if_iwn.c revision 1.78.2.2 1 /* $NetBSD: if_iwn.c,v 1.78.2.2 2017/01/07 08:56:33 pgoyette Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.78.2.2 2017/01/07 08:56:33 pgoyette Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <machine/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120
121 /*
122 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
123 */
124 static const struct ieee80211_rateset iwn_rateset_11a =
125 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
126
127 static const struct ieee80211_rateset iwn_rateset_11b =
128 { 4, { 2, 4, 11, 22 } };
129
130 static const struct ieee80211_rateset iwn_rateset_11g =
131 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
132
133 static int iwn_match(device_t , struct cfdata *, void *);
134 static void iwn_attach(device_t , device_t , void *);
135 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
136 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
137 static void iwn_radiotap_attach(struct iwn_softc *);
138 static int iwn_detach(device_t , int);
139 #if 0
140 static void iwn_power(int, void *);
141 #endif
142 static bool iwn_resume(device_t, const pmf_qual_t *);
143 static int iwn_nic_lock(struct iwn_softc *);
144 static int iwn_eeprom_lock(struct iwn_softc *);
145 static int iwn_init_otprom(struct iwn_softc *);
146 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
147 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
148 void **, bus_size_t, bus_size_t);
149 static void iwn_dma_contig_free(struct iwn_dma_info *);
150 static int iwn_alloc_sched(struct iwn_softc *);
151 static void iwn_free_sched(struct iwn_softc *);
152 static int iwn_alloc_kw(struct iwn_softc *);
153 static void iwn_free_kw(struct iwn_softc *);
154 static int iwn_alloc_ict(struct iwn_softc *);
155 static void iwn_free_ict(struct iwn_softc *);
156 static int iwn_alloc_fwmem(struct iwn_softc *);
157 static void iwn_free_fwmem(struct iwn_softc *);
158 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
160 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
161 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
162 int);
163 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
164 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
165 static void iwn5000_ict_reset(struct iwn_softc *);
166 static int iwn_read_eeprom(struct iwn_softc *);
167 static void iwn4965_read_eeprom(struct iwn_softc *);
168
169 #ifdef IWN_DEBUG
170 static void iwn4965_print_power_group(struct iwn_softc *, int);
171 #endif
172 static void iwn5000_read_eeprom(struct iwn_softc *);
173 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
174 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
176 static void iwn_newassoc(struct ieee80211_node *, int);
177 static int iwn_media_change(struct ifnet *);
178 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
179 static void iwn_iter_func(void *, struct ieee80211_node *);
180 static void iwn_calib_timeout(void *);
181 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 struct iwn_rx_data *);
183 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 struct iwn_rx_data *);
185 #ifndef IEEE80211_NO_HT
186 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
187 struct iwn_rx_data *);
188 #endif
189 static void iwn5000_rx_calib_results(struct iwn_softc *,
190 struct iwn_rx_desc *, struct iwn_rx_data *);
191 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
192 struct iwn_rx_data *);
193 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 struct iwn_rx_data *);
195 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
196 struct iwn_rx_data *);
197 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
198 uint8_t);
199 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
200 static void iwn_notif_intr(struct iwn_softc *);
201 static void iwn_wakeup_intr(struct iwn_softc *);
202 static void iwn_fatal_intr(struct iwn_softc *);
203 static int iwn_intr(void *);
204 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 uint16_t);
206 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 uint16_t);
208 #ifdef notyet
209 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int iwn_tx(struct iwn_softc *, struct mbuf *,
212 struct ieee80211_node *, int);
213 static void iwn_start(struct ifnet *);
214 static void iwn_watchdog(struct ifnet *);
215 static int iwn_ioctl(struct ifnet *, u_long, void *);
216 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
217 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
218 int);
219 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
220 int);
221 static int iwn_set_link_quality(struct iwn_softc *,
222 struct ieee80211_node *);
223 static int iwn_add_broadcast_node(struct iwn_softc *, int);
224 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int iwn_set_critical_temp(struct iwn_softc *);
226 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void iwn4965_power_calibration(struct iwn_softc *, int);
228 static int iwn4965_set_txpower(struct iwn_softc *, int);
229 static int iwn5000_set_txpower(struct iwn_softc *, int);
230 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
231 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
232 static int iwn_get_noise(const struct iwn_rx_general_stats *);
233 static int iwn4965_get_temperature(struct iwn_softc *);
234 static int iwn5000_get_temperature(struct iwn_softc *);
235 static int iwn_init_sensitivity(struct iwn_softc *);
236 static void iwn_collect_noise(struct iwn_softc *,
237 const struct iwn_rx_general_stats *);
238 static int iwn4965_init_gains(struct iwn_softc *);
239 static int iwn5000_init_gains(struct iwn_softc *);
240 static int iwn4965_set_gains(struct iwn_softc *);
241 static int iwn5000_set_gains(struct iwn_softc *);
242 static void iwn_tune_sensitivity(struct iwn_softc *,
243 const struct iwn_rx_stats *);
244 static int iwn_send_sensitivity(struct iwn_softc *);
245 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
246 static int iwn5000_runtime_calib(struct iwn_softc *);
247
248 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
249 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
250 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
251 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
252
253 static int iwn_config(struct iwn_softc *);
254 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
255 uint8_t);
256 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
257 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
258 static int iwn_scan(struct iwn_softc *, uint16_t);
259 static int iwn_auth(struct iwn_softc *);
260 static int iwn_run(struct iwn_softc *);
261 #ifdef IWN_HWCRYPTO
262 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
263 struct ieee80211_key *);
264 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
265 struct ieee80211_key *);
266 #endif
267 static int iwn_wme_update(struct ieee80211com *);
268 #ifndef IEEE80211_NO_HT
269 static int iwn_ampdu_rx_start(struct ieee80211com *,
270 struct ieee80211_node *, uint8_t);
271 static void iwn_ampdu_rx_stop(struct ieee80211com *,
272 struct ieee80211_node *, uint8_t);
273 static int iwn_ampdu_tx_start(struct ieee80211com *,
274 struct ieee80211_node *, uint8_t);
275 static void iwn_ampdu_tx_stop(struct ieee80211com *,
276 struct ieee80211_node *, uint8_t);
277 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
278 struct ieee80211_node *, uint8_t, uint16_t);
279 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
280 uint8_t, uint16_t);
281 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
282 struct ieee80211_node *, uint8_t, uint16_t);
283 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
284 uint8_t, uint16_t);
285 #endif
286 static int iwn5000_query_calibration(struct iwn_softc *);
287 static int iwn5000_send_calibration(struct iwn_softc *);
288 static int iwn5000_send_wimax_coex(struct iwn_softc *);
289 static int iwn6000_temp_offset_calib(struct iwn_softc *);
290 static int iwn2000_temp_offset_calib(struct iwn_softc *);
291 static int iwn4965_post_alive(struct iwn_softc *);
292 static int iwn5000_post_alive(struct iwn_softc *);
293 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
294 int);
295 static int iwn4965_load_firmware(struct iwn_softc *);
296 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
297 const uint8_t *, int);
298 static int iwn5000_load_firmware(struct iwn_softc *);
299 static int iwn_read_firmware_leg(struct iwn_softc *,
300 struct iwn_fw_info *);
301 static int iwn_read_firmware_tlv(struct iwn_softc *,
302 struct iwn_fw_info *, uint16_t);
303 static int iwn_read_firmware(struct iwn_softc *);
304 static int iwn_clock_wait(struct iwn_softc *);
305 static int iwn_apm_init(struct iwn_softc *);
306 static void iwn_apm_stop_master(struct iwn_softc *);
307 static void iwn_apm_stop(struct iwn_softc *);
308 static int iwn4965_nic_config(struct iwn_softc *);
309 static int iwn5000_nic_config(struct iwn_softc *);
310 static int iwn_hw_prepare(struct iwn_softc *);
311 static int iwn_hw_init(struct iwn_softc *);
312 static void iwn_hw_stop(struct iwn_softc *);
313 static int iwn_init(struct ifnet *);
314 static void iwn_stop(struct ifnet *, int);
315
316 /* XXX MCLGETI alternative */
317 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
318 struct ifnet *, u_int);
319 #ifdef IWN_USE_RBUF
320 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
321 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
322 static int iwn_alloc_rpool(struct iwn_softc *);
323 static void iwn_free_rpool(struct iwn_softc *);
324 #endif
325
326 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
327 struct iwn_rx_stat *);
328
329 #ifdef IWN_DEBUG
330 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
331 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
332 int iwn_debug = 0;
333 #else
334 #define DPRINTF(x)
335 #define DPRINTFN(n, x)
336 #endif
337
338 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
339 iwn_detach, NULL);
340
341 static int
342 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
343 {
344 struct pci_attach_args *pa = aux;
345 size_t i;
346
347 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
348 return 0;
349
350 for (i = 0; i < __arraycount(iwn_devices); i++)
351 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
352 return 1;
353
354 return 0;
355 }
356
357 static void
358 iwn_attach(device_t parent __unused, device_t self, void *aux)
359 {
360 struct iwn_softc *sc = device_private(self);
361 struct ieee80211com *ic = &sc->sc_ic;
362 struct ifnet *ifp = &sc->sc_ec.ec_if;
363 struct pci_attach_args *pa = aux;
364 const char *intrstr;
365 pci_intr_handle_t ih;
366 pcireg_t memtype, reg;
367 int i, error;
368 char intrbuf[PCI_INTRSTR_LEN];
369
370 sc->sc_dev = self;
371 sc->sc_pct = pa->pa_pc;
372 sc->sc_pcitag = pa->pa_tag;
373 sc->sc_dmat = pa->pa_dmat;
374 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
375
376 callout_init(&sc->calib_to, 0);
377 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
378
379 pci_aprint_devinfo(pa, NULL);
380
381 /*
382 * Get the offset of the PCI Express Capability Structure in PCI
383 * Configuration Space.
384 */
385 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
386 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
387 if (error == 0) {
388 aprint_error_dev(self,
389 "PCIe capability structure not found!\n");
390 return;
391 }
392
393 /* Clear device-specific "PCI retry timeout" register (41h). */
394 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
395 if (reg & 0xff00)
396 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
397
398 /* Enable bus-mastering and hardware bug workaround. */
399 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
400 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
401 reg |= PCI_COMMAND_MASTER_ENABLE;
402 if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
403 DPRINTF(("PCIe INTx Disable set\n"));
404 reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
405 }
406 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
407
408 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
409 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
410 &sc->sc_sh, NULL, &sc->sc_sz);
411 if (error != 0) {
412 aprint_error_dev(self, "can't map mem space\n");
413 return;
414 }
415
416 /* Install interrupt handler. */
417 if (pci_intr_map(pa, &ih) != 0) {
418 aprint_error_dev(self, "can't map interrupt\n");
419 return;
420 }
421 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
422 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
423 if (sc->sc_ih == NULL) {
424 aprint_error_dev(self, "can't establish interrupt");
425 if (intrstr != NULL)
426 aprint_error(" at %s", intrstr);
427 aprint_error("\n");
428 return;
429 }
430 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
431
432 /* Read hardware revision and attach. */
433 sc->hw_type =
434 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
435 >> IWN_HW_REV_TYPE_SHIFT;
436 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
437 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
438 else
439 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
440 if (error != 0) {
441 aprint_error_dev(self, "could not attach device\n");
442 return;
443 }
444
445 if ((error = iwn_hw_prepare(sc)) != 0) {
446 aprint_error_dev(self, "hardware not ready\n");
447 return;
448 }
449
450 /* Read MAC address, channels, etc from EEPROM. */
451 if ((error = iwn_read_eeprom(sc)) != 0) {
452 aprint_error_dev(self, "could not read EEPROM\n");
453 return;
454 }
455
456 /* Allocate DMA memory for firmware transfers. */
457 if ((error = iwn_alloc_fwmem(sc)) != 0) {
458 aprint_error_dev(self,
459 "could not allocate memory for firmware\n");
460 return;
461 }
462
463 /* Allocate "Keep Warm" page. */
464 if ((error = iwn_alloc_kw(sc)) != 0) {
465 aprint_error_dev(self, "could not allocate keep warm page\n");
466 goto fail1;
467 }
468
469 /* Allocate ICT table for 5000 Series. */
470 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
471 (error = iwn_alloc_ict(sc)) != 0) {
472 aprint_error_dev(self, "could not allocate ICT table\n");
473 goto fail2;
474 }
475
476 /* Allocate TX scheduler "rings". */
477 if ((error = iwn_alloc_sched(sc)) != 0) {
478 aprint_error_dev(self,
479 "could not allocate TX scheduler rings\n");
480 goto fail3;
481 }
482
483 #ifdef IWN_USE_RBUF
484 /* Allocate RX buffers. */
485 if ((error = iwn_alloc_rpool(sc)) != 0) {
486 aprint_error_dev(self, "could not allocate RX buffers\n");
487 goto fail3;
488 }
489 #endif
490
491 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
492 for (i = 0; i < sc->ntxqs; i++) {
493 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
494 aprint_error_dev(self,
495 "could not allocate TX ring %d\n", i);
496 goto fail4;
497 }
498 }
499
500 /* Allocate RX ring. */
501 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
502 aprint_error_dev(self, "could not allocate RX ring\n");
503 goto fail4;
504 }
505
506 /* Clear pending interrupts. */
507 IWN_WRITE(sc, IWN_INT, 0xffffffff);
508
509 /* Count the number of available chains. */
510 sc->ntxchains =
511 ((sc->txchainmask >> 2) & 1) +
512 ((sc->txchainmask >> 1) & 1) +
513 ((sc->txchainmask >> 0) & 1);
514 sc->nrxchains =
515 ((sc->rxchainmask >> 2) & 1) +
516 ((sc->rxchainmask >> 1) & 1) +
517 ((sc->rxchainmask >> 0) & 1);
518 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
519 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
520 ether_sprintf(ic->ic_myaddr));
521
522 ic->ic_ifp = ifp;
523 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
524 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
525 ic->ic_state = IEEE80211_S_INIT;
526
527 /* Set device capabilities. */
528 /* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
529 * and IEEE80211_C_PMGT too. */
530 ic->ic_caps =
531 IEEE80211_C_IBSS | /* IBSS mode support */
532 IEEE80211_C_WPA | /* 802.11i */
533 IEEE80211_C_MONITOR | /* monitor mode supported */
534 IEEE80211_C_TXPMGT | /* tx power management */
535 IEEE80211_C_SHSLOT | /* short slot time supported */
536 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
537 IEEE80211_C_WME; /* 802.11e */
538
539 #ifndef IEEE80211_NO_HT
540 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
541 /* Set HT capabilities. */
542 ic->ic_htcaps =
543 #if IWN_RBUF_SIZE == 8192
544 IEEE80211_HTCAP_AMSDU7935 |
545 #endif
546 IEEE80211_HTCAP_CBW20_40 |
547 IEEE80211_HTCAP_SGI20 |
548 IEEE80211_HTCAP_SGI40;
549 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
550 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
551 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
552 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
553 else
554 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
555 }
556 #endif /* !IEEE80211_NO_HT */
557
558 /* Set supported legacy rates. */
559 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
560 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
561 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
562 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
563 }
564 #ifndef IEEE80211_NO_HT
565 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
566 /* Set supported HT rates. */
567 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
568 if (sc->nrxchains > 1)
569 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
570 if (sc->nrxchains > 2)
571 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
572 }
573 #endif
574
575 /* IBSS channel undefined for now. */
576 ic->ic_ibss_chan = &ic->ic_channels[0];
577
578 ifp->if_softc = sc;
579 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 ifp->if_init = iwn_init;
581 ifp->if_ioctl = iwn_ioctl;
582 ifp->if_start = iwn_start;
583 ifp->if_stop = iwn_stop;
584 ifp->if_watchdog = iwn_watchdog;
585 IFQ_SET_READY(&ifp->if_snd);
586 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
587
588 if_attach(ifp);
589 if_deferred_start_init(ifp, NULL);
590 ieee80211_ifattach(ic);
591 ic->ic_node_alloc = iwn_node_alloc;
592 ic->ic_newassoc = iwn_newassoc;
593 #ifdef IWN_HWCRYPTO
594 ic->ic_crypto.cs_key_set = iwn_set_key;
595 ic->ic_crypto.cs_key_delete = iwn_delete_key;
596 #endif
597 ic->ic_wme.wme_update = iwn_wme_update;
598 #ifndef IEEE80211_NO_HT
599 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
600 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
601 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
602 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
603 #endif
604
605 /* Override 802.11 state transition machine. */
606 sc->sc_newstate = ic->ic_newstate;
607 ic->ic_newstate = iwn_newstate;
608 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
609
610 sc->amrr.amrr_min_success_threshold = 1;
611 sc->amrr.amrr_max_success_threshold = 15;
612
613 iwn_radiotap_attach(sc);
614
615 /*
616 * XXX for NetBSD, OpenBSD timeout_set replaced by
617 * callout_init and callout_setfunc, above.
618 */
619
620 if (pmf_device_register(self, NULL, iwn_resume))
621 pmf_class_network_register(self, ifp);
622 else
623 aprint_error_dev(self, "couldn't establish power handler\n");
624
625 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
626 ieee80211_announce(ic);
627
628 return;
629
630 /* Free allocated memory if something failed during attachment. */
631 fail4: while (--i >= 0)
632 iwn_free_tx_ring(sc, &sc->txq[i]);
633 #ifdef IWN_USE_RBUF
634 iwn_free_rpool(sc);
635 #endif
636 iwn_free_sched(sc);
637 fail3: if (sc->ict != NULL)
638 iwn_free_ict(sc);
639 fail2: iwn_free_kw(sc);
640 fail1: iwn_free_fwmem(sc);
641 }
642
643 int
644 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
645 {
646 struct iwn_ops *ops = &sc->ops;
647
648 ops->load_firmware = iwn4965_load_firmware;
649 ops->read_eeprom = iwn4965_read_eeprom;
650 ops->post_alive = iwn4965_post_alive;
651 ops->nic_config = iwn4965_nic_config;
652 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
653 ops->update_sched = iwn4965_update_sched;
654 ops->get_temperature = iwn4965_get_temperature;
655 ops->get_rssi = iwn4965_get_rssi;
656 ops->set_txpower = iwn4965_set_txpower;
657 ops->init_gains = iwn4965_init_gains;
658 ops->set_gains = iwn4965_set_gains;
659 ops->add_node = iwn4965_add_node;
660 ops->tx_done = iwn4965_tx_done;
661 #ifndef IEEE80211_NO_HT
662 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
663 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
664 #endif
665 sc->ntxqs = IWN4965_NTXQUEUES;
666 sc->ndmachnls = IWN4965_NDMACHNLS;
667 sc->broadcast_id = IWN4965_ID_BROADCAST;
668 sc->rxonsz = IWN4965_RXONSZ;
669 sc->schedsz = IWN4965_SCHEDSZ;
670 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
671 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
672 sc->fwsz = IWN4965_FWSZ;
673 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
674 sc->limits = &iwn4965_sensitivity_limits;
675 sc->fwname = "iwlwifi-4965-2.ucode";
676 /* Override chains masks, ROM is known to be broken. */
677 sc->txchainmask = IWN_ANT_AB;
678 sc->rxchainmask = IWN_ANT_ABC;
679
680 return 0;
681 }
682
683 int
684 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
685 {
686 struct iwn_ops *ops = &sc->ops;
687
688 ops->load_firmware = iwn5000_load_firmware;
689 ops->read_eeprom = iwn5000_read_eeprom;
690 ops->post_alive = iwn5000_post_alive;
691 ops->nic_config = iwn5000_nic_config;
692 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
693 ops->update_sched = iwn5000_update_sched;
694 ops->get_temperature = iwn5000_get_temperature;
695 ops->get_rssi = iwn5000_get_rssi;
696 ops->set_txpower = iwn5000_set_txpower;
697 ops->init_gains = iwn5000_init_gains;
698 ops->set_gains = iwn5000_set_gains;
699 ops->add_node = iwn5000_add_node;
700 ops->tx_done = iwn5000_tx_done;
701 #ifndef IEEE80211_NO_HT
702 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
703 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
704 #endif
705 sc->ntxqs = IWN5000_NTXQUEUES;
706 sc->ndmachnls = IWN5000_NDMACHNLS;
707 sc->broadcast_id = IWN5000_ID_BROADCAST;
708 sc->rxonsz = IWN5000_RXONSZ;
709 sc->schedsz = IWN5000_SCHEDSZ;
710 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
711 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
712 sc->fwsz = IWN5000_FWSZ;
713 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
714
715 switch (sc->hw_type) {
716 case IWN_HW_REV_TYPE_5100:
717 sc->limits = &iwn5000_sensitivity_limits;
718 sc->fwname = "iwlwifi-5000-2.ucode";
719 /* Override chains masks, ROM is known to be broken. */
720 sc->txchainmask = IWN_ANT_B;
721 sc->rxchainmask = IWN_ANT_AB;
722 break;
723 case IWN_HW_REV_TYPE_5150:
724 sc->limits = &iwn5150_sensitivity_limits;
725 sc->fwname = "iwlwifi-5150-2.ucode";
726 break;
727 case IWN_HW_REV_TYPE_5300:
728 case IWN_HW_REV_TYPE_5350:
729 sc->limits = &iwn5000_sensitivity_limits;
730 sc->fwname = "iwlwifi-5000-2.ucode";
731 break;
732 case IWN_HW_REV_TYPE_1000:
733 sc->limits = &iwn1000_sensitivity_limits;
734 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
735 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
736 sc->fwname = "iwlwifi-100-5.ucode";
737 else
738 sc->fwname = "iwlwifi-1000-3.ucode";
739 break;
740 case IWN_HW_REV_TYPE_6000:
741 sc->limits = &iwn6000_sensitivity_limits;
742 sc->fwname = "iwlwifi-6000-4.ucode";
743 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
744 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
745 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
746 /* Override chains masks, ROM is known to be broken. */
747 sc->txchainmask = IWN_ANT_BC;
748 sc->rxchainmask = IWN_ANT_BC;
749 }
750 break;
751 case IWN_HW_REV_TYPE_6050:
752 sc->limits = &iwn6000_sensitivity_limits;
753 sc->fwname = "iwlwifi-6050-5.ucode";
754 break;
755 case IWN_HW_REV_TYPE_6005:
756 sc->limits = &iwn6000_sensitivity_limits;
757 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
758 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
759 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
760 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
761 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
762 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
763 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
764 sc->fwname = "iwlwifi-6000g2b-6.ucode";
765 ops->config_bt_coex = iwn_config_bt_coex_adv1;
766 }
767 else
768 sc->fwname = "iwlwifi-6000g2a-5.ucode";
769 break;
770 case IWN_HW_REV_TYPE_2030:
771 sc->limits = &iwn2000_sensitivity_limits;
772 sc->fwname = "iwlwifi-2030-6.ucode";
773 ops->config_bt_coex = iwn_config_bt_coex_adv2;
774 break;
775 case IWN_HW_REV_TYPE_2000:
776 sc->limits = &iwn2000_sensitivity_limits;
777 sc->fwname = "iwlwifi-2000-6.ucode";
778 break;
779 case IWN_HW_REV_TYPE_135:
780 sc->limits = &iwn2000_sensitivity_limits;
781 sc->fwname = "iwlwifi-135-6.ucode";
782 ops->config_bt_coex = iwn_config_bt_coex_adv2;
783 break;
784 case IWN_HW_REV_TYPE_105:
785 sc->limits = &iwn2000_sensitivity_limits;
786 sc->fwname = "iwlwifi-105-6.ucode";
787 break;
788 default:
789 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
790 return ENOTSUP;
791 }
792 return 0;
793 }
794
795 /*
796 * Attach the interface to 802.11 radiotap.
797 */
798 static void
799 iwn_radiotap_attach(struct iwn_softc *sc)
800 {
801 struct ifnet *ifp = sc->sc_ic.ic_ifp;
802
803 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
804 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
805 &sc->sc_drvbpf);
806
807 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
808 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
809 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
810
811 sc->sc_txtap_len = sizeof sc->sc_txtapu;
812 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
813 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
814 }
815
816 static int
817 iwn_detach(device_t self, int flags __unused)
818 {
819 struct iwn_softc *sc = device_private(self);
820 struct ifnet *ifp = sc->sc_ic.ic_ifp;
821 int qid;
822
823 callout_stop(&sc->calib_to);
824
825 /* Uninstall interrupt handler. */
826 if (sc->sc_ih != NULL)
827 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
828
829 /* Free DMA resources. */
830 iwn_free_rx_ring(sc, &sc->rxq);
831 for (qid = 0; qid < sc->ntxqs; qid++)
832 iwn_free_tx_ring(sc, &sc->txq[qid]);
833 #ifdef IWN_USE_RBUF
834 iwn_free_rpool(sc);
835 #endif
836 iwn_free_sched(sc);
837 iwn_free_kw(sc);
838 if (sc->ict != NULL)
839 iwn_free_ict(sc);
840 iwn_free_fwmem(sc);
841
842 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
843
844 ieee80211_ifdetach(&sc->sc_ic);
845 if_detach(ifp);
846
847 return 0;
848 }
849
850 #if 0
851 /*
852 * XXX Investigate if clearing the PCI retry timeout could eliminate
853 * the repeated scan calls. Also the calls to if_init and if_start
854 * are similar to the effect of adding the call to ifioctl_common .
855 */
856 static void
857 iwn_power(int why, void *arg)
858 {
859 struct iwn_softc *sc = arg;
860 struct ifnet *ifp;
861 pcireg_t reg;
862 int s;
863
864 if (why != PWR_RESUME)
865 return;
866
867 /* Clear device-specific "PCI retry timeout" register (41h). */
868 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
869 if (reg & 0xff00)
870 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
871
872 s = splnet();
873 ifp = &sc->sc_ic.ic_if;
874 if (ifp->if_flags & IFF_UP) {
875 ifp->if_init(ifp);
876 if (ifp->if_flags & IFF_RUNNING)
877 ifp->if_start(ifp);
878 }
879 splx(s);
880 }
881 #endif
882
883 static bool
884 iwn_resume(device_t dv, const pmf_qual_t *qual)
885 {
886 return true;
887 }
888
889 static int
890 iwn_nic_lock(struct iwn_softc *sc)
891 {
892 int ntries;
893
894 /* Request exclusive access to NIC. */
895 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
896
897 /* Spin until we actually get the lock. */
898 for (ntries = 0; ntries < 1000; ntries++) {
899 if ((IWN_READ(sc, IWN_GP_CNTRL) &
900 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
901 IWN_GP_CNTRL_MAC_ACCESS_ENA)
902 return 0;
903 DELAY(10);
904 }
905 return ETIMEDOUT;
906 }
907
908 static __inline void
909 iwn_nic_unlock(struct iwn_softc *sc)
910 {
911 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
912 }
913
914 static __inline uint32_t
915 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
916 {
917 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
918 IWN_BARRIER_READ_WRITE(sc);
919 return IWN_READ(sc, IWN_PRPH_RDATA);
920 }
921
922 static __inline void
923 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
924 {
925 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
926 IWN_BARRIER_WRITE(sc);
927 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
928 }
929
930 static __inline void
931 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
932 {
933 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
934 }
935
936 static __inline void
937 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
938 {
939 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
940 }
941
942 static __inline void
943 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
944 const uint32_t *data, int count)
945 {
946 for (; count > 0; count--, data++, addr += 4)
947 iwn_prph_write(sc, addr, *data);
948 }
949
950 static __inline uint32_t
951 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
952 {
953 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
954 IWN_BARRIER_READ_WRITE(sc);
955 return IWN_READ(sc, IWN_MEM_RDATA);
956 }
957
958 static __inline void
959 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
960 {
961 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
962 IWN_BARRIER_WRITE(sc);
963 IWN_WRITE(sc, IWN_MEM_WDATA, data);
964 }
965
966 #ifndef IEEE80211_NO_HT
967 static __inline void
968 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
969 {
970 uint32_t tmp;
971
972 tmp = iwn_mem_read(sc, addr & ~3);
973 if (addr & 3)
974 tmp = (tmp & 0x0000ffff) | data << 16;
975 else
976 tmp = (tmp & 0xffff0000) | data;
977 iwn_mem_write(sc, addr & ~3, tmp);
978 }
979 #endif
980
981 static __inline void
982 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
983 int count)
984 {
985 for (; count > 0; count--, addr += 4)
986 *data++ = iwn_mem_read(sc, addr);
987 }
988
989 static __inline void
990 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
991 int count)
992 {
993 for (; count > 0; count--, addr += 4)
994 iwn_mem_write(sc, addr, val);
995 }
996
997 static int
998 iwn_eeprom_lock(struct iwn_softc *sc)
999 {
1000 int i, ntries;
1001
1002 for (i = 0; i < 100; i++) {
1003 /* Request exclusive access to EEPROM. */
1004 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1005 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1006
1007 /* Spin until we actually get the lock. */
1008 for (ntries = 0; ntries < 100; ntries++) {
1009 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1010 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1011 return 0;
1012 DELAY(10);
1013 }
1014 }
1015 return ETIMEDOUT;
1016 }
1017
1018 static __inline void
1019 iwn_eeprom_unlock(struct iwn_softc *sc)
1020 {
1021 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1022 }
1023
1024 /*
1025 * Initialize access by host to One Time Programmable ROM.
1026 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1027 */
1028 static int
1029 iwn_init_otprom(struct iwn_softc *sc)
1030 {
1031 uint16_t prev = 0, base, next;
1032 int count, error;
1033
1034 /* Wait for clock stabilization before accessing prph. */
1035 if ((error = iwn_clock_wait(sc)) != 0)
1036 return error;
1037
1038 if ((error = iwn_nic_lock(sc)) != 0)
1039 return error;
1040 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1041 DELAY(5);
1042 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1043 iwn_nic_unlock(sc);
1044
1045 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1046 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1047 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1048 IWN_RESET_LINK_PWR_MGMT_DIS);
1049 }
1050 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1051 /* Clear ECC status. */
1052 IWN_SETBITS(sc, IWN_OTP_GP,
1053 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1054
1055 /*
1056 * Find the block before last block (contains the EEPROM image)
1057 * for HW without OTP shadow RAM.
1058 */
1059 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1060 /* Switch to absolute addressing mode. */
1061 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1062 base = 0;
1063 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1064 error = iwn_read_prom_data(sc, base, &next, 2);
1065 if (error != 0)
1066 return error;
1067 if (next == 0) /* End of linked-list. */
1068 break;
1069 prev = base;
1070 base = le16toh(next);
1071 }
1072 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1073 return EIO;
1074 /* Skip "next" word. */
1075 sc->prom_base = prev + 1;
1076 }
1077 return 0;
1078 }
1079
1080 static int
1081 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1082 {
1083 uint8_t *out = data;
1084 uint32_t val, tmp;
1085 int ntries;
1086
1087 addr += sc->prom_base;
1088 for (; count > 0; count -= 2, addr++) {
1089 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1090 for (ntries = 0; ntries < 10; ntries++) {
1091 val = IWN_READ(sc, IWN_EEPROM);
1092 if (val & IWN_EEPROM_READ_VALID)
1093 break;
1094 DELAY(5);
1095 }
1096 if (ntries == 10) {
1097 aprint_error_dev(sc->sc_dev,
1098 "timeout reading ROM at 0x%x\n", addr);
1099 return ETIMEDOUT;
1100 }
1101 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1102 /* OTPROM, check for ECC errors. */
1103 tmp = IWN_READ(sc, IWN_OTP_GP);
1104 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1105 aprint_error_dev(sc->sc_dev,
1106 "OTPROM ECC error at 0x%x\n", addr);
1107 return EIO;
1108 }
1109 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1110 /* Correctable ECC error, clear bit. */
1111 IWN_SETBITS(sc, IWN_OTP_GP,
1112 IWN_OTP_GP_ECC_CORR_STTS);
1113 }
1114 }
1115 *out++ = val >> 16;
1116 if (count > 1)
1117 *out++ = val >> 24;
1118 }
1119 return 0;
1120 }
1121
1122 static int
1123 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1124 bus_size_t size, bus_size_t alignment)
1125 {
1126 int nsegs, error;
1127
1128 dma->tag = tag;
1129 dma->size = size;
1130
1131 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1132 &dma->map);
1133 if (error != 0)
1134 goto fail;
1135
1136 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1137 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1138 if (error != 0)
1139 goto fail;
1140
1141 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1142 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1143 if (error != 0)
1144 goto fail;
1145
1146 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1147 BUS_DMA_NOWAIT);
1148 if (error != 0)
1149 goto fail;
1150
1151 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1152 memset(dma->vaddr, 0, size);
1153 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1154
1155 dma->paddr = dma->map->dm_segs[0].ds_addr;
1156 if (kvap != NULL)
1157 *kvap = dma->vaddr;
1158
1159 return 0;
1160
1161 fail: iwn_dma_contig_free(dma);
1162 return error;
1163 }
1164
1165 static void
1166 iwn_dma_contig_free(struct iwn_dma_info *dma)
1167 {
1168 if (dma->map != NULL) {
1169 if (dma->vaddr != NULL) {
1170 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1171 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1172 bus_dmamap_unload(dma->tag, dma->map);
1173 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1174 bus_dmamem_free(dma->tag, &dma->seg, 1);
1175 dma->vaddr = NULL;
1176 }
1177 bus_dmamap_destroy(dma->tag, dma->map);
1178 dma->map = NULL;
1179 }
1180 }
1181
1182 static int
1183 iwn_alloc_sched(struct iwn_softc *sc)
1184 {
1185 /* TX scheduler rings must be aligned on a 1KB boundary. */
1186 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1187 (void **)&sc->sched, sc->schedsz, 1024);
1188 }
1189
1190 static void
1191 iwn_free_sched(struct iwn_softc *sc)
1192 {
1193 iwn_dma_contig_free(&sc->sched_dma);
1194 }
1195
1196 static int
1197 iwn_alloc_kw(struct iwn_softc *sc)
1198 {
1199 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1200 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1201 4096);
1202 }
1203
1204 static void
1205 iwn_free_kw(struct iwn_softc *sc)
1206 {
1207 iwn_dma_contig_free(&sc->kw_dma);
1208 }
1209
1210 static int
1211 iwn_alloc_ict(struct iwn_softc *sc)
1212 {
1213 /* ICT table must be aligned on a 4KB boundary. */
1214 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1215 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1216 }
1217
1218 static void
1219 iwn_free_ict(struct iwn_softc *sc)
1220 {
1221 iwn_dma_contig_free(&sc->ict_dma);
1222 }
1223
1224 static int
1225 iwn_alloc_fwmem(struct iwn_softc *sc)
1226 {
1227 /* Must be aligned on a 16-byte boundary. */
1228 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1229 sc->fwsz, 16);
1230 }
1231
1232 static void
1233 iwn_free_fwmem(struct iwn_softc *sc)
1234 {
1235 iwn_dma_contig_free(&sc->fw_dma);
1236 }
1237
1238 static int
1239 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1240 {
1241 bus_size_t size;
1242 int i, error;
1243
1244 ring->cur = 0;
1245
1246 /* Allocate RX descriptors (256-byte aligned). */
1247 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1248 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1249 (void **)&ring->desc, size, 256);
1250 if (error != 0) {
1251 aprint_error_dev(sc->sc_dev,
1252 "could not allocate RX ring DMA memory\n");
1253 goto fail;
1254 }
1255
1256 /* Allocate RX status area (16-byte aligned). */
1257 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1258 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1259 if (error != 0) {
1260 aprint_error_dev(sc->sc_dev,
1261 "could not allocate RX status DMA memory\n");
1262 goto fail;
1263 }
1264
1265 /*
1266 * Allocate and map RX buffers.
1267 */
1268 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1269 struct iwn_rx_data *data = &ring->data[i];
1270
1271 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1272 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1273 &data->map);
1274 if (error != 0) {
1275 aprint_error_dev(sc->sc_dev,
1276 "could not create RX buf DMA map\n");
1277 goto fail;
1278 }
1279
1280 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1281 if (data->m == NULL) {
1282 aprint_error_dev(sc->sc_dev,
1283 "could not allocate RX mbuf\n");
1284 error = ENOBUFS;
1285 goto fail;
1286 }
1287
1288 error = bus_dmamap_load(sc->sc_dmat, data->map,
1289 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1290 BUS_DMA_NOWAIT | BUS_DMA_READ);
1291 if (error != 0) {
1292 aprint_error_dev(sc->sc_dev,
1293 "can't not map mbuf (error %d)\n", error);
1294 goto fail;
1295 }
1296
1297 /* Set physical address of RX buffer (256-byte aligned). */
1298 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1299 }
1300
1301 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1302 BUS_DMASYNC_PREWRITE);
1303
1304 return 0;
1305
1306 fail: iwn_free_rx_ring(sc, ring);
1307 return error;
1308 }
1309
1310 static void
1311 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1312 {
1313 int ntries;
1314
1315 if (iwn_nic_lock(sc) == 0) {
1316 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1317 for (ntries = 0; ntries < 1000; ntries++) {
1318 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1319 IWN_FH_RX_STATUS_IDLE)
1320 break;
1321 DELAY(10);
1322 }
1323 iwn_nic_unlock(sc);
1324 }
1325 ring->cur = 0;
1326 sc->last_rx_valid = 0;
1327 }
1328
1329 static void
1330 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1331 {
1332 int i;
1333
1334 iwn_dma_contig_free(&ring->desc_dma);
1335 iwn_dma_contig_free(&ring->stat_dma);
1336
1337 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1338 struct iwn_rx_data *data = &ring->data[i];
1339
1340 if (data->m != NULL) {
1341 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1342 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1343 bus_dmamap_unload(sc->sc_dmat, data->map);
1344 m_freem(data->m);
1345 }
1346 if (data->map != NULL)
1347 bus_dmamap_destroy(sc->sc_dmat, data->map);
1348 }
1349 }
1350
1351 static int
1352 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1353 {
1354 bus_addr_t paddr;
1355 bus_size_t size;
1356 int i, error;
1357
1358 ring->qid = qid;
1359 ring->queued = 0;
1360 ring->cur = 0;
1361
1362 /* Allocate TX descriptors (256-byte aligned). */
1363 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1364 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1365 (void **)&ring->desc, size, 256);
1366 if (error != 0) {
1367 aprint_error_dev(sc->sc_dev,
1368 "could not allocate TX ring DMA memory\n");
1369 goto fail;
1370 }
1371 /*
1372 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1373 * to allocate commands space for other rings.
1374 * XXX Do we really need to allocate descriptors for other rings?
1375 */
1376 if (qid > 4)
1377 return 0;
1378
1379 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1380 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1381 (void **)&ring->cmd, size, 4);
1382 if (error != 0) {
1383 aprint_error_dev(sc->sc_dev,
1384 "could not allocate TX cmd DMA memory\n");
1385 goto fail;
1386 }
1387
1388 paddr = ring->cmd_dma.paddr;
1389 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1390 struct iwn_tx_data *data = &ring->data[i];
1391
1392 data->cmd_paddr = paddr;
1393 data->scratch_paddr = paddr + 12;
1394 paddr += sizeof (struct iwn_tx_cmd);
1395
1396 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1397 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1398 &data->map);
1399 if (error != 0) {
1400 aprint_error_dev(sc->sc_dev,
1401 "could not create TX buf DMA map\n");
1402 goto fail;
1403 }
1404 }
1405 return 0;
1406
1407 fail: iwn_free_tx_ring(sc, ring);
1408 return error;
1409 }
1410
1411 static void
1412 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1413 {
1414 int i;
1415
1416 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1417 struct iwn_tx_data *data = &ring->data[i];
1418
1419 if (data->m != NULL) {
1420 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1421 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1422 bus_dmamap_unload(sc->sc_dmat, data->map);
1423 m_freem(data->m);
1424 data->m = NULL;
1425 }
1426 }
1427 /* Clear TX descriptors. */
1428 memset(ring->desc, 0, ring->desc_dma.size);
1429 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1430 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1431 sc->qfullmsk &= ~(1 << ring->qid);
1432 ring->queued = 0;
1433 ring->cur = 0;
1434 }
1435
1436 static void
1437 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1438 {
1439 int i;
1440
1441 iwn_dma_contig_free(&ring->desc_dma);
1442 iwn_dma_contig_free(&ring->cmd_dma);
1443
1444 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1445 struct iwn_tx_data *data = &ring->data[i];
1446
1447 if (data->m != NULL) {
1448 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1449 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1450 bus_dmamap_unload(sc->sc_dmat, data->map);
1451 m_freem(data->m);
1452 }
1453 if (data->map != NULL)
1454 bus_dmamap_destroy(sc->sc_dmat, data->map);
1455 }
1456 }
1457
1458 static void
1459 iwn5000_ict_reset(struct iwn_softc *sc)
1460 {
1461 /* Disable interrupts. */
1462 IWN_WRITE(sc, IWN_INT_MASK, 0);
1463
1464 /* Reset ICT table. */
1465 memset(sc->ict, 0, IWN_ICT_SIZE);
1466 sc->ict_cur = 0;
1467
1468 /* Set physical address of ICT table (4KB aligned). */
1469 DPRINTF(("enabling ICT\n"));
1470 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1471 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1472
1473 /* Enable periodic RX interrupt. */
1474 sc->int_mask |= IWN_INT_RX_PERIODIC;
1475 /* Switch to ICT interrupt mode in driver. */
1476 sc->sc_flags |= IWN_FLAG_USE_ICT;
1477
1478 /* Re-enable interrupts. */
1479 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1480 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1481 }
1482
1483 static int
1484 iwn_read_eeprom(struct iwn_softc *sc)
1485 {
1486 struct iwn_ops *ops = &sc->ops;
1487 struct ieee80211com *ic = &sc->sc_ic;
1488 uint16_t val;
1489 int error;
1490
1491 /* Check whether adapter has an EEPROM or an OTPROM. */
1492 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1493 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1494 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1495 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1496 "OTPROM" : "EEPROM"));
1497
1498 /* Adapter has to be powered on for EEPROM access to work. */
1499 if ((error = iwn_apm_init(sc)) != 0) {
1500 aprint_error_dev(sc->sc_dev,
1501 "could not power ON adapter\n");
1502 return error;
1503 }
1504
1505 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1506 aprint_error_dev(sc->sc_dev,
1507 "bad ROM signature\n");
1508 return EIO;
1509 }
1510 if ((error = iwn_eeprom_lock(sc)) != 0) {
1511 aprint_error_dev(sc->sc_dev,
1512 "could not lock ROM (error=%d)\n", error);
1513 return error;
1514 }
1515 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1516 if ((error = iwn_init_otprom(sc)) != 0) {
1517 aprint_error_dev(sc->sc_dev,
1518 "could not initialize OTPROM\n");
1519 return error;
1520 }
1521 }
1522
1523 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1524 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1525 /* Check if HT support is bonded out. */
1526 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1527 sc->sc_flags |= IWN_FLAG_HAS_11N;
1528
1529 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1530 sc->rfcfg = le16toh(val);
1531 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1532 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1533 if (sc->txchainmask == 0)
1534 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1535 if (sc->rxchainmask == 0)
1536 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1537
1538 /* Read MAC address. */
1539 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1540
1541 /* Read adapter-specific information from EEPROM. */
1542 ops->read_eeprom(sc);
1543
1544 iwn_apm_stop(sc); /* Power OFF adapter. */
1545
1546 iwn_eeprom_unlock(sc);
1547 return 0;
1548 }
1549
1550 static void
1551 iwn4965_read_eeprom(struct iwn_softc *sc)
1552 {
1553 uint32_t addr;
1554 uint16_t val;
1555 int i;
1556
1557 /* Read regulatory domain (4 ASCII characters). */
1558 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1559
1560 /* Read the list of authorized channels (20MHz ones only). */
1561 for (i = 0; i < 5; i++) {
1562 addr = iwn4965_regulatory_bands[i];
1563 iwn_read_eeprom_channels(sc, i, addr);
1564 }
1565
1566 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1567 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1568 sc->maxpwr2GHz = val & 0xff;
1569 sc->maxpwr5GHz = val >> 8;
1570 /* Check that EEPROM values are within valid range. */
1571 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1572 sc->maxpwr5GHz = 38;
1573 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1574 sc->maxpwr2GHz = 38;
1575 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1576
1577 /* Read samples for each TX power group. */
1578 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1579 sizeof sc->bands);
1580
1581 /* Read voltage at which samples were taken. */
1582 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1583 sc->eeprom_voltage = (int16_t)le16toh(val);
1584 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1585
1586 #ifdef IWN_DEBUG
1587 /* Print samples. */
1588 if (iwn_debug > 0) {
1589 for (i = 0; i < IWN_NBANDS; i++)
1590 iwn4965_print_power_group(sc, i);
1591 }
1592 #endif
1593 }
1594
1595 #ifdef IWN_DEBUG
1596 static void
1597 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1598 {
1599 struct iwn4965_eeprom_band *band = &sc->bands[i];
1600 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1601 int j, c;
1602
1603 aprint_normal("===band %d===\n", i);
1604 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1605 aprint_normal("chan1 num=%d\n", chans[0].num);
1606 for (c = 0; c < 2; c++) {
1607 for (j = 0; j < IWN_NSAMPLES; j++) {
1608 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1609 "power=%d pa_det=%d\n", c, j,
1610 chans[0].samples[c][j].temp,
1611 chans[0].samples[c][j].gain,
1612 chans[0].samples[c][j].power,
1613 chans[0].samples[c][j].pa_det);
1614 }
1615 }
1616 aprint_normal("chan2 num=%d\n", chans[1].num);
1617 for (c = 0; c < 2; c++) {
1618 for (j = 0; j < IWN_NSAMPLES; j++) {
1619 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1620 "power=%d pa_det=%d\n", c, j,
1621 chans[1].samples[c][j].temp,
1622 chans[1].samples[c][j].gain,
1623 chans[1].samples[c][j].power,
1624 chans[1].samples[c][j].pa_det);
1625 }
1626 }
1627 }
1628 #endif
1629
1630 static void
1631 iwn5000_read_eeprom(struct iwn_softc *sc)
1632 {
1633 struct iwn5000_eeprom_calib_hdr hdr;
1634 int32_t volt;
1635 uint32_t base, addr;
1636 uint16_t val;
1637 int i;
1638
1639 /* Read regulatory domain (4 ASCII characters). */
1640 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1641 base = le16toh(val);
1642 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1643 sc->eeprom_domain, 4);
1644
1645 /* Read the list of authorized channels (20MHz ones only). */
1646 for (i = 0; i < 5; i++) {
1647 addr = base + iwn5000_regulatory_bands[i];
1648 iwn_read_eeprom_channels(sc, i, addr);
1649 }
1650
1651 /* Read enhanced TX power information for 6000 Series. */
1652 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1653 iwn_read_eeprom_enhinfo(sc);
1654
1655 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1656 base = le16toh(val);
1657 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1658 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1659 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1660 sc->calib_ver = hdr.version;
1661
1662 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1663 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1664 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1665 sc->hw_type == IWN_HW_REV_TYPE_105) {
1666 sc->eeprom_voltage = le16toh(hdr.volt);
1667 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1668 sc->eeprom_temp = le16toh(val);
1669 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1670 sc->eeprom_rawtemp = le16toh(val);
1671 }
1672
1673 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1674 /* Compute temperature offset. */
1675 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1676 sc->eeprom_temp = le16toh(val);
1677 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1678 volt = le16toh(val);
1679 sc->temp_off = sc->eeprom_temp - (volt / -5);
1680 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1681 sc->eeprom_temp, volt, sc->temp_off));
1682 } else {
1683 /* Read crystal calibration. */
1684 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1685 &sc->eeprom_crystal, sizeof (uint32_t));
1686 DPRINTF(("crystal calibration 0x%08x\n",
1687 le32toh(sc->eeprom_crystal)));
1688 }
1689 }
1690
1691 static void
1692 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1693 {
1694 struct ieee80211com *ic = &sc->sc_ic;
1695 const struct iwn_chan_band *band = &iwn_bands[n];
1696 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1697 uint8_t chan;
1698 int i;
1699
1700 iwn_read_prom_data(sc, addr, channels,
1701 band->nchan * sizeof (struct iwn_eeprom_chan));
1702
1703 for (i = 0; i < band->nchan; i++) {
1704 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1705 continue;
1706
1707 chan = band->chan[i];
1708
1709 if (n == 0) { /* 2GHz band */
1710 ic->ic_channels[chan].ic_freq =
1711 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1712 ic->ic_channels[chan].ic_flags =
1713 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1714 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1715
1716 } else { /* 5GHz band */
1717 /*
1718 * Some adapters support channels 7, 8, 11 and 12
1719 * both in the 2GHz and 4.9GHz bands.
1720 * Because of limitations in our net80211 layer,
1721 * we don't support them in the 4.9GHz band.
1722 */
1723 if (chan <= 14)
1724 continue;
1725
1726 ic->ic_channels[chan].ic_freq =
1727 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1728 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1729 /* We have at least one valid 5GHz channel. */
1730 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1731 }
1732
1733 /* Is active scan allowed on this channel? */
1734 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1735 ic->ic_channels[chan].ic_flags |=
1736 IEEE80211_CHAN_PASSIVE;
1737 }
1738
1739 /* Save maximum allowed TX power for this channel. */
1740 sc->maxpwr[chan] = channels[i].maxpwr;
1741
1742 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1743 chan, channels[i].flags, sc->maxpwr[chan]));
1744 }
1745 }
1746
1747 static void
1748 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1749 {
1750 struct iwn_eeprom_enhinfo enhinfo[35];
1751 uint16_t val, base;
1752 int8_t maxpwr;
1753 int i;
1754
1755 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1756 base = le16toh(val);
1757 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1758 enhinfo, sizeof enhinfo);
1759
1760 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1761 for (i = 0; i < __arraycount(enhinfo); i++) {
1762 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1763 continue; /* Skip invalid entries. */
1764
1765 maxpwr = 0;
1766 if (sc->txchainmask & IWN_ANT_A)
1767 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1768 if (sc->txchainmask & IWN_ANT_B)
1769 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1770 if (sc->txchainmask & IWN_ANT_C)
1771 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1772 if (sc->ntxchains == 2)
1773 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1774 else if (sc->ntxchains == 3)
1775 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1776 maxpwr /= 2; /* Convert half-dBm to dBm. */
1777
1778 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1779 sc->enh_maxpwr[i] = maxpwr;
1780 }
1781 }
1782
1783 static struct ieee80211_node *
1784 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1785 {
1786 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1787 }
1788
1789 static void
1790 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1791 {
1792 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1793 struct iwn_node *wn = (void *)ni;
1794 uint8_t rate;
1795 int ridx, i;
1796
1797 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1798 /* Start at lowest available bit-rate, AMRR will raise. */
1799 ni->ni_txrate = 0;
1800
1801 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1802 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1803 /* Map 802.11 rate to HW rate index. */
1804 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1805 if (iwn_rates[ridx].rate == rate)
1806 break;
1807 wn->ridx[i] = ridx;
1808 }
1809 }
1810
1811 static int
1812 iwn_media_change(struct ifnet *ifp)
1813 {
1814 struct iwn_softc *sc = ifp->if_softc;
1815 struct ieee80211com *ic = &sc->sc_ic;
1816 uint8_t rate, ridx;
1817 int error;
1818
1819 error = ieee80211_media_change(ifp);
1820 if (error != ENETRESET)
1821 return error;
1822
1823 if (ic->ic_fixed_rate != -1) {
1824 rate = ic->ic_sup_rates[ic->ic_curmode].
1825 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1826 /* Map 802.11 rate to HW rate index. */
1827 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1828 if (iwn_rates[ridx].rate == rate)
1829 break;
1830 sc->fixed_ridx = ridx;
1831 }
1832
1833 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1834 (IFF_UP | IFF_RUNNING)) {
1835 iwn_stop(ifp, 0);
1836 error = iwn_init(ifp);
1837 }
1838 return error;
1839 }
1840
1841 static int
1842 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1843 {
1844 struct ifnet *ifp = ic->ic_ifp;
1845 struct iwn_softc *sc = ifp->if_softc;
1846 int error;
1847
1848 callout_stop(&sc->calib_to);
1849
1850 switch (nstate) {
1851 case IEEE80211_S_SCAN:
1852 /* XXX Do not abort a running scan. */
1853 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1854 if (ic->ic_state != nstate)
1855 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1856 "while scanning(%d) ignored\n", nstate,
1857 ic->ic_state);
1858 break;
1859 }
1860
1861 /* XXX Not sure if call and flags are needed. */
1862 ieee80211_node_table_reset(&ic->ic_scan);
1863 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1864 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1865
1866 /* Make the link LED blink while we're scanning. */
1867 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1868
1869 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1870 aprint_error_dev(sc->sc_dev,
1871 "could not initiate scan\n");
1872 return error;
1873 }
1874 ic->ic_state = nstate;
1875 return 0;
1876
1877 case IEEE80211_S_ASSOC:
1878 if (ic->ic_state != IEEE80211_S_RUN)
1879 break;
1880 /* FALLTHROUGH */
1881 case IEEE80211_S_AUTH:
1882 /* Reset state to handle reassociations correctly. */
1883 sc->rxon.associd = 0;
1884 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1885 sc->calib.state = IWN_CALIB_STATE_INIT;
1886
1887 if ((error = iwn_auth(sc)) != 0) {
1888 aprint_error_dev(sc->sc_dev,
1889 "could not move to auth state\n");
1890 return error;
1891 }
1892 break;
1893
1894 case IEEE80211_S_RUN:
1895 if ((error = iwn_run(sc)) != 0) {
1896 aprint_error_dev(sc->sc_dev,
1897 "could not move to run state\n");
1898 return error;
1899 }
1900 break;
1901
1902 case IEEE80211_S_INIT:
1903 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1904 sc->calib.state = IWN_CALIB_STATE_INIT;
1905 break;
1906 }
1907
1908 return sc->sc_newstate(ic, nstate, arg);
1909 }
1910
1911 static void
1912 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1913 {
1914 struct iwn_softc *sc = arg;
1915 struct iwn_node *wn = (struct iwn_node *)ni;
1916
1917 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1918 }
1919
1920 static void
1921 iwn_calib_timeout(void *arg)
1922 {
1923 struct iwn_softc *sc = arg;
1924 struct ieee80211com *ic = &sc->sc_ic;
1925 int s;
1926
1927 s = splnet();
1928 if (ic->ic_fixed_rate == -1) {
1929 if (ic->ic_opmode == IEEE80211_M_STA)
1930 iwn_iter_func(sc, ic->ic_bss);
1931 else
1932 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1933 }
1934 /* Force automatic TX power calibration every 60 secs. */
1935 if (++sc->calib_cnt >= 120) {
1936 uint32_t flags = 0;
1937
1938 DPRINTF(("sending request for statistics\n"));
1939 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1940 sizeof flags, 1);
1941 sc->calib_cnt = 0;
1942 }
1943 splx(s);
1944
1945 /* Automatic rate control triggered every 500ms. */
1946 callout_schedule(&sc->calib_to, hz/2);
1947 }
1948
1949 /*
1950 * Process an RX_PHY firmware notification. This is usually immediately
1951 * followed by an MPDU_RX_DONE notification.
1952 */
1953 static void
1954 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1955 struct iwn_rx_data *data)
1956 {
1957 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1958
1959 DPRINTFN(2, ("received PHY stats\n"));
1960 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1961 sizeof (*stat), BUS_DMASYNC_POSTREAD);
1962
1963 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
1964 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1965 sc->last_rx_valid = 1;
1966 }
1967
1968 /*
1969 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1970 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1971 */
1972 static void
1973 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1974 struct iwn_rx_data *data)
1975 {
1976 struct iwn_ops *ops = &sc->ops;
1977 struct ieee80211com *ic = &sc->sc_ic;
1978 struct ifnet *ifp = ic->ic_ifp;
1979 struct iwn_rx_ring *ring = &sc->rxq;
1980 struct ieee80211_frame *wh;
1981 struct ieee80211_node *ni;
1982 struct mbuf *m, *m1;
1983 struct iwn_rx_stat *stat;
1984 char *head;
1985 uint32_t flags;
1986 int error, len, rssi;
1987
1988 if (desc->type == IWN_MPDU_RX_DONE) {
1989 /* Check for prior RX_PHY notification. */
1990 if (!sc->last_rx_valid) {
1991 DPRINTF(("missing RX_PHY\n"));
1992 return;
1993 }
1994 sc->last_rx_valid = 0;
1995 stat = &sc->last_rx_stat;
1996 } else
1997 stat = (struct iwn_rx_stat *)(desc + 1);
1998
1999 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2000 BUS_DMASYNC_POSTREAD);
2001
2002 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2003 aprint_error_dev(sc->sc_dev,
2004 "invalid RX statistic header\n");
2005 return;
2006 }
2007 if (desc->type == IWN_MPDU_RX_DONE) {
2008 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2009 head = (char *)(mpdu + 1);
2010 len = le16toh(mpdu->len);
2011 } else {
2012 head = (char *)(stat + 1) + stat->cfg_phy_len;
2013 len = le16toh(stat->len);
2014 }
2015
2016 flags = le32toh(*(uint32_t *)(head + len));
2017
2018 /* Discard frames with a bad FCS early. */
2019 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2020 DPRINTFN(2, ("RX flags error %x\n", flags));
2021 ifp->if_ierrors++;
2022 return;
2023 }
2024 /* Discard frames that are too short. */
2025 if (len < sizeof (*wh)) {
2026 DPRINTF(("frame too short: %d\n", len));
2027 ic->ic_stats.is_rx_tooshort++;
2028 ifp->if_ierrors++;
2029 return;
2030 }
2031
2032 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2033 if (m1 == NULL) {
2034 ic->ic_stats.is_rx_nobuf++;
2035 ifp->if_ierrors++;
2036 return;
2037 }
2038 bus_dmamap_unload(sc->sc_dmat, data->map);
2039
2040 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2041 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2042 if (error != 0) {
2043 m_freem(m1);
2044
2045 /* Try to reload the old mbuf. */
2046 error = bus_dmamap_load(sc->sc_dmat, data->map,
2047 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2048 BUS_DMA_NOWAIT | BUS_DMA_READ);
2049 if (error != 0) {
2050 panic("%s: could not load old RX mbuf",
2051 device_xname(sc->sc_dev));
2052 }
2053 /* Physical address may have changed. */
2054 ring->desc[ring->cur] =
2055 htole32(data->map->dm_segs[0].ds_addr >> 8);
2056 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2057 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2058 BUS_DMASYNC_PREWRITE);
2059 ifp->if_ierrors++;
2060 return;
2061 }
2062
2063 m = data->m;
2064 data->m = m1;
2065 /* Update RX descriptor. */
2066 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2067 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2068 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2069 BUS_DMASYNC_PREWRITE);
2070
2071 /* Finalize mbuf. */
2072 m_set_rcvif(m, ifp);
2073 m->m_data = head;
2074 m->m_pkthdr.len = m->m_len = len;
2075
2076 /* Grab a reference to the source node. */
2077 wh = mtod(m, struct ieee80211_frame *);
2078 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2079
2080 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2081 /* NetBSD does decryption in ieee80211_input. */
2082
2083 rssi = ops->get_rssi(stat);
2084
2085 /* XXX Added for NetBSD: scans never stop without it */
2086 if (ic->ic_state == IEEE80211_S_SCAN)
2087 iwn_fix_channel(ic, m, stat);
2088
2089 if (sc->sc_drvbpf != NULL) {
2090 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2091
2092 tap->wr_flags = 0;
2093 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2094 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2095 tap->wr_chan_freq =
2096 htole16(ic->ic_channels[stat->chan].ic_freq);
2097 tap->wr_chan_flags =
2098 htole16(ic->ic_channels[stat->chan].ic_flags);
2099 tap->wr_dbm_antsignal = (int8_t)rssi;
2100 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2101 tap->wr_tsft = stat->tstamp;
2102 switch (stat->rate) {
2103 /* CCK rates. */
2104 case 10: tap->wr_rate = 2; break;
2105 case 20: tap->wr_rate = 4; break;
2106 case 55: tap->wr_rate = 11; break;
2107 case 110: tap->wr_rate = 22; break;
2108 /* OFDM rates. */
2109 case 0xd: tap->wr_rate = 12; break;
2110 case 0xf: tap->wr_rate = 18; break;
2111 case 0x5: tap->wr_rate = 24; break;
2112 case 0x7: tap->wr_rate = 36; break;
2113 case 0x9: tap->wr_rate = 48; break;
2114 case 0xb: tap->wr_rate = 72; break;
2115 case 0x1: tap->wr_rate = 96; break;
2116 case 0x3: tap->wr_rate = 108; break;
2117 /* Unknown rate: should not happen. */
2118 default: tap->wr_rate = 0;
2119 }
2120
2121 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2122 }
2123
2124 /* Send the frame to the 802.11 layer. */
2125 ieee80211_input(ic, m, ni, rssi, 0);
2126
2127 /* Node is no longer needed. */
2128 ieee80211_free_node(ni);
2129 }
2130
2131 #ifndef IEEE80211_NO_HT
2132 /* Process an incoming Compressed BlockAck. */
2133 static void
2134 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2135 struct iwn_rx_data *data)
2136 {
2137 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2138 struct iwn_tx_ring *txq;
2139
2140 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2141 BUS_DMASYNC_POSTREAD);
2142
2143 txq = &sc->txq[le16toh(ba->qid)];
2144 /* XXX TBD */
2145 }
2146 #endif
2147
2148 /*
2149 * Process a CALIBRATION_RESULT notification sent by the initialization
2150 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2151 */
2152 static void
2153 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2154 struct iwn_rx_data *data)
2155 {
2156 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2157 int len, idx = -1;
2158
2159 /* Runtime firmware should not send such a notification. */
2160 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2161 return;
2162
2163 len = (le32toh(desc->len) & 0x3fff) - 4;
2164 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2165 BUS_DMASYNC_POSTREAD);
2166
2167 switch (calib->code) {
2168 case IWN5000_PHY_CALIB_DC:
2169 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2170 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2171 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2172 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2173 sc->hw_type == IWN_HW_REV_TYPE_105)
2174 idx = 0;
2175 break;
2176 case IWN5000_PHY_CALIB_LO:
2177 idx = 1;
2178 break;
2179 case IWN5000_PHY_CALIB_TX_IQ:
2180 idx = 2;
2181 break;
2182 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2183 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2184 sc->hw_type != IWN_HW_REV_TYPE_5150)
2185 idx = 3;
2186 break;
2187 case IWN5000_PHY_CALIB_BASE_BAND:
2188 idx = 4;
2189 break;
2190 }
2191 if (idx == -1) /* Ignore other results. */
2192 return;
2193
2194 /* Save calibration result. */
2195 if (sc->calibcmd[idx].buf != NULL)
2196 free(sc->calibcmd[idx].buf, M_DEVBUF);
2197 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2198 if (sc->calibcmd[idx].buf == NULL) {
2199 DPRINTF(("not enough memory for calibration result %d\n",
2200 calib->code));
2201 return;
2202 }
2203 DPRINTF(("saving calibration result code=%d len=%d\n",
2204 calib->code, len));
2205 sc->calibcmd[idx].len = len;
2206 memcpy(sc->calibcmd[idx].buf, calib, len);
2207 }
2208
2209 /*
2210 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2211 * The latter is sent by the firmware after each received beacon.
2212 */
2213 static void
2214 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2215 struct iwn_rx_data *data)
2216 {
2217 struct iwn_ops *ops = &sc->ops;
2218 struct ieee80211com *ic = &sc->sc_ic;
2219 struct iwn_calib_state *calib = &sc->calib;
2220 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2221 int temp;
2222
2223 /* Ignore statistics received during a scan. */
2224 if (ic->ic_state != IEEE80211_S_RUN)
2225 return;
2226
2227 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2228 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2229
2230 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2231 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2232
2233 /* Test if temperature has changed. */
2234 if (stats->general.temp != sc->rawtemp) {
2235 /* Convert "raw" temperature to degC. */
2236 sc->rawtemp = stats->general.temp;
2237 temp = ops->get_temperature(sc);
2238 DPRINTFN(2, ("temperature=%dC\n", temp));
2239
2240 /* Update TX power if need be (4965AGN only). */
2241 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2242 iwn4965_power_calibration(sc, temp);
2243 }
2244
2245 if (desc->type != IWN_BEACON_STATISTICS)
2246 return; /* Reply to a statistics request. */
2247
2248 sc->noise = iwn_get_noise(&stats->rx.general);
2249
2250 /* Test that RSSI and noise are present in stats report. */
2251 if (le32toh(stats->rx.general.flags) != 1) {
2252 DPRINTF(("received statistics without RSSI\n"));
2253 return;
2254 }
2255
2256 /*
2257 * XXX Differential gain calibration makes the 6005 firmware
2258 * crap out, so skip it for now. This effectively disables
2259 * sensitivity tuning as well.
2260 */
2261 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2262 return;
2263
2264 if (calib->state == IWN_CALIB_STATE_ASSOC)
2265 iwn_collect_noise(sc, &stats->rx.general);
2266 else if (calib->state == IWN_CALIB_STATE_RUN)
2267 iwn_tune_sensitivity(sc, &stats->rx);
2268 }
2269
2270 /*
2271 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2272 * and 5000 adapters have different incompatible TX status formats.
2273 */
2274 static void
2275 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2276 struct iwn_rx_data *data)
2277 {
2278 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2279
2280 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2281 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2282 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2283 }
2284
2285 static void
2286 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2287 struct iwn_rx_data *data)
2288 {
2289 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2290
2291 #ifdef notyet
2292 /* Reset TX scheduler slot. */
2293 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2294 #endif
2295
2296 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2297 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2298 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2299 }
2300
2301 /*
2302 * Adapter-independent backend for TX_DONE firmware notifications.
2303 */
2304 static void
2305 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2306 uint8_t status)
2307 {
2308 struct ieee80211com *ic = &sc->sc_ic;
2309 struct ifnet *ifp = ic->ic_ifp;
2310 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2311 struct iwn_tx_data *data = &ring->data[desc->idx];
2312 struct iwn_node *wn = (struct iwn_node *)data->ni;
2313
2314 /* Update rate control statistics. */
2315 wn->amn.amn_txcnt++;
2316 if (ackfailcnt > 0)
2317 wn->amn.amn_retrycnt++;
2318
2319 if (status != 1 && status != 2)
2320 ifp->if_oerrors++;
2321 else
2322 ifp->if_opackets++;
2323
2324 /* Unmap and free mbuf. */
2325 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2326 BUS_DMASYNC_POSTWRITE);
2327 bus_dmamap_unload(sc->sc_dmat, data->map);
2328 m_freem(data->m);
2329 data->m = NULL;
2330 ieee80211_free_node(data->ni);
2331 data->ni = NULL;
2332
2333 sc->sc_tx_timer = 0;
2334 if (--ring->queued < IWN_TX_RING_LOMARK) {
2335 sc->qfullmsk &= ~(1 << ring->qid);
2336 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2337 ifp->if_flags &= ~IFF_OACTIVE;
2338 if_schedule_deferred_start(ifp);
2339 }
2340 }
2341 }
2342
2343 /*
2344 * Process a "command done" firmware notification. This is where we wakeup
2345 * processes waiting for a synchronous command completion.
2346 */
2347 static void
2348 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2349 {
2350 struct iwn_tx_ring *ring = &sc->txq[4];
2351 struct iwn_tx_data *data;
2352
2353 if ((desc->qid & 0xf) != 4)
2354 return; /* Not a command ack. */
2355
2356 data = &ring->data[desc->idx];
2357
2358 /* If the command was mapped in an mbuf, free it. */
2359 if (data->m != NULL) {
2360 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2361 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2362 bus_dmamap_unload(sc->sc_dmat, data->map);
2363 m_freem(data->m);
2364 data->m = NULL;
2365 }
2366 wakeup(&ring->desc[desc->idx]);
2367 }
2368
2369 /*
2370 * Process an INT_FH_RX or INT_SW_RX interrupt.
2371 */
2372 static void
2373 iwn_notif_intr(struct iwn_softc *sc)
2374 {
2375 struct iwn_ops *ops = &sc->ops;
2376 struct ieee80211com *ic = &sc->sc_ic;
2377 struct ifnet *ifp = ic->ic_ifp;
2378 uint16_t hw;
2379
2380 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2381 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2382
2383 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2384 while (sc->rxq.cur != hw) {
2385 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2386 struct iwn_rx_desc *desc;
2387
2388 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2389 BUS_DMASYNC_POSTREAD);
2390 desc = mtod(data->m, struct iwn_rx_desc *);
2391
2392 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2393 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2394
2395 if (!(desc->qid & 0x80)) /* Reply to a command. */
2396 iwn_cmd_done(sc, desc);
2397
2398 switch (desc->type) {
2399 case IWN_RX_PHY:
2400 iwn_rx_phy(sc, desc, data);
2401 break;
2402
2403 case IWN_RX_DONE: /* 4965AGN only. */
2404 case IWN_MPDU_RX_DONE:
2405 /* An 802.11 frame has been received. */
2406 iwn_rx_done(sc, desc, data);
2407 break;
2408 #ifndef IEEE80211_NO_HT
2409 case IWN_RX_COMPRESSED_BA:
2410 /* A Compressed BlockAck has been received. */
2411 iwn_rx_compressed_ba(sc, desc, data);
2412 break;
2413 #endif
2414 case IWN_TX_DONE:
2415 /* An 802.11 frame has been transmitted. */
2416 ops->tx_done(sc, desc, data);
2417 break;
2418
2419 case IWN_RX_STATISTICS:
2420 case IWN_BEACON_STATISTICS:
2421 iwn_rx_statistics(sc, desc, data);
2422 break;
2423
2424 case IWN_BEACON_MISSED:
2425 {
2426 struct iwn_beacon_missed *miss =
2427 (struct iwn_beacon_missed *)(desc + 1);
2428
2429 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2430 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2431 /*
2432 * If more than 5 consecutive beacons are missed,
2433 * reinitialize the sensitivity state machine.
2434 */
2435 DPRINTF(("beacons missed %d/%d\n",
2436 le32toh(miss->consecutive), le32toh(miss->total)));
2437 if (ic->ic_state == IEEE80211_S_RUN &&
2438 le32toh(miss->consecutive) > 5)
2439 (void)iwn_init_sensitivity(sc);
2440 break;
2441 }
2442 case IWN_UC_READY:
2443 {
2444 struct iwn_ucode_info *uc =
2445 (struct iwn_ucode_info *)(desc + 1);
2446
2447 /* The microcontroller is ready. */
2448 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2449 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2450 DPRINTF(("microcode alive notification version=%d.%d "
2451 "subtype=%x alive=%x\n", uc->major, uc->minor,
2452 uc->subtype, le32toh(uc->valid)));
2453
2454 if (le32toh(uc->valid) != 1) {
2455 aprint_error_dev(sc->sc_dev,
2456 "microcontroller initialization "
2457 "failed\n");
2458 break;
2459 }
2460 if (uc->subtype == IWN_UCODE_INIT) {
2461 /* Save microcontroller report. */
2462 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2463 }
2464 /* Save the address of the error log in SRAM. */
2465 sc->errptr = le32toh(uc->errptr);
2466 break;
2467 }
2468 case IWN_STATE_CHANGED:
2469 {
2470 uint32_t *status = (uint32_t *)(desc + 1);
2471
2472 /* Enabled/disabled notification. */
2473 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2474 sizeof (*status), BUS_DMASYNC_POSTREAD);
2475 DPRINTF(("state changed to %x\n", le32toh(*status)));
2476
2477 if (le32toh(*status) & 1) {
2478 /* The radio button has to be pushed. */
2479 aprint_error_dev(sc->sc_dev,
2480 "Radio transmitter is off\n");
2481 /* Turn the interface down. */
2482 ifp->if_flags &= ~IFF_UP;
2483 iwn_stop(ifp, 1);
2484 return; /* No further processing. */
2485 }
2486 break;
2487 }
2488 case IWN_START_SCAN:
2489 {
2490 struct iwn_start_scan *scan =
2491 (struct iwn_start_scan *)(desc + 1);
2492
2493 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2494 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2495 DPRINTFN(2, ("scanning channel %d status %x\n",
2496 scan->chan, le32toh(scan->status)));
2497
2498 /* Fix current channel. */
2499 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2500 break;
2501 }
2502 case IWN_STOP_SCAN:
2503 {
2504 struct iwn_stop_scan *scan =
2505 (struct iwn_stop_scan *)(desc + 1);
2506
2507 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2508 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2509 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2510 scan->nchan, scan->status, scan->chan));
2511
2512 if (scan->status == 1 && scan->chan <= 14 &&
2513 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2514 /*
2515 * We just finished scanning 2GHz channels,
2516 * start scanning 5GHz ones.
2517 */
2518 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2519 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2520 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2521 break;
2522 }
2523 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2524 ieee80211_end_scan(ic);
2525 break;
2526 }
2527 case IWN5000_CALIBRATION_RESULT:
2528 iwn5000_rx_calib_results(sc, desc, data);
2529 break;
2530
2531 case IWN5000_CALIBRATION_DONE:
2532 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2533 wakeup(sc);
2534 break;
2535 }
2536
2537 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2538 }
2539
2540 /* Tell the firmware what we have processed. */
2541 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2542 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2543 }
2544
2545 /*
2546 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2547 * from power-down sleep mode.
2548 */
2549 static void
2550 iwn_wakeup_intr(struct iwn_softc *sc)
2551 {
2552 int qid;
2553
2554 DPRINTF(("ucode wakeup from power-down sleep\n"));
2555
2556 /* Wakeup RX and TX rings. */
2557 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2558 for (qid = 0; qid < sc->ntxqs; qid++) {
2559 struct iwn_tx_ring *ring = &sc->txq[qid];
2560 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2561 }
2562 }
2563
2564 /*
2565 * Dump the error log of the firmware when a firmware panic occurs. Although
2566 * we can't debug the firmware because it is neither open source nor free, it
2567 * can help us to identify certain classes of problems.
2568 */
2569 static void
2570 iwn_fatal_intr(struct iwn_softc *sc)
2571 {
2572 struct iwn_fw_dump dump;
2573 int i;
2574
2575 /* Force a complete recalibration on next init. */
2576 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2577
2578 /* Check that the error log address is valid. */
2579 if (sc->errptr < IWN_FW_DATA_BASE ||
2580 sc->errptr + sizeof (dump) >
2581 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2582 aprint_error_dev(sc->sc_dev,
2583 "bad firmware error log address 0x%08x\n", sc->errptr);
2584 return;
2585 }
2586 if (iwn_nic_lock(sc) != 0) {
2587 aprint_error_dev(sc->sc_dev,
2588 "could not read firmware error log\n");
2589 return;
2590 }
2591 /* Read firmware error log from SRAM. */
2592 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2593 sizeof (dump) / sizeof (uint32_t));
2594 iwn_nic_unlock(sc);
2595
2596 if (dump.valid == 0) {
2597 aprint_error_dev(sc->sc_dev,
2598 "firmware error log is empty\n");
2599 return;
2600 }
2601 aprint_error("firmware error log:\n");
2602 aprint_error(" error type = \"%s\" (0x%08X)\n",
2603 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2604 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2605 dump.id);
2606 aprint_error(" program counter = 0x%08X\n", dump.pc);
2607 aprint_error(" source line = 0x%08X\n", dump.src_line);
2608 aprint_error(" error data = 0x%08X%08X\n",
2609 dump.error_data[0], dump.error_data[1]);
2610 aprint_error(" branch link = 0x%08X%08X\n",
2611 dump.branch_link[0], dump.branch_link[1]);
2612 aprint_error(" interrupt link = 0x%08X%08X\n",
2613 dump.interrupt_link[0], dump.interrupt_link[1]);
2614 aprint_error(" time = %u\n", dump.time[0]);
2615
2616 /* Dump driver status (TX and RX rings) while we're here. */
2617 aprint_error("driver status:\n");
2618 for (i = 0; i < sc->ntxqs; i++) {
2619 struct iwn_tx_ring *ring = &sc->txq[i];
2620 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2621 i, ring->qid, ring->cur, ring->queued);
2622 }
2623 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2624 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2625 }
2626
2627 static int
2628 iwn_intr(void *arg)
2629 {
2630 struct iwn_softc *sc = arg;
2631 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2632 uint32_t r1, r2, tmp;
2633
2634 /* Disable interrupts. */
2635 IWN_WRITE(sc, IWN_INT_MASK, 0);
2636
2637 /* Read interrupts from ICT (fast) or from registers (slow). */
2638 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2639 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2640 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2641 tmp = 0;
2642 while (sc->ict[sc->ict_cur] != 0) {
2643 tmp |= sc->ict[sc->ict_cur];
2644 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2645 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2646 }
2647 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2648 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2649 tmp = le32toh(tmp);
2650 if (tmp == 0xffffffff) /* Shouldn't happen. */
2651 tmp = 0;
2652 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2653 tmp |= 0x8000;
2654 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2655 r2 = 0; /* Unused. */
2656 } else {
2657 r1 = IWN_READ(sc, IWN_INT);
2658 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2659 return 0; /* Hardware gone! */
2660 r2 = IWN_READ(sc, IWN_FH_INT);
2661 }
2662 if (r1 == 0 && r2 == 0) {
2663 if (ifp->if_flags & IFF_UP)
2664 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2665 return 0; /* Interrupt not for us. */
2666 }
2667
2668 /* Acknowledge interrupts. */
2669 IWN_WRITE(sc, IWN_INT, r1);
2670 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2671 IWN_WRITE(sc, IWN_FH_INT, r2);
2672
2673 if (r1 & IWN_INT_RF_TOGGLED) {
2674 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2675 aprint_error_dev(sc->sc_dev,
2676 "RF switch: radio %s\n",
2677 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2678 }
2679 if (r1 & IWN_INT_CT_REACHED) {
2680 aprint_error_dev(sc->sc_dev,
2681 "critical temperature reached!\n");
2682 }
2683 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2684 aprint_error_dev(sc->sc_dev,
2685 "fatal firmware error\n");
2686 /* Dump firmware error log and stop. */
2687 iwn_fatal_intr(sc);
2688 ifp->if_flags &= ~IFF_UP;
2689 iwn_stop(ifp, 1);
2690 return 1;
2691 }
2692 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2693 (r2 & IWN_FH_INT_RX)) {
2694 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2695 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2696 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2697 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2698 IWN_INT_PERIODIC_DIS);
2699 iwn_notif_intr(sc);
2700 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2701 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2702 IWN_INT_PERIODIC_ENA);
2703 }
2704 } else
2705 iwn_notif_intr(sc);
2706 }
2707
2708 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2709 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2710 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2711 wakeup(sc); /* FH DMA transfer completed. */
2712 }
2713
2714 if (r1 & IWN_INT_ALIVE)
2715 wakeup(sc); /* Firmware is alive. */
2716
2717 if (r1 & IWN_INT_WAKEUP)
2718 iwn_wakeup_intr(sc);
2719
2720 /* Re-enable interrupts. */
2721 if (ifp->if_flags & IFF_UP)
2722 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2723
2724 return 1;
2725 }
2726
2727 /*
2728 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2729 * 5000 adapters use a slightly different format).
2730 */
2731 static void
2732 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2733 uint16_t len)
2734 {
2735 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2736
2737 *w = htole16(len + 8);
2738 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2739 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2740 sizeof (uint16_t),
2741 BUS_DMASYNC_PREWRITE);
2742 if (idx < IWN_SCHED_WINSZ) {
2743 *(w + IWN_TX_RING_COUNT) = *w;
2744 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2745 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2746 (char *)(void *)sc->sched_dma.vaddr,
2747 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2748 }
2749 }
2750
2751 static void
2752 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2753 uint16_t len)
2754 {
2755 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2756
2757 *w = htole16(id << 12 | (len + 8));
2758 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2759 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2760 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2761 if (idx < IWN_SCHED_WINSZ) {
2762 *(w + IWN_TX_RING_COUNT) = *w;
2763 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2764 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2765 (char *)(void *)sc->sched_dma.vaddr,
2766 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2767 }
2768 }
2769
2770 #ifdef notyet
2771 static void
2772 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2773 {
2774 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2775
2776 *w = (*w & htole16(0xf000)) | htole16(1);
2777 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2778 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2779 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2780 if (idx < IWN_SCHED_WINSZ) {
2781 *(w + IWN_TX_RING_COUNT) = *w;
2782 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2783 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2784 (char *)(void *)sc->sched_dma.vaddr,
2785 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2786 }
2787 }
2788 #endif
2789
2790 static int
2791 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2792 {
2793 struct ieee80211com *ic = &sc->sc_ic;
2794 struct iwn_node *wn = (void *)ni;
2795 struct iwn_tx_ring *ring;
2796 struct iwn_tx_desc *desc;
2797 struct iwn_tx_data *data;
2798 struct iwn_tx_cmd *cmd;
2799 struct iwn_cmd_data *tx;
2800 const struct iwn_rate *rinfo;
2801 struct ieee80211_frame *wh;
2802 struct ieee80211_key *k = NULL;
2803 struct mbuf *m1;
2804 uint32_t flags;
2805 u_int hdrlen;
2806 bus_dma_segment_t *seg;
2807 uint8_t tid, ridx, txant, type;
2808 int i, totlen, error, pad;
2809
2810 const struct chanAccParams *cap;
2811 int noack;
2812 int hdrlen2;
2813
2814 wh = mtod(m, struct ieee80211_frame *);
2815 hdrlen = ieee80211_anyhdrsize(wh);
2816 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2817
2818 hdrlen2 = (ieee80211_has_qos(wh)) ?
2819 sizeof (struct ieee80211_qosframe) :
2820 sizeof (struct ieee80211_frame);
2821
2822 if (hdrlen != hdrlen2)
2823 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2824 hdrlen, hdrlen2);
2825
2826 /* XXX OpenBSD sets a different tid when using QOS */
2827 tid = 0;
2828 if (ieee80211_has_qos(wh)) {
2829 cap = &ic->ic_wme.wme_chanParams;
2830 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2831 }
2832 else
2833 noack = 0;
2834
2835 ring = &sc->txq[ac];
2836 desc = &ring->desc[ring->cur];
2837 data = &ring->data[ring->cur];
2838
2839 /* Choose a TX rate index. */
2840 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2841 type != IEEE80211_FC0_TYPE_DATA) {
2842 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2843 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2844 } else if (ic->ic_fixed_rate != -1) {
2845 ridx = sc->fixed_ridx;
2846 } else
2847 ridx = wn->ridx[ni->ni_txrate];
2848 rinfo = &iwn_rates[ridx];
2849
2850 /* Encrypt the frame if need be. */
2851 /*
2852 * XXX For now, NetBSD swaps the encryption and bpf sections
2853 * in order to match old code and other drivers. Tests with
2854 * tcpdump indicates that the order is irrelevant, however,
2855 * as bpf produces unencrypted data for both ordering choices.
2856 */
2857 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2858 k = ieee80211_crypto_encap(ic, ni, m);
2859 if (k == NULL) {
2860 m_freem(m);
2861 return ENOBUFS;
2862 }
2863 /* Packet header may have moved, reset our local pointer. */
2864 wh = mtod(m, struct ieee80211_frame *);
2865 }
2866 totlen = m->m_pkthdr.len;
2867
2868 if (sc->sc_drvbpf != NULL) {
2869 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2870
2871 tap->wt_flags = 0;
2872 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2873 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2874 tap->wt_rate = rinfo->rate;
2875 tap->wt_hwqueue = ac;
2876 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2877 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2878
2879 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2880 }
2881
2882 /* Prepare TX firmware command. */
2883 cmd = &ring->cmd[ring->cur];
2884 cmd->code = IWN_CMD_TX_DATA;
2885 cmd->flags = 0;
2886 cmd->qid = ring->qid;
2887 cmd->idx = ring->cur;
2888
2889 tx = (struct iwn_cmd_data *)cmd->data;
2890 /* NB: No need to clear tx, all fields are reinitialized here. */
2891 tx->scratch = 0; /* clear "scratch" area */
2892
2893 flags = 0;
2894 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2895 /* Unicast frame, check if an ACK is expected. */
2896 if (!noack)
2897 flags |= IWN_TX_NEED_ACK;
2898 }
2899
2900 #ifdef notyet
2901 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2902 if ((wh->i_fc[0] &
2903 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2904 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2905 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
2906 #endif
2907
2908 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2909 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
2910
2911 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2912 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2913 /* NB: Group frames are sent using CCK in 802.11b/g. */
2914 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2915 flags |= IWN_TX_NEED_RTS;
2916 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2917 ridx >= IWN_RIDX_OFDM6) {
2918 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2919 flags |= IWN_TX_NEED_CTS;
2920 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2921 flags |= IWN_TX_NEED_RTS;
2922 }
2923 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2924 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2925 /* 5000 autoselects RTS/CTS or CTS-to-self. */
2926 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2927 flags |= IWN_TX_NEED_PROTECTION;
2928 } else
2929 flags |= IWN_TX_FULL_TXOP;
2930 }
2931 }
2932
2933 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2934 type != IEEE80211_FC0_TYPE_DATA)
2935 tx->id = sc->broadcast_id;
2936 else
2937 tx->id = wn->id;
2938
2939 if (type == IEEE80211_FC0_TYPE_MGT) {
2940 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2941
2942 #ifndef IEEE80211_STA_ONLY
2943 /* Tell HW to set timestamp in probe responses. */
2944 /* XXX NetBSD rev 1.11 added probe requests here but */
2945 /* probe requests do not take timestamps (from Bergamini). */
2946 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2947 flags |= IWN_TX_INSERT_TSTAMP;
2948 #endif
2949 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
2950 /* changes here. These are not needed (from Bergamini). */
2951 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2952 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2953 tx->timeout = htole16(3);
2954 else
2955 tx->timeout = htole16(2);
2956 } else
2957 tx->timeout = htole16(0);
2958
2959 if (hdrlen & 3) {
2960 /* First segment length must be a multiple of 4. */
2961 flags |= IWN_TX_NEED_PADDING;
2962 pad = 4 - (hdrlen & 3);
2963 } else
2964 pad = 0;
2965
2966 tx->len = htole16(totlen);
2967 tx->tid = tid;
2968 tx->rts_ntries = 60;
2969 tx->data_ntries = 15;
2970 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2971 tx->plcp = rinfo->plcp;
2972 tx->rflags = rinfo->flags;
2973 if (tx->id == sc->broadcast_id) {
2974 /* Group or management frame. */
2975 tx->linkq = 0;
2976 /* XXX Alternate between antenna A and B? */
2977 txant = IWN_LSB(sc->txchainmask);
2978 tx->rflags |= IWN_RFLAG_ANT(txant);
2979 } else {
2980 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
2981 flags |= IWN_TX_LINKQ; /* enable MRR */
2982 }
2983 /* Set physical address of "scratch area". */
2984 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2985 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2986
2987 /* Copy 802.11 header in TX command. */
2988 /* XXX NetBSD changed this in rev 1.20 */
2989 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2990
2991 /* Trim 802.11 header. */
2992 m_adj(m, hdrlen);
2993 tx->security = 0;
2994 tx->flags = htole32(flags);
2995
2996 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
2997 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2998 if (error != 0) {
2999 if (error != EFBIG) {
3000 aprint_error_dev(sc->sc_dev,
3001 "can't map mbuf (error %d)\n", error);
3002 m_freem(m);
3003 return error;
3004 }
3005 /* Too many DMA segments, linearize mbuf. */
3006 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3007 if (m1 == NULL) {
3008 m_freem(m);
3009 return ENOBUFS;
3010 }
3011 if (m->m_pkthdr.len > MHLEN) {
3012 MCLGET(m1, M_DONTWAIT);
3013 if (!(m1->m_flags & M_EXT)) {
3014 m_freem(m);
3015 m_freem(m1);
3016 return ENOBUFS;
3017 }
3018 }
3019 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3020 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3021 m_freem(m);
3022 m = m1;
3023
3024 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3025 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3026 if (error != 0) {
3027 aprint_error_dev(sc->sc_dev,
3028 "can't map mbuf (error %d)\n", error);
3029 m_freem(m);
3030 return error;
3031 }
3032 }
3033
3034 data->m = m;
3035 data->ni = ni;
3036
3037 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3038 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3039
3040 /* Fill TX descriptor. */
3041 desc->nsegs = 1 + data->map->dm_nsegs;
3042 /* First DMA segment is used by the TX command. */
3043 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3044 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3045 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3046 /* Other DMA segments are for data payload. */
3047 seg = data->map->dm_segs;
3048 for (i = 1; i <= data->map->dm_nsegs; i++) {
3049 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3050 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3051 seg->ds_len << 4);
3052 seg++;
3053 }
3054
3055 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3056 BUS_DMASYNC_PREWRITE);
3057 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3058 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3059 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3060 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3061 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3062 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3063
3064 #ifdef notyet
3065 /* Update TX scheduler. */
3066 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3067 #endif
3068
3069 /* Kick TX ring. */
3070 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3071 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3072
3073 /* Mark TX ring as full if we reach a certain threshold. */
3074 if (++ring->queued > IWN_TX_RING_HIMARK)
3075 sc->qfullmsk |= 1 << ring->qid;
3076
3077 return 0;
3078 }
3079
3080 static void
3081 iwn_start(struct ifnet *ifp)
3082 {
3083 struct iwn_softc *sc = ifp->if_softc;
3084 struct ieee80211com *ic = &sc->sc_ic;
3085 struct ieee80211_node *ni;
3086 struct ether_header *eh;
3087 struct mbuf *m;
3088 int ac;
3089
3090 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3091 return;
3092
3093 for (;;) {
3094 if (sc->qfullmsk != 0) {
3095 ifp->if_flags |= IFF_OACTIVE;
3096 break;
3097 }
3098 /* Send pending management frames first. */
3099 IF_DEQUEUE(&ic->ic_mgtq, m);
3100 if (m != NULL) {
3101 ni = M_GETCTX(m, struct ieee80211_node *);
3102 ac = 0;
3103 goto sendit;
3104 }
3105 if (ic->ic_state != IEEE80211_S_RUN)
3106 break;
3107
3108 /* Encapsulate and send data frames. */
3109 IFQ_DEQUEUE(&ifp->if_snd, m);
3110 if (m == NULL)
3111 break;
3112 if (m->m_len < sizeof (*eh) &&
3113 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3114 ifp->if_oerrors++;
3115 continue;
3116 }
3117 eh = mtod(m, struct ether_header *);
3118 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3119 if (ni == NULL) {
3120 m_freem(m);
3121 ifp->if_oerrors++;
3122 continue;
3123 }
3124 /* classify mbuf so we can find which tx ring to use */
3125 if (ieee80211_classify(ic, m, ni) != 0) {
3126 m_freem(m);
3127 ieee80211_free_node(ni);
3128 ifp->if_oerrors++;
3129 continue;
3130 }
3131
3132 /* No QoS encapsulation for EAPOL frames. */
3133 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3134 M_WME_GETAC(m) : WME_AC_BE;
3135
3136 bpf_mtap(ifp, m);
3137
3138 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3139 ieee80211_free_node(ni);
3140 ifp->if_oerrors++;
3141 continue;
3142 }
3143 sendit:
3144 bpf_mtap3(ic->ic_rawbpf, m);
3145
3146 if (iwn_tx(sc, m, ni, ac) != 0) {
3147 ieee80211_free_node(ni);
3148 ifp->if_oerrors++;
3149 continue;
3150 }
3151
3152 sc->sc_tx_timer = 5;
3153 ifp->if_timer = 1;
3154 }
3155 }
3156
3157 static void
3158 iwn_watchdog(struct ifnet *ifp)
3159 {
3160 struct iwn_softc *sc = ifp->if_softc;
3161
3162 ifp->if_timer = 0;
3163
3164 if (sc->sc_tx_timer > 0) {
3165 if (--sc->sc_tx_timer == 0) {
3166 aprint_error_dev(sc->sc_dev,
3167 "device timeout\n");
3168 ifp->if_flags &= ~IFF_UP;
3169 iwn_stop(ifp, 1);
3170 ifp->if_oerrors++;
3171 return;
3172 }
3173 ifp->if_timer = 1;
3174 }
3175
3176 ieee80211_watchdog(&sc->sc_ic);
3177 }
3178
3179 static int
3180 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3181 {
3182 struct iwn_softc *sc = ifp->if_softc;
3183 struct ieee80211com *ic = &sc->sc_ic;
3184 const struct sockaddr *sa;
3185 int s, error = 0;
3186
3187 s = splnet();
3188
3189 switch (cmd) {
3190 case SIOCSIFADDR:
3191 ifp->if_flags |= IFF_UP;
3192 /* FALLTHROUGH */
3193 case SIOCSIFFLAGS:
3194 /* XXX Added as it is in every NetBSD driver */
3195 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3196 break;
3197 if (ifp->if_flags & IFF_UP) {
3198 if (!(ifp->if_flags & IFF_RUNNING))
3199 error = iwn_init(ifp);
3200 } else {
3201 if (ifp->if_flags & IFF_RUNNING)
3202 iwn_stop(ifp, 1);
3203 }
3204 break;
3205
3206 case SIOCADDMULTI:
3207 case SIOCDELMULTI:
3208 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3209 error = (cmd == SIOCADDMULTI) ?
3210 ether_addmulti(sa, &sc->sc_ec) :
3211 ether_delmulti(sa, &sc->sc_ec);
3212
3213 if (error == ENETRESET)
3214 error = 0;
3215 break;
3216
3217 default:
3218 error = ieee80211_ioctl(ic, cmd, data);
3219 }
3220
3221 if (error == ENETRESET) {
3222 error = 0;
3223 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3224 (IFF_UP | IFF_RUNNING)) {
3225 iwn_stop(ifp, 0);
3226 error = iwn_init(ifp);
3227 }
3228 }
3229
3230 splx(s);
3231 return error;
3232 }
3233
3234 /*
3235 * Send a command to the firmware.
3236 */
3237 static int
3238 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3239 {
3240 struct iwn_tx_ring *ring = &sc->txq[4];
3241 struct iwn_tx_desc *desc;
3242 struct iwn_tx_data *data;
3243 struct iwn_tx_cmd *cmd;
3244 struct mbuf *m;
3245 bus_addr_t paddr;
3246 int totlen, error;
3247
3248 desc = &ring->desc[ring->cur];
3249 data = &ring->data[ring->cur];
3250 totlen = 4 + size;
3251
3252 if (size > sizeof cmd->data) {
3253 /* Command is too large to fit in a descriptor. */
3254 if (totlen > MCLBYTES)
3255 return EINVAL;
3256 MGETHDR(m, M_DONTWAIT, MT_DATA);
3257 if (m == NULL)
3258 return ENOMEM;
3259 if (totlen > MHLEN) {
3260 MCLGET(m, M_DONTWAIT);
3261 if (!(m->m_flags & M_EXT)) {
3262 m_freem(m);
3263 return ENOMEM;
3264 }
3265 }
3266 cmd = mtod(m, struct iwn_tx_cmd *);
3267 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3268 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3269 if (error != 0) {
3270 m_freem(m);
3271 return error;
3272 }
3273 data->m = m;
3274 paddr = data->map->dm_segs[0].ds_addr;
3275 } else {
3276 cmd = &ring->cmd[ring->cur];
3277 paddr = data->cmd_paddr;
3278 }
3279
3280 cmd->code = code;
3281 cmd->flags = 0;
3282 cmd->qid = ring->qid;
3283 cmd->idx = ring->cur;
3284 memcpy(cmd->data, buf, size);
3285
3286 desc->nsegs = 1;
3287 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3288 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3289
3290 if (size > sizeof cmd->data) {
3291 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3292 BUS_DMASYNC_PREWRITE);
3293 } else {
3294 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3295 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3296 totlen, BUS_DMASYNC_PREWRITE);
3297 }
3298 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3299 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3300 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3301
3302 #ifdef notyet
3303 /* Update TX scheduler. */
3304 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3305 #endif
3306 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3307
3308 /* Kick command ring. */
3309 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3310 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3311
3312 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3313 }
3314
3315 static int
3316 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3317 {
3318 struct iwn4965_node_info hnode;
3319 char *src, *dst;
3320
3321 /*
3322 * We use the node structure for 5000 Series internally (it is
3323 * a superset of the one for 4965AGN). We thus copy the common
3324 * fields before sending the command.
3325 */
3326 src = (char *)node;
3327 dst = (char *)&hnode;
3328 memcpy(dst, src, 48);
3329 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3330 memcpy(dst + 48, src + 72, 20);
3331 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3332 }
3333
3334 static int
3335 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3336 {
3337 /* Direct mapping. */
3338 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3339 }
3340
3341 static int
3342 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3343 {
3344 struct iwn_node *wn = (void *)ni;
3345 struct ieee80211_rateset *rs = &ni->ni_rates;
3346 struct iwn_cmd_link_quality linkq;
3347 const struct iwn_rate *rinfo;
3348 uint8_t txant;
3349 int i, txrate;
3350
3351 /* Use the first valid TX antenna. */
3352 txant = IWN_LSB(sc->txchainmask);
3353
3354 memset(&linkq, 0, sizeof linkq);
3355 linkq.id = wn->id;
3356 linkq.antmsk_1stream = txant;
3357 linkq.antmsk_2stream = IWN_ANT_AB;
3358 linkq.ampdu_max = 31;
3359 linkq.ampdu_threshold = 3;
3360 linkq.ampdu_limit = htole16(4000); /* 4ms */
3361
3362 /* Start at highest available bit-rate. */
3363 txrate = rs->rs_nrates - 1;
3364 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3365 rinfo = &iwn_rates[wn->ridx[txrate]];
3366 linkq.retry[i].plcp = rinfo->plcp;
3367 linkq.retry[i].rflags = rinfo->flags;
3368 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3369 /* Next retry at immediate lower bit-rate. */
3370 if (txrate > 0)
3371 txrate--;
3372 }
3373 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3374 }
3375
3376 /*
3377 * Broadcast node is used to send group-addressed and management frames.
3378 */
3379 static int
3380 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3381 {
3382 struct iwn_ops *ops = &sc->ops;
3383 struct iwn_node_info node;
3384 struct iwn_cmd_link_quality linkq;
3385 const struct iwn_rate *rinfo;
3386 uint8_t txant;
3387 int i, error;
3388
3389 memset(&node, 0, sizeof node);
3390 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3391 node.id = sc->broadcast_id;
3392 DPRINTF(("adding broadcast node\n"));
3393 if ((error = ops->add_node(sc, &node, async)) != 0)
3394 return error;
3395
3396 /* Use the first valid TX antenna. */
3397 txant = IWN_LSB(sc->txchainmask);
3398
3399 memset(&linkq, 0, sizeof linkq);
3400 linkq.id = sc->broadcast_id;
3401 linkq.antmsk_1stream = txant;
3402 linkq.antmsk_2stream = IWN_ANT_AB;
3403 linkq.ampdu_max = 64;
3404 linkq.ampdu_threshold = 3;
3405 linkq.ampdu_limit = htole16(4000); /* 4ms */
3406
3407 /* Use lowest mandatory bit-rate. */
3408 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3409 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3410 linkq.retry[0].plcp = rinfo->plcp;
3411 linkq.retry[0].rflags = rinfo->flags;
3412 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3413 /* Use same bit-rate for all TX retries. */
3414 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3415 linkq.retry[i].plcp = linkq.retry[0].plcp;
3416 linkq.retry[i].rflags = linkq.retry[0].rflags;
3417 }
3418 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3419 }
3420
3421 static void
3422 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3423 {
3424 struct iwn_cmd_led led;
3425
3426 /* Clear microcode LED ownership. */
3427 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3428
3429 led.which = which;
3430 led.unit = htole32(10000); /* on/off in unit of 100ms */
3431 led.off = off;
3432 led.on = on;
3433 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3434 }
3435
3436 /*
3437 * Set the critical temperature at which the firmware will stop the radio
3438 * and notify us.
3439 */
3440 static int
3441 iwn_set_critical_temp(struct iwn_softc *sc)
3442 {
3443 struct iwn_critical_temp crit;
3444 int32_t temp;
3445
3446 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3447
3448 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3449 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3450 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3451 temp = IWN_CTOK(110);
3452 else
3453 temp = 110;
3454 memset(&crit, 0, sizeof crit);
3455 crit.tempR = htole32(temp);
3456 DPRINTF(("setting critical temperature to %d\n", temp));
3457 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3458 }
3459
3460 static int
3461 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3462 {
3463 struct iwn_cmd_timing cmd;
3464 uint64_t val, mod;
3465
3466 memset(&cmd, 0, sizeof cmd);
3467 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3468 cmd.bintval = htole16(ni->ni_intval);
3469 cmd.lintval = htole16(10);
3470
3471 /* Compute remaining time until next beacon. */
3472 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3473 mod = le64toh(cmd.tstamp) % val;
3474 cmd.binitval = htole32((uint32_t)(val - mod));
3475
3476 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3477 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3478
3479 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3480 }
3481
3482 static void
3483 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3484 {
3485 /* Adjust TX power if need be (delta >= 3 degC). */
3486 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3487 if (abs(temp - sc->temp) >= 3) {
3488 /* Record temperature of last calibration. */
3489 sc->temp = temp;
3490 (void)iwn4965_set_txpower(sc, 1);
3491 }
3492 }
3493
3494 /*
3495 * Set TX power for current channel (each rate has its own power settings).
3496 * This function takes into account the regulatory information from EEPROM,
3497 * the current temperature and the current voltage.
3498 */
3499 static int
3500 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3501 {
3502 /* Fixed-point arithmetic division using a n-bit fractional part. */
3503 #define fdivround(a, b, n) \
3504 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3505 /* Linear interpolation. */
3506 #define interpolate(x, x1, y1, x2, y2, n) \
3507 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3508
3509 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3510 struct ieee80211com *ic = &sc->sc_ic;
3511 struct iwn_ucode_info *uc = &sc->ucode_info;
3512 struct ieee80211_channel *ch;
3513 struct iwn4965_cmd_txpower cmd;
3514 struct iwn4965_eeprom_chan_samples *chans;
3515 const uint8_t *rf_gain, *dsp_gain;
3516 int32_t vdiff, tdiff;
3517 int i, c, grp, maxpwr;
3518 uint8_t chan;
3519
3520 /* Retrieve current channel from last RXON. */
3521 chan = sc->rxon.chan;
3522 DPRINTF(("setting TX power for channel %d\n", chan));
3523 ch = &ic->ic_channels[chan];
3524
3525 memset(&cmd, 0, sizeof cmd);
3526 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3527 cmd.chan = chan;
3528
3529 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3530 maxpwr = sc->maxpwr5GHz;
3531 rf_gain = iwn4965_rf_gain_5ghz;
3532 dsp_gain = iwn4965_dsp_gain_5ghz;
3533 } else {
3534 maxpwr = sc->maxpwr2GHz;
3535 rf_gain = iwn4965_rf_gain_2ghz;
3536 dsp_gain = iwn4965_dsp_gain_2ghz;
3537 }
3538
3539 /* Compute voltage compensation. */
3540 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3541 if (vdiff > 0)
3542 vdiff *= 2;
3543 if (abs(vdiff) > 2)
3544 vdiff = 0;
3545 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3546 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3547
3548 /* Get channel attenuation group. */
3549 if (chan <= 20) /* 1-20 */
3550 grp = 4;
3551 else if (chan <= 43) /* 34-43 */
3552 grp = 0;
3553 else if (chan <= 70) /* 44-70 */
3554 grp = 1;
3555 else if (chan <= 124) /* 71-124 */
3556 grp = 2;
3557 else /* 125-200 */
3558 grp = 3;
3559 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3560
3561 /* Get channel sub-band. */
3562 for (i = 0; i < IWN_NBANDS; i++)
3563 if (sc->bands[i].lo != 0 &&
3564 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3565 break;
3566 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3567 return EINVAL;
3568 chans = sc->bands[i].chans;
3569 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3570
3571 for (c = 0; c < 2; c++) {
3572 uint8_t power, gain, temp;
3573 int maxchpwr, pwr, ridx, idx;
3574
3575 power = interpolate(chan,
3576 chans[0].num, chans[0].samples[c][1].power,
3577 chans[1].num, chans[1].samples[c][1].power, 1);
3578 gain = interpolate(chan,
3579 chans[0].num, chans[0].samples[c][1].gain,
3580 chans[1].num, chans[1].samples[c][1].gain, 1);
3581 temp = interpolate(chan,
3582 chans[0].num, chans[0].samples[c][1].temp,
3583 chans[1].num, chans[1].samples[c][1].temp, 1);
3584 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3585 c, power, gain, temp));
3586
3587 /* Compute temperature compensation. */
3588 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3589 DPRINTF(("temperature compensation=%d (current=%d, "
3590 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3591
3592 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3593 /* Convert dBm to half-dBm. */
3594 maxchpwr = sc->maxpwr[chan] * 2;
3595 if ((ridx / 8) & 1)
3596 maxchpwr -= 6; /* MIMO 2T: -3dB */
3597
3598 pwr = maxpwr;
3599
3600 /* Adjust TX power based on rate. */
3601 if ((ridx % 8) == 5)
3602 pwr -= 15; /* OFDM48: -7.5dB */
3603 else if ((ridx % 8) == 6)
3604 pwr -= 17; /* OFDM54: -8.5dB */
3605 else if ((ridx % 8) == 7)
3606 pwr -= 20; /* OFDM60: -10dB */
3607 else
3608 pwr -= 10; /* Others: -5dB */
3609
3610 /* Do not exceed channel max TX power. */
3611 if (pwr > maxchpwr)
3612 pwr = maxchpwr;
3613
3614 idx = gain - (pwr - power) - tdiff - vdiff;
3615 if ((ridx / 8) & 1) /* MIMO */
3616 idx += (int32_t)le32toh(uc->atten[grp][c]);
3617
3618 if (cmd.band == 0)
3619 idx += 9; /* 5GHz */
3620 if (ridx == IWN_RIDX_MAX)
3621 idx += 5; /* CCK */
3622
3623 /* Make sure idx stays in a valid range. */
3624 if (idx < 0)
3625 idx = 0;
3626 else if (idx > IWN4965_MAX_PWR_INDEX)
3627 idx = IWN4965_MAX_PWR_INDEX;
3628
3629 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3630 c, ridx, idx));
3631 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3632 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3633 }
3634 }
3635
3636 DPRINTF(("setting TX power for chan %d\n", chan));
3637 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3638
3639 #undef interpolate
3640 #undef fdivround
3641 }
3642
3643 static int
3644 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3645 {
3646 struct iwn5000_cmd_txpower cmd;
3647
3648 /*
3649 * TX power calibration is handled automatically by the firmware
3650 * for 5000 Series.
3651 */
3652 memset(&cmd, 0, sizeof cmd);
3653 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3654 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3655 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3656 DPRINTF(("setting TX power\n"));
3657 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3658 }
3659
3660 /*
3661 * Retrieve the maximum RSSI (in dBm) among receivers.
3662 */
3663 static int
3664 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3665 {
3666 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3667 uint8_t mask, agc;
3668 int rssi;
3669
3670 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3671 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3672
3673 rssi = 0;
3674 if (mask & IWN_ANT_A)
3675 rssi = MAX(rssi, phy->rssi[0]);
3676 if (mask & IWN_ANT_B)
3677 rssi = MAX(rssi, phy->rssi[2]);
3678 if (mask & IWN_ANT_C)
3679 rssi = MAX(rssi, phy->rssi[4]);
3680
3681 return rssi - agc - IWN_RSSI_TO_DBM;
3682 }
3683
3684 static int
3685 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3686 {
3687 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3688 uint8_t agc;
3689 int rssi;
3690
3691 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3692
3693 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3694 le16toh(phy->rssi[1]) & 0xff);
3695 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3696
3697 return rssi - agc - IWN_RSSI_TO_DBM;
3698 }
3699
3700 /*
3701 * Retrieve the average noise (in dBm) among receivers.
3702 */
3703 static int
3704 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3705 {
3706 int i, total, nbant, noise;
3707
3708 total = nbant = 0;
3709 for (i = 0; i < 3; i++) {
3710 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3711 continue;
3712 total += noise;
3713 nbant++;
3714 }
3715 /* There should be at least one antenna but check anyway. */
3716 return (nbant == 0) ? -127 : (total / nbant) - 107;
3717 }
3718
3719 /*
3720 * Compute temperature (in degC) from last received statistics.
3721 */
3722 static int
3723 iwn4965_get_temperature(struct iwn_softc *sc)
3724 {
3725 struct iwn_ucode_info *uc = &sc->ucode_info;
3726 int32_t r1, r2, r3, r4, temp;
3727
3728 r1 = le32toh(uc->temp[0].chan20MHz);
3729 r2 = le32toh(uc->temp[1].chan20MHz);
3730 r3 = le32toh(uc->temp[2].chan20MHz);
3731 r4 = le32toh(sc->rawtemp);
3732
3733 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3734 return 0;
3735
3736 /* Sign-extend 23-bit R4 value to 32-bit. */
3737 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3738 /* Compute temperature in Kelvin. */
3739 temp = (259 * (r4 - r2)) / (r3 - r1);
3740 temp = (temp * 97) / 100 + 8;
3741
3742 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3743 return IWN_KTOC(temp);
3744 }
3745
3746 static int
3747 iwn5000_get_temperature(struct iwn_softc *sc)
3748 {
3749 int32_t temp;
3750
3751 /*
3752 * Temperature is not used by the driver for 5000 Series because
3753 * TX power calibration is handled by firmware. We export it to
3754 * users through the sensor framework though.
3755 */
3756 temp = le32toh(sc->rawtemp);
3757 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3758 temp = (temp / -5) + sc->temp_off;
3759 temp = IWN_KTOC(temp);
3760 }
3761 return temp;
3762 }
3763
3764 /*
3765 * Initialize sensitivity calibration state machine.
3766 */
3767 static int
3768 iwn_init_sensitivity(struct iwn_softc *sc)
3769 {
3770 struct iwn_ops *ops = &sc->ops;
3771 struct iwn_calib_state *calib = &sc->calib;
3772 uint32_t flags;
3773 int error;
3774
3775 /* Reset calibration state machine. */
3776 memset(calib, 0, sizeof (*calib));
3777 calib->state = IWN_CALIB_STATE_INIT;
3778 calib->cck_state = IWN_CCK_STATE_HIFA;
3779 /* Set initial correlation values. */
3780 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3781 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3782 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3783 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3784 calib->cck_x4 = 125;
3785 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3786 calib->energy_cck = sc->limits->energy_cck;
3787
3788 /* Write initial sensitivity. */
3789 if ((error = iwn_send_sensitivity(sc)) != 0)
3790 return error;
3791
3792 /* Write initial gains. */
3793 if ((error = ops->init_gains(sc)) != 0)
3794 return error;
3795
3796 /* Request statistics at each beacon interval. */
3797 flags = 0;
3798 DPRINTF(("sending request for statistics\n"));
3799 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3800 }
3801
3802 /*
3803 * Collect noise and RSSI statistics for the first 20 beacons received
3804 * after association and use them to determine connected antennas and
3805 * to set differential gains.
3806 */
3807 static void
3808 iwn_collect_noise(struct iwn_softc *sc,
3809 const struct iwn_rx_general_stats *stats)
3810 {
3811 struct iwn_ops *ops = &sc->ops;
3812 struct iwn_calib_state *calib = &sc->calib;
3813 uint32_t val;
3814 int i;
3815
3816 /* Accumulate RSSI and noise for all 3 antennas. */
3817 for (i = 0; i < 3; i++) {
3818 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3819 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3820 }
3821 /* NB: We update differential gains only once after 20 beacons. */
3822 if (++calib->nbeacons < 20)
3823 return;
3824
3825 /* Determine highest average RSSI. */
3826 val = MAX(calib->rssi[0], calib->rssi[1]);
3827 val = MAX(calib->rssi[2], val);
3828
3829 /* Determine which antennas are connected. */
3830 sc->chainmask = sc->rxchainmask;
3831 for (i = 0; i < 3; i++)
3832 if (val - calib->rssi[i] > 15 * 20)
3833 sc->chainmask &= ~(1 << i);
3834 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3835 sc->rxchainmask, sc->chainmask));
3836
3837 /* If none of the TX antennas are connected, keep at least one. */
3838 if ((sc->chainmask & sc->txchainmask) == 0)
3839 sc->chainmask |= IWN_LSB(sc->txchainmask);
3840
3841 (void)ops->set_gains(sc);
3842 calib->state = IWN_CALIB_STATE_RUN;
3843
3844 #ifdef notyet
3845 /* XXX Disable RX chains with no antennas connected. */
3846 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3847 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3848 #endif
3849
3850 /* Enable power-saving mode if requested by user. */
3851 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3852 (void)iwn_set_pslevel(sc, 0, 3, 1);
3853 }
3854
3855 static int
3856 iwn4965_init_gains(struct iwn_softc *sc)
3857 {
3858 struct iwn_phy_calib_gain cmd;
3859
3860 memset(&cmd, 0, sizeof cmd);
3861 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3862 /* Differential gains initially set to 0 for all 3 antennas. */
3863 DPRINTF(("setting initial differential gains\n"));
3864 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3865 }
3866
3867 static int
3868 iwn5000_init_gains(struct iwn_softc *sc)
3869 {
3870 struct iwn_phy_calib cmd;
3871
3872 memset(&cmd, 0, sizeof cmd);
3873 cmd.code = sc->reset_noise_gain;
3874 cmd.ngroups = 1;
3875 cmd.isvalid = 1;
3876 DPRINTF(("setting initial differential gains\n"));
3877 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3878 }
3879
3880 static int
3881 iwn4965_set_gains(struct iwn_softc *sc)
3882 {
3883 struct iwn_calib_state *calib = &sc->calib;
3884 struct iwn_phy_calib_gain cmd;
3885 int i, delta, noise;
3886
3887 /* Get minimal noise among connected antennas. */
3888 noise = INT_MAX; /* NB: There's at least one antenna. */
3889 for (i = 0; i < 3; i++)
3890 if (sc->chainmask & (1 << i))
3891 noise = MIN(calib->noise[i], noise);
3892
3893 memset(&cmd, 0, sizeof cmd);
3894 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3895 /* Set differential gains for connected antennas. */
3896 for (i = 0; i < 3; i++) {
3897 if (sc->chainmask & (1 << i)) {
3898 /* Compute attenuation (in unit of 1.5dB). */
3899 delta = (noise - (int32_t)calib->noise[i]) / 30;
3900 /* NB: delta <= 0 */
3901 /* Limit to [-4.5dB,0]. */
3902 cmd.gain[i] = MIN(abs(delta), 3);
3903 if (delta < 0)
3904 cmd.gain[i] |= 1 << 2; /* sign bit */
3905 }
3906 }
3907 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3908 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
3909 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3910 }
3911
3912 static int
3913 iwn5000_set_gains(struct iwn_softc *sc)
3914 {
3915 struct iwn_calib_state *calib = &sc->calib;
3916 struct iwn_phy_calib_gain cmd;
3917 int i, ant, div, delta;
3918
3919 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
3920 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
3921
3922 memset(&cmd, 0, sizeof cmd);
3923 cmd.code = sc->noise_gain;
3924 cmd.ngroups = 1;
3925 cmd.isvalid = 1;
3926 /* Get first available RX antenna as referential. */
3927 ant = IWN_LSB(sc->rxchainmask);
3928 /* Set differential gains for other antennas. */
3929 for (i = ant + 1; i < 3; i++) {
3930 if (sc->chainmask & (1 << i)) {
3931 /* The delta is relative to antenna "ant". */
3932 delta = ((int32_t)calib->noise[ant] -
3933 (int32_t)calib->noise[i]) / div;
3934 /* Limit to [-4.5dB,+4.5dB]. */
3935 cmd.gain[i - 1] = MIN(abs(delta), 3);
3936 if (delta < 0)
3937 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
3938 }
3939 }
3940 DPRINTF(("setting differential gains: %x/%x (%x)\n",
3941 cmd.gain[0], cmd.gain[1], sc->chainmask));
3942 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3943 }
3944
3945 /*
3946 * Tune RF RX sensitivity based on the number of false alarms detected
3947 * during the last beacon period.
3948 */
3949 static void
3950 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3951 {
3952 #define inc(val, inc, max) \
3953 if ((val) < (max)) { \
3954 if ((val) < (max) - (inc)) \
3955 (val) += (inc); \
3956 else \
3957 (val) = (max); \
3958 needs_update = 1; \
3959 }
3960 #define dec(val, dec, min) \
3961 if ((val) > (min)) { \
3962 if ((val) > (min) + (dec)) \
3963 (val) -= (dec); \
3964 else \
3965 (val) = (min); \
3966 needs_update = 1; \
3967 }
3968
3969 const struct iwn_sensitivity_limits *limits = sc->limits;
3970 struct iwn_calib_state *calib = &sc->calib;
3971 uint32_t val, rxena, fa;
3972 uint32_t energy[3], energy_min;
3973 uint8_t noise[3], noise_ref;
3974 int i, needs_update = 0;
3975
3976 /* Check that we've been enabled long enough. */
3977 if ((rxena = le32toh(stats->general.load)) == 0)
3978 return;
3979
3980 /* Compute number of false alarms since last call for OFDM. */
3981 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3982 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3983 fa *= 200 * 1024; /* 200TU */
3984
3985 /* Save counters values for next call. */
3986 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3987 calib->fa_ofdm = le32toh(stats->ofdm.fa);
3988
3989 if (fa > 50 * rxena) {
3990 /* High false alarm count, decrease sensitivity. */
3991 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
3992 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
3993 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
3994 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
3995 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
3996
3997 } else if (fa < 5 * rxena) {
3998 /* Low false alarm count, increase sensitivity. */
3999 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4000 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4001 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4002 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4003 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4004 }
4005
4006 /* Compute maximum noise among 3 receivers. */
4007 for (i = 0; i < 3; i++)
4008 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4009 val = MAX(noise[0], noise[1]);
4010 val = MAX(noise[2], val);
4011 /* Insert it into our samples table. */
4012 calib->noise_samples[calib->cur_noise_sample] = val;
4013 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4014
4015 /* Compute maximum noise among last 20 samples. */
4016 noise_ref = calib->noise_samples[0];
4017 for (i = 1; i < 20; i++)
4018 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4019
4020 /* Compute maximum energy among 3 receivers. */
4021 for (i = 0; i < 3; i++)
4022 energy[i] = le32toh(stats->general.energy[i]);
4023 val = MIN(energy[0], energy[1]);
4024 val = MIN(energy[2], val);
4025 /* Insert it into our samples table. */
4026 calib->energy_samples[calib->cur_energy_sample] = val;
4027 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4028
4029 /* Compute minimum energy among last 10 samples. */
4030 energy_min = calib->energy_samples[0];
4031 for (i = 1; i < 10; i++)
4032 energy_min = MAX(energy_min, calib->energy_samples[i]);
4033 energy_min += 6;
4034
4035 /* Compute number of false alarms since last call for CCK. */
4036 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4037 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4038 fa *= 200 * 1024; /* 200TU */
4039
4040 /* Save counters values for next call. */
4041 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4042 calib->fa_cck = le32toh(stats->cck.fa);
4043
4044 if (fa > 50 * rxena) {
4045 /* High false alarm count, decrease sensitivity. */
4046 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4047 calib->cck_state = IWN_CCK_STATE_HIFA;
4048 calib->low_fa = 0;
4049
4050 if (calib->cck_x4 > 160) {
4051 calib->noise_ref = noise_ref;
4052 if (calib->energy_cck > 2)
4053 dec(calib->energy_cck, 2, energy_min);
4054 }
4055 if (calib->cck_x4 < 160) {
4056 calib->cck_x4 = 161;
4057 needs_update = 1;
4058 } else
4059 inc(calib->cck_x4, 3, limits->max_cck_x4);
4060
4061 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4062
4063 } else if (fa < 5 * rxena) {
4064 /* Low false alarm count, increase sensitivity. */
4065 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4066 calib->cck_state = IWN_CCK_STATE_LOFA;
4067 calib->low_fa++;
4068
4069 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4070 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4071 calib->low_fa > 100)) {
4072 inc(calib->energy_cck, 2, limits->min_energy_cck);
4073 dec(calib->cck_x4, 3, limits->min_cck_x4);
4074 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4075 }
4076 } else {
4077 /* Not worth to increase or decrease sensitivity. */
4078 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4079 calib->low_fa = 0;
4080 calib->noise_ref = noise_ref;
4081
4082 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4083 /* Previous interval had many false alarms. */
4084 dec(calib->energy_cck, 8, energy_min);
4085 }
4086 calib->cck_state = IWN_CCK_STATE_INIT;
4087 }
4088
4089 if (needs_update)
4090 (void)iwn_send_sensitivity(sc);
4091 #undef dec
4092 #undef inc
4093 }
4094
4095 static int
4096 iwn_send_sensitivity(struct iwn_softc *sc)
4097 {
4098 struct iwn_calib_state *calib = &sc->calib;
4099 struct iwn_enhanced_sensitivity_cmd cmd;
4100 int len;
4101
4102 memset(&cmd, 0, sizeof cmd);
4103 len = sizeof (struct iwn_sensitivity_cmd);
4104 cmd.which = IWN_SENSITIVITY_WORKTBL;
4105 /* OFDM modulation. */
4106 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4107 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4108 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4109 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4110 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4111 cmd.energy_ofdm_th = htole16(62);
4112 /* CCK modulation. */
4113 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4114 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4115 cmd.energy_cck = htole16(calib->energy_cck);
4116 /* Barker modulation: use default values. */
4117 cmd.corr_barker = htole16(190);
4118 cmd.corr_barker_mrc = htole16(390);
4119 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4120 goto send;
4121 /* Enhanced sensitivity settings. */
4122 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4123 cmd.ofdm_det_slope_mrc = htole16(668);
4124 cmd.ofdm_det_icept_mrc = htole16(4);
4125 cmd.ofdm_det_slope = htole16(486);
4126 cmd.ofdm_det_icept = htole16(37);
4127 cmd.cck_det_slope_mrc = htole16(853);
4128 cmd.cck_det_icept_mrc = htole16(4);
4129 cmd.cck_det_slope = htole16(476);
4130 cmd.cck_det_icept = htole16(99);
4131 send:
4132 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4133 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4134 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4135 calib->energy_cck));
4136 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4137 }
4138
4139 /*
4140 * Set STA mode power saving level (between 0 and 5).
4141 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4142 */
4143 static int
4144 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4145 {
4146 struct iwn_pmgt_cmd cmd;
4147 const struct iwn_pmgt *pmgt;
4148 uint32_t maxp, skip_dtim;
4149 pcireg_t reg;
4150 int i;
4151
4152 /* Select which PS parameters to use. */
4153 if (dtim <= 2)
4154 pmgt = &iwn_pmgt[0][level];
4155 else if (dtim <= 10)
4156 pmgt = &iwn_pmgt[1][level];
4157 else
4158 pmgt = &iwn_pmgt[2][level];
4159
4160 memset(&cmd, 0, sizeof cmd);
4161 if (level != 0) /* not CAM */
4162 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4163 if (level == 5)
4164 cmd.flags |= htole16(IWN_PS_FAST_PD);
4165 /* Retrieve PCIe Active State Power Management (ASPM). */
4166 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4167 sc->sc_cap_off + PCIE_LCSR);
4168 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4169 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4170 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4171 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4172
4173 if (dtim == 0) {
4174 dtim = 1;
4175 skip_dtim = 0;
4176 } else
4177 skip_dtim = pmgt->skip_dtim;
4178 if (skip_dtim != 0) {
4179 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4180 maxp = pmgt->intval[4];
4181 if (maxp == (uint32_t)-1)
4182 maxp = dtim * (skip_dtim + 1);
4183 else if (maxp > dtim)
4184 maxp = (maxp / dtim) * dtim;
4185 } else
4186 maxp = dtim;
4187 for (i = 0; i < 5; i++)
4188 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4189
4190 DPRINTF(("setting power saving level to %d\n", level));
4191 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4192 }
4193
4194 int
4195 iwn5000_runtime_calib(struct iwn_softc *sc)
4196 {
4197 struct iwn5000_calib_config cmd;
4198
4199 memset(&cmd, 0, sizeof cmd);
4200 cmd.ucode.once.enable = 0xffffffff;
4201 cmd.ucode.once.start = IWN5000_CALIB_DC;
4202 DPRINTF(("configuring runtime calibration\n"));
4203 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4204 }
4205
4206 static int
4207 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4208 {
4209 struct iwn_bluetooth bluetooth;
4210
4211 memset(&bluetooth, 0, sizeof bluetooth);
4212 bluetooth.flags = IWN_BT_COEX_ENABLE;
4213 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4214 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4215
4216 DPRINTF(("configuring bluetooth coexistence\n"));
4217 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4218 }
4219
4220 static int
4221 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4222 {
4223 uint8_t prio_table[16];
4224
4225 memset(&prio_table, 0, sizeof prio_table);
4226 prio_table[ 0] = 6; /* init calibration 1 */
4227 prio_table[ 1] = 7; /* init calibration 2 */
4228 prio_table[ 2] = 2; /* periodic calib low 1 */
4229 prio_table[ 3] = 3; /* periodic calib low 2 */
4230 prio_table[ 4] = 4; /* periodic calib high 1 */
4231 prio_table[ 5] = 5; /* periodic calib high 2 */
4232 prio_table[ 6] = 6; /* dtim */
4233 prio_table[ 7] = 8; /* scan52 */
4234 prio_table[ 8] = 10; /* scan24 */
4235
4236 DPRINTF(("sending priority lookup table\n"));
4237 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4238 &prio_table, sizeof prio_table, 0);
4239 }
4240
4241 static int
4242 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4243 size_t len)
4244 {
4245 struct iwn_btcoex_prot btprot;
4246 int error;
4247
4248 basic->bt.flags = IWN_BT_COEX_ENABLE;
4249 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4250 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4251 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4252 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4253 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4254 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4255 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4256 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4257 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4258 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4259 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4260 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4261 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4262 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4263 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4264 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4265 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4266 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4267 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4268 basic->reduce_txpower = 0; /* as not implemented */
4269 basic->valid = IWN_BT_ALL_VALID_MASK;
4270
4271 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4272 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4273 if (error != 0) {
4274 aprint_error_dev(sc->sc_dev,
4275 "could not configure advanced bluetooth coexistence\n");
4276 return error;
4277 }
4278
4279 error = iwn_config_bt_coex_prio_table(sc);
4280 if (error != 0) {
4281 aprint_error_dev(sc->sc_dev,
4282 "could not configure send BT priority table\n");
4283 return error;
4284 }
4285
4286 /* Force BT state machine change */
4287 memset(&btprot, 0, sizeof btprot);
4288 btprot.open = 1;
4289 btprot.type = 1;
4290 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4291 if (error != 0) {
4292 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4293 return error;
4294 }
4295
4296 btprot.open = 0;
4297 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4298 if (error != 0) {
4299 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4300 return error;
4301 }
4302 return 0;
4303 }
4304
4305 static int
4306 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4307 {
4308 struct iwn_bt_adv1 d;
4309
4310 memset(&d, 0, sizeof d);
4311 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4312 d.tx_prio_boost = 0;
4313 d.rx_prio_boost = 0;
4314 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4315 }
4316
4317 static int
4318 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4319 {
4320 struct iwn_bt_adv2 d;
4321
4322 memset(&d, 0, sizeof d);
4323 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4324 d.tx_prio_boost = 0;
4325 d.rx_prio_boost = 0;
4326 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4327 }
4328
4329 static int
4330 iwn_config(struct iwn_softc *sc)
4331 {
4332 struct iwn_ops *ops = &sc->ops;
4333 struct ieee80211com *ic = &sc->sc_ic;
4334 struct ifnet *ifp = ic->ic_ifp;
4335 uint32_t txmask;
4336 uint16_t rxchain;
4337 int error;
4338
4339 error = ops->config_bt_coex(sc);
4340 if (error != 0) {
4341 aprint_error_dev(sc->sc_dev,
4342 "could not configure bluetooth coexistence\n");
4343 return error;
4344 }
4345
4346 /* Set radio temperature sensor offset. */
4347 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4348 error = iwn6000_temp_offset_calib(sc);
4349 if (error != 0) {
4350 aprint_error_dev(sc->sc_dev,
4351 "could not set temperature offset\n");
4352 return error;
4353 }
4354 }
4355
4356 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4357 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4358 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4359 sc->hw_type == IWN_HW_REV_TYPE_105) {
4360 error = iwn2000_temp_offset_calib(sc);
4361 if (error != 0) {
4362 aprint_error_dev(sc->sc_dev,
4363 "could not set temperature offset\n");
4364 return error;
4365 }
4366 }
4367
4368 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4369 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4370 /* Configure runtime DC calibration. */
4371 error = iwn5000_runtime_calib(sc);
4372 if (error != 0) {
4373 aprint_error_dev(sc->sc_dev,
4374 "could not configure runtime calibration\n");
4375 return error;
4376 }
4377 }
4378
4379 /* Configure valid TX chains for 5000 Series. */
4380 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4381 txmask = htole32(sc->txchainmask);
4382 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4383 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4384 sizeof txmask, 0);
4385 if (error != 0) {
4386 aprint_error_dev(sc->sc_dev,
4387 "could not configure valid TX chains\n");
4388 return error;
4389 }
4390 }
4391
4392 /* Set mode, channel, RX filter and enable RX. */
4393 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4394 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4395 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4396 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4397 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4398 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4399 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4400 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4401 switch (ic->ic_opmode) {
4402 case IEEE80211_M_STA:
4403 sc->rxon.mode = IWN_MODE_STA;
4404 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4405 break;
4406 case IEEE80211_M_MONITOR:
4407 sc->rxon.mode = IWN_MODE_MONITOR;
4408 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4409 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4410 break;
4411 default:
4412 /* Should not get there. */
4413 break;
4414 }
4415 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4416 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4417 sc->rxon.ht_single_mask = 0xff;
4418 sc->rxon.ht_dual_mask = 0xff;
4419 sc->rxon.ht_triple_mask = 0xff;
4420 rxchain =
4421 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4422 IWN_RXCHAIN_MIMO_COUNT(2) |
4423 IWN_RXCHAIN_IDLE_COUNT(2);
4424 sc->rxon.rxchain = htole16(rxchain);
4425 DPRINTF(("setting configuration\n"));
4426 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4427 if (error != 0) {
4428 aprint_error_dev(sc->sc_dev,
4429 "RXON command failed\n");
4430 return error;
4431 }
4432
4433 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4434 aprint_error_dev(sc->sc_dev,
4435 "could not add broadcast node\n");
4436 return error;
4437 }
4438
4439 /* Configuration has changed, set TX power accordingly. */
4440 if ((error = ops->set_txpower(sc, 0)) != 0) {
4441 aprint_error_dev(sc->sc_dev,
4442 "could not set TX power\n");
4443 return error;
4444 }
4445
4446 if ((error = iwn_set_critical_temp(sc)) != 0) {
4447 aprint_error_dev(sc->sc_dev,
4448 "could not set critical temperature\n");
4449 return error;
4450 }
4451
4452 /* Set power saving level to CAM during initialization. */
4453 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4454 aprint_error_dev(sc->sc_dev,
4455 "could not set power saving level\n");
4456 return error;
4457 }
4458 return 0;
4459 }
4460
4461 static uint16_t
4462 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4463 uint8_t n_probes)
4464 {
4465 /* No channel? Default to 2GHz settings */
4466 if (flags & IEEE80211_CHAN_2GHZ)
4467 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4468 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4469
4470 /* 5GHz dwell time */
4471 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4472 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4473 }
4474
4475 /*
4476 * Limit the total dwell time to 85% of the beacon interval.
4477 *
4478 * Returns the dwell time in milliseconds.
4479 */
4480 static uint16_t
4481 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4482 {
4483 struct ieee80211com *ic = &sc->sc_ic;
4484 struct ieee80211_node *ni = ic->ic_bss;
4485 int bintval = 0;
4486
4487 /* bintval is in TU (1.024mS) */
4488 if (ni != NULL)
4489 bintval = ni->ni_intval;
4490
4491 /*
4492 * If it's non-zero, we should calculate the minimum of
4493 * it and the DWELL_BASE.
4494 *
4495 * XXX Yes, the math should take into account that bintval
4496 * is 1.024mS, not 1mS..
4497 */
4498 if (bintval > 0)
4499 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4500
4501 /* No association context? Default */
4502 return IWN_PASSIVE_DWELL_BASE;
4503 }
4504
4505 static uint16_t
4506 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4507 {
4508 uint16_t passive;
4509 if (flags & IEEE80211_CHAN_2GHZ)
4510 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4511 else
4512 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4513
4514 /* Clamp to the beacon interval if we're associated */
4515 return iwn_limit_dwell(sc, passive);
4516 }
4517
4518 static int
4519 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4520 {
4521 struct ieee80211com *ic = &sc->sc_ic;
4522 struct iwn_scan_hdr *hdr;
4523 struct iwn_cmd_data *tx;
4524 struct iwn_scan_essid *essid;
4525 struct iwn_scan_chan *chan;
4526 struct ieee80211_frame *wh;
4527 struct ieee80211_rateset *rs;
4528 struct ieee80211_channel *c;
4529 uint8_t *buf, *frm;
4530 uint16_t rxchain, dwell_active, dwell_passive;
4531 uint8_t txant;
4532 int buflen, error, is_active;
4533
4534 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4535 if (buf == NULL) {
4536 aprint_error_dev(sc->sc_dev,
4537 "could not allocate buffer for scan command\n");
4538 return ENOMEM;
4539 }
4540 hdr = (struct iwn_scan_hdr *)buf;
4541 /*
4542 * Move to the next channel if no frames are received within 10ms
4543 * after sending the probe request.
4544 */
4545 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4546 hdr->quiet_threshold = htole16(1); /* min # of packets */
4547
4548 /* Select antennas for scanning. */
4549 rxchain =
4550 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4551 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4552 IWN_RXCHAIN_DRIVER_FORCE;
4553 if ((flags & IEEE80211_CHAN_5GHZ) &&
4554 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4555 /* Ant A must be avoided in 5GHz because of an HW bug. */
4556 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4557 } else /* Use all available RX antennas. */
4558 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4559 hdr->rxchain = htole16(rxchain);
4560 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4561
4562 tx = (struct iwn_cmd_data *)(hdr + 1);
4563 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4564 tx->id = sc->broadcast_id;
4565 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4566
4567 if (flags & IEEE80211_CHAN_5GHZ) {
4568 hdr->crc_threshold = 0xffff;
4569 /* Send probe requests at 6Mbps. */
4570 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4571 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4572 } else {
4573 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4574 /* Send probe requests at 1Mbps. */
4575 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4576 tx->rflags = IWN_RFLAG_CCK;
4577 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4578 }
4579 /* Use the first valid TX antenna. */
4580 txant = IWN_LSB(sc->txchainmask);
4581 tx->rflags |= IWN_RFLAG_ANT(txant);
4582
4583 /*
4584 * Only do active scanning if we're announcing a probe request
4585 * for a given SSID (or more, if we ever add it to the driver.)
4586 */
4587 is_active = 0;
4588
4589 essid = (struct iwn_scan_essid *)(tx + 1);
4590 if (ic->ic_des_esslen != 0) {
4591 essid[0].id = IEEE80211_ELEMID_SSID;
4592 essid[0].len = ic->ic_des_esslen;
4593 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4594
4595 is_active = 1;
4596 }
4597 /*
4598 * Build a probe request frame. Most of the following code is a
4599 * copy & paste of what is done in net80211.
4600 */
4601 wh = (struct ieee80211_frame *)(essid + 20);
4602 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4603 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4604 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4605 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4606 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4607 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4608 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4609 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4610
4611 frm = (uint8_t *)(wh + 1);
4612 frm = ieee80211_add_ssid(frm, NULL, 0);
4613 frm = ieee80211_add_rates(frm, rs);
4614 #ifndef IEEE80211_NO_HT
4615 if (ic->ic_flags & IEEE80211_F_HTON)
4616 frm = ieee80211_add_htcaps(frm, ic);
4617 #endif
4618 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4619 frm = ieee80211_add_xrates(frm, rs);
4620
4621 /* Set length of probe request. */
4622 tx->len = htole16(frm - (uint8_t *)wh);
4623
4624
4625 /*
4626 * If active scanning is requested but a certain channel is
4627 * marked passive, we can do active scanning if we detect
4628 * transmissions.
4629 *
4630 * There is an issue with some firmware versions that triggers
4631 * a sysassert on a "good CRC threshold" of zero (== disabled),
4632 * on a radar channel even though this means that we should NOT
4633 * send probes.
4634 *
4635 * The "good CRC threshold" is the number of frames that we
4636 * need to receive during our dwell time on a channel before
4637 * sending out probes -- setting this to a huge value will
4638 * mean we never reach it, but at the same time work around
4639 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4640 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4641 *
4642 * This was fixed in later versions along with some other
4643 * scan changes, and the threshold behaves as a flag in those
4644 * versions.
4645 */
4646
4647 /*
4648 * If we're doing active scanning, set the crc_threshold
4649 * to a suitable value. This is different to active veruss
4650 * passive scanning depending upon the channel flags; the
4651 * firmware will obey that particular check for us.
4652 */
4653 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4654 hdr->crc_threshold = is_active ?
4655 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4656 else
4657 hdr->crc_threshold = is_active ?
4658 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4659
4660 chan = (struct iwn_scan_chan *)frm;
4661 for (c = &ic->ic_channels[1];
4662 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4663 if ((c->ic_flags & flags) != flags)
4664 continue;
4665
4666 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4667 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4668 chan->flags = 0;
4669 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4670 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4671 if (ic->ic_des_esslen != 0)
4672 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4673
4674 /*
4675 * Calculate the active/passive dwell times.
4676 */
4677
4678 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4679 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4680
4681 /* Make sure they're valid */
4682 if (dwell_passive <= dwell_active)
4683 dwell_passive = dwell_active + 1;
4684
4685 chan->active = htole16(dwell_active);
4686 chan->passive = htole16(dwell_passive);
4687
4688 chan->dsp_gain = 0x6e;
4689 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4690 chan->rf_gain = 0x3b;
4691 } else {
4692 chan->rf_gain = 0x28;
4693 }
4694 hdr->nchan++;
4695 chan++;
4696 }
4697
4698 buflen = (uint8_t *)chan - buf;
4699 hdr->len = htole16(buflen);
4700
4701 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4702 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4703 free(buf, M_DEVBUF);
4704 return error;
4705 }
4706
4707 static int
4708 iwn_auth(struct iwn_softc *sc)
4709 {
4710 struct iwn_ops *ops = &sc->ops;
4711 struct ieee80211com *ic = &sc->sc_ic;
4712 struct ieee80211_node *ni = ic->ic_bss;
4713 int error;
4714
4715 /* Update adapter configuration. */
4716 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4717 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4718 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4719 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4720 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4721 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4722 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4723 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4724 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4725 switch (ic->ic_curmode) {
4726 case IEEE80211_MODE_11A:
4727 sc->rxon.cck_mask = 0;
4728 sc->rxon.ofdm_mask = 0x15;
4729 break;
4730 case IEEE80211_MODE_11B:
4731 sc->rxon.cck_mask = 0x03;
4732 sc->rxon.ofdm_mask = 0;
4733 break;
4734 default: /* Assume 802.11b/g. */
4735 sc->rxon.cck_mask = 0x0f;
4736 sc->rxon.ofdm_mask = 0x15;
4737 }
4738 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4739 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4740 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4741 if (error != 0) {
4742 aprint_error_dev(sc->sc_dev,
4743 "RXON command failed\n");
4744 return error;
4745 }
4746
4747 /* Configuration has changed, set TX power accordingly. */
4748 if ((error = ops->set_txpower(sc, 1)) != 0) {
4749 aprint_error_dev(sc->sc_dev,
4750 "could not set TX power\n");
4751 return error;
4752 }
4753 /*
4754 * Reconfiguring RXON clears the firmware nodes table so we must
4755 * add the broadcast node again.
4756 */
4757 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4758 aprint_error_dev(sc->sc_dev,
4759 "could not add broadcast node\n");
4760 return error;
4761 }
4762 return 0;
4763 }
4764
4765 static int
4766 iwn_run(struct iwn_softc *sc)
4767 {
4768 struct iwn_ops *ops = &sc->ops;
4769 struct ieee80211com *ic = &sc->sc_ic;
4770 struct ieee80211_node *ni = ic->ic_bss;
4771 struct iwn_node_info node;
4772 int error;
4773
4774 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4775 /* Link LED blinks while monitoring. */
4776 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4777 return 0;
4778 }
4779 if ((error = iwn_set_timing(sc, ni)) != 0) {
4780 aprint_error_dev(sc->sc_dev,
4781 "could not set timing\n");
4782 return error;
4783 }
4784
4785 /* Update adapter configuration. */
4786 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4787 /* Short preamble and slot time are negotiated when associating. */
4788 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4789 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4790 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4791 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4792 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4793 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4794 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4795 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4796 if (error != 0) {
4797 aprint_error_dev(sc->sc_dev,
4798 "could not update configuration\n");
4799 return error;
4800 }
4801
4802 /* Configuration has changed, set TX power accordingly. */
4803 if ((error = ops->set_txpower(sc, 1)) != 0) {
4804 aprint_error_dev(sc->sc_dev,
4805 "could not set TX power\n");
4806 return error;
4807 }
4808
4809 /* Fake a join to initialize the TX rate. */
4810 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4811 iwn_newassoc(ni, 1);
4812
4813 /* Add BSS node. */
4814 memset(&node, 0, sizeof node);
4815 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4816 node.id = IWN_ID_BSS;
4817 #ifdef notyet
4818 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4819 IWN_AMDPU_DENSITY(5)); /* 2us */
4820 #endif
4821 DPRINTF(("adding BSS node\n"));
4822 error = ops->add_node(sc, &node, 1);
4823 if (error != 0) {
4824 aprint_error_dev(sc->sc_dev,
4825 "could not add BSS node\n");
4826 return error;
4827 }
4828 DPRINTF(("setting link quality for node %d\n", node.id));
4829 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4830 aprint_error_dev(sc->sc_dev,
4831 "could not setup link quality for node %d\n", node.id);
4832 return error;
4833 }
4834
4835 if ((error = iwn_init_sensitivity(sc)) != 0) {
4836 aprint_error_dev(sc->sc_dev,
4837 "could not set sensitivity\n");
4838 return error;
4839 }
4840 /* Start periodic calibration timer. */
4841 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4842 sc->calib_cnt = 0;
4843 callout_schedule(&sc->calib_to, hz/2);
4844
4845 /* Link LED always on while associated. */
4846 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4847 return 0;
4848 }
4849
4850 #ifdef IWN_HWCRYPTO
4851 /*
4852 * We support CCMP hardware encryption/decryption of unicast frames only.
4853 * HW support for TKIP really sucks. We should let TKIP die anyway.
4854 */
4855 static int
4856 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4857 struct ieee80211_key *k)
4858 {
4859 struct iwn_softc *sc = ic->ic_softc;
4860 struct iwn_ops *ops = &sc->ops;
4861 struct iwn_node *wn = (void *)ni;
4862 struct iwn_node_info node;
4863 uint16_t kflags;
4864
4865 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4866 k->k_cipher != IEEE80211_CIPHER_CCMP)
4867 return ieee80211_set_key(ic, ni, k);
4868
4869 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4870 if (k->k_flags & IEEE80211_KEY_GROUP)
4871 kflags |= IWN_KFLAG_GROUP;
4872
4873 memset(&node, 0, sizeof node);
4874 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4875 sc->broadcast_id : wn->id;
4876 node.control = IWN_NODE_UPDATE;
4877 node.flags = IWN_FLAG_SET_KEY;
4878 node.kflags = htole16(kflags);
4879 node.kid = k->k_id;
4880 memcpy(node.key, k->k_key, k->k_len);
4881 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4882 return ops->add_node(sc, &node, 1);
4883 }
4884
4885 static void
4886 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4887 struct ieee80211_key *k)
4888 {
4889 struct iwn_softc *sc = ic->ic_softc;
4890 struct iwn_ops *ops = &sc->ops;
4891 struct iwn_node *wn = (void *)ni;
4892 struct iwn_node_info node;
4893
4894 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4895 k->k_cipher != IEEE80211_CIPHER_CCMP) {
4896 /* See comment about other ciphers above. */
4897 ieee80211_delete_key(ic, ni, k);
4898 return;
4899 }
4900 if (ic->ic_state != IEEE80211_S_RUN)
4901 return; /* Nothing to do. */
4902 memset(&node, 0, sizeof node);
4903 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4904 sc->broadcast_id : wn->id;
4905 node.control = IWN_NODE_UPDATE;
4906 node.flags = IWN_FLAG_SET_KEY;
4907 node.kflags = htole16(IWN_KFLAG_INVALID);
4908 node.kid = 0xff;
4909 DPRINTF(("delete keys for node %d\n", node.id));
4910 (void)ops->add_node(sc, &node, 1);
4911 }
4912 #endif
4913
4914 /* XXX Added for NetBSD (copied from rev 1.39). */
4915
4916 static int
4917 iwn_wme_update(struct ieee80211com *ic)
4918 {
4919 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
4920 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
4921 struct iwn_softc *sc = ic->ic_ifp->if_softc;
4922 const struct wmeParams *wmep;
4923 struct iwn_edca_params cmd;
4924 int ac;
4925
4926 /* don't override default WME values if WME is not actually enabled */
4927 if (!(ic->ic_flags & IEEE80211_F_WME))
4928 return 0;
4929 cmd.flags = 0;
4930 for (ac = 0; ac < WME_NUM_AC; ac++) {
4931 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4932 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
4933 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
4934 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
4935 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
4936
4937 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
4938 "txop=%d\n", ac, cmd.ac[ac].aifsn,
4939 cmd.ac[ac].cwmin,
4940 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
4941 }
4942 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4943 #undef IWN_USEC
4944 #undef IWN_EXP2
4945 }
4946
4947 #ifndef IEEE80211_NO_HT
4948 /*
4949 * This function is called by upper layer when an ADDBA request is received
4950 * from another STA and before the ADDBA response is sent.
4951 */
4952 static int
4953 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4954 uint8_t tid)
4955 {
4956 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4957 struct iwn_softc *sc = ic->ic_softc;
4958 struct iwn_ops *ops = &sc->ops;
4959 struct iwn_node *wn = (void *)ni;
4960 struct iwn_node_info node;
4961
4962 memset(&node, 0, sizeof node);
4963 node.id = wn->id;
4964 node.control = IWN_NODE_UPDATE;
4965 node.flags = IWN_FLAG_SET_ADDBA;
4966 node.addba_tid = tid;
4967 node.addba_ssn = htole16(ba->ba_winstart);
4968 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
4969 ba->ba_winstart));
4970 return ops->add_node(sc, &node, 1);
4971 }
4972
4973 /*
4974 * This function is called by upper layer on teardown of an HT-immediate
4975 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
4976 */
4977 static void
4978 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4979 uint8_t tid)
4980 {
4981 struct iwn_softc *sc = ic->ic_softc;
4982 struct iwn_ops *ops = &sc->ops;
4983 struct iwn_node *wn = (void *)ni;
4984 struct iwn_node_info node;
4985
4986 memset(&node, 0, sizeof node);
4987 node.id = wn->id;
4988 node.control = IWN_NODE_UPDATE;
4989 node.flags = IWN_FLAG_SET_DELBA;
4990 node.delba_tid = tid;
4991 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
4992 (void)ops->add_node(sc, &node, 1);
4993 }
4994
4995 /*
4996 * This function is called by upper layer when an ADDBA response is received
4997 * from another STA.
4998 */
4999 static int
5000 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5001 uint8_t tid)
5002 {
5003 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5004 struct iwn_softc *sc = ic->ic_softc;
5005 struct iwn_ops *ops = &sc->ops;
5006 struct iwn_node *wn = (void *)ni;
5007 struct iwn_node_info node;
5008 int error;
5009
5010 /* Enable TX for the specified RA/TID. */
5011 wn->disable_tid &= ~(1 << tid);
5012 memset(&node, 0, sizeof node);
5013 node.id = wn->id;
5014 node.control = IWN_NODE_UPDATE;
5015 node.flags = IWN_FLAG_SET_DISABLE_TID;
5016 node.disable_tid = htole16(wn->disable_tid);
5017 error = ops->add_node(sc, &node, 1);
5018 if (error != 0)
5019 return error;
5020
5021 if ((error = iwn_nic_lock(sc)) != 0)
5022 return error;
5023 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5024 iwn_nic_unlock(sc);
5025 return 0;
5026 }
5027
5028 static void
5029 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5030 uint8_t tid)
5031 {
5032 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5033 struct iwn_softc *sc = ic->ic_softc;
5034 struct iwn_ops *ops = &sc->ops;
5035
5036 if (iwn_nic_lock(sc) != 0)
5037 return;
5038 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5039 iwn_nic_unlock(sc);
5040 }
5041
5042 static void
5043 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5044 uint8_t tid, uint16_t ssn)
5045 {
5046 struct iwn_node *wn = (void *)ni;
5047 int qid = 7 + tid;
5048
5049 /* Stop TX scheduler while we're changing its configuration. */
5050 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5051 IWN4965_TXQ_STATUS_CHGACT);
5052
5053 /* Assign RA/TID translation to the queue. */
5054 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5055 wn->id << 4 | tid);
5056
5057 /* Enable chain-building mode for the queue. */
5058 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5059
5060 /* Set starting sequence number from the ADDBA request. */
5061 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5062 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5063
5064 /* Set scheduler window size. */
5065 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5066 IWN_SCHED_WINSZ);
5067 /* Set scheduler frame limit. */
5068 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5069 IWN_SCHED_LIMIT << 16);
5070
5071 /* Enable interrupts for the queue. */
5072 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5073
5074 /* Mark the queue as active. */
5075 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5076 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5077 iwn_tid2fifo[tid] << 1);
5078 }
5079
5080 static void
5081 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5082 {
5083 int qid = 7 + tid;
5084
5085 /* Stop TX scheduler while we're changing its configuration. */
5086 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5087 IWN4965_TXQ_STATUS_CHGACT);
5088
5089 /* Set starting sequence number from the ADDBA request. */
5090 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5091 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5092
5093 /* Disable interrupts for the queue. */
5094 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5095
5096 /* Mark the queue as inactive. */
5097 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5098 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5099 }
5100
5101 static void
5102 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5103 uint8_t tid, uint16_t ssn)
5104 {
5105 struct iwn_node *wn = (void *)ni;
5106 int qid = 10 + tid;
5107
5108 /* Stop TX scheduler while we're changing its configuration. */
5109 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5110 IWN5000_TXQ_STATUS_CHGACT);
5111
5112 /* Assign RA/TID translation to the queue. */
5113 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5114 wn->id << 4 | tid);
5115
5116 /* Enable chain-building mode for the queue. */
5117 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5118
5119 /* Enable aggregation for the queue. */
5120 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5121
5122 /* Set starting sequence number from the ADDBA request. */
5123 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5124 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5125
5126 /* Set scheduler window size and frame limit. */
5127 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5128 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5129
5130 /* Enable interrupts for the queue. */
5131 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5132
5133 /* Mark the queue as active. */
5134 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5135 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5136 }
5137
5138 static void
5139 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5140 {
5141 int qid = 10 + tid;
5142
5143 /* Stop TX scheduler while we're changing its configuration. */
5144 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5145 IWN5000_TXQ_STATUS_CHGACT);
5146
5147 /* Disable aggregation for the queue. */
5148 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5149
5150 /* Set starting sequence number from the ADDBA request. */
5151 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5152 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5153
5154 /* Disable interrupts for the queue. */
5155 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5156
5157 /* Mark the queue as inactive. */
5158 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5159 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5160 }
5161 #endif /* !IEEE80211_NO_HT */
5162
5163 /*
5164 * Query calibration tables from the initialization firmware. We do this
5165 * only once at first boot. Called from a process context.
5166 */
5167 static int
5168 iwn5000_query_calibration(struct iwn_softc *sc)
5169 {
5170 struct iwn5000_calib_config cmd;
5171 int error;
5172
5173 memset(&cmd, 0, sizeof cmd);
5174 cmd.ucode.once.enable = 0xffffffff;
5175 cmd.ucode.once.start = 0xffffffff;
5176 cmd.ucode.once.send = 0xffffffff;
5177 cmd.ucode.flags = 0xffffffff;
5178 DPRINTF(("sending calibration query\n"));
5179 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5180 if (error != 0)
5181 return error;
5182
5183 /* Wait at most two seconds for calibration to complete. */
5184 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5185 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5186 return error;
5187 }
5188
5189 /*
5190 * Send calibration results to the runtime firmware. These results were
5191 * obtained on first boot from the initialization firmware.
5192 */
5193 static int
5194 iwn5000_send_calibration(struct iwn_softc *sc)
5195 {
5196 int idx, error;
5197
5198 for (idx = 0; idx < 5; idx++) {
5199 if (sc->calibcmd[idx].buf == NULL)
5200 continue; /* No results available. */
5201 DPRINTF(("send calibration result idx=%d len=%d\n",
5202 idx, sc->calibcmd[idx].len));
5203 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5204 sc->calibcmd[idx].len, 0);
5205 if (error != 0) {
5206 aprint_error_dev(sc->sc_dev,
5207 "could not send calibration result\n");
5208 return error;
5209 }
5210 }
5211 return 0;
5212 }
5213
5214 static int
5215 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5216 {
5217 struct iwn5000_wimax_coex wimax;
5218
5219 #ifdef notyet
5220 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5221 /* Enable WiMAX coexistence for combo adapters. */
5222 wimax.flags =
5223 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5224 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5225 IWN_WIMAX_COEX_STA_TABLE_VALID |
5226 IWN_WIMAX_COEX_ENABLE;
5227 memcpy(wimax.events, iwn6050_wimax_events,
5228 sizeof iwn6050_wimax_events);
5229 } else
5230 #endif
5231 {
5232 /* Disable WiMAX coexistence. */
5233 wimax.flags = 0;
5234 memset(wimax.events, 0, sizeof wimax.events);
5235 }
5236 DPRINTF(("Configuring WiMAX coexistence\n"));
5237 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5238 }
5239
5240 static int
5241 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5242 {
5243 struct iwn6000_phy_calib_temp_offset cmd;
5244
5245 memset(&cmd, 0, sizeof cmd);
5246 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5247 cmd.ngroups = 1;
5248 cmd.isvalid = 1;
5249 if (sc->eeprom_temp != 0)
5250 cmd.offset = htole16(sc->eeprom_temp);
5251 else
5252 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5253 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5254 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5255 }
5256
5257 static int
5258 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5259 {
5260 struct iwn2000_phy_calib_temp_offset cmd;
5261
5262 memset(&cmd, 0, sizeof cmd);
5263 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5264 cmd.ngroups = 1;
5265 cmd.isvalid = 1;
5266 if (sc->eeprom_rawtemp != 0) {
5267 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5268 cmd.offset_high = htole16(sc->eeprom_temp);
5269 } else {
5270 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5271 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5272 }
5273 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5274 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5275 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5276 le16toh(cmd.burnt_voltage_ref)));
5277 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5278 }
5279
5280 /*
5281 * This function is called after the runtime firmware notifies us of its
5282 * readiness (called in a process context).
5283 */
5284 static int
5285 iwn4965_post_alive(struct iwn_softc *sc)
5286 {
5287 int error, qid;
5288
5289 if ((error = iwn_nic_lock(sc)) != 0)
5290 return error;
5291
5292 /* Clear TX scheduler state in SRAM. */
5293 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5294 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5295 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5296
5297 /* Set physical address of TX scheduler rings (1KB aligned). */
5298 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5299
5300 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5301
5302 /* Disable chain mode for all our 16 queues. */
5303 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5304
5305 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5306 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5307 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5308
5309 /* Set scheduler window size. */
5310 iwn_mem_write(sc, sc->sched_base +
5311 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5312 /* Set scheduler frame limit. */
5313 iwn_mem_write(sc, sc->sched_base +
5314 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5315 IWN_SCHED_LIMIT << 16);
5316 }
5317
5318 /* Enable interrupts for all our 16 queues. */
5319 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5320 /* Identify TX FIFO rings (0-7). */
5321 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5322
5323 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5324 for (qid = 0; qid < 7; qid++) {
5325 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5326 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5327 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5328 }
5329 iwn_nic_unlock(sc);
5330 return 0;
5331 }
5332
5333 /*
5334 * This function is called after the initialization or runtime firmware
5335 * notifies us of its readiness (called in a process context).
5336 */
5337 static int
5338 iwn5000_post_alive(struct iwn_softc *sc)
5339 {
5340 int error, qid;
5341
5342 /* Switch to using ICT interrupt mode. */
5343 iwn5000_ict_reset(sc);
5344
5345 if ((error = iwn_nic_lock(sc)) != 0)
5346 return error;
5347
5348 /* Clear TX scheduler state in SRAM. */
5349 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5350 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5351 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5352
5353 /* Set physical address of TX scheduler rings (1KB aligned). */
5354 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5355
5356 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5357
5358 /* Enable chain mode for all queues, except command queue. */
5359 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5360 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5361
5362 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5363 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5364 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5365
5366 iwn_mem_write(sc, sc->sched_base +
5367 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5368 /* Set scheduler window size and frame limit. */
5369 iwn_mem_write(sc, sc->sched_base +
5370 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5371 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5372 }
5373
5374 /* Enable interrupts for all our 20 queues. */
5375 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5376 /* Identify TX FIFO rings (0-7). */
5377 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5378
5379 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5380 for (qid = 0; qid < 7; qid++) {
5381 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5382 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5383 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5384 }
5385 iwn_nic_unlock(sc);
5386
5387 /* Configure WiMAX coexistence for combo adapters. */
5388 error = iwn5000_send_wimax_coex(sc);
5389 if (error != 0) {
5390 aprint_error_dev(sc->sc_dev,
5391 "could not configure WiMAX coexistence\n");
5392 return error;
5393 }
5394 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5395 struct iwn5000_phy_calib_crystal cmd;
5396
5397 /* Perform crystal calibration. */
5398 memset(&cmd, 0, sizeof cmd);
5399 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5400 cmd.ngroups = 1;
5401 cmd.isvalid = 1;
5402 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5403 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5404 DPRINTF(("sending crystal calibration %d, %d\n",
5405 cmd.cap_pin[0], cmd.cap_pin[1]));
5406 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5407 if (error != 0) {
5408 aprint_error_dev(sc->sc_dev,
5409 "crystal calibration failed\n");
5410 return error;
5411 }
5412 }
5413 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5414 /* Query calibration from the initialization firmware. */
5415 if ((error = iwn5000_query_calibration(sc)) != 0) {
5416 aprint_error_dev(sc->sc_dev,
5417 "could not query calibration\n");
5418 return error;
5419 }
5420 /*
5421 * We have the calibration results now, reboot with the
5422 * runtime firmware (call ourselves recursively!)
5423 */
5424 iwn_hw_stop(sc);
5425 error = iwn_hw_init(sc);
5426 } else {
5427 /* Send calibration results to runtime firmware. */
5428 error = iwn5000_send_calibration(sc);
5429 }
5430 return error;
5431 }
5432
5433 /*
5434 * The firmware boot code is small and is intended to be copied directly into
5435 * the NIC internal memory (no DMA transfer).
5436 */
5437 static int
5438 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5439 {
5440 int error, ntries;
5441
5442 size /= sizeof (uint32_t);
5443
5444 if ((error = iwn_nic_lock(sc)) != 0)
5445 return error;
5446
5447 /* Copy microcode image into NIC memory. */
5448 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5449 (const uint32_t *)ucode, size);
5450
5451 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5452 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5453 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5454
5455 /* Start boot load now. */
5456 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5457
5458 /* Wait for transfer to complete. */
5459 for (ntries = 0; ntries < 1000; ntries++) {
5460 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5461 IWN_BSM_WR_CTRL_START))
5462 break;
5463 DELAY(10);
5464 }
5465 if (ntries == 1000) {
5466 aprint_error_dev(sc->sc_dev,
5467 "could not load boot firmware\n");
5468 iwn_nic_unlock(sc);
5469 return ETIMEDOUT;
5470 }
5471
5472 /* Enable boot after power up. */
5473 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5474
5475 iwn_nic_unlock(sc);
5476 return 0;
5477 }
5478
5479 static int
5480 iwn4965_load_firmware(struct iwn_softc *sc)
5481 {
5482 struct iwn_fw_info *fw = &sc->fw;
5483 struct iwn_dma_info *dma = &sc->fw_dma;
5484 int error;
5485
5486 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5487 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5488 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5489 BUS_DMASYNC_PREWRITE);
5490 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5491 fw->init.text, fw->init.textsz);
5492 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5493 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5494
5495 /* Tell adapter where to find initialization sections. */
5496 if ((error = iwn_nic_lock(sc)) != 0)
5497 return error;
5498 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5499 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5500 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5501 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5502 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5503 iwn_nic_unlock(sc);
5504
5505 /* Load firmware boot code. */
5506 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5507 if (error != 0) {
5508 aprint_error_dev(sc->sc_dev,
5509 "could not load boot firmware\n");
5510 return error;
5511 }
5512 /* Now press "execute". */
5513 IWN_WRITE(sc, IWN_RESET, 0);
5514
5515 /* Wait at most one second for first alive notification. */
5516 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5517 aprint_error_dev(sc->sc_dev,
5518 "timeout waiting for adapter to initialize\n");
5519 return error;
5520 }
5521
5522 /* Retrieve current temperature for initial TX power calibration. */
5523 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5524 sc->temp = iwn4965_get_temperature(sc);
5525
5526 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5527 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5528 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5529 BUS_DMASYNC_PREWRITE);
5530 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5531 fw->main.text, fw->main.textsz);
5532 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5533 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5534
5535 /* Tell adapter where to find runtime sections. */
5536 if ((error = iwn_nic_lock(sc)) != 0)
5537 return error;
5538 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5539 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5540 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5541 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5542 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5543 IWN_FW_UPDATED | fw->main.textsz);
5544 iwn_nic_unlock(sc);
5545
5546 return 0;
5547 }
5548
5549 static int
5550 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5551 const uint8_t *section, int size)
5552 {
5553 struct iwn_dma_info *dma = &sc->fw_dma;
5554 int error;
5555
5556 /* Copy firmware section into pre-allocated DMA-safe memory. */
5557 memcpy(dma->vaddr, section, size);
5558 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5559
5560 if ((error = iwn_nic_lock(sc)) != 0)
5561 return error;
5562
5563 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5564 IWN_FH_TX_CONFIG_DMA_PAUSE);
5565
5566 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5567 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5568 IWN_LOADDR(dma->paddr));
5569 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5570 IWN_HIADDR(dma->paddr) << 28 | size);
5571 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5572 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5573 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5574 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5575
5576 /* Kick Flow Handler to start DMA transfer. */
5577 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5578 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5579
5580 iwn_nic_unlock(sc);
5581
5582 /* Wait at most five seconds for FH DMA transfer to complete. */
5583 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5584 }
5585
5586 static int
5587 iwn5000_load_firmware(struct iwn_softc *sc)
5588 {
5589 struct iwn_fw_part *fw;
5590 int error;
5591
5592 /* Load the initialization firmware on first boot only. */
5593 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5594 &sc->fw.main : &sc->fw.init;
5595
5596 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5597 fw->text, fw->textsz);
5598 if (error != 0) {
5599 aprint_error_dev(sc->sc_dev,
5600 "could not load firmware %s section\n", ".text");
5601 return error;
5602 }
5603 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5604 fw->data, fw->datasz);
5605 if (error != 0) {
5606 aprint_error_dev(sc->sc_dev,
5607 "could not load firmware %s section\n", ".data");
5608 return error;
5609 }
5610
5611 /* Now press "execute". */
5612 IWN_WRITE(sc, IWN_RESET, 0);
5613 return 0;
5614 }
5615
5616 /*
5617 * Extract text and data sections from a legacy firmware image.
5618 */
5619 static int
5620 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5621 {
5622 const uint32_t *ptr;
5623 size_t hdrlen = 24;
5624 uint32_t rev;
5625
5626 ptr = (const uint32_t *)fw->data;
5627 rev = le32toh(*ptr++);
5628
5629 /* Check firmware API version. */
5630 if (IWN_FW_API(rev) <= 1) {
5631 aprint_error_dev(sc->sc_dev,
5632 "bad firmware, need API version >=2\n");
5633 return EINVAL;
5634 }
5635 if (IWN_FW_API(rev) >= 3) {
5636 /* Skip build number (version 2 header). */
5637 hdrlen += 4;
5638 ptr++;
5639 }
5640 if (fw->size < hdrlen) {
5641 aprint_error_dev(sc->sc_dev,
5642 "firmware too short: %zd bytes\n", fw->size);
5643 return EINVAL;
5644 }
5645 fw->main.textsz = le32toh(*ptr++);
5646 fw->main.datasz = le32toh(*ptr++);
5647 fw->init.textsz = le32toh(*ptr++);
5648 fw->init.datasz = le32toh(*ptr++);
5649 fw->boot.textsz = le32toh(*ptr++);
5650
5651 /* Check that all firmware sections fit. */
5652 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5653 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5654 aprint_error_dev(sc->sc_dev,
5655 "firmware too short: %zd bytes\n", fw->size);
5656 return EINVAL;
5657 }
5658
5659 /* Get pointers to firmware sections. */
5660 fw->main.text = (const uint8_t *)ptr;
5661 fw->main.data = fw->main.text + fw->main.textsz;
5662 fw->init.text = fw->main.data + fw->main.datasz;
5663 fw->init.data = fw->init.text + fw->init.textsz;
5664 fw->boot.text = fw->init.data + fw->init.datasz;
5665 return 0;
5666 }
5667
5668 /*
5669 * Extract text and data sections from a TLV firmware image.
5670 */
5671 static int
5672 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5673 uint16_t alt)
5674 {
5675 const struct iwn_fw_tlv_hdr *hdr;
5676 const struct iwn_fw_tlv *tlv;
5677 const uint8_t *ptr, *end;
5678 uint64_t altmask;
5679 uint32_t len;
5680
5681 if (fw->size < sizeof (*hdr)) {
5682 aprint_error_dev(sc->sc_dev,
5683 "firmware too short: %zd bytes\n", fw->size);
5684 return EINVAL;
5685 }
5686 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5687 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5688 aprint_error_dev(sc->sc_dev,
5689 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5690 return EINVAL;
5691 }
5692 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5693 le32toh(hdr->build)));
5694
5695 /*
5696 * Select the closest supported alternative that is less than
5697 * or equal to the specified one.
5698 */
5699 altmask = le64toh(hdr->altmask);
5700 while (alt > 0 && !(altmask & (1ULL << alt)))
5701 alt--; /* Downgrade. */
5702 DPRINTF(("using alternative %d\n", alt));
5703
5704 ptr = (const uint8_t *)(hdr + 1);
5705 end = (const uint8_t *)(fw->data + fw->size);
5706
5707 /* Parse type-length-value fields. */
5708 while (ptr + sizeof (*tlv) <= end) {
5709 tlv = (const struct iwn_fw_tlv *)ptr;
5710 len = le32toh(tlv->len);
5711
5712 ptr += sizeof (*tlv);
5713 if (ptr + len > end) {
5714 aprint_error_dev(sc->sc_dev,
5715 "firmware too short: %zd bytes\n", fw->size);
5716 return EINVAL;
5717 }
5718 /* Skip other alternatives. */
5719 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5720 goto next;
5721
5722 switch (le16toh(tlv->type)) {
5723 case IWN_FW_TLV_MAIN_TEXT:
5724 fw->main.text = ptr;
5725 fw->main.textsz = len;
5726 break;
5727 case IWN_FW_TLV_MAIN_DATA:
5728 fw->main.data = ptr;
5729 fw->main.datasz = len;
5730 break;
5731 case IWN_FW_TLV_INIT_TEXT:
5732 fw->init.text = ptr;
5733 fw->init.textsz = len;
5734 break;
5735 case IWN_FW_TLV_INIT_DATA:
5736 fw->init.data = ptr;
5737 fw->init.datasz = len;
5738 break;
5739 case IWN_FW_TLV_BOOT_TEXT:
5740 fw->boot.text = ptr;
5741 fw->boot.textsz = len;
5742 break;
5743 case IWN_FW_TLV_ENH_SENS:
5744 if (len != 0) {
5745 aprint_error_dev(sc->sc_dev,
5746 "TLV type %d has invalid size %u\n",
5747 le16toh(tlv->type), len);
5748 goto next;
5749 }
5750 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5751 break;
5752 case IWN_FW_TLV_PHY_CALIB:
5753 if (len != sizeof(uint32_t)) {
5754 aprint_error_dev(sc->sc_dev,
5755 "TLV type %d has invalid size %u\n",
5756 le16toh(tlv->type), len);
5757 goto next;
5758 }
5759 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5760 sc->reset_noise_gain = le32toh(*ptr);
5761 sc->noise_gain = le32toh(*ptr) + 1;
5762 }
5763 break;
5764 case IWN_FW_TLV_FLAGS:
5765 if (len < sizeof(uint32_t))
5766 break;
5767 if (len % sizeof(uint32_t))
5768 break;
5769 sc->tlv_feature_flags = le32toh(*ptr);
5770 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5771 break;
5772 default:
5773 DPRINTF(("TLV type %d not handled\n",
5774 le16toh(tlv->type)));
5775 break;
5776 }
5777 next: /* TLV fields are 32-bit aligned. */
5778 ptr += (len + 3) & ~3;
5779 }
5780 return 0;
5781 }
5782
5783 static int
5784 iwn_read_firmware(struct iwn_softc *sc)
5785 {
5786 struct iwn_fw_info *fw = &sc->fw;
5787 firmware_handle_t fwh;
5788 int error;
5789
5790 /*
5791 * Some PHY calibration commands are firmware-dependent; these
5792 * are the default values that will be overridden if
5793 * necessary.
5794 */
5795 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5796 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5797
5798 /* Initialize for error returns */
5799 fw->data = NULL;
5800 fw->size = 0;
5801
5802 /* Open firmware image. */
5803 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5804 aprint_error_dev(sc->sc_dev,
5805 "could not get firmware handle %s\n", sc->fwname);
5806 return error;
5807 }
5808 fw->size = firmware_get_size(fwh);
5809 if (fw->size < sizeof (uint32_t)) {
5810 aprint_error_dev(sc->sc_dev,
5811 "firmware too short: %zd bytes\n", fw->size);
5812 firmware_close(fwh);
5813 return EINVAL;
5814 }
5815
5816 /* Read the firmware. */
5817 fw->data = firmware_malloc(fw->size);
5818 if (fw->data == NULL) {
5819 aprint_error_dev(sc->sc_dev,
5820 "not enough memory to stock firmware %s\n", sc->fwname);
5821 firmware_close(fwh);
5822 return ENOMEM;
5823 }
5824 error = firmware_read(fwh, 0, fw->data, fw->size);
5825 firmware_close(fwh);
5826 if (error != 0) {
5827 aprint_error_dev(sc->sc_dev,
5828 "could not read firmware %s\n", sc->fwname);
5829 goto out;
5830 }
5831
5832 /* Retrieve text and data sections. */
5833 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5834 error = iwn_read_firmware_leg(sc, fw);
5835 else
5836 error = iwn_read_firmware_tlv(sc, fw, 1);
5837 if (error != 0) {
5838 aprint_error_dev(sc->sc_dev,
5839 "could not read firmware sections\n");
5840 goto out;
5841 }
5842
5843 /* Make sure text and data sections fit in hardware memory. */
5844 if (fw->main.textsz > sc->fw_text_maxsz ||
5845 fw->main.datasz > sc->fw_data_maxsz ||
5846 fw->init.textsz > sc->fw_text_maxsz ||
5847 fw->init.datasz > sc->fw_data_maxsz ||
5848 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5849 (fw->boot.textsz & 3) != 0) {
5850 aprint_error_dev(sc->sc_dev,
5851 "firmware sections too large\n");
5852 goto out;
5853 }
5854
5855 /* We can proceed with loading the firmware. */
5856 return 0;
5857 out:
5858 firmware_free(fw->data, fw->size);
5859 fw->data = NULL;
5860 fw->size = 0;
5861 return error ? error : EINVAL;
5862 }
5863
5864 static int
5865 iwn_clock_wait(struct iwn_softc *sc)
5866 {
5867 int ntries;
5868
5869 /* Set "initialization complete" bit. */
5870 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5871
5872 /* Wait for clock stabilization. */
5873 for (ntries = 0; ntries < 2500; ntries++) {
5874 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5875 return 0;
5876 DELAY(10);
5877 }
5878 aprint_error_dev(sc->sc_dev,
5879 "timeout waiting for clock stabilization\n");
5880 return ETIMEDOUT;
5881 }
5882
5883 static int
5884 iwn_apm_init(struct iwn_softc *sc)
5885 {
5886 pcireg_t reg;
5887 int error;
5888
5889 /* Disable L0s exit timer (NMI bug workaround). */
5890 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5891 /* Don't wait for ICH L0s (ICH bug workaround). */
5892 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5893
5894 /* Set FH wait threshold to max (HW bug under stress workaround). */
5895 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5896
5897 /* Enable HAP INTA to move adapter from L1a to L0s. */
5898 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5899
5900 /* Retrieve PCIe Active State Power Management (ASPM). */
5901 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
5902 sc->sc_cap_off + PCIE_LCSR);
5903 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5904 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
5905 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5906 else
5907 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5908
5909 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5910 sc->hw_type <= IWN_HW_REV_TYPE_1000)
5911 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5912
5913 /* Wait for clock stabilization before accessing prph. */
5914 if ((error = iwn_clock_wait(sc)) != 0)
5915 return error;
5916
5917 if ((error = iwn_nic_lock(sc)) != 0)
5918 return error;
5919 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5920 /* Enable DMA and BSM (Bootstrap State Machine). */
5921 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5922 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5923 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5924 } else {
5925 /* Enable DMA. */
5926 iwn_prph_write(sc, IWN_APMG_CLK_EN,
5927 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5928 }
5929 DELAY(20);
5930 /* Disable L1-Active. */
5931 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5932 iwn_nic_unlock(sc);
5933
5934 return 0;
5935 }
5936
5937 static void
5938 iwn_apm_stop_master(struct iwn_softc *sc)
5939 {
5940 int ntries;
5941
5942 /* Stop busmaster DMA activity. */
5943 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5944 for (ntries = 0; ntries < 100; ntries++) {
5945 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5946 return;
5947 DELAY(10);
5948 }
5949 aprint_error_dev(sc->sc_dev,
5950 "timeout waiting for master\n");
5951 }
5952
5953 static void
5954 iwn_apm_stop(struct iwn_softc *sc)
5955 {
5956 iwn_apm_stop_master(sc);
5957
5958 /* Reset the entire device. */
5959 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5960 DELAY(10);
5961 /* Clear "initialization complete" bit. */
5962 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5963 }
5964
5965 static int
5966 iwn4965_nic_config(struct iwn_softc *sc)
5967 {
5968 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5969 /*
5970 * I don't believe this to be correct but this is what the
5971 * vendor driver is doing. Probably the bits should not be
5972 * shifted in IWN_RFCFG_*.
5973 */
5974 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5975 IWN_RFCFG_TYPE(sc->rfcfg) |
5976 IWN_RFCFG_STEP(sc->rfcfg) |
5977 IWN_RFCFG_DASH(sc->rfcfg));
5978 }
5979 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5980 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5981 return 0;
5982 }
5983
5984 static int
5985 iwn5000_nic_config(struct iwn_softc *sc)
5986 {
5987 uint32_t tmp;
5988 int error;
5989
5990 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5991 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5992 IWN_RFCFG_TYPE(sc->rfcfg) |
5993 IWN_RFCFG_STEP(sc->rfcfg) |
5994 IWN_RFCFG_DASH(sc->rfcfg));
5995 }
5996 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5997 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5998
5999 if ((error = iwn_nic_lock(sc)) != 0)
6000 return error;
6001 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6002
6003 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6004 /*
6005 * Select first Switching Voltage Regulator (1.32V) to
6006 * solve a stability issue related to noisy DC2DC line
6007 * in the silicon of 1000 Series.
6008 */
6009 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6010 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6011 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6012 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6013 }
6014 iwn_nic_unlock(sc);
6015
6016 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6017 /* Use internal power amplifier only. */
6018 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6019 }
6020 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6021 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6022 /* Indicate that ROM calibration version is >=6. */
6023 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6024 }
6025 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6026 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6027 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6028 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6029 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6030 sc->hw_type == IWN_HW_REV_TYPE_105)
6031 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6032 return 0;
6033 }
6034
6035 /*
6036 * Take NIC ownership over Intel Active Management Technology (AMT).
6037 */
6038 static int
6039 iwn_hw_prepare(struct iwn_softc *sc)
6040 {
6041 int ntries;
6042
6043 /* Check if hardware is ready. */
6044 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6045 for (ntries = 0; ntries < 5; ntries++) {
6046 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6047 IWN_HW_IF_CONFIG_NIC_READY)
6048 return 0;
6049 DELAY(10);
6050 }
6051
6052 /* Hardware not ready, force into ready state. */
6053 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6054 for (ntries = 0; ntries < 15000; ntries++) {
6055 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6056 IWN_HW_IF_CONFIG_PREPARE_DONE))
6057 break;
6058 DELAY(10);
6059 }
6060 if (ntries == 15000)
6061 return ETIMEDOUT;
6062
6063 /* Hardware should be ready now. */
6064 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6065 for (ntries = 0; ntries < 5; ntries++) {
6066 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6067 IWN_HW_IF_CONFIG_NIC_READY)
6068 return 0;
6069 DELAY(10);
6070 }
6071 return ETIMEDOUT;
6072 }
6073
6074 static int
6075 iwn_hw_init(struct iwn_softc *sc)
6076 {
6077 struct iwn_ops *ops = &sc->ops;
6078 int error, chnl, qid;
6079
6080 /* Clear pending interrupts. */
6081 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6082
6083 if ((error = iwn_apm_init(sc)) != 0) {
6084 aprint_error_dev(sc->sc_dev,
6085 "could not power ON adapter\n");
6086 return error;
6087 }
6088
6089 /* Select VMAIN power source. */
6090 if ((error = iwn_nic_lock(sc)) != 0)
6091 return error;
6092 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6093 iwn_nic_unlock(sc);
6094
6095 /* Perform adapter-specific initialization. */
6096 if ((error = ops->nic_config(sc)) != 0)
6097 return error;
6098
6099 /* Initialize RX ring. */
6100 if ((error = iwn_nic_lock(sc)) != 0)
6101 return error;
6102 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6103 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6104 /* Set physical address of RX ring (256-byte aligned). */
6105 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6106 /* Set physical address of RX status (16-byte aligned). */
6107 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6108 /* Enable RX. */
6109 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6110 IWN_FH_RX_CONFIG_ENA |
6111 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6112 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6113 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6114 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6115 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6116 iwn_nic_unlock(sc);
6117 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6118
6119 if ((error = iwn_nic_lock(sc)) != 0)
6120 return error;
6121
6122 /* Initialize TX scheduler. */
6123 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6124
6125 /* Set physical address of "keep warm" page (16-byte aligned). */
6126 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6127
6128 /* Initialize TX rings. */
6129 for (qid = 0; qid < sc->ntxqs; qid++) {
6130 struct iwn_tx_ring *txq = &sc->txq[qid];
6131
6132 /* Set physical address of TX ring (256-byte aligned). */
6133 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6134 txq->desc_dma.paddr >> 8);
6135 }
6136 iwn_nic_unlock(sc);
6137
6138 /* Enable DMA channels. */
6139 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6140 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6141 IWN_FH_TX_CONFIG_DMA_ENA |
6142 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6143 }
6144
6145 /* Clear "radio off" and "commands blocked" bits. */
6146 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6147 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6148
6149 /* Clear pending interrupts. */
6150 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6151 /* Enable interrupt coalescing. */
6152 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6153 /* Enable interrupts. */
6154 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6155
6156 /* _Really_ make sure "radio off" bit is cleared! */
6157 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6158 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6159
6160 /* Enable shadow registers. */
6161 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6162 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6163
6164 if ((error = ops->load_firmware(sc)) != 0) {
6165 aprint_error_dev(sc->sc_dev,
6166 "could not load firmware\n");
6167 return error;
6168 }
6169 /* Wait at most one second for firmware alive notification. */
6170 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6171 aprint_error_dev(sc->sc_dev,
6172 "timeout waiting for adapter to initialize\n");
6173 return error;
6174 }
6175 /* Do post-firmware initialization. */
6176 return ops->post_alive(sc);
6177 }
6178
6179 static void
6180 iwn_hw_stop(struct iwn_softc *sc)
6181 {
6182 int chnl, qid, ntries;
6183
6184 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6185
6186 /* Disable interrupts. */
6187 IWN_WRITE(sc, IWN_INT_MASK, 0);
6188 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6189 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6190 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6191
6192 /* Make sure we no longer hold the NIC lock. */
6193 iwn_nic_unlock(sc);
6194
6195 /* Stop TX scheduler. */
6196 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6197
6198 /* Stop all DMA channels. */
6199 if (iwn_nic_lock(sc) == 0) {
6200 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6201 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6202 for (ntries = 0; ntries < 200; ntries++) {
6203 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6204 IWN_FH_TX_STATUS_IDLE(chnl))
6205 break;
6206 DELAY(10);
6207 }
6208 }
6209 iwn_nic_unlock(sc);
6210 }
6211
6212 /* Stop RX ring. */
6213 iwn_reset_rx_ring(sc, &sc->rxq);
6214
6215 /* Reset all TX rings. */
6216 for (qid = 0; qid < sc->ntxqs; qid++)
6217 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6218
6219 if (iwn_nic_lock(sc) == 0) {
6220 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6221 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6222 iwn_nic_unlock(sc);
6223 }
6224 DELAY(5);
6225 /* Power OFF adapter. */
6226 iwn_apm_stop(sc);
6227 }
6228
6229 static int
6230 iwn_init(struct ifnet *ifp)
6231 {
6232 struct iwn_softc *sc = ifp->if_softc;
6233 struct ieee80211com *ic = &sc->sc_ic;
6234 int error;
6235
6236 mutex_enter(&sc->sc_mtx);
6237 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6238 goto out;
6239 if ((error = iwn_hw_prepare(sc)) != 0) {
6240 aprint_error_dev(sc->sc_dev,
6241 "hardware not ready\n");
6242 goto fail;
6243 }
6244
6245 /* Check that the radio is not disabled by hardware switch. */
6246 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6247 aprint_error_dev(sc->sc_dev,
6248 "radio is disabled by hardware switch\n");
6249 error = EPERM; /* :-) */
6250 goto fail;
6251 }
6252
6253 /* Read firmware images from the filesystem. */
6254 if ((error = iwn_read_firmware(sc)) != 0) {
6255 aprint_error_dev(sc->sc_dev,
6256 "could not read firmware\n");
6257 goto fail;
6258 }
6259
6260 /* Initialize interrupt mask to default value. */
6261 sc->int_mask = IWN_INT_MASK_DEF;
6262 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6263
6264 /* Initialize hardware and upload firmware. */
6265 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6266 error = iwn_hw_init(sc);
6267 firmware_free(sc->fw.data, sc->fw.size);
6268 sc->fw.data = NULL;
6269 sc->fw.size = 0;
6270 if (error != 0) {
6271 aprint_error_dev(sc->sc_dev,
6272 "could not initialize hardware\n");
6273 goto fail;
6274 }
6275
6276 /* Configure adapter now that it is ready. */
6277 if ((error = iwn_config(sc)) != 0) {
6278 aprint_error_dev(sc->sc_dev,
6279 "could not configure device\n");
6280 goto fail;
6281 }
6282
6283 ifp->if_flags &= ~IFF_OACTIVE;
6284 ifp->if_flags |= IFF_RUNNING;
6285
6286 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6287 ieee80211_begin_scan(ic, 0);
6288 else
6289 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6290
6291 sc->sc_flags |= IWN_FLAG_HW_INITED;
6292 out:
6293 mutex_exit(&sc->sc_mtx);
6294 return 0;
6295
6296 fail: mutex_exit(&sc->sc_mtx);
6297 iwn_stop(ifp, 1);
6298 return error;
6299 }
6300
6301 static void
6302 iwn_stop(struct ifnet *ifp, int disable)
6303 {
6304 struct iwn_softc *sc = ifp->if_softc;
6305 struct ieee80211com *ic = &sc->sc_ic;
6306
6307 if (!disable)
6308 mutex_enter(&sc->sc_mtx);
6309 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6310 ifp->if_timer = sc->sc_tx_timer = 0;
6311 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6312
6313 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6314
6315 /* Power OFF hardware. */
6316 iwn_hw_stop(sc);
6317
6318 if (!disable)
6319 mutex_exit(&sc->sc_mtx);
6320 }
6321
6322 /*
6323 * XXX MCLGETI alternative
6324 *
6325 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6326 * as long as there are available free buffers then it uses MEXTMALLOC.,
6327 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6328 * The MCLGET4K code is used for testing an alternative mbuf cache.
6329 */
6330
6331 static struct mbuf *
6332 MCLGETIalt(struct iwn_softc *sc, int how,
6333 struct ifnet *ifp __unused, u_int size)
6334 {
6335 struct mbuf *m;
6336 #ifdef IWN_USE_RBUF
6337 struct iwn_rbuf *rbuf;
6338 #endif
6339
6340 MGETHDR(m, how, MT_DATA);
6341 if (m == NULL)
6342 return NULL;
6343
6344 #ifdef IWN_USE_RBUF
6345 if (sc->rxq.nb_free_entries > 0 &&
6346 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6347 /* Attach buffer to mbuf header. */
6348 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6349 m->m_flags |= M_EXT_RW;
6350 }
6351 else {
6352 MEXTMALLOC(m, size, how);
6353 if ((m->m_flags & M_EXT) == 0) {
6354 m_freem(m);
6355 return NULL;
6356 }
6357 }
6358
6359 #else
6360 #ifdef MCLGET4K
6361 if (size == 4096)
6362 MCLGET4K(m, how);
6363 else
6364 panic("size must be 4k");
6365 #else
6366 MEXTMALLOC(m, size, how);
6367 #endif
6368 if ((m->m_flags & M_EXT) == 0) {
6369 m_freem(m);
6370 return NULL;
6371 }
6372 #endif
6373
6374 return m;
6375 }
6376
6377 #ifdef IWN_USE_RBUF
6378 static struct iwn_rbuf *
6379 iwn_alloc_rbuf(struct iwn_softc *sc)
6380 {
6381 struct iwn_rbuf *rbuf;
6382 mutex_enter(&sc->rxq.freelist_mtx);
6383
6384 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6385 if (rbuf != NULL) {
6386 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6387 sc->rxq.nb_free_entries --;
6388 }
6389 mutex_exit(&sc->rxq.freelist_mtx);
6390 return rbuf;
6391 }
6392
6393 /*
6394 * This is called automatically by the network stack when the mbuf to which
6395 * our RX buffer is attached is freed.
6396 */
6397 static void
6398 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6399 {
6400 struct iwn_rbuf *rbuf = arg;
6401 struct iwn_softc *sc = rbuf->sc;
6402
6403 /* Put the RX buffer back in the free list. */
6404 mutex_enter(&sc->rxq.freelist_mtx);
6405 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6406 mutex_exit(&sc->rxq.freelist_mtx);
6407
6408 sc->rxq.nb_free_entries ++;
6409 if (__predict_true(m != NULL))
6410 pool_cache_put(mb_cache, m);
6411 }
6412
6413 static int
6414 iwn_alloc_rpool(struct iwn_softc *sc)
6415 {
6416 struct iwn_rx_ring *ring = &sc->rxq;
6417 struct iwn_rbuf *rbuf;
6418 int i, error;
6419
6420 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6421
6422 /* Allocate a big chunk of DMA'able memory... */
6423 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6424 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6425 if (error != 0) {
6426 aprint_error_dev(sc->sc_dev,
6427 "could not allocate RX buffers DMA memory\n");
6428 return error;
6429 }
6430 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6431 SLIST_INIT(&ring->freelist);
6432 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6433 rbuf = &ring->rbuf[i];
6434
6435 rbuf->sc = sc; /* Backpointer for callbacks. */
6436 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6437 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6438
6439 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6440 }
6441 ring->nb_free_entries = IWN_RBUF_COUNT;
6442 return 0;
6443 }
6444
6445 static void
6446 iwn_free_rpool(struct iwn_softc *sc)
6447 {
6448 iwn_dma_contig_free(&sc->rxq.buf_dma);
6449 }
6450 #endif
6451
6452 /*
6453 * XXX: Hack to set the current channel to the value advertised in beacons or
6454 * probe responses. Only used during AP detection.
6455 * XXX: Duplicated from if_iwi.c
6456 */
6457 static void
6458 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6459 struct iwn_rx_stat *stat)
6460 {
6461 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6462 struct ieee80211_frame *wh;
6463 uint8_t subtype;
6464 uint8_t *frm, *efrm;
6465
6466 wh = mtod(m, struct ieee80211_frame *);
6467
6468 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6469 return;
6470
6471 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6472
6473 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6474 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6475 return;
6476
6477 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6478 int chan = le16toh(stat->chan);
6479 if (chan < __arraycount(ic->ic_channels))
6480 ic->ic_curchan = &ic->ic_channels[chan];
6481 return;
6482 }
6483
6484 frm = (uint8_t *)(wh + 1);
6485 efrm = mtod(m, uint8_t *) + m->m_len;
6486
6487 frm += 12; /* skip tstamp, bintval and capinfo fields */
6488 while (frm < efrm) {
6489 if (*frm == IEEE80211_ELEMID_DSPARMS)
6490 #if IEEE80211_CHAN_MAX < 255
6491 if (frm[2] <= IEEE80211_CHAN_MAX)
6492 #endif
6493 ic->ic_curchan = &ic->ic_channels[frm[2]];
6494
6495 frm += frm[1] + 2;
6496 }
6497 }
6498
6499 #ifdef notyetMODULE
6500
6501 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6502
6503 #ifdef _MODULE
6504 #include "ioconf.c"
6505 #endif
6506
6507 static int
6508 if_iwn_modcmd(modcmd_t cmd, void *data)
6509 {
6510 int error = 0;
6511
6512 switch (cmd) {
6513 case MODULE_CMD_INIT:
6514 #ifdef _MODULE
6515 error = config_init_component(cfdriver_ioconf_if_iwn,
6516 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6517 #endif
6518 return error;
6519 case MODULE_CMD_FINI:
6520 #ifdef _MODULE
6521 error = config_fini_component(cfdriver_ioconf_if_iwn,
6522 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6523 #endif
6524 return error;
6525 case MODULE_CMD_AUTOUNLOAD:
6526 #ifdef _MODULE
6527 /* XXX This is not optional! */
6528 #endif
6529 return error;
6530 default:
6531 return ENOTTY;
6532 }
6533 }
6534 #endif
6535