Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.82
      1 /*	$NetBSD: if_iwn.c,v 1.82 2017/01/04 03:05:24 nonaka Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.82 2017/01/04 03:05:24 nonaka Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <machine/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 /*
    122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    123  */
    124 static const struct ieee80211_rateset iwn_rateset_11a =
    125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    126 
    127 static const struct ieee80211_rateset iwn_rateset_11b =
    128 	{ 4, { 2, 4, 11, 22 } };
    129 
    130 static const struct ieee80211_rateset iwn_rateset_11g =
    131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    132 
    133 static int	iwn_match(device_t , struct cfdata *, void *);
    134 static void	iwn_attach(device_t , device_t , void *);
    135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    137 static void	iwn_radiotap_attach(struct iwn_softc *);
    138 static int	iwn_detach(device_t , int);
    139 #if 0
    140 static void	iwn_power(int, void *);
    141 #endif
    142 static bool	iwn_resume(device_t, const pmf_qual_t *);
    143 static int	iwn_nic_lock(struct iwn_softc *);
    144 static int	iwn_eeprom_lock(struct iwn_softc *);
    145 static int	iwn_init_otprom(struct iwn_softc *);
    146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    148 		    void **, bus_size_t, bus_size_t);
    149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    150 static int	iwn_alloc_sched(struct iwn_softc *);
    151 static void	iwn_free_sched(struct iwn_softc *);
    152 static int	iwn_alloc_kw(struct iwn_softc *);
    153 static void	iwn_free_kw(struct iwn_softc *);
    154 static int	iwn_alloc_ict(struct iwn_softc *);
    155 static void	iwn_free_ict(struct iwn_softc *);
    156 static int	iwn_alloc_fwmem(struct iwn_softc *);
    157 static void	iwn_free_fwmem(struct iwn_softc *);
    158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    162 		    int);
    163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    165 static void	iwn5000_ict_reset(struct iwn_softc *);
    166 static int	iwn_read_eeprom(struct iwn_softc *);
    167 static void	iwn4965_read_eeprom(struct iwn_softc *);
    168 
    169 #ifdef IWN_DEBUG
    170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    171 #endif
    172 static void	iwn5000_read_eeprom(struct iwn_softc *);
    173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    176 static void	iwn_newassoc(struct ieee80211_node *, int);
    177 static int	iwn_media_change(struct ifnet *);
    178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    179 static void	iwn_iter_func(void *, struct ieee80211_node *);
    180 static void	iwn_calib_timeout(void *);
    181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 #ifndef IEEE80211_NO_HT
    186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 #endif
    189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    192 		    struct iwn_rx_data *);
    193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    194 		    struct iwn_rx_data *);
    195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    196 		    struct iwn_rx_data *);
    197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    198 		    uint8_t);
    199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    200 static void	iwn_notif_intr(struct iwn_softc *);
    201 static void	iwn_wakeup_intr(struct iwn_softc *);
    202 static void	iwn_fatal_intr(struct iwn_softc *);
    203 static int	iwn_intr(void *);
    204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    205 		    uint16_t);
    206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    207 		    uint16_t);
    208 #ifdef notyet
    209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    210 #endif
    211 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    212 		    struct ieee80211_node *, int);
    213 static void	iwn_start(struct ifnet *);
    214 static void	iwn_watchdog(struct ifnet *);
    215 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    216 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    217 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    218 		    int);
    219 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    220 		    int);
    221 static int	iwn_set_link_quality(struct iwn_softc *,
    222 		    struct ieee80211_node *);
    223 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    225 static int	iwn_set_critical_temp(struct iwn_softc *);
    226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    228 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    229 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    230 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    231 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    232 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    233 static int	iwn4965_get_temperature(struct iwn_softc *);
    234 static int	iwn5000_get_temperature(struct iwn_softc *);
    235 static int	iwn_init_sensitivity(struct iwn_softc *);
    236 static void	iwn_collect_noise(struct iwn_softc *,
    237 		    const struct iwn_rx_general_stats *);
    238 static int	iwn4965_init_gains(struct iwn_softc *);
    239 static int	iwn5000_init_gains(struct iwn_softc *);
    240 static int	iwn4965_set_gains(struct iwn_softc *);
    241 static int	iwn5000_set_gains(struct iwn_softc *);
    242 static void	iwn_tune_sensitivity(struct iwn_softc *,
    243 		    const struct iwn_rx_stats *);
    244 static int	iwn_send_sensitivity(struct iwn_softc *);
    245 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    246 static int	iwn5000_runtime_calib(struct iwn_softc *);
    247 
    248 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    249 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    250 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    251 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    252 
    253 static int	iwn_config(struct iwn_softc *);
    254 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    255 		    uint8_t);
    256 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    257 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    258 static int	iwn_scan(struct iwn_softc *, uint16_t);
    259 static int	iwn_auth(struct iwn_softc *);
    260 static int	iwn_run(struct iwn_softc *);
    261 #ifdef IWN_HWCRYPTO
    262 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    263 		    struct ieee80211_key *);
    264 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    265 		    struct ieee80211_key *);
    266 #endif
    267 static int	iwn_wme_update(struct ieee80211com *);
    268 #ifndef IEEE80211_NO_HT
    269 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    270 		    struct ieee80211_node *, uint8_t);
    271 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    272 		    struct ieee80211_node *, uint8_t);
    273 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    274 		    struct ieee80211_node *, uint8_t);
    275 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    276 		    struct ieee80211_node *, uint8_t);
    277 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    278 		    struct ieee80211_node *, uint8_t, uint16_t);
    279 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    280 		    uint8_t, uint16_t);
    281 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    282 		    struct ieee80211_node *, uint8_t, uint16_t);
    283 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    284 		    uint8_t, uint16_t);
    285 #endif
    286 static int	iwn5000_query_calibration(struct iwn_softc *);
    287 static int	iwn5000_send_calibration(struct iwn_softc *);
    288 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    289 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    290 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    291 static int	iwn4965_post_alive(struct iwn_softc *);
    292 static int	iwn5000_post_alive(struct iwn_softc *);
    293 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    294 		    int);
    295 static int	iwn4965_load_firmware(struct iwn_softc *);
    296 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    297 		    const uint8_t *, int);
    298 static int	iwn5000_load_firmware(struct iwn_softc *);
    299 static int	iwn_read_firmware_leg(struct iwn_softc *,
    300 		    struct iwn_fw_info *);
    301 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    302 		    struct iwn_fw_info *, uint16_t);
    303 static int	iwn_read_firmware(struct iwn_softc *);
    304 static int	iwn_clock_wait(struct iwn_softc *);
    305 static int	iwn_apm_init(struct iwn_softc *);
    306 static void	iwn_apm_stop_master(struct iwn_softc *);
    307 static void	iwn_apm_stop(struct iwn_softc *);
    308 static int	iwn4965_nic_config(struct iwn_softc *);
    309 static int	iwn5000_nic_config(struct iwn_softc *);
    310 static int	iwn_hw_prepare(struct iwn_softc *);
    311 static int	iwn_hw_init(struct iwn_softc *);
    312 static void	iwn_hw_stop(struct iwn_softc *);
    313 static int	iwn_init(struct ifnet *);
    314 static void	iwn_stop(struct ifnet *, int);
    315 
    316 /* XXX MCLGETI alternative */
    317 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    318 		    struct ifnet *, u_int);
    319 #ifdef IWN_USE_RBUF
    320 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    321 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    322 static int	iwn_alloc_rpool(struct iwn_softc *);
    323 static void	iwn_free_rpool(struct iwn_softc *);
    324 #endif
    325 
    326 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    327 		    struct iwn_rx_stat *);
    328 
    329 #ifdef IWN_DEBUG
    330 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    331 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    332 int iwn_debug = 0;
    333 #else
    334 #define DPRINTF(x)
    335 #define DPRINTFN(n, x)
    336 #endif
    337 
    338 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    339 	iwn_detach, NULL);
    340 
    341 static int
    342 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    343 {
    344 	struct pci_attach_args *pa = aux;
    345 	size_t i;
    346 
    347 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    348 		return 0;
    349 
    350 	for (i = 0; i < __arraycount(iwn_devices); i++)
    351 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    352 			return 1;
    353 
    354 	return 0;
    355 }
    356 
    357 static void
    358 iwn_attach(device_t parent __unused, device_t self, void *aux)
    359 {
    360 	struct iwn_softc *sc = device_private(self);
    361 	struct ieee80211com *ic = &sc->sc_ic;
    362 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    363 	struct pci_attach_args *pa = aux;
    364 	const char *intrstr;
    365 	pci_intr_handle_t ih;
    366 	pcireg_t memtype, reg;
    367 	int i, error;
    368 	char intrbuf[PCI_INTRSTR_LEN];
    369 
    370 	sc->sc_dev = self;
    371 	sc->sc_pct = pa->pa_pc;
    372 	sc->sc_pcitag = pa->pa_tag;
    373 	sc->sc_dmat = pa->pa_dmat;
    374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    375 
    376 	callout_init(&sc->calib_to, 0);
    377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    378 
    379 	pci_aprint_devinfo(pa, NULL);
    380 
    381 	/*
    382 	 * Get the offset of the PCI Express Capability Structure in PCI
    383 	 * Configuration Space.
    384 	 */
    385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    387 	if (error == 0) {
    388 		aprint_error_dev(self,
    389 		    "PCIe capability structure not found!\n");
    390 		return;
    391 	}
    392 
    393 	/* Clear device-specific "PCI retry timeout" register (41h). */
    394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    395 	if (reg & 0xff00)
    396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    397 
    398 	/* Enable bus-mastering and hardware bug workaround. */
    399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    401 	reg |= PCI_COMMAND_MASTER_ENABLE;
    402 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
    403 		DPRINTF(("PCIe INTx Disable set\n"));
    404 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
    405 	}
    406 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    407 
    408 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    409 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    410 	    &sc->sc_sh, NULL, &sc->sc_sz);
    411 	if (error != 0) {
    412 		aprint_error_dev(self, "can't map mem space\n");
    413 		return;
    414 	}
    415 
    416 	/* Install interrupt handler. */
    417 	if (pci_intr_map(pa, &ih) != 0) {
    418 		aprint_error_dev(self, "can't map interrupt\n");
    419 		return;
    420 	}
    421 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    422 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
    423 	if (sc->sc_ih == NULL) {
    424 		aprint_error_dev(self, "can't establish interrupt");
    425 		if (intrstr != NULL)
    426 			aprint_error(" at %s", intrstr);
    427 		aprint_error("\n");
    428 		return;
    429 	}
    430 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    431 
    432 	/* Read hardware revision and attach. */
    433 	sc->hw_type =
    434 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    435 	      >> IWN_HW_REV_TYPE_SHIFT;
    436 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    437 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    438 	else
    439 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    440 	if (error != 0) {
    441 		aprint_error_dev(self, "could not attach device\n");
    442 		return;
    443 	}
    444 
    445 	if ((error = iwn_hw_prepare(sc)) != 0) {
    446 		aprint_error_dev(self, "hardware not ready\n");
    447 		return;
    448 	}
    449 
    450 	/* Read MAC address, channels, etc from EEPROM. */
    451 	if ((error = iwn_read_eeprom(sc)) != 0) {
    452 		aprint_error_dev(self, "could not read EEPROM\n");
    453 		return;
    454 	}
    455 
    456 	/* Allocate DMA memory for firmware transfers. */
    457 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    458 		aprint_error_dev(self,
    459 		    "could not allocate memory for firmware\n");
    460 		return;
    461 	}
    462 
    463 	/* Allocate "Keep Warm" page. */
    464 	if ((error = iwn_alloc_kw(sc)) != 0) {
    465 		aprint_error_dev(self, "could not allocate keep warm page\n");
    466 		goto fail1;
    467 	}
    468 
    469 	/* Allocate ICT table for 5000 Series. */
    470 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    471 	    (error = iwn_alloc_ict(sc)) != 0) {
    472 		aprint_error_dev(self, "could not allocate ICT table\n");
    473 		goto fail2;
    474 	}
    475 
    476 	/* Allocate TX scheduler "rings". */
    477 	if ((error = iwn_alloc_sched(sc)) != 0) {
    478 		aprint_error_dev(self,
    479 		    "could not allocate TX scheduler rings\n");
    480 		goto fail3;
    481 	}
    482 
    483 #ifdef IWN_USE_RBUF
    484 	/* Allocate RX buffers. */
    485 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    486 		aprint_error_dev(self, "could not allocate RX buffers\n");
    487 		goto fail3;
    488 	}
    489 #endif
    490 
    491 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    492 	for (i = 0; i < sc->ntxqs; i++) {
    493 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    494 			aprint_error_dev(self,
    495 			    "could not allocate TX ring %d\n", i);
    496 			goto fail4;
    497 		}
    498 	}
    499 
    500 	/* Allocate RX ring. */
    501 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    502 		aprint_error_dev(self, "could not allocate RX ring\n");
    503 		goto fail4;
    504 	}
    505 
    506 	/* Clear pending interrupts. */
    507 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    508 
    509 	/* Count the number of available chains. */
    510 	sc->ntxchains =
    511 	    ((sc->txchainmask >> 2) & 1) +
    512 	    ((sc->txchainmask >> 1) & 1) +
    513 	    ((sc->txchainmask >> 0) & 1);
    514 	sc->nrxchains =
    515 	    ((sc->rxchainmask >> 2) & 1) +
    516 	    ((sc->rxchainmask >> 1) & 1) +
    517 	    ((sc->rxchainmask >> 0) & 1);
    518 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    519 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    520 	    ether_sprintf(ic->ic_myaddr));
    521 
    522 	ic->ic_ifp = ifp;
    523 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    524 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    525 	ic->ic_state = IEEE80211_S_INIT;
    526 
    527 	/* Set device capabilities. */
    528 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    529 	 * and IEEE80211_C_PMGT too. */
    530 	ic->ic_caps =
    531 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    532 	    IEEE80211_C_WPA |		/* 802.11i */
    533 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    534 	    IEEE80211_C_TXPMGT |	/* tx power management */
    535 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    536 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    537 	    IEEE80211_C_WME;		/* 802.11e */
    538 
    539 #ifndef IEEE80211_NO_HT
    540 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    541 		/* Set HT capabilities. */
    542 		ic->ic_htcaps =
    543 #if IWN_RBUF_SIZE == 8192
    544 		    IEEE80211_HTCAP_AMSDU7935 |
    545 #endif
    546 		    IEEE80211_HTCAP_CBW20_40 |
    547 		    IEEE80211_HTCAP_SGI20 |
    548 		    IEEE80211_HTCAP_SGI40;
    549 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    550 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    551 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    552 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    553 		else
    554 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    555 	}
    556 #endif	/* !IEEE80211_NO_HT */
    557 
    558 	/* Set supported legacy rates. */
    559 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    560 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    561 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    562 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    563 	}
    564 #ifndef IEEE80211_NO_HT
    565 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    566 		/* Set supported HT rates. */
    567 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    568 		if (sc->nrxchains > 1)
    569 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    570 		if (sc->nrxchains > 2)
    571 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    572 	}
    573 #endif
    574 
    575 	/* IBSS channel undefined for now. */
    576 	ic->ic_ibss_chan = &ic->ic_channels[0];
    577 
    578 	ifp->if_softc = sc;
    579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    580 	ifp->if_init = iwn_init;
    581 	ifp->if_ioctl = iwn_ioctl;
    582 	ifp->if_start = iwn_start;
    583 	ifp->if_stop = iwn_stop;
    584 	ifp->if_watchdog = iwn_watchdog;
    585 	IFQ_SET_READY(&ifp->if_snd);
    586 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    587 
    588 	if_attach(ifp);
    589 	if_deferred_start_init(ifp, NULL);
    590 	ieee80211_ifattach(ic);
    591 	ic->ic_node_alloc = iwn_node_alloc;
    592 	ic->ic_newassoc = iwn_newassoc;
    593 #ifdef IWN_HWCRYPTO
    594 	ic->ic_crypto.cs_key_set = iwn_set_key;
    595 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    596 #endif
    597 	ic->ic_wme.wme_update = iwn_wme_update;
    598 #ifndef IEEE80211_NO_HT
    599 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    600 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    601 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    602 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    603 #endif
    604 
    605 	/* Override 802.11 state transition machine. */
    606 	sc->sc_newstate = ic->ic_newstate;
    607 	ic->ic_newstate = iwn_newstate;
    608 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    609 
    610 	sc->amrr.amrr_min_success_threshold =  1;
    611 	sc->amrr.amrr_max_success_threshold = 15;
    612 
    613 	iwn_radiotap_attach(sc);
    614 
    615 	/*
    616 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    617 	 * callout_init and callout_setfunc, above.
    618 	*/
    619 
    620 	if (pmf_device_register(self, NULL, iwn_resume))
    621 		pmf_class_network_register(self, ifp);
    622 	else
    623 		aprint_error_dev(self, "couldn't establish power handler\n");
    624 
    625 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    626 	ieee80211_announce(ic);
    627 
    628 	return;
    629 
    630 	/* Free allocated memory if something failed during attachment. */
    631 fail4:	while (--i >= 0)
    632 		iwn_free_tx_ring(sc, &sc->txq[i]);
    633 #ifdef IWN_USE_RBUF
    634 	iwn_free_rpool(sc);
    635 #endif
    636 	iwn_free_sched(sc);
    637 fail3:	if (sc->ict != NULL)
    638 		iwn_free_ict(sc);
    639 fail2:	iwn_free_kw(sc);
    640 fail1:	iwn_free_fwmem(sc);
    641 }
    642 
    643 int
    644 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    645 {
    646 	struct iwn_ops *ops = &sc->ops;
    647 
    648 	ops->load_firmware = iwn4965_load_firmware;
    649 	ops->read_eeprom = iwn4965_read_eeprom;
    650 	ops->post_alive = iwn4965_post_alive;
    651 	ops->nic_config = iwn4965_nic_config;
    652 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    653 	ops->update_sched = iwn4965_update_sched;
    654 	ops->get_temperature = iwn4965_get_temperature;
    655 	ops->get_rssi = iwn4965_get_rssi;
    656 	ops->set_txpower = iwn4965_set_txpower;
    657 	ops->init_gains = iwn4965_init_gains;
    658 	ops->set_gains = iwn4965_set_gains;
    659 	ops->add_node = iwn4965_add_node;
    660 	ops->tx_done = iwn4965_tx_done;
    661 #ifndef IEEE80211_NO_HT
    662 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    663 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    664 #endif
    665 	sc->ntxqs = IWN4965_NTXQUEUES;
    666 	sc->ndmachnls = IWN4965_NDMACHNLS;
    667 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    668 	sc->rxonsz = IWN4965_RXONSZ;
    669 	sc->schedsz = IWN4965_SCHEDSZ;
    670 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    671 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    672 	sc->fwsz = IWN4965_FWSZ;
    673 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    674 	sc->limits = &iwn4965_sensitivity_limits;
    675 	sc->fwname = "iwlwifi-4965-2.ucode";
    676 	/* Override chains masks, ROM is known to be broken. */
    677 	sc->txchainmask = IWN_ANT_AB;
    678 	sc->rxchainmask = IWN_ANT_ABC;
    679 
    680 	return 0;
    681 }
    682 
    683 int
    684 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    685 {
    686 	struct iwn_ops *ops = &sc->ops;
    687 
    688 	ops->load_firmware = iwn5000_load_firmware;
    689 	ops->read_eeprom = iwn5000_read_eeprom;
    690 	ops->post_alive = iwn5000_post_alive;
    691 	ops->nic_config = iwn5000_nic_config;
    692 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    693 	ops->update_sched = iwn5000_update_sched;
    694 	ops->get_temperature = iwn5000_get_temperature;
    695 	ops->get_rssi = iwn5000_get_rssi;
    696 	ops->set_txpower = iwn5000_set_txpower;
    697 	ops->init_gains = iwn5000_init_gains;
    698 	ops->set_gains = iwn5000_set_gains;
    699 	ops->add_node = iwn5000_add_node;
    700 	ops->tx_done = iwn5000_tx_done;
    701 #ifndef IEEE80211_NO_HT
    702 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    703 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    704 #endif
    705 	sc->ntxqs = IWN5000_NTXQUEUES;
    706 	sc->ndmachnls = IWN5000_NDMACHNLS;
    707 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    708 	sc->rxonsz = IWN5000_RXONSZ;
    709 	sc->schedsz = IWN5000_SCHEDSZ;
    710 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    711 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    712 	sc->fwsz = IWN5000_FWSZ;
    713 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    714 
    715 	switch (sc->hw_type) {
    716 	case IWN_HW_REV_TYPE_5100:
    717 		sc->limits = &iwn5000_sensitivity_limits;
    718 		sc->fwname = "iwlwifi-5000-2.ucode";
    719 		/* Override chains masks, ROM is known to be broken. */
    720 		sc->txchainmask = IWN_ANT_B;
    721 		sc->rxchainmask = IWN_ANT_AB;
    722 		break;
    723 	case IWN_HW_REV_TYPE_5150:
    724 		sc->limits = &iwn5150_sensitivity_limits;
    725 		sc->fwname = "iwlwifi-5150-2.ucode";
    726 		break;
    727 	case IWN_HW_REV_TYPE_5300:
    728 	case IWN_HW_REV_TYPE_5350:
    729 		sc->limits = &iwn5000_sensitivity_limits;
    730 		sc->fwname = "iwlwifi-5000-2.ucode";
    731 		break;
    732 	case IWN_HW_REV_TYPE_1000:
    733 		sc->limits = &iwn1000_sensitivity_limits;
    734 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    735 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    736 			sc->fwname = "iwlwifi-100-5.ucode";
    737 		else
    738 			sc->fwname = "iwlwifi-1000-3.ucode";
    739 		break;
    740 	case IWN_HW_REV_TYPE_6000:
    741 		sc->limits = &iwn6000_sensitivity_limits;
    742 		sc->fwname = "iwlwifi-6000-4.ucode";
    743 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    744 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    745 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    746 			/* Override chains masks, ROM is known to be broken. */
    747 			sc->txchainmask = IWN_ANT_BC;
    748 			sc->rxchainmask = IWN_ANT_BC;
    749 		}
    750 		break;
    751 	case IWN_HW_REV_TYPE_6050:
    752 		sc->limits = &iwn6000_sensitivity_limits;
    753 		sc->fwname = "iwlwifi-6050-5.ucode";
    754 		break;
    755 	case IWN_HW_REV_TYPE_6005:
    756 		sc->limits = &iwn6000_sensitivity_limits;
    757 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    758 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    759 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    760 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    761 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    762 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    763 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    764 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    765 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    766 		}
    767 		else
    768 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    769 		break;
    770 	case IWN_HW_REV_TYPE_2030:
    771 		sc->limits = &iwn2000_sensitivity_limits;
    772 		sc->fwname = "iwlwifi-2030-6.ucode";
    773 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    774 		break;
    775 	case IWN_HW_REV_TYPE_2000:
    776 		sc->limits = &iwn2000_sensitivity_limits;
    777 		sc->fwname = "iwlwifi-2000-6.ucode";
    778 		break;
    779 	case IWN_HW_REV_TYPE_135:
    780 		sc->limits = &iwn2000_sensitivity_limits;
    781 		sc->fwname = "iwlwifi-135-6.ucode";
    782 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    783 		break;
    784 	case IWN_HW_REV_TYPE_105:
    785 		sc->limits = &iwn2000_sensitivity_limits;
    786 		sc->fwname = "iwlwifi-105-6.ucode";
    787 		break;
    788 	default:
    789 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    790 		return ENOTSUP;
    791 	}
    792 	return 0;
    793 }
    794 
    795 /*
    796  * Attach the interface to 802.11 radiotap.
    797  */
    798 static void
    799 iwn_radiotap_attach(struct iwn_softc *sc)
    800 {
    801 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    802 
    803 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    804 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    805 	    &sc->sc_drvbpf);
    806 
    807 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    808 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    809 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    810 
    811 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    812 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    813 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    814 }
    815 
    816 static int
    817 iwn_detach(device_t self, int flags __unused)
    818 {
    819 	struct iwn_softc *sc = device_private(self);
    820 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    821 	int qid;
    822 
    823 	callout_stop(&sc->calib_to);
    824 
    825 	/* Uninstall interrupt handler. */
    826 	if (sc->sc_ih != NULL)
    827 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    828 
    829 	/* Free DMA resources. */
    830 	iwn_free_rx_ring(sc, &sc->rxq);
    831 	for (qid = 0; qid < sc->ntxqs; qid++)
    832 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    833 #ifdef IWN_USE_RBUF
    834 	iwn_free_rpool(sc);
    835 #endif
    836 	iwn_free_sched(sc);
    837 	iwn_free_kw(sc);
    838 	if (sc->ict != NULL)
    839 		iwn_free_ict(sc);
    840 	iwn_free_fwmem(sc);
    841 
    842 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    843 
    844 	ieee80211_ifdetach(&sc->sc_ic);
    845 	if_detach(ifp);
    846 
    847 	return 0;
    848 }
    849 
    850 #if 0
    851 /*
    852  * XXX Investigate if clearing the PCI retry timeout could eliminate
    853  * the repeated scan calls.  Also the calls to if_init and if_start
    854  * are similar to the effect of adding the call to ifioctl_common .
    855  */
    856 static void
    857 iwn_power(int why, void *arg)
    858 {
    859 	struct iwn_softc *sc = arg;
    860 	struct ifnet *ifp;
    861 	pcireg_t reg;
    862 	int s;
    863 
    864 	if (why != PWR_RESUME)
    865 		return;
    866 
    867 	/* Clear device-specific "PCI retry timeout" register (41h). */
    868 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    869 	if (reg & 0xff00)
    870 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    871 
    872 	s = splnet();
    873 	ifp = &sc->sc_ic.ic_if;
    874 	if (ifp->if_flags & IFF_UP) {
    875 		ifp->if_init(ifp);
    876 		if (ifp->if_flags & IFF_RUNNING)
    877 			ifp->if_start(ifp);
    878 	}
    879 	splx(s);
    880 }
    881 #endif
    882 
    883 static bool
    884 iwn_resume(device_t dv, const pmf_qual_t *qual)
    885 {
    886 	return true;
    887 }
    888 
    889 static int
    890 iwn_nic_lock(struct iwn_softc *sc)
    891 {
    892 	int ntries;
    893 
    894 	/* Request exclusive access to NIC. */
    895 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    896 
    897 	/* Spin until we actually get the lock. */
    898 	for (ntries = 0; ntries < 1000; ntries++) {
    899 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    900 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    901 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    902 			return 0;
    903 		DELAY(10);
    904 	}
    905 	return ETIMEDOUT;
    906 }
    907 
    908 static __inline void
    909 iwn_nic_unlock(struct iwn_softc *sc)
    910 {
    911 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    912 }
    913 
    914 static __inline uint32_t
    915 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    916 {
    917 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    918 	IWN_BARRIER_READ_WRITE(sc);
    919 	return IWN_READ(sc, IWN_PRPH_RDATA);
    920 }
    921 
    922 static __inline void
    923 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    924 {
    925 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    926 	IWN_BARRIER_WRITE(sc);
    927 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    928 }
    929 
    930 static __inline void
    931 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    932 {
    933 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    934 }
    935 
    936 static __inline void
    937 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    938 {
    939 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    940 }
    941 
    942 static __inline void
    943 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    944     const uint32_t *data, int count)
    945 {
    946 	for (; count > 0; count--, data++, addr += 4)
    947 		iwn_prph_write(sc, addr, *data);
    948 }
    949 
    950 static __inline uint32_t
    951 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    952 {
    953 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    954 	IWN_BARRIER_READ_WRITE(sc);
    955 	return IWN_READ(sc, IWN_MEM_RDATA);
    956 }
    957 
    958 static __inline void
    959 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    960 {
    961 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    962 	IWN_BARRIER_WRITE(sc);
    963 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    964 }
    965 
    966 #ifndef IEEE80211_NO_HT
    967 static __inline void
    968 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    969 {
    970 	uint32_t tmp;
    971 
    972 	tmp = iwn_mem_read(sc, addr & ~3);
    973 	if (addr & 3)
    974 		tmp = (tmp & 0x0000ffff) | data << 16;
    975 	else
    976 		tmp = (tmp & 0xffff0000) | data;
    977 	iwn_mem_write(sc, addr & ~3, tmp);
    978 }
    979 #endif
    980 
    981 static __inline void
    982 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
    983     int count)
    984 {
    985 	for (; count > 0; count--, addr += 4)
    986 		*data++ = iwn_mem_read(sc, addr);
    987 }
    988 
    989 static __inline void
    990 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
    991     int count)
    992 {
    993 	for (; count > 0; count--, addr += 4)
    994 		iwn_mem_write(sc, addr, val);
    995 }
    996 
    997 static int
    998 iwn_eeprom_lock(struct iwn_softc *sc)
    999 {
   1000 	int i, ntries;
   1001 
   1002 	for (i = 0; i < 100; i++) {
   1003 		/* Request exclusive access to EEPROM. */
   1004 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1005 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1006 
   1007 		/* Spin until we actually get the lock. */
   1008 		for (ntries = 0; ntries < 100; ntries++) {
   1009 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1010 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1011 				return 0;
   1012 			DELAY(10);
   1013 		}
   1014 	}
   1015 	return ETIMEDOUT;
   1016 }
   1017 
   1018 static __inline void
   1019 iwn_eeprom_unlock(struct iwn_softc *sc)
   1020 {
   1021 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1022 }
   1023 
   1024 /*
   1025  * Initialize access by host to One Time Programmable ROM.
   1026  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1027  */
   1028 static int
   1029 iwn_init_otprom(struct iwn_softc *sc)
   1030 {
   1031 	uint16_t prev = 0, base, next;
   1032 	int count, error;
   1033 
   1034 	/* Wait for clock stabilization before accessing prph. */
   1035 	if ((error = iwn_clock_wait(sc)) != 0)
   1036 		return error;
   1037 
   1038 	if ((error = iwn_nic_lock(sc)) != 0)
   1039 		return error;
   1040 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1041 	DELAY(5);
   1042 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1043 	iwn_nic_unlock(sc);
   1044 
   1045 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1046 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1047 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1048 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1049 	}
   1050 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1051 	/* Clear ECC status. */
   1052 	IWN_SETBITS(sc, IWN_OTP_GP,
   1053 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1054 
   1055 	/*
   1056 	 * Find the block before last block (contains the EEPROM image)
   1057 	 * for HW without OTP shadow RAM.
   1058 	 */
   1059 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1060 		/* Switch to absolute addressing mode. */
   1061 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1062 		base = 0;
   1063 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1064 			error = iwn_read_prom_data(sc, base, &next, 2);
   1065 			if (error != 0)
   1066 				return error;
   1067 			if (next == 0)	/* End of linked-list. */
   1068 				break;
   1069 			prev = base;
   1070 			base = le16toh(next);
   1071 		}
   1072 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1073 			return EIO;
   1074 		/* Skip "next" word. */
   1075 		sc->prom_base = prev + 1;
   1076 	}
   1077 	return 0;
   1078 }
   1079 
   1080 static int
   1081 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1082 {
   1083 	uint8_t *out = data;
   1084 	uint32_t val, tmp;
   1085 	int ntries;
   1086 
   1087 	addr += sc->prom_base;
   1088 	for (; count > 0; count -= 2, addr++) {
   1089 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1090 		for (ntries = 0; ntries < 10; ntries++) {
   1091 			val = IWN_READ(sc, IWN_EEPROM);
   1092 			if (val & IWN_EEPROM_READ_VALID)
   1093 				break;
   1094 			DELAY(5);
   1095 		}
   1096 		if (ntries == 10) {
   1097 			aprint_error_dev(sc->sc_dev,
   1098 			    "timeout reading ROM at 0x%x\n", addr);
   1099 			return ETIMEDOUT;
   1100 		}
   1101 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1102 			/* OTPROM, check for ECC errors. */
   1103 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1104 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1105 				aprint_error_dev(sc->sc_dev,
   1106 				    "OTPROM ECC error at 0x%x\n", addr);
   1107 				return EIO;
   1108 			}
   1109 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1110 				/* Correctable ECC error, clear bit. */
   1111 				IWN_SETBITS(sc, IWN_OTP_GP,
   1112 				    IWN_OTP_GP_ECC_CORR_STTS);
   1113 			}
   1114 		}
   1115 		*out++ = val >> 16;
   1116 		if (count > 1)
   1117 			*out++ = val >> 24;
   1118 	}
   1119 	return 0;
   1120 }
   1121 
   1122 static int
   1123 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1124     bus_size_t size, bus_size_t alignment)
   1125 {
   1126 	int nsegs, error;
   1127 
   1128 	dma->tag = tag;
   1129 	dma->size = size;
   1130 
   1131 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1132 	    &dma->map);
   1133 	if (error != 0)
   1134 		goto fail;
   1135 
   1136 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1137 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1138 	if (error != 0)
   1139 		goto fail;
   1140 
   1141 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1142 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1143 	if (error != 0)
   1144 		goto fail;
   1145 
   1146 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1147 	    BUS_DMA_NOWAIT);
   1148 	if (error != 0)
   1149 		goto fail;
   1150 
   1151 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1152 	memset(dma->vaddr, 0, size);
   1153 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1154 
   1155 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1156 	if (kvap != NULL)
   1157 		*kvap = dma->vaddr;
   1158 
   1159 	return 0;
   1160 
   1161 fail:	iwn_dma_contig_free(dma);
   1162 	return error;
   1163 }
   1164 
   1165 static void
   1166 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1167 {
   1168 	if (dma->map != NULL) {
   1169 		if (dma->vaddr != NULL) {
   1170 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1171 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1172 			bus_dmamap_unload(dma->tag, dma->map);
   1173 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1174 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1175 			dma->vaddr = NULL;
   1176 		}
   1177 		bus_dmamap_destroy(dma->tag, dma->map);
   1178 		dma->map = NULL;
   1179 	}
   1180 }
   1181 
   1182 static int
   1183 iwn_alloc_sched(struct iwn_softc *sc)
   1184 {
   1185 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1186 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1187 	    (void **)&sc->sched, sc->schedsz, 1024);
   1188 }
   1189 
   1190 static void
   1191 iwn_free_sched(struct iwn_softc *sc)
   1192 {
   1193 	iwn_dma_contig_free(&sc->sched_dma);
   1194 }
   1195 
   1196 static int
   1197 iwn_alloc_kw(struct iwn_softc *sc)
   1198 {
   1199 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1200 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1201 	    4096);
   1202 }
   1203 
   1204 static void
   1205 iwn_free_kw(struct iwn_softc *sc)
   1206 {
   1207 	iwn_dma_contig_free(&sc->kw_dma);
   1208 }
   1209 
   1210 static int
   1211 iwn_alloc_ict(struct iwn_softc *sc)
   1212 {
   1213 	/* ICT table must be aligned on a 4KB boundary. */
   1214 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1215 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1216 }
   1217 
   1218 static void
   1219 iwn_free_ict(struct iwn_softc *sc)
   1220 {
   1221 	iwn_dma_contig_free(&sc->ict_dma);
   1222 }
   1223 
   1224 static int
   1225 iwn_alloc_fwmem(struct iwn_softc *sc)
   1226 {
   1227 	/* Must be aligned on a 16-byte boundary. */
   1228 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1229 	    sc->fwsz, 16);
   1230 }
   1231 
   1232 static void
   1233 iwn_free_fwmem(struct iwn_softc *sc)
   1234 {
   1235 	iwn_dma_contig_free(&sc->fw_dma);
   1236 }
   1237 
   1238 static int
   1239 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1240 {
   1241 	bus_size_t size;
   1242 	int i, error;
   1243 
   1244 	ring->cur = 0;
   1245 
   1246 	/* Allocate RX descriptors (256-byte aligned). */
   1247 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1248 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1249 	    (void **)&ring->desc, size, 256);
   1250 	if (error != 0) {
   1251 		aprint_error_dev(sc->sc_dev,
   1252 		    "could not allocate RX ring DMA memory\n");
   1253 		goto fail;
   1254 	}
   1255 
   1256 	/* Allocate RX status area (16-byte aligned). */
   1257 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1258 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1259 	if (error != 0) {
   1260 		aprint_error_dev(sc->sc_dev,
   1261 		    "could not allocate RX status DMA memory\n");
   1262 		goto fail;
   1263 	}
   1264 
   1265 	/*
   1266 	 * Allocate and map RX buffers.
   1267 	 */
   1268 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1269 		struct iwn_rx_data *data = &ring->data[i];
   1270 
   1271 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1272 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1273 		    &data->map);
   1274 		if (error != 0) {
   1275 			aprint_error_dev(sc->sc_dev,
   1276 			    "could not create RX buf DMA map\n");
   1277 			goto fail;
   1278 		}
   1279 
   1280 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1281 		if (data->m == NULL) {
   1282 			aprint_error_dev(sc->sc_dev,
   1283 			    "could not allocate RX mbuf\n");
   1284 			error = ENOBUFS;
   1285 			goto fail;
   1286 		}
   1287 
   1288 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1289 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1290 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1291 		if (error != 0) {
   1292 			aprint_error_dev(sc->sc_dev,
   1293 			    "can't not map mbuf (error %d)\n", error);
   1294 			goto fail;
   1295 		}
   1296 
   1297 		/* Set physical address of RX buffer (256-byte aligned). */
   1298 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1299 	}
   1300 
   1301 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1302 	    BUS_DMASYNC_PREWRITE);
   1303 
   1304 	return 0;
   1305 
   1306 fail:	iwn_free_rx_ring(sc, ring);
   1307 	return error;
   1308 }
   1309 
   1310 static void
   1311 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1312 {
   1313 	int ntries;
   1314 
   1315 	if (iwn_nic_lock(sc) == 0) {
   1316 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1317 		for (ntries = 0; ntries < 1000; ntries++) {
   1318 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1319 			    IWN_FH_RX_STATUS_IDLE)
   1320 				break;
   1321 			DELAY(10);
   1322 		}
   1323 		iwn_nic_unlock(sc);
   1324 	}
   1325 	ring->cur = 0;
   1326 	sc->last_rx_valid = 0;
   1327 }
   1328 
   1329 static void
   1330 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1331 {
   1332 	int i;
   1333 
   1334 	iwn_dma_contig_free(&ring->desc_dma);
   1335 	iwn_dma_contig_free(&ring->stat_dma);
   1336 
   1337 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1338 		struct iwn_rx_data *data = &ring->data[i];
   1339 
   1340 		if (data->m != NULL) {
   1341 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1342 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1343 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1344 			m_freem(data->m);
   1345 		}
   1346 		if (data->map != NULL)
   1347 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1348 	}
   1349 }
   1350 
   1351 static int
   1352 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1353 {
   1354 	bus_addr_t paddr;
   1355 	bus_size_t size;
   1356 	int i, error;
   1357 
   1358 	ring->qid = qid;
   1359 	ring->queued = 0;
   1360 	ring->cur = 0;
   1361 
   1362 	/* Allocate TX descriptors (256-byte aligned). */
   1363 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1364 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1365 	    (void **)&ring->desc, size, 256);
   1366 	if (error != 0) {
   1367 		aprint_error_dev(sc->sc_dev,
   1368 		    "could not allocate TX ring DMA memory\n");
   1369 		goto fail;
   1370 	}
   1371 	/*
   1372 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1373 	 * to allocate commands space for other rings.
   1374 	 * XXX Do we really need to allocate descriptors for other rings?
   1375 	 */
   1376 	if (qid > 4)
   1377 		return 0;
   1378 
   1379 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1380 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1381 	    (void **)&ring->cmd, size, 4);
   1382 	if (error != 0) {
   1383 		aprint_error_dev(sc->sc_dev,
   1384 		    "could not allocate TX cmd DMA memory\n");
   1385 		goto fail;
   1386 	}
   1387 
   1388 	paddr = ring->cmd_dma.paddr;
   1389 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1390 		struct iwn_tx_data *data = &ring->data[i];
   1391 
   1392 		data->cmd_paddr = paddr;
   1393 		data->scratch_paddr = paddr + 12;
   1394 		paddr += sizeof (struct iwn_tx_cmd);
   1395 
   1396 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1397 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1398 		    &data->map);
   1399 		if (error != 0) {
   1400 			aprint_error_dev(sc->sc_dev,
   1401 			    "could not create TX buf DMA map\n");
   1402 			goto fail;
   1403 		}
   1404 	}
   1405 	return 0;
   1406 
   1407 fail:	iwn_free_tx_ring(sc, ring);
   1408 	return error;
   1409 }
   1410 
   1411 static void
   1412 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1413 {
   1414 	int i;
   1415 
   1416 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1417 		struct iwn_tx_data *data = &ring->data[i];
   1418 
   1419 		if (data->m != NULL) {
   1420 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1421 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1422 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1423 			m_freem(data->m);
   1424 			data->m = NULL;
   1425 		}
   1426 	}
   1427 	/* Clear TX descriptors. */
   1428 	memset(ring->desc, 0, ring->desc_dma.size);
   1429 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1430 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1431 	sc->qfullmsk &= ~(1 << ring->qid);
   1432 	ring->queued = 0;
   1433 	ring->cur = 0;
   1434 }
   1435 
   1436 static void
   1437 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1438 {
   1439 	int i;
   1440 
   1441 	iwn_dma_contig_free(&ring->desc_dma);
   1442 	iwn_dma_contig_free(&ring->cmd_dma);
   1443 
   1444 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1445 		struct iwn_tx_data *data = &ring->data[i];
   1446 
   1447 		if (data->m != NULL) {
   1448 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1449 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1450 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1451 			m_freem(data->m);
   1452 		}
   1453 		if (data->map != NULL)
   1454 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1455 	}
   1456 }
   1457 
   1458 static void
   1459 iwn5000_ict_reset(struct iwn_softc *sc)
   1460 {
   1461 	/* Disable interrupts. */
   1462 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1463 
   1464 	/* Reset ICT table. */
   1465 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1466 	sc->ict_cur = 0;
   1467 
   1468 	/* Set physical address of ICT table (4KB aligned). */
   1469 	DPRINTF(("enabling ICT\n"));
   1470 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1471 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1472 
   1473 	/* Enable periodic RX interrupt. */
   1474 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1475 	/* Switch to ICT interrupt mode in driver. */
   1476 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1477 
   1478 	/* Re-enable interrupts. */
   1479 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1480 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1481 }
   1482 
   1483 static int
   1484 iwn_read_eeprom(struct iwn_softc *sc)
   1485 {
   1486 	struct iwn_ops *ops = &sc->ops;
   1487 	struct ieee80211com *ic = &sc->sc_ic;
   1488 	uint16_t val;
   1489 	int error;
   1490 
   1491 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1492 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1493 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1494 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1495 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1496 	    "OTPROM" : "EEPROM"));
   1497 
   1498 	/* Adapter has to be powered on for EEPROM access to work. */
   1499 	if ((error = iwn_apm_init(sc)) != 0) {
   1500 		aprint_error_dev(sc->sc_dev,
   1501 		    "could not power ON adapter\n");
   1502 		return error;
   1503 	}
   1504 
   1505 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1506 		aprint_error_dev(sc->sc_dev,
   1507 		    "bad ROM signature\n");
   1508 		return EIO;
   1509 	}
   1510 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1511 		aprint_error_dev(sc->sc_dev,
   1512 		    "could not lock ROM (error=%d)\n", error);
   1513 		return error;
   1514 	}
   1515 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1516 		if ((error = iwn_init_otprom(sc)) != 0) {
   1517 			aprint_error_dev(sc->sc_dev,
   1518 			    "could not initialize OTPROM\n");
   1519 			return error;
   1520 		}
   1521 	}
   1522 
   1523 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1524 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1525 	/* Check if HT support is bonded out. */
   1526 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1527 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1528 
   1529 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1530 	sc->rfcfg = le16toh(val);
   1531 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1532 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1533 	if (sc->txchainmask == 0)
   1534 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1535 	if (sc->rxchainmask == 0)
   1536 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1537 
   1538 	/* Read MAC address. */
   1539 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1540 
   1541 	/* Read adapter-specific information from EEPROM. */
   1542 	ops->read_eeprom(sc);
   1543 
   1544 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1545 
   1546 	iwn_eeprom_unlock(sc);
   1547 	return 0;
   1548 }
   1549 
   1550 static void
   1551 iwn4965_read_eeprom(struct iwn_softc *sc)
   1552 {
   1553 	uint32_t addr;
   1554 	uint16_t val;
   1555 	int i;
   1556 
   1557 	/* Read regulatory domain (4 ASCII characters). */
   1558 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1559 
   1560 	/* Read the list of authorized channels (20MHz ones only). */
   1561 	for (i = 0; i < 5; i++) {
   1562 		addr = iwn4965_regulatory_bands[i];
   1563 		iwn_read_eeprom_channels(sc, i, addr);
   1564 	}
   1565 
   1566 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1567 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1568 	sc->maxpwr2GHz = val & 0xff;
   1569 	sc->maxpwr5GHz = val >> 8;
   1570 	/* Check that EEPROM values are within valid range. */
   1571 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1572 		sc->maxpwr5GHz = 38;
   1573 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1574 		sc->maxpwr2GHz = 38;
   1575 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1576 
   1577 	/* Read samples for each TX power group. */
   1578 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1579 	    sizeof sc->bands);
   1580 
   1581 	/* Read voltage at which samples were taken. */
   1582 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1583 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1584 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1585 
   1586 #ifdef IWN_DEBUG
   1587 	/* Print samples. */
   1588 	if (iwn_debug > 0) {
   1589 		for (i = 0; i < IWN_NBANDS; i++)
   1590 			iwn4965_print_power_group(sc, i);
   1591 	}
   1592 #endif
   1593 }
   1594 
   1595 #ifdef IWN_DEBUG
   1596 static void
   1597 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1598 {
   1599 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1600 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1601 	int j, c;
   1602 
   1603 	aprint_normal("===band %d===\n", i);
   1604 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1605 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1606 	for (c = 0; c < 2; c++) {
   1607 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1608 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1609 			    "power=%d pa_det=%d\n", c, j,
   1610 			    chans[0].samples[c][j].temp,
   1611 			    chans[0].samples[c][j].gain,
   1612 			    chans[0].samples[c][j].power,
   1613 			    chans[0].samples[c][j].pa_det);
   1614 		}
   1615 	}
   1616 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1617 	for (c = 0; c < 2; c++) {
   1618 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1619 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1620 			    "power=%d pa_det=%d\n", c, j,
   1621 			    chans[1].samples[c][j].temp,
   1622 			    chans[1].samples[c][j].gain,
   1623 			    chans[1].samples[c][j].power,
   1624 			    chans[1].samples[c][j].pa_det);
   1625 		}
   1626 	}
   1627 }
   1628 #endif
   1629 
   1630 static void
   1631 iwn5000_read_eeprom(struct iwn_softc *sc)
   1632 {
   1633 	struct iwn5000_eeprom_calib_hdr hdr;
   1634 	int32_t volt;
   1635 	uint32_t base, addr;
   1636 	uint16_t val;
   1637 	int i;
   1638 
   1639 	/* Read regulatory domain (4 ASCII characters). */
   1640 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1641 	base = le16toh(val);
   1642 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1643 	    sc->eeprom_domain, 4);
   1644 
   1645 	/* Read the list of authorized channels (20MHz ones only). */
   1646 	for (i = 0; i < 5; i++) {
   1647 		addr = base + iwn5000_regulatory_bands[i];
   1648 		iwn_read_eeprom_channels(sc, i, addr);
   1649 	}
   1650 
   1651 	/* Read enhanced TX power information for 6000 Series. */
   1652 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1653 		iwn_read_eeprom_enhinfo(sc);
   1654 
   1655 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1656 	base = le16toh(val);
   1657 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1658 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1659 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1660 	sc->calib_ver = hdr.version;
   1661 
   1662 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1663 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1664 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1665 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1666 		sc->eeprom_voltage = le16toh(hdr.volt);
   1667 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1668 		sc->eeprom_temp = le16toh(val);
   1669 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1670 		sc->eeprom_rawtemp = le16toh(val);
   1671 	}
   1672 
   1673 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1674 		/* Compute temperature offset. */
   1675 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1676 		sc->eeprom_temp = le16toh(val);
   1677 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1678 		volt = le16toh(val);
   1679 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1680 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1681 		    sc->eeprom_temp, volt, sc->temp_off));
   1682 	} else {
   1683 		/* Read crystal calibration. */
   1684 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1685 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1686 		DPRINTF(("crystal calibration 0x%08x\n",
   1687 		    le32toh(sc->eeprom_crystal)));
   1688 	}
   1689 }
   1690 
   1691 static void
   1692 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1693 {
   1694 	struct ieee80211com *ic = &sc->sc_ic;
   1695 	const struct iwn_chan_band *band = &iwn_bands[n];
   1696 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1697 	uint8_t chan;
   1698 	int i;
   1699 
   1700 	iwn_read_prom_data(sc, addr, channels,
   1701 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1702 
   1703 	for (i = 0; i < band->nchan; i++) {
   1704 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1705 			continue;
   1706 
   1707 		chan = band->chan[i];
   1708 
   1709 		if (n == 0) {	/* 2GHz band */
   1710 			ic->ic_channels[chan].ic_freq =
   1711 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1712 			ic->ic_channels[chan].ic_flags =
   1713 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1714 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1715 
   1716 		} else {	/* 5GHz band */
   1717 			/*
   1718 			 * Some adapters support channels 7, 8, 11 and 12
   1719 			 * both in the 2GHz and 4.9GHz bands.
   1720 			 * Because of limitations in our net80211 layer,
   1721 			 * we don't support them in the 4.9GHz band.
   1722 			 */
   1723 			if (chan <= 14)
   1724 				continue;
   1725 
   1726 			ic->ic_channels[chan].ic_freq =
   1727 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1728 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1729 			/* We have at least one valid 5GHz channel. */
   1730 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1731 		}
   1732 
   1733 		/* Is active scan allowed on this channel? */
   1734 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1735 			ic->ic_channels[chan].ic_flags |=
   1736 			    IEEE80211_CHAN_PASSIVE;
   1737 		}
   1738 
   1739 		/* Save maximum allowed TX power for this channel. */
   1740 		sc->maxpwr[chan] = channels[i].maxpwr;
   1741 
   1742 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1743 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1744 	}
   1745 }
   1746 
   1747 static void
   1748 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1749 {
   1750 	struct iwn_eeprom_enhinfo enhinfo[35];
   1751 	uint16_t val, base;
   1752 	int8_t maxpwr;
   1753 	int i;
   1754 
   1755 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1756 	base = le16toh(val);
   1757 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1758 	    enhinfo, sizeof enhinfo);
   1759 
   1760 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1761 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1762 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1763 			continue;	/* Skip invalid entries. */
   1764 
   1765 		maxpwr = 0;
   1766 		if (sc->txchainmask & IWN_ANT_A)
   1767 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1768 		if (sc->txchainmask & IWN_ANT_B)
   1769 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1770 		if (sc->txchainmask & IWN_ANT_C)
   1771 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1772 		if (sc->ntxchains == 2)
   1773 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1774 		else if (sc->ntxchains == 3)
   1775 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1776 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1777 
   1778 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1779 		sc->enh_maxpwr[i] = maxpwr;
   1780 	}
   1781 }
   1782 
   1783 static struct ieee80211_node *
   1784 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1785 {
   1786 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1787 }
   1788 
   1789 static void
   1790 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1791 {
   1792 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1793 	struct iwn_node *wn = (void *)ni;
   1794 	uint8_t rate;
   1795 	int ridx, i;
   1796 
   1797 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1798 	/* Start at lowest available bit-rate, AMRR will raise. */
   1799 	ni->ni_txrate = 0;
   1800 
   1801 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1802 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1803 		/* Map 802.11 rate to HW rate index. */
   1804 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1805 			if (iwn_rates[ridx].rate == rate)
   1806 				break;
   1807 		wn->ridx[i] = ridx;
   1808 	}
   1809 }
   1810 
   1811 static int
   1812 iwn_media_change(struct ifnet *ifp)
   1813 {
   1814 	struct iwn_softc *sc = ifp->if_softc;
   1815 	struct ieee80211com *ic = &sc->sc_ic;
   1816 	uint8_t rate, ridx;
   1817 	int error;
   1818 
   1819 	error = ieee80211_media_change(ifp);
   1820 	if (error != ENETRESET)
   1821 		return error;
   1822 
   1823 	if (ic->ic_fixed_rate != -1) {
   1824 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1825 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1826 		/* Map 802.11 rate to HW rate index. */
   1827 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1828 			if (iwn_rates[ridx].rate == rate)
   1829 				break;
   1830 		sc->fixed_ridx = ridx;
   1831 	}
   1832 
   1833 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1834 	    (IFF_UP | IFF_RUNNING)) {
   1835 		iwn_stop(ifp, 0);
   1836 		error = iwn_init(ifp);
   1837 	}
   1838 	return error;
   1839 }
   1840 
   1841 static int
   1842 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1843 {
   1844 	struct ifnet *ifp = ic->ic_ifp;
   1845 	struct iwn_softc *sc = ifp->if_softc;
   1846 	int error;
   1847 
   1848 	callout_stop(&sc->calib_to);
   1849 
   1850 	switch (nstate) {
   1851 	case IEEE80211_S_SCAN:
   1852 		/* XXX Do not abort a running scan. */
   1853 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1854 			if (ic->ic_state != nstate)
   1855 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1856 				    "while scanning(%d) ignored\n", nstate,
   1857 				    ic->ic_state);
   1858 			break;
   1859 		}
   1860 
   1861 		/* XXX Not sure if call and flags are needed. */
   1862 		ieee80211_node_table_reset(&ic->ic_scan);
   1863 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1864 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1865 
   1866 		/* Make the link LED blink while we're scanning. */
   1867 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1868 
   1869 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1870 			aprint_error_dev(sc->sc_dev,
   1871 			    "could not initiate scan\n");
   1872 			return error;
   1873 		}
   1874 		ic->ic_state = nstate;
   1875 		return 0;
   1876 
   1877 	case IEEE80211_S_ASSOC:
   1878 		if (ic->ic_state != IEEE80211_S_RUN)
   1879 			break;
   1880 		/* FALLTHROUGH */
   1881 	case IEEE80211_S_AUTH:
   1882 		/* Reset state to handle reassociations correctly. */
   1883 		sc->rxon.associd = 0;
   1884 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1885 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1886 
   1887 		if ((error = iwn_auth(sc)) != 0) {
   1888 			aprint_error_dev(sc->sc_dev,
   1889 			    "could not move to auth state\n");
   1890 			return error;
   1891 		}
   1892 		break;
   1893 
   1894 	case IEEE80211_S_RUN:
   1895 		if ((error = iwn_run(sc)) != 0) {
   1896 			aprint_error_dev(sc->sc_dev,
   1897 			    "could not move to run state\n");
   1898 			return error;
   1899 		}
   1900 		break;
   1901 
   1902 	case IEEE80211_S_INIT:
   1903 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1904 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1905 		break;
   1906 	}
   1907 
   1908 	return sc->sc_newstate(ic, nstate, arg);
   1909 }
   1910 
   1911 static void
   1912 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1913 {
   1914 	struct iwn_softc *sc = arg;
   1915 	struct iwn_node *wn = (struct iwn_node *)ni;
   1916 
   1917 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1918 }
   1919 
   1920 static void
   1921 iwn_calib_timeout(void *arg)
   1922 {
   1923 	struct iwn_softc *sc = arg;
   1924 	struct ieee80211com *ic = &sc->sc_ic;
   1925 	int s;
   1926 
   1927 	s = splnet();
   1928 	if (ic->ic_fixed_rate == -1) {
   1929 		if (ic->ic_opmode == IEEE80211_M_STA)
   1930 			iwn_iter_func(sc, ic->ic_bss);
   1931 		else
   1932 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1933 	}
   1934 	/* Force automatic TX power calibration every 60 secs. */
   1935 	if (++sc->calib_cnt >= 120) {
   1936 		uint32_t flags = 0;
   1937 
   1938 		DPRINTF(("sending request for statistics\n"));
   1939 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1940 		    sizeof flags, 1);
   1941 		sc->calib_cnt = 0;
   1942 	}
   1943 	splx(s);
   1944 
   1945 	/* Automatic rate control triggered every 500ms. */
   1946 	callout_schedule(&sc->calib_to, hz/2);
   1947 }
   1948 
   1949 /*
   1950  * Process an RX_PHY firmware notification.  This is usually immediately
   1951  * followed by an MPDU_RX_DONE notification.
   1952  */
   1953 static void
   1954 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1955     struct iwn_rx_data *data)
   1956 {
   1957 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1958 
   1959 	DPRINTFN(2, ("received PHY stats\n"));
   1960 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1961 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1962 
   1963 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1964 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1965 	sc->last_rx_valid = 1;
   1966 }
   1967 
   1968 /*
   1969  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   1970  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   1971  */
   1972 static void
   1973 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1974     struct iwn_rx_data *data)
   1975 {
   1976 	struct iwn_ops *ops = &sc->ops;
   1977 	struct ieee80211com *ic = &sc->sc_ic;
   1978 	struct ifnet *ifp = ic->ic_ifp;
   1979 	struct iwn_rx_ring *ring = &sc->rxq;
   1980 	struct ieee80211_frame *wh;
   1981 	struct ieee80211_node *ni;
   1982 	struct mbuf *m, *m1;
   1983 	struct iwn_rx_stat *stat;
   1984 	char	*head;
   1985 	uint32_t flags;
   1986 	int error, len, rssi;
   1987 
   1988 	if (desc->type == IWN_MPDU_RX_DONE) {
   1989 		/* Check for prior RX_PHY notification. */
   1990 		if (!sc->last_rx_valid) {
   1991 			DPRINTF(("missing RX_PHY\n"));
   1992 			return;
   1993 		}
   1994 		sc->last_rx_valid = 0;
   1995 		stat = &sc->last_rx_stat;
   1996 	} else
   1997 		stat = (struct iwn_rx_stat *)(desc + 1);
   1998 
   1999 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2000 	    BUS_DMASYNC_POSTREAD);
   2001 
   2002 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2003 		aprint_error_dev(sc->sc_dev,
   2004 		    "invalid RX statistic header\n");
   2005 		return;
   2006 	}
   2007 	if (desc->type == IWN_MPDU_RX_DONE) {
   2008 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2009 		head = (char *)(mpdu + 1);
   2010 		len = le16toh(mpdu->len);
   2011 	} else {
   2012 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2013 		len = le16toh(stat->len);
   2014 	}
   2015 
   2016 	flags = le32toh(*(uint32_t *)(head + len));
   2017 
   2018 	/* Discard frames with a bad FCS early. */
   2019 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2020 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2021 		ifp->if_ierrors++;
   2022 		return;
   2023 	}
   2024 	/* Discard frames that are too short. */
   2025 	if (len < sizeof (*wh)) {
   2026 		DPRINTF(("frame too short: %d\n", len));
   2027 		ic->ic_stats.is_rx_tooshort++;
   2028 		ifp->if_ierrors++;
   2029 		return;
   2030 	}
   2031 
   2032 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2033 	if (m1 == NULL) {
   2034 		ic->ic_stats.is_rx_nobuf++;
   2035 		ifp->if_ierrors++;
   2036 		return;
   2037 	}
   2038 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2039 
   2040 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2041 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2042 	if (error != 0) {
   2043 		m_freem(m1);
   2044 
   2045 		/* Try to reload the old mbuf. */
   2046 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2047 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2048 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2049 		if (error != 0) {
   2050 			panic("%s: could not load old RX mbuf",
   2051 			    device_xname(sc->sc_dev));
   2052 		}
   2053 		/* Physical address may have changed. */
   2054 		ring->desc[ring->cur] =
   2055 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2056 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2057 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2058 		    BUS_DMASYNC_PREWRITE);
   2059 		ifp->if_ierrors++;
   2060 		return;
   2061 	}
   2062 
   2063 	m = data->m;
   2064 	data->m = m1;
   2065 	/* Update RX descriptor. */
   2066 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2067 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2068 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2069 	    BUS_DMASYNC_PREWRITE);
   2070 
   2071 	/* Finalize mbuf. */
   2072 	m_set_rcvif(m, ifp);
   2073 	m->m_data = head;
   2074 	m->m_pkthdr.len = m->m_len = len;
   2075 
   2076 	/* Grab a reference to the source node. */
   2077 	wh = mtod(m, struct ieee80211_frame *);
   2078 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2079 
   2080 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2081 	/* NetBSD does decryption in ieee80211_input. */
   2082 
   2083 	rssi = ops->get_rssi(stat);
   2084 
   2085 	/* XXX Added for NetBSD: scans never stop without it */
   2086 	if (ic->ic_state == IEEE80211_S_SCAN)
   2087 		iwn_fix_channel(ic, m, stat);
   2088 
   2089 	if (sc->sc_drvbpf != NULL) {
   2090 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2091 
   2092 		tap->wr_flags = 0;
   2093 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2094 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2095 		tap->wr_chan_freq =
   2096 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2097 		tap->wr_chan_flags =
   2098 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2099 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2100 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2101 		tap->wr_tsft = stat->tstamp;
   2102 		switch (stat->rate) {
   2103 		/* CCK rates. */
   2104 		case  10: tap->wr_rate =   2; break;
   2105 		case  20: tap->wr_rate =   4; break;
   2106 		case  55: tap->wr_rate =  11; break;
   2107 		case 110: tap->wr_rate =  22; break;
   2108 		/* OFDM rates. */
   2109 		case 0xd: tap->wr_rate =  12; break;
   2110 		case 0xf: tap->wr_rate =  18; break;
   2111 		case 0x5: tap->wr_rate =  24; break;
   2112 		case 0x7: tap->wr_rate =  36; break;
   2113 		case 0x9: tap->wr_rate =  48; break;
   2114 		case 0xb: tap->wr_rate =  72; break;
   2115 		case 0x1: tap->wr_rate =  96; break;
   2116 		case 0x3: tap->wr_rate = 108; break;
   2117 		/* Unknown rate: should not happen. */
   2118 		default:  tap->wr_rate =   0;
   2119 		}
   2120 
   2121 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2122 	}
   2123 
   2124 	/* Send the frame to the 802.11 layer. */
   2125 	ieee80211_input(ic, m, ni, rssi, 0);
   2126 
   2127 	/* Node is no longer needed. */
   2128 	ieee80211_free_node(ni);
   2129 }
   2130 
   2131 #ifndef IEEE80211_NO_HT
   2132 /* Process an incoming Compressed BlockAck. */
   2133 static void
   2134 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2135     struct iwn_rx_data *data)
   2136 {
   2137 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2138 	struct iwn_tx_ring *txq;
   2139 
   2140 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2141 	    BUS_DMASYNC_POSTREAD);
   2142 
   2143 	txq = &sc->txq[le16toh(ba->qid)];
   2144 	/* XXX TBD */
   2145 }
   2146 #endif
   2147 
   2148 /*
   2149  * Process a CALIBRATION_RESULT notification sent by the initialization
   2150  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2151  */
   2152 static void
   2153 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2154     struct iwn_rx_data *data)
   2155 {
   2156 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2157 	int len, idx = -1;
   2158 
   2159 	/* Runtime firmware should not send such a notification. */
   2160 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2161 		return;
   2162 
   2163 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2164 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2165 	    BUS_DMASYNC_POSTREAD);
   2166 
   2167 	switch (calib->code) {
   2168 	case IWN5000_PHY_CALIB_DC:
   2169 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2170 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2171 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2172 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2173 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2174 			idx = 0;
   2175 		break;
   2176 	case IWN5000_PHY_CALIB_LO:
   2177 		idx = 1;
   2178 		break;
   2179 	case IWN5000_PHY_CALIB_TX_IQ:
   2180 		idx = 2;
   2181 		break;
   2182 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2183 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2184 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2185 			idx = 3;
   2186 		break;
   2187 	case IWN5000_PHY_CALIB_BASE_BAND:
   2188 		idx = 4;
   2189 		break;
   2190 	}
   2191 	if (idx == -1)	/* Ignore other results. */
   2192 		return;
   2193 
   2194 	/* Save calibration result. */
   2195 	if (sc->calibcmd[idx].buf != NULL)
   2196 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2197 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2198 	if (sc->calibcmd[idx].buf == NULL) {
   2199 		DPRINTF(("not enough memory for calibration result %d\n",
   2200 		    calib->code));
   2201 		return;
   2202 	}
   2203 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2204 	    calib->code, len));
   2205 	sc->calibcmd[idx].len = len;
   2206 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2207 }
   2208 
   2209 /*
   2210  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2211  * The latter is sent by the firmware after each received beacon.
   2212  */
   2213 static void
   2214 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2215     struct iwn_rx_data *data)
   2216 {
   2217 	struct iwn_ops *ops = &sc->ops;
   2218 	struct ieee80211com *ic = &sc->sc_ic;
   2219 	struct iwn_calib_state *calib = &sc->calib;
   2220 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2221 	int temp;
   2222 
   2223 	/* Ignore statistics received during a scan. */
   2224 	if (ic->ic_state != IEEE80211_S_RUN)
   2225 		return;
   2226 
   2227 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2228 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2229 
   2230 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2231 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2232 
   2233 	/* Test if temperature has changed. */
   2234 	if (stats->general.temp != sc->rawtemp) {
   2235 		/* Convert "raw" temperature to degC. */
   2236 		sc->rawtemp = stats->general.temp;
   2237 		temp = ops->get_temperature(sc);
   2238 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2239 
   2240 		/* Update TX power if need be (4965AGN only). */
   2241 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2242 			iwn4965_power_calibration(sc, temp);
   2243 	}
   2244 
   2245 	if (desc->type != IWN_BEACON_STATISTICS)
   2246 		return;	/* Reply to a statistics request. */
   2247 
   2248 	sc->noise = iwn_get_noise(&stats->rx.general);
   2249 
   2250 	/* Test that RSSI and noise are present in stats report. */
   2251 	if (le32toh(stats->rx.general.flags) != 1) {
   2252 		DPRINTF(("received statistics without RSSI\n"));
   2253 		return;
   2254 	}
   2255 
   2256 	/*
   2257 	 * XXX Differential gain calibration makes the 6005 firmware
   2258 	 * crap out, so skip it for now.  This effectively disables
   2259 	 * sensitivity tuning as well.
   2260 	 */
   2261 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2262 		return;
   2263 
   2264 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2265 		iwn_collect_noise(sc, &stats->rx.general);
   2266 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2267 		iwn_tune_sensitivity(sc, &stats->rx);
   2268 }
   2269 
   2270 /*
   2271  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2272  * and 5000 adapters have different incompatible TX status formats.
   2273  */
   2274 static void
   2275 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2276     struct iwn_rx_data *data)
   2277 {
   2278 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2279 
   2280 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2281 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2282 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2283 }
   2284 
   2285 static void
   2286 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2287     struct iwn_rx_data *data)
   2288 {
   2289 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2290 
   2291 #ifdef notyet
   2292 	/* Reset TX scheduler slot. */
   2293 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2294 #endif
   2295 
   2296 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2297 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2298 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2299 }
   2300 
   2301 /*
   2302  * Adapter-independent backend for TX_DONE firmware notifications.
   2303  */
   2304 static void
   2305 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2306     uint8_t status)
   2307 {
   2308 	struct ieee80211com *ic = &sc->sc_ic;
   2309 	struct ifnet *ifp = ic->ic_ifp;
   2310 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2311 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2312 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2313 
   2314 	/* Update rate control statistics. */
   2315 	wn->amn.amn_txcnt++;
   2316 	if (ackfailcnt > 0)
   2317 		wn->amn.amn_retrycnt++;
   2318 
   2319 	if (status != 1 && status != 2)
   2320 		ifp->if_oerrors++;
   2321 	else
   2322 		ifp->if_opackets++;
   2323 
   2324 	/* Unmap and free mbuf. */
   2325 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2326 	    BUS_DMASYNC_POSTWRITE);
   2327 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2328 	m_freem(data->m);
   2329 	data->m = NULL;
   2330 	ieee80211_free_node(data->ni);
   2331 	data->ni = NULL;
   2332 
   2333 	sc->sc_tx_timer = 0;
   2334 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2335 		sc->qfullmsk &= ~(1 << ring->qid);
   2336 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2337 			ifp->if_flags &= ~IFF_OACTIVE;
   2338 			if_schedule_deferred_start(ifp);
   2339 		}
   2340 	}
   2341 }
   2342 
   2343 /*
   2344  * Process a "command done" firmware notification.  This is where we wakeup
   2345  * processes waiting for a synchronous command completion.
   2346  */
   2347 static void
   2348 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2349 {
   2350 	struct iwn_tx_ring *ring = &sc->txq[4];
   2351 	struct iwn_tx_data *data;
   2352 
   2353 	if ((desc->qid & 0xf) != 4)
   2354 		return;	/* Not a command ack. */
   2355 
   2356 	data = &ring->data[desc->idx];
   2357 
   2358 	/* If the command was mapped in an mbuf, free it. */
   2359 	if (data->m != NULL) {
   2360 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2361 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2362 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2363 		m_freem(data->m);
   2364 		data->m = NULL;
   2365 	}
   2366 	wakeup(&ring->desc[desc->idx]);
   2367 }
   2368 
   2369 /*
   2370  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2371  */
   2372 static void
   2373 iwn_notif_intr(struct iwn_softc *sc)
   2374 {
   2375 	struct iwn_ops *ops = &sc->ops;
   2376 	struct ieee80211com *ic = &sc->sc_ic;
   2377 	struct ifnet *ifp = ic->ic_ifp;
   2378 	uint16_t hw;
   2379 
   2380 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2381 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2382 
   2383 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2384 	while (sc->rxq.cur != hw) {
   2385 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2386 		struct iwn_rx_desc *desc;
   2387 
   2388 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2389 		    BUS_DMASYNC_POSTREAD);
   2390 		desc = mtod(data->m, struct iwn_rx_desc *);
   2391 
   2392 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2393 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2394 
   2395 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2396 			iwn_cmd_done(sc, desc);
   2397 
   2398 		switch (desc->type) {
   2399 		case IWN_RX_PHY:
   2400 			iwn_rx_phy(sc, desc, data);
   2401 			break;
   2402 
   2403 		case IWN_RX_DONE:		/* 4965AGN only. */
   2404 		case IWN_MPDU_RX_DONE:
   2405 			/* An 802.11 frame has been received. */
   2406 			iwn_rx_done(sc, desc, data);
   2407 			break;
   2408 #ifndef IEEE80211_NO_HT
   2409 		case IWN_RX_COMPRESSED_BA:
   2410 			/* A Compressed BlockAck has been received. */
   2411 			iwn_rx_compressed_ba(sc, desc, data);
   2412 			break;
   2413 #endif
   2414 		case IWN_TX_DONE:
   2415 			/* An 802.11 frame has been transmitted. */
   2416 			ops->tx_done(sc, desc, data);
   2417 			break;
   2418 
   2419 		case IWN_RX_STATISTICS:
   2420 		case IWN_BEACON_STATISTICS:
   2421 			iwn_rx_statistics(sc, desc, data);
   2422 			break;
   2423 
   2424 		case IWN_BEACON_MISSED:
   2425 		{
   2426 			struct iwn_beacon_missed *miss =
   2427 			    (struct iwn_beacon_missed *)(desc + 1);
   2428 
   2429 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2430 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2431 			/*
   2432 			 * If more than 5 consecutive beacons are missed,
   2433 			 * reinitialize the sensitivity state machine.
   2434 			 */
   2435 			DPRINTF(("beacons missed %d/%d\n",
   2436 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2437 			if (ic->ic_state == IEEE80211_S_RUN &&
   2438 			    le32toh(miss->consecutive) > 5)
   2439 				(void)iwn_init_sensitivity(sc);
   2440 			break;
   2441 		}
   2442 		case IWN_UC_READY:
   2443 		{
   2444 			struct iwn_ucode_info *uc =
   2445 			    (struct iwn_ucode_info *)(desc + 1);
   2446 
   2447 			/* The microcontroller is ready. */
   2448 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2449 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2450 			DPRINTF(("microcode alive notification version=%d.%d "
   2451 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2452 			    uc->subtype, le32toh(uc->valid)));
   2453 
   2454 			if (le32toh(uc->valid) != 1) {
   2455 				aprint_error_dev(sc->sc_dev,
   2456 				    "microcontroller initialization "
   2457 				    "failed\n");
   2458 				break;
   2459 			}
   2460 			if (uc->subtype == IWN_UCODE_INIT) {
   2461 				/* Save microcontroller report. */
   2462 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2463 			}
   2464 			/* Save the address of the error log in SRAM. */
   2465 			sc->errptr = le32toh(uc->errptr);
   2466 			break;
   2467 		}
   2468 		case IWN_STATE_CHANGED:
   2469 		{
   2470 			uint32_t *status = (uint32_t *)(desc + 1);
   2471 
   2472 			/* Enabled/disabled notification. */
   2473 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2474 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2475 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2476 
   2477 			if (le32toh(*status) & 1) {
   2478 				/* The radio button has to be pushed. */
   2479 				aprint_error_dev(sc->sc_dev,
   2480 				    "Radio transmitter is off\n");
   2481 				/* Turn the interface down. */
   2482 				ifp->if_flags &= ~IFF_UP;
   2483 				iwn_stop(ifp, 1);
   2484 				return;	/* No further processing. */
   2485 			}
   2486 			break;
   2487 		}
   2488 		case IWN_START_SCAN:
   2489 		{
   2490 			struct iwn_start_scan *scan =
   2491 			    (struct iwn_start_scan *)(desc + 1);
   2492 
   2493 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2494 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2495 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2496 			    scan->chan, le32toh(scan->status)));
   2497 
   2498 			/* Fix current channel. */
   2499 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2500 			break;
   2501 		}
   2502 		case IWN_STOP_SCAN:
   2503 		{
   2504 			struct iwn_stop_scan *scan =
   2505 			    (struct iwn_stop_scan *)(desc + 1);
   2506 
   2507 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2508 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2509 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2510 			    scan->nchan, scan->status, scan->chan));
   2511 
   2512 			if (scan->status == 1 && scan->chan <= 14 &&
   2513 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2514 				/*
   2515 				 * We just finished scanning 2GHz channels,
   2516 				 * start scanning 5GHz ones.
   2517 				 */
   2518 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2519 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2520 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2521 					break;
   2522 			}
   2523 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2524 			ieee80211_end_scan(ic);
   2525 			break;
   2526 		}
   2527 		case IWN5000_CALIBRATION_RESULT:
   2528 			iwn5000_rx_calib_results(sc, desc, data);
   2529 			break;
   2530 
   2531 		case IWN5000_CALIBRATION_DONE:
   2532 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2533 			wakeup(sc);
   2534 			break;
   2535 		}
   2536 
   2537 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2538 	}
   2539 
   2540 	/* Tell the firmware what we have processed. */
   2541 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2542 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2543 }
   2544 
   2545 /*
   2546  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2547  * from power-down sleep mode.
   2548  */
   2549 static void
   2550 iwn_wakeup_intr(struct iwn_softc *sc)
   2551 {
   2552 	int qid;
   2553 
   2554 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2555 
   2556 	/* Wakeup RX and TX rings. */
   2557 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2558 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2559 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2560 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2561 	}
   2562 }
   2563 
   2564 /*
   2565  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2566  * we can't debug the firmware because it is neither open source nor free, it
   2567  * can help us to identify certain classes of problems.
   2568  */
   2569 static void
   2570 iwn_fatal_intr(struct iwn_softc *sc)
   2571 {
   2572 	struct iwn_fw_dump dump;
   2573 	int i;
   2574 
   2575 	/* Force a complete recalibration on next init. */
   2576 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2577 
   2578 	/* Check that the error log address is valid. */
   2579 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2580 	    sc->errptr + sizeof (dump) >
   2581 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2582 		aprint_error_dev(sc->sc_dev,
   2583 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2584 		return;
   2585 	}
   2586 	if (iwn_nic_lock(sc) != 0) {
   2587 		aprint_error_dev(sc->sc_dev,
   2588 		    "could not read firmware error log\n");
   2589 		return;
   2590 	}
   2591 	/* Read firmware error log from SRAM. */
   2592 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2593 	    sizeof (dump) / sizeof (uint32_t));
   2594 	iwn_nic_unlock(sc);
   2595 
   2596 	if (dump.valid == 0) {
   2597 		aprint_error_dev(sc->sc_dev,
   2598 		    "firmware error log is empty\n");
   2599 		return;
   2600 	}
   2601 	aprint_error("firmware error log:\n");
   2602 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2603 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2604 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2605 	    dump.id);
   2606 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2607 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2608 	aprint_error("  error data      = 0x%08X%08X\n",
   2609 	    dump.error_data[0], dump.error_data[1]);
   2610 	aprint_error("  branch link     = 0x%08X%08X\n",
   2611 	    dump.branch_link[0], dump.branch_link[1]);
   2612 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2613 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2614 	aprint_error("  time            = %u\n", dump.time[0]);
   2615 
   2616 	/* Dump driver status (TX and RX rings) while we're here. */
   2617 	aprint_error("driver status:\n");
   2618 	for (i = 0; i < sc->ntxqs; i++) {
   2619 		struct iwn_tx_ring *ring = &sc->txq[i];
   2620 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2621 		    i, ring->qid, ring->cur, ring->queued);
   2622 	}
   2623 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2624 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2625 }
   2626 
   2627 static int
   2628 iwn_intr(void *arg)
   2629 {
   2630 	struct iwn_softc *sc = arg;
   2631 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2632 	uint32_t r1, r2, tmp;
   2633 
   2634 	/* Disable interrupts. */
   2635 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2636 
   2637 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2638 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2639 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2640 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2641 		tmp = 0;
   2642 		while (sc->ict[sc->ict_cur] != 0) {
   2643 			tmp |= sc->ict[sc->ict_cur];
   2644 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2645 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2646 		}
   2647 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2648 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2649 		tmp = le32toh(tmp);
   2650 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2651 			tmp = 0;
   2652 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2653 			tmp |= 0x8000;
   2654 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2655 		r2 = 0;	/* Unused. */
   2656 	} else {
   2657 		r1 = IWN_READ(sc, IWN_INT);
   2658 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2659 			return 0;	/* Hardware gone! */
   2660 		r2 = IWN_READ(sc, IWN_FH_INT);
   2661 	}
   2662 	if (r1 == 0 && r2 == 0) {
   2663 		if (ifp->if_flags & IFF_UP)
   2664 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2665 		return 0;	/* Interrupt not for us. */
   2666 	}
   2667 
   2668 	/* Acknowledge interrupts. */
   2669 	IWN_WRITE(sc, IWN_INT, r1);
   2670 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2671 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2672 
   2673 	if (r1 & IWN_INT_RF_TOGGLED) {
   2674 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2675 		aprint_error_dev(sc->sc_dev,
   2676 		    "RF switch: radio %s\n",
   2677 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2678 	}
   2679 	if (r1 & IWN_INT_CT_REACHED) {
   2680 		aprint_error_dev(sc->sc_dev,
   2681 		    "critical temperature reached!\n");
   2682 	}
   2683 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2684 		aprint_error_dev(sc->sc_dev,
   2685 		    "fatal firmware error\n");
   2686 		/* Dump firmware error log and stop. */
   2687 		iwn_fatal_intr(sc);
   2688 		ifp->if_flags &= ~IFF_UP;
   2689 		iwn_stop(ifp, 1);
   2690 		return 1;
   2691 	}
   2692 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2693 	    (r2 & IWN_FH_INT_RX)) {
   2694 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2695 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2696 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2697 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2698 			    IWN_INT_PERIODIC_DIS);
   2699 			iwn_notif_intr(sc);
   2700 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2701 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2702 				    IWN_INT_PERIODIC_ENA);
   2703 			}
   2704 		} else
   2705 			iwn_notif_intr(sc);
   2706 	}
   2707 
   2708 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2709 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2710 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2711 		wakeup(sc);	/* FH DMA transfer completed. */
   2712 	}
   2713 
   2714 	if (r1 & IWN_INT_ALIVE)
   2715 		wakeup(sc);	/* Firmware is alive. */
   2716 
   2717 	if (r1 & IWN_INT_WAKEUP)
   2718 		iwn_wakeup_intr(sc);
   2719 
   2720 	/* Re-enable interrupts. */
   2721 	if (ifp->if_flags & IFF_UP)
   2722 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2723 
   2724 	return 1;
   2725 }
   2726 
   2727 /*
   2728  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2729  * 5000 adapters use a slightly different format).
   2730  */
   2731 static void
   2732 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2733     uint16_t len)
   2734 {
   2735 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2736 
   2737 	*w = htole16(len + 8);
   2738 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2739 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2740 	    sizeof (uint16_t),
   2741 	    BUS_DMASYNC_PREWRITE);
   2742 	if (idx < IWN_SCHED_WINSZ) {
   2743 		*(w + IWN_TX_RING_COUNT) = *w;
   2744 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2745 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2746 		    (char *)(void *)sc->sched_dma.vaddr,
   2747 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2748 	}
   2749 }
   2750 
   2751 static void
   2752 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2753     uint16_t len)
   2754 {
   2755 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2756 
   2757 	*w = htole16(id << 12 | (len + 8));
   2758 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2759 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2760 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2761 	if (idx < IWN_SCHED_WINSZ) {
   2762 		*(w + IWN_TX_RING_COUNT) = *w;
   2763 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2764 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2765 		    (char *)(void *)sc->sched_dma.vaddr,
   2766 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2767 	}
   2768 }
   2769 
   2770 #ifdef notyet
   2771 static void
   2772 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2773 {
   2774 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2775 
   2776 	*w = (*w & htole16(0xf000)) | htole16(1);
   2777 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2778 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2779 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2780 	if (idx < IWN_SCHED_WINSZ) {
   2781 		*(w + IWN_TX_RING_COUNT) = *w;
   2782 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2783 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2784 		    (char *)(void *)sc->sched_dma.vaddr,
   2785 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2786 	}
   2787 }
   2788 #endif
   2789 
   2790 static int
   2791 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2792 {
   2793 	struct ieee80211com *ic = &sc->sc_ic;
   2794 	struct iwn_node *wn = (void *)ni;
   2795 	struct iwn_tx_ring *ring;
   2796 	struct iwn_tx_desc *desc;
   2797 	struct iwn_tx_data *data;
   2798 	struct iwn_tx_cmd *cmd;
   2799 	struct iwn_cmd_data *tx;
   2800 	const struct iwn_rate *rinfo;
   2801 	struct ieee80211_frame *wh;
   2802 	struct ieee80211_key *k = NULL;
   2803 	struct mbuf *m1;
   2804 	uint32_t flags;
   2805 	u_int hdrlen;
   2806 	bus_dma_segment_t *seg;
   2807 	uint8_t tid, ridx, txant, type;
   2808 	int i, totlen, error, pad;
   2809 
   2810 	const struct chanAccParams *cap;
   2811 	int noack;
   2812 	int hdrlen2;
   2813 
   2814 	wh = mtod(m, struct ieee80211_frame *);
   2815 	hdrlen = ieee80211_anyhdrsize(wh);
   2816 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2817 
   2818 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2819 	    sizeof (struct ieee80211_qosframe) :
   2820 	    sizeof (struct ieee80211_frame);
   2821 
   2822 	if (hdrlen != hdrlen2)
   2823 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2824 		hdrlen, hdrlen2);
   2825 
   2826 	/* XXX OpenBSD sets a different tid when using QOS */
   2827 	tid = 0;
   2828 	if (ieee80211_has_qos(wh)) {
   2829 		cap = &ic->ic_wme.wme_chanParams;
   2830 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2831 	}
   2832 	else
   2833 		noack = 0;
   2834 
   2835 	ring = &sc->txq[ac];
   2836 	desc = &ring->desc[ring->cur];
   2837 	data = &ring->data[ring->cur];
   2838 
   2839 	/* Choose a TX rate index. */
   2840 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2841 	    type != IEEE80211_FC0_TYPE_DATA) {
   2842 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2843 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2844 	} else if (ic->ic_fixed_rate != -1) {
   2845 		ridx = sc->fixed_ridx;
   2846 	} else
   2847 		ridx = wn->ridx[ni->ni_txrate];
   2848 	rinfo = &iwn_rates[ridx];
   2849 
   2850 	/* Encrypt the frame if need be. */
   2851 	/*
   2852 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2853 	 * in order to match old code and other drivers. Tests with
   2854 	 * tcpdump indicates that the order is irrelevant, however,
   2855 	 * as bpf produces unencrypted data for both ordering choices.
   2856 	 */
   2857 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2858 		k = ieee80211_crypto_encap(ic, ni, m);
   2859 		if (k == NULL) {
   2860 			m_freem(m);
   2861 			return ENOBUFS;
   2862 		}
   2863 		/* Packet header may have moved, reset our local pointer. */
   2864 		wh = mtod(m, struct ieee80211_frame *);
   2865 	}
   2866 	totlen = m->m_pkthdr.len;
   2867 
   2868 	if (sc->sc_drvbpf != NULL) {
   2869 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2870 
   2871 		tap->wt_flags = 0;
   2872 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2873 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2874 		tap->wt_rate = rinfo->rate;
   2875 		tap->wt_hwqueue = ac;
   2876 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2877 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2878 
   2879 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2880 	}
   2881 
   2882 	/* Prepare TX firmware command. */
   2883 	cmd = &ring->cmd[ring->cur];
   2884 	cmd->code = IWN_CMD_TX_DATA;
   2885 	cmd->flags = 0;
   2886 	cmd->qid = ring->qid;
   2887 	cmd->idx = ring->cur;
   2888 
   2889 	tx = (struct iwn_cmd_data *)cmd->data;
   2890 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2891 	tx->scratch = 0;	/* clear "scratch" area */
   2892 
   2893 	flags = 0;
   2894 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2895 		/* Unicast frame, check if an ACK is expected. */
   2896 		if (!noack)
   2897 			flags |= IWN_TX_NEED_ACK;
   2898 	}
   2899 
   2900 #ifdef notyet
   2901 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2902 	if ((wh->i_fc[0] &
   2903 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2904 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2905 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2906 #endif
   2907 
   2908 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2909 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2910 
   2911 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2912 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2913 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2914 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2915 			flags |= IWN_TX_NEED_RTS;
   2916 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2917 		    ridx >= IWN_RIDX_OFDM6) {
   2918 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2919 				flags |= IWN_TX_NEED_CTS;
   2920 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2921 				flags |= IWN_TX_NEED_RTS;
   2922 		}
   2923 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2924 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2925 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2926 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2927 				flags |= IWN_TX_NEED_PROTECTION;
   2928 			} else
   2929 				flags |= IWN_TX_FULL_TXOP;
   2930 		}
   2931 	}
   2932 
   2933 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2934 	    type != IEEE80211_FC0_TYPE_DATA)
   2935 		tx->id = sc->broadcast_id;
   2936 	else
   2937 		tx->id = wn->id;
   2938 
   2939 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2940 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2941 
   2942 #ifndef IEEE80211_STA_ONLY
   2943 		/* Tell HW to set timestamp in probe responses. */
   2944 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2945 		/* probe requests do not take timestamps (from Bergamini). */
   2946 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2947 			flags |= IWN_TX_INSERT_TSTAMP;
   2948 #endif
   2949 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   2950 		/* changes here. These are not needed (from Bergamini). */
   2951 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   2952 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   2953 			tx->timeout = htole16(3);
   2954 		else
   2955 			tx->timeout = htole16(2);
   2956 	} else
   2957 		tx->timeout = htole16(0);
   2958 
   2959 	if (hdrlen & 3) {
   2960 		/* First segment length must be a multiple of 4. */
   2961 		flags |= IWN_TX_NEED_PADDING;
   2962 		pad = 4 - (hdrlen & 3);
   2963 	} else
   2964 		pad = 0;
   2965 
   2966 	tx->len = htole16(totlen);
   2967 	tx->tid = tid;
   2968 	tx->rts_ntries = 60;
   2969 	tx->data_ntries = 15;
   2970 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   2971 	tx->plcp = rinfo->plcp;
   2972 	tx->rflags = rinfo->flags;
   2973 	if (tx->id == sc->broadcast_id) {
   2974 		/* Group or management frame. */
   2975 		tx->linkq = 0;
   2976 		/* XXX Alternate between antenna A and B? */
   2977 		txant = IWN_LSB(sc->txchainmask);
   2978 		tx->rflags |= IWN_RFLAG_ANT(txant);
   2979 	} else {
   2980 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   2981 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   2982 	}
   2983 	/* Set physical address of "scratch area". */
   2984 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   2985 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   2986 
   2987 	/* Copy 802.11 header in TX command. */
   2988 	/* XXX NetBSD changed this in rev 1.20 */
   2989 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   2990 
   2991 	/* Trim 802.11 header. */
   2992 	m_adj(m, hdrlen);
   2993 	tx->security = 0;
   2994 	tx->flags = htole32(flags);
   2995 
   2996 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   2997 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   2998 	if (error != 0) {
   2999 		if (error != EFBIG) {
   3000 			aprint_error_dev(sc->sc_dev,
   3001 			    "can't map mbuf (error %d)\n", error);
   3002 			m_freem(m);
   3003 			return error;
   3004 		}
   3005 		/* Too many DMA segments, linearize mbuf. */
   3006 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3007 		if (m1 == NULL) {
   3008 			m_freem(m);
   3009 			return ENOBUFS;
   3010 		}
   3011 		if (m->m_pkthdr.len > MHLEN) {
   3012 			MCLGET(m1, M_DONTWAIT);
   3013 			if (!(m1->m_flags & M_EXT)) {
   3014 				m_freem(m);
   3015 				m_freem(m1);
   3016 				return ENOBUFS;
   3017 			}
   3018 		}
   3019 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3020 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3021 		m_freem(m);
   3022 		m = m1;
   3023 
   3024 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3025 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3026 		if (error != 0) {
   3027 			aprint_error_dev(sc->sc_dev,
   3028 			    "can't map mbuf (error %d)\n", error);
   3029 			m_freem(m);
   3030 			return error;
   3031 		}
   3032 	}
   3033 
   3034 	data->m = m;
   3035 	data->ni = ni;
   3036 
   3037 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3038 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3039 
   3040 	/* Fill TX descriptor. */
   3041 	desc->nsegs = 1 + data->map->dm_nsegs;
   3042 	/* First DMA segment is used by the TX command. */
   3043 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3044 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3045 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3046 	/* Other DMA segments are for data payload. */
   3047 	seg = data->map->dm_segs;
   3048 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3049 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3050 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3051 		    seg->ds_len << 4);
   3052 		seg++;
   3053 	}
   3054 
   3055 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3056 	    BUS_DMASYNC_PREWRITE);
   3057 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3058 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3059 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3060 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3061 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3062 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3063 
   3064 #ifdef notyet
   3065 	/* Update TX scheduler. */
   3066 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3067 #endif
   3068 
   3069 	/* Kick TX ring. */
   3070 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3071 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3072 
   3073 	/* Mark TX ring as full if we reach a certain threshold. */
   3074 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3075 		sc->qfullmsk |= 1 << ring->qid;
   3076 
   3077 	return 0;
   3078 }
   3079 
   3080 static void
   3081 iwn_start(struct ifnet *ifp)
   3082 {
   3083 	struct iwn_softc *sc = ifp->if_softc;
   3084 	struct ieee80211com *ic = &sc->sc_ic;
   3085 	struct ieee80211_node *ni;
   3086 	struct ether_header *eh;
   3087 	struct mbuf *m;
   3088 	int ac;
   3089 
   3090 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3091 		return;
   3092 
   3093 	for (;;) {
   3094 		if (sc->qfullmsk != 0) {
   3095 			ifp->if_flags |= IFF_OACTIVE;
   3096 			break;
   3097 		}
   3098 		/* Send pending management frames first. */
   3099 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3100 		if (m != NULL) {
   3101 			ni = M_GETCTX(m, struct ieee80211_node *);
   3102 			ac = 0;
   3103 			goto sendit;
   3104 		}
   3105 		if (ic->ic_state != IEEE80211_S_RUN)
   3106 			break;
   3107 
   3108 		/* Encapsulate and send data frames. */
   3109 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3110 		if (m == NULL)
   3111 			break;
   3112 		if (m->m_len < sizeof (*eh) &&
   3113 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3114 			ifp->if_oerrors++;
   3115 			continue;
   3116 		}
   3117 		eh = mtod(m, struct ether_header *);
   3118 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3119 		if (ni == NULL) {
   3120 			m_freem(m);
   3121 			ifp->if_oerrors++;
   3122 			continue;
   3123 		}
   3124 		/* classify mbuf so we can find which tx ring to use */
   3125 		if (ieee80211_classify(ic, m, ni) != 0) {
   3126 			m_freem(m);
   3127 			ieee80211_free_node(ni);
   3128 			ifp->if_oerrors++;
   3129 			continue;
   3130 		}
   3131 
   3132 		/* No QoS encapsulation for EAPOL frames. */
   3133 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3134 		    M_WME_GETAC(m) : WME_AC_BE;
   3135 
   3136 		bpf_mtap(ifp, m);
   3137 
   3138 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3139 			ieee80211_free_node(ni);
   3140 			ifp->if_oerrors++;
   3141 			continue;
   3142 		}
   3143 sendit:
   3144 		bpf_mtap3(ic->ic_rawbpf, m);
   3145 
   3146 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3147 			ieee80211_free_node(ni);
   3148 			ifp->if_oerrors++;
   3149 			continue;
   3150 		}
   3151 
   3152 		sc->sc_tx_timer = 5;
   3153 		ifp->if_timer = 1;
   3154 	}
   3155 }
   3156 
   3157 static void
   3158 iwn_watchdog(struct ifnet *ifp)
   3159 {
   3160 	struct iwn_softc *sc = ifp->if_softc;
   3161 
   3162 	ifp->if_timer = 0;
   3163 
   3164 	if (sc->sc_tx_timer > 0) {
   3165 		if (--sc->sc_tx_timer == 0) {
   3166 			aprint_error_dev(sc->sc_dev,
   3167 			    "device timeout\n");
   3168 			ifp->if_flags &= ~IFF_UP;
   3169 			iwn_stop(ifp, 1);
   3170 			ifp->if_oerrors++;
   3171 			return;
   3172 		}
   3173 		ifp->if_timer = 1;
   3174 	}
   3175 
   3176 	ieee80211_watchdog(&sc->sc_ic);
   3177 }
   3178 
   3179 static int
   3180 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3181 {
   3182 	struct iwn_softc *sc = ifp->if_softc;
   3183 	struct ieee80211com *ic = &sc->sc_ic;
   3184 	const struct sockaddr *sa;
   3185 	int s, error = 0;
   3186 
   3187 	s = splnet();
   3188 
   3189 	switch (cmd) {
   3190 	case SIOCSIFADDR:
   3191 		ifp->if_flags |= IFF_UP;
   3192 		/* FALLTHROUGH */
   3193 	case SIOCSIFFLAGS:
   3194 		/* XXX Added as it is in every NetBSD driver */
   3195 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3196 			break;
   3197 		if (ifp->if_flags & IFF_UP) {
   3198 			if (!(ifp->if_flags & IFF_RUNNING))
   3199 				error = iwn_init(ifp);
   3200 		} else {
   3201 			if (ifp->if_flags & IFF_RUNNING)
   3202 				iwn_stop(ifp, 1);
   3203 		}
   3204 		break;
   3205 
   3206 	case SIOCADDMULTI:
   3207 	case SIOCDELMULTI:
   3208 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3209 		error = (cmd == SIOCADDMULTI) ?
   3210 		    ether_addmulti(sa, &sc->sc_ec) :
   3211 		    ether_delmulti(sa, &sc->sc_ec);
   3212 
   3213 		if (error == ENETRESET)
   3214 			error = 0;
   3215 		break;
   3216 
   3217 	default:
   3218 		error = ieee80211_ioctl(ic, cmd, data);
   3219 	}
   3220 
   3221 	if (error == ENETRESET) {
   3222 		error = 0;
   3223 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3224 		    (IFF_UP | IFF_RUNNING)) {
   3225 			iwn_stop(ifp, 0);
   3226 			error = iwn_init(ifp);
   3227 		}
   3228 	}
   3229 
   3230 	splx(s);
   3231 	return error;
   3232 }
   3233 
   3234 /*
   3235  * Send a command to the firmware.
   3236  */
   3237 static int
   3238 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3239 {
   3240 	struct iwn_tx_ring *ring = &sc->txq[4];
   3241 	struct iwn_tx_desc *desc;
   3242 	struct iwn_tx_data *data;
   3243 	struct iwn_tx_cmd *cmd;
   3244 	struct mbuf *m;
   3245 	bus_addr_t paddr;
   3246 	int totlen, error;
   3247 
   3248 	desc = &ring->desc[ring->cur];
   3249 	data = &ring->data[ring->cur];
   3250 	totlen = 4 + size;
   3251 
   3252 	if (size > sizeof cmd->data) {
   3253 		/* Command is too large to fit in a descriptor. */
   3254 		if (totlen > MCLBYTES)
   3255 			return EINVAL;
   3256 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3257 		if (m == NULL)
   3258 			return ENOMEM;
   3259 		if (totlen > MHLEN) {
   3260 			MCLGET(m, M_DONTWAIT);
   3261 			if (!(m->m_flags & M_EXT)) {
   3262 				m_freem(m);
   3263 				return ENOMEM;
   3264 			}
   3265 		}
   3266 		cmd = mtod(m, struct iwn_tx_cmd *);
   3267 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3268 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3269 		if (error != 0) {
   3270 			m_freem(m);
   3271 			return error;
   3272 		}
   3273 		data->m = m;
   3274 		paddr = data->map->dm_segs[0].ds_addr;
   3275 	} else {
   3276 		cmd = &ring->cmd[ring->cur];
   3277 		paddr = data->cmd_paddr;
   3278 	}
   3279 
   3280 	cmd->code = code;
   3281 	cmd->flags = 0;
   3282 	cmd->qid = ring->qid;
   3283 	cmd->idx = ring->cur;
   3284 	memcpy(cmd->data, buf, size);
   3285 
   3286 	desc->nsegs = 1;
   3287 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3288 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3289 
   3290 	if (size > sizeof cmd->data) {
   3291 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3292 		    BUS_DMASYNC_PREWRITE);
   3293 	} else {
   3294 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3295 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3296 		    totlen, BUS_DMASYNC_PREWRITE);
   3297 	}
   3298 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3299 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3300 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3301 
   3302 #ifdef notyet
   3303 	/* Update TX scheduler. */
   3304 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3305 #endif
   3306 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3307 
   3308 	/* Kick command ring. */
   3309 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3310 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3311 
   3312 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3313 }
   3314 
   3315 static int
   3316 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3317 {
   3318 	struct iwn4965_node_info hnode;
   3319 	char *src, *dst;
   3320 
   3321 	/*
   3322 	 * We use the node structure for 5000 Series internally (it is
   3323 	 * a superset of the one for 4965AGN). We thus copy the common
   3324 	 * fields before sending the command.
   3325 	 */
   3326 	src = (char *)node;
   3327 	dst = (char *)&hnode;
   3328 	memcpy(dst, src, 48);
   3329 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3330 	memcpy(dst + 48, src + 72, 20);
   3331 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3332 }
   3333 
   3334 static int
   3335 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3336 {
   3337 	/* Direct mapping. */
   3338 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3339 }
   3340 
   3341 static int
   3342 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3343 {
   3344 	struct iwn_node *wn = (void *)ni;
   3345 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3346 	struct iwn_cmd_link_quality linkq;
   3347 	const struct iwn_rate *rinfo;
   3348 	uint8_t txant;
   3349 	int i, txrate;
   3350 
   3351 	/* Use the first valid TX antenna. */
   3352 	txant = IWN_LSB(sc->txchainmask);
   3353 
   3354 	memset(&linkq, 0, sizeof linkq);
   3355 	linkq.id = wn->id;
   3356 	linkq.antmsk_1stream = txant;
   3357 	linkq.antmsk_2stream = IWN_ANT_AB;
   3358 	linkq.ampdu_max = 31;
   3359 	linkq.ampdu_threshold = 3;
   3360 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3361 
   3362 	/* Start at highest available bit-rate. */
   3363 	txrate = rs->rs_nrates - 1;
   3364 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3365 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3366 		linkq.retry[i].plcp = rinfo->plcp;
   3367 		linkq.retry[i].rflags = rinfo->flags;
   3368 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3369 		/* Next retry at immediate lower bit-rate. */
   3370 		if (txrate > 0)
   3371 			txrate--;
   3372 	}
   3373 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3374 }
   3375 
   3376 /*
   3377  * Broadcast node is used to send group-addressed and management frames.
   3378  */
   3379 static int
   3380 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3381 {
   3382 	struct iwn_ops *ops = &sc->ops;
   3383 	struct iwn_node_info node;
   3384 	struct iwn_cmd_link_quality linkq;
   3385 	const struct iwn_rate *rinfo;
   3386 	uint8_t txant;
   3387 	int i, error;
   3388 
   3389 	memset(&node, 0, sizeof node);
   3390 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3391 	node.id = sc->broadcast_id;
   3392 	DPRINTF(("adding broadcast node\n"));
   3393 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3394 		return error;
   3395 
   3396 	/* Use the first valid TX antenna. */
   3397 	txant = IWN_LSB(sc->txchainmask);
   3398 
   3399 	memset(&linkq, 0, sizeof linkq);
   3400 	linkq.id = sc->broadcast_id;
   3401 	linkq.antmsk_1stream = txant;
   3402 	linkq.antmsk_2stream = IWN_ANT_AB;
   3403 	linkq.ampdu_max = 64;
   3404 	linkq.ampdu_threshold = 3;
   3405 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3406 
   3407 	/* Use lowest mandatory bit-rate. */
   3408 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3409 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3410 	linkq.retry[0].plcp = rinfo->plcp;
   3411 	linkq.retry[0].rflags = rinfo->flags;
   3412 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3413 	/* Use same bit-rate for all TX retries. */
   3414 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3415 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3416 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3417 	}
   3418 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3419 }
   3420 
   3421 static void
   3422 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3423 {
   3424 	struct iwn_cmd_led led;
   3425 
   3426 	/* Clear microcode LED ownership. */
   3427 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3428 
   3429 	led.which = which;
   3430 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3431 	led.off = off;
   3432 	led.on = on;
   3433 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3434 }
   3435 
   3436 /*
   3437  * Set the critical temperature at which the firmware will stop the radio
   3438  * and notify us.
   3439  */
   3440 static int
   3441 iwn_set_critical_temp(struct iwn_softc *sc)
   3442 {
   3443 	struct iwn_critical_temp crit;
   3444 	int32_t temp;
   3445 
   3446 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3447 
   3448 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3449 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3450 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3451 		temp = IWN_CTOK(110);
   3452 	else
   3453 		temp = 110;
   3454 	memset(&crit, 0, sizeof crit);
   3455 	crit.tempR = htole32(temp);
   3456 	DPRINTF(("setting critical temperature to %d\n", temp));
   3457 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3458 }
   3459 
   3460 static int
   3461 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3462 {
   3463 	struct iwn_cmd_timing cmd;
   3464 	uint64_t val, mod;
   3465 
   3466 	memset(&cmd, 0, sizeof cmd);
   3467 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3468 	cmd.bintval = htole16(ni->ni_intval);
   3469 	cmd.lintval = htole16(10);
   3470 
   3471 	/* Compute remaining time until next beacon. */
   3472 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3473 	mod = le64toh(cmd.tstamp) % val;
   3474 	cmd.binitval = htole32((uint32_t)(val - mod));
   3475 
   3476 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3477 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3478 
   3479 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3480 }
   3481 
   3482 static void
   3483 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3484 {
   3485 	/* Adjust TX power if need be (delta >= 3 degC). */
   3486 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3487 	if (abs(temp - sc->temp) >= 3) {
   3488 		/* Record temperature of last calibration. */
   3489 		sc->temp = temp;
   3490 		(void)iwn4965_set_txpower(sc, 1);
   3491 	}
   3492 }
   3493 
   3494 /*
   3495  * Set TX power for current channel (each rate has its own power settings).
   3496  * This function takes into account the regulatory information from EEPROM,
   3497  * the current temperature and the current voltage.
   3498  */
   3499 static int
   3500 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3501 {
   3502 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3503 #define fdivround(a, b, n)	\
   3504 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3505 /* Linear interpolation. */
   3506 #define interpolate(x, x1, y1, x2, y2, n)	\
   3507 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3508 
   3509 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3510 	struct ieee80211com *ic = &sc->sc_ic;
   3511 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3512 	struct ieee80211_channel *ch;
   3513 	struct iwn4965_cmd_txpower cmd;
   3514 	struct iwn4965_eeprom_chan_samples *chans;
   3515 	const uint8_t *rf_gain, *dsp_gain;
   3516 	int32_t vdiff, tdiff;
   3517 	int i, c, grp, maxpwr;
   3518 	uint8_t chan;
   3519 
   3520 	/* Retrieve current channel from last RXON. */
   3521 	chan = sc->rxon.chan;
   3522 	DPRINTF(("setting TX power for channel %d\n", chan));
   3523 	ch = &ic->ic_channels[chan];
   3524 
   3525 	memset(&cmd, 0, sizeof cmd);
   3526 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3527 	cmd.chan = chan;
   3528 
   3529 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3530 		maxpwr   = sc->maxpwr5GHz;
   3531 		rf_gain  = iwn4965_rf_gain_5ghz;
   3532 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3533 	} else {
   3534 		maxpwr   = sc->maxpwr2GHz;
   3535 		rf_gain  = iwn4965_rf_gain_2ghz;
   3536 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3537 	}
   3538 
   3539 	/* Compute voltage compensation. */
   3540 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3541 	if (vdiff > 0)
   3542 		vdiff *= 2;
   3543 	if (abs(vdiff) > 2)
   3544 		vdiff = 0;
   3545 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3546 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3547 
   3548 	/* Get channel attenuation group. */
   3549 	if (chan <= 20)		/* 1-20 */
   3550 		grp = 4;
   3551 	else if (chan <= 43)	/* 34-43 */
   3552 		grp = 0;
   3553 	else if (chan <= 70)	/* 44-70 */
   3554 		grp = 1;
   3555 	else if (chan <= 124)	/* 71-124 */
   3556 		grp = 2;
   3557 	else			/* 125-200 */
   3558 		grp = 3;
   3559 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3560 
   3561 	/* Get channel sub-band. */
   3562 	for (i = 0; i < IWN_NBANDS; i++)
   3563 		if (sc->bands[i].lo != 0 &&
   3564 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3565 			break;
   3566 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3567 		return EINVAL;
   3568 	chans = sc->bands[i].chans;
   3569 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3570 
   3571 	for (c = 0; c < 2; c++) {
   3572 		uint8_t power, gain, temp;
   3573 		int maxchpwr, pwr, ridx, idx;
   3574 
   3575 		power = interpolate(chan,
   3576 		    chans[0].num, chans[0].samples[c][1].power,
   3577 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3578 		gain  = interpolate(chan,
   3579 		    chans[0].num, chans[0].samples[c][1].gain,
   3580 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3581 		temp  = interpolate(chan,
   3582 		    chans[0].num, chans[0].samples[c][1].temp,
   3583 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3584 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3585 		    c, power, gain, temp));
   3586 
   3587 		/* Compute temperature compensation. */
   3588 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3589 		DPRINTF(("temperature compensation=%d (current=%d, "
   3590 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3591 
   3592 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3593 			/* Convert dBm to half-dBm. */
   3594 			maxchpwr = sc->maxpwr[chan] * 2;
   3595 			if ((ridx / 8) & 1)
   3596 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3597 
   3598 			pwr = maxpwr;
   3599 
   3600 			/* Adjust TX power based on rate. */
   3601 			if ((ridx % 8) == 5)
   3602 				pwr -= 15;	/* OFDM48: -7.5dB */
   3603 			else if ((ridx % 8) == 6)
   3604 				pwr -= 17;	/* OFDM54: -8.5dB */
   3605 			else if ((ridx % 8) == 7)
   3606 				pwr -= 20;	/* OFDM60: -10dB */
   3607 			else
   3608 				pwr -= 10;	/* Others: -5dB */
   3609 
   3610 			/* Do not exceed channel max TX power. */
   3611 			if (pwr > maxchpwr)
   3612 				pwr = maxchpwr;
   3613 
   3614 			idx = gain - (pwr - power) - tdiff - vdiff;
   3615 			if ((ridx / 8) & 1)	/* MIMO */
   3616 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3617 
   3618 			if (cmd.band == 0)
   3619 				idx += 9;	/* 5GHz */
   3620 			if (ridx == IWN_RIDX_MAX)
   3621 				idx += 5;	/* CCK */
   3622 
   3623 			/* Make sure idx stays in a valid range. */
   3624 			if (idx < 0)
   3625 				idx = 0;
   3626 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3627 				idx = IWN4965_MAX_PWR_INDEX;
   3628 
   3629 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3630 			    c, ridx, idx));
   3631 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3632 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3633 		}
   3634 	}
   3635 
   3636 	DPRINTF(("setting TX power for chan %d\n", chan));
   3637 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3638 
   3639 #undef interpolate
   3640 #undef fdivround
   3641 }
   3642 
   3643 static int
   3644 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3645 {
   3646 	struct iwn5000_cmd_txpower cmd;
   3647 
   3648 	/*
   3649 	 * TX power calibration is handled automatically by the firmware
   3650 	 * for 5000 Series.
   3651 	 */
   3652 	memset(&cmd, 0, sizeof cmd);
   3653 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3654 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3655 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3656 	DPRINTF(("setting TX power\n"));
   3657 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3658 }
   3659 
   3660 /*
   3661  * Retrieve the maximum RSSI (in dBm) among receivers.
   3662  */
   3663 static int
   3664 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3665 {
   3666 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3667 	uint8_t mask, agc;
   3668 	int rssi;
   3669 
   3670 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3671 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3672 
   3673 	rssi = 0;
   3674 	if (mask & IWN_ANT_A)
   3675 		rssi = MAX(rssi, phy->rssi[0]);
   3676 	if (mask & IWN_ANT_B)
   3677 		rssi = MAX(rssi, phy->rssi[2]);
   3678 	if (mask & IWN_ANT_C)
   3679 		rssi = MAX(rssi, phy->rssi[4]);
   3680 
   3681 	return rssi - agc - IWN_RSSI_TO_DBM;
   3682 }
   3683 
   3684 static int
   3685 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3686 {
   3687 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3688 	uint8_t agc;
   3689 	int rssi;
   3690 
   3691 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3692 
   3693 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3694 		   le16toh(phy->rssi[1]) & 0xff);
   3695 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3696 
   3697 	return rssi - agc - IWN_RSSI_TO_DBM;
   3698 }
   3699 
   3700 /*
   3701  * Retrieve the average noise (in dBm) among receivers.
   3702  */
   3703 static int
   3704 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3705 {
   3706 	int i, total, nbant, noise;
   3707 
   3708 	total = nbant = 0;
   3709 	for (i = 0; i < 3; i++) {
   3710 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3711 			continue;
   3712 		total += noise;
   3713 		nbant++;
   3714 	}
   3715 	/* There should be at least one antenna but check anyway. */
   3716 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3717 }
   3718 
   3719 /*
   3720  * Compute temperature (in degC) from last received statistics.
   3721  */
   3722 static int
   3723 iwn4965_get_temperature(struct iwn_softc *sc)
   3724 {
   3725 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3726 	int32_t r1, r2, r3, r4, temp;
   3727 
   3728 	r1 = le32toh(uc->temp[0].chan20MHz);
   3729 	r2 = le32toh(uc->temp[1].chan20MHz);
   3730 	r3 = le32toh(uc->temp[2].chan20MHz);
   3731 	r4 = le32toh(sc->rawtemp);
   3732 
   3733 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3734 		return 0;
   3735 
   3736 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3737 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3738 	/* Compute temperature in Kelvin. */
   3739 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3740 	temp = (temp * 97) / 100 + 8;
   3741 
   3742 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3743 	return IWN_KTOC(temp);
   3744 }
   3745 
   3746 static int
   3747 iwn5000_get_temperature(struct iwn_softc *sc)
   3748 {
   3749 	int32_t temp;
   3750 
   3751 	/*
   3752 	 * Temperature is not used by the driver for 5000 Series because
   3753 	 * TX power calibration is handled by firmware.  We export it to
   3754 	 * users through the sensor framework though.
   3755 	 */
   3756 	temp = le32toh(sc->rawtemp);
   3757 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3758 		temp = (temp / -5) + sc->temp_off;
   3759 		temp = IWN_KTOC(temp);
   3760 	}
   3761 	return temp;
   3762 }
   3763 
   3764 /*
   3765  * Initialize sensitivity calibration state machine.
   3766  */
   3767 static int
   3768 iwn_init_sensitivity(struct iwn_softc *sc)
   3769 {
   3770 	struct iwn_ops *ops = &sc->ops;
   3771 	struct iwn_calib_state *calib = &sc->calib;
   3772 	uint32_t flags;
   3773 	int error;
   3774 
   3775 	/* Reset calibration state machine. */
   3776 	memset(calib, 0, sizeof (*calib));
   3777 	calib->state = IWN_CALIB_STATE_INIT;
   3778 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3779 	/* Set initial correlation values. */
   3780 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3781 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3782 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3783 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3784 	calib->cck_x4      = 125;
   3785 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3786 	calib->energy_cck  = sc->limits->energy_cck;
   3787 
   3788 	/* Write initial sensitivity. */
   3789 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3790 		return error;
   3791 
   3792 	/* Write initial gains. */
   3793 	if ((error = ops->init_gains(sc)) != 0)
   3794 		return error;
   3795 
   3796 	/* Request statistics at each beacon interval. */
   3797 	flags = 0;
   3798 	DPRINTF(("sending request for statistics\n"));
   3799 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3800 }
   3801 
   3802 /*
   3803  * Collect noise and RSSI statistics for the first 20 beacons received
   3804  * after association and use them to determine connected antennas and
   3805  * to set differential gains.
   3806  */
   3807 static void
   3808 iwn_collect_noise(struct iwn_softc *sc,
   3809     const struct iwn_rx_general_stats *stats)
   3810 {
   3811 	struct iwn_ops *ops = &sc->ops;
   3812 	struct iwn_calib_state *calib = &sc->calib;
   3813 	uint32_t val;
   3814 	int i;
   3815 
   3816 	/* Accumulate RSSI and noise for all 3 antennas. */
   3817 	for (i = 0; i < 3; i++) {
   3818 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3819 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3820 	}
   3821 	/* NB: We update differential gains only once after 20 beacons. */
   3822 	if (++calib->nbeacons < 20)
   3823 		return;
   3824 
   3825 	/* Determine highest average RSSI. */
   3826 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3827 	val = MAX(calib->rssi[2], val);
   3828 
   3829 	/* Determine which antennas are connected. */
   3830 	sc->chainmask = sc->rxchainmask;
   3831 	for (i = 0; i < 3; i++)
   3832 		if (val - calib->rssi[i] > 15 * 20)
   3833 			sc->chainmask &= ~(1 << i);
   3834 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3835 	    sc->rxchainmask, sc->chainmask));
   3836 
   3837 	/* If none of the TX antennas are connected, keep at least one. */
   3838 	if ((sc->chainmask & sc->txchainmask) == 0)
   3839 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3840 
   3841 	(void)ops->set_gains(sc);
   3842 	calib->state = IWN_CALIB_STATE_RUN;
   3843 
   3844 #ifdef notyet
   3845 	/* XXX Disable RX chains with no antennas connected. */
   3846 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3847 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3848 #endif
   3849 
   3850 	/* Enable power-saving mode if requested by user. */
   3851 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3852 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3853 }
   3854 
   3855 static int
   3856 iwn4965_init_gains(struct iwn_softc *sc)
   3857 {
   3858 	struct iwn_phy_calib_gain cmd;
   3859 
   3860 	memset(&cmd, 0, sizeof cmd);
   3861 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3862 	/* Differential gains initially set to 0 for all 3 antennas. */
   3863 	DPRINTF(("setting initial differential gains\n"));
   3864 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3865 }
   3866 
   3867 static int
   3868 iwn5000_init_gains(struct iwn_softc *sc)
   3869 {
   3870 	struct iwn_phy_calib cmd;
   3871 
   3872 	memset(&cmd, 0, sizeof cmd);
   3873 	cmd.code = sc->reset_noise_gain;
   3874 	cmd.ngroups = 1;
   3875 	cmd.isvalid = 1;
   3876 	DPRINTF(("setting initial differential gains\n"));
   3877 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3878 }
   3879 
   3880 static int
   3881 iwn4965_set_gains(struct iwn_softc *sc)
   3882 {
   3883 	struct iwn_calib_state *calib = &sc->calib;
   3884 	struct iwn_phy_calib_gain cmd;
   3885 	int i, delta, noise;
   3886 
   3887 	/* Get minimal noise among connected antennas. */
   3888 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3889 	for (i = 0; i < 3; i++)
   3890 		if (sc->chainmask & (1 << i))
   3891 			noise = MIN(calib->noise[i], noise);
   3892 
   3893 	memset(&cmd, 0, sizeof cmd);
   3894 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3895 	/* Set differential gains for connected antennas. */
   3896 	for (i = 0; i < 3; i++) {
   3897 		if (sc->chainmask & (1 << i)) {
   3898 			/* Compute attenuation (in unit of 1.5dB). */
   3899 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3900 			/* NB: delta <= 0 */
   3901 			/* Limit to [-4.5dB,0]. */
   3902 			cmd.gain[i] = MIN(abs(delta), 3);
   3903 			if (delta < 0)
   3904 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3905 		}
   3906 	}
   3907 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3908 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3909 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3910 }
   3911 
   3912 static int
   3913 iwn5000_set_gains(struct iwn_softc *sc)
   3914 {
   3915 	struct iwn_calib_state *calib = &sc->calib;
   3916 	struct iwn_phy_calib_gain cmd;
   3917 	int i, ant, div, delta;
   3918 
   3919 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3920 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3921 
   3922 	memset(&cmd, 0, sizeof cmd);
   3923 	cmd.code = sc->noise_gain;
   3924 	cmd.ngroups = 1;
   3925 	cmd.isvalid = 1;
   3926 	/* Get first available RX antenna as referential. */
   3927 	ant = IWN_LSB(sc->rxchainmask);
   3928 	/* Set differential gains for other antennas. */
   3929 	for (i = ant + 1; i < 3; i++) {
   3930 		if (sc->chainmask & (1 << i)) {
   3931 			/* The delta is relative to antenna "ant". */
   3932 			delta = ((int32_t)calib->noise[ant] -
   3933 			    (int32_t)calib->noise[i]) / div;
   3934 			/* Limit to [-4.5dB,+4.5dB]. */
   3935 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3936 			if (delta < 0)
   3937 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3938 		}
   3939 	}
   3940 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3941 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3942 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3943 }
   3944 
   3945 /*
   3946  * Tune RF RX sensitivity based on the number of false alarms detected
   3947  * during the last beacon period.
   3948  */
   3949 static void
   3950 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   3951 {
   3952 #define inc(val, inc, max)			\
   3953 	if ((val) < (max)) {			\
   3954 		if ((val) < (max) - (inc))	\
   3955 			(val) += (inc);		\
   3956 		else				\
   3957 			(val) = (max);		\
   3958 		needs_update = 1;		\
   3959 	}
   3960 #define dec(val, dec, min)			\
   3961 	if ((val) > (min)) {			\
   3962 		if ((val) > (min) + (dec))	\
   3963 			(val) -= (dec);		\
   3964 		else				\
   3965 			(val) = (min);		\
   3966 		needs_update = 1;		\
   3967 	}
   3968 
   3969 	const struct iwn_sensitivity_limits *limits = sc->limits;
   3970 	struct iwn_calib_state *calib = &sc->calib;
   3971 	uint32_t val, rxena, fa;
   3972 	uint32_t energy[3], energy_min;
   3973 	uint8_t noise[3], noise_ref;
   3974 	int i, needs_update = 0;
   3975 
   3976 	/* Check that we've been enabled long enough. */
   3977 	if ((rxena = le32toh(stats->general.load)) == 0)
   3978 		return;
   3979 
   3980 	/* Compute number of false alarms since last call for OFDM. */
   3981 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   3982 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   3983 	fa *= 200 * 1024;	/* 200TU */
   3984 
   3985 	/* Save counters values for next call. */
   3986 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   3987 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   3988 
   3989 	if (fa > 50 * rxena) {
   3990 		/* High false alarm count, decrease sensitivity. */
   3991 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   3992 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   3993 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   3994 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   3995 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   3996 
   3997 	} else if (fa < 5 * rxena) {
   3998 		/* Low false alarm count, increase sensitivity. */
   3999 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4000 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4001 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4002 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4003 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4004 	}
   4005 
   4006 	/* Compute maximum noise among 3 receivers. */
   4007 	for (i = 0; i < 3; i++)
   4008 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4009 	val = MAX(noise[0], noise[1]);
   4010 	val = MAX(noise[2], val);
   4011 	/* Insert it into our samples table. */
   4012 	calib->noise_samples[calib->cur_noise_sample] = val;
   4013 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4014 
   4015 	/* Compute maximum noise among last 20 samples. */
   4016 	noise_ref = calib->noise_samples[0];
   4017 	for (i = 1; i < 20; i++)
   4018 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4019 
   4020 	/* Compute maximum energy among 3 receivers. */
   4021 	for (i = 0; i < 3; i++)
   4022 		energy[i] = le32toh(stats->general.energy[i]);
   4023 	val = MIN(energy[0], energy[1]);
   4024 	val = MIN(energy[2], val);
   4025 	/* Insert it into our samples table. */
   4026 	calib->energy_samples[calib->cur_energy_sample] = val;
   4027 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4028 
   4029 	/* Compute minimum energy among last 10 samples. */
   4030 	energy_min = calib->energy_samples[0];
   4031 	for (i = 1; i < 10; i++)
   4032 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4033 	energy_min += 6;
   4034 
   4035 	/* Compute number of false alarms since last call for CCK. */
   4036 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4037 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4038 	fa *= 200 * 1024;	/* 200TU */
   4039 
   4040 	/* Save counters values for next call. */
   4041 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4042 	calib->fa_cck = le32toh(stats->cck.fa);
   4043 
   4044 	if (fa > 50 * rxena) {
   4045 		/* High false alarm count, decrease sensitivity. */
   4046 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4047 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4048 		calib->low_fa = 0;
   4049 
   4050 		if (calib->cck_x4 > 160) {
   4051 			calib->noise_ref = noise_ref;
   4052 			if (calib->energy_cck > 2)
   4053 				dec(calib->energy_cck, 2, energy_min);
   4054 		}
   4055 		if (calib->cck_x4 < 160) {
   4056 			calib->cck_x4 = 161;
   4057 			needs_update = 1;
   4058 		} else
   4059 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4060 
   4061 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4062 
   4063 	} else if (fa < 5 * rxena) {
   4064 		/* Low false alarm count, increase sensitivity. */
   4065 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4066 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4067 		calib->low_fa++;
   4068 
   4069 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4070 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4071 		     calib->low_fa > 100)) {
   4072 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4073 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4074 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4075 		}
   4076 	} else {
   4077 		/* Not worth to increase or decrease sensitivity. */
   4078 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4079 		calib->low_fa = 0;
   4080 		calib->noise_ref = noise_ref;
   4081 
   4082 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4083 			/* Previous interval had many false alarms. */
   4084 			dec(calib->energy_cck, 8, energy_min);
   4085 		}
   4086 		calib->cck_state = IWN_CCK_STATE_INIT;
   4087 	}
   4088 
   4089 	if (needs_update)
   4090 		(void)iwn_send_sensitivity(sc);
   4091 #undef dec
   4092 #undef inc
   4093 }
   4094 
   4095 static int
   4096 iwn_send_sensitivity(struct iwn_softc *sc)
   4097 {
   4098 	struct iwn_calib_state *calib = &sc->calib;
   4099 	struct iwn_enhanced_sensitivity_cmd cmd;
   4100 	int len;
   4101 
   4102 	memset(&cmd, 0, sizeof cmd);
   4103 	len = sizeof (struct iwn_sensitivity_cmd);
   4104 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4105 	/* OFDM modulation. */
   4106 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4107 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4108 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4109 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4110 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4111 	cmd.energy_ofdm_th   = htole16(62);
   4112 	/* CCK modulation. */
   4113 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4114 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4115 	cmd.energy_cck       = htole16(calib->energy_cck);
   4116 	/* Barker modulation: use default values. */
   4117 	cmd.corr_barker      = htole16(190);
   4118 	cmd.corr_barker_mrc  = htole16(390);
   4119 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4120 		goto send;
   4121 	/* Enhanced sensitivity settings. */
   4122 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4123 	cmd.ofdm_det_slope_mrc = htole16(668);
   4124 	cmd.ofdm_det_icept_mrc = htole16(4);
   4125 	cmd.ofdm_det_slope     = htole16(486);
   4126 	cmd.ofdm_det_icept     = htole16(37);
   4127 	cmd.cck_det_slope_mrc  = htole16(853);
   4128 	cmd.cck_det_icept_mrc  = htole16(4);
   4129 	cmd.cck_det_slope      = htole16(476);
   4130 	cmd.cck_det_icept      = htole16(99);
   4131 send:
   4132 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4133 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4134 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4135 	    calib->energy_cck));
   4136 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4137 }
   4138 
   4139 /*
   4140  * Set STA mode power saving level (between 0 and 5).
   4141  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4142  */
   4143 static int
   4144 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4145 {
   4146 	struct iwn_pmgt_cmd cmd;
   4147 	const struct iwn_pmgt *pmgt;
   4148 	uint32_t maxp, skip_dtim;
   4149 	pcireg_t reg;
   4150 	int i;
   4151 
   4152 	/* Select which PS parameters to use. */
   4153 	if (dtim <= 2)
   4154 		pmgt = &iwn_pmgt[0][level];
   4155 	else if (dtim <= 10)
   4156 		pmgt = &iwn_pmgt[1][level];
   4157 	else
   4158 		pmgt = &iwn_pmgt[2][level];
   4159 
   4160 	memset(&cmd, 0, sizeof cmd);
   4161 	if (level != 0)	/* not CAM */
   4162 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4163 	if (level == 5)
   4164 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4165 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4166 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4167 	    sc->sc_cap_off + PCIE_LCSR);
   4168 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4169 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4170 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4171 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4172 
   4173 	if (dtim == 0) {
   4174 		dtim = 1;
   4175 		skip_dtim = 0;
   4176 	} else
   4177 		skip_dtim = pmgt->skip_dtim;
   4178 	if (skip_dtim != 0) {
   4179 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4180 		maxp = pmgt->intval[4];
   4181 		if (maxp == (uint32_t)-1)
   4182 			maxp = dtim * (skip_dtim + 1);
   4183 		else if (maxp > dtim)
   4184 			maxp = (maxp / dtim) * dtim;
   4185 	} else
   4186 		maxp = dtim;
   4187 	for (i = 0; i < 5; i++)
   4188 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4189 
   4190 	DPRINTF(("setting power saving level to %d\n", level));
   4191 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4192 }
   4193 
   4194 int
   4195 iwn5000_runtime_calib(struct iwn_softc *sc)
   4196 {
   4197 	struct iwn5000_calib_config cmd;
   4198 
   4199 	memset(&cmd, 0, sizeof cmd);
   4200 	cmd.ucode.once.enable = 0xffffffff;
   4201 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4202 	DPRINTF(("configuring runtime calibration\n"));
   4203 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4204 }
   4205 
   4206 static int
   4207 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4208 {
   4209 	struct iwn_bluetooth bluetooth;
   4210 
   4211 	memset(&bluetooth, 0, sizeof bluetooth);
   4212 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4213 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4214 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4215 
   4216 	DPRINTF(("configuring bluetooth coexistence\n"));
   4217 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4218 }
   4219 
   4220 static int
   4221 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4222 {
   4223 	uint8_t prio_table[16];
   4224 
   4225 	memset(&prio_table, 0, sizeof prio_table);
   4226 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4227 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4228 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4229 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4230 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4231 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4232 	prio_table[ 6] =  6;	/* dtim				*/
   4233 	prio_table[ 7] =  8;	/* scan52			*/
   4234 	prio_table[ 8] = 10;	/* scan24			*/
   4235 
   4236 	DPRINTF(("sending priority lookup table\n"));
   4237 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4238 	               &prio_table, sizeof prio_table, 0);
   4239 }
   4240 
   4241 static int
   4242 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4243     size_t len)
   4244 {
   4245 	struct iwn_btcoex_prot btprot;
   4246 	int error;
   4247 
   4248 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4249 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4250 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4251 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4252 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4253 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4254 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4255 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4256 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4257 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4258 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4259 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4260 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4261 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4262 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4263 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4264 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4265 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4266 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4267 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4268 	basic->reduce_txpower = 0; /* as not implemented */
   4269 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4270 
   4271 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4272 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4273 	if (error != 0) {
   4274 		aprint_error_dev(sc->sc_dev,
   4275 			"could not configure advanced bluetooth coexistence\n");
   4276 		return error;
   4277 	}
   4278 
   4279 	error = iwn_config_bt_coex_prio_table(sc);
   4280 	if (error != 0) {
   4281 		aprint_error_dev(sc->sc_dev,
   4282 			"could not configure send BT priority table\n");
   4283 		return error;
   4284 	}
   4285 
   4286 	/* Force BT state machine change */
   4287 	memset(&btprot, 0, sizeof btprot);
   4288 	btprot.open = 1;
   4289 	btprot.type = 1;
   4290 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4291 	if (error != 0) {
   4292 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4293 		return error;
   4294 	}
   4295 
   4296 	btprot.open = 0;
   4297 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4298 	if (error != 0) {
   4299 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4300 		return error;
   4301 	}
   4302 	return 0;
   4303 }
   4304 
   4305 static int
   4306 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4307 {
   4308 	struct iwn_bt_adv1 d;
   4309 
   4310 	memset(&d, 0, sizeof d);
   4311 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4312 	d.tx_prio_boost = 0;
   4313 	d.rx_prio_boost = 0;
   4314 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4315 }
   4316 
   4317 static int
   4318 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4319 {
   4320 	struct iwn_bt_adv2 d;
   4321 
   4322 	memset(&d, 0, sizeof d);
   4323 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4324 	d.tx_prio_boost = 0;
   4325 	d.rx_prio_boost = 0;
   4326 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4327 }
   4328 
   4329 static int
   4330 iwn_config(struct iwn_softc *sc)
   4331 {
   4332 	struct iwn_ops *ops = &sc->ops;
   4333 	struct ieee80211com *ic = &sc->sc_ic;
   4334 	struct ifnet *ifp = ic->ic_ifp;
   4335 	uint32_t txmask;
   4336 	uint16_t rxchain;
   4337 	int error;
   4338 
   4339 	error = ops->config_bt_coex(sc);
   4340 	if (error != 0) {
   4341 		aprint_error_dev(sc->sc_dev,
   4342 			"could not configure bluetooth coexistence\n");
   4343 		return error;
   4344 	}
   4345 
   4346 	/* Set radio temperature sensor offset. */
   4347 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4348 		error = iwn6000_temp_offset_calib(sc);
   4349 		if (error != 0) {
   4350 			aprint_error_dev(sc->sc_dev,
   4351 			    "could not set temperature offset\n");
   4352 			return error;
   4353 		}
   4354 	}
   4355 
   4356 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4357 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4358 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4359 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4360 		error = iwn2000_temp_offset_calib(sc);
   4361 		if (error != 0) {
   4362 			aprint_error_dev(sc->sc_dev,
   4363 			    "could not set temperature offset\n");
   4364 			return error;
   4365 		}
   4366 	}
   4367 
   4368 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4369 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4370 		/* Configure runtime DC calibration. */
   4371 		error = iwn5000_runtime_calib(sc);
   4372 		if (error != 0) {
   4373 			aprint_error_dev(sc->sc_dev,
   4374 			    "could not configure runtime calibration\n");
   4375 			return error;
   4376 		}
   4377 	}
   4378 
   4379 	/* Configure valid TX chains for 5000 Series. */
   4380 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4381 		txmask = htole32(sc->txchainmask);
   4382 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4383 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4384 		    sizeof txmask, 0);
   4385 		if (error != 0) {
   4386 			aprint_error_dev(sc->sc_dev,
   4387 			    "could not configure valid TX chains\n");
   4388 			return error;
   4389 		}
   4390 	}
   4391 
   4392 	/* Set mode, channel, RX filter and enable RX. */
   4393 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4394 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4395 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4396 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4397 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4398 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4399 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4400 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4401 	switch (ic->ic_opmode) {
   4402 	case IEEE80211_M_STA:
   4403 		sc->rxon.mode = IWN_MODE_STA;
   4404 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4405 		break;
   4406 	case IEEE80211_M_MONITOR:
   4407 		sc->rxon.mode = IWN_MODE_MONITOR;
   4408 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4409 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4410 		break;
   4411 	default:
   4412 		/* Should not get there. */
   4413 		break;
   4414 	}
   4415 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4416 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4417 	sc->rxon.ht_single_mask = 0xff;
   4418 	sc->rxon.ht_dual_mask = 0xff;
   4419 	sc->rxon.ht_triple_mask = 0xff;
   4420 	rxchain =
   4421 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4422 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4423 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4424 	sc->rxon.rxchain = htole16(rxchain);
   4425 	DPRINTF(("setting configuration\n"));
   4426 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4427 	if (error != 0) {
   4428 		aprint_error_dev(sc->sc_dev,
   4429 		    "RXON command failed\n");
   4430 		return error;
   4431 	}
   4432 
   4433 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4434 		aprint_error_dev(sc->sc_dev,
   4435 		    "could not add broadcast node\n");
   4436 		return error;
   4437 	}
   4438 
   4439 	/* Configuration has changed, set TX power accordingly. */
   4440 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4441 		aprint_error_dev(sc->sc_dev,
   4442 		    "could not set TX power\n");
   4443 		return error;
   4444 	}
   4445 
   4446 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4447 		aprint_error_dev(sc->sc_dev,
   4448 		    "could not set critical temperature\n");
   4449 		return error;
   4450 	}
   4451 
   4452 	/* Set power saving level to CAM during initialization. */
   4453 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4454 		aprint_error_dev(sc->sc_dev,
   4455 		    "could not set power saving level\n");
   4456 		return error;
   4457 	}
   4458 	return 0;
   4459 }
   4460 
   4461 static uint16_t
   4462 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4463     uint8_t n_probes)
   4464 {
   4465 	/* No channel? Default to 2GHz settings */
   4466 	if (flags & IEEE80211_CHAN_2GHZ)
   4467 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4468 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4469 
   4470 	/* 5GHz dwell time */
   4471 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4472 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4473 }
   4474 
   4475 /*
   4476  * Limit the total dwell time to 85% of the beacon interval.
   4477  *
   4478  * Returns the dwell time in milliseconds.
   4479  */
   4480 static uint16_t
   4481 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4482 {
   4483 	struct ieee80211com *ic = &sc->sc_ic;
   4484 	struct ieee80211_node *ni = ic->ic_bss;
   4485 	int bintval = 0;
   4486 
   4487 	/* bintval is in TU (1.024mS) */
   4488 	if (ni != NULL)
   4489 		bintval = ni->ni_intval;
   4490 
   4491 	/*
   4492 	 * If it's non-zero, we should calculate the minimum of
   4493 	 * it and the DWELL_BASE.
   4494 	 *
   4495 	 * XXX Yes, the math should take into account that bintval
   4496 	 * is 1.024mS, not 1mS..
   4497 	 */
   4498 	if (bintval > 0)
   4499 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4500 
   4501 	/* No association context? Default */
   4502 	return IWN_PASSIVE_DWELL_BASE;
   4503 }
   4504 
   4505 static uint16_t
   4506 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4507 {
   4508 	uint16_t passive;
   4509 	if (flags & IEEE80211_CHAN_2GHZ)
   4510 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4511 	else
   4512 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4513 
   4514 	/* Clamp to the beacon interval if we're associated */
   4515 	return iwn_limit_dwell(sc, passive);
   4516 }
   4517 
   4518 static int
   4519 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4520 {
   4521 	struct ieee80211com *ic = &sc->sc_ic;
   4522 	struct iwn_scan_hdr *hdr;
   4523 	struct iwn_cmd_data *tx;
   4524 	struct iwn_scan_essid *essid;
   4525 	struct iwn_scan_chan *chan;
   4526 	struct ieee80211_frame *wh;
   4527 	struct ieee80211_rateset *rs;
   4528 	struct ieee80211_channel *c;
   4529 	uint8_t *buf, *frm;
   4530 	uint16_t rxchain, dwell_active, dwell_passive;
   4531 	uint8_t txant;
   4532 	int buflen, error, is_active;
   4533 
   4534 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4535 	if (buf == NULL) {
   4536 		aprint_error_dev(sc->sc_dev,
   4537 		    "could not allocate buffer for scan command\n");
   4538 		return ENOMEM;
   4539 	}
   4540 	hdr = (struct iwn_scan_hdr *)buf;
   4541 	/*
   4542 	 * Move to the next channel if no frames are received within 10ms
   4543 	 * after sending the probe request.
   4544 	 */
   4545 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4546 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4547 
   4548 	/* Select antennas for scanning. */
   4549 	rxchain =
   4550 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4551 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4552 	    IWN_RXCHAIN_DRIVER_FORCE;
   4553 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4554 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4555 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4556 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4557 	} else	/* Use all available RX antennas. */
   4558 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4559 	hdr->rxchain = htole16(rxchain);
   4560 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4561 
   4562 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4563 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4564 	tx->id = sc->broadcast_id;
   4565 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4566 
   4567 	if (flags & IEEE80211_CHAN_5GHZ) {
   4568 		hdr->crc_threshold = 0xffff;
   4569 		/* Send probe requests at 6Mbps. */
   4570 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4571 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4572 	} else {
   4573 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4574 		/* Send probe requests at 1Mbps. */
   4575 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4576 		tx->rflags = IWN_RFLAG_CCK;
   4577 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4578 	}
   4579 	/* Use the first valid TX antenna. */
   4580 	txant = IWN_LSB(sc->txchainmask);
   4581 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4582 
   4583 	/*
   4584 	 * Only do active scanning if we're announcing a probe request
   4585 	 * for a given SSID (or more, if we ever add it to the driver.)
   4586 	 */
   4587 	is_active = 0;
   4588 
   4589 	essid = (struct iwn_scan_essid *)(tx + 1);
   4590 	if (ic->ic_des_esslen != 0) {
   4591 		essid[0].id = IEEE80211_ELEMID_SSID;
   4592 		essid[0].len = ic->ic_des_esslen;
   4593 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4594 
   4595 		is_active = 1;
   4596 	}
   4597 	/*
   4598 	 * Build a probe request frame.  Most of the following code is a
   4599 	 * copy & paste of what is done in net80211.
   4600 	 */
   4601 	wh = (struct ieee80211_frame *)(essid + 20);
   4602 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4603 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4604 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4605 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4606 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4607 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4608 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4609 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4610 
   4611 	frm = (uint8_t *)(wh + 1);
   4612 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4613 	frm = ieee80211_add_rates(frm, rs);
   4614 #ifndef IEEE80211_NO_HT
   4615 	if (ic->ic_flags & IEEE80211_F_HTON)
   4616 		frm = ieee80211_add_htcaps(frm, ic);
   4617 #endif
   4618 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4619 		frm = ieee80211_add_xrates(frm, rs);
   4620 
   4621 	/* Set length of probe request. */
   4622 	tx->len = htole16(frm - (uint8_t *)wh);
   4623 
   4624 
   4625 	/*
   4626 	 * If active scanning is requested but a certain channel is
   4627 	 * marked passive, we can do active scanning if we detect
   4628 	 * transmissions.
   4629 	 *
   4630 	 * There is an issue with some firmware versions that triggers
   4631 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4632 	 * on a radar channel even though this means that we should NOT
   4633 	 * send probes.
   4634 	 *
   4635 	 * The "good CRC threshold" is the number of frames that we
   4636 	 * need to receive during our dwell time on a channel before
   4637 	 * sending out probes -- setting this to a huge value will
   4638 	 * mean we never reach it, but at the same time work around
   4639 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4640 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4641 	 *
   4642 	 * This was fixed in later versions along with some other
   4643 	 * scan changes, and the threshold behaves as a flag in those
   4644 	 * versions.
   4645 	 */
   4646 
   4647 	/*
   4648 	 * If we're doing active scanning, set the crc_threshold
   4649 	 * to a suitable value.  This is different to active veruss
   4650 	 * passive scanning depending upon the channel flags; the
   4651 	 * firmware will obey that particular check for us.
   4652 	 */
   4653 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4654 		hdr->crc_threshold = is_active ?
   4655 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4656 	else
   4657 		hdr->crc_threshold = is_active ?
   4658 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4659 
   4660 	chan = (struct iwn_scan_chan *)frm;
   4661 	for (c  = &ic->ic_channels[1];
   4662 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4663 		if ((c->ic_flags & flags) != flags)
   4664 			continue;
   4665 
   4666 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4667 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4668 		chan->flags = 0;
   4669 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4670 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4671 		if (ic->ic_des_esslen != 0)
   4672 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4673 
   4674 		/*
   4675 		 * Calculate the active/passive dwell times.
   4676 		 */
   4677 
   4678 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4679 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4680 
   4681 		/* Make sure they're valid */
   4682 		if (dwell_passive <= dwell_active)
   4683 			dwell_passive = dwell_active + 1;
   4684 
   4685 		chan->active = htole16(dwell_active);
   4686 		chan->passive = htole16(dwell_passive);
   4687 
   4688 		chan->dsp_gain = 0x6e;
   4689 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4690 			chan->rf_gain = 0x3b;
   4691 		} else {
   4692 			chan->rf_gain = 0x28;
   4693 		}
   4694 		hdr->nchan++;
   4695 		chan++;
   4696 	}
   4697 
   4698 	buflen = (uint8_t *)chan - buf;
   4699 	hdr->len = htole16(buflen);
   4700 
   4701 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4702 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4703 	free(buf, M_DEVBUF);
   4704 	return error;
   4705 }
   4706 
   4707 static int
   4708 iwn_auth(struct iwn_softc *sc)
   4709 {
   4710 	struct iwn_ops *ops = &sc->ops;
   4711 	struct ieee80211com *ic = &sc->sc_ic;
   4712 	struct ieee80211_node *ni = ic->ic_bss;
   4713 	int error;
   4714 
   4715 	/* Update adapter configuration. */
   4716 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4717 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4718 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4719 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4720 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4721 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4722 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4723 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4724 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4725 	switch (ic->ic_curmode) {
   4726 	case IEEE80211_MODE_11A:
   4727 		sc->rxon.cck_mask  = 0;
   4728 		sc->rxon.ofdm_mask = 0x15;
   4729 		break;
   4730 	case IEEE80211_MODE_11B:
   4731 		sc->rxon.cck_mask  = 0x03;
   4732 		sc->rxon.ofdm_mask = 0;
   4733 		break;
   4734 	default:	/* Assume 802.11b/g. */
   4735 		sc->rxon.cck_mask  = 0x0f;
   4736 		sc->rxon.ofdm_mask = 0x15;
   4737 	}
   4738 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4739 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4740 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4741 	if (error != 0) {
   4742 		aprint_error_dev(sc->sc_dev,
   4743 		    "RXON command failed\n");
   4744 		return error;
   4745 	}
   4746 
   4747 	/* Configuration has changed, set TX power accordingly. */
   4748 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4749 		aprint_error_dev(sc->sc_dev,
   4750 		    "could not set TX power\n");
   4751 		return error;
   4752 	}
   4753 	/*
   4754 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4755 	 * add the broadcast node again.
   4756 	 */
   4757 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4758 		aprint_error_dev(sc->sc_dev,
   4759 		    "could not add broadcast node\n");
   4760 		return error;
   4761 	}
   4762 	return 0;
   4763 }
   4764 
   4765 static int
   4766 iwn_run(struct iwn_softc *sc)
   4767 {
   4768 	struct iwn_ops *ops = &sc->ops;
   4769 	struct ieee80211com *ic = &sc->sc_ic;
   4770 	struct ieee80211_node *ni = ic->ic_bss;
   4771 	struct iwn_node_info node;
   4772 	int error;
   4773 
   4774 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4775 		/* Link LED blinks while monitoring. */
   4776 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4777 		return 0;
   4778 	}
   4779 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4780 		aprint_error_dev(sc->sc_dev,
   4781 		    "could not set timing\n");
   4782 		return error;
   4783 	}
   4784 
   4785 	/* Update adapter configuration. */
   4786 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4787 	/* Short preamble and slot time are negotiated when associating. */
   4788 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4789 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4790 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4791 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4792 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4793 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4794 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4795 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4796 	if (error != 0) {
   4797 		aprint_error_dev(sc->sc_dev,
   4798 		    "could not update configuration\n");
   4799 		return error;
   4800 	}
   4801 
   4802 	/* Configuration has changed, set TX power accordingly. */
   4803 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4804 		aprint_error_dev(sc->sc_dev,
   4805 		    "could not set TX power\n");
   4806 		return error;
   4807 	}
   4808 
   4809 	/* Fake a join to initialize the TX rate. */
   4810 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4811 	iwn_newassoc(ni, 1);
   4812 
   4813 	/* Add BSS node. */
   4814 	memset(&node, 0, sizeof node);
   4815 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4816 	node.id = IWN_ID_BSS;
   4817 #ifdef notyet
   4818 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4819 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4820 #endif
   4821 	DPRINTF(("adding BSS node\n"));
   4822 	error = ops->add_node(sc, &node, 1);
   4823 	if (error != 0) {
   4824 		aprint_error_dev(sc->sc_dev,
   4825 		    "could not add BSS node\n");
   4826 		return error;
   4827 	}
   4828 	DPRINTF(("setting link quality for node %d\n", node.id));
   4829 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4830 		aprint_error_dev(sc->sc_dev,
   4831 		    "could not setup link quality for node %d\n", node.id);
   4832 		return error;
   4833 	}
   4834 
   4835 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4836 		aprint_error_dev(sc->sc_dev,
   4837 		    "could not set sensitivity\n");
   4838 		return error;
   4839 	}
   4840 	/* Start periodic calibration timer. */
   4841 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4842 	sc->calib_cnt = 0;
   4843 	callout_schedule(&sc->calib_to, hz/2);
   4844 
   4845 	/* Link LED always on while associated. */
   4846 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4847 	return 0;
   4848 }
   4849 
   4850 #ifdef IWN_HWCRYPTO
   4851 /*
   4852  * We support CCMP hardware encryption/decryption of unicast frames only.
   4853  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4854  */
   4855 static int
   4856 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4857     struct ieee80211_key *k)
   4858 {
   4859 	struct iwn_softc *sc = ic->ic_softc;
   4860 	struct iwn_ops *ops = &sc->ops;
   4861 	struct iwn_node *wn = (void *)ni;
   4862 	struct iwn_node_info node;
   4863 	uint16_t kflags;
   4864 
   4865 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4866 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4867 		return ieee80211_set_key(ic, ni, k);
   4868 
   4869 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4870 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4871 		kflags |= IWN_KFLAG_GROUP;
   4872 
   4873 	memset(&node, 0, sizeof node);
   4874 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4875 	    sc->broadcast_id : wn->id;
   4876 	node.control = IWN_NODE_UPDATE;
   4877 	node.flags = IWN_FLAG_SET_KEY;
   4878 	node.kflags = htole16(kflags);
   4879 	node.kid = k->k_id;
   4880 	memcpy(node.key, k->k_key, k->k_len);
   4881 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4882 	return ops->add_node(sc, &node, 1);
   4883 }
   4884 
   4885 static void
   4886 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4887     struct ieee80211_key *k)
   4888 {
   4889 	struct iwn_softc *sc = ic->ic_softc;
   4890 	struct iwn_ops *ops = &sc->ops;
   4891 	struct iwn_node *wn = (void *)ni;
   4892 	struct iwn_node_info node;
   4893 
   4894 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4895 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4896 		/* See comment about other ciphers above. */
   4897 		ieee80211_delete_key(ic, ni, k);
   4898 		return;
   4899 	}
   4900 	if (ic->ic_state != IEEE80211_S_RUN)
   4901 		return;	/* Nothing to do. */
   4902 	memset(&node, 0, sizeof node);
   4903 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4904 	    sc->broadcast_id : wn->id;
   4905 	node.control = IWN_NODE_UPDATE;
   4906 	node.flags = IWN_FLAG_SET_KEY;
   4907 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4908 	node.kid = 0xff;
   4909 	DPRINTF(("delete keys for node %d\n", node.id));
   4910 	(void)ops->add_node(sc, &node, 1);
   4911 }
   4912 #endif
   4913 
   4914 /* XXX Added for NetBSD (copied from rev 1.39). */
   4915 
   4916 static int
   4917 iwn_wme_update(struct ieee80211com *ic)
   4918 {
   4919 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4920 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4921 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4922 	const struct wmeParams *wmep;
   4923 	struct iwn_edca_params cmd;
   4924 	int ac;
   4925 
   4926 	/* don't override default WME values if WME is not actually enabled */
   4927 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4928 		return 0;
   4929 	cmd.flags = 0;
   4930 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4931 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4932 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4933 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4934 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4935 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4936 
   4937 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4938 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4939 					cmd.ac[ac].cwmin,
   4940 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4941 	}
   4942 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4943 #undef IWN_USEC
   4944 #undef IWN_EXP2
   4945 }
   4946 
   4947 #ifndef IEEE80211_NO_HT
   4948 /*
   4949  * This function is called by upper layer when an ADDBA request is received
   4950  * from another STA and before the ADDBA response is sent.
   4951  */
   4952 static int
   4953 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   4954     uint8_t tid)
   4955 {
   4956 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   4957 	struct iwn_softc *sc = ic->ic_softc;
   4958 	struct iwn_ops *ops = &sc->ops;
   4959 	struct iwn_node *wn = (void *)ni;
   4960 	struct iwn_node_info node;
   4961 
   4962 	memset(&node, 0, sizeof node);
   4963 	node.id = wn->id;
   4964 	node.control = IWN_NODE_UPDATE;
   4965 	node.flags = IWN_FLAG_SET_ADDBA;
   4966 	node.addba_tid = tid;
   4967 	node.addba_ssn = htole16(ba->ba_winstart);
   4968 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   4969 	    ba->ba_winstart));
   4970 	return ops->add_node(sc, &node, 1);
   4971 }
   4972 
   4973 /*
   4974  * This function is called by upper layer on teardown of an HT-immediate
   4975  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   4976  */
   4977 static void
   4978 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   4979     uint8_t tid)
   4980 {
   4981 	struct iwn_softc *sc = ic->ic_softc;
   4982 	struct iwn_ops *ops = &sc->ops;
   4983 	struct iwn_node *wn = (void *)ni;
   4984 	struct iwn_node_info node;
   4985 
   4986 	memset(&node, 0, sizeof node);
   4987 	node.id = wn->id;
   4988 	node.control = IWN_NODE_UPDATE;
   4989 	node.flags = IWN_FLAG_SET_DELBA;
   4990 	node.delba_tid = tid;
   4991 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   4992 	(void)ops->add_node(sc, &node, 1);
   4993 }
   4994 
   4995 /*
   4996  * This function is called by upper layer when an ADDBA response is received
   4997  * from another STA.
   4998  */
   4999 static int
   5000 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5001     uint8_t tid)
   5002 {
   5003 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5004 	struct iwn_softc *sc = ic->ic_softc;
   5005 	struct iwn_ops *ops = &sc->ops;
   5006 	struct iwn_node *wn = (void *)ni;
   5007 	struct iwn_node_info node;
   5008 	int error;
   5009 
   5010 	/* Enable TX for the specified RA/TID. */
   5011 	wn->disable_tid &= ~(1 << tid);
   5012 	memset(&node, 0, sizeof node);
   5013 	node.id = wn->id;
   5014 	node.control = IWN_NODE_UPDATE;
   5015 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5016 	node.disable_tid = htole16(wn->disable_tid);
   5017 	error = ops->add_node(sc, &node, 1);
   5018 	if (error != 0)
   5019 		return error;
   5020 
   5021 	if ((error = iwn_nic_lock(sc)) != 0)
   5022 		return error;
   5023 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5024 	iwn_nic_unlock(sc);
   5025 	return 0;
   5026 }
   5027 
   5028 static void
   5029 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5030     uint8_t tid)
   5031 {
   5032 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5033 	struct iwn_softc *sc = ic->ic_softc;
   5034 	struct iwn_ops *ops = &sc->ops;
   5035 
   5036 	if (iwn_nic_lock(sc) != 0)
   5037 		return;
   5038 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5039 	iwn_nic_unlock(sc);
   5040 }
   5041 
   5042 static void
   5043 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5044     uint8_t tid, uint16_t ssn)
   5045 {
   5046 	struct iwn_node *wn = (void *)ni;
   5047 	int qid = 7 + tid;
   5048 
   5049 	/* Stop TX scheduler while we're changing its configuration. */
   5050 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5051 	    IWN4965_TXQ_STATUS_CHGACT);
   5052 
   5053 	/* Assign RA/TID translation to the queue. */
   5054 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5055 	    wn->id << 4 | tid);
   5056 
   5057 	/* Enable chain-building mode for the queue. */
   5058 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5059 
   5060 	/* Set starting sequence number from the ADDBA request. */
   5061 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5062 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5063 
   5064 	/* Set scheduler window size. */
   5065 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5066 	    IWN_SCHED_WINSZ);
   5067 	/* Set scheduler frame limit. */
   5068 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5069 	    IWN_SCHED_LIMIT << 16);
   5070 
   5071 	/* Enable interrupts for the queue. */
   5072 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5073 
   5074 	/* Mark the queue as active. */
   5075 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5076 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5077 	    iwn_tid2fifo[tid] << 1);
   5078 }
   5079 
   5080 static void
   5081 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5082 {
   5083 	int qid = 7 + tid;
   5084 
   5085 	/* Stop TX scheduler while we're changing its configuration. */
   5086 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5087 	    IWN4965_TXQ_STATUS_CHGACT);
   5088 
   5089 	/* Set starting sequence number from the ADDBA request. */
   5090 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5091 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5092 
   5093 	/* Disable interrupts for the queue. */
   5094 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5095 
   5096 	/* Mark the queue as inactive. */
   5097 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5098 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5099 }
   5100 
   5101 static void
   5102 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5103     uint8_t tid, uint16_t ssn)
   5104 {
   5105 	struct iwn_node *wn = (void *)ni;
   5106 	int qid = 10 + tid;
   5107 
   5108 	/* Stop TX scheduler while we're changing its configuration. */
   5109 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5110 	    IWN5000_TXQ_STATUS_CHGACT);
   5111 
   5112 	/* Assign RA/TID translation to the queue. */
   5113 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5114 	    wn->id << 4 | tid);
   5115 
   5116 	/* Enable chain-building mode for the queue. */
   5117 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5118 
   5119 	/* Enable aggregation for the queue. */
   5120 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5121 
   5122 	/* Set starting sequence number from the ADDBA request. */
   5123 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5124 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5125 
   5126 	/* Set scheduler window size and frame limit. */
   5127 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5128 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5129 
   5130 	/* Enable interrupts for the queue. */
   5131 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5132 
   5133 	/* Mark the queue as active. */
   5134 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5135 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5136 }
   5137 
   5138 static void
   5139 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5140 {
   5141 	int qid = 10 + tid;
   5142 
   5143 	/* Stop TX scheduler while we're changing its configuration. */
   5144 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5145 	    IWN5000_TXQ_STATUS_CHGACT);
   5146 
   5147 	/* Disable aggregation for the queue. */
   5148 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5149 
   5150 	/* Set starting sequence number from the ADDBA request. */
   5151 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5152 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5153 
   5154 	/* Disable interrupts for the queue. */
   5155 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5156 
   5157 	/* Mark the queue as inactive. */
   5158 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5159 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5160 }
   5161 #endif	/* !IEEE80211_NO_HT */
   5162 
   5163 /*
   5164  * Query calibration tables from the initialization firmware.  We do this
   5165  * only once at first boot.  Called from a process context.
   5166  */
   5167 static int
   5168 iwn5000_query_calibration(struct iwn_softc *sc)
   5169 {
   5170 	struct iwn5000_calib_config cmd;
   5171 	int error;
   5172 
   5173 	memset(&cmd, 0, sizeof cmd);
   5174 	cmd.ucode.once.enable = 0xffffffff;
   5175 	cmd.ucode.once.start  = 0xffffffff;
   5176 	cmd.ucode.once.send   = 0xffffffff;
   5177 	cmd.ucode.flags       = 0xffffffff;
   5178 	DPRINTF(("sending calibration query\n"));
   5179 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5180 	if (error != 0)
   5181 		return error;
   5182 
   5183 	/* Wait at most two seconds for calibration to complete. */
   5184 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5185 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5186 	return error;
   5187 }
   5188 
   5189 /*
   5190  * Send calibration results to the runtime firmware.  These results were
   5191  * obtained on first boot from the initialization firmware.
   5192  */
   5193 static int
   5194 iwn5000_send_calibration(struct iwn_softc *sc)
   5195 {
   5196 	int idx, error;
   5197 
   5198 	for (idx = 0; idx < 5; idx++) {
   5199 		if (sc->calibcmd[idx].buf == NULL)
   5200 			continue;	/* No results available. */
   5201 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5202 		    idx, sc->calibcmd[idx].len));
   5203 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5204 		    sc->calibcmd[idx].len, 0);
   5205 		if (error != 0) {
   5206 			aprint_error_dev(sc->sc_dev,
   5207 			    "could not send calibration result\n");
   5208 			return error;
   5209 		}
   5210 	}
   5211 	return 0;
   5212 }
   5213 
   5214 static int
   5215 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5216 {
   5217 	struct iwn5000_wimax_coex wimax;
   5218 
   5219 #ifdef notyet
   5220 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5221 		/* Enable WiMAX coexistence for combo adapters. */
   5222 		wimax.flags =
   5223 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5224 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5225 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5226 		    IWN_WIMAX_COEX_ENABLE;
   5227 		memcpy(wimax.events, iwn6050_wimax_events,
   5228 		    sizeof iwn6050_wimax_events);
   5229 	} else
   5230 #endif
   5231 	{
   5232 		/* Disable WiMAX coexistence. */
   5233 		wimax.flags = 0;
   5234 		memset(wimax.events, 0, sizeof wimax.events);
   5235 	}
   5236 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5237 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5238 }
   5239 
   5240 static int
   5241 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5242 {
   5243 	struct iwn6000_phy_calib_temp_offset cmd;
   5244 
   5245 	memset(&cmd, 0, sizeof cmd);
   5246 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5247 	cmd.ngroups = 1;
   5248 	cmd.isvalid = 1;
   5249 	if (sc->eeprom_temp != 0)
   5250 		cmd.offset = htole16(sc->eeprom_temp);
   5251 	else
   5252 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5253 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5254 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5255 }
   5256 
   5257 static int
   5258 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5259 {
   5260 	struct iwn2000_phy_calib_temp_offset cmd;
   5261 
   5262 	memset(&cmd, 0, sizeof cmd);
   5263 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5264 	cmd.ngroups = 1;
   5265 	cmd.isvalid = 1;
   5266 	if (sc->eeprom_rawtemp != 0) {
   5267 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5268 		cmd.offset_high = htole16(sc->eeprom_temp);
   5269 	} else {
   5270 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5271 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5272 	}
   5273 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5274 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5275 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5276 	    le16toh(cmd.burnt_voltage_ref)));
   5277 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5278 }
   5279 
   5280 /*
   5281  * This function is called after the runtime firmware notifies us of its
   5282  * readiness (called in a process context).
   5283  */
   5284 static int
   5285 iwn4965_post_alive(struct iwn_softc *sc)
   5286 {
   5287 	int error, qid;
   5288 
   5289 	if ((error = iwn_nic_lock(sc)) != 0)
   5290 		return error;
   5291 
   5292 	/* Clear TX scheduler state in SRAM. */
   5293 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5294 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5295 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5296 
   5297 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5298 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5299 
   5300 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5301 
   5302 	/* Disable chain mode for all our 16 queues. */
   5303 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5304 
   5305 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5306 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5307 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5308 
   5309 		/* Set scheduler window size. */
   5310 		iwn_mem_write(sc, sc->sched_base +
   5311 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5312 		/* Set scheduler frame limit. */
   5313 		iwn_mem_write(sc, sc->sched_base +
   5314 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5315 		    IWN_SCHED_LIMIT << 16);
   5316 	}
   5317 
   5318 	/* Enable interrupts for all our 16 queues. */
   5319 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5320 	/* Identify TX FIFO rings (0-7). */
   5321 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5322 
   5323 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5324 	for (qid = 0; qid < 7; qid++) {
   5325 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5326 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5327 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5328 	}
   5329 	iwn_nic_unlock(sc);
   5330 	return 0;
   5331 }
   5332 
   5333 /*
   5334  * This function is called after the initialization or runtime firmware
   5335  * notifies us of its readiness (called in a process context).
   5336  */
   5337 static int
   5338 iwn5000_post_alive(struct iwn_softc *sc)
   5339 {
   5340 	int error, qid;
   5341 
   5342 	/* Switch to using ICT interrupt mode. */
   5343 	iwn5000_ict_reset(sc);
   5344 
   5345 	if ((error = iwn_nic_lock(sc)) != 0)
   5346 		return error;
   5347 
   5348 	/* Clear TX scheduler state in SRAM. */
   5349 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5350 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5351 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5352 
   5353 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5354 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5355 
   5356 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5357 
   5358 	/* Enable chain mode for all queues, except command queue. */
   5359 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5360 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5361 
   5362 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5363 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5364 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5365 
   5366 		iwn_mem_write(sc, sc->sched_base +
   5367 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5368 		/* Set scheduler window size and frame limit. */
   5369 		iwn_mem_write(sc, sc->sched_base +
   5370 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5371 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5372 	}
   5373 
   5374 	/* Enable interrupts for all our 20 queues. */
   5375 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5376 	/* Identify TX FIFO rings (0-7). */
   5377 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5378 
   5379 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5380 	for (qid = 0; qid < 7; qid++) {
   5381 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5382 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5383 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5384 	}
   5385 	iwn_nic_unlock(sc);
   5386 
   5387 	/* Configure WiMAX coexistence for combo adapters. */
   5388 	error = iwn5000_send_wimax_coex(sc);
   5389 	if (error != 0) {
   5390 		aprint_error_dev(sc->sc_dev,
   5391 		    "could not configure WiMAX coexistence\n");
   5392 		return error;
   5393 	}
   5394 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5395 		struct iwn5000_phy_calib_crystal cmd;
   5396 
   5397 		/* Perform crystal calibration. */
   5398 		memset(&cmd, 0, sizeof cmd);
   5399 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5400 		cmd.ngroups = 1;
   5401 		cmd.isvalid = 1;
   5402 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5403 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5404 		DPRINTF(("sending crystal calibration %d, %d\n",
   5405 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5406 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5407 		if (error != 0) {
   5408 			aprint_error_dev(sc->sc_dev,
   5409 			    "crystal calibration failed\n");
   5410 			return error;
   5411 		}
   5412 	}
   5413 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5414 		/* Query calibration from the initialization firmware. */
   5415 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5416 			aprint_error_dev(sc->sc_dev,
   5417 			    "could not query calibration\n");
   5418 			return error;
   5419 		}
   5420 		/*
   5421 		 * We have the calibration results now, reboot with the
   5422 		 * runtime firmware (call ourselves recursively!)
   5423 		 */
   5424 		iwn_hw_stop(sc);
   5425 		error = iwn_hw_init(sc);
   5426 	} else {
   5427 		/* Send calibration results to runtime firmware. */
   5428 		error = iwn5000_send_calibration(sc);
   5429 	}
   5430 	return error;
   5431 }
   5432 
   5433 /*
   5434  * The firmware boot code is small and is intended to be copied directly into
   5435  * the NIC internal memory (no DMA transfer).
   5436  */
   5437 static int
   5438 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5439 {
   5440 	int error, ntries;
   5441 
   5442 	size /= sizeof (uint32_t);
   5443 
   5444 	if ((error = iwn_nic_lock(sc)) != 0)
   5445 		return error;
   5446 
   5447 	/* Copy microcode image into NIC memory. */
   5448 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5449 	    (const uint32_t *)ucode, size);
   5450 
   5451 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5452 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5453 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5454 
   5455 	/* Start boot load now. */
   5456 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5457 
   5458 	/* Wait for transfer to complete. */
   5459 	for (ntries = 0; ntries < 1000; ntries++) {
   5460 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5461 		    IWN_BSM_WR_CTRL_START))
   5462 			break;
   5463 		DELAY(10);
   5464 	}
   5465 	if (ntries == 1000) {
   5466 		aprint_error_dev(sc->sc_dev,
   5467 		    "could not load boot firmware\n");
   5468 		iwn_nic_unlock(sc);
   5469 		return ETIMEDOUT;
   5470 	}
   5471 
   5472 	/* Enable boot after power up. */
   5473 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5474 
   5475 	iwn_nic_unlock(sc);
   5476 	return 0;
   5477 }
   5478 
   5479 static int
   5480 iwn4965_load_firmware(struct iwn_softc *sc)
   5481 {
   5482 	struct iwn_fw_info *fw = &sc->fw;
   5483 	struct iwn_dma_info *dma = &sc->fw_dma;
   5484 	int error;
   5485 
   5486 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5487 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5488 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5489 	    BUS_DMASYNC_PREWRITE);
   5490 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5491 	    fw->init.text, fw->init.textsz);
   5492 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5493 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5494 
   5495 	/* Tell adapter where to find initialization sections. */
   5496 	if ((error = iwn_nic_lock(sc)) != 0)
   5497 		return error;
   5498 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5499 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5500 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5501 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5502 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5503 	iwn_nic_unlock(sc);
   5504 
   5505 	/* Load firmware boot code. */
   5506 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5507 	if (error != 0) {
   5508 		aprint_error_dev(sc->sc_dev,
   5509 		    "could not load boot firmware\n");
   5510 		return error;
   5511 	}
   5512 	/* Now press "execute". */
   5513 	IWN_WRITE(sc, IWN_RESET, 0);
   5514 
   5515 	/* Wait at most one second for first alive notification. */
   5516 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5517 		aprint_error_dev(sc->sc_dev,
   5518 		    "timeout waiting for adapter to initialize\n");
   5519 		return error;
   5520 	}
   5521 
   5522 	/* Retrieve current temperature for initial TX power calibration. */
   5523 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5524 	sc->temp = iwn4965_get_temperature(sc);
   5525 
   5526 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5527 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5528 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5529 	    BUS_DMASYNC_PREWRITE);
   5530 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5531 	    fw->main.text, fw->main.textsz);
   5532 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5533 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5534 
   5535 	/* Tell adapter where to find runtime sections. */
   5536 	if ((error = iwn_nic_lock(sc)) != 0)
   5537 		return error;
   5538 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5539 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5540 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5541 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5542 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5543 	    IWN_FW_UPDATED | fw->main.textsz);
   5544 	iwn_nic_unlock(sc);
   5545 
   5546 	return 0;
   5547 }
   5548 
   5549 static int
   5550 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5551     const uint8_t *section, int size)
   5552 {
   5553 	struct iwn_dma_info *dma = &sc->fw_dma;
   5554 	int error;
   5555 
   5556 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5557 	memcpy(dma->vaddr, section, size);
   5558 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5559 
   5560 	if ((error = iwn_nic_lock(sc)) != 0)
   5561 		return error;
   5562 
   5563 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5564 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5565 
   5566 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5567 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5568 	    IWN_LOADDR(dma->paddr));
   5569 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5570 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5571 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5572 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5573 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5574 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5575 
   5576 	/* Kick Flow Handler to start DMA transfer. */
   5577 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5578 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5579 
   5580 	iwn_nic_unlock(sc);
   5581 
   5582 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5583 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5584 }
   5585 
   5586 static int
   5587 iwn5000_load_firmware(struct iwn_softc *sc)
   5588 {
   5589 	struct iwn_fw_part *fw;
   5590 	int error;
   5591 
   5592 	/* Load the initialization firmware on first boot only. */
   5593 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5594 	    &sc->fw.main : &sc->fw.init;
   5595 
   5596 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5597 	    fw->text, fw->textsz);
   5598 	if (error != 0) {
   5599 		aprint_error_dev(sc->sc_dev,
   5600 		    "could not load firmware %s section\n", ".text");
   5601 		return error;
   5602 	}
   5603 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5604 	    fw->data, fw->datasz);
   5605 	if (error != 0) {
   5606 		aprint_error_dev(sc->sc_dev,
   5607 		    "could not load firmware %s section\n", ".data");
   5608 		return error;
   5609 	}
   5610 
   5611 	/* Now press "execute". */
   5612 	IWN_WRITE(sc, IWN_RESET, 0);
   5613 	return 0;
   5614 }
   5615 
   5616 /*
   5617  * Extract text and data sections from a legacy firmware image.
   5618  */
   5619 static int
   5620 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5621 {
   5622 	const uint32_t *ptr;
   5623 	size_t hdrlen = 24;
   5624 	uint32_t rev;
   5625 
   5626 	ptr = (const uint32_t *)fw->data;
   5627 	rev = le32toh(*ptr++);
   5628 
   5629 	/* Check firmware API version. */
   5630 	if (IWN_FW_API(rev) <= 1) {
   5631 		aprint_error_dev(sc->sc_dev,
   5632 		    "bad firmware, need API version >=2\n");
   5633 		return EINVAL;
   5634 	}
   5635 	if (IWN_FW_API(rev) >= 3) {
   5636 		/* Skip build number (version 2 header). */
   5637 		hdrlen += 4;
   5638 		ptr++;
   5639 	}
   5640 	if (fw->size < hdrlen) {
   5641 		aprint_error_dev(sc->sc_dev,
   5642 		    "firmware too short: %zd bytes\n", fw->size);
   5643 		return EINVAL;
   5644 	}
   5645 	fw->main.textsz = le32toh(*ptr++);
   5646 	fw->main.datasz = le32toh(*ptr++);
   5647 	fw->init.textsz = le32toh(*ptr++);
   5648 	fw->init.datasz = le32toh(*ptr++);
   5649 	fw->boot.textsz = le32toh(*ptr++);
   5650 
   5651 	/* Check that all firmware sections fit. */
   5652 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5653 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5654 		aprint_error_dev(sc->sc_dev,
   5655 		    "firmware too short: %zd bytes\n", fw->size);
   5656 		return EINVAL;
   5657 	}
   5658 
   5659 	/* Get pointers to firmware sections. */
   5660 	fw->main.text = (const uint8_t *)ptr;
   5661 	fw->main.data = fw->main.text + fw->main.textsz;
   5662 	fw->init.text = fw->main.data + fw->main.datasz;
   5663 	fw->init.data = fw->init.text + fw->init.textsz;
   5664 	fw->boot.text = fw->init.data + fw->init.datasz;
   5665 	return 0;
   5666 }
   5667 
   5668 /*
   5669  * Extract text and data sections from a TLV firmware image.
   5670  */
   5671 static int
   5672 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5673     uint16_t alt)
   5674 {
   5675 	const struct iwn_fw_tlv_hdr *hdr;
   5676 	const struct iwn_fw_tlv *tlv;
   5677 	const uint8_t *ptr, *end;
   5678 	uint64_t altmask;
   5679 	uint32_t len;
   5680 
   5681 	if (fw->size < sizeof (*hdr)) {
   5682 		aprint_error_dev(sc->sc_dev,
   5683 		    "firmware too short: %zd bytes\n", fw->size);
   5684 		return EINVAL;
   5685 	}
   5686 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5687 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5688 		aprint_error_dev(sc->sc_dev,
   5689 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5690 		return EINVAL;
   5691 	}
   5692 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5693 	    le32toh(hdr->build)));
   5694 
   5695 	/*
   5696 	 * Select the closest supported alternative that is less than
   5697 	 * or equal to the specified one.
   5698 	 */
   5699 	altmask = le64toh(hdr->altmask);
   5700 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5701 		alt--;	/* Downgrade. */
   5702 	DPRINTF(("using alternative %d\n", alt));
   5703 
   5704 	ptr = (const uint8_t *)(hdr + 1);
   5705 	end = (const uint8_t *)(fw->data + fw->size);
   5706 
   5707 	/* Parse type-length-value fields. */
   5708 	while (ptr + sizeof (*tlv) <= end) {
   5709 		tlv = (const struct iwn_fw_tlv *)ptr;
   5710 		len = le32toh(tlv->len);
   5711 
   5712 		ptr += sizeof (*tlv);
   5713 		if (ptr + len > end) {
   5714 			aprint_error_dev(sc->sc_dev,
   5715 			    "firmware too short: %zd bytes\n", fw->size);
   5716 			return EINVAL;
   5717 		}
   5718 		/* Skip other alternatives. */
   5719 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5720 			goto next;
   5721 
   5722 		switch (le16toh(tlv->type)) {
   5723 		case IWN_FW_TLV_MAIN_TEXT:
   5724 			fw->main.text = ptr;
   5725 			fw->main.textsz = len;
   5726 			break;
   5727 		case IWN_FW_TLV_MAIN_DATA:
   5728 			fw->main.data = ptr;
   5729 			fw->main.datasz = len;
   5730 			break;
   5731 		case IWN_FW_TLV_INIT_TEXT:
   5732 			fw->init.text = ptr;
   5733 			fw->init.textsz = len;
   5734 			break;
   5735 		case IWN_FW_TLV_INIT_DATA:
   5736 			fw->init.data = ptr;
   5737 			fw->init.datasz = len;
   5738 			break;
   5739 		case IWN_FW_TLV_BOOT_TEXT:
   5740 			fw->boot.text = ptr;
   5741 			fw->boot.textsz = len;
   5742 			break;
   5743 		case IWN_FW_TLV_ENH_SENS:
   5744 			if (len != 0) {
   5745 				aprint_error_dev(sc->sc_dev,
   5746 				    "TLV type %d has invalid size %u\n",
   5747 				    le16toh(tlv->type), len);
   5748 				goto next;
   5749 			}
   5750 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5751 			break;
   5752 		case IWN_FW_TLV_PHY_CALIB:
   5753 			if (len != sizeof(uint32_t)) {
   5754 				aprint_error_dev(sc->sc_dev,
   5755 				    "TLV type %d has invalid size %u\n",
   5756 				    le16toh(tlv->type), len);
   5757 				goto next;
   5758 			}
   5759 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5760 				sc->reset_noise_gain = le32toh(*ptr);
   5761 				sc->noise_gain = le32toh(*ptr) + 1;
   5762 			}
   5763 			break;
   5764 		case IWN_FW_TLV_FLAGS:
   5765 			if (len < sizeof(uint32_t))
   5766 				break;
   5767 			if (len % sizeof(uint32_t))
   5768 				break;
   5769 			sc->tlv_feature_flags = le32toh(*ptr);
   5770 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5771 			break;
   5772 		default:
   5773 			DPRINTF(("TLV type %d not handled\n",
   5774 			    le16toh(tlv->type)));
   5775 			break;
   5776 		}
   5777  next:		/* TLV fields are 32-bit aligned. */
   5778 		ptr += (len + 3) & ~3;
   5779 	}
   5780 	return 0;
   5781 }
   5782 
   5783 static int
   5784 iwn_read_firmware(struct iwn_softc *sc)
   5785 {
   5786 	struct iwn_fw_info *fw = &sc->fw;
   5787 	firmware_handle_t fwh;
   5788 	int error;
   5789 
   5790 	/*
   5791 	 * Some PHY calibration commands are firmware-dependent; these
   5792 	 * are the default values that will be overridden if
   5793 	 * necessary.
   5794 	 */
   5795 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5796 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5797 
   5798 	/* Initialize for error returns */
   5799 	fw->data = NULL;
   5800 	fw->size = 0;
   5801 
   5802 	/* Open firmware image. */
   5803 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5804 		aprint_error_dev(sc->sc_dev,
   5805 		    "could not get firmware handle %s\n", sc->fwname);
   5806 		return error;
   5807 	}
   5808 	fw->size = firmware_get_size(fwh);
   5809 	if (fw->size < sizeof (uint32_t)) {
   5810 		aprint_error_dev(sc->sc_dev,
   5811 		    "firmware too short: %zd bytes\n", fw->size);
   5812 		firmware_close(fwh);
   5813 		return EINVAL;
   5814 	}
   5815 
   5816 	/* Read the firmware. */
   5817 	fw->data = firmware_malloc(fw->size);
   5818 	if (fw->data == NULL) {
   5819 		aprint_error_dev(sc->sc_dev,
   5820 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5821 		firmware_close(fwh);
   5822 		return ENOMEM;
   5823 	}
   5824 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5825 	firmware_close(fwh);
   5826 	if (error != 0) {
   5827 		aprint_error_dev(sc->sc_dev,
   5828 		    "could not read firmware %s\n", sc->fwname);
   5829 		goto out;
   5830 	}
   5831 
   5832 	/* Retrieve text and data sections. */
   5833 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5834 		error = iwn_read_firmware_leg(sc, fw);
   5835 	else
   5836 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5837 	if (error != 0) {
   5838 		aprint_error_dev(sc->sc_dev,
   5839 		    "could not read firmware sections\n");
   5840 		goto out;
   5841 	}
   5842 
   5843 	/* Make sure text and data sections fit in hardware memory. */
   5844 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5845 	    fw->main.datasz > sc->fw_data_maxsz ||
   5846 	    fw->init.textsz > sc->fw_text_maxsz ||
   5847 	    fw->init.datasz > sc->fw_data_maxsz ||
   5848 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5849 	    (fw->boot.textsz & 3) != 0) {
   5850 		aprint_error_dev(sc->sc_dev,
   5851 		    "firmware sections too large\n");
   5852 		goto out;
   5853 	}
   5854 
   5855 	/* We can proceed with loading the firmware. */
   5856 	return 0;
   5857 out:
   5858 	firmware_free(fw->data, fw->size);
   5859 	fw->data = NULL;
   5860 	fw->size = 0;
   5861 	return error ? error : EINVAL;
   5862 }
   5863 
   5864 static int
   5865 iwn_clock_wait(struct iwn_softc *sc)
   5866 {
   5867 	int ntries;
   5868 
   5869 	/* Set "initialization complete" bit. */
   5870 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5871 
   5872 	/* Wait for clock stabilization. */
   5873 	for (ntries = 0; ntries < 2500; ntries++) {
   5874 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5875 			return 0;
   5876 		DELAY(10);
   5877 	}
   5878 	aprint_error_dev(sc->sc_dev,
   5879 	    "timeout waiting for clock stabilization\n");
   5880 	return ETIMEDOUT;
   5881 }
   5882 
   5883 static int
   5884 iwn_apm_init(struct iwn_softc *sc)
   5885 {
   5886 	pcireg_t reg;
   5887 	int error;
   5888 
   5889 	/* Disable L0s exit timer (NMI bug workaround). */
   5890 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5891 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5892 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5893 
   5894 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5895 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5896 
   5897 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5898 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5899 
   5900 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5901 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5902 	    sc->sc_cap_off + PCIE_LCSR);
   5903 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5904 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5905 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5906 	else
   5907 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5908 
   5909 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5910 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5911 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5912 
   5913 	/* Wait for clock stabilization before accessing prph. */
   5914 	if ((error = iwn_clock_wait(sc)) != 0)
   5915 		return error;
   5916 
   5917 	if ((error = iwn_nic_lock(sc)) != 0)
   5918 		return error;
   5919 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5920 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5921 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5922 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5923 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5924 	} else {
   5925 		/* Enable DMA. */
   5926 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5927 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5928 	}
   5929 	DELAY(20);
   5930 	/* Disable L1-Active. */
   5931 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5932 	iwn_nic_unlock(sc);
   5933 
   5934 	return 0;
   5935 }
   5936 
   5937 static void
   5938 iwn_apm_stop_master(struct iwn_softc *sc)
   5939 {
   5940 	int ntries;
   5941 
   5942 	/* Stop busmaster DMA activity. */
   5943 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5944 	for (ntries = 0; ntries < 100; ntries++) {
   5945 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5946 			return;
   5947 		DELAY(10);
   5948 	}
   5949 	aprint_error_dev(sc->sc_dev,
   5950 	    "timeout waiting for master\n");
   5951 }
   5952 
   5953 static void
   5954 iwn_apm_stop(struct iwn_softc *sc)
   5955 {
   5956 	iwn_apm_stop_master(sc);
   5957 
   5958 	/* Reset the entire device. */
   5959 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   5960 	DELAY(10);
   5961 	/* Clear "initialization complete" bit. */
   5962 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5963 }
   5964 
   5965 static int
   5966 iwn4965_nic_config(struct iwn_softc *sc)
   5967 {
   5968 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   5969 		/*
   5970 		 * I don't believe this to be correct but this is what the
   5971 		 * vendor driver is doing. Probably the bits should not be
   5972 		 * shifted in IWN_RFCFG_*.
   5973 		 */
   5974 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5975 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5976 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5977 		    IWN_RFCFG_DASH(sc->rfcfg));
   5978 	}
   5979 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5980 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5981 	return 0;
   5982 }
   5983 
   5984 static int
   5985 iwn5000_nic_config(struct iwn_softc *sc)
   5986 {
   5987 	uint32_t tmp;
   5988 	int error;
   5989 
   5990 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   5991 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5992 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   5993 		    IWN_RFCFG_STEP(sc->rfcfg) |
   5994 		    IWN_RFCFG_DASH(sc->rfcfg));
   5995 	}
   5996 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   5997 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   5998 
   5999 	if ((error = iwn_nic_lock(sc)) != 0)
   6000 		return error;
   6001 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6002 
   6003 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6004 		/*
   6005 		 * Select first Switching Voltage Regulator (1.32V) to
   6006 		 * solve a stability issue related to noisy DC2DC line
   6007 		 * in the silicon of 1000 Series.
   6008 		 */
   6009 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6010 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6011 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6012 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6013 	}
   6014 	iwn_nic_unlock(sc);
   6015 
   6016 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6017 		/* Use internal power amplifier only. */
   6018 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6019 	}
   6020 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6021 		sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6022 		/* Indicate that ROM calibration version is >=6. */
   6023 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6024 	}
   6025 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6026 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6027 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6028 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6029 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6030 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6031 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6032 	return 0;
   6033 }
   6034 
   6035 /*
   6036  * Take NIC ownership over Intel Active Management Technology (AMT).
   6037  */
   6038 static int
   6039 iwn_hw_prepare(struct iwn_softc *sc)
   6040 {
   6041 	int ntries;
   6042 
   6043 	/* Check if hardware is ready. */
   6044 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6045 	for (ntries = 0; ntries < 5; ntries++) {
   6046 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6047 		    IWN_HW_IF_CONFIG_NIC_READY)
   6048 			return 0;
   6049 		DELAY(10);
   6050 	}
   6051 
   6052 	/* Hardware not ready, force into ready state. */
   6053 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6054 	for (ntries = 0; ntries < 15000; ntries++) {
   6055 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6056 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6057 			break;
   6058 		DELAY(10);
   6059 	}
   6060 	if (ntries == 15000)
   6061 		return ETIMEDOUT;
   6062 
   6063 	/* Hardware should be ready now. */
   6064 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6065 	for (ntries = 0; ntries < 5; ntries++) {
   6066 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6067 		    IWN_HW_IF_CONFIG_NIC_READY)
   6068 			return 0;
   6069 		DELAY(10);
   6070 	}
   6071 	return ETIMEDOUT;
   6072 }
   6073 
   6074 static int
   6075 iwn_hw_init(struct iwn_softc *sc)
   6076 {
   6077 	struct iwn_ops *ops = &sc->ops;
   6078 	int error, chnl, qid;
   6079 
   6080 	/* Clear pending interrupts. */
   6081 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6082 
   6083 	if ((error = iwn_apm_init(sc)) != 0) {
   6084 		aprint_error_dev(sc->sc_dev,
   6085 		    "could not power ON adapter\n");
   6086 		return error;
   6087 	}
   6088 
   6089 	/* Select VMAIN power source. */
   6090 	if ((error = iwn_nic_lock(sc)) != 0)
   6091 		return error;
   6092 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6093 	iwn_nic_unlock(sc);
   6094 
   6095 	/* Perform adapter-specific initialization. */
   6096 	if ((error = ops->nic_config(sc)) != 0)
   6097 		return error;
   6098 
   6099 	/* Initialize RX ring. */
   6100 	if ((error = iwn_nic_lock(sc)) != 0)
   6101 		return error;
   6102 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6103 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6104 	/* Set physical address of RX ring (256-byte aligned). */
   6105 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6106 	/* Set physical address of RX status (16-byte aligned). */
   6107 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6108 	/* Enable RX. */
   6109 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6110 	    IWN_FH_RX_CONFIG_ENA           |
   6111 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6112 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6113 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6114 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6115 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6116 	iwn_nic_unlock(sc);
   6117 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6118 
   6119 	if ((error = iwn_nic_lock(sc)) != 0)
   6120 		return error;
   6121 
   6122 	/* Initialize TX scheduler. */
   6123 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6124 
   6125 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6126 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6127 
   6128 	/* Initialize TX rings. */
   6129 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6130 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6131 
   6132 		/* Set physical address of TX ring (256-byte aligned). */
   6133 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6134 		    txq->desc_dma.paddr >> 8);
   6135 	}
   6136 	iwn_nic_unlock(sc);
   6137 
   6138 	/* Enable DMA channels. */
   6139 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6140 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6141 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6142 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6143 	}
   6144 
   6145 	/* Clear "radio off" and "commands blocked" bits. */
   6146 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6147 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6148 
   6149 	/* Clear pending interrupts. */
   6150 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6151 	/* Enable interrupt coalescing. */
   6152 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6153 	/* Enable interrupts. */
   6154 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6155 
   6156 	/* _Really_ make sure "radio off" bit is cleared! */
   6157 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6158 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6159 
   6160 	/* Enable shadow registers. */
   6161 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6162 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6163 
   6164 	if ((error = ops->load_firmware(sc)) != 0) {
   6165 		aprint_error_dev(sc->sc_dev,
   6166 		    "could not load firmware\n");
   6167 		return error;
   6168 	}
   6169 	/* Wait at most one second for firmware alive notification. */
   6170 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6171 		aprint_error_dev(sc->sc_dev,
   6172 		    "timeout waiting for adapter to initialize\n");
   6173 		return error;
   6174 	}
   6175 	/* Do post-firmware initialization. */
   6176 	return ops->post_alive(sc);
   6177 }
   6178 
   6179 static void
   6180 iwn_hw_stop(struct iwn_softc *sc)
   6181 {
   6182 	int chnl, qid, ntries;
   6183 
   6184 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6185 
   6186 	/* Disable interrupts. */
   6187 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6188 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6189 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6190 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6191 
   6192 	/* Make sure we no longer hold the NIC lock. */
   6193 	iwn_nic_unlock(sc);
   6194 
   6195 	/* Stop TX scheduler. */
   6196 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6197 
   6198 	/* Stop all DMA channels. */
   6199 	if (iwn_nic_lock(sc) == 0) {
   6200 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6201 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6202 			for (ntries = 0; ntries < 200; ntries++) {
   6203 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6204 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6205 					break;
   6206 				DELAY(10);
   6207 			}
   6208 		}
   6209 		iwn_nic_unlock(sc);
   6210 	}
   6211 
   6212 	/* Stop RX ring. */
   6213 	iwn_reset_rx_ring(sc, &sc->rxq);
   6214 
   6215 	/* Reset all TX rings. */
   6216 	for (qid = 0; qid < sc->ntxqs; qid++)
   6217 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6218 
   6219 	if (iwn_nic_lock(sc) == 0) {
   6220 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6221 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6222 		iwn_nic_unlock(sc);
   6223 	}
   6224 	DELAY(5);
   6225 	/* Power OFF adapter. */
   6226 	iwn_apm_stop(sc);
   6227 }
   6228 
   6229 static int
   6230 iwn_init(struct ifnet *ifp)
   6231 {
   6232 	struct iwn_softc *sc = ifp->if_softc;
   6233 	struct ieee80211com *ic = &sc->sc_ic;
   6234 	int error;
   6235 
   6236 	mutex_enter(&sc->sc_mtx);
   6237 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6238 		goto out;
   6239 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6240 		aprint_error_dev(sc->sc_dev,
   6241 		    "hardware not ready\n");
   6242 		goto fail;
   6243 	}
   6244 
   6245 	/* Check that the radio is not disabled by hardware switch. */
   6246 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6247 		aprint_error_dev(sc->sc_dev,
   6248 		    "radio is disabled by hardware switch\n");
   6249 		error = EPERM;	/* :-) */
   6250 		goto fail;
   6251 	}
   6252 
   6253 	/* Read firmware images from the filesystem. */
   6254 	if ((error = iwn_read_firmware(sc)) != 0) {
   6255 		aprint_error_dev(sc->sc_dev,
   6256 		    "could not read firmware\n");
   6257 		goto fail;
   6258 	}
   6259 
   6260 	/* Initialize interrupt mask to default value. */
   6261 	sc->int_mask = IWN_INT_MASK_DEF;
   6262 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6263 
   6264 	/* Initialize hardware and upload firmware. */
   6265 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6266 	error = iwn_hw_init(sc);
   6267 	firmware_free(sc->fw.data, sc->fw.size);
   6268 	sc->fw.data = NULL;
   6269 	sc->fw.size = 0;
   6270 	if (error != 0) {
   6271 		aprint_error_dev(sc->sc_dev,
   6272 		    "could not initialize hardware\n");
   6273 		goto fail;
   6274 	}
   6275 
   6276 	/* Configure adapter now that it is ready. */
   6277 	if ((error = iwn_config(sc)) != 0) {
   6278 		aprint_error_dev(sc->sc_dev,
   6279 		    "could not configure device\n");
   6280 		goto fail;
   6281 	}
   6282 
   6283 	ifp->if_flags &= ~IFF_OACTIVE;
   6284 	ifp->if_flags |= IFF_RUNNING;
   6285 
   6286 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6287 		ieee80211_begin_scan(ic, 0);
   6288 	else
   6289 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6290 
   6291 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6292 out:
   6293 	mutex_exit(&sc->sc_mtx);
   6294 	return 0;
   6295 
   6296 fail:	mutex_exit(&sc->sc_mtx);
   6297 	iwn_stop(ifp, 1);
   6298 	return error;
   6299 }
   6300 
   6301 static void
   6302 iwn_stop(struct ifnet *ifp, int disable)
   6303 {
   6304 	struct iwn_softc *sc = ifp->if_softc;
   6305 	struct ieee80211com *ic = &sc->sc_ic;
   6306 
   6307 	if (!disable)
   6308 		mutex_enter(&sc->sc_mtx);
   6309 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6310 	ifp->if_timer = sc->sc_tx_timer = 0;
   6311 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6312 
   6313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6314 
   6315 	/* Power OFF hardware. */
   6316 	iwn_hw_stop(sc);
   6317 
   6318 	if (!disable)
   6319 		mutex_exit(&sc->sc_mtx);
   6320 }
   6321 
   6322 /*
   6323  * XXX MCLGETI alternative
   6324  *
   6325  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6326  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6327  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6328  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6329  */
   6330 
   6331 static struct mbuf *
   6332 MCLGETIalt(struct iwn_softc *sc, int how,
   6333     struct ifnet *ifp __unused, u_int size)
   6334 {
   6335 	struct mbuf *m;
   6336 #ifdef IWN_USE_RBUF
   6337 	struct iwn_rbuf *rbuf;
   6338 #endif
   6339 
   6340 	MGETHDR(m, how, MT_DATA);
   6341 	if (m == NULL)
   6342 		return NULL;
   6343 
   6344 #ifdef IWN_USE_RBUF
   6345 	if (sc->rxq.nb_free_entries > 0 &&
   6346 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6347 		/* Attach buffer to mbuf header. */
   6348 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6349 		m->m_flags |= M_EXT_RW;
   6350 	}
   6351 	else {
   6352 		MEXTMALLOC(m, size, how);
   6353 		if ((m->m_flags & M_EXT) == 0) {
   6354 			m_freem(m);
   6355 			return NULL;
   6356 		}
   6357 	}
   6358 
   6359 #else
   6360 #ifdef MCLGET4K
   6361 	if (size == 4096)
   6362 		MCLGET4K(m, how);
   6363 	else
   6364 		panic("size must be 4k");
   6365 #else
   6366 	MEXTMALLOC(m, size, how);
   6367 #endif
   6368 	if ((m->m_flags & M_EXT) == 0) {
   6369 		m_freem(m);
   6370 		return NULL;
   6371 	}
   6372 #endif
   6373 
   6374 	return m;
   6375 }
   6376 
   6377 #ifdef IWN_USE_RBUF
   6378 static struct iwn_rbuf *
   6379 iwn_alloc_rbuf(struct iwn_softc *sc)
   6380 {
   6381 	struct iwn_rbuf *rbuf;
   6382 	mutex_enter(&sc->rxq.freelist_mtx);
   6383 
   6384 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6385 	if (rbuf != NULL) {
   6386 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6387 		sc->rxq.nb_free_entries --;
   6388 	}
   6389 	mutex_exit(&sc->rxq.freelist_mtx);
   6390 	return rbuf;
   6391 }
   6392 
   6393 /*
   6394  * This is called automatically by the network stack when the mbuf to which
   6395  * our RX buffer is attached is freed.
   6396  */
   6397 static void
   6398 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6399 {
   6400 	struct iwn_rbuf *rbuf = arg;
   6401 	struct iwn_softc *sc = rbuf->sc;
   6402 
   6403 	/* Put the RX buffer back in the free list. */
   6404 	mutex_enter(&sc->rxq.freelist_mtx);
   6405 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6406 	mutex_exit(&sc->rxq.freelist_mtx);
   6407 
   6408 	sc->rxq.nb_free_entries ++;
   6409 	if (__predict_true(m != NULL))
   6410 		pool_cache_put(mb_cache, m);
   6411 }
   6412 
   6413 static int
   6414 iwn_alloc_rpool(struct iwn_softc *sc)
   6415 {
   6416 	struct iwn_rx_ring *ring = &sc->rxq;
   6417 	struct iwn_rbuf *rbuf;
   6418 	int i, error;
   6419 
   6420 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6421 
   6422 	/* Allocate a big chunk of DMA'able memory... */
   6423 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6424 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6425 	if (error != 0) {
   6426 		aprint_error_dev(sc->sc_dev,
   6427 		    "could not allocate RX buffers DMA memory\n");
   6428 		return error;
   6429 	}
   6430 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6431 	SLIST_INIT(&ring->freelist);
   6432 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6433 		rbuf = &ring->rbuf[i];
   6434 
   6435 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6436 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6437 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6438 
   6439 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6440 	}
   6441 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6442 	return 0;
   6443 }
   6444 
   6445 static void
   6446 iwn_free_rpool(struct iwn_softc *sc)
   6447 {
   6448 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6449 }
   6450 #endif
   6451 
   6452 /*
   6453  * XXX: Hack to set the current channel to the value advertised in beacons or
   6454  * probe responses. Only used during AP detection.
   6455  * XXX: Duplicated from if_iwi.c
   6456  */
   6457 static void
   6458 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6459     struct iwn_rx_stat *stat)
   6460 {
   6461 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6462 	struct ieee80211_frame *wh;
   6463 	uint8_t subtype;
   6464 	uint8_t *frm, *efrm;
   6465 
   6466 	wh = mtod(m, struct ieee80211_frame *);
   6467 
   6468 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6469 		return;
   6470 
   6471 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6472 
   6473 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6474 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6475 		return;
   6476 
   6477 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6478 		int chan = le16toh(stat->chan);
   6479 		if (chan < __arraycount(ic->ic_channels))
   6480 			ic->ic_curchan = &ic->ic_channels[chan];
   6481 		return;
   6482 	}
   6483 
   6484 	frm = (uint8_t *)(wh + 1);
   6485 	efrm = mtod(m, uint8_t *) + m->m_len;
   6486 
   6487 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6488 	while (frm < efrm) {
   6489 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6490 #if IEEE80211_CHAN_MAX < 255
   6491 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6492 #endif
   6493 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6494 
   6495 		frm += frm[1] + 2;
   6496 	}
   6497 }
   6498 
   6499 #ifdef notyetMODULE
   6500 
   6501 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6502 
   6503 #ifdef _MODULE
   6504 #include "ioconf.c"
   6505 #endif
   6506 
   6507 static int
   6508 if_iwn_modcmd(modcmd_t cmd, void *data)
   6509 {
   6510 	int error = 0;
   6511 
   6512 	switch (cmd) {
   6513 	case MODULE_CMD_INIT:
   6514 #ifdef _MODULE
   6515 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6516 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6517 #endif
   6518 		return error;
   6519 	case MODULE_CMD_FINI:
   6520 #ifdef _MODULE
   6521 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6522 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6523 #endif
   6524 		return error;
   6525 	case MODULE_CMD_AUTOUNLOAD:
   6526 #ifdef _MODULE
   6527 		/* XXX This is not optional! */
   6528 #endif
   6529 		return error;
   6530 	default:
   6531 		return ENOTTY;
   6532 	}
   6533 }
   6534 #endif
   6535