1604 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1605 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1606 	int j, c;
   1607 
   1608 	aprint_normal("===band %d===\n", i);
   1609 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1610 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1611 	for (c = 0; c < 2; c++) {
   1612 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1613 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1614 			    "power=%d pa_det=%d\n", c, j,
   1615 			    chans[0].samples[c][j].temp,
   1616 			    chans[0].samples[c][j].gain,
   1617 			    chans[0].samples[c][j].power,
   1618 			    chans[0].samples[c][j].pa_det);
   1619 		}
   1620 	}
   1621 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1622 	for (c = 0; c < 2; c++) {
   1623 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1624 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1625 			    "power=%d pa_det=%d\n", c, j,
   1626 			    chans[1].samples[c][j].temp,
   1627 			    chans[1].samples[c][j].gain,
   1628 			    chans[1].samples[c][j].power,
   1629 			    chans[1].samples[c][j].pa_det);
   1630 		}
   1631 	}
   1632 }
   1633 #endif
   1634 
   1635 static void
   1636 iwn5000_read_eeprom(struct iwn_softc *sc)
   1637 {
   1638 	struct iwn5000_eeprom_calib_hdr hdr;
   1639 	int32_t volt;
   1640 	uint32_t base, addr;
   1641 	uint16_t val;
   1642 	int i;
   1643 
   1644 	/* Read regulatory domain (4 ASCII characters). */
   1645 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1646 	base = le16toh(val);
   1647 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1648 	    sc->eeprom_domain, 4);
   1649 
   1650 	/* Read the list of authorized channels (20MHz ones only). */
   1651 	for (i = 0; i < 5; i++) {
   1652 		addr = base + iwn5000_regulatory_bands[i];
   1653 		iwn_read_eeprom_channels(sc, i, addr);
   1654 	}
   1655 
   1656 	/* Read enhanced TX power information for 6000 Series. */
   1657 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1658 		iwn_read_eeprom_enhinfo(sc);
   1659 
   1660 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1661 	base = le16toh(val);
   1662 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1663 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1664 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1665 	sc->calib_ver = hdr.version;
   1666 
   1667 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1668 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1669 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1670 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1671 		sc->eeprom_voltage = le16toh(hdr.volt);
   1672 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1673 		sc->eeprom_temp = le16toh(val);
   1674 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1675 		sc->eeprom_rawtemp = le16toh(val);
   1676 	}
   1677 
   1678 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1679 		/* Compute temperature offset. */
   1680 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1681 		sc->eeprom_temp = le16toh(val);
   1682 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1683 		volt = le16toh(val);
   1684 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1685 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1686 		    sc->eeprom_temp, volt, sc->temp_off));
   1687 	} else {
   1688 		/* Read crystal calibration. */
   1689 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1690 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1691 		DPRINTF(("crystal calibration 0x%08x\n",
   1692 		    le32toh(sc->eeprom_crystal)));
   1693 	}
   1694 }
   1695 
   1696 static void
   1697 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1698 {
   1699 	struct ieee80211com *ic = &sc->sc_ic;
   1700 	const struct iwn_chan_band *band = &iwn_bands[n];
   1701 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1702 	uint8_t chan;
   1703 	int i;
   1704 
   1705 	iwn_read_prom_data(sc, addr, channels,
   1706 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1707 
   1708 	for (i = 0; i < band->nchan; i++) {
   1709 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1710 			continue;
   1711 
   1712 		chan = band->chan[i];
   1713 
   1714 		if (n == 0) {	/* 2GHz band */
   1715 			ic->ic_channels[chan].ic_freq =
   1716 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1717 			ic->ic_channels[chan].ic_flags =
   1718 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1719 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1720 
   1721 		} else {	/* 5GHz band */
   1722 			/*
   1723 			 * Some adapters support channels 7, 8, 11 and 12
   1724 			 * both in the 2GHz and 4.9GHz bands.
   1725 			 * Because of limitations in our net80211 layer,
   1726 			 * we don't support them in the 4.9GHz band.
   1727 			 */
   1728 			if (chan <= 14)
   1729 				continue;
   1730 
   1731 			ic->ic_channels[chan].ic_freq =
   1732 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1733 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1734 			/* We have at least one valid 5GHz channel. */
   1735 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1736 		}
   1737 
   1738 		/* Is active scan allowed on this channel? */
   1739 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1740 			ic->ic_channels[chan].ic_flags |=
   1741 			    IEEE80211_CHAN_PASSIVE;
   1742 		}
   1743 
   1744 		/* Save maximum allowed TX power for this channel. */
   1745 		sc->maxpwr[chan] = channels[i].maxpwr;
   1746 
   1747 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1748 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1749 	}
   1750 }
   1751 
   1752 static void
   1753 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1754 {
   1755 	struct iwn_eeprom_enhinfo enhinfo[35];
   1756 	uint16_t val, base;
   1757 	int8_t maxpwr;
   1758 	int i;
   1759 
   1760 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1761 	base = le16toh(val);
   1762 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1763 	    enhinfo, sizeof enhinfo);
   1764 
   1765 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1766 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1767 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1768 			continue;	/* Skip invalid entries. */
   1769 
   1770 		maxpwr = 0;
   1771 		if (sc->txchainmask & IWN_ANT_A)
   1772 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1773 		if (sc->txchainmask & IWN_ANT_B)
   1774 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1775 		if (sc->txchainmask & IWN_ANT_C)
   1776 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1777 		if (sc->ntxchains == 2)
   1778 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1779 		else if (sc->ntxchains == 3)
   1780 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1781 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1782 
   1783 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1784 		sc->enh_maxpwr[i] = maxpwr;
   1785 	}
   1786 }
   1787 
   1788 static struct ieee80211_node *
   1789 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1790 {
   1791 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1792 }
   1793 
   1794 static void
   1795 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1796 {
   1797 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1798 	struct iwn_node *wn = (void *)ni;
   1799 	uint8_t rate;
   1800 	int ridx, i;
   1801 
   1802 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1803 	/* Start at lowest available bit-rate, AMRR will raise. */
   1804 	ni->ni_txrate = 0;
   1805 
   1806 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1807 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1808 		/* Map 802.11 rate to HW rate index. */
   1809 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1810 			if (iwn_rates[ridx].rate == rate)
   1811 				break;
   1812 		wn->ridx[i] = ridx;
   1813 	}
   1814 }
   1815 
   1816 static int
   1817 iwn_media_change(struct ifnet *ifp)
   1818 {
   1819 	struct iwn_softc *sc = ifp->if_softc;
   1820 	struct ieee80211com *ic = &sc->sc_ic;
   1821 	uint8_t rate, ridx;
   1822 	int error;
   1823 
   1824 	error = ieee80211_media_change(ifp);
   1825 	if (error != ENETRESET)
   1826 		return error;
   1827 
   1828 	if (ic->ic_fixed_rate != -1) {
   1829 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1830 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1831 		/* Map 802.11 rate to HW rate index. */
   1832 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1833 			if (iwn_rates[ridx].rate == rate)
   1834 				break;
   1835 		sc->fixed_ridx = ridx;
   1836 	}
   1837 
   1838 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1839 	    (IFF_UP | IFF_RUNNING)) {
   1840 		iwn_stop(ifp, 0);
   1841 		error = iwn_init(ifp);
   1842 	}
   1843 	return error;
   1844 }
   1845 
   1846 static int
   1847 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1848 {
   1849 	struct ifnet *ifp = ic->ic_ifp;
   1850 	struct iwn_softc *sc = ifp->if_softc;
   1851 	int error;
   1852 
   1853 	callout_stop(&sc->calib_to);
   1854 
   1855 	switch (nstate) {
   1856 	case IEEE80211_S_SCAN:
   1857 		/* XXX Do not abort a running scan. */
   1858 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1859 			if (ic->ic_state != nstate)
   1860 				aprint_error_dev(sc->sc_dev, "scan request(%d) "
   1861 				    "while scanning(%d) ignored\n", nstate,
   1862 				    ic->ic_state);
   1863 			break;
   1864 		}
   1865 
   1866 		/* XXX Not sure if call and flags are needed. */
   1867 		ieee80211_node_table_reset(&ic->ic_scan);
   1868 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1869 		sc->sc_flags |= IWN_FLAG_SCANNING;
   1870 
   1871 		/* Make the link LED blink while we're scanning. */
   1872 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1873 
   1874 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1875 			aprint_error_dev(sc->sc_dev,
   1876 			    "could not initiate scan\n");
   1877 			return error;
   1878 		}
   1879 		ic->ic_state = nstate;
   1880 		return 0;
   1881 
   1882 	case IEEE80211_S_ASSOC:
   1883 		if (ic->ic_state != IEEE80211_S_RUN)
   1884 			break;
   1885 		/* FALLTHROUGH */
   1886 	case IEEE80211_S_AUTH:
   1887 		/* Reset state to handle reassociations correctly. */
   1888 		sc->rxon.associd = 0;
   1889 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1890 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1891 
   1892 		if ((error = iwn_auth(sc)) != 0) {
   1893 			aprint_error_dev(sc->sc_dev,
   1894 			    "could not move to auth state\n");
   1895 			return error;
   1896 		}
   1897 		break;
   1898 
   1899 	case IEEE80211_S_RUN:
   1900 		if ((error = iwn_run(sc)) != 0) {
   1901 			aprint_error_dev(sc->sc_dev,
   1902 			    "could not move to run state\n");
   1903 			return error;
   1904 		}
   1905 		break;
   1906 
   1907 	case IEEE80211_S_INIT:
   1908 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1909 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1910 		break;
   1911 	}
   1912 
   1913 	return sc->sc_newstate(ic, nstate, arg);
   1914 }
   1915 
   1916 static void
   1917 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1918 {
   1919 	struct iwn_softc *sc = arg;
   1920 	struct iwn_node *wn = (struct iwn_node *)ni;
   1921 
   1922 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1923 }
   1924 
   1925 static void
   1926 iwn_calib_timeout(void *arg)
   1927 {
   1928 	struct iwn_softc *sc = arg;
   1929 	struct ieee80211com *ic = &sc->sc_ic;
   1930 	int s;
   1931 
   1932 	s = splnet();
   1933 	if (ic->ic_fixed_rate == -1) {
   1934 		if (ic->ic_opmode == IEEE80211_M_STA)
   1935 			iwn_iter_func(sc, ic->ic_bss);
   1936 		else
   1937 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1938 	}
   1939 	/* Force automatic TX power calibration every 60 secs. */
   1940 	if (++sc->calib_cnt >= 120) {
   1941 		uint32_t flags = 0;
   1942 
   1943 		DPRINTF(("sending request for statistics\n"));
   1944 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1945 		    sizeof flags, 1);
   1946 		sc->calib_cnt = 0;
   1947 	}
   1948 	splx(s);
   1949 
   1950 	/* Automatic rate control triggered every 500ms. */
   1951 	callout_schedule(&sc->calib_to, hz/2);
   1952 }
   1953 
   1954 /*
   1955  * Process an RX_PHY firmware notification.  This is usually immediately
   1956  * followed by an MPDU_RX_DONE notification.
   1957  */
   1958 static void
   1959 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1960     struct iwn_rx_data *data)
   1961 {
   1962 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1963 
   1964 	DPRINTFN(2, ("received PHY stats\n"));
   1965 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1966 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1967 
   1968 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1969 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1970 	sc->last_rx_valid = 1;
   1971 }
   1972 
   1973 /*
   1974  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1975  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1976  */
   1977 static void
   1978 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1979     struct iwn_rx_data *data)
   1980 {
   1981 	struct iwn_ops *ops = &sc->ops;
   1982 	struct ieee80211com *ic = &sc->sc_ic;
   1983 	struct ifnet *ifp = ic->ic_ifp;
   1984 	struct iwn_rx_ring *ring = &sc->rxq;
   1985 	struct ieee80211_frame *wh;
   1986 	struct ieee80211_node *ni;
   1987 	struct mbuf *m, *m1;
   1988 	struct iwn_rx_stat *stat;
   1989 	char	*head;
   1990 	uint32_t flags;
   1991 	int error, len, rssi;
   1992 
   1993 	if (desc->type == IWN_MPDU_RX_DONE) {
   1994 		/* Check for prior RX_PHY notification. */
   1995 		if (!sc->last_rx_valid) {
   1996 			DPRINTF(("missing RX_PHY\n"));
   1997 			return;
   1998 		}
   1999 		sc->last_rx_valid = 0;
   2000 		stat = &sc->last_rx_stat;
   2001 	} else
   2002 		stat = (struct iwn_rx_stat *)(desc + 1);
   2003 
   2004 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2005 	    BUS_DMASYNC_POSTREAD);
   2006 
   2007 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2008 		aprint_error_dev(sc->sc_dev,
   2009 		    "invalid RX statistic header\n");
   2010 		return;
   2011 	}
   2012 	if (desc->type == IWN_MPDU_RX_DONE) {
   2013 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2014 		head = (char *)(mpdu + 1);
   2015 		len = le16toh(mpdu->len);
   2016 	} else {
   2017 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2018 		len = le16toh(stat->len);
   2019 	}
   2020 
   2021 	flags = le32toh(*(uint32_t *)(head + len));
   2022 
   2023 	/* Discard frames with a bad FCS early. */
   2024 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2025 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2026 		ifp->if_ierrors++;
   2027 		return;
   2028 	}
   2029 	/* Discard frames that are too short. */
   2030 	if (len < sizeof (*wh)) {
   2031 		DPRINTF(("frame too short: %d\n", len));
   2032 		ic->ic_stats.is_rx_tooshort++;
   2033 		ifp->if_ierrors++;
   2034 		return;
   2035 	}
   2036 
   2037 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2038 	if (m1 == NULL) {
   2039 		ic->ic_stats.is_rx_nobuf++;
   2040 		ifp->if_ierrors++;
   2041 		return;
   2042 	}
   2043 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2044 
   2045 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2046 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2047 	if (error != 0) {
   2048 		m_freem(m1);
   2049 
   2050 		/* Try to reload the old mbuf. */
   2051 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2052 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2053 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2054 		if (error != 0) {
   2055 			panic("%s: could not load old RX mbuf",
   2056 			    device_xname(sc->sc_dev));
   2057 		}
   2058 		/* Physical address may have changed. */
   2059 		ring->desc[ring->cur] =
   2060 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2061 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2062 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2063 		    BUS_DMASYNC_PREWRITE);
   2064 		ifp->if_ierrors++;
   2065 		return;
   2066 	}
   2067 
   2068 	m = data->m;
   2069 	data->m = m1;
   2070 	/* Update RX descriptor. */
   2071 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2072 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2073 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2074 	    BUS_DMASYNC_PREWRITE);
   2075 
   2076 	/* Finalize mbuf. */
   2077 	m->m_pkthdr.rcvif = ifp;
   2078 	m->m_data = head;
   2079 	m->m_pkthdr.len = m->m_len = len;
   2080 
   2081 	/* Grab a reference to the source node. */
   2082 	wh = mtod(m, struct ieee80211_frame *);
   2083 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2084 
   2085 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2086 	/* NetBSD does decryption in ieee80211_input. */
   2087 
   2088 	rssi = ops->get_rssi(stat);
   2089 
   2090 	/* XXX Added for NetBSD: scans never stop without it */
   2091 	if (ic->ic_state == IEEE80211_S_SCAN)
   2092 		iwn_fix_channel(ic, m);
   2093 
   2094 	if (sc->sc_drvbpf != NULL) {
   2095 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2096 
   2097 		tap->wr_flags = 0;
   2098 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2099 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2100 		tap->wr_chan_freq =
   2101 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2102 		tap->wr_chan_flags =
   2103 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2104 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2105 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2106 		tap->wr_tsft = stat->tstamp;
   2107 		switch (stat->rate) {
   2108 		/* CCK rates. */
   2109 		case  10: tap->wr_rate =   2; break;
   2110 		case  20: tap->wr_rate =   4; break;
   2111 		case  55: tap->wr_rate =  11; break;
   2112 		case 110: tap->wr_rate =  22; break;
   2113 		/* OFDM rates. */
   2114 		case 0xd: tap->wr_rate =  12; break;
   2115 		case 0xf: tap->wr_rate =  18; break;
   2116 		case 0x5: tap->wr_rate =  24; break;
   2117 		case 0x7: tap->wr_rate =  36; break;
   2118 		case 0x9: tap->wr_rate =  48; break;
   2119 		case 0xb: tap->wr_rate =  72; break;
   2120 		case 0x1: tap->wr_rate =  96; break;
   2121 		case 0x3: tap->wr_rate = 108; break;
   2122 		/* Unknown rate: should not happen. */
   2123 		default:  tap->wr_rate =   0;
   2124 		}
   2125 
   2126 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2127 	}
   2128 
   2129 	/* Send the frame to the 802.11 layer. */
   2130 	ieee80211_input(ic, m, ni, rssi, 0);
   2131 
   2132 	/* Node is no longer needed. */
   2133 	ieee80211_free_node(ni);
   2134 }
   2135 
   2136 #ifndef IEEE80211_NO_HT
   2137 /* Process an incoming Compressed BlockAck. */
   2138 static void
   2139 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2140     struct iwn_rx_data *data)
   2141 {
   2142 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2143 	struct iwn_tx_ring *txq;
   2144 
   2145 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2146 	    BUS_DMASYNC_POSTREAD);
   2147 
   2148 	txq = &sc->txq[le16toh(ba->qid)];
   2149 	/* XXX TBD */
   2150 }
   2151 #endif
   2152 
   2153 /*
   2154  * Process a CALIBRATION_RESULT notification sent by the initialization
   2155  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2156  */
   2157 static void
   2158 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2159     struct iwn_rx_data *data)
   2160 {
   2161 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2162 	int len, idx = -1;
   2163 
   2164 	/* Runtime firmware should not send such a notification. */
   2165 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2166 		return;
   2167 
   2168 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2169 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2170 	    BUS_DMASYNC_POSTREAD);
   2171 
   2172 	switch (calib->code) {
   2173 	case IWN5000_PHY_CALIB_DC:
   2174 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2175 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2176 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2177 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2178 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2179 			idx = 0;
   2180 		break;
   2181 	case IWN5000_PHY_CALIB_LO:
   2182 		idx = 1;
   2183 		break;
   2184 	case IWN5000_PHY_CALIB_TX_IQ:
   2185 		idx = 2;
   2186 		break;
   2187 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2188 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2189 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2190 			idx = 3;
   2191 		break;
   2192 	case IWN5000_PHY_CALIB_BASE_BAND:
   2193 		idx = 4;
   2194 		break;
   2195 	}
   2196 	if (idx == -1)	/* Ignore other results. */
   2197 		return;
   2198 
   2199 	/* Save calibration result. */
   2200 	if (sc->calibcmd[idx].buf != NULL)
   2201 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2202 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2203 	if (sc->calibcmd[idx].buf == NULL) {
   2204 		DPRINTF(("not enough memory for calibration result %d\n",
   2205 		    calib->code));
   2206 		return;
   2207 	}
   2208 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2209 	    calib->code, len));
   2210 	sc->calibcmd[idx].len = len;
   2211 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2212 }
   2213 
   2214 /*
   2215  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2216  * The latter is sent by the firmware after each received beacon.
   2217  */
   2218 static void
   2219 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2220     struct iwn_rx_data *data)
   2221 {
   2222 	struct iwn_ops *ops = &sc->ops;
   2223 	struct ieee80211com *ic = &sc->sc_ic;
   2224 	struct iwn_calib_state *calib = &sc->calib;
   2225 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2226 	int temp;
   2227 
   2228 	/* Ignore statistics received during a scan. */
   2229 	if (ic->ic_state != IEEE80211_S_RUN)
   2230 		return;
   2231 
   2232 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2233 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2234 
   2235 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2236 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2237 
   2238 	/* Test if temperature has changed. */
   2239 	if (stats->general.temp != sc->rawtemp) {
   2240 		/* Convert "raw" temperature to degC. */
   2241 		sc->rawtemp = stats->general.temp;
   2242 		temp = ops->get_temperature(sc);
   2243 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2244 
   2245 		/* Update TX power if need be (4965AGN only). */
   2246 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2247 			iwn4965_power_calibration(sc, temp);
   2248 	}
   2249 
   2250 	if (desc->type != IWN_BEACON_STATISTICS)
   2251 		return;	/* Reply to a statistics request. */
   2252 
   2253 	sc->noise = iwn_get_noise(&stats->rx.general);
   2254 
   2255 	/* Test that RSSI and noise are present in stats report. */
   2256 	if (le32toh(stats->rx.general.flags) != 1) {
   2257 		DPRINTF(("received statistics without RSSI\n"));
   2258 		return;
   2259 	}
   2260 
   2261 	/*
   2262 	 * XXX Differential gain calibration makes the 6005 firmware
   2263 	 * crap out, so skip it for now.  This effectively disables
   2264 	 * sensitivity tuning as well.
   2265 	 */
   2266 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2267 		return;
   2268 
   2269 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2270 		iwn_collect_noise(sc, &stats->rx.general);
   2271 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2272 		iwn_tune_sensitivity(sc, &stats->rx);
   2273 }
   2274 
   2275 /*
   2276  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2277  * and 5000 adapters have different incompatible TX status formats.
   2278  */
   2279 static void
   2280 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2281     struct iwn_rx_data *data)
   2282 {
   2283 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2284 
   2285 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2286 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2287 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2288 }
   2289 
   2290 static void
   2291 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2292     struct iwn_rx_data *data)
   2293 {
   2294 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2295 
   2296 #ifdef notyet
   2297 	/* Reset TX scheduler slot. */
   2298 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2299 #endif
   2300 
   2301 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2302 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2303 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2304 }
   2305 
   2306 /*
   2307  * Adapter-independent backend for TX_DONE firmware notifications.
   2308  */
   2309 static void
   2310 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2311     uint8_t status)
   2312 {
   2313 	struct ieee80211com *ic = &sc->sc_ic;
   2314 	struct ifnet *ifp = ic->ic_ifp;
   2315 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2316 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2317 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2318 
   2319 	/* Update rate control statistics. */
   2320 	wn->amn.amn_txcnt++;
   2321 	if (ackfailcnt > 0)
   2322 		wn->amn.amn_retrycnt++;
   2323 
   2324 	if (status != 1 && status != 2)
   2325 		ifp->if_oerrors++;
   2326 	else
   2327 		ifp->if_opackets++;
   2328 
   2329 	/* Unmap and free mbuf. */
   2330 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2331 	    BUS_DMASYNC_POSTWRITE);
   2332 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2333 	m_freem(data->m);
   2334 	data->m = NULL;
   2335 	ieee80211_free_node(data->ni);
   2336 	data->ni = NULL;
   2337 
   2338 	sc->sc_tx_timer = 0;
   2339 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2340 		sc->qfullmsk &= ~(1 << ring->qid);
   2341 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2342 			ifp->if_flags &= ~IFF_OACTIVE;
   2343 			(*ifp->if_start)(ifp);
   2344 		}
   2345 	}
   2346 }
   2347 
   2348 /*
   2349  * Process a "command done" firmware notification.  This is where we wakeup
   2350  * processes waiting for a synchronous command completion.
   2351  */
   2352 static void
   2353 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2354 {
   2355 	struct iwn_tx_ring *ring = &sc->txq[4];
   2356 	struct iwn_tx_data *data;
   2357 
   2358 	if ((desc->qid & 0xf) != 4)
   2359 		return;	/* Not a command ack. */
   2360 
   2361 	data = &ring->data[desc->idx];
   2362 
   2363 	/* If the command was mapped in an mbuf, free it. */
   2364 	if (data->m != NULL) {
   2365 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2366 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2367 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2368 		m_freem(data->m);
   2369 		data->m = NULL;
   2370 	}
   2371 	wakeup(&ring->desc[desc->idx]);
   2372 }
   2373 
   2374 /*
   2375  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2376  */
   2377 static void
   2378 iwn_notif_intr(struct iwn_softc *sc)
   2379 {
   2380 	struct iwn_ops *ops = &sc->ops;
   2381 	struct ieee80211com *ic = &sc->sc_ic;
   2382 	struct ifnet *ifp = ic->ic_ifp;
   2383 	uint16_t hw;
   2384 
   2385 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2386 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2387 
   2388 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2389 	while (sc->rxq.cur != hw) {
   2390 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2391 		struct iwn_rx_desc *desc;
   2392 
   2393 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2394 		    BUS_DMASYNC_POSTREAD);
   2395 		desc = mtod(data->m, struct iwn_rx_desc *);
   2396 
   2397 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2398 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2399 
   2400 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2401 			iwn_cmd_done(sc, desc);
   2402 
   2403 		switch (desc->type) {
   2404 		case IWN_RX_PHY:
   2405 			iwn_rx_phy(sc, desc, data);
   2406 			break;
   2407 
   2408 		case IWN_RX_DONE:		/* 4965AGN only. */
   2409 		case IWN_MPDU_RX_DONE:
   2410 			/* An 802.11 frame has been received. */
   2411 			iwn_rx_done(sc, desc, data);
   2412 			break;
   2413 #ifndef IEEE80211_NO_HT
   2414 		case IWN_RX_COMPRESSED_BA:
   2415 			/* A Compressed BlockAck has been received. */
   2416 			iwn_rx_compressed_ba(sc, desc, data);
   2417 			break;
   2418 #endif
   2419 		case IWN_TX_DONE:
   2420 			/* An 802.11 frame has been transmitted. */
   2421 			ops->tx_done(sc, desc, data);
   2422 			break;
   2423 
   2424 		case IWN_RX_STATISTICS:
   2425 		case IWN_BEACON_STATISTICS:
   2426 			iwn_rx_statistics(sc, desc, data);
   2427 			break;
   2428 
   2429 		case IWN_BEACON_MISSED:
   2430 		{
   2431 			struct iwn_beacon_missed *miss =
   2432 			    (struct iwn_beacon_missed *)(desc + 1);
   2433 
   2434 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2435 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2436 			/*
   2437 			 * If more than 5 consecutive beacons are missed,
   2438 			 * reinitialize the sensitivity state machine.
   2439 			 */
   2440 			DPRINTF(("beacons missed %d/%d\n",
   2441 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2442 			if (ic->ic_state == IEEE80211_S_RUN &&
   2443 			    le32toh(miss->consecutive) > 5)
   2444 				(void)iwn_init_sensitivity(sc);
   2445 			break;
   2446 		}
   2447 		case IWN_UC_READY:
   2448 		{
   2449 			struct iwn_ucode_info *uc =
   2450 			    (struct iwn_ucode_info *)(desc + 1);
   2451 
   2452 			/* The microcontroller is ready. */
   2453 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2454 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2455 			DPRINTF(("microcode alive notification version=%d.%d "
   2456 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2457 			    uc->subtype, le32toh(uc->valid)));
   2458 
   2459 			if (le32toh(uc->valid) != 1) {
   2460 				aprint_error_dev(sc->sc_dev,
   2461 				    "microcontroller initialization "
   2462 				    "failed\n");
   2463 				break;
   2464 			}
   2465 			if (uc->subtype == IWN_UCODE_INIT) {
   2466 				/* Save microcontroller report. */
   2467 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2468 			}
   2469 			/* Save the address of the error log in SRAM. */
   2470 			sc->errptr = le32toh(uc->errptr);
   2471 			break;
   2472 		}
   2473 		case IWN_STATE_CHANGED:
   2474 		{
   2475 			uint32_t *status = (uint32_t *)(desc + 1);
   2476 
   2477 			/* Enabled/disabled notification. */
   2478 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2479 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2480 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2481 
   2482 			if (le32toh(*status) & 1) {
   2483 				/* The radio button has to be pushed. */
   2484 				aprint_error_dev(sc->sc_dev,
   2485 				    "Radio transmitter is off\n");
   2486 				/* Turn the interface down. */
   2487 				ifp->if_flags &= ~IFF_UP;
   2488 				iwn_stop(ifp, 1);
   2489 				return;	/* No further processing. */
   2490 			}
   2491 			break;
   2492 		}
   2493 		case IWN_START_SCAN:
   2494 		{
   2495 			struct iwn_start_scan *scan =
   2496 			    (struct iwn_start_scan *)(desc + 1);
   2497 
   2498 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2499 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2500 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2501 			    scan->chan, le32toh(scan->status)));
   2502 
   2503 			/* Fix current channel. */
   2504 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2505 			break;
   2506 		}
   2507 		case IWN_STOP_SCAN:
   2508 		{
   2509 			struct iwn_stop_scan *scan =
   2510 			    (struct iwn_stop_scan *)(desc + 1);
   2511 
   2512 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2513 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2514 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2515 			    scan->nchan, scan->status, scan->chan));
   2516 
   2517 			if (scan->status == 1 && scan->chan <= 14 &&
   2518 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2519 				/*
   2520 				 * We just finished scanning 2GHz channels,
   2521 				 * start scanning 5GHz ones.
   2522 				 */
   2523 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2524 					break;
   2525 			}
   2526 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2527 			ieee80211_end_scan(ic);
   2528 			break;
   2529 		}
   2530 		case IWN5000_CALIBRATION_RESULT:
   2531 			iwn5000_rx_calib_results(sc, desc, data);
   2532 			break;
   2533 
   2534 		case IWN5000_CALIBRATION_DONE:
   2535 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2536 			wakeup(sc);
   2537 			break;
   2538 		}
   2539 
   2540 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2541 	}
   2542 
   2543 	/* Tell the firmware what we have processed. */
   2544 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2545 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2546 }
   2547 
   2548 /*
   2549  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2550  * from power-down sleep mode.
   2551  */
   2552 static void
   2553 iwn_wakeup_intr(struct iwn_softc *sc)
   2554 {
   2555 	int qid;
   2556 
   2557 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2558 
   2559 	/* Wakeup RX and TX rings. */
   2560 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2561 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2562 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2563 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2564 	}
   2565 }
   2566 
   2567 /*
   2568  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2569  * we can't debug the firmware because it is neither open source nor free, it
   2570  * can help us to identify certain classes of problems.
   2571  */
   2572 static void
   2573 iwn_fatal_intr(struct iwn_softc *sc)
   2574 {
   2575 	struct iwn_fw_dump dump;
   2576 	int i;
   2577 
   2578 	/* Force a complete recalibration on next init. */
   2579 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2580 
   2581 	/* Check that the error log address is valid. */
   2582 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2583 	    sc->errptr + sizeof (dump) >
   2584 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2585 		aprint_error_dev(sc->sc_dev,
   2586 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2587 		return;
   2588 	}
   2589 	if (iwn_nic_lock(sc) != 0) {
   2590 		aprint_error_dev(sc->sc_dev,
   2591 		    "could not read firmware error log\n");
   2592 		return;
   2593 	}
   2594 	/* Read firmware error log from SRAM. */
   2595 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2596 	    sizeof (dump) / sizeof (uint32_t));
   2597 	iwn_nic_unlock(sc);
   2598 
   2599 	if (dump.valid == 0) {
   2600 		aprint_error_dev(sc->sc_dev,
   2601 		    "firmware error log is empty\n");
   2602 		return;
   2603 	}
   2604 	aprint_error("firmware error log:\n");
   2605 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2606 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2607 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2608 	    dump.id);
   2609 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2610 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2611 	aprint_error("  error data      = 0x%08X%08X\n",
   2612 	    dump.error_data[0], dump.error_data[1]);
   2613 	aprint_error("  branch link     = 0x%08X%08X\n",
   2614 	    dump.branch_link[0], dump.branch_link[1]);
   2615 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2616 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2617 	aprint_error("  time            = %u\n", dump.time[0]);
   2618 
   2619 	/* Dump driver status (TX and RX rings) while we're here. */
   2620 	aprint_error("driver status:\n");
   2621 	for (i = 0; i < sc->ntxqs; i++) {
   2622 		struct iwn_tx_ring *ring = &sc->txq[i];
   2623 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2624 		    i, ring->qid, ring->cur, ring->queued);
   2625 	}
   2626 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2627 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2628 }
   2629 
   2630 static int
   2631 iwn_intr(void *arg)
   2632 {
   2633 	struct iwn_softc *sc = arg;
   2634 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2635 	uint32_t r1, r2, tmp;
   2636 
   2637 	/* Disable interrupts. */
   2638 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2639 
   2640 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2641 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2642 		tmp = 0;
   2643 		while (sc->ict[sc->ict_cur] != 0) {
   2644 			tmp |= sc->ict[sc->ict_cur];
   2645 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2646 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2647 		}
   2648 		tmp = le32toh(tmp);
   2649 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2650 			tmp = 0;
   2651 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2652 			tmp |= 0x8000;
   2653 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2654 		r2 = 0;	/* Unused. */
   2655 	} else {
   2656 		r1 = IWN_READ(sc, IWN_INT);
   2657 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2658 			return 0;	/* Hardware gone! */
   2659 		r2 = IWN_READ(sc, IWN_FH_INT);
   2660 	}
   2661 	if (r1 == 0 && r2 == 0) {
   2662 		if (ifp->if_flags & IFF_UP)
   2663 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2664 		return 0;	/* Interrupt not for us. */
   2665 	}
   2666 
   2667 	/* Acknowledge interrupts. */
   2668 	IWN_WRITE(sc, IWN_INT, r1);
   2669 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2670 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2671 
   2672 	if (r1 & IWN_INT_RF_TOGGLED) {
   2673 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2674 		aprint_error_dev(sc->sc_dev,
   2675 		    "RF switch: radio %s\n",
   2676 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2677 	}
   2678 	if (r1 & IWN_INT_CT_REACHED) {
   2679 		aprint_error_dev(sc->sc_dev,
   2680 		    "critical temperature reached!\n");
   2681 	}
   2682 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2683 		aprint_error_dev(sc->sc_dev,
   2684 		    "fatal firmware error\n");
   2685 		/* Dump firmware error log and stop. */
   2686 		iwn_fatal_intr(sc);
   2687 		ifp->if_flags &= ~IFF_UP;
   2688 		iwn_stop(ifp, 1);
   2689 		return 1;
   2690 	}
   2691 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2692 	    (r2 & IWN_FH_INT_RX)) {
   2693 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2694 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2695 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2696 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2697 			    IWN_INT_PERIODIC_DIS);
   2698 			iwn_notif_intr(sc);
   2699 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2700 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2701 				    IWN_INT_PERIODIC_ENA);
   2702 			}
   2703 		} else
   2704 			iwn_notif_intr(sc);
   2705 	}
   2706 
   2707 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2708 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2709 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2710 		wakeup(sc);	/* FH DMA transfer completed. */
   2711 	}
   2712 
   2713 	if (r1 & IWN_INT_ALIVE)
   2714 		wakeup(sc);	/* Firmware is alive. */
   2715 
   2716 	if (r1 & IWN_INT_WAKEUP)
   2717 		iwn_wakeup_intr(sc);
   2718 
   2719 	/* Re-enable interrupts. */
   2720 	if (ifp->if_flags & IFF_UP)
   2721 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2722 
   2723 	return 1;
   2724 }
   2725 
   2726 /*
   2727  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2728  * 5000 adapters use a slightly different format).
   2729  */
   2730 static void
   2731 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2732     uint16_t len)
   2733 {
   2734 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2735 
   2736 	*w = htole16(len + 8);
   2737 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2738 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2739 	    sizeof (uint16_t),
   2740 	    BUS_DMASYNC_PREWRITE);
   2741 	if (idx < IWN_SCHED_WINSZ) {
   2742 		*(w + IWN_TX_RING_COUNT) = *w;
   2743 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2744 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2745 		    (char *)(void *)sc->sched_dma.vaddr,
   2746 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2747 	}
   2748 }
   2749 
   2750 static void
   2751 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2752     uint16_t len)
   2753 {
   2754 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2755 
   2756 	*w = htole16(id << 12 | (len + 8));
   2757 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2758 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2759 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2760 	if (idx < IWN_SCHED_WINSZ) {
   2761 		*(w + IWN_TX_RING_COUNT) = *w;
   2762 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2763 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2764 		    (char *)(void *)sc->sched_dma.vaddr,
   2765 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2766 	}
   2767 }
   2768 
   2769 #ifdef notyet
   2770 static void
   2771 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2772 {
   2773 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2774 
   2775 	*w = (*w & htole16(0xf000)) | htole16(1);
   2776 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2777 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2778 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2779 	if (idx < IWN_SCHED_WINSZ) {
   2780 		*(w + IWN_TX_RING_COUNT) = *w;
   2781 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2782 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2783 		    (char *)(void *)sc->sched_dma.vaddr,
   2784 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2785 	}
   2786 }
   2787 #endif
   2788 
   2789 static int
   2790 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2791 {
   2792 	struct ieee80211com *ic = &sc->sc_ic;
   2793 	struct iwn_node *wn = (void *)ni;
   2794 	struct iwn_tx_ring *ring;
   2795 	struct iwn_tx_desc *desc;
   2796 	struct iwn_tx_data *data;
   2797 	struct iwn_tx_cmd *cmd;
   2798 	struct iwn_cmd_data *tx;
   2799 	const struct iwn_rate *rinfo;
   2800 	struct ieee80211_frame *wh;
   2801 	struct ieee80211_key *k = NULL;
   2802 	struct mbuf *m1;
   2803 	uint32_t flags;
   2804 	u_int hdrlen;
   2805 	bus_dma_segment_t *seg;
   2806 	uint8_t tid, ridx, txant, type;
   2807 	int i, totlen, error, pad;
   2808 
   2809 	const struct chanAccParams *cap;
   2810 	int noack;
   2811 	int hdrlen2;
   2812 
   2813 	wh = mtod(m, struct ieee80211_frame *);
   2814 	hdrlen = ieee80211_anyhdrsize(wh);
   2815 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2816 
   2817 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2818 	    sizeof (struct ieee80211_qosframe) :
   2819 	    sizeof (struct ieee80211_frame);
   2820 
   2821 	if (hdrlen != hdrlen2)
   2822 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2823 		hdrlen, hdrlen2);
   2824 
   2825 	/* XXX OpenBSD sets a different tid when using QOS */
   2826 	tid = 0;
   2827 	if (ieee80211_has_qos(wh)) {
   2828 		cap = &ic->ic_wme.wme_chanParams;
   2829 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2830 	}
   2831 	else
   2832 		noack = 0;
   2833 
   2834 	ring = &sc->txq[ac];
   2835 	desc = &ring->desc[ring->cur];
   2836 	data = &ring->data[ring->cur];
   2837 
   2838 	/* Choose a TX rate index. */
   2839 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2840 	    type != IEEE80211_FC0_TYPE_DATA) {
   2841 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2842 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2843 	} else if (ic->ic_fixed_rate != -1) {
   2844 		ridx = sc->fixed_ridx;
   2845 	} else
   2846 		ridx = wn->ridx[ni->ni_txrate];
   2847 	rinfo = &iwn_rates[ridx];
   2848 
   2849 	/* Encrypt the frame if need be. */
   2850 	/*
   2851 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2852 	 * in order to match old code and other drivers. Tests with
   2853 	 * tcpdump indicates that the order is irrelevant, however,
   2854 	 * as bpf produces unencrypted data for both ordering choices.
   2855 	 */
   2856 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2857 		k = ieee80211_crypto_encap(ic, ni, m);
   2858 		if (k == NULL) {
   2859 			m_freem(m);
   2860 			return ENOBUFS;
   2861 		}
   2862 		/* Packet header may have moved, reset our local pointer. */
   2863 		wh = mtod(m, struct ieee80211_frame *);
   2864 	}
   2865 	totlen = m->m_pkthdr.len;
   2866 
   2867 	if (sc->sc_drvbpf != NULL) {
   2868 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2869 
   2870 		tap->wt_flags = 0;
   2871 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2872 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2873 		tap->wt_rate = rinfo->rate;
   2874 		tap->wt_hwqueue = ac;
   2875 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2876 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2877 
   2878 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2879 	}
   2880 
   2881 	/* Prepare TX firmware command. */
   2882 	cmd = &ring->cmd[ring->cur];
   2883 	cmd->code = IWN_CMD_TX_DATA;
   2884 	cmd->flags = 0;
   2885 	cmd->qid = ring->qid;
   2886 	cmd->idx = ring->cur;
   2887 
   2888 	tx = (struct iwn_cmd_data *)cmd->data;
   2889 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2890 	tx->scratch = 0;	/* clear "scratch" area */
   2891 
   2892 	flags = 0;
   2893 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2894 		/* Unicast frame, check if an ACK is expected. */
   2895 		if (!noack)
   2896 			flags |= IWN_TX_NEED_ACK;
   2897 	}
   2898 
   2899 #ifdef notyet
   2900 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2901 	if ((wh->i_fc[0] &
   2902 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2903 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2904 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2905 #endif
   2906 
   2907 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2908 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2909 
   2910 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2911 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2912 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2913 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2914 			flags |= IWN_TX_NEED_RTS;
   2915 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2916 		    ridx >= IWN_RIDX_OFDM6) {
   2917 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2918 				flags |= IWN_TX_NEED_CTS;
   2919 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2920 				flags |= IWN_TX_NEED_RTS;
   2921 		}
   2922 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2923 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2924 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2925 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2926 				flags |= IWN_TX_NEED_PROTECTION;
   2927 			} else
   2928 				flags |= IWN_TX_FULL_TXOP;
   2929 		}
   2930 	}
   2931 
   2932 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2933 	    type != IEEE80211_FC0_TYPE_DATA)
   2934 		tx->id = sc->broadcast_id;
   2935 	else
   2936 		tx->id = wn->id;
   2937 
   2938 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2939 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2940 
   2941 #ifndef IEEE80211_STA_ONLY
   2942 		/* Tell HW to set timestamp in probe responses. */
   2943 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2944 		/* probe requests do not take timestamps (from Bergamini). */
   2945 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2946 			flags |= IWN_TX_INSERT_TSTAMP;
   2947 #endif
   2948 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2949 		/* changes here. These are not needed (from Bergamini). */
   2950 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2951 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2952 			tx->timeout = htole16(3);
   2953 		else
   2954 			tx->timeout = htole16(2);
   2955 	} else
   2956 		tx->timeout = htole16(0);
   2957 
   2958 	if (hdrlen & 3) {
   2959 		/* First segment length must be a multiple of 4. */
   2960 		flags |= IWN_TX_NEED_PADDING;
   2961 		pad = 4 - (hdrlen & 3);
   2962 	} else
   2963 		pad = 0;
   2964 
   2965 	tx->len = htole16(totlen);
   2966 	tx->tid = tid;
   2967 	tx->rts_ntries = 60;
   2968 	tx->data_ntries = 15;
   2969 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2970 	tx->plcp = rinfo->plcp;
   2971 	tx->rflags = rinfo->flags;
   2972 	if (tx->id == sc->broadcast_id) {
   2973 		/* Group or management frame. */
   2974 		tx->linkq = 0;
   2975 		/* XXX Alternate between antenna A and B? */
   2976 		txant = IWN_LSB(sc->txchainmask);
   2977 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2978 	} else {
   2979 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2980 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2981 	}
   2982 	/* Set physical address of "scratch area". */
   2983 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2984 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2985 
   2986 	/* Copy 802.11 header in TX command. */
   2987 	/* XXX NetBSD changed this in rev 1.20 */
   2988 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2989 
   2990 	/* Trim 802.11 header. */
   2991 	m_adj(m, hdrlen);
   2992 	tx->security = 0;
   2993 	tx->flags = htole32(flags);
   2994 
   2995 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2996 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2997 	if (error != 0) {
   2998 		if (error != EFBIG) {
   2999 			aprint_error_dev(sc->sc_dev,
   3000 			    "can't map mbuf (error %d)\n", error);
   3001 			m_freem(m);
   3002 			return error;
   3003 		}
   3004 		/* Too many DMA segments, linearize mbuf. */
   3005 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3006 		if (m1 == NULL) {
   3007 			m_freem(m);
   3008 			return ENOBUFS;
   3009 		}
   3010 		if (m->m_pkthdr.len > MHLEN) {
   3011 			MCLGET(m1, M_DONTWAIT);
   3012 			if (!(m1->m_flags & M_EXT)) {
   3013 				m_freem(m);
   3014 				m_freem(m1);
   3015 				return ENOBUFS;
   3016 			}
   3017 		}
   3018 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3019 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3020 		m_freem(m);
   3021 		m = m1;
   3022 
   3023 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3024 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3025 		if (error != 0) {
   3026 			aprint_error_dev(sc->sc_dev,
   3027 			    "can't map mbuf (error %d)\n", error);
   3028 			m_freem(m);
   3029 			return error;
   3030 		}
   3031 	}
   3032 
   3033 	data->m = m;
   3034 	data->ni = ni;
   3035 
   3036 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3037 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3038 
   3039 	/* Fill TX descriptor. */
   3040 	desc->nsegs = 1 + data->map->dm_nsegs;
   3041 	/* First DMA segment is used by the TX command. */
   3042 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3043 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3044 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3045 	/* Other DMA segments are for data payload. */
   3046 	seg = data->map->dm_segs;
   3047 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3048 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3049 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3050 		    seg->ds_len << 4);
   3051 		seg++;
   3052 	}
   3053 
   3054 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3055 	    BUS_DMASYNC_PREWRITE);
   3056 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3057 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3058 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3059 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3060 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3061 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3062 
   3063 #ifdef notyet
   3064 	/* Update TX scheduler. */
   3065 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3066 #endif
   3067 
   3068 	/* Kick TX ring. */
   3069 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3070 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3071 
   3072 	/* Mark TX ring as full if we reach a certain threshold. */
   3073 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3074 		sc->qfullmsk |= 1 << ring->qid;
   3075 
   3076 	return 0;
   3077 }
   3078 
   3079 static void
   3080 iwn_start(struct ifnet *ifp)
   3081 {
   3082 	struct iwn_softc *sc = ifp->if_softc;
   3083 	struct ieee80211com *ic = &sc->sc_ic;
   3084 	struct ieee80211_node *ni;
   3085 	struct ether_header *eh;
   3086 	struct mbuf *m;
   3087 	int ac;
   3088 
   3089 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3090 		return;
   3091 
   3092 	for (;;) {
   3093 		if (sc->qfullmsk != 0) {
   3094 			ifp->if_flags |= IFF_OACTIVE;
   3095 			break;
   3096 		}
   3097 		/* Send pending management frames first. */
   3098 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3099 		if (m != NULL) {
   3100 			ni = (void *)m->m_pkthdr.rcvif;
   3101 			ac = 0;
   3102 			goto sendit;
   3103 		}
   3104 		if (ic->ic_state != IEEE80211_S_RUN)
   3105 			break;
   3106 
   3107 		/* Encapsulate and send data frames. */
   3108 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3109 		if (m == NULL)
   3110 			break;
   3111 		if (m->m_len < sizeof (*eh) &&
   3112 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3113 			ifp->if_oerrors++;
   3114 			continue;
   3115 		}
   3116 		eh = mtod(m, struct ether_header *);
   3117 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3118 		if (ni == NULL) {
   3119 			m_freem(m);
   3120 			ifp->if_oerrors++;
   3121 			continue;
   3122 		}
   3123 		/* classify mbuf so we can find which tx ring to use */
   3124 		if (ieee80211_classify(ic, m, ni) != 0) {
   3125 			m_freem(m);
   3126 			ieee80211_free_node(ni);
   3127 			ifp->if_oerrors++;
   3128 			continue;
   3129 		}
   3130 
   3131 		/* No QoS encapsulation for EAPOL frames. */
   3132 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3133 		    M_WME_GETAC(m) : WME_AC_BE;
   3134 
   3135 		bpf_mtap(ifp, m);
   3136 
   3137 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3138 			ieee80211_free_node(ni);
   3139 			ifp->if_oerrors++;
   3140 			continue;
   3141 		}
   3142 sendit:
   3143 		bpf_mtap3(ic->ic_rawbpf, m);
   3144 
   3145 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3146 			ieee80211_free_node(ni);
   3147 			ifp->if_oerrors++;
   3148 			continue;
   3149 		}
   3150 
   3151 		sc->sc_tx_timer = 5;
   3152 		ifp->if_timer = 1;
   3153 	}
   3154 }
   3155 
   3156 static void
   3157 iwn_watchdog(struct ifnet *ifp)
   3158 {
   3159 	struct iwn_softc *sc = ifp->if_softc;
   3160 
   3161 	ifp->if_timer = 0;
   3162 
   3163 	if (sc->sc_tx_timer > 0) {
   3164 		if (--sc->sc_tx_timer == 0) {
   3165 			aprint_error_dev(sc->sc_dev,
   3166 			    "device timeout\n");
   3167 			ifp->if_flags &= ~IFF_UP;
   3168 			iwn_stop(ifp, 1);
   3169 			ifp->if_oerrors++;
   3170 			return;
   3171 		}
   3172 		ifp->if_timer = 1;
   3173 	}
   3174 
   3175 	ieee80211_watchdog(&sc->sc_ic);
   3176 }
   3177 
   3178 static int
   3179 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3180 {
   3181 	struct iwn_softc *sc = ifp->if_softc;
   3182 	struct ieee80211com *ic = &sc->sc_ic;
   3183 	const struct sockaddr *sa;
   3184 	int s, error = 0;
   3185 
   3186 	s = splnet();
   3187 
   3188 	switch (cmd) {
   3189 	case SIOCSIFADDR:
   3190 		ifp->if_flags |= IFF_UP;
   3191 #ifdef INET
   3192 		struct ifaddr *ifa = (struct ifaddr *)data;
   3193 		if (ifa->ifa_addr->sa_family == AF_INET)
   3194 			arp_ifinit(&ic->ic_ac, ifa);
   3195 #endif
   3196 		/* FALLTHROUGH */
   3197 	case SIOCSIFFLAGS:
   3198 		/* XXX Added as it is in every NetBSD driver */
   3199 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3200 			break;
   3201 		if (ifp->if_flags & IFF_UP) {
   3202 			if (!(ifp->if_flags & IFF_RUNNING))
   3203 				error = iwn_init(ifp);
   3204 		} else {
   3205 			if (ifp->if_flags & IFF_RUNNING)
   3206 				iwn_stop(ifp, 1);
   3207 		}
   3208 		break;
   3209 
   3210 	case SIOCADDMULTI:
   3211 	case SIOCDELMULTI:
   3212 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3213 		error = (cmd == SIOCADDMULTI) ?
   3214 		    ether_addmulti(sa, &sc->sc_ec) :
   3215 		    ether_delmulti(sa, &sc->sc_ec);
   3216 
   3217 		if (error == ENETRESET)
   3218 			error = 0;
   3219 		break;
   3220 
   3221 	default:
   3222 		error = ieee80211_ioctl(ic, cmd, data);
   3223 	}
   3224 
   3225 	if (error == ENETRESET) {
   3226 		error = 0;
   3227 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3228 		    (IFF_UP | IFF_RUNNING)) {
   3229 			iwn_stop(ifp, 0);
   3230 			error = iwn_init(ifp);
   3231 		}
   3232 	}
   3233 
   3234 	splx(s);
   3235 	return error;
   3236 }
   3237 
   3238 /*
   3239  * Send a command to the firmware.
   3240  */
   3241 static int
   3242 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3243 {
   3244 	struct iwn_tx_ring *ring = &sc->txq[4];
   3245 	struct iwn_tx_desc *desc;
   3246 	struct iwn_tx_data *data;
   3247 	struct iwn_tx_cmd *cmd;
   3248 	struct mbuf *m;
   3249 	bus_addr_t paddr;
   3250 	int totlen, error;
   3251 
   3252 	desc = &ring->desc[ring->cur];
   3253 	data = &ring->data[ring->cur];
   3254 	totlen = 4 + size;
   3255 
   3256 	if (size > sizeof cmd->data) {
   3257 		/* Command is too large to fit in a descriptor. */
   3258 		if (totlen > MCLBYTES)
   3259 			return EINVAL;
   3260 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3261 		if (m == NULL)
   3262 			return ENOMEM;
   3263 		if (totlen > MHLEN) {
   3264 			MCLGET(m, M_DONTWAIT);
   3265 			if (!(m->m_flags & M_EXT)) {
   3266 				m_freem(m);
   3267 				return ENOMEM;
   3268 			}
   3269 		}
   3270 		cmd = mtod(m, struct iwn_tx_cmd *);
   3271 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3272 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3273 		if (error != 0) {
   3274 			m_freem(m);
   3275 			return error;
   3276 		}
   3277 		data->m = m;
   3278 		paddr = data->map->dm_segs[0].ds_addr;
   3279 	} else {
   3280 		cmd = &ring->cmd[ring->cur];
   3281 		paddr = data->cmd_paddr;
   3282 	}
   3283 
   3284 	cmd->code = code;
   3285 	cmd->flags = 0;
   3286 	cmd->qid = ring->qid;
   3287 	cmd->idx = ring->cur;
   3288 	memcpy(cmd->data, buf, size);
   3289 
   3290 	desc->nsegs = 1;
   3291 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3292 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3293 
   3294 	if (size > sizeof cmd->data) {
   3295 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3296 		    BUS_DMASYNC_PREWRITE);
   3297 	} else {
   3298 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3299 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3300 		    totlen, BUS_DMASYNC_PREWRITE);
   3301 	}
   3302 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3303 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3304 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3305 
   3306 #ifdef notyet
   3307 	/* Update TX scheduler. */
   3308 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3309 #endif
   3310 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3311 
   3312 	/* Kick command ring. */
   3313 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3314 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3315 
   3316 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3317 }
   3318 
   3319 static int
   3320 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3321 {
   3322 	struct iwn4965_node_info hnode;
   3323 	char *src, *dst;
   3324 
   3325 	/*
   3326 	 * We use the node structure for 5000 Series internally (it is
   3327 	 * a superset of the one for 4965AGN). We thus copy the common
   3328 	 * fields before sending the command.
   3329 	 */
   3330 	src = (char *)node;
   3331 	dst = (char *)&hnode;
   3332 	memcpy(dst, src, 48);
   3333 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3334 	memcpy(dst + 48, src + 72, 20);
   3335 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3336 }
   3337 
   3338 static int
   3339 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3340 {
   3341 	/* Direct mapping. */
   3342 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3343 }
   3344 
   3345 static int
   3346 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3347 {
   3348 	struct iwn_node *wn = (void *)ni;
   3349 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3350 	struct iwn_cmd_link_quality linkq;
   3351 	const struct iwn_rate *rinfo;
   3352 	uint8_t txant;
   3353 	int i, txrate;
   3354 
   3355 	/* Use the first valid TX antenna. */
   3356 	txant = IWN_LSB(sc->txchainmask);
   3357 
   3358 	memset(&linkq, 0, sizeof linkq);
   3359 	linkq.id = wn->id;
   3360 	linkq.antmsk_1stream = txant;
   3361 	linkq.antmsk_2stream = IWN_ANT_AB;
   3362 	linkq.ampdu_max = 31;
   3363 	linkq.ampdu_threshold = 3;
   3364 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3365 
   3366 	/* Start at highest available bit-rate. */
   3367 	txrate = rs->rs_nrates - 1;
   3368 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3369 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3370 		linkq.retry[i].plcp = rinfo->plcp;
   3371 		linkq.retry[i].rflags = rinfo->flags;
   3372 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3373 		/* Next retry at immediate lower bit-rate. */
   3374 		if (txrate > 0)
   3375 			txrate--;
   3376 	}
   3377 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3378 }
   3379 
   3380 /*
   3381  * Broadcast node is used to send group-addressed and management frames.
   3382  */
   3383 static int
   3384 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3385 {
   3386 	struct iwn_ops *ops = &sc->ops;
   3387 	struct iwn_node_info node;
   3388 	struct iwn_cmd_link_quality linkq;
   3389 	const struct iwn_rate *rinfo;
   3390 	uint8_t txant;
   3391 	int i, error;
   3392 
   3393 	memset(&node, 0, sizeof node);
   3394 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3395 	node.id = sc->broadcast_id;
   3396 	DPRINTF(("adding broadcast node\n"));
   3397 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3398 		return error;
   3399 
   3400 	/* Use the first valid TX antenna. */
   3401 	txant = IWN_LSB(sc->txchainmask);
   3402 
   3403 	memset(&linkq, 0, sizeof linkq);
   3404 	linkq.id = sc->broadcast_id;
   3405 	linkq.antmsk_1stream = txant;
   3406 	linkq.antmsk_2stream = IWN_ANT_AB;
   3407 	linkq.ampdu_max = 64;
   3408 	linkq.ampdu_threshold = 3;
   3409 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3410 
   3411 	/* Use lowest mandatory bit-rate. */
   3412 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3413 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3414 	linkq.retry[0].plcp = rinfo->plcp;
   3415 	linkq.retry[0].rflags = rinfo->flags;
   3416 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3417 	/* Use same bit-rate for all TX retries. */
   3418 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3419 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3420 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3421 	}
   3422 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3423 }
   3424 
   3425 static void
   3426 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3427 {
   3428 	struct iwn_cmd_led led;
   3429 
   3430 	/* Clear microcode LED ownership. */
   3431 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3432 
   3433 	led.which = which;
   3434 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3435 	led.off = off;
   3436 	led.on = on;
   3437 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3438 }
   3439 
   3440 /*
   3441  * Set the critical temperature at which the firmware will stop the radio
   3442  * and notify us.
   3443  */
   3444 static int
   3445 iwn_set_critical_temp(struct iwn_softc *sc)
   3446 {
   3447 	struct iwn_critical_temp crit;
   3448 	int32_t temp;
   3449 
   3450 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3451 
   3452 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3453 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3454 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3455 		temp = IWN_CTOK(110);
   3456 	else
   3457 		temp = 110;
   3458 	memset(&crit, 0, sizeof crit);
   3459 	crit.tempR = htole32(temp);
   3460 	DPRINTF(("setting critical temperature to %d\n", temp));
   3461 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3462 }
   3463 
   3464 static int
   3465 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3466 {
   3467 	struct iwn_cmd_timing cmd;
   3468 	uint64_t val, mod;
   3469 
   3470 	memset(&cmd, 0, sizeof cmd);
   3471 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3472 	cmd.bintval = htole16(ni->ni_intval);
   3473 	cmd.lintval = htole16(10);
   3474 
   3475 	/* Compute remaining time until next beacon. */
   3476 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3477 	mod = le64toh(cmd.tstamp) % val;
   3478 	cmd.binitval = htole32((uint32_t)(val - mod));
   3479 
   3480 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3481 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3482 
   3483 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3484 }
   3485 
   3486 static void
   3487 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3488 {
   3489 	/* Adjust TX power if need be (delta >= 3 degC). */
   3490 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3491 	if (abs(temp - sc->temp) >= 3) {
   3492 		/* Record temperature of last calibration. */
   3493 		sc->temp = temp;
   3494 		(void)iwn4965_set_txpower(sc, 1);
   3495 	}
   3496 }
   3497 
   3498 /*
   3499  * Set TX power for current channel (each rate has its own power settings).
   3500  * This function takes into account the regulatory information from EEPROM,
   3501  * the current temperature and the current voltage.
   3502  */
   3503 static int
   3504 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3505 {
   3506 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3507 #define fdivround(a, b, n)	\
   3508 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3509 /* Linear interpolation. */
   3510 #define interpolate(x, x1, y1, x2, y2, n)	\
   3511 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3512 
   3513 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3514 	struct ieee80211com *ic = &sc->sc_ic;
   3515 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3516 	struct ieee80211_channel *ch;
   3517 	struct iwn4965_cmd_txpower cmd;
   3518 	struct iwn4965_eeprom_chan_samples *chans;
   3519 	const uint8_t *rf_gain, *dsp_gain;
   3520 	int32_t vdiff, tdiff;
   3521 	int i, c, grp, maxpwr;
   3522 	uint8_t chan;
   3523 
   3524 	/* Retrieve current channel from last RXON. */
   3525 	chan = sc->rxon.chan;
   3526 	DPRINTF(("setting TX power for channel %d\n", chan));
   3527 	ch = &ic->ic_channels[chan];
   3528 
   3529 	memset(&cmd, 0, sizeof cmd);
   3530 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3531 	cmd.chan = chan;
   3532 
   3533 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3534 		maxpwr   = sc->maxpwr5GHz;
   3535 		rf_gain  = iwn4965_rf_gain_5ghz;
   3536 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3537 	} else {
   3538 		maxpwr   = sc->maxpwr2GHz;
   3539 		rf_gain  = iwn4965_rf_gain_2ghz;
   3540 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3541 	}
   3542 
   3543 	/* Compute voltage compensation. */
   3544 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3545 	if (vdiff > 0)
   3546 		vdiff *= 2;
   3547 	if (abs(vdiff) > 2)
   3548 		vdiff = 0;
   3549 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3550 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3551 
   3552 	/* Get channel attenuation group. */
   3553 	if (chan <= 20)		/* 1-20 */
   3554 		grp = 4;
   3555 	else if (chan <= 43)	/* 34-43 */
   3556 		grp = 0;
   3557 	else if (chan <= 70)	/* 44-70 */
   3558 		grp = 1;
   3559 	else if (chan <= 124)	/* 71-124 */
   3560 		grp = 2;
   3561 	else			/* 125-200 */
   3562 		grp = 3;
   3563 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3564 
   3565 	/* Get channel sub-band. */
   3566 	for (i = 0; i < IWN_NBANDS; i++)
   3567 		if (sc->bands[i].lo != 0 &&
   3568 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3569 			break;
   3570 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3571 		return EINVAL;
   3572 	chans = sc->bands[i].chans;
   3573 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3574 
   3575 	for (c = 0; c < 2; c++) {
   3576 		uint8_t power, gain, temp;
   3577 		int maxchpwr, pwr, ridx, idx;
   3578 
   3579 		power = interpolate(chan,
   3580 		    chans[0].num, chans[0].samples[c][1].power,
   3581 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3582 		gain  = interpolate(chan,
   3583 		    chans[0].num, chans[0].samples[c][1].gain,
   3584 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3585 		temp  = interpolate(chan,
   3586 		    chans[0].num, chans[0].samples[c][1].temp,
   3587 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3588 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3589 		    c, power, gain, temp));
   3590 
   3591 		/* Compute temperature compensation. */
   3592 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3593 		DPRINTF(("temperature compensation=%d (current=%d, "
   3594 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3595 
   3596 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3597 			/* Convert dBm to half-dBm. */
   3598 			maxchpwr = sc->maxpwr[chan] * 2;
   3599 			if ((ridx / 8) & 1)
   3600 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3601 
   3602 			pwr = maxpwr;
   3603 
   3604 			/* Adjust TX power based on rate. */
   3605 			if ((ridx % 8) == 5)
   3606 				pwr -= 15;	/* OFDM48: -7.5dB */
   3607 			else if ((ridx % 8) == 6)
   3608 				pwr -= 17;	/* OFDM54: -8.5dB */
   3609 			else if ((ridx % 8) == 7)
   3610 				pwr -= 20;	/* OFDM60: -10dB */
   3611 			else
   3612 				pwr -= 10;	/* Others: -5dB */
   3613 
   3614 			/* Do not exceed channel max TX power. */
   3615 			if (pwr > maxchpwr)
   3616 				pwr = maxchpwr;
   3617 
   3618 			idx = gain - (pwr - power) - tdiff - vdiff;
   3619 			if ((ridx / 8) & 1)	/* MIMO */
   3620 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3621 
   3622 			if (cmd.band == 0)
   3623 				idx += 9;	/* 5GHz */
   3624 			if (ridx == IWN_RIDX_MAX)
   3625 				idx += 5;	/* CCK */
   3626 
   3627 			/* Make sure idx stays in a valid range. */
   3628 			if (idx < 0)
   3629 				idx = 0;
   3630 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3631 				idx = IWN4965_MAX_PWR_INDEX;
   3632 
   3633 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3634 			    c, ridx, idx));
   3635 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3636 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3637 		}
   3638 	}
   3639 
   3640 	DPRINTF(("setting TX power for chan %d\n", chan));
   3641 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3642 
   3643 #undef interpolate
   3644 #undef fdivround
   3645 }
   3646 
   3647 static int
   3648 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3649 {
   3650 	struct iwn5000_cmd_txpower cmd;
   3651 
   3652 	/*
   3653 	 * TX power calibration is handled automatically by the firmware
   3654 	 * for 5000 Series.
   3655 	 */
   3656 	memset(&cmd, 0, sizeof cmd);
   3657 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3658 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3659 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3660 	DPRINTF(("setting TX power\n"));
   3661 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3662 }
   3663 
   3664 /*
   3665  * Retrieve the maximum RSSI (in dBm) among receivers.
   3666  */
   3667 static int
   3668 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3669 {
   3670 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3671 	uint8_t mask, agc;
   3672 	int rssi;
   3673 
   3674 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3675 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3676 
   3677 	rssi = 0;
   3678 	if (mask & IWN_ANT_A)
   3679 		rssi = MAX(rssi, phy->rssi[0]);
   3680 	if (mask & IWN_ANT_B)
   3681 		rssi = MAX(rssi, phy->rssi[2]);
   3682 	if (mask & IWN_ANT_C)
   3683 		rssi = MAX(rssi, phy->rssi[4]);
   3684 
   3685 	return rssi - agc - IWN_RSSI_TO_DBM;
   3686 }
   3687 
   3688 static int
   3689 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3690 {
   3691 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3692 	uint8_t agc;
   3693 	int rssi;
   3694 
   3695 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3696 
   3697 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3698 		   le16toh(phy->rssi[1]) & 0xff);
   3699 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3700 
   3701 	return rssi - agc - IWN_RSSI_TO_DBM;
   3702 }
   3703 
   3704 /*
   3705  * Retrieve the average noise (in dBm) among receivers.
   3706  */
   3707 static int
   3708 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3709 {
   3710 	int i, total, nbant, noise;
   3711 
   3712 	total = nbant = 0;
   3713 	for (i = 0; i < 3; i++) {
   3714 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3715 			continue;
   3716 		total += noise;
   3717 		nbant++;
   3718 	}
   3719 	/* There should be at least one antenna but check anyway. */
   3720 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3721 }
   3722 
   3723 /*
   3724  * Compute temperature (in degC) from last received statistics.
   3725  */
   3726 static int
   3727 iwn4965_get_temperature(struct iwn_softc *sc)
   3728 {
   3729 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3730 	int32_t r1, r2, r3, r4, temp;
   3731 
   3732 	r1 = le32toh(uc->temp[0].chan20MHz);
   3733 	r2 = le32toh(uc->temp[1].chan20MHz);
   3734 	r3 = le32toh(uc->temp[2].chan20MHz);
   3735 	r4 = le32toh(sc->rawtemp);
   3736 
   3737 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3738 		return 0;
   3739 
   3740 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3741 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3742 	/* Compute temperature in Kelvin. */
   3743 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3744 	temp = (temp * 97) / 100 + 8;
   3745 
   3746 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3747 	return IWN_KTOC(temp);
   3748 }
   3749 
   3750 static int
   3751 iwn5000_get_temperature(struct iwn_softc *sc)
   3752 {
   3753 	int32_t temp;
   3754 
   3755 	/*
   3756 	 * Temperature is not used by the driver for 5000 Series because
   3757 	 * TX power calibration is handled by firmware.  We export it to
   3758 	 * users through the sensor framework though.
   3759 	 */
   3760 	temp = le32toh(sc->rawtemp);
   3761 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3762 		temp = (temp / -5) + sc->temp_off;
   3763 		temp = IWN_KTOC(temp);
   3764 	}
   3765 	return temp;
   3766 }
   3767 
   3768 /*
   3769  * Initialize sensitivity calibration state machine.
   3770  */
   3771 static int
   3772 iwn_init_sensitivity(struct iwn_softc *sc)
   3773 {
   3774 	struct iwn_ops *ops = &sc->ops;
   3775 	struct iwn_calib_state *calib = &sc->calib;
   3776 	uint32_t flags;
   3777 	int error;
   3778 
   3779 	/* Reset calibration state machine. */
   3780 	memset(calib, 0, sizeof (*calib));
   3781 	calib->state = IWN_CALIB_STATE_INIT;
   3782 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3783 	/* Set initial correlation values. */
   3784 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3785 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3786 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3787 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3788 	calib->cck_x4      = 125;
   3789 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3790 	calib->energy_cck  = sc->limits->energy_cck;
   3791 
   3792 	/* Write initial sensitivity. */
   3793 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3794 		return error;
   3795 
   3796 	/* Write initial gains. */
   3797 	if ((error = ops->init_gains(sc)) != 0)
   3798 		return error;
   3799 
   3800 	/* Request statistics at each beacon interval. */
   3801 	flags = 0;
   3802 	DPRINTF(("sending request for statistics\n"));
   3803 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3804 }
   3805 
   3806 /*
   3807  * Collect noise and RSSI statistics for the first 20 beacons received
   3808  * after association and use them to determine connected antennas and
   3809  * to set differential gains.
   3810  */
   3811 static void
   3812 iwn_collect_noise(struct iwn_softc *sc,
   3813     const struct iwn_rx_general_stats *stats)
   3814 {
   3815 	struct iwn_ops *ops = &sc->ops;
   3816 	struct iwn_calib_state *calib = &sc->calib;
   3817 	uint32_t val;
   3818 	int i;
   3819 
   3820 	/* Accumulate RSSI and noise for all 3 antennas. */
   3821 	for (i = 0; i < 3; i++) {
   3822 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3823 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3824 	}
   3825 	/* NB: We update differential gains only once after 20 beacons. */
   3826 	if (++calib->nbeacons < 20)
   3827 		return;
   3828 
   3829 	/* Determine highest average RSSI. */
   3830 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3831 	val = MAX(calib->rssi[2], val);
   3832 
   3833 	/* Determine which antennas are connected. */
   3834 	sc->chainmask = sc->rxchainmask;
   3835 	for (i = 0; i < 3; i++)
   3836 		if (val - calib->rssi[i] > 15 * 20)
   3837 			sc->chainmask &= ~(1 << i);
   3838 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3839 	    sc->rxchainmask, sc->chainmask));
   3840 
   3841 	/* If none of the TX antennas are connected, keep at least one. */
   3842 	if ((sc->chainmask & sc->txchainmask) == 0)
   3843 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3844 
   3845 	(void)ops->set_gains(sc);
   3846 	calib->state = IWN_CALIB_STATE_RUN;
   3847 
   3848 #ifdef notyet
   3849 	/* XXX Disable RX chains with no antennas connected. */
   3850 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3851 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3852 #endif
   3853 
   3854 	/* Enable power-saving mode if requested by user. */
   3855 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3856 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3857 }
   3858 
   3859 static int
   3860 iwn4965_init_gains(struct iwn_softc *sc)
   3861 {
   3862 	struct iwn_phy_calib_gain cmd;
   3863 
   3864 	memset(&cmd, 0, sizeof cmd);
   3865 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3866 	/* Differential gains initially set to 0 for all 3 antennas. */
   3867 	DPRINTF(("setting initial differential gains\n"));
   3868 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3869 }
   3870 
   3871 static int
   3872 iwn5000_init_gains(struct iwn_softc *sc)
   3873 {
   3874 	struct iwn_phy_calib cmd;
   3875 
   3876 	memset(&cmd, 0, sizeof cmd);
   3877 	cmd.code = sc->reset_noise_gain;
   3878 	cmd.ngroups = 1;
   3879 	cmd.isvalid = 1;
   3880 	DPRINTF(("setting initial differential gains\n"));
   3881 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3882 }
   3883 
   3884 static int
   3885 iwn4965_set_gains(struct iwn_softc *sc)
   3886 {
   3887 	struct iwn_calib_state *calib = &sc->calib;
   3888 	struct iwn_phy_calib_gain cmd;
   3889 	int i, delta, noise;
   3890 
   3891 	/* Get minimal noise among connected antennas. */
   3892 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3893 	for (i = 0; i < 3; i++)
   3894 		if (sc->chainmask & (1 << i))
   3895 			noise = MIN(calib->noise[i], noise);
   3896 
   3897 	memset(&cmd, 0, sizeof cmd);
   3898 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3899 	/* Set differential gains for connected antennas. */
   3900 	for (i = 0; i < 3; i++) {
   3901 		if (sc->chainmask & (1 << i)) {
   3902 			/* Compute attenuation (in unit of 1.5dB). */
   3903 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3904 			/* NB: delta <= 0 */
   3905 			/* Limit to [-4.5dB,0]. */
   3906 			cmd.gain[i] = MIN(abs(delta), 3);
   3907 			if (delta < 0)
   3908 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3909 		}
   3910 	}
   3911 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3912 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3913 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3914 }
   3915 
   3916 static int
   3917 iwn5000_set_gains(struct iwn_softc *sc)
   3918 {
   3919 	struct iwn_calib_state *calib = &sc->calib;
   3920 	struct iwn_phy_calib_gain cmd;
   3921 	int i, ant, div, delta;
   3922 
   3923 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3924 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3925 
   3926 	memset(&cmd, 0, sizeof cmd);
   3927 	cmd.code = sc->noise_gain;
   3928 	cmd.ngroups = 1;
   3929 	cmd.isvalid = 1;
   3930 	/* Get first available RX antenna as referential. */
   3931 	ant = IWN_LSB(sc->rxchainmask);
   3932 	/* Set differential gains for other antennas. */
   3933 	for (i = ant + 1; i < 3; i++) {
   3934 		if (sc->chainmask & (1 << i)) {
   3935 			/* The delta is relative to antenna "ant". */
   3936 			delta = ((int32_t)calib->noise[ant] -
   3937 			    (int32_t)calib->noise[i]) / div;
   3938 			/* Limit to [-4.5dB,+4.5dB]. */
   3939 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3940 			if (delta < 0)
   3941 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3942 		}
   3943 	}
   3944 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3945 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3946 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3947 }
   3948 
   3949 /*
   3950  * Tune RF RX sensitivity based on the number of false alarms detected
   3951  * during the last beacon period.
   3952  */
   3953 static void
   3954 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3955 {
   3956 #define inc(val, inc, max)			\
   3957 	if ((val) < (max)) {			\
   3958 		if ((val) < (max) - (inc))	\
   3959 			(val) += (inc);		\
   3960 		else				\
   3961 			(val) = (max);		\
   3962 		needs_update = 1;		\
   3963 	}
   3964 #define dec(val, dec, min)			\
   3965 	if ((val) > (min)) {			\
   3966 		if ((val) > (min) + (dec))	\
   3967 			(val) -= (dec);		\
   3968 		else				\
   3969 			(val) = (min);		\
   3970 		needs_update = 1;		\
   3971 	}
   3972 
   3973 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3974 	struct iwn_calib_state *calib = &sc->calib;
   3975 	uint32_t val, rxena, fa;
   3976 	uint32_t energy[3], energy_min;
   3977 	uint8_t noise[3], noise_ref;
   3978 	int i, needs_update = 0;
   3979 
   3980 	/* Check that we've been enabled long enough. */
   3981 	if ((rxena = le32toh(stats->general.load)) == 0)
   3982 		return;
   3983 
   3984 	/* Compute number of false alarms since last call for OFDM. */
   3985 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3986 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3987 	fa *= 200 * 1024;	/* 200TU */
   3988 
   3989 	/* Save counters values for next call. */
   3990 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3991 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3992 
   3993 	if (fa > 50 * rxena) {
   3994 		/* High false alarm count, decrease sensitivity. */
   3995 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3996 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3997 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3998 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3999 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4000 
   4001 	} else if (fa < 5 * rxena) {
   4002 		/* Low false alarm count, increase sensitivity. */
   4003 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4004 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4005 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4006 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4007 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4008 	}
   4009 
   4010 	/* Compute maximum noise among 3 receivers. */
   4011 	for (i = 0; i < 3; i++)
   4012 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4013 	val = MAX(noise[0], noise[1]);
   4014 	val = MAX(noise[2], val);
   4015 	/* Insert it into our samples table. */
   4016 	calib->noise_samples[calib->cur_noise_sample] = val;
   4017 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4018 
   4019 	/* Compute maximum noise among last 20 samples. */
   4020 	noise_ref = calib->noise_samples[0];
   4021 	for (i = 1; i < 20; i++)
   4022 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4023 
   4024 	/* Compute maximum energy among 3 receivers. */
   4025 	for (i = 0; i < 3; i++)
   4026 		energy[i] = le32toh(stats->general.energy[i]);
   4027 	val = MIN(energy[0], energy[1]);
   4028 	val = MIN(energy[2], val);
   4029 	/* Insert it into our samples table. */
   4030 	calib->energy_samples[calib->cur_energy_sample] = val;
   4031 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4032 
   4033 	/* Compute minimum energy among last 10 samples. */
   4034 	energy_min = calib->energy_samples[0];
   4035 	for (i = 1; i < 10; i++)
   4036 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4037 	energy_min += 6;
   4038 
   4039 	/* Compute number of false alarms since last call for CCK. */
   4040 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4041 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4042 	fa *= 200 * 1024;	/* 200TU */
   4043 
   4044 	/* Save counters values for next call. */
   4045 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4046 	calib->fa_cck = le32toh(stats->cck.fa);
   4047 
   4048 	if (fa > 50 * rxena) {
   4049 		/* High false alarm count, decrease sensitivity. */
   4050 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4051 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4052 		calib->low_fa = 0;
   4053 
   4054 		if (calib->cck_x4 > 160) {
   4055 			calib->noise_ref = noise_ref;
   4056 			if (calib->energy_cck > 2)
   4057 				dec(calib->energy_cck, 2, energy_min);
   4058 		}
   4059 		if (calib->cck_x4 < 160) {
   4060 			calib->cck_x4 = 161;
   4061 			needs_update = 1;
   4062 		} else
   4063 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4064 
   4065 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4066 
   4067 	} else if (fa < 5 * rxena) {
   4068 		/* Low false alarm count, increase sensitivity. */
   4069 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4070 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4071 		calib->low_fa++;
   4072 
   4073 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4074 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4075 		     calib->low_fa > 100)) {
   4076 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4077 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4078 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4079 		}
   4080 	} else {
   4081 		/* Not worth to increase or decrease sensitivity. */
   4082 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4083 		calib->low_fa = 0;
   4084 		calib->noise_ref = noise_ref;
   4085 
   4086 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4087 			/* Previous interval had many false alarms. */
   4088 			dec(calib->energy_cck, 8, energy_min);
   4089 		}
   4090 		calib->cck_state = IWN_CCK_STATE_INIT;
   4091 	}
   4092 
   4093 	if (needs_update)
   4094 		(void)iwn_send_sensitivity(sc);
   4095 #undef dec
   4096 #undef inc
   4097 }
   4098 
   4099 static int
   4100 iwn_send_sensitivity(struct iwn_softc *sc)
   4101 {
   4102 	struct iwn_calib_state *calib = &sc->calib;
   4103 	struct iwn_enhanced_sensitivity_cmd cmd;
   4104 	int len;
   4105 
   4106 	memset(&cmd, 0, sizeof cmd);
   4107 	len = sizeof (struct iwn_sensitivity_cmd);
   4108 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4109 	/* OFDM modulation. */
   4110 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4111 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4112 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4113 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4114 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4115 	cmd.energy_ofdm_th   = htole16(62);
   4116 	/* CCK modulation. */
   4117 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4118 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4119 	cmd.energy_cck       = htole16(calib->energy_cck);
   4120 	/* Barker modulation: use default values. */
   4121 	cmd.corr_barker      = htole16(190);
   4122 	cmd.corr_barker_mrc  = htole16(390);
   4123 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4124 		goto send;
   4125 	/* Enhanced sensitivity settings. */
   4126 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4127 	cmd.ofdm_det_slope_mrc = htole16(668);
   4128 	cmd.ofdm_det_icept_mrc = htole16(4);
   4129 	cmd.ofdm_det_slope     = htole16(486);
   4130 	cmd.ofdm_det_icept     = htole16(37);
   4131 	cmd.cck_det_slope_mrc  = htole16(853);
   4132 	cmd.cck_det_icept_mrc  = htole16(4);
   4133 	cmd.cck_det_slope      = htole16(476);
   4134 	cmd.cck_det_icept      = htole16(99);
   4135 send:
   4136 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4137 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4138 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4139 	    calib->energy_cck));
   4140 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4141 }
   4142 
   4143 /*
   4144  * Set STA mode power saving level (between 0 and 5).
   4145  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4146  */
   4147 static int
   4148 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4149 {
   4150 	struct iwn_pmgt_cmd cmd;
   4151 	const struct iwn_pmgt *pmgt;
   4152 	uint32_t maxp, skip_dtim;
   4153 	pcireg_t reg;
   4154 	int i;
   4155 
   4156 	/* Select which PS parameters to use. */
   4157 	if (dtim <= 2)
   4158 		pmgt = &iwn_pmgt[0][level];
   4159 	else if (dtim <= 10)
   4160 		pmgt = &iwn_pmgt[1][level];
   4161 	else
   4162 		pmgt = &iwn_pmgt[2][level];
   4163 
   4164 	memset(&cmd, 0, sizeof cmd);
   4165 	if (level != 0)	/* not CAM */
   4166 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4167 	if (level == 5)
   4168 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4169 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4170 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4171 	    sc->sc_cap_off + PCIE_LCSR);
   4172 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4173 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4174 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4175 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4176 
   4177 	if (dtim == 0) {
   4178 		dtim = 1;
   4179 		skip_dtim = 0;
   4180 	} else
   4181 		skip_dtim = pmgt->skip_dtim;
   4182 	if (skip_dtim != 0) {
   4183 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4184 		maxp = pmgt->intval[4];
   4185 		if (maxp == (uint32_t)-1)
   4186 			maxp = dtim * (skip_dtim + 1);
   4187 		else if (maxp > dtim)
   4188 			maxp = (maxp / dtim) * dtim;
   4189 	} else
   4190 		maxp = dtim;
   4191 	for (i = 0; i < 5; i++)
   4192 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4193 
   4194 	DPRINTF(("setting power saving level to %d\n", level));
   4195 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4196 }
   4197 
   4198 int
   4199 iwn5000_runtime_calib(struct iwn_softc *sc)
   4200 {
   4201 	struct iwn5000_calib_config cmd;
   4202 
   4203 	memset(&cmd, 0, sizeof cmd);
   4204 	cmd.ucode.once.enable = 0xffffffff;
   4205 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4206 	DPRINTF(("configuring runtime calibration\n"));
   4207 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4208 }
   4209 
   4210 static int
   4211 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4212 {
   4213 	struct iwn_bluetooth bluetooth;
   4214 
   4215 	memset(&bluetooth, 0, sizeof bluetooth);
   4216 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4217 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4218 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4219 
   4220 	DPRINTF(("configuring bluetooth coexistence\n"));
   4221 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4222 }
   4223 
   4224 static int
   4225 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4226 {
   4227 	uint8_t prio_table[16];
   4228 
   4229 	memset(&prio_table, 0, sizeof prio_table);
   4230 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4231 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4232 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4233 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4234 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4235 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4236 	prio_table[ 6] =  6;	/* dtim				*/
   4237 	prio_table[ 7] =  8;	/* scan52			*/
   4238 	prio_table[ 8] = 10;	/* scan24			*/
   4239 
   4240 	DPRINTF(("sending priority lookup table\n"));
   4241 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4242 	               &prio_table, sizeof prio_table, 0);
   4243 }
   4244 
   4245 static int
   4246 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4247     size_t len)
   4248 {
   4249 	struct iwn_btcoex_prot btprot;
   4250 	int error;
   4251 
   4252 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4253 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4254 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4255 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4256 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4257 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4258 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4259 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4260 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4261 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4262 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4263 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4264 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4265 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4266 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4267 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4268 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4269 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4270 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4271 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4272 	basic->reduce_txpower = 0; /* as not implemented */
   4273 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4274 
   4275 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4276 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4277 	if (error != 0) {
   4278 		aprint_error_dev(sc->sc_dev,
   4279 			"could not configure advanced bluetooth coexistence\n");
   4280 		return error;
   4281 	}
   4282 
   4283 	error = iwn_config_bt_coex_prio_table(sc);
   4284 	if (error != 0) {
   4285 		aprint_error_dev(sc->sc_dev,
   4286 			"could not configure send BT priority table\n");
   4287 		return error;
   4288 	}
   4289 
   4290 	/* Force BT state machine change */
   4291 	memset(&btprot, 0, sizeof btprot);
   4292 	btprot.open = 1;
   4293 	btprot.type = 1;
   4294 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4295 	if (error != 0) {
   4296 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4297 		return error;
   4298 	}
   4299 
   4300 	btprot.open = 0;
   4301 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4302 	if (error != 0) {
   4303 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4304 		return error;
   4305 	}
   4306 	return 0;
   4307 }
   4308 
   4309 static int
   4310 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4311 {
   4312 	struct iwn_bt_adv1 d;
   4313 
   4314 	memset(&d, 0, sizeof d);
   4315 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4316 	d.tx_prio_boost = 0;
   4317 	d.rx_prio_boost = 0;
   4318 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4319 }
   4320 
   4321 static int
   4322 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4323 {
   4324 	struct iwn_bt_adv2 d;
   4325 
   4326 	memset(&d, 0, sizeof d);
   4327 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4328 	d.tx_prio_boost = 0;
   4329 	d.rx_prio_boost = 0;
   4330 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4331 }
   4332 
   4333 static int
   4334 iwn_config(struct iwn_softc *sc)
   4335 {
   4336 	struct iwn_ops *ops = &sc->ops;
   4337 	struct ieee80211com *ic = &sc->sc_ic;
   4338 	struct ifnet *ifp = ic->ic_ifp;
   4339 	uint32_t txmask;
   4340 	uint16_t rxchain;
   4341 	int error;
   4342 
   4343 	error = ops->config_bt_coex(sc);
   4344 	if (error != 0) {
   4345 		aprint_error_dev(sc->sc_dev,
   4346 			"could not configure bluetooth coexistence\n");
   4347 		return error;
   4348 	}
   4349 
   4350 	/* Set radio temperature sensor offset. */
   4351 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4352 		error = iwn6000_temp_offset_calib(sc);
   4353 		if (error != 0) {
   4354 			aprint_error_dev(sc->sc_dev,
   4355 			    "could not set temperature offset\n");
   4356 			return error;
   4357 		}
   4358 	}
   4359 
   4360 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4361 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4362 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4363 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4364 		error = iwn2000_temp_offset_calib(sc);
   4365 		if (error != 0) {
   4366 			aprint_error_dev(sc->sc_dev,
   4367 			    "could not set temperature offset\n");
   4368 			return error;
   4369 		}
   4370 	}
   4371 
   4372 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4373 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4374 		/* Configure runtime DC calibration. */
   4375 		error = iwn5000_runtime_calib(sc);
   4376 		if (error != 0) {
   4377 			aprint_error_dev(sc->sc_dev,
   4378 			    "could not configure runtime calibration\n");
   4379 			return error;
   4380 		}
   4381 	}
   4382 
   4383 	/* Configure valid TX chains for 5000 Series. */
   4384 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4385 		txmask = htole32(sc->txchainmask);
   4386 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4387 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4388 		    sizeof txmask, 0);
   4389 		if (error != 0) {
   4390 			aprint_error_dev(sc->sc_dev,
   4391 			    "could not configure valid TX chains\n");
   4392 			return error;
   4393 		}
   4394 	}
   4395 
   4396 	/* Set mode, channel, RX filter and enable RX. */
   4397 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4398 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4399 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4400 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4401 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4402 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4403 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4404 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4405 	switch (ic->ic_opmode) {
   4406 	case IEEE80211_M_STA:
   4407 		sc->rxon.mode = IWN_MODE_STA;
   4408 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4409 		break;
   4410 	case IEEE80211_M_MONITOR:
   4411 		sc->rxon.mode = IWN_MODE_MONITOR;
   4412 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4413 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4414 		break;
   4415 	default:
   4416 		/* Should not get there. */
   4417 		break;
   4418 	}
   4419 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4420 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4421 	sc->rxon.ht_single_mask = 0xff;
   4422 	sc->rxon.ht_dual_mask = 0xff;
   4423 	sc->rxon.ht_triple_mask = 0xff;
   4424 	rxchain =
   4425 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4426 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4427 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4428 	sc->rxon.rxchain = htole16(rxchain);
   4429 	DPRINTF(("setting configuration\n"));
   4430 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4431 	if (error != 0) {
   4432 		aprint_error_dev(sc->sc_dev,
   4433 		    "RXON command failed\n");
   4434 		return error;
   4435 	}
   4436 
   4437 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4438 		aprint_error_dev(sc->sc_dev,
   4439 		    "could not add broadcast node\n");
   4440 		return error;
   4441 	}
   4442 
   4443 	/* Configuration has changed, set TX power accordingly. */
   4444 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4445 		aprint_error_dev(sc->sc_dev,
   4446 		    "could not set TX power\n");
   4447 		return error;
   4448 	}
   4449 
   4450 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4451 		aprint_error_dev(sc->sc_dev,
   4452 		    "could not set critical temperature\n");
   4453 		return error;
   4454 	}
   4455 
   4456 	/* Set power saving level to CAM during initialization. */
   4457 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4458 		aprint_error_dev(sc->sc_dev,
   4459 		    "could not set power saving level\n");
   4460 		return error;
   4461 	}
   4462 	return 0;
   4463 }
   4464 
   4465 static uint16_t
   4466 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4467     uint8_t n_probes)
   4468 {
   4469 	/* No channel? Default to 2GHz settings */
   4470 	if (flags & IEEE80211_CHAN_2GHZ)
   4471 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4472 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4473 
   4474 	/* 5GHz dwell time */
   4475 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4476 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4477 }
   4478 
   4479 /*
   4480  * Limit the total dwell time to 85% of the beacon interval.
   4481  *
   4482  * Returns the dwell time in milliseconds.
   4483  */
   4484 static uint16_t
   4485 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4486 {
   4487 	struct ieee80211com *ic = &sc->sc_ic;
   4488 	struct ieee80211_node *ni = ic->ic_bss;
   4489 	int bintval = 0;
   4490 
   4491 	/* bintval is in TU (1.024mS) */
   4492 	if (ni != NULL)
   4493 		bintval = ni->ni_intval;
   4494 
   4495 	/*
   4496 	 * If it's non-zero, we should calculate the minimum of
   4497 	 * it and the DWELL_BASE.
   4498 	 *
   4499 	 * XXX Yes, the math should take into account that bintval
   4500 	 * is 1.024mS, not 1mS..
   4501 	 */
   4502 	if (bintval > 0)
   4503 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4504 
   4505 	/* No association context? Default */
   4506 	return IWN_PASSIVE_DWELL_BASE;
   4507 }
   4508 
   4509 static uint16_t
   4510 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4511 {
   4512 	uint16_t passive;
   4513 	if (flags & IEEE80211_CHAN_2GHZ)
   4514 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4515 	else
   4516 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4517 
   4518 	/* Clamp to the beacon interval if we're associated */
   4519 	return iwn_limit_dwell(sc, passive);
   4520 }
   4521 
   4522 static int
   4523 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4524 {
   4525 	struct ieee80211com *ic = &sc->sc_ic;
   4526 	struct iwn_scan_hdr *hdr;
   4527 	struct iwn_cmd_data *tx;
   4528 	struct iwn_scan_essid *essid;
   4529 	struct iwn_scan_chan *chan;
   4530 	struct ieee80211_frame *wh;
   4531 	struct ieee80211_rateset *rs;
   4532 	struct ieee80211_channel *c;
   4533 	uint8_t *buf, *frm;
   4534 	uint16_t rxchain, dwell_active, dwell_passive;
   4535 	uint8_t txant;
   4536 	int buflen, error, is_active;
   4537 
   4538 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4539 	if (buf == NULL) {
   4540 		aprint_error_dev(sc->sc_dev,
   4541 		    "could not allocate buffer for scan command\n");
   4542 		return ENOMEM;
   4543 	}
   4544 	hdr = (struct iwn_scan_hdr *)buf;
   4545 	/*
   4546 	 * Move to the next channel if no frames are received within 10ms
   4547 	 * after sending the probe request.
   4548 	 */
   4549 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4550 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4551 
   4552 	/* Select antennas for scanning. */
   4553 	rxchain =
   4554 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4555 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4556 	    IWN_RXCHAIN_DRIVER_FORCE;
   4557 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4558 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4559 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4560 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4561 	} else	/* Use all available RX antennas. */
   4562 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4563 	hdr->rxchain = htole16(rxchain);
   4564 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4565 
   4566 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4567 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4568 	tx->id = sc->broadcast_id;
   4569 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4570 
   4571 	if (flags & IEEE80211_CHAN_5GHZ) {
   4572 		hdr->crc_threshold = 0xffff;
   4573 		/* Send probe requests at 6Mbps. */
   4574 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4575 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4576 	} else {
   4577 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4578 		/* Send probe requests at 1Mbps. */
   4579 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4580 		tx->rflags = IWN_RFLAG_CCK;
   4581 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4582 	}
   4583 	/* Use the first valid TX antenna. */
   4584 	txant = IWN_LSB(sc->txchainmask);
   4585 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4586 
   4587 	/*
   4588 	 * Only do active scanning if we're announcing a probe request
   4589 	 * for a given SSID (or more, if we ever add it to the driver.)
   4590 	 */
   4591 	is_active = 0;
   4592 
   4593 	essid = (struct iwn_scan_essid *)(tx + 1);
   4594 	if (ic->ic_des_esslen != 0) {
   4595 		essid[0].id = IEEE80211_ELEMID_SSID;
   4596 		essid[0].len = ic->ic_des_esslen;
   4597 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4598 
   4599 		is_active = 1;
   4600 	}
   4601 	/*
   4602 	 * Build a probe request frame.  Most of the following code is a
   4603 	 * copy & paste of what is done in net80211.
   4604 	 */
   4605 	wh = (struct ieee80211_frame *)(essid + 20);
   4606 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4607 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4608 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4609 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4610 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4611 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4612 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4613 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4614 
   4615 	frm = (uint8_t *)(wh + 1);
   4616 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4617 	frm = ieee80211_add_rates(frm, rs);
   4618 #ifndef IEEE80211_NO_HT
   4619 	if (ic->ic_flags & IEEE80211_F_HTON)
   4620 		frm = ieee80211_add_htcaps(frm, ic);
   4621 #endif
   4622 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4623 		frm = ieee80211_add_xrates(frm, rs);
   4624 
   4625 	/* Set length of probe request. */
   4626 	tx->len = htole16(frm - (uint8_t *)wh);
   4627 
   4628 
   4629 	/*
   4630 	 * If active scanning is requested but a certain channel is
   4631 	 * marked passive, we can do active scanning if we detect
   4632 	 * transmissions.
   4633 	 *
   4634 	 * There is an issue with some firmware versions that triggers
   4635 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4636 	 * on a radar channel even though this means that we should NOT
   4637 	 * send probes.
   4638 	 *
   4639 	 * The "good CRC threshold" is the number of frames that we
   4640 	 * need to receive during our dwell time on a channel before
   4641 	 * sending out probes -- setting this to a huge value will
   4642 	 * mean we never reach it, but at the same time work around
   4643 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4644 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4645 	 *
   4646 	 * This was fixed in later versions along with some other
   4647 	 * scan changes, and the threshold behaves as a flag in those
   4648 	 * versions.
   4649 	 */
   4650 
   4651 	/*
   4652 	 * If we're doing active scanning, set the crc_threshold
   4653 	 * to a suitable value.  This is different to active veruss
   4654 	 * passive scanning depending upon the channel flags; the
   4655 	 * firmware will obey that particular check for us.
   4656 	 */
   4657 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4658 		hdr->crc_threshold = is_active ?
   4659 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4660 	else
   4661 		hdr->crc_threshold = is_active ?
   4662 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4663 
   4664 	chan = (struct iwn_scan_chan *)frm;
   4665 	for (c  = &ic->ic_channels[1];
   4666 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4667 		if ((c->ic_flags & flags) != flags)
   4668 			continue;
   4669 
   4670 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4671 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4672 		chan->flags = 0;
   4673 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4674 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4675 		if (ic->ic_des_esslen != 0)
   4676 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4677 
   4678 		/*
   4679 		 * Calculate the active/passive dwell times.
   4680 		 */
   4681 
   4682 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4683 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4684 
   4685 		/* Make sure they're valid */
   4686 		if (dwell_passive <= dwell_active)
   4687 			dwell_passive = dwell_active + 1;
   4688 
   4689 		chan->active = htole16(dwell_active);
   4690 		chan->passive = htole16(dwell_passive);
   4691 
   4692 		chan->dsp_gain = 0x6e;
   4693 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4694 			chan->rf_gain = 0x3b;
   4695 		} else {
   4696 			chan->rf_gain = 0x28;
   4697 		}
   4698 		hdr->nchan++;
   4699 		chan++;
   4700 	}
   4701 
   4702 	buflen = (uint8_t *)chan - buf;
   4703 	hdr->len = htole16(buflen);
   4704 
   4705 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4706 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4707 	free(buf, M_DEVBUF);
   4708 	return error;
   4709 }
   4710 
   4711 static int
   4712 iwn_auth(struct iwn_softc *sc)
   4713 {
   4714 	struct iwn_ops *ops = &sc->ops;
   4715 	struct ieee80211com *ic = &sc->sc_ic;
   4716 	struct ieee80211_node *ni = ic->ic_bss;
   4717 	int error;
   4718 
   4719 	/* Update adapter configuration. */
   4720 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4721 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4722 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4723 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4724 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4725 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4726 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4727 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4728 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4729 	switch (ic->ic_curmode) {
   4730 	case IEEE80211_MODE_11A:
   4731 		sc->rxon.cck_mask  = 0;
   4732 		sc->rxon.ofdm_mask = 0x15;
   4733 		break;
   4734 	case IEEE80211_MODE_11B:
   4735 		sc->rxon.cck_mask  = 0x03;
   4736 		sc->rxon.ofdm_mask = 0;
   4737 		break;
   4738 	default:	/* Assume 802.11b/g. */
   4739 		sc->rxon.cck_mask  = 0x0f;
   4740 		sc->rxon.ofdm_mask = 0x15;
   4741 	}
   4742 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4743 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4744 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4745 	if (error != 0) {
   4746 		aprint_error_dev(sc->sc_dev,
   4747 		    "RXON command failed\n");
   4748 		return error;
   4749 	}
   4750 
   4751 	/* Configuration has changed, set TX power accordingly. */
   4752 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4753 		aprint_error_dev(sc->sc_dev,
   4754 		    "could not set TX power\n");
   4755 		return error;
   4756 	}
   4757 	/*
   4758 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4759 	 * add the broadcast node again.
   4760 	 */
   4761 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4762 		aprint_error_dev(sc->sc_dev,
   4763 		    "could not add broadcast node\n");
   4764 		return error;
   4765 	}
   4766 	return 0;
   4767 }
   4768 
   4769 static int
   4770 iwn_run(struct iwn_softc *sc)
   4771 {
   4772 	struct iwn_ops *ops = &sc->ops;
   4773 	struct ieee80211com *ic = &sc->sc_ic;
   4774 	struct ieee80211_node *ni = ic->ic_bss;
   4775 	struct iwn_node_info node;
   4776 	int error;
   4777 
   4778 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4779 		/* Link LED blinks while monitoring. */
   4780 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4781 		return 0;
   4782 	}
   4783 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4784 		aprint_error_dev(sc->sc_dev,
   4785 		    "could not set timing\n");
   4786 		return error;
   4787 	}
   4788 
   4789 	/* Update adapter configuration. */
   4790 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4791 	/* Short preamble and slot time are negotiated when associating. */
   4792 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4793 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4794 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4795 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4796 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4797 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4798 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4799 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4800 	if (error != 0) {
   4801 		aprint_error_dev(sc->sc_dev,
   4802 		    "could not update configuration\n");
   4803 		return error;
   4804 	}
   4805 
   4806 	/* Configuration has changed, set TX power accordingly. */
   4807 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4808 		aprint_error_dev(sc->sc_dev,
   4809 		    "could not set TX power\n");
   4810 		return error;
   4811 	}
   4812 
   4813 	/* Fake a join to initialize the TX rate. */
   4814 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4815 	iwn_newassoc(ni, 1);
   4816 
   4817 	/* Add BSS node. */
   4818 	memset(&node, 0, sizeof node);
   4819 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4820 	node.id = IWN_ID_BSS;
   4821 #ifdef notyet
   4822 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4823 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4824 #endif
   4825 	DPRINTF(("adding BSS node\n"));
   4826 	error = ops->add_node(sc, &node, 1);
   4827 	if (error != 0) {
   4828 		aprint_error_dev(sc->sc_dev,
   4829 		    "could not add BSS node\n");
   4830 		return error;
   4831 	}
   4832 	DPRINTF(("setting link quality for node %d\n", node.id));
   4833 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4834 		aprint_error_dev(sc->sc_dev,
   4835 		    "could not setup link quality for node %d\n", node.id);
   4836 		return error;
   4837 	}
   4838 
   4839 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4840 		aprint_error_dev(sc->sc_dev,
   4841 		    "could not set sensitivity\n");
   4842 		return error;
   4843 	}
   4844 	/* Start periodic calibration timer. */
   4845 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4846 	sc->calib_cnt = 0;
   4847 	callout_schedule(&sc->calib_to, hz/2);
   4848 
   4849 	/* Link LED always on while associated. */
   4850 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4851 	return 0;
   4852 }
   4853 
   4854 #ifdef IWN_HWCRYPTO
   4855 /*
   4856  * We support CCMP hardware encryption/decryption of unicast frames only.
   4857  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4858  */
   4859 static int
   4860 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4861     struct ieee80211_key *k)
   4862 {
   4863 	struct iwn_softc *sc = ic->ic_softc;
   4864 	struct iwn_ops *ops = &sc->ops;
   4865 	struct iwn_node *wn = (void *)ni;
   4866 	struct iwn_node_info node;
   4867 	uint16_t kflags;
   4868 
   4869 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4870 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4871 		return ieee80211_set_key(ic, ni, k);
   4872 
   4873 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4874 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4875 		kflags |= IWN_KFLAG_GROUP;
   4876 
   4877 	memset(&node, 0, sizeof node);
   4878 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4879 	    sc->broadcast_id : wn->id;
   4880 	node.control = IWN_NODE_UPDATE;
   4881 	node.flags = IWN_FLAG_SET_KEY;
   4882 	node.kflags = htole16(kflags);
   4883 	node.kid = k->k_id;
   4884 	memcpy(node.key, k->k_key, k->k_len);
   4885 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4886 	return ops->add_node(sc, &node, 1);
   4887 }
   4888 
   4889 static void
   4890 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4891     struct ieee80211_key *k)
   4892 {
   4893 	struct iwn_softc *sc = ic->ic_softc;
   4894 	struct iwn_ops *ops = &sc->ops;
   4895 	struct iwn_node *wn = (void *)ni;
   4896 	struct iwn_node_info node;
   4897 
   4898 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4899 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4900 		/* See comment about other ciphers above. */
   4901 		ieee80211_delete_key(ic, ni, k);
   4902 		return;
   4903 	}
   4904 	if (ic->ic_state != IEEE80211_S_RUN)
   4905 		return;	/* Nothing to do. */
   4906 	memset(&node, 0, sizeof node);
   4907 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4908 	    sc->broadcast_id : wn->id;
   4909 	node.control = IWN_NODE_UPDATE;
   4910 	node.flags = IWN_FLAG_SET_KEY;
   4911 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4912 	node.kid = 0xff;
   4913 	DPRINTF(("delete keys for node %d\n", node.id));
   4914 	(void)ops->add_node(sc, &node, 1);
   4915 }
   4916 #endif
   4917 
   4918 /* XXX Added for NetBSD (copied from rev 1.39). */
   4919 
   4920 static int
   4921 iwn_wme_update(struct ieee80211com *ic)
   4922 {
   4923 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4924 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4925 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4926 	const struct wmeParams *wmep;
   4927 	struct iwn_edca_params cmd;
   4928 	int ac;
   4929 
   4930 	/* don't override default WME values if WME is not actually enabled */
   4931 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4932 		return 0;
   4933 	cmd.flags = 0;
   4934 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4935 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4936 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4937 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4938 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4939 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4940 
   4941 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4942 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4943 					cmd.ac[ac].cwmin,
   4944 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4945 	}
   4946 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4947 #undef IWN_USEC
   4948 #undef IWN_EXP2
   4949 }
   4950 
   4951 #ifndef IEEE80211_NO_HT
   4952 /*
   4953  * This function is called by upper layer when an ADDBA request is received
   4954  * from another STA and before the ADDBA response is sent.
   4955  */
   4956 static int
   4957 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4958     uint8_t tid)
   4959 {
   4960 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4961 	struct iwn_softc *sc = ic->ic_softc;
   4962 	struct iwn_ops *ops = &sc->ops;
   4963 	struct iwn_node *wn = (void *)ni;
   4964 	struct iwn_node_info node;
   4965 
   4966 	memset(&node, 0, sizeof node);
   4967 	node.id = wn->id;
   4968 	node.control = IWN_NODE_UPDATE;
   4969 	node.flags = IWN_FLAG_SET_ADDBA;
   4970 	node.addba_tid = tid;
   4971 	node.addba_ssn = htole16(ba->ba_winstart);
   4972 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4973 	    ba->ba_winstart));
   4974 	return ops->add_node(sc, &node, 1);
   4975 }
   4976 
   4977 /*
   4978  * This function is called by upper layer on teardown of an HT-immediate
   4979  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4980  */
   4981 static void
   4982 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4983     uint8_t tid)
   4984 {
   4985 	struct iwn_softc *sc = ic->ic_softc;
   4986 	struct iwn_ops *ops = &sc->ops;
   4987 	struct iwn_node *wn = (void *)ni;
   4988 	struct iwn_node_info node;
   4989 
   4990 	memset(&node, 0, sizeof node);
   4991 	node.id = wn->id;
   4992 	node.control = IWN_NODE_UPDATE;
   4993 	node.flags = IWN_FLAG_SET_DELBA;
   4994 	node.delba_tid = tid;
   4995 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4996 	(void)ops->add_node(sc, &node, 1);
   4997 }
   4998 
   4999 /*
   5000  * This function is called by upper layer when an ADDBA response is received
   5001  * from another STA.
   5002  */
   5003 static int
   5004 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5005     uint8_t tid)
   5006 {
   5007 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5008 	struct iwn_softc *sc = ic->ic_softc;
   5009 	struct iwn_ops *ops = &sc->ops;
   5010 	struct iwn_node *wn = (void *)ni;
   5011 	struct iwn_node_info node;
   5012 	int error;
   5013 
   5014 	/* Enable TX for the specified RA/TID. */
   5015 	wn->disable_tid &= ~(1 << tid);
   5016 	memset(&node, 0, sizeof node);
   5017 	node.id = wn->id;
   5018 	node.control = IWN_NODE_UPDATE;
   5019 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5020 	node.disable_tid = htole16(wn->disable_tid);
   5021 	error = ops->add_node(sc, &node, 1);
   5022 	if (error != 0)
   5023 		return error;
   5024 
   5025 	if ((error = iwn_nic_lock(sc)) != 0)
   5026 		return error;
   5027 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5028 	iwn_nic_unlock(sc);
   5029 	return 0;
   5030 }
   5031 
   5032 static void
   5033 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5034     uint8_t tid)
   5035 {
   5036 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5037 	struct iwn_softc *sc = ic->ic_softc;
   5038 	struct iwn_ops *ops = &sc->ops;
   5039 
   5040 	if (iwn_nic_lock(sc) != 0)
   5041 		return;
   5042 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5043 	iwn_nic_unlock(sc);
   5044 }
   5045 
   5046 static void
   5047 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5048     uint8_t tid, uint16_t ssn)
   5049 {
   5050 	struct iwn_node *wn = (void *)ni;
   5051 	int qid = 7 + tid;
   5052 
   5053 	/* Stop TX scheduler while we're changing its configuration. */
   5054 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5055 	    IWN4965_TXQ_STATUS_CHGACT);
   5056 
   5057 	/* Assign RA/TID translation to the queue. */
   5058 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5059 	    wn->id << 4 | tid);
   5060 
   5061 	/* Enable chain-building mode for the queue. */
   5062 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5063 
   5064 	/* Set starting sequence number from the ADDBA request. */
   5065 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5066 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5067 
   5068 	/* Set scheduler window size. */
   5069 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5070 	    IWN_SCHED_WINSZ);
   5071 	/* Set scheduler frame limit. */
   5072 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5073 	    IWN_SCHED_LIMIT << 16);
   5074 
   5075 	/* Enable interrupts for the queue. */
   5076 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5077 
   5078 	/* Mark the queue as active. */
   5079 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5080 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5081 	    iwn_tid2fifo[tid] << 1);
   5082 }
   5083 
   5084 static void
   5085 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5086 {
   5087 	int qid = 7 + tid;
   5088 
   5089 	/* Stop TX scheduler while we're changing its configuration. */
   5090 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5091 	    IWN4965_TXQ_STATUS_CHGACT);
   5092 
   5093 	/* Set starting sequence number from the ADDBA request. */
   5094 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5095 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5096 
   5097 	/* Disable interrupts for the queue. */
   5098 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5099 
   5100 	/* Mark the queue as inactive. */
   5101 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5102 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5103 }
   5104 
   5105 static void
   5106 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5107     uint8_t tid, uint16_t ssn)
   5108 {
   5109 	struct iwn_node *wn = (void *)ni;
   5110 	int qid = 10 + tid;
   5111 
   5112 	/* Stop TX scheduler while we're changing its configuration. */
   5113 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5114 	    IWN5000_TXQ_STATUS_CHGACT);
   5115 
   5116 	/* Assign RA/TID translation to the queue. */
   5117 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5118 	    wn->id << 4 | tid);
   5119 
   5120 	/* Enable chain-building mode for the queue. */
   5121 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5122 
   5123 	/* Enable aggregation for the queue. */
   5124 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5125 
   5126 	/* Set starting sequence number from the ADDBA request. */
   5127 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5128 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5129 
   5130 	/* Set scheduler window size and frame limit. */
   5131 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5132 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5133 
   5134 	/* Enable interrupts for the queue. */
   5135 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5136 
   5137 	/* Mark the queue as active. */
   5138 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5139 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5140 }
   5141 
   5142 static void
   5143 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5144 {
   5145 	int qid = 10 + tid;
   5146 
   5147 	/* Stop TX scheduler while we're changing its configuration. */
   5148 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5149 	    IWN5000_TXQ_STATUS_CHGACT);
   5150 
   5151 	/* Disable aggregation for the queue. */
   5152 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5153 
   5154 	/* Set starting sequence number from the ADDBA request. */
   5155 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5156 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5157 
   5158 	/* Disable interrupts for the queue. */
   5159 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5160 
   5161 	/* Mark the queue as inactive. */
   5162 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5163 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5164 }
   5165 #endif	/* !IEEE80211_NO_HT */
   5166 
   5167 /*
   5168  * Query calibration tables from the initialization firmware.  We do this
   5169  * only once at first boot.  Called from a process context.
   5170  */
   5171 static int
   5172 iwn5000_query_calibration(struct iwn_softc *sc)
   5173 {
   5174 	struct iwn5000_calib_config cmd;
   5175 	int error;
   5176 
   5177 	memset(&cmd, 0, sizeof cmd);
   5178 	cmd.ucode.once.enable = 0xffffffff;
   5179 	cmd.ucode.once.start  = 0xffffffff;
   5180 	cmd.ucode.once.send   = 0xffffffff;
   5181 	cmd.ucode.flags       = 0xffffffff;
   5182 	DPRINTF(("sending calibration query\n"));
   5183 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5184 	if (error != 0)
   5185 		return error;
   5186 
   5187 	/* Wait at most two seconds for calibration to complete. */
   5188 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5189 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5190 	return error;
   5191 }
   5192 
   5193 /*
   5194  * Send calibration results to the runtime firmware.  These results were
   5195  * obtained on first boot from the initialization firmware.
   5196  */
   5197 static int
   5198 iwn5000_send_calibration(struct iwn_softc *sc)
   5199 {
   5200 	int idx, error;
   5201 
   5202 	for (idx = 0; idx < 5; idx++) {
   5203 		if (sc->calibcmd[idx].buf == NULL)
   5204 			continue;	/* No results available. */
   5205 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5206 		    idx, sc->calibcmd[idx].len));
   5207 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5208 		    sc->calibcmd[idx].len, 0);
   5209 		if (error != 0) {
   5210 			aprint_error_dev(sc->sc_dev,
   5211 			    "could not send calibration result\n");
   5212 			return error;
   5213 		}
   5214 	}
   5215 	return 0;
   5216 }
   5217 
   5218 static int
   5219 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5220 {
   5221 	struct iwn5000_wimax_coex wimax;
   5222 
   5223 #ifdef notyet
   5224 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5225 		/* Enable WiMAX coexistence for combo adapters. */
   5226 		wimax.flags =
   5227 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5228 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5229 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5230 		    IWN_WIMAX_COEX_ENABLE;
   5231 		memcpy(wimax.events, iwn6050_wimax_events,
   5232 		    sizeof iwn6050_wimax_events);
   5233 	} else
   5234 #endif
   5235 	{
   5236 		/* Disable WiMAX coexistence. */
   5237 		wimax.flags = 0;
   5238 		memset(wimax.events, 0, sizeof wimax.events);
   5239 	}
   5240 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5241 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5242 }
   5243 
   5244 static int
   5245 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5246 {
   5247 	struct iwn6000_phy_calib_temp_offset cmd;
   5248 
   5249 	memset(&cmd, 0, sizeof cmd);
   5250 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5251 	cmd.ngroups = 1;
   5252 	cmd.isvalid = 1;
   5253 	if (sc->eeprom_temp != 0)
   5254 		cmd.offset = htole16(sc->eeprom_temp);
   5255 	else
   5256 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5257 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5258 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5259 }
   5260 
   5261 static int
   5262 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5263 {
   5264 	struct iwn2000_phy_calib_temp_offset cmd;
   5265 
   5266 	memset(&cmd, 0, sizeof cmd);
   5267 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5268 	cmd.ngroups = 1;
   5269 	cmd.isvalid = 1;
   5270 	if (sc->eeprom_rawtemp != 0) {
   5271 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5272 		cmd.offset_high = htole16(sc->eeprom_temp);
   5273 	} else {
   5274 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5275 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5276 	}
   5277 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5278 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5279 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5280 	    le16toh(cmd.burnt_voltage_ref)));
   5281 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5282 }
   5283 
   5284 /*
   5285  * This function is called after the runtime firmware notifies us of its
   5286  * readiness (called in a process context).
   5287  */
   5288 static int
   5289 iwn4965_post_alive(struct iwn_softc *sc)
   5290 {
   5291 	int error, qid;
   5292 
   5293 	if ((error = iwn_nic_lock(sc)) != 0)
   5294 		return error;
   5295 
   5296 	/* Clear TX scheduler state in SRAM. */
   5297 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5298 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5299 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5300 
   5301 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5302 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5303 
   5304 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5305 
   5306 	/* Disable chain mode for all our 16 queues. */
   5307 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5308 
   5309 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5310 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5311 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5312 
   5313 		/* Set scheduler window size. */
   5314 		iwn_mem_write(sc, sc->sched_base +
   5315 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5316 		/* Set scheduler frame limit. */
   5317 		iwn_mem_write(sc, sc->sched_base +
   5318 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5319 		    IWN_SCHED_LIMIT << 16);
   5320 	}
   5321 
   5322 	/* Enable interrupts for all our 16 queues. */
   5323 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5324 	/* Identify TX FIFO rings (0-7). */
   5325 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5326 
   5327 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5328 	for (qid = 0; qid < 7; qid++) {
   5329 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5330 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5331 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5332 	}
   5333 	iwn_nic_unlock(sc);
   5334 	return 0;
   5335 }
   5336 
   5337 /*
   5338  * This function is called after the initialization or runtime firmware
   5339  * notifies us of its readiness (called in a process context).
   5340  */
   5341 static int
   5342 iwn5000_post_alive(struct iwn_softc *sc)
   5343 {
   5344 	int error, qid;
   5345 
   5346 	/* Switch to using ICT interrupt mode. */
   5347 	iwn5000_ict_reset(sc);
   5348 
   5349 	if ((error = iwn_nic_lock(sc)) != 0)
   5350 		return error;
   5351 
   5352 	/* Clear TX scheduler state in SRAM. */
   5353 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5354 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5355 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5356 
   5357 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5358 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5359 
   5360 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5361 
   5362 	/* Enable chain mode for all queues, except command queue. */
   5363 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5364 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5365 
   5366 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5367 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5368 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5369 
   5370 		iwn_mem_write(sc, sc->sched_base +
   5371 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5372 		/* Set scheduler window size and frame limit. */
   5373 		iwn_mem_write(sc, sc->sched_base +
   5374 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5375 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5376 	}
   5377 
   5378 	/* Enable interrupts for all our 20 queues. */
   5379 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5380 	/* Identify TX FIFO rings (0-7). */
   5381 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5382 
   5383 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5384 	for (qid = 0; qid < 7; qid++) {
   5385 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5386 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5387 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5388 	}
   5389 	iwn_nic_unlock(sc);
   5390 
   5391 	/* Configure WiMAX coexistence for combo adapters. */
   5392 	error = iwn5000_send_wimax_coex(sc);
   5393 	if (error != 0) {
   5394 		aprint_error_dev(sc->sc_dev,
   5395 		    "could not configure WiMAX coexistence\n");
   5396 		return error;
   5397 	}
   5398 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5399 		struct iwn5000_phy_calib_crystal cmd;
   5400 
   5401 		/* Perform crystal calibration. */
   5402 		memset(&cmd, 0, sizeof cmd);
   5403 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5404 		cmd.ngroups = 1;
   5405 		cmd.isvalid = 1;
   5406 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5407 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5408 		DPRINTF(("sending crystal calibration %d, %d\n",
   5409 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5410 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5411 		if (error != 0) {
   5412 			aprint_error_dev(sc->sc_dev,
   5413 			    "crystal calibration failed\n");
   5414 			return error;
   5415 		}
   5416 	}
   5417 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5418 		/* Query calibration from the initialization firmware. */
   5419 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5420 			aprint_error_dev(sc->sc_dev,
   5421 			    "could not query calibration\n");
   5422 			return error;
   5423 		}
   5424 		/*
   5425 		 * We have the calibration results now, reboot with the
   5426 		 * runtime firmware (call ourselves recursively!)
   5427 		 */
   5428 		iwn_hw_stop(sc);
   5429 		error = iwn_hw_init(sc);
   5430 	} else {
   5431 		/* Send calibration results to runtime firmware. */
   5432 		error = iwn5000_send_calibration(sc);
   5433 	}
   5434 	return error;
   5435 }
   5436 
   5437 /*
   5438  * The firmware boot code is small and is intended to be copied directly into
   5439  * the NIC internal memory (no DMA transfer).
   5440  */
   5441 static int
   5442 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5443 {
   5444 	int error, ntries;
   5445 
   5446 	size /= sizeof (uint32_t);
   5447 
   5448 	if ((error = iwn_nic_lock(sc)) != 0)
   5449 		return error;
   5450 
   5451 	/* Copy microcode image into NIC memory. */
   5452 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5453 	    (const uint32_t *)ucode, size);
   5454 
   5455 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5456 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5457 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5458 
   5459 	/* Start boot load now. */
   5460 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5461 
   5462 	/* Wait for transfer to complete. */
   5463 	for (ntries = 0; ntries < 1000; ntries++) {
   5464 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5465 		    IWN_BSM_WR_CTRL_START))
   5466 			break;
   5467 		DELAY(10);
   5468 	}
   5469 	if (ntries == 1000) {
   5470 		aprint_error_dev(sc->sc_dev,
   5471 		    "could not load boot firmware\n");
   5472 		iwn_nic_unlock(sc);
   5473 		return ETIMEDOUT;
   5474 	}
   5475 
   5476 	/* Enable boot after power up. */
   5477 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5478 
   5479 	iwn_nic_unlock(sc);
   5480 	return 0;
   5481 }
   5482 
   5483 static int
   5484 iwn4965_load_firmware(struct iwn_softc *sc)
   5485 {
   5486 	struct iwn_fw_info *fw = &sc->fw;
   5487 	struct iwn_dma_info *dma = &sc->fw_dma;
   5488 	int error;
   5489 
   5490 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5491 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5492 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5493 	    BUS_DMASYNC_PREWRITE);
   5494 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5495 	    fw->init.text, fw->init.textsz);
   5496 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5497 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5498 
   5499 	/* Tell adapter where to find initialization sections. */
   5500 	if ((error = iwn_nic_lock(sc)) != 0)
   5501 		return error;
   5502 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5503 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5504 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5505 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5506 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5507 	iwn_nic_unlock(sc);
   5508 
   5509 	/* Load firmware boot code. */
   5510 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5511 	if (error != 0) {
   5512 		aprint_error_dev(sc->sc_dev,
   5513 		    "could not load boot firmware\n");
   5514 		return error;
   5515 	}
   5516 	/* Now press "execute". */
   5517 	IWN_WRITE(sc, IWN_RESET, 0);
   5518 
   5519 	/* Wait at most one second for first alive notification. */
   5520 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5521 		aprint_error_dev(sc->sc_dev,
   5522 		    "timeout waiting for adapter to initialize\n");
   5523 		return error;
   5524 	}
   5525 
   5526 	/* Retrieve current temperature for initial TX power calibration. */
   5527 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5528 	sc->temp = iwn4965_get_temperature(sc);
   5529 
   5530 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5531 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5532 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5533 	    BUS_DMASYNC_PREWRITE);
   5534 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5535 	    fw->main.text, fw->main.textsz);
   5536 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5537 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5538 
   5539 	/* Tell adapter where to find runtime sections. */
   5540 	if ((error = iwn_nic_lock(sc)) != 0)
   5541 		return error;
   5542 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5543 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5544 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5545 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5546 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5547 	    IWN_FW_UPDATED | fw->main.textsz);
   5548 	iwn_nic_unlock(sc);
   5549 
   5550 	return 0;
   5551 }
   5552 
   5553 static int
   5554 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5555     const uint8_t *section, int size)
   5556 {
   5557 	struct iwn_dma_info *dma = &sc->fw_dma;
   5558 	int error;
   5559 
   5560 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5561 	memcpy(dma->vaddr, section, size);
   5562 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5563 
   5564 	if ((error = iwn_nic_lock(sc)) != 0)
   5565 		return error;
   5566 
   5567 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5568 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5569 
   5570 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5571 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5572 	    IWN_LOADDR(dma->paddr));
   5573 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5574 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5575 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5576 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5577 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5578 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5579 
   5580 	/* Kick Flow Handler to start DMA transfer. */
   5581 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5582 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5583 
   5584 	iwn_nic_unlock(sc);
   5585 
   5586 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5587 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5588 }
   5589 
   5590 static int
   5591 iwn5000_load_firmware(struct iwn_softc *sc)
   5592 {
   5593 	struct iwn_fw_part *fw;
   5594 	int error;
   5595 
   5596 	/* Load the initialization firmware on first boot only. */
   5597 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5598 	    &sc->fw.main : &sc->fw.init;
   5599 
   5600 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5601 	    fw->text, fw->textsz);
   5602 	if (error != 0) {
   5603 		aprint_error_dev(sc->sc_dev,
   5604 		    "could not load firmware %s section\n", ".text");
   5605 		return error;
   5606 	}
   5607 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5608 	    fw->data, fw->datasz);
   5609 	if (error != 0) {
   5610 		aprint_error_dev(sc->sc_dev,
   5611 		    "could not load firmware %s section\n", ".data");
   5612 		return error;
   5613 	}
   5614 
   5615 	/* Now press "execute". */
   5616 	IWN_WRITE(sc, IWN_RESET, 0);
   5617 	return 0;
   5618 }
   5619 
   5620 /*
   5621  * Extract text and data sections from a legacy firmware image.
   5622  */
   5623 static int
   5624 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5625 {
   5626 	const uint32_t *ptr;
   5627 	size_t hdrlen = 24;
   5628 	uint32_t rev;
   5629 
   5630 	ptr = (const uint32_t *)fw->data;
   5631 	rev = le32toh(*ptr++);
   5632 
   5633 	/* Check firmware API version. */
   5634 	if (IWN_FW_API(rev) <= 1) {
   5635 		aprint_error_dev(sc->sc_dev,
   5636 		    "bad firmware, need API version >=2\n");
   5637 		return EINVAL;
   5638 	}
   5639 	if (IWN_FW_API(rev) >= 3) {
   5640 		/* Skip build number (version 2 header). */
   5641 		hdrlen += 4;
   5642 		ptr++;
   5643 	}
   5644 	if (fw->size < hdrlen) {
   5645 		aprint_error_dev(sc->sc_dev,
   5646 		    "firmware too short: %zd bytes\n", fw->size);
   5647 		return EINVAL;
   5648 	}
   5649 	fw->main.textsz = le32toh(*ptr++);
   5650 	fw->main.datasz = le32toh(*ptr++);
   5651 	fw->init.textsz = le32toh(*ptr++);
   5652 	fw->init.datasz = le32toh(*ptr++);
   5653 	fw->boot.textsz = le32toh(*ptr++);
   5654 
   5655 	/* Check that all firmware sections fit. */
   5656 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5657 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5658 		aprint_error_dev(sc->sc_dev,
   5659 		    "firmware too short: %zd bytes\n", fw->size);
   5660 		return EINVAL;
   5661 	}
   5662 
   5663 	/* Get pointers to firmware sections. */
   5664 	fw->main.text = (const uint8_t *)ptr;
   5665 	fw->main.data = fw->main.text + fw->main.textsz;
   5666 	fw->init.text = fw->main.data + fw->main.datasz;
   5667 	fw->init.data = fw->init.text + fw->init.textsz;
   5668 	fw->boot.text = fw->init.data + fw->init.datasz;
   5669 	return 0;
   5670 }
   5671 
   5672 /*
   5673  * Extract text and data sections from a TLV firmware image.
   5674  */
   5675 static int
   5676 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5677     uint16_t alt)
   5678 {
   5679 	const struct iwn_fw_tlv_hdr *hdr;
   5680 	const struct iwn_fw_tlv *tlv;
   5681 	const uint8_t *ptr, *end;
   5682 	uint64_t altmask;
   5683 	uint32_t len;
   5684 
   5685 	if (fw->size < sizeof (*hdr)) {
   5686 		aprint_error_dev(sc->sc_dev,
   5687 		    "firmware too short: %zd bytes\n", fw->size);
   5688 		return EINVAL;
   5689 	}
   5690 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5691 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5692 		aprint_error_dev(sc->sc_dev,
   5693 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5694 		return EINVAL;
   5695 	}
   5696 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5697 	    le32toh(hdr->build)));
   5698 
   5699 	/*
   5700 	 * Select the closest supported alternative that is less than
   5701 	 * or equal to the specified one.
   5702 	 */
   5703 	altmask = le64toh(hdr->altmask);
   5704 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5705 		alt--;	/* Downgrade. */
   5706 	DPRINTF(("using alternative %d\n", alt));
   5707 
   5708 	ptr = (const uint8_t *)(hdr + 1);
   5709 	end = (const uint8_t *)(fw->data + fw->size);
   5710 
   5711 	/* Parse type-length-value fields. */
   5712 	while (ptr + sizeof (*tlv) <= end) {
   5713 		tlv = (const struct iwn_fw_tlv *)ptr;
   5714 		len = le32toh(tlv->len);
   5715 
   5716 		ptr += sizeof (*tlv);
   5717 		if (ptr + len > end) {
   5718 			aprint_error_dev(sc->sc_dev,
   5719 			    "firmware too short: %zd bytes\n", fw->size);
   5720 			return EINVAL;
   5721 		}
   5722 		/* Skip other alternatives. */
   5723 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5724 			goto next;
   5725 
   5726 		switch (le16toh(tlv->type)) {
   5727 		case IWN_FW_TLV_MAIN_TEXT:
   5728 			fw->main.text = ptr;
   5729 			fw->main.textsz = len;
   5730 			break;
   5731 		case IWN_FW_TLV_MAIN_DATA:
   5732 			fw->main.data = ptr;
   5733 			fw->main.datasz = len;
   5734 			break;
   5735 		case IWN_FW_TLV_INIT_TEXT:
   5736 			fw->init.text = ptr;
   5737 			fw->init.textsz = len;
   5738 			break;
   5739 		case IWN_FW_TLV_INIT_DATA:
   5740 			fw->init.data = ptr;
   5741 			fw->init.datasz = len;
   5742 			break;
   5743 		case IWN_FW_TLV_BOOT_TEXT:
   5744 			fw->boot.text = ptr;
   5745 			fw->boot.textsz = len;
   5746 			break;
   5747 		case IWN_FW_TLV_ENH_SENS:
   5748 			if (len != 0) {
   5749 				aprint_error_dev(sc->sc_dev,
   5750 				    "TLV type %d has invalid size %u\n",
   5751 				    le16toh(tlv->type), len);
   5752 				goto next;
   5753 			}
   5754 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5755 			break;
   5756 		case IWN_FW_TLV_PHY_CALIB:
   5757 			if (len != sizeof(uint32_t)) {
   5758 				aprint_error_dev(sc->sc_dev,
   5759 				    "TLV type %d has invalid size %u\n",
   5760 				    le16toh(tlv->type), len);
   5761 				goto next;
   5762 			}
   5763 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5764 				sc->reset_noise_gain = le32toh(*ptr);
   5765 				sc->noise_gain = le32toh(*ptr) + 1;
   5766 			}
   5767 			break;
   5768 		case IWN_FW_TLV_FLAGS:
   5769 			if (len < sizeof(uint32_t))
   5770 				break;
   5771 			if (len % sizeof(uint32_t))
   5772 				break;
   5773 			sc->tlv_feature_flags = le32toh(*ptr);
   5774 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5775 			break;
   5776 		default:
   5777 			DPRINTF(("TLV type %d not handled\n",
   5778 			    le16toh(tlv->type)));
   5779 			break;
   5780 		}
   5781  next:		/* TLV fields are 32-bit aligned. */
   5782 		ptr += (len + 3) & ~3;
   5783 	}
   5784 	return 0;
   5785 }
   5786 
   5787 static int
   5788 iwn_read_firmware(struct iwn_softc *sc)
   5789 {
   5790 	struct iwn_fw_info *fw = &sc->fw;
   5791 	firmware_handle_t fwh;
   5792 	int error;
   5793 
   5794 	/*
   5795 	 * Some PHY calibration commands are firmware-dependent; these
   5796 	 * are the default values that will be overridden if
   5797 	 * necessary.
   5798 	 */
   5799 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5800 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5801 
   5802 	/* Initialize for error returns */
   5803 	fw->data = NULL;
   5804 	fw->size = 0;
   5805 
   5806 	/* Open firmware image. */
   5807 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5808 		aprint_error_dev(sc->sc_dev,
   5809 		    "could not get firmware handle %s\n", sc->fwname);
   5810 		return error;
   5811 	}
   5812 	fw->size = firmware_get_size(fwh);
   5813 	if (fw->size < sizeof (uint32_t)) {
   5814 		aprint_error_dev(sc->sc_dev,
   5815 		    "firmware too short: %zd bytes\n", fw->size);
   5816 		firmware_close(fwh);
   5817 		return EINVAL;
   5818 	}
   5819 
   5820 	/* Read the firmware. */
   5821 	fw->data = firmware_malloc(fw->size);
   5822 	if (fw->data == NULL) {
   5823 		aprint_error_dev(sc->sc_dev,
   5824 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5825 		firmware_close(fwh);
   5826 		return ENOMEM;
   5827 	}
   5828 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5829 	firmware_close(fwh);
   5830 	if (error != 0) {
   5831 		aprint_error_dev(sc->sc_dev,
   5832 		    "could not read firmware %s\n", sc->fwname);
   5833 		goto out;
   5834 	}
   5835 
   5836 	/* Retrieve text and data sections. */
   5837 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5838 		error = iwn_read_firmware_leg(sc, fw);
   5839 	else
   5840 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5841 	if (error != 0) {
   5842 		aprint_error_dev(sc->sc_dev,
   5843 		    "could not read firmware sections\n");
   5844 		goto out;
   5845 	}
   5846 
   5847 	/* Make sure text and data sections fit in hardware memory. */
   5848 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5849 	    fw->main.datasz > sc->fw_data_maxsz ||
   5850 	    fw->init.textsz > sc->fw_text_maxsz ||
   5851 	    fw->init.datasz > sc->fw_data_maxsz ||
   5852 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5853 	    (fw->boot.textsz & 3) != 0) {
   5854 		aprint_error_dev(sc->sc_dev,
   5855 		    "firmware sections too large\n");
   5856 		goto out;
   5857 	}
   5858 
   5859 	/* We can proceed with loading the firmware. */
   5860 	return 0;
   5861 out:
   5862 	firmware_free(fw->data, fw->size);
   5863 	fw->data = NULL;
   5864 	fw->size = 0;
   5865 	return error ? error : EINVAL;
   5866 }
   5867 
   5868 static int
   5869 iwn_clock_wait(struct iwn_softc *sc)
   5870 {
   5871 	int ntries;
   5872 
   5873 	/* Set "initialization complete" bit. */
   5874 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5875 
   5876 	/* Wait for clock stabilization. */
   5877 	for (ntries = 0; ntries < 2500; ntries++) {
   5878 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5879 			return 0;
   5880 		DELAY(10);
   5881 	}
   5882 	aprint_error_dev(sc->sc_dev,
   5883 	    "timeout waiting for clock stabilization\n");
   5884 	return ETIMEDOUT;
   5885 }
   5886 
   5887 static int
   5888 iwn_apm_init(struct iwn_softc *sc)
   5889 {
   5890 	pcireg_t reg;
   5891 	int error;
   5892 
   5893 	/* Disable L0s exit timer (NMI bug workaround). */
   5894 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5895 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5896 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5897 
   5898 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5899 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5900 
   5901 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5902 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5903 
   5904 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5905 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5906 	    sc->sc_cap_off + PCIE_LCSR);
   5907 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5908 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5909 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5910 	else
   5911 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5912 
   5913 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5914 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5915 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5916 
   5917 	/* Wait for clock stabilization before accessing prph. */
   5918 	if ((error = iwn_clock_wait(sc)) != 0)
   5919 		return error;
   5920 
   5921 	if ((error = iwn_nic_lock(sc)) != 0)
   5922 		return error;
   5923 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5924 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5925 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5926 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5927 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5928 	} else {
   5929 		/* Enable DMA. */
   5930 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5931 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5932 	}
   5933 	DELAY(20);
   5934 	/* Disable L1-Active. */
   5935 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5936 	iwn_nic_unlock(sc);
   5937 
   5938 	return 0;
   5939 }
   5940 
   5941 static void
   5942 iwn_apm_stop_master(struct iwn_softc *sc)
   5943 {
   5944 	int ntries;
   5945 
   5946 	/* Stop busmaster DMA activity. */
   5947 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5948 	for (ntries = 0; ntries < 100; ntries++) {
   5949 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5950 			return;
   5951 		DELAY(10);
   5952 	}
   5953 	aprint_error_dev(sc->sc_dev,
   5954 	    "timeout waiting for master\n");
   5955 }
   5956 
   5957 static void
   5958 iwn_apm_stop(struct iwn_softc *sc)
   5959 {
   5960 	iwn_apm_stop_master(sc);
   5961 
   5962 	/* Reset the entire device. */
   5963 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5964 	DELAY(10);
   5965 	/* Clear "initialization complete" bit. */
   5966 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5967 }
   5968 
   5969 static int
   5970 iwn4965_nic_config(struct iwn_softc *sc)
   5971 {
   5972 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5973 		/*
   5974 		 * I don't believe this to be correct but this is what the
   5975 		 * vendor driver is doing. Probably the bits should not be
   5976 		 * shifted in IWN_RFCFG_*.
   5977 		 */
   5978 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5979 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5980 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5981 		    IWN_RFCFG_DASH(sc->rfcfg));
   5982 	}
   5983 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5984 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5985 	return 0;
   5986 }
   5987 
   5988 static int
   5989 iwn5000_nic_config(struct iwn_softc *sc)
   5990 {
   5991 	uint32_t tmp;
   5992 	int error;
   5993 
   5994 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5995 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5996 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5997 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5998 		    IWN_RFCFG_DASH(sc->rfcfg));
   5999 	}
   6000 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6001 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6002 
   6003 	if ((error = iwn_nic_lock(sc)) != 0)
   6004 		return error;
   6005 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6006 
   6007 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6008 		/*
   6009 		 * Select first Switching Voltage Regulator (1.32V) to
   6010 		 * solve a stability issue related to noisy DC2DC line
   6011 		 * in the silicon of 1000 Series.
   6012 		 */
   6013 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6014 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6015 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6016 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6017 	}
   6018 	iwn_nic_unlock(sc);
   6019 
   6020 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6021 		/* Use internal power amplifier only. */
   6022 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6023 	}
   6024 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6025 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6026 		/* Indicate that ROM calibration version is >=6. */
   6027 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6028 	}
   6029 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6030 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6031 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6032 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6033 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6034 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6035 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6036 	return 0;
   6037 }
   6038 
   6039 /*
   6040  * Take NIC ownership over Intel Active Management Technology (AMT).
   6041  */
   6042 static int
   6043 iwn_hw_prepare(struct iwn_softc *sc)
   6044 {
   6045 	int ntries;
   6046 
   6047 	/* Check if hardware is ready. */
   6048 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6049 	for (ntries = 0; ntries < 5; ntries++) {
   6050 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6051 		    IWN_HW_IF_CONFIG_NIC_READY)
   6052 			return 0;
   6053 		DELAY(10);
   6054 	}
   6055 
   6056 	/* Hardware not ready, force into ready state. */
   6057 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6058 	for (ntries = 0; ntries < 15000; ntries++) {
   6059 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6060 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6061 			break;
   6062 		DELAY(10);
   6063 	}
   6064 	if (ntries == 15000)
   6065 		return ETIMEDOUT;
   6066 
   6067 	/* Hardware should be ready now. */
   6068 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6069 	for (ntries = 0; ntries < 5; ntries++) {
   6070 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6071 		    IWN_HW_IF_CONFIG_NIC_READY)
   6072 			return 0;
   6073 		DELAY(10);
   6074 	}
   6075 	return ETIMEDOUT;
   6076 }
   6077 
   6078 static int
   6079 iwn_hw_init(struct iwn_softc *sc)
   6080 {
   6081 	struct iwn_ops *ops = &sc->ops;
   6082 	int error, chnl, qid;
   6083 
   6084 	/* Clear pending interrupts. */
   6085 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6086 
   6087 	if ((error = iwn_apm_init(sc)) != 0) {
   6088 		aprint_error_dev(sc->sc_dev,
   6089 		    "could not power ON adapter\n");
   6090 		return error;
   6091 	}
   6092 
   6093 	/* Select VMAIN power source. */
   6094 	if ((error = iwn_nic_lock(sc)) != 0)
   6095 		return error;
   6096 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6097 	iwn_nic_unlock(sc);
   6098 
   6099 	/* Perform adapter-specific initialization. */
   6100 	if ((error = ops->nic_config(sc)) != 0)
   6101 		return error;
   6102 
   6103 	/* Initialize RX ring. */
   6104 	if ((error = iwn_nic_lock(sc)) != 0)
   6105 		return error;
   6106 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6107 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6108 	/* Set physical address of RX ring (256-byte aligned). */
   6109 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6110 	/* Set physical address of RX status (16-byte aligned). */
   6111 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6112 	/* Enable RX. */
   6113 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6114 	    IWN_FH_RX_CONFIG_ENA           |
   6115 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6116 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6117 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6118 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6119 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6120 	iwn_nic_unlock(sc);
   6121 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6122 
   6123 	if ((error = iwn_nic_lock(sc)) != 0)
   6124 		return error;
   6125 
   6126 	/* Initialize TX scheduler. */
   6127 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6128 
   6129 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6130 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6131 
   6132 	/* Initialize TX rings. */
   6133 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6134 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6135 
   6136 		/* Set physical address of TX ring (256-byte aligned). */
   6137 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6138 		    txq->desc_dma.paddr >> 8);
   6139 	}
   6140 	iwn_nic_unlock(sc);
   6141 
   6142 	/* Enable DMA channels. */
   6143 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6144 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6145 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6146 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6147 	}
   6148 
   6149 	/* Clear "radio off" and "commands blocked" bits. */
   6150 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6151 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6152 
   6153 	/* Clear pending interrupts. */
   6154 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6155 	/* Enable interrupt coalescing. */
   6156 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6157 	/* Enable interrupts. */
   6158 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6159 
   6160 	/* _Really_ make sure "radio off" bit is cleared! */
   6161 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6162 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6163 
   6164 	/* Enable shadow registers. */
   6165 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6166 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6167 
   6168 	if ((error = ops->load_firmware(sc)) != 0) {
   6169 		aprint_error_dev(sc->sc_dev,
   6170 		    "could not load firmware\n");
   6171 		return error;
   6172 	}
   6173 	/* Wait at most one second for firmware alive notification. */
   6174 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6175 		aprint_error_dev(sc->sc_dev,
   6176 		    "timeout waiting for adapter to initialize\n");
   6177 		return error;
   6178 	}
   6179 	/* Do post-firmware initialization. */
   6180 	return ops->post_alive(sc);
   6181 }
   6182 
   6183 static void
   6184 iwn_hw_stop(struct iwn_softc *sc)
   6185 {
   6186 	int chnl, qid, ntries;
   6187 
   6188 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6189 
   6190 	/* Disable interrupts. */
   6191 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6192 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6193 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6194 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6195 
   6196 	/* Make sure we no longer hold the NIC lock. */
   6197 	iwn_nic_unlock(sc);
   6198 
   6199 	/* Stop TX scheduler. */
   6200 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6201 
   6202 	/* Stop all DMA channels. */
   6203 	if (iwn_nic_lock(sc) == 0) {
   6204 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6205 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6206 			for (ntries = 0; ntries < 200; ntries++) {
   6207 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6208 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6209 					break;
   6210 				DELAY(10);
   6211 			}
   6212 		}
   6213 		iwn_nic_unlock(sc);
   6214 	}
   6215 
   6216 	/* Stop RX ring. */
   6217 	iwn_reset_rx_ring(sc, &sc->rxq);
   6218 
   6219 	/* Reset all TX rings. */
   6220 	for (qid = 0; qid < sc->ntxqs; qid++)
   6221 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6222 
   6223 	if (iwn_nic_lock(sc) == 0) {
   6224 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6225 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6226 		iwn_nic_unlock(sc);
   6227 	}
   6228 	DELAY(5);
   6229 	/* Power OFF adapter. */
   6230 	iwn_apm_stop(sc);
   6231 }
   6232 
   6233 static int
   6234 iwn_init(struct ifnet *ifp)
   6235 {
   6236 	struct iwn_softc *sc = ifp->if_softc;
   6237 	struct ieee80211com *ic = &sc->sc_ic;
   6238 	int error;
   6239 
   6240 	mutex_enter(&sc->sc_mtx);
   6241 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6242 		goto out;
   6243 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6244 		aprint_error_dev(sc->sc_dev,
   6245 		    "hardware not ready\n");
   6246 		goto fail;
   6247 	}
   6248 
   6249 	/* Check that the radio is not disabled by hardware switch. */
   6250 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6251 		aprint_error_dev(sc->sc_dev,
   6252 		    "radio is disabled by hardware switch\n");
   6253 		error = EPERM;	/* :-) */
   6254 		goto fail;
   6255 	}
   6256 
   6257 	/* Read firmware images from the filesystem. */
   6258 	if ((error = iwn_read_firmware(sc)) != 0) {
   6259 		aprint_error_dev(sc->sc_dev,
   6260 		    "could not read firmware\n");
   6261 		goto fail;
   6262 	}
   6263 
   6264 	/* Initialize interrupt mask to default value. */
   6265 	sc->int_mask = IWN_INT_MASK_DEF;
   6266 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6267 
   6268 	/* Initialize hardware and upload firmware. */
   6269 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6270 	error = iwn_hw_init(sc);
   6271 	firmware_free(sc->fw.data, sc->fw.size);
   6272 	sc->fw.data = NULL;
   6273 	sc->fw.size = 0;
   6274 	if (error != 0) {
   6275 		aprint_error_dev(sc->sc_dev,
   6276 		    "could not initialize hardware\n");
   6277 		goto fail;
   6278 	}
   6279 
   6280 	/* Configure adapter now that it is ready. */
   6281 	if ((error = iwn_config(sc)) != 0) {
   6282 		aprint_error_dev(sc->sc_dev,
   6283 		    "could not configure device\n");
   6284 		goto fail;
   6285 	}
   6286 
   6287 	ifp->if_flags &= ~IFF_OACTIVE;
   6288 	ifp->if_flags |= IFF_RUNNING;
   6289 
   6290 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6291 		ieee80211_begin_scan(ic, 0);
   6292 	else
   6293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6294 
   6295 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6296 out:
   6297 	mutex_exit(&sc->sc_mtx);
   6298 	return 0;
   6299 
   6300 fail:	mutex_exit(&sc->sc_mtx);
   6301 	iwn_stop(ifp, 1);
   6302 	return error;
   6303 }
   6304 
   6305 static void
   6306 iwn_stop(struct ifnet *ifp, int disable)
   6307 {
   6308 	struct iwn_softc *sc = ifp->if_softc;
   6309 	struct ieee80211com *ic = &sc->sc_ic;
   6310 
   6311 	if (!disable)
   6312 		mutex_enter(&sc->sc_mtx);
   6313 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6314 	ifp->if_timer = sc->sc_tx_timer = 0;
   6315 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6316 
   6317 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6318 
   6319 	/* Power OFF hardware. */
   6320 	iwn_hw_stop(sc);
   6321 
   6322 	if (!disable)
   6323 		mutex_exit(&sc->sc_mtx);
   6324 }
   6325 
   6326 /*
   6327  * XXX MCLGETI alternative
   6328  *
   6329  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6330  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6331  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6332  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6333  */
   6334 
   6335 static struct mbuf *
   6336 MCLGETIalt(struct iwn_softc *sc, int how,
   6337     struct ifnet *ifp __unused, u_int size)
   6338 {
   6339 	struct mbuf *m;
   6340 #ifdef IWN_USE_RBUF
   6341 	struct iwn_rbuf *rbuf;
   6342 #endif
   6343 
   6344 	MGETHDR(m, how, MT_DATA);
   6345 	if (m == NULL)
   6346 		return NULL;
   6347 
   6348 #ifdef IWN_USE_RBUF
   6349 	if (sc->rxq.nb_free_entries > 0 &&
   6350 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6351 		/* Attach buffer to mbuf header. */
   6352 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6353 		m->m_flags |= M_EXT_RW;
   6354 	}
   6355 	else {
   6356 		MEXTMALLOC(m, size, how);
   6357 		if ((m->m_flags & M_EXT) == 0) {
   6358 			m_freem(m);
   6359 			return NULL;
   6360 		}
   6361 	}
   6362 
   6363 #else
   6364 #ifdef MCLGET4K
   6365 	if (size == 4096)
   6366 		MCLGET4K(m, how);
   6367 	else
   6368 		panic("size must be 4k");
   6369 #else
   6370 	MEXTMALLOC(m, size, how);
   6371 #endif
   6372 	if ((m->m_flags & M_EXT) == 0) {
   6373 		m_freem(m);
   6374 		return NULL;
   6375 	}
   6376 #endif
   6377 
   6378 	return m;
   6379 }
   6380 
   6381 #ifdef IWN_USE_RBUF
   6382 static struct iwn_rbuf *
   6383 iwn_alloc_rbuf(struct iwn_softc *sc)
   6384 {
   6385 	struct iwn_rbuf *rbuf;
   6386 	mutex_enter(&sc->rxq.freelist_mtx);
   6387 
   6388 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6389 	if (rbuf != NULL) {
   6390 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6391 		sc->rxq.nb_free_entries --;
   6392 	}
   6393 	mutex_exit(&sc->rxq.freelist_mtx);
   6394 	return rbuf;
   6395 }
   6396 
   6397 /*
   6398  * This is called automatically by the network stack when the mbuf to which
   6399  * our RX buffer is attached is freed.
   6400  */
   6401 static void
   6402 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6403 {
   6404 	struct iwn_rbuf *rbuf = arg;
   6405 	struct iwn_softc *sc = rbuf->sc;
   6406 
   6407 	/* Put the RX buffer back in the free list. */
   6408 	mutex_enter(&sc->rxq.freelist_mtx);
   6409 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6410 	mutex_exit(&sc->rxq.freelist_mtx);
   6411 
   6412 	sc->rxq.nb_free_entries ++;
   6413 	if (__predict_true(m != NULL))
   6414 		pool_cache_put(mb_cache, m);
   6415 }
   6416 
   6417 static int
   6418 iwn_alloc_rpool(struct iwn_softc *sc)
   6419 {
   6420 	struct iwn_rx_ring *ring = &sc->rxq;
   6421 	struct iwn_rbuf *rbuf;
   6422 	int i, error;
   6423 
   6424 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6425 
   6426 	/* Allocate a big chunk of DMA'able memory... */
   6427 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6428 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6429 	if (error != 0) {
   6430 		aprint_error_dev(sc->sc_dev,
   6431 		    "could not allocate RX buffers DMA memory\n");
   6432 		return error;
   6433 	}
   6434 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6435 	SLIST_INIT(&ring->freelist);
   6436 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6437 		rbuf = &ring->rbuf[i];
   6438 
   6439 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6440 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6441 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6442 
   6443 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6444 	}
   6445 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6446 	return 0;
   6447 }
   6448 
   6449 static void
   6450 iwn_free_rpool(struct iwn_softc *sc)
   6451 {
   6452 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6453 }
   6454 #endif
   6455 
   6456 /*
   6457  * XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
   6458  * Copyright (c) 2001 Atsushi Onoe
   6459  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
   6460  * Copyright (c) 2007-2009 Damien Bergamini
   6461  * All rights reserved.
   6462  */
   6463 
   6464 /*
   6465  * Add an SSID element to a frame (see 7.3.2.1).
   6466  */
   6467 static u_int8_t *
   6468 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   6469 {
   6470 	*frm++ = IEEE80211_ELEMID_SSID;
   6471 	*frm++ = len;
   6472 	memcpy(frm, ssid, len);
   6473 	return frm + len;
   6474 }
   6475 
   6476 /*
   6477  * Add a supported rates element to a frame (see 7.3.2.2).
   6478  */
   6479 static u_int8_t *
   6480 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6481 {
   6482 	int nrates;
   6483 
   6484 	*frm++ = IEEE80211_ELEMID_RATES;
   6485 	nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
   6486 	*frm++ = nrates;
   6487 	memcpy(frm, rs->rs_rates, nrates);
   6488 	return frm + nrates;
   6489 }
   6490 
   6491 /*
   6492  * Add an extended supported rates element to a frame (see 7.3.2.14).
   6493  */
   6494 static u_int8_t *
   6495 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   6496 {
   6497 	int nrates;
   6498 
   6499 	KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
   6500 
   6501 	*frm++ = IEEE80211_ELEMID_XRATES;
   6502 	nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   6503 	*frm++ = nrates;
   6504 	memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   6505 	return frm + nrates;
   6506 }
   6507 
   6508 /*
   6509  * XXX: Hack to set the current channel to the value advertised in beacons or
   6510  * probe responses. Only used during AP detection.
   6511  * XXX: Duplicated from if_iwi.c
   6512  */
   6513 static void
   6514 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
   6515 {
   6516 	struct ieee80211_frame *wh;
   6517 	uint8_t subtype;
   6518 	uint8_t *frm, *efrm;
   6519 
   6520 	wh = mtod(m, struct ieee80211_frame *);
   6521 
   6522 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6523 		return;
   6524 
   6525 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6526 
   6527 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6528 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6529 		return;
   6530 
   6531 	frm = (uint8_t *)(wh + 1);
   6532 	efrm = mtod(m, uint8_t *) + m->m_len;
   6533 
   6534 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6535 	while (frm < efrm) {
   6536 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6537 #if IEEE80211_CHAN_MAX < 255
   6538 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6539 #endif
   6540 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6541 
   6542 		frm += frm[1] + 2;
   6543 	}
   6544 }
   6545 
   6546 #ifdef notyetMODULE
   6547 
   6548 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6549 
   6550 #ifdef _MODULE
   6551 #include "ioconf.c"
   6552 #endif
   6553 
   6554 static int
   6555 if_iwn_modcmd(modcmd_t cmd, void *data)
   6556 {
   6557 	int error = 0;
   6558 
   6559 	switch (cmd) {
   6560 	case MODULE_CMD_INIT:
   6561 #ifdef _MODULE
   6562 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6563 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6564 #endif
   6565 		return error;
   6566 	case MODULE_CMD_FINI:
   6567 #ifdef _MODULE
   6568 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6569 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6570 #endif
   6571 		return error;
   6572 	case MODULE_CMD_AUTOUNLOAD:
   6573 #ifdef _MODULE
   6574 		/* XXX This is not optional! */
   6575 #endif
   6576 		return error;
   6577 	default:
   6578 		return ENOTTY;
   6579 	}
   6580 }
   6581 #endif
   6582