Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.84
      1 /*	$NetBSD: if_iwn.c,v 1.84 2017/02/02 10:05:35 nonaka Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.84 2017/02/02 10:05:35 nonaka Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 /*
    122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    123  */
    124 static const struct ieee80211_rateset iwn_rateset_11a =
    125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    126 
    127 static const struct ieee80211_rateset iwn_rateset_11b =
    128 	{ 4, { 2, 4, 11, 22 } };
    129 
    130 static const struct ieee80211_rateset iwn_rateset_11g =
    131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    132 
    133 static int	iwn_match(device_t , struct cfdata *, void *);
    134 static void	iwn_attach(device_t , device_t , void *);
    135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    137 static void	iwn_radiotap_attach(struct iwn_softc *);
    138 static int	iwn_detach(device_t , int);
    139 #if 0
    140 static void	iwn_power(int, void *);
    141 #endif
    142 static bool	iwn_resume(device_t, const pmf_qual_t *);
    143 static int	iwn_nic_lock(struct iwn_softc *);
    144 static int	iwn_eeprom_lock(struct iwn_softc *);
    145 static int	iwn_init_otprom(struct iwn_softc *);
    146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    148 		    void **, bus_size_t, bus_size_t);
    149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    150 static int	iwn_alloc_sched(struct iwn_softc *);
    151 static void	iwn_free_sched(struct iwn_softc *);
    152 static int	iwn_alloc_kw(struct iwn_softc *);
    153 static void	iwn_free_kw(struct iwn_softc *);
    154 static int	iwn_alloc_ict(struct iwn_softc *);
    155 static void	iwn_free_ict(struct iwn_softc *);
    156 static int	iwn_alloc_fwmem(struct iwn_softc *);
    157 static void	iwn_free_fwmem(struct iwn_softc *);
    158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    162 		    int);
    163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    165 static void	iwn5000_ict_reset(struct iwn_softc *);
    166 static int	iwn_read_eeprom(struct iwn_softc *);
    167 static void	iwn4965_read_eeprom(struct iwn_softc *);
    168 
    169 #ifdef IWN_DEBUG
    170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    171 #endif
    172 static void	iwn5000_read_eeprom(struct iwn_softc *);
    173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    176 static void	iwn_newassoc(struct ieee80211_node *, int);
    177 static int	iwn_media_change(struct ifnet *);
    178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    179 static void	iwn_iter_func(void *, struct ieee80211_node *);
    180 static void	iwn_calib_timeout(void *);
    181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 #ifndef IEEE80211_NO_HT
    186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 #endif
    189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    192 		    struct iwn_rx_data *);
    193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    194 		    struct iwn_rx_data *);
    195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    196 		    struct iwn_rx_data *);
    197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    198 		    uint8_t);
    199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    200 static void	iwn_notif_intr(struct iwn_softc *);
    201 static void	iwn_wakeup_intr(struct iwn_softc *);
    202 static void	iwn_fatal_intr(struct iwn_softc *);
    203 static int	iwn_intr(void *);
    204 static void	iwn_softintr(void *);
    205 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    206 		    uint16_t);
    207 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    208 		    uint16_t);
    209 #ifdef notyet
    210 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    211 #endif
    212 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    213 		    struct ieee80211_node *, int);
    214 static void	iwn_start(struct ifnet *);
    215 static void	iwn_watchdog(struct ifnet *);
    216 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    217 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    218 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    219 		    int);
    220 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    221 		    int);
    222 static int	iwn_set_link_quality(struct iwn_softc *,
    223 		    struct ieee80211_node *);
    224 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    225 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    226 static int	iwn_set_critical_temp(struct iwn_softc *);
    227 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    228 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    229 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    230 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    231 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    232 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    233 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    234 static int	iwn4965_get_temperature(struct iwn_softc *);
    235 static int	iwn5000_get_temperature(struct iwn_softc *);
    236 static int	iwn_init_sensitivity(struct iwn_softc *);
    237 static void	iwn_collect_noise(struct iwn_softc *,
    238 		    const struct iwn_rx_general_stats *);
    239 static int	iwn4965_init_gains(struct iwn_softc *);
    240 static int	iwn5000_init_gains(struct iwn_softc *);
    241 static int	iwn4965_set_gains(struct iwn_softc *);
    242 static int	iwn5000_set_gains(struct iwn_softc *);
    243 static void	iwn_tune_sensitivity(struct iwn_softc *,
    244 		    const struct iwn_rx_stats *);
    245 static int	iwn_send_sensitivity(struct iwn_softc *);
    246 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    247 static int	iwn5000_runtime_calib(struct iwn_softc *);
    248 
    249 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    250 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    251 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    252 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    253 
    254 static int	iwn_config(struct iwn_softc *);
    255 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    256 		    uint8_t);
    257 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    258 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    259 static int	iwn_scan(struct iwn_softc *, uint16_t);
    260 static int	iwn_auth(struct iwn_softc *);
    261 static int	iwn_run(struct iwn_softc *);
    262 #ifdef IWN_HWCRYPTO
    263 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    264 		    struct ieee80211_key *);
    265 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    266 		    struct ieee80211_key *);
    267 #endif
    268 static int	iwn_wme_update(struct ieee80211com *);
    269 #ifndef IEEE80211_NO_HT
    270 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    271 		    struct ieee80211_node *, uint8_t);
    272 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    273 		    struct ieee80211_node *, uint8_t);
    274 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    275 		    struct ieee80211_node *, uint8_t);
    276 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    277 		    struct ieee80211_node *, uint8_t);
    278 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    279 		    struct ieee80211_node *, uint8_t, uint16_t);
    280 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    281 		    uint8_t, uint16_t);
    282 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    283 		    struct ieee80211_node *, uint8_t, uint16_t);
    284 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    285 		    uint8_t, uint16_t);
    286 #endif
    287 static int	iwn5000_query_calibration(struct iwn_softc *);
    288 static int	iwn5000_send_calibration(struct iwn_softc *);
    289 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    290 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    291 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    292 static int	iwn4965_post_alive(struct iwn_softc *);
    293 static int	iwn5000_post_alive(struct iwn_softc *);
    294 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    295 		    int);
    296 static int	iwn4965_load_firmware(struct iwn_softc *);
    297 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    298 		    const uint8_t *, int);
    299 static int	iwn5000_load_firmware(struct iwn_softc *);
    300 static int	iwn_read_firmware_leg(struct iwn_softc *,
    301 		    struct iwn_fw_info *);
    302 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    303 		    struct iwn_fw_info *, uint16_t);
    304 static int	iwn_read_firmware(struct iwn_softc *);
    305 static int	iwn_clock_wait(struct iwn_softc *);
    306 static int	iwn_apm_init(struct iwn_softc *);
    307 static void	iwn_apm_stop_master(struct iwn_softc *);
    308 static void	iwn_apm_stop(struct iwn_softc *);
    309 static int	iwn4965_nic_config(struct iwn_softc *);
    310 static int	iwn5000_nic_config(struct iwn_softc *);
    311 static int	iwn_hw_prepare(struct iwn_softc *);
    312 static int	iwn_hw_init(struct iwn_softc *);
    313 static void	iwn_hw_stop(struct iwn_softc *);
    314 static int	iwn_init(struct ifnet *);
    315 static void	iwn_stop(struct ifnet *, int);
    316 
    317 /* XXX MCLGETI alternative */
    318 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    319 		    struct ifnet *, u_int);
    320 #ifdef IWN_USE_RBUF
    321 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    322 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    323 static int	iwn_alloc_rpool(struct iwn_softc *);
    324 static void	iwn_free_rpool(struct iwn_softc *);
    325 #endif
    326 
    327 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    328 		    struct iwn_rx_stat *);
    329 
    330 #ifdef IWN_DEBUG
    331 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    332 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    333 int iwn_debug = 0;
    334 #else
    335 #define DPRINTF(x)
    336 #define DPRINTFN(n, x)
    337 #endif
    338 
    339 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    340 	iwn_detach, NULL);
    341 
    342 static int
    343 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    344 {
    345 	struct pci_attach_args *pa = aux;
    346 	size_t i;
    347 
    348 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    349 		return 0;
    350 
    351 	for (i = 0; i < __arraycount(iwn_devices); i++)
    352 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    353 			return 1;
    354 
    355 	return 0;
    356 }
    357 
    358 static void
    359 iwn_attach(device_t parent __unused, device_t self, void *aux)
    360 {
    361 	struct iwn_softc *sc = device_private(self);
    362 	struct ieee80211com *ic = &sc->sc_ic;
    363 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    364 	struct pci_attach_args *pa = aux;
    365 	const char *intrstr;
    366 	pcireg_t memtype, reg;
    367 	int i, error;
    368 	char intrbuf[PCI_INTRSTR_LEN];
    369 
    370 	sc->sc_dev = self;
    371 	sc->sc_pct = pa->pa_pc;
    372 	sc->sc_pcitag = pa->pa_tag;
    373 	sc->sc_dmat = pa->pa_dmat;
    374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    375 
    376 	callout_init(&sc->calib_to, 0);
    377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    378 
    379 	pci_aprint_devinfo(pa, NULL);
    380 
    381 	/*
    382 	 * Get the offset of the PCI Express Capability Structure in PCI
    383 	 * Configuration Space.
    384 	 */
    385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    387 	if (error == 0) {
    388 		aprint_error_dev(self,
    389 		    "PCIe capability structure not found!\n");
    390 		return;
    391 	}
    392 
    393 	/* Clear device-specific "PCI retry timeout" register (41h). */
    394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    395 	if (reg & 0xff00)
    396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    397 
    398 	/* Enable bus-mastering. */
    399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    401 	reg |= PCI_COMMAND_MASTER_ENABLE;
    402 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    403 
    404 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    405 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    406 	    &sc->sc_sh, NULL, &sc->sc_sz);
    407 	if (error != 0) {
    408 		aprint_error_dev(self, "can't map mem space\n");
    409 		return;
    410 	}
    411 
    412 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    413 	if (sc->sc_soft_ih == NULL) {
    414 		aprint_error_dev(self, "can't establish soft interrupt\n");
    415 		goto unmap;
    416 	}
    417 
    418 	/* Install interrupt handler. */
    419 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    420 	if (error) {
    421 		aprint_error_dev(self, "can't allocate interrupt\n");
    422 		goto failsi;
    423 	}
    424 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    425 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    426 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    427 	else
    428 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    429 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    430 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    431 	    sizeof(intrbuf));
    432 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    433 	    IPL_NET, iwn_intr, sc, device_xname(self));
    434 	if (sc->sc_ih == NULL) {
    435 		aprint_error_dev(self, "can't establish interrupt");
    436 		if (intrstr != NULL)
    437 			aprint_error(" at %s", intrstr);
    438 		aprint_error("\n");
    439 		goto failia;
    440 	}
    441 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    442 
    443 	/* Read hardware revision and attach. */
    444 	sc->hw_type =
    445 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    446 	      >> IWN_HW_REV_TYPE_SHIFT;
    447 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    448 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    449 	else
    450 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    451 	if (error != 0) {
    452 		aprint_error_dev(self, "could not attach device\n");
    453 		goto failih;
    454 	}
    455 
    456 	if ((error = iwn_hw_prepare(sc)) != 0) {
    457 		aprint_error_dev(self, "hardware not ready\n");
    458 		goto failih;
    459 	}
    460 
    461 	/* Read MAC address, channels, etc from EEPROM. */
    462 	if ((error = iwn_read_eeprom(sc)) != 0) {
    463 		aprint_error_dev(self, "could not read EEPROM\n");
    464 		goto failih;
    465 	}
    466 
    467 	/* Allocate DMA memory for firmware transfers. */
    468 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    469 		aprint_error_dev(self,
    470 		    "could not allocate memory for firmware\n");
    471 		goto failih;
    472 	}
    473 
    474 	/* Allocate "Keep Warm" page. */
    475 	if ((error = iwn_alloc_kw(sc)) != 0) {
    476 		aprint_error_dev(self, "could not allocate keep warm page\n");
    477 		goto fail1;
    478 	}
    479 
    480 	/* Allocate ICT table for 5000 Series. */
    481 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    482 	    (error = iwn_alloc_ict(sc)) != 0) {
    483 		aprint_error_dev(self, "could not allocate ICT table\n");
    484 		goto fail2;
    485 	}
    486 
    487 	/* Allocate TX scheduler "rings". */
    488 	if ((error = iwn_alloc_sched(sc)) != 0) {
    489 		aprint_error_dev(self,
    490 		    "could not allocate TX scheduler rings\n");
    491 		goto fail3;
    492 	}
    493 
    494 #ifdef IWN_USE_RBUF
    495 	/* Allocate RX buffers. */
    496 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    497 		aprint_error_dev(self, "could not allocate RX buffers\n");
    498 		goto fail3;
    499 	}
    500 #endif
    501 
    502 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    503 	for (i = 0; i < sc->ntxqs; i++) {
    504 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    505 			aprint_error_dev(self,
    506 			    "could not allocate TX ring %d\n", i);
    507 			goto fail4;
    508 		}
    509 	}
    510 
    511 	/* Allocate RX ring. */
    512 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    513 		aprint_error_dev(self, "could not allocate RX ring\n");
    514 		goto fail4;
    515 	}
    516 
    517 	/* Clear pending interrupts. */
    518 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    519 
    520 	/* Count the number of available chains. */
    521 	sc->ntxchains =
    522 	    ((sc->txchainmask >> 2) & 1) +
    523 	    ((sc->txchainmask >> 1) & 1) +
    524 	    ((sc->txchainmask >> 0) & 1);
    525 	sc->nrxchains =
    526 	    ((sc->rxchainmask >> 2) & 1) +
    527 	    ((sc->rxchainmask >> 1) & 1) +
    528 	    ((sc->rxchainmask >> 0) & 1);
    529 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    530 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    531 	    ether_sprintf(ic->ic_myaddr));
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    535 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    536 	ic->ic_state = IEEE80211_S_INIT;
    537 
    538 	/* Set device capabilities. */
    539 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    540 	 * and IEEE80211_C_PMGT too. */
    541 	ic->ic_caps =
    542 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    543 	    IEEE80211_C_WPA |		/* 802.11i */
    544 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    545 	    IEEE80211_C_TXPMGT |	/* tx power management */
    546 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    547 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    548 	    IEEE80211_C_WME;		/* 802.11e */
    549 
    550 #ifndef IEEE80211_NO_HT
    551 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    552 		/* Set HT capabilities. */
    553 		ic->ic_htcaps =
    554 #if IWN_RBUF_SIZE == 8192
    555 		    IEEE80211_HTCAP_AMSDU7935 |
    556 #endif
    557 		    IEEE80211_HTCAP_CBW20_40 |
    558 		    IEEE80211_HTCAP_SGI20 |
    559 		    IEEE80211_HTCAP_SGI40;
    560 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    561 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    562 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    563 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    564 		else
    565 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    566 	}
    567 #endif	/* !IEEE80211_NO_HT */
    568 
    569 	/* Set supported legacy rates. */
    570 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    571 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    572 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    573 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    574 	}
    575 #ifndef IEEE80211_NO_HT
    576 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    577 		/* Set supported HT rates. */
    578 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    579 		if (sc->nrxchains > 1)
    580 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    581 		if (sc->nrxchains > 2)
    582 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    583 	}
    584 #endif
    585 
    586 	/* IBSS channel undefined for now. */
    587 	ic->ic_ibss_chan = &ic->ic_channels[0];
    588 
    589 	ifp->if_softc = sc;
    590 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    591 	ifp->if_init = iwn_init;
    592 	ifp->if_ioctl = iwn_ioctl;
    593 	ifp->if_start = iwn_start;
    594 	ifp->if_stop = iwn_stop;
    595 	ifp->if_watchdog = iwn_watchdog;
    596 	IFQ_SET_READY(&ifp->if_snd);
    597 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    598 
    599 	if_initialize(ifp);
    600 	ieee80211_ifattach(ic);
    601 	/* Use common softint-based if_input */
    602 	ifp->if_percpuq = if_percpuq_create(ifp);
    603 	if_register(ifp);
    604 
    605 	ic->ic_node_alloc = iwn_node_alloc;
    606 	ic->ic_newassoc = iwn_newassoc;
    607 #ifdef IWN_HWCRYPTO
    608 	ic->ic_crypto.cs_key_set = iwn_set_key;
    609 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    610 #endif
    611 	ic->ic_wme.wme_update = iwn_wme_update;
    612 #ifndef IEEE80211_NO_HT
    613 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    614 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    615 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    616 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    617 #endif
    618 
    619 	/* Override 802.11 state transition machine. */
    620 	sc->sc_newstate = ic->ic_newstate;
    621 	ic->ic_newstate = iwn_newstate;
    622 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    623 
    624 	sc->amrr.amrr_min_success_threshold =  1;
    625 	sc->amrr.amrr_max_success_threshold = 15;
    626 
    627 	iwn_radiotap_attach(sc);
    628 
    629 	/*
    630 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    631 	 * callout_init and callout_setfunc, above.
    632 	*/
    633 
    634 	if (pmf_device_register(self, NULL, iwn_resume))
    635 		pmf_class_network_register(self, ifp);
    636 	else
    637 		aprint_error_dev(self, "couldn't establish power handler\n");
    638 
    639 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    640 	ieee80211_announce(ic);
    641 
    642 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    643 	return;
    644 
    645 	/* Free allocated memory if something failed during attachment. */
    646 fail4:	while (--i >= 0)
    647 		iwn_free_tx_ring(sc, &sc->txq[i]);
    648 #ifdef IWN_USE_RBUF
    649 	iwn_free_rpool(sc);
    650 #endif
    651 	iwn_free_sched(sc);
    652 fail3:	if (sc->ict != NULL)
    653 		iwn_free_ict(sc);
    654 fail2:	iwn_free_kw(sc);
    655 fail1:	iwn_free_fwmem(sc);
    656 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    657 	sc->sc_ih = NULL;
    658 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    659 	sc->sc_pihp = NULL;
    660 failsi:	softint_disestablish(sc->sc_soft_ih);
    661 	sc->sc_soft_ih = NULL;
    662 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    663 }
    664 
    665 int
    666 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    667 {
    668 	struct iwn_ops *ops = &sc->ops;
    669 
    670 	ops->load_firmware = iwn4965_load_firmware;
    671 	ops->read_eeprom = iwn4965_read_eeprom;
    672 	ops->post_alive = iwn4965_post_alive;
    673 	ops->nic_config = iwn4965_nic_config;
    674 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    675 	ops->update_sched = iwn4965_update_sched;
    676 	ops->get_temperature = iwn4965_get_temperature;
    677 	ops->get_rssi = iwn4965_get_rssi;
    678 	ops->set_txpower = iwn4965_set_txpower;
    679 	ops->init_gains = iwn4965_init_gains;
    680 	ops->set_gains = iwn4965_set_gains;
    681 	ops->add_node = iwn4965_add_node;
    682 	ops->tx_done = iwn4965_tx_done;
    683 #ifndef IEEE80211_NO_HT
    684 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    685 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    686 #endif
    687 	sc->ntxqs = IWN4965_NTXQUEUES;
    688 	sc->ndmachnls = IWN4965_NDMACHNLS;
    689 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    690 	sc->rxonsz = IWN4965_RXONSZ;
    691 	sc->schedsz = IWN4965_SCHEDSZ;
    692 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    693 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    694 	sc->fwsz = IWN4965_FWSZ;
    695 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    696 	sc->limits = &iwn4965_sensitivity_limits;
    697 	sc->fwname = "iwlwifi-4965-2.ucode";
    698 	/* Override chains masks, ROM is known to be broken. */
    699 	sc->txchainmask = IWN_ANT_AB;
    700 	sc->rxchainmask = IWN_ANT_ABC;
    701 
    702 	return 0;
    703 }
    704 
    705 int
    706 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    707 {
    708 	struct iwn_ops *ops = &sc->ops;
    709 
    710 	ops->load_firmware = iwn5000_load_firmware;
    711 	ops->read_eeprom = iwn5000_read_eeprom;
    712 	ops->post_alive = iwn5000_post_alive;
    713 	ops->nic_config = iwn5000_nic_config;
    714 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    715 	ops->update_sched = iwn5000_update_sched;
    716 	ops->get_temperature = iwn5000_get_temperature;
    717 	ops->get_rssi = iwn5000_get_rssi;
    718 	ops->set_txpower = iwn5000_set_txpower;
    719 	ops->init_gains = iwn5000_init_gains;
    720 	ops->set_gains = iwn5000_set_gains;
    721 	ops->add_node = iwn5000_add_node;
    722 	ops->tx_done = iwn5000_tx_done;
    723 #ifndef IEEE80211_NO_HT
    724 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    725 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    726 #endif
    727 	sc->ntxqs = IWN5000_NTXQUEUES;
    728 	sc->ndmachnls = IWN5000_NDMACHNLS;
    729 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    730 	sc->rxonsz = IWN5000_RXONSZ;
    731 	sc->schedsz = IWN5000_SCHEDSZ;
    732 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    733 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    734 	sc->fwsz = IWN5000_FWSZ;
    735 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    736 
    737 	switch (sc->hw_type) {
    738 	case IWN_HW_REV_TYPE_5100:
    739 		sc->limits = &iwn5000_sensitivity_limits;
    740 		sc->fwname = "iwlwifi-5000-2.ucode";
    741 		/* Override chains masks, ROM is known to be broken. */
    742 		sc->txchainmask = IWN_ANT_B;
    743 		sc->rxchainmask = IWN_ANT_AB;
    744 		break;
    745 	case IWN_HW_REV_TYPE_5150:
    746 		sc->limits = &iwn5150_sensitivity_limits;
    747 		sc->fwname = "iwlwifi-5150-2.ucode";
    748 		break;
    749 	case IWN_HW_REV_TYPE_5300:
    750 	case IWN_HW_REV_TYPE_5350:
    751 		sc->limits = &iwn5000_sensitivity_limits;
    752 		sc->fwname = "iwlwifi-5000-2.ucode";
    753 		break;
    754 	case IWN_HW_REV_TYPE_1000:
    755 		sc->limits = &iwn1000_sensitivity_limits;
    756 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    757 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    758 			sc->fwname = "iwlwifi-100-5.ucode";
    759 		else
    760 			sc->fwname = "iwlwifi-1000-3.ucode";
    761 		break;
    762 	case IWN_HW_REV_TYPE_6000:
    763 		sc->limits = &iwn6000_sensitivity_limits;
    764 		sc->fwname = "iwlwifi-6000-4.ucode";
    765 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    767 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    768 			/* Override chains masks, ROM is known to be broken. */
    769 			sc->txchainmask = IWN_ANT_BC;
    770 			sc->rxchainmask = IWN_ANT_BC;
    771 		}
    772 		break;
    773 	case IWN_HW_REV_TYPE_6050:
    774 		sc->limits = &iwn6000_sensitivity_limits;
    775 		sc->fwname = "iwlwifi-6050-5.ucode";
    776 		break;
    777 	case IWN_HW_REV_TYPE_6005:
    778 		sc->limits = &iwn6000_sensitivity_limits;
    779 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    780 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    782 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    783 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    784 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    785 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    786 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    787 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    788 		}
    789 		else
    790 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    791 		break;
    792 	case IWN_HW_REV_TYPE_2030:
    793 		sc->limits = &iwn2000_sensitivity_limits;
    794 		sc->fwname = "iwlwifi-2030-6.ucode";
    795 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    796 		break;
    797 	case IWN_HW_REV_TYPE_2000:
    798 		sc->limits = &iwn2000_sensitivity_limits;
    799 		sc->fwname = "iwlwifi-2000-6.ucode";
    800 		break;
    801 	case IWN_HW_REV_TYPE_135:
    802 		sc->limits = &iwn2000_sensitivity_limits;
    803 		sc->fwname = "iwlwifi-135-6.ucode";
    804 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    805 		break;
    806 	case IWN_HW_REV_TYPE_105:
    807 		sc->limits = &iwn2000_sensitivity_limits;
    808 		sc->fwname = "iwlwifi-105-6.ucode";
    809 		break;
    810 	default:
    811 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    812 		return ENOTSUP;
    813 	}
    814 	return 0;
    815 }
    816 
    817 /*
    818  * Attach the interface to 802.11 radiotap.
    819  */
    820 static void
    821 iwn_radiotap_attach(struct iwn_softc *sc)
    822 {
    823 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    824 
    825 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    826 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    827 	    &sc->sc_drvbpf);
    828 
    829 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    830 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    831 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    832 
    833 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    834 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    835 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    836 }
    837 
    838 static int
    839 iwn_detach(device_t self, int flags __unused)
    840 {
    841 	struct iwn_softc *sc = device_private(self);
    842 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    843 	int qid;
    844 
    845 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    846 		return 0;
    847 
    848 	callout_stop(&sc->calib_to);
    849 
    850 	/* Uninstall interrupt handler. */
    851 	if (sc->sc_ih != NULL)
    852 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    853 	if (sc->sc_pihp != NULL)
    854 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    855 	if (sc->sc_soft_ih != NULL)
    856 		softint_disestablish(sc->sc_soft_ih);
    857 
    858 	/* Free DMA resources. */
    859 	iwn_free_rx_ring(sc, &sc->rxq);
    860 	for (qid = 0; qid < sc->ntxqs; qid++)
    861 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    862 #ifdef IWN_USE_RBUF
    863 	iwn_free_rpool(sc);
    864 #endif
    865 	iwn_free_sched(sc);
    866 	iwn_free_kw(sc);
    867 	if (sc->ict != NULL)
    868 		iwn_free_ict(sc);
    869 	iwn_free_fwmem(sc);
    870 
    871 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    872 
    873 	ieee80211_ifdetach(&sc->sc_ic);
    874 	if_detach(ifp);
    875 
    876 	return 0;
    877 }
    878 
    879 #if 0
    880 /*
    881  * XXX Investigate if clearing the PCI retry timeout could eliminate
    882  * the repeated scan calls.  Also the calls to if_init and if_start
    883  * are similar to the effect of adding the call to ifioctl_common .
    884  */
    885 static void
    886 iwn_power(int why, void *arg)
    887 {
    888 	struct iwn_softc *sc = arg;
    889 	struct ifnet *ifp;
    890 	pcireg_t reg;
    891 	int s;
    892 
    893 	if (why != PWR_RESUME)
    894 		return;
    895 
    896 	/* Clear device-specific "PCI retry timeout" register (41h). */
    897 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    898 	if (reg & 0xff00)
    899 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    900 
    901 	s = splnet();
    902 	ifp = &sc->sc_ic.ic_if;
    903 	if (ifp->if_flags & IFF_UP) {
    904 		ifp->if_init(ifp);
    905 		if (ifp->if_flags & IFF_RUNNING)
    906 			ifp->if_start(ifp);
    907 	}
    908 	splx(s);
    909 }
    910 #endif
    911 
    912 static bool
    913 iwn_resume(device_t dv, const pmf_qual_t *qual)
    914 {
    915 	return true;
    916 }
    917 
    918 static int
    919 iwn_nic_lock(struct iwn_softc *sc)
    920 {
    921 	int ntries;
    922 
    923 	/* Request exclusive access to NIC. */
    924 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    925 
    926 	/* Spin until we actually get the lock. */
    927 	for (ntries = 0; ntries < 1000; ntries++) {
    928 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    929 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    930 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    931 			return 0;
    932 		DELAY(10);
    933 	}
    934 	return ETIMEDOUT;
    935 }
    936 
    937 static __inline void
    938 iwn_nic_unlock(struct iwn_softc *sc)
    939 {
    940 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    941 }
    942 
    943 static __inline uint32_t
    944 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    945 {
    946 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    947 	IWN_BARRIER_READ_WRITE(sc);
    948 	return IWN_READ(sc, IWN_PRPH_RDATA);
    949 }
    950 
    951 static __inline void
    952 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    953 {
    954 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    955 	IWN_BARRIER_WRITE(sc);
    956 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    957 }
    958 
    959 static __inline void
    960 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    961 {
    962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    963 }
    964 
    965 static __inline void
    966 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    967 {
    968 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    969 }
    970 
    971 static __inline void
    972 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    973     const uint32_t *data, int count)
    974 {
    975 	for (; count > 0; count--, data++, addr += 4)
    976 		iwn_prph_write(sc, addr, *data);
    977 }
    978 
    979 static __inline uint32_t
    980 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    981 {
    982 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    983 	IWN_BARRIER_READ_WRITE(sc);
    984 	return IWN_READ(sc, IWN_MEM_RDATA);
    985 }
    986 
    987 static __inline void
    988 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    989 {
    990 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    991 	IWN_BARRIER_WRITE(sc);
    992 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    993 }
    994 
    995 #ifndef IEEE80211_NO_HT
    996 static __inline void
    997 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    998 {
    999 	uint32_t tmp;
   1000 
   1001 	tmp = iwn_mem_read(sc, addr & ~3);
   1002 	if (addr & 3)
   1003 		tmp = (tmp & 0x0000ffff) | data << 16;
   1004 	else
   1005 		tmp = (tmp & 0xffff0000) | data;
   1006 	iwn_mem_write(sc, addr & ~3, tmp);
   1007 }
   1008 #endif
   1009 
   1010 static __inline void
   1011 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1012     int count)
   1013 {
   1014 	for (; count > 0; count--, addr += 4)
   1015 		*data++ = iwn_mem_read(sc, addr);
   1016 }
   1017 
   1018 static __inline void
   1019 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1020     int count)
   1021 {
   1022 	for (; count > 0; count--, addr += 4)
   1023 		iwn_mem_write(sc, addr, val);
   1024 }
   1025 
   1026 static int
   1027 iwn_eeprom_lock(struct iwn_softc *sc)
   1028 {
   1029 	int i, ntries;
   1030 
   1031 	for (i = 0; i < 100; i++) {
   1032 		/* Request exclusive access to EEPROM. */
   1033 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1034 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1035 
   1036 		/* Spin until we actually get the lock. */
   1037 		for (ntries = 0; ntries < 100; ntries++) {
   1038 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1039 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1040 				return 0;
   1041 			DELAY(10);
   1042 		}
   1043 	}
   1044 	return ETIMEDOUT;
   1045 }
   1046 
   1047 static __inline void
   1048 iwn_eeprom_unlock(struct iwn_softc *sc)
   1049 {
   1050 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1051 }
   1052 
   1053 /*
   1054  * Initialize access by host to One Time Programmable ROM.
   1055  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1056  */
   1057 static int
   1058 iwn_init_otprom(struct iwn_softc *sc)
   1059 {
   1060 	uint16_t prev = 0, base, next;
   1061 	int count, error;
   1062 
   1063 	/* Wait for clock stabilization before accessing prph. */
   1064 	if ((error = iwn_clock_wait(sc)) != 0)
   1065 		return error;
   1066 
   1067 	if ((error = iwn_nic_lock(sc)) != 0)
   1068 		return error;
   1069 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1070 	DELAY(5);
   1071 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1072 	iwn_nic_unlock(sc);
   1073 
   1074 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1075 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1076 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1077 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1078 	}
   1079 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1080 	/* Clear ECC status. */
   1081 	IWN_SETBITS(sc, IWN_OTP_GP,
   1082 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1083 
   1084 	/*
   1085 	 * Find the block before last block (contains the EEPROM image)
   1086 	 * for HW without OTP shadow RAM.
   1087 	 */
   1088 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1089 		/* Switch to absolute addressing mode. */
   1090 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1091 		base = 0;
   1092 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1093 			error = iwn_read_prom_data(sc, base, &next, 2);
   1094 			if (error != 0)
   1095 				return error;
   1096 			if (next == 0)	/* End of linked-list. */
   1097 				break;
   1098 			prev = base;
   1099 			base = le16toh(next);
   1100 		}
   1101 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1102 			return EIO;
   1103 		/* Skip "next" word. */
   1104 		sc->prom_base = prev + 1;
   1105 	}
   1106 	return 0;
   1107 }
   1108 
   1109 static int
   1110 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1111 {
   1112 	uint8_t *out = data;
   1113 	uint32_t val, tmp;
   1114 	int ntries;
   1115 
   1116 	addr += sc->prom_base;
   1117 	for (; count > 0; count -= 2, addr++) {
   1118 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1119 		for (ntries = 0; ntries < 10; ntries++) {
   1120 			val = IWN_READ(sc, IWN_EEPROM);
   1121 			if (val & IWN_EEPROM_READ_VALID)
   1122 				break;
   1123 			DELAY(5);
   1124 		}
   1125 		if (ntries == 10) {
   1126 			aprint_error_dev(sc->sc_dev,
   1127 			    "timeout reading ROM at 0x%x\n", addr);
   1128 			return ETIMEDOUT;
   1129 		}
   1130 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1131 			/* OTPROM, check for ECC errors. */
   1132 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1133 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1134 				aprint_error_dev(sc->sc_dev,
   1135 				    "OTPROM ECC error at 0x%x\n", addr);
   1136 				return EIO;
   1137 			}
   1138 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1139 				/* Correctable ECC error, clear bit. */
   1140 				IWN_SETBITS(sc, IWN_OTP_GP,
   1141 				    IWN_OTP_GP_ECC_CORR_STTS);
   1142 			}
   1143 		}
   1144 		*out++ = val >> 16;
   1145 		if (count > 1)
   1146 			*out++ = val >> 24;
   1147 	}
   1148 	return 0;
   1149 }
   1150 
   1151 static int
   1152 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1153     bus_size_t size, bus_size_t alignment)
   1154 {
   1155 	int nsegs, error;
   1156 
   1157 	dma->tag = tag;
   1158 	dma->size = size;
   1159 
   1160 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1161 	    &dma->map);
   1162 	if (error != 0)
   1163 		goto fail;
   1164 
   1165 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1166 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1167 	if (error != 0)
   1168 		goto fail;
   1169 
   1170 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1171 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1172 	if (error != 0)
   1173 		goto fail;
   1174 
   1175 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1176 	    BUS_DMA_NOWAIT);
   1177 	if (error != 0)
   1178 		goto fail;
   1179 
   1180 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1181 	memset(dma->vaddr, 0, size);
   1182 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1183 
   1184 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1185 	if (kvap != NULL)
   1186 		*kvap = dma->vaddr;
   1187 
   1188 	return 0;
   1189 
   1190 fail:	iwn_dma_contig_free(dma);
   1191 	return error;
   1192 }
   1193 
   1194 static void
   1195 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1196 {
   1197 	if (dma->map != NULL) {
   1198 		if (dma->vaddr != NULL) {
   1199 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1200 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1201 			bus_dmamap_unload(dma->tag, dma->map);
   1202 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1203 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1204 			dma->vaddr = NULL;
   1205 		}
   1206 		bus_dmamap_destroy(dma->tag, dma->map);
   1207 		dma->map = NULL;
   1208 	}
   1209 }
   1210 
   1211 static int
   1212 iwn_alloc_sched(struct iwn_softc *sc)
   1213 {
   1214 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1215 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1216 	    (void **)&sc->sched, sc->schedsz, 1024);
   1217 }
   1218 
   1219 static void
   1220 iwn_free_sched(struct iwn_softc *sc)
   1221 {
   1222 	iwn_dma_contig_free(&sc->sched_dma);
   1223 }
   1224 
   1225 static int
   1226 iwn_alloc_kw(struct iwn_softc *sc)
   1227 {
   1228 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1229 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1230 	    4096);
   1231 }
   1232 
   1233 static void
   1234 iwn_free_kw(struct iwn_softc *sc)
   1235 {
   1236 	iwn_dma_contig_free(&sc->kw_dma);
   1237 }
   1238 
   1239 static int
   1240 iwn_alloc_ict(struct iwn_softc *sc)
   1241 {
   1242 	/* ICT table must be aligned on a 4KB boundary. */
   1243 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1244 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1245 }
   1246 
   1247 static void
   1248 iwn_free_ict(struct iwn_softc *sc)
   1249 {
   1250 	iwn_dma_contig_free(&sc->ict_dma);
   1251 }
   1252 
   1253 static int
   1254 iwn_alloc_fwmem(struct iwn_softc *sc)
   1255 {
   1256 	/* Must be aligned on a 16-byte boundary. */
   1257 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1258 	    sc->fwsz, 16);
   1259 }
   1260 
   1261 static void
   1262 iwn_free_fwmem(struct iwn_softc *sc)
   1263 {
   1264 	iwn_dma_contig_free(&sc->fw_dma);
   1265 }
   1266 
   1267 static int
   1268 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1269 {
   1270 	bus_size_t size;
   1271 	int i, error;
   1272 
   1273 	ring->cur = 0;
   1274 
   1275 	/* Allocate RX descriptors (256-byte aligned). */
   1276 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1277 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1278 	    (void **)&ring->desc, size, 256);
   1279 	if (error != 0) {
   1280 		aprint_error_dev(sc->sc_dev,
   1281 		    "could not allocate RX ring DMA memory\n");
   1282 		goto fail;
   1283 	}
   1284 
   1285 	/* Allocate RX status area (16-byte aligned). */
   1286 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1287 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1288 	if (error != 0) {
   1289 		aprint_error_dev(sc->sc_dev,
   1290 		    "could not allocate RX status DMA memory\n");
   1291 		goto fail;
   1292 	}
   1293 
   1294 	/*
   1295 	 * Allocate and map RX buffers.
   1296 	 */
   1297 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1298 		struct iwn_rx_data *data = &ring->data[i];
   1299 
   1300 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1301 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1302 		    &data->map);
   1303 		if (error != 0) {
   1304 			aprint_error_dev(sc->sc_dev,
   1305 			    "could not create RX buf DMA map\n");
   1306 			goto fail;
   1307 		}
   1308 
   1309 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1310 		if (data->m == NULL) {
   1311 			aprint_error_dev(sc->sc_dev,
   1312 			    "could not allocate RX mbuf\n");
   1313 			error = ENOBUFS;
   1314 			goto fail;
   1315 		}
   1316 
   1317 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1318 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1319 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1320 		if (error != 0) {
   1321 			aprint_error_dev(sc->sc_dev,
   1322 			    "can't not map mbuf (error %d)\n", error);
   1323 			goto fail;
   1324 		}
   1325 
   1326 		/* Set physical address of RX buffer (256-byte aligned). */
   1327 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1328 	}
   1329 
   1330 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1331 	    BUS_DMASYNC_PREWRITE);
   1332 
   1333 	return 0;
   1334 
   1335 fail:	iwn_free_rx_ring(sc, ring);
   1336 	return error;
   1337 }
   1338 
   1339 static void
   1340 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1341 {
   1342 	int ntries;
   1343 
   1344 	if (iwn_nic_lock(sc) == 0) {
   1345 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1346 		for (ntries = 0; ntries < 1000; ntries++) {
   1347 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1348 			    IWN_FH_RX_STATUS_IDLE)
   1349 				break;
   1350 			DELAY(10);
   1351 		}
   1352 		iwn_nic_unlock(sc);
   1353 	}
   1354 	ring->cur = 0;
   1355 	sc->last_rx_valid = 0;
   1356 }
   1357 
   1358 static void
   1359 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1360 {
   1361 	int i;
   1362 
   1363 	iwn_dma_contig_free(&ring->desc_dma);
   1364 	iwn_dma_contig_free(&ring->stat_dma);
   1365 
   1366 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1367 		struct iwn_rx_data *data = &ring->data[i];
   1368 
   1369 		if (data->m != NULL) {
   1370 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1371 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1372 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1373 			m_freem(data->m);
   1374 		}
   1375 		if (data->map != NULL)
   1376 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1377 	}
   1378 }
   1379 
   1380 static int
   1381 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1382 {
   1383 	bus_addr_t paddr;
   1384 	bus_size_t size;
   1385 	int i, error;
   1386 
   1387 	ring->qid = qid;
   1388 	ring->queued = 0;
   1389 	ring->cur = 0;
   1390 
   1391 	/* Allocate TX descriptors (256-byte aligned). */
   1392 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1393 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1394 	    (void **)&ring->desc, size, 256);
   1395 	if (error != 0) {
   1396 		aprint_error_dev(sc->sc_dev,
   1397 		    "could not allocate TX ring DMA memory\n");
   1398 		goto fail;
   1399 	}
   1400 	/*
   1401 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1402 	 * to allocate commands space for other rings.
   1403 	 * XXX Do we really need to allocate descriptors for other rings?
   1404 	 */
   1405 	if (qid > 4)
   1406 		return 0;
   1407 
   1408 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1409 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1410 	    (void **)&ring->cmd, size, 4);
   1411 	if (error != 0) {
   1412 		aprint_error_dev(sc->sc_dev,
   1413 		    "could not allocate TX cmd DMA memory\n");
   1414 		goto fail;
   1415 	}
   1416 
   1417 	paddr = ring->cmd_dma.paddr;
   1418 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1419 		struct iwn_tx_data *data = &ring->data[i];
   1420 
   1421 		data->cmd_paddr = paddr;
   1422 		data->scratch_paddr = paddr + 12;
   1423 		paddr += sizeof (struct iwn_tx_cmd);
   1424 
   1425 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1426 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1427 		    &data->map);
   1428 		if (error != 0) {
   1429 			aprint_error_dev(sc->sc_dev,
   1430 			    "could not create TX buf DMA map\n");
   1431 			goto fail;
   1432 		}
   1433 	}
   1434 	return 0;
   1435 
   1436 fail:	iwn_free_tx_ring(sc, ring);
   1437 	return error;
   1438 }
   1439 
   1440 static void
   1441 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1442 {
   1443 	int i;
   1444 
   1445 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1446 		struct iwn_tx_data *data = &ring->data[i];
   1447 
   1448 		if (data->m != NULL) {
   1449 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1450 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1451 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1452 			m_freem(data->m);
   1453 			data->m = NULL;
   1454 		}
   1455 	}
   1456 	/* Clear TX descriptors. */
   1457 	memset(ring->desc, 0, ring->desc_dma.size);
   1458 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1459 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1460 	sc->qfullmsk &= ~(1 << ring->qid);
   1461 	ring->queued = 0;
   1462 	ring->cur = 0;
   1463 }
   1464 
   1465 static void
   1466 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1467 {
   1468 	int i;
   1469 
   1470 	iwn_dma_contig_free(&ring->desc_dma);
   1471 	iwn_dma_contig_free(&ring->cmd_dma);
   1472 
   1473 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1474 		struct iwn_tx_data *data = &ring->data[i];
   1475 
   1476 		if (data->m != NULL) {
   1477 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1478 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1479 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1480 			m_freem(data->m);
   1481 		}
   1482 		if (data->map != NULL)
   1483 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1484 	}
   1485 }
   1486 
   1487 static void
   1488 iwn5000_ict_reset(struct iwn_softc *sc)
   1489 {
   1490 	/* Disable interrupts. */
   1491 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1492 
   1493 	/* Reset ICT table. */
   1494 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1495 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1496 	    BUS_DMASYNC_PREWRITE);
   1497 	sc->ict_cur = 0;
   1498 
   1499 	/* Set physical address of ICT table (4KB aligned). */
   1500 	DPRINTF(("enabling ICT\n"));
   1501 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1502 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1503 
   1504 	/* Enable periodic RX interrupt. */
   1505 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1506 	/* Switch to ICT interrupt mode in driver. */
   1507 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1508 
   1509 	/* Re-enable interrupts. */
   1510 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1511 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1512 }
   1513 
   1514 static int
   1515 iwn_read_eeprom(struct iwn_softc *sc)
   1516 {
   1517 	struct iwn_ops *ops = &sc->ops;
   1518 	struct ieee80211com *ic = &sc->sc_ic;
   1519 	uint16_t val;
   1520 	int error;
   1521 
   1522 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1523 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1524 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1525 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1526 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1527 	    "OTPROM" : "EEPROM"));
   1528 
   1529 	/* Adapter has to be powered on for EEPROM access to work. */
   1530 	if ((error = iwn_apm_init(sc)) != 0) {
   1531 		aprint_error_dev(sc->sc_dev,
   1532 		    "could not power ON adapter\n");
   1533 		return error;
   1534 	}
   1535 
   1536 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1537 		aprint_error_dev(sc->sc_dev,
   1538 		    "bad ROM signature\n");
   1539 		return EIO;
   1540 	}
   1541 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1542 		aprint_error_dev(sc->sc_dev,
   1543 		    "could not lock ROM (error=%d)\n", error);
   1544 		return error;
   1545 	}
   1546 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1547 		if ((error = iwn_init_otprom(sc)) != 0) {
   1548 			aprint_error_dev(sc->sc_dev,
   1549 			    "could not initialize OTPROM\n");
   1550 			return error;
   1551 		}
   1552 	}
   1553 
   1554 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1555 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1556 	/* Check if HT support is bonded out. */
   1557 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1558 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1559 
   1560 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1561 	sc->rfcfg = le16toh(val);
   1562 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1563 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1564 	if (sc->txchainmask == 0)
   1565 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1566 	if (sc->rxchainmask == 0)
   1567 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1568 
   1569 	/* Read MAC address. */
   1570 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1571 
   1572 	/* Read adapter-specific information from EEPROM. */
   1573 	ops->read_eeprom(sc);
   1574 
   1575 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1576 
   1577 	iwn_eeprom_unlock(sc);
   1578 	return 0;
   1579 }
   1580 
   1581 static void
   1582 iwn4965_read_eeprom(struct iwn_softc *sc)
   1583 {
   1584 	uint32_t addr;
   1585 	uint16_t val;
   1586 	int i;
   1587 
   1588 	/* Read regulatory domain (4 ASCII characters). */
   1589 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1590 
   1591 	/* Read the list of authorized channels (20MHz ones only). */
   1592 	for (i = 0; i < 5; i++) {
   1593 		addr = iwn4965_regulatory_bands[i];
   1594 		iwn_read_eeprom_channels(sc, i, addr);
   1595 	}
   1596 
   1597 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1598 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1599 	sc->maxpwr2GHz = val & 0xff;
   1600 	sc->maxpwr5GHz = val >> 8;
   1601 	/* Check that EEPROM values are within valid range. */
   1602 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1603 		sc->maxpwr5GHz = 38;
   1604 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1605 		sc->maxpwr2GHz = 38;
   1606 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1607 
   1608 	/* Read samples for each TX power group. */
   1609 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1610 	    sizeof sc->bands);
   1611 
   1612 	/* Read voltage at which samples were taken. */
   1613 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1614 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1615 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1616 
   1617 #ifdef IWN_DEBUG
   1618 	/* Print samples. */
   1619 	if (iwn_debug > 0) {
   1620 		for (i = 0; i < IWN_NBANDS; i++)
   1621 			iwn4965_print_power_group(sc, i);
   1622 	}
   1623 #endif
   1624 }
   1625 
   1626 #ifdef IWN_DEBUG
   1627 static void
   1628 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1629 {
   1630 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1631 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1632 	int j, c;
   1633 
   1634 	aprint_normal("===band %d===\n", i);
   1635 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1636 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1637 	for (c = 0; c < 2; c++) {
   1638 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1639 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1640 			    "power=%d pa_det=%d\n", c, j,
   1641 			    chans[0].samples[c][j].temp,
   1642 			    chans[0].samples[c][j].gain,
   1643 			    chans[0].samples[c][j].power,
   1644 			    chans[0].samples[c][j].pa_det);
   1645 		}
   1646 	}
   1647 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1648 	for (c = 0; c < 2; c++) {
   1649 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1650 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1651 			    "power=%d pa_det=%d\n", c, j,
   1652 			    chans[1].samples[c][j].temp,
   1653 			    chans[1].samples[c][j].gain,
   1654 			    chans[1].samples[c][j].power,
   1655 			    chans[1].samples[c][j].pa_det);
   1656 		}
   1657 	}
   1658 }
   1659 #endif
   1660 
   1661 static void
   1662 iwn5000_read_eeprom(struct iwn_softc *sc)
   1663 {
   1664 	struct iwn5000_eeprom_calib_hdr hdr;
   1665 	int32_t volt;
   1666 	uint32_t base, addr;
   1667 	uint16_t val;
   1668 	int i;
   1669 
   1670 	/* Read regulatory domain (4 ASCII characters). */
   1671 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1672 	base = le16toh(val);
   1673 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1674 	    sc->eeprom_domain, 4);
   1675 
   1676 	/* Read the list of authorized channels (20MHz ones only). */
   1677 	for (i = 0; i < 5; i++) {
   1678 		addr = base + iwn5000_regulatory_bands[i];
   1679 		iwn_read_eeprom_channels(sc, i, addr);
   1680 	}
   1681 
   1682 	/* Read enhanced TX power information for 6000 Series. */
   1683 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1684 		iwn_read_eeprom_enhinfo(sc);
   1685 
   1686 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1687 	base = le16toh(val);
   1688 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1689 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1690 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1691 	sc->calib_ver = hdr.version;
   1692 
   1693 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1694 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1695 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1696 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1697 		sc->eeprom_voltage = le16toh(hdr.volt);
   1698 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1699 		sc->eeprom_temp = le16toh(val);
   1700 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1701 		sc->eeprom_rawtemp = le16toh(val);
   1702 	}
   1703 
   1704 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1705 		/* Compute temperature offset. */
   1706 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1707 		sc->eeprom_temp = le16toh(val);
   1708 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1709 		volt = le16toh(val);
   1710 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1711 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1712 		    sc->eeprom_temp, volt, sc->temp_off));
   1713 	} else {
   1714 		/* Read crystal calibration. */
   1715 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1716 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1717 		DPRINTF(("crystal calibration 0x%08x\n",
   1718 		    le32toh(sc->eeprom_crystal)));
   1719 	}
   1720 }
   1721 
   1722 static void
   1723 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1724 {
   1725 	struct ieee80211com *ic = &sc->sc_ic;
   1726 	const struct iwn_chan_band *band = &iwn_bands[n];
   1727 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1728 	uint8_t chan;
   1729 	int i;
   1730 
   1731 	iwn_read_prom_data(sc, addr, channels,
   1732 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1733 
   1734 	for (i = 0; i < band->nchan; i++) {
   1735 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1736 			continue;
   1737 
   1738 		chan = band->chan[i];
   1739 
   1740 		if (n == 0) {	/* 2GHz band */
   1741 			ic->ic_channels[chan].ic_freq =
   1742 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1743 			ic->ic_channels[chan].ic_flags =
   1744 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1745 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1746 
   1747 		} else {	/* 5GHz band */
   1748 			/*
   1749 			 * Some adapters support channels 7, 8, 11 and 12
   1750 			 * both in the 2GHz and 4.9GHz bands.
   1751 			 * Because of limitations in our net80211 layer,
   1752 			 * we don't support them in the 4.9GHz band.
   1753 			 */
   1754 			if (chan <= 14)
   1755 				continue;
   1756 
   1757 			ic->ic_channels[chan].ic_freq =
   1758 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1759 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1760 			/* We have at least one valid 5GHz channel. */
   1761 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1762 		}
   1763 
   1764 		/* Is active scan allowed on this channel? */
   1765 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1766 			ic->ic_channels[chan].ic_flags |=
   1767 			    IEEE80211_CHAN_PASSIVE;
   1768 		}
   1769 
   1770 		/* Save maximum allowed TX power for this channel. */
   1771 		sc->maxpwr[chan] = channels[i].maxpwr;
   1772 
   1773 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1774 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1775 	}
   1776 }
   1777 
   1778 static void
   1779 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1780 {
   1781 	struct iwn_eeprom_enhinfo enhinfo[35];
   1782 	uint16_t val, base;
   1783 	int8_t maxpwr;
   1784 	int i;
   1785 
   1786 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1787 	base = le16toh(val);
   1788 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1789 	    enhinfo, sizeof enhinfo);
   1790 
   1791 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1792 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1793 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
   1794 			continue;	/* Skip invalid entries. */
   1795 
   1796 		maxpwr = 0;
   1797 		if (sc->txchainmask & IWN_ANT_A)
   1798 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1799 		if (sc->txchainmask & IWN_ANT_B)
   1800 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1801 		if (sc->txchainmask & IWN_ANT_C)
   1802 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1803 		if (sc->ntxchains == 2)
   1804 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1805 		else if (sc->ntxchains == 3)
   1806 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1807 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1808 
   1809 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1810 		sc->enh_maxpwr[i] = maxpwr;
   1811 	}
   1812 }
   1813 
   1814 static struct ieee80211_node *
   1815 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1816 {
   1817 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1818 }
   1819 
   1820 static void
   1821 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1822 {
   1823 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1824 	struct iwn_node *wn = (void *)ni;
   1825 	uint8_t rate;
   1826 	int ridx, i;
   1827 
   1828 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1829 	/* Start at lowest available bit-rate, AMRR will raise. */
   1830 	ni->ni_txrate = 0;
   1831 
   1832 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1833 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1834 		/* Map 802.11 rate to HW rate index. */
   1835 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1836 			if (iwn_rates[ridx].rate == rate)
   1837 				break;
   1838 		wn->ridx[i] = ridx;
   1839 	}
   1840 }
   1841 
   1842 static int
   1843 iwn_media_change(struct ifnet *ifp)
   1844 {
   1845 	struct iwn_softc *sc = ifp->if_softc;
   1846 	struct ieee80211com *ic = &sc->sc_ic;
   1847 	uint8_t rate, ridx;
   1848 	int error;
   1849 
   1850 	error = ieee80211_media_change(ifp);
   1851 	if (error != ENETRESET)
   1852 		return error;
   1853 
   1854 	if (ic->ic_fixed_rate != -1) {
   1855 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1856 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1857 		/* Map 802.11 rate to HW rate index. */
   1858 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1859 			if (iwn_rates[ridx].rate == rate)
   1860 				break;
   1861 		sc->fixed_ridx = ridx;
   1862 	}
   1863 
   1864 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1865 	    (IFF_UP | IFF_RUNNING)) {
   1866 		iwn_stop(ifp, 0);
   1867 		error = iwn_init(ifp);
   1868 	}
   1869 	return error;
   1870 }
   1871 
   1872 static int
   1873 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1874 {
   1875 	struct ifnet *ifp = ic->ic_ifp;
   1876 	struct iwn_softc *sc = ifp->if_softc;
   1877 	int error;
   1878 
   1879 	callout_stop(&sc->calib_to);
   1880 
   1881 	switch (nstate) {
   1882 	case IEEE80211_S_SCAN:
   1883 		/* XXX Do not abort a running scan. */
   1884 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1885 			if (ic->ic_state != nstate)
   1886 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1887 				    "while scanning(%d) ignored\n", nstate,
   1888 				    ic->ic_state);
   1889 			break;
   1890 		}
   1891 
   1892 		/* XXX Not sure if call and flags are needed. */
   1893 		ieee80211_node_table_reset(&ic->ic_scan);
   1894 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1895 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1896 
   1897 		/* Make the link LED blink while we're scanning. */
   1898 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1899 
   1900 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1901 			aprint_error_dev(sc->sc_dev,
   1902 			    "could not initiate scan\n");
   1903 			return error;
   1904 		}
   1905 		ic->ic_state = nstate;
   1906 		return 0;
   1907 
   1908 	case IEEE80211_S_ASSOC:
   1909 		if (ic->ic_state != IEEE80211_S_RUN)
   1910 			break;
   1911 		/* FALLTHROUGH */
   1912 	case IEEE80211_S_AUTH:
   1913 		/* Reset state to handle reassociations correctly. */
   1914 		sc->rxon.associd = 0;
   1915 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1916 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1917 
   1918 		if ((error = iwn_auth(sc)) != 0) {
   1919 			aprint_error_dev(sc->sc_dev,
   1920 			    "could not move to auth state\n");
   1921 			return error;
   1922 		}
   1923 		break;
   1924 
   1925 	case IEEE80211_S_RUN:
   1926 		if ((error = iwn_run(sc)) != 0) {
   1927 			aprint_error_dev(sc->sc_dev,
   1928 			    "could not move to run state\n");
   1929 			return error;
   1930 		}
   1931 		break;
   1932 
   1933 	case IEEE80211_S_INIT:
   1934 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1935 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1936 		break;
   1937 	}
   1938 
   1939 	return sc->sc_newstate(ic, nstate, arg);
   1940 }
   1941 
   1942 static void
   1943 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1944 {
   1945 	struct iwn_softc *sc = arg;
   1946 	struct iwn_node *wn = (struct iwn_node *)ni;
   1947 
   1948 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1949 }
   1950 
   1951 static void
   1952 iwn_calib_timeout(void *arg)
   1953 {
   1954 	struct iwn_softc *sc = arg;
   1955 	struct ieee80211com *ic = &sc->sc_ic;
   1956 	int s;
   1957 
   1958 	s = splnet();
   1959 	if (ic->ic_fixed_rate == -1) {
   1960 		if (ic->ic_opmode == IEEE80211_M_STA)
   1961 			iwn_iter_func(sc, ic->ic_bss);
   1962 		else
   1963 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1964 	}
   1965 	/* Force automatic TX power calibration every 60 secs. */
   1966 	if (++sc->calib_cnt >= 120) {
   1967 		uint32_t flags = 0;
   1968 
   1969 		DPRINTF(("sending request for statistics\n"));
   1970 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1971 		    sizeof flags, 1);
   1972 		sc->calib_cnt = 0;
   1973 	}
   1974 	splx(s);
   1975 
   1976 	/* Automatic rate control triggered every 500ms. */
   1977 	callout_schedule(&sc->calib_to, mstohz(500));
   1978 }
   1979 
   1980 /*
   1981  * Process an RX_PHY firmware notification.  This is usually immediately
   1982  * followed by an MPDU_RX_DONE notification.
   1983  */
   1984 static void
   1985 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   1986     struct iwn_rx_data *data)
   1987 {
   1988 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   1989 
   1990 	DPRINTFN(2, ("received PHY stats\n"));
   1991 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   1992 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   1993 
   1994 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   1995 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   1996 	sc->last_rx_valid = 1;
   1997 }
   1998 
   1999 /*
   2000  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2001  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2002  */
   2003 static void
   2004 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2005     struct iwn_rx_data *data)
   2006 {
   2007 	struct iwn_ops *ops = &sc->ops;
   2008 	struct ieee80211com *ic = &sc->sc_ic;
   2009 	struct ifnet *ifp = ic->ic_ifp;
   2010 	struct iwn_rx_ring *ring = &sc->rxq;
   2011 	struct ieee80211_frame *wh;
   2012 	struct ieee80211_node *ni;
   2013 	struct mbuf *m, *m1;
   2014 	struct iwn_rx_stat *stat;
   2015 	char	*head;
   2016 	uint32_t flags;
   2017 	int error, len, rssi, s;
   2018 
   2019 	if (desc->type == IWN_MPDU_RX_DONE) {
   2020 		/* Check for prior RX_PHY notification. */
   2021 		if (!sc->last_rx_valid) {
   2022 			DPRINTF(("missing RX_PHY\n"));
   2023 			return;
   2024 		}
   2025 		sc->last_rx_valid = 0;
   2026 		stat = &sc->last_rx_stat;
   2027 	} else
   2028 		stat = (struct iwn_rx_stat *)(desc + 1);
   2029 
   2030 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2031 	    BUS_DMASYNC_POSTREAD);
   2032 
   2033 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2034 		aprint_error_dev(sc->sc_dev,
   2035 		    "invalid RX statistic header\n");
   2036 		return;
   2037 	}
   2038 	if (desc->type == IWN_MPDU_RX_DONE) {
   2039 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2040 		head = (char *)(mpdu + 1);
   2041 		len = le16toh(mpdu->len);
   2042 	} else {
   2043 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2044 		len = le16toh(stat->len);
   2045 	}
   2046 
   2047 	flags = le32toh(*(uint32_t *)(head + len));
   2048 
   2049 	/* Discard frames with a bad FCS early. */
   2050 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2051 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2052 		ifp->if_ierrors++;
   2053 		return;
   2054 	}
   2055 	/* Discard frames that are too short. */
   2056 	if (len < sizeof (*wh)) {
   2057 		DPRINTF(("frame too short: %d\n", len));
   2058 		ic->ic_stats.is_rx_tooshort++;
   2059 		ifp->if_ierrors++;
   2060 		return;
   2061 	}
   2062 
   2063 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2064 	if (m1 == NULL) {
   2065 		ic->ic_stats.is_rx_nobuf++;
   2066 		ifp->if_ierrors++;
   2067 		return;
   2068 	}
   2069 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2070 
   2071 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2072 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2073 	if (error != 0) {
   2074 		m_freem(m1);
   2075 
   2076 		/* Try to reload the old mbuf. */
   2077 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2078 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2079 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2080 		if (error != 0) {
   2081 			panic("%s: could not load old RX mbuf",
   2082 			    device_xname(sc->sc_dev));
   2083 		}
   2084 		/* Physical address may have changed. */
   2085 		ring->desc[ring->cur] =
   2086 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2087 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2088 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2089 		    BUS_DMASYNC_PREWRITE);
   2090 		ifp->if_ierrors++;
   2091 		return;
   2092 	}
   2093 
   2094 	m = data->m;
   2095 	data->m = m1;
   2096 	/* Update RX descriptor. */
   2097 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2098 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2099 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2100 	    BUS_DMASYNC_PREWRITE);
   2101 
   2102 	/* Finalize mbuf. */
   2103 	m_set_rcvif(m, ifp);
   2104 	m->m_data = head;
   2105 	m->m_pkthdr.len = m->m_len = len;
   2106 
   2107 	s = splnet();
   2108 
   2109 	/* Grab a reference to the source node. */
   2110 	wh = mtod(m, struct ieee80211_frame *);
   2111 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2112 
   2113 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2114 	/* NetBSD does decryption in ieee80211_input. */
   2115 
   2116 	rssi = ops->get_rssi(stat);
   2117 
   2118 	/* XXX Added for NetBSD: scans never stop without it */
   2119 	if (ic->ic_state == IEEE80211_S_SCAN)
   2120 		iwn_fix_channel(ic, m, stat);
   2121 
   2122 	if (sc->sc_drvbpf != NULL) {
   2123 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2124 
   2125 		tap->wr_flags = 0;
   2126 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2127 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2128 		tap->wr_chan_freq =
   2129 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2130 		tap->wr_chan_flags =
   2131 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2132 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2133 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2134 		tap->wr_tsft = stat->tstamp;
   2135 		switch (stat->rate) {
   2136 		/* CCK rates. */
   2137 		case  10: tap->wr_rate =   2; break;
   2138 		case  20: tap->wr_rate =   4; break;
   2139 		case  55: tap->wr_rate =  11; break;
   2140 		case 110: tap->wr_rate =  22; break;
   2141 		/* OFDM rates. */
   2142 		case 0xd: tap->wr_rate =  12; break;
   2143 		case 0xf: tap->wr_rate =  18; break;
   2144 		case 0x5: tap->wr_rate =  24; break;
   2145 		case 0x7: tap->wr_rate =  36; break;
   2146 		case 0x9: tap->wr_rate =  48; break;
   2147 		case 0xb: tap->wr_rate =  72; break;
   2148 		case 0x1: tap->wr_rate =  96; break;
   2149 		case 0x3: tap->wr_rate = 108; break;
   2150 		/* Unknown rate: should not happen. */
   2151 		default:  tap->wr_rate =   0;
   2152 		}
   2153 
   2154 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2155 	}
   2156 
   2157 	/* Send the frame to the 802.11 layer. */
   2158 	ieee80211_input(ic, m, ni, rssi, 0);
   2159 
   2160 	/* Node is no longer needed. */
   2161 	ieee80211_free_node(ni);
   2162 
   2163 	splx(s);
   2164 }
   2165 
   2166 #ifndef IEEE80211_NO_HT
   2167 /* Process an incoming Compressed BlockAck. */
   2168 static void
   2169 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2170     struct iwn_rx_data *data)
   2171 {
   2172 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2173 	struct iwn_tx_ring *txq;
   2174 
   2175 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2176 	    BUS_DMASYNC_POSTREAD);
   2177 
   2178 	txq = &sc->txq[le16toh(ba->qid)];
   2179 	/* XXX TBD */
   2180 }
   2181 #endif
   2182 
   2183 /*
   2184  * Process a CALIBRATION_RESULT notification sent by the initialization
   2185  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2186  */
   2187 static void
   2188 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2189     struct iwn_rx_data *data)
   2190 {
   2191 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2192 	int len, idx = -1;
   2193 
   2194 	/* Runtime firmware should not send such a notification. */
   2195 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2196 		return;
   2197 
   2198 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2199 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2200 	    BUS_DMASYNC_POSTREAD);
   2201 
   2202 	switch (calib->code) {
   2203 	case IWN5000_PHY_CALIB_DC:
   2204 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2205 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2206 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2207 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2208 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2209 			idx = 0;
   2210 		break;
   2211 	case IWN5000_PHY_CALIB_LO:
   2212 		idx = 1;
   2213 		break;
   2214 	case IWN5000_PHY_CALIB_TX_IQ:
   2215 		idx = 2;
   2216 		break;
   2217 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2218 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2219 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2220 			idx = 3;
   2221 		break;
   2222 	case IWN5000_PHY_CALIB_BASE_BAND:
   2223 		idx = 4;
   2224 		break;
   2225 	}
   2226 	if (idx == -1)	/* Ignore other results. */
   2227 		return;
   2228 
   2229 	/* Save calibration result. */
   2230 	if (sc->calibcmd[idx].buf != NULL)
   2231 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2232 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2233 	if (sc->calibcmd[idx].buf == NULL) {
   2234 		DPRINTF(("not enough memory for calibration result %d\n",
   2235 		    calib->code));
   2236 		return;
   2237 	}
   2238 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2239 	    calib->code, len));
   2240 	sc->calibcmd[idx].len = len;
   2241 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2242 }
   2243 
   2244 /*
   2245  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2246  * The latter is sent by the firmware after each received beacon.
   2247  */
   2248 static void
   2249 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2250     struct iwn_rx_data *data)
   2251 {
   2252 	struct iwn_ops *ops = &sc->ops;
   2253 	struct ieee80211com *ic = &sc->sc_ic;
   2254 	struct iwn_calib_state *calib = &sc->calib;
   2255 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2256 	int temp;
   2257 
   2258 	/* Ignore statistics received during a scan. */
   2259 	if (ic->ic_state != IEEE80211_S_RUN)
   2260 		return;
   2261 
   2262 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2263 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2264 
   2265 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2266 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2267 
   2268 	/* Test if temperature has changed. */
   2269 	if (stats->general.temp != sc->rawtemp) {
   2270 		/* Convert "raw" temperature to degC. */
   2271 		sc->rawtemp = stats->general.temp;
   2272 		temp = ops->get_temperature(sc);
   2273 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2274 
   2275 		/* Update TX power if need be (4965AGN only). */
   2276 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2277 			iwn4965_power_calibration(sc, temp);
   2278 	}
   2279 
   2280 	if (desc->type != IWN_BEACON_STATISTICS)
   2281 		return;	/* Reply to a statistics request. */
   2282 
   2283 	sc->noise = iwn_get_noise(&stats->rx.general);
   2284 
   2285 	/* Test that RSSI and noise are present in stats report. */
   2286 	if (le32toh(stats->rx.general.flags) != 1) {
   2287 		DPRINTF(("received statistics without RSSI\n"));
   2288 		return;
   2289 	}
   2290 
   2291 	/*
   2292 	 * XXX Differential gain calibration makes the 6005 firmware
   2293 	 * crap out, so skip it for now.  This effectively disables
   2294 	 * sensitivity tuning as well.
   2295 	 */
   2296 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2297 		return;
   2298 
   2299 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2300 		iwn_collect_noise(sc, &stats->rx.general);
   2301 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2302 		iwn_tune_sensitivity(sc, &stats->rx);
   2303 }
   2304 
   2305 /*
   2306  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2307  * and 5000 adapters have different incompatible TX status formats.
   2308  */
   2309 static void
   2310 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2311     struct iwn_rx_data *data)
   2312 {
   2313 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2314 
   2315 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2316 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2317 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2318 }
   2319 
   2320 static void
   2321 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2322     struct iwn_rx_data *data)
   2323 {
   2324 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2325 
   2326 #ifdef notyet
   2327 	/* Reset TX scheduler slot. */
   2328 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2329 #endif
   2330 
   2331 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2332 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2333 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2334 }
   2335 
   2336 /*
   2337  * Adapter-independent backend for TX_DONE firmware notifications.
   2338  */
   2339 static void
   2340 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2341     uint8_t status)
   2342 {
   2343 	struct ieee80211com *ic = &sc->sc_ic;
   2344 	struct ifnet *ifp = ic->ic_ifp;
   2345 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2346 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2347 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2348 	int s;
   2349 
   2350 	s = splnet();
   2351 
   2352 	/* Update rate control statistics. */
   2353 	wn->amn.amn_txcnt++;
   2354 	if (ackfailcnt > 0)
   2355 		wn->amn.amn_retrycnt++;
   2356 
   2357 	if (status != 1 && status != 2)
   2358 		ifp->if_oerrors++;
   2359 	else
   2360 		ifp->if_opackets++;
   2361 
   2362 	/* Unmap and free mbuf. */
   2363 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2364 	    BUS_DMASYNC_POSTWRITE);
   2365 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2366 	m_freem(data->m);
   2367 	data->m = NULL;
   2368 	ieee80211_free_node(data->ni);
   2369 	data->ni = NULL;
   2370 
   2371 	sc->sc_tx_timer = 0;
   2372 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2373 		sc->qfullmsk &= ~(1 << ring->qid);
   2374 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2375 			ifp->if_flags &= ~IFF_OACTIVE;
   2376 			iwn_start(ifp);
   2377 		}
   2378 	}
   2379 
   2380 	splx(s);
   2381 }
   2382 
   2383 /*
   2384  * Process a "command done" firmware notification.  This is where we wakeup
   2385  * processes waiting for a synchronous command completion.
   2386  */
   2387 static void
   2388 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2389 {
   2390 	struct iwn_tx_ring *ring = &sc->txq[4];
   2391 	struct iwn_tx_data *data;
   2392 
   2393 	if ((desc->qid & 0xf) != 4)
   2394 		return;	/* Not a command ack. */
   2395 
   2396 	data = &ring->data[desc->idx];
   2397 
   2398 	/* If the command was mapped in an mbuf, free it. */
   2399 	if (data->m != NULL) {
   2400 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2401 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2402 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2403 		m_freem(data->m);
   2404 		data->m = NULL;
   2405 	}
   2406 	wakeup(&ring->desc[desc->idx]);
   2407 }
   2408 
   2409 /*
   2410  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2411  */
   2412 static void
   2413 iwn_notif_intr(struct iwn_softc *sc)
   2414 {
   2415 	struct iwn_ops *ops = &sc->ops;
   2416 	struct ieee80211com *ic = &sc->sc_ic;
   2417 	struct ifnet *ifp = ic->ic_ifp;
   2418 	uint16_t hw;
   2419 	int s;
   2420 
   2421 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2422 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2423 
   2424 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2425 	while (sc->rxq.cur != hw) {
   2426 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2427 		struct iwn_rx_desc *desc;
   2428 
   2429 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2430 		    BUS_DMASYNC_POSTREAD);
   2431 		desc = mtod(data->m, struct iwn_rx_desc *);
   2432 
   2433 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2434 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2435 
   2436 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2437 			iwn_cmd_done(sc, desc);
   2438 
   2439 		switch (desc->type) {
   2440 		case IWN_RX_PHY:
   2441 			iwn_rx_phy(sc, desc, data);
   2442 			break;
   2443 
   2444 		case IWN_RX_DONE:		/* 4965AGN only. */
   2445 		case IWN_MPDU_RX_DONE:
   2446 			/* An 802.11 frame has been received. */
   2447 			iwn_rx_done(sc, desc, data);
   2448 			break;
   2449 #ifndef IEEE80211_NO_HT
   2450 		case IWN_RX_COMPRESSED_BA:
   2451 			/* A Compressed BlockAck has been received. */
   2452 			iwn_rx_compressed_ba(sc, desc, data);
   2453 			break;
   2454 #endif
   2455 		case IWN_TX_DONE:
   2456 			/* An 802.11 frame has been transmitted. */
   2457 			ops->tx_done(sc, desc, data);
   2458 			break;
   2459 
   2460 		case IWN_RX_STATISTICS:
   2461 		case IWN_BEACON_STATISTICS:
   2462 			iwn_rx_statistics(sc, desc, data);
   2463 			break;
   2464 
   2465 		case IWN_BEACON_MISSED:
   2466 		{
   2467 			struct iwn_beacon_missed *miss =
   2468 			    (struct iwn_beacon_missed *)(desc + 1);
   2469 
   2470 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2471 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2472 			/*
   2473 			 * If more than 5 consecutive beacons are missed,
   2474 			 * reinitialize the sensitivity state machine.
   2475 			 */
   2476 			DPRINTF(("beacons missed %d/%d\n",
   2477 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2478 			if (ic->ic_state == IEEE80211_S_RUN &&
   2479 			    le32toh(miss->consecutive) > 5)
   2480 				(void)iwn_init_sensitivity(sc);
   2481 			break;
   2482 		}
   2483 		case IWN_UC_READY:
   2484 		{
   2485 			struct iwn_ucode_info *uc =
   2486 			    (struct iwn_ucode_info *)(desc + 1);
   2487 
   2488 			/* The microcontroller is ready. */
   2489 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2490 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2491 			DPRINTF(("microcode alive notification version=%d.%d "
   2492 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2493 			    uc->subtype, le32toh(uc->valid)));
   2494 
   2495 			if (le32toh(uc->valid) != 1) {
   2496 				aprint_error_dev(sc->sc_dev,
   2497 				    "microcontroller initialization "
   2498 				    "failed\n");
   2499 				break;
   2500 			}
   2501 			if (uc->subtype == IWN_UCODE_INIT) {
   2502 				/* Save microcontroller report. */
   2503 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2504 			}
   2505 			/* Save the address of the error log in SRAM. */
   2506 			sc->errptr = le32toh(uc->errptr);
   2507 			break;
   2508 		}
   2509 		case IWN_STATE_CHANGED:
   2510 		{
   2511 			uint32_t *status = (uint32_t *)(desc + 1);
   2512 
   2513 			/* Enabled/disabled notification. */
   2514 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2515 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2516 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2517 
   2518 			if (le32toh(*status) & 1) {
   2519 				/* The radio button has to be pushed. */
   2520 				aprint_error_dev(sc->sc_dev,
   2521 				    "Radio transmitter is off\n");
   2522 				/* Turn the interface down. */
   2523 				s = splnet();
   2524 				ifp->if_flags &= ~IFF_UP;
   2525 				iwn_stop(ifp, 1);
   2526 				splx(s);
   2527 				return;	/* No further processing. */
   2528 			}
   2529 			break;
   2530 		}
   2531 		case IWN_START_SCAN:
   2532 		{
   2533 			struct iwn_start_scan *scan =
   2534 			    (struct iwn_start_scan *)(desc + 1);
   2535 
   2536 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2537 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2538 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2539 			    scan->chan, le32toh(scan->status)));
   2540 
   2541 			/* Fix current channel. */
   2542 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2543 			break;
   2544 		}
   2545 		case IWN_STOP_SCAN:
   2546 		{
   2547 			struct iwn_stop_scan *scan =
   2548 			    (struct iwn_stop_scan *)(desc + 1);
   2549 
   2550 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2551 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2552 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2553 			    scan->nchan, scan->status, scan->chan));
   2554 
   2555 			if (scan->status == 1 && scan->chan <= 14 &&
   2556 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2557 				/*
   2558 				 * We just finished scanning 2GHz channels,
   2559 				 * start scanning 5GHz ones.
   2560 				 */
   2561 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2562 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2563 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2564 					break;
   2565 			}
   2566 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2567 			ieee80211_end_scan(ic);
   2568 			break;
   2569 		}
   2570 		case IWN5000_CALIBRATION_RESULT:
   2571 			iwn5000_rx_calib_results(sc, desc, data);
   2572 			break;
   2573 
   2574 		case IWN5000_CALIBRATION_DONE:
   2575 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2576 			wakeup(sc);
   2577 			break;
   2578 		}
   2579 
   2580 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2581 	}
   2582 
   2583 	/* Tell the firmware what we have processed. */
   2584 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2585 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2586 }
   2587 
   2588 /*
   2589  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2590  * from power-down sleep mode.
   2591  */
   2592 static void
   2593 iwn_wakeup_intr(struct iwn_softc *sc)
   2594 {
   2595 	int qid;
   2596 
   2597 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2598 
   2599 	/* Wakeup RX and TX rings. */
   2600 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2601 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2602 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2603 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2604 	}
   2605 }
   2606 
   2607 /*
   2608  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2609  * we can't debug the firmware because it is neither open source nor free, it
   2610  * can help us to identify certain classes of problems.
   2611  */
   2612 static void
   2613 iwn_fatal_intr(struct iwn_softc *sc)
   2614 {
   2615 	struct iwn_fw_dump dump;
   2616 	int i;
   2617 
   2618 	/* Force a complete recalibration on next init. */
   2619 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2620 
   2621 	/* Check that the error log address is valid. */
   2622 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2623 	    sc->errptr + sizeof (dump) >
   2624 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2625 		aprint_error_dev(sc->sc_dev,
   2626 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2627 		return;
   2628 	}
   2629 	if (iwn_nic_lock(sc) != 0) {
   2630 		aprint_error_dev(sc->sc_dev,
   2631 		    "could not read firmware error log\n");
   2632 		return;
   2633 	}
   2634 	/* Read firmware error log from SRAM. */
   2635 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2636 	    sizeof (dump) / sizeof (uint32_t));
   2637 	iwn_nic_unlock(sc);
   2638 
   2639 	if (dump.valid == 0) {
   2640 		aprint_error_dev(sc->sc_dev,
   2641 		    "firmware error log is empty\n");
   2642 		return;
   2643 	}
   2644 	aprint_error("firmware error log:\n");
   2645 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2646 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2647 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2648 	    dump.id);
   2649 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2650 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2651 	aprint_error("  error data      = 0x%08X%08X\n",
   2652 	    dump.error_data[0], dump.error_data[1]);
   2653 	aprint_error("  branch link     = 0x%08X%08X\n",
   2654 	    dump.branch_link[0], dump.branch_link[1]);
   2655 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2656 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2657 	aprint_error("  time            = %u\n", dump.time[0]);
   2658 
   2659 	/* Dump driver status (TX and RX rings) while we're here. */
   2660 	aprint_error("driver status:\n");
   2661 	for (i = 0; i < sc->ntxqs; i++) {
   2662 		struct iwn_tx_ring *ring = &sc->txq[i];
   2663 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2664 		    i, ring->qid, ring->cur, ring->queued);
   2665 	}
   2666 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2667 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2668 }
   2669 
   2670 static int
   2671 iwn_intr(void *arg)
   2672 {
   2673 	struct iwn_softc *sc = arg;
   2674 
   2675 	/* Disable interrupts. */
   2676 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2677 
   2678 	softint_schedule(sc->sc_soft_ih);
   2679 	return 1;
   2680 }
   2681 
   2682 static void
   2683 iwn_softintr(void *arg)
   2684 {
   2685 	struct iwn_softc *sc = arg;
   2686 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2687 	uint32_t r1, r2, tmp;
   2688 	int s;
   2689 
   2690 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2691 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2692 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2693 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2694 		tmp = 0;
   2695 		while (sc->ict[sc->ict_cur] != 0) {
   2696 			tmp |= sc->ict[sc->ict_cur];
   2697 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2698 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2699 		}
   2700 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2701 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2702 		tmp = le32toh(tmp);
   2703 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2704 			tmp = 0;
   2705 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2706 			tmp |= 0x8000;
   2707 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2708 		r2 = 0;	/* Unused. */
   2709 	} else {
   2710 		r1 = IWN_READ(sc, IWN_INT);
   2711 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2712 			return;	/* Hardware gone! */
   2713 		r2 = IWN_READ(sc, IWN_FH_INT);
   2714 	}
   2715 	if (r1 == 0 && r2 == 0) {
   2716 		goto out;	/* Interrupt not for us. */
   2717 	}
   2718 
   2719 	/* Acknowledge interrupts. */
   2720 	IWN_WRITE(sc, IWN_INT, r1);
   2721 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2722 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2723 
   2724 	if (r1 & IWN_INT_RF_TOGGLED) {
   2725 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2726 		aprint_error_dev(sc->sc_dev,
   2727 		    "RF switch: radio %s\n",
   2728 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2729 	}
   2730 	if (r1 & IWN_INT_CT_REACHED) {
   2731 		aprint_error_dev(sc->sc_dev,
   2732 		    "critical temperature reached!\n");
   2733 	}
   2734 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2735 		aprint_error_dev(sc->sc_dev,
   2736 		    "fatal firmware error\n");
   2737 		/* Dump firmware error log and stop. */
   2738 		iwn_fatal_intr(sc);
   2739 		s = splnet();
   2740 		ifp->if_flags &= ~IFF_UP;
   2741 		iwn_stop(ifp, 1);
   2742 		splx(s);
   2743 		return;
   2744 	}
   2745 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2746 	    (r2 & IWN_FH_INT_RX)) {
   2747 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2748 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2749 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2750 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2751 			iwn_notif_intr(sc);
   2752 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2753 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2754 				    IWN_INT_PERIODIC_ENA);
   2755 			}
   2756 		} else
   2757 			iwn_notif_intr(sc);
   2758 	}
   2759 
   2760 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2761 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2762 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2763 		wakeup(sc);	/* FH DMA transfer completed. */
   2764 	}
   2765 
   2766 	if (r1 & IWN_INT_ALIVE)
   2767 		wakeup(sc);	/* Firmware is alive. */
   2768 
   2769 	if (r1 & IWN_INT_WAKEUP)
   2770 		iwn_wakeup_intr(sc);
   2771 
   2772 out:
   2773 	/* Re-enable interrupts. */
   2774 	if (ifp->if_flags & IFF_UP)
   2775 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2776 }
   2777 
   2778 /*
   2779  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2780  * 5000 adapters use a slightly different format).
   2781  */
   2782 static void
   2783 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2784     uint16_t len)
   2785 {
   2786 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2787 
   2788 	*w = htole16(len + 8);
   2789 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2790 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2791 	    sizeof (uint16_t),
   2792 	    BUS_DMASYNC_PREWRITE);
   2793 	if (idx < IWN_SCHED_WINSZ) {
   2794 		*(w + IWN_TX_RING_COUNT) = *w;
   2795 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2796 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2797 		    (char *)(void *)sc->sched_dma.vaddr,
   2798 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2799 	}
   2800 }
   2801 
   2802 static void
   2803 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2804     uint16_t len)
   2805 {
   2806 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2807 
   2808 	*w = htole16(id << 12 | (len + 8));
   2809 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2810 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2811 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2812 	if (idx < IWN_SCHED_WINSZ) {
   2813 		*(w + IWN_TX_RING_COUNT) = *w;
   2814 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2815 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2816 		    (char *)(void *)sc->sched_dma.vaddr,
   2817 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2818 	}
   2819 }
   2820 
   2821 #ifdef notyet
   2822 static void
   2823 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2824 {
   2825 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2826 
   2827 	*w = (*w & htole16(0xf000)) | htole16(1);
   2828 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2829 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2830 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2831 	if (idx < IWN_SCHED_WINSZ) {
   2832 		*(w + IWN_TX_RING_COUNT) = *w;
   2833 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2834 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2835 		    (char *)(void *)sc->sched_dma.vaddr,
   2836 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2837 	}
   2838 }
   2839 #endif
   2840 
   2841 static int
   2842 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2843 {
   2844 	struct ieee80211com *ic = &sc->sc_ic;
   2845 	struct iwn_node *wn = (void *)ni;
   2846 	struct iwn_tx_ring *ring;
   2847 	struct iwn_tx_desc *desc;
   2848 	struct iwn_tx_data *data;
   2849 	struct iwn_tx_cmd *cmd;
   2850 	struct iwn_cmd_data *tx;
   2851 	const struct iwn_rate *rinfo;
   2852 	struct ieee80211_frame *wh;
   2853 	struct ieee80211_key *k = NULL;
   2854 	struct mbuf *m1;
   2855 	uint32_t flags;
   2856 	u_int hdrlen;
   2857 	bus_dma_segment_t *seg;
   2858 	uint8_t tid, ridx, txant, type;
   2859 	int i, totlen, error, pad;
   2860 
   2861 	const struct chanAccParams *cap;
   2862 	int noack;
   2863 	int hdrlen2;
   2864 
   2865 	wh = mtod(m, struct ieee80211_frame *);
   2866 	hdrlen = ieee80211_anyhdrsize(wh);
   2867 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2868 
   2869 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2870 	    sizeof (struct ieee80211_qosframe) :
   2871 	    sizeof (struct ieee80211_frame);
   2872 
   2873 	if (hdrlen != hdrlen2)
   2874 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2875 		hdrlen, hdrlen2);
   2876 
   2877 	/* XXX OpenBSD sets a different tid when using QOS */
   2878 	tid = 0;
   2879 	if (ieee80211_has_qos(wh)) {
   2880 		cap = &ic->ic_wme.wme_chanParams;
   2881 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2882 	}
   2883 	else
   2884 		noack = 0;
   2885 
   2886 	ring = &sc->txq[ac];
   2887 	desc = &ring->desc[ring->cur];
   2888 	data = &ring->data[ring->cur];
   2889 
   2890 	/* Choose a TX rate index. */
   2891 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2892 	    type != IEEE80211_FC0_TYPE_DATA) {
   2893 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2894 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2895 	} else if (ic->ic_fixed_rate != -1) {
   2896 		ridx = sc->fixed_ridx;
   2897 	} else
   2898 		ridx = wn->ridx[ni->ni_txrate];
   2899 	rinfo = &iwn_rates[ridx];
   2900 
   2901 	/* Encrypt the frame if need be. */
   2902 	/*
   2903 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2904 	 * in order to match old code and other drivers. Tests with
   2905 	 * tcpdump indicates that the order is irrelevant, however,
   2906 	 * as bpf produces unencrypted data for both ordering choices.
   2907 	 */
   2908 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2909 		k = ieee80211_crypto_encap(ic, ni, m);
   2910 		if (k == NULL) {
   2911 			m_freem(m);
   2912 			return ENOBUFS;
   2913 		}
   2914 		/* Packet header may have moved, reset our local pointer. */
   2915 		wh = mtod(m, struct ieee80211_frame *);
   2916 	}
   2917 	totlen = m->m_pkthdr.len;
   2918 
   2919 	if (sc->sc_drvbpf != NULL) {
   2920 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2921 
   2922 		tap->wt_flags = 0;
   2923 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2924 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2925 		tap->wt_rate = rinfo->rate;
   2926 		tap->wt_hwqueue = ac;
   2927 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2928 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2929 
   2930 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2931 	}
   2932 
   2933 	/* Prepare TX firmware command. */
   2934 	cmd = &ring->cmd[ring->cur];
   2935 	cmd->code = IWN_CMD_TX_DATA;
   2936 	cmd->flags = 0;
   2937 	cmd->qid = ring->qid;
   2938 	cmd->idx = ring->cur;
   2939 
   2940 	tx = (struct iwn_cmd_data *)cmd->data;
   2941 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2942 	tx->scratch = 0;	/* clear "scratch" area */
   2943 
   2944 	flags = 0;
   2945 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2946 		/* Unicast frame, check if an ACK is expected. */
   2947 		if (!noack)
   2948 			flags |= IWN_TX_NEED_ACK;
   2949 	}
   2950 
   2951 #ifdef notyet
   2952 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2953 	if ((wh->i_fc[0] &
   2954 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2955 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2956 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2957 #endif
   2958 
   2959 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2960 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2961 
   2962 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   2963 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2964 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   2965 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   2966 			flags |= IWN_TX_NEED_RTS;
   2967 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   2968 		    ridx >= IWN_RIDX_OFDM6) {
   2969 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   2970 				flags |= IWN_TX_NEED_CTS;
   2971 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   2972 				flags |= IWN_TX_NEED_RTS;
   2973 		}
   2974 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   2975 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   2976 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   2977 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   2978 				flags |= IWN_TX_NEED_PROTECTION;
   2979 			} else
   2980 				flags |= IWN_TX_FULL_TXOP;
   2981 		}
   2982 	}
   2983 
   2984 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2985 	    type != IEEE80211_FC0_TYPE_DATA)
   2986 		tx->id = sc->broadcast_id;
   2987 	else
   2988 		tx->id = wn->id;
   2989 
   2990 	if (type == IEEE80211_FC0_TYPE_MGT) {
   2991 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2992 
   2993 #ifndef IEEE80211_STA_ONLY
   2994 		/* Tell HW to set timestamp in probe responses. */
   2995 		/* XXX NetBSD rev 1.11 added probe requests here but */
   2996 		/* probe requests do not take timestamps (from Bergamini). */
   2997 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2998 			flags |= IWN_TX_INSERT_TSTAMP;
   2999 #endif
   3000 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3001 		/* changes here. These are not needed (from Bergamini). */
   3002 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3003 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3004 			tx->timeout = htole16(3);
   3005 		else
   3006 			tx->timeout = htole16(2);
   3007 	} else
   3008 		tx->timeout = htole16(0);
   3009 
   3010 	if (hdrlen & 3) {
   3011 		/* First segment length must be a multiple of 4. */
   3012 		flags |= IWN_TX_NEED_PADDING;
   3013 		pad = 4 - (hdrlen & 3);
   3014 	} else
   3015 		pad = 0;
   3016 
   3017 	tx->len = htole16(totlen);
   3018 	tx->tid = tid;
   3019 	tx->rts_ntries = 60;
   3020 	tx->data_ntries = 15;
   3021 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3022 	tx->plcp = rinfo->plcp;
   3023 	tx->rflags = rinfo->flags;
   3024 	if (tx->id == sc->broadcast_id) {
   3025 		/* Group or management frame. */
   3026 		tx->linkq = 0;
   3027 		/* XXX Alternate between antenna A and B? */
   3028 		txant = IWN_LSB(sc->txchainmask);
   3029 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3030 	} else {
   3031 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3032 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3033 	}
   3034 	/* Set physical address of "scratch area". */
   3035 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3036 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3037 
   3038 	/* Copy 802.11 header in TX command. */
   3039 	/* XXX NetBSD changed this in rev 1.20 */
   3040 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3041 
   3042 	/* Trim 802.11 header. */
   3043 	m_adj(m, hdrlen);
   3044 	tx->security = 0;
   3045 	tx->flags = htole32(flags);
   3046 
   3047 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3048 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3049 	if (error != 0) {
   3050 		if (error != EFBIG) {
   3051 			aprint_error_dev(sc->sc_dev,
   3052 			    "can't map mbuf (error %d)\n", error);
   3053 			m_freem(m);
   3054 			return error;
   3055 		}
   3056 		/* Too many DMA segments, linearize mbuf. */
   3057 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3058 		if (m1 == NULL) {
   3059 			m_freem(m);
   3060 			return ENOBUFS;
   3061 		}
   3062 		if (m->m_pkthdr.len > MHLEN) {
   3063 			MCLGET(m1, M_DONTWAIT);
   3064 			if (!(m1->m_flags & M_EXT)) {
   3065 				m_freem(m);
   3066 				m_freem(m1);
   3067 				return ENOBUFS;
   3068 			}
   3069 		}
   3070 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3071 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3072 		m_freem(m);
   3073 		m = m1;
   3074 
   3075 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3076 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3077 		if (error != 0) {
   3078 			aprint_error_dev(sc->sc_dev,
   3079 			    "can't map mbuf (error %d)\n", error);
   3080 			m_freem(m);
   3081 			return error;
   3082 		}
   3083 	}
   3084 
   3085 	data->m = m;
   3086 	data->ni = ni;
   3087 
   3088 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3089 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3090 
   3091 	/* Fill TX descriptor. */
   3092 	desc->nsegs = 1 + data->map->dm_nsegs;
   3093 	/* First DMA segment is used by the TX command. */
   3094 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3095 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3096 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3097 	/* Other DMA segments are for data payload. */
   3098 	seg = data->map->dm_segs;
   3099 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3100 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3101 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3102 		    seg->ds_len << 4);
   3103 		seg++;
   3104 	}
   3105 
   3106 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3107 	    BUS_DMASYNC_PREWRITE);
   3108 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3109 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3110 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3111 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3112 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3113 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3114 
   3115 #ifdef notyet
   3116 	/* Update TX scheduler. */
   3117 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3118 #endif
   3119 
   3120 	/* Kick TX ring. */
   3121 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3122 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3123 
   3124 	/* Mark TX ring as full if we reach a certain threshold. */
   3125 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3126 		sc->qfullmsk |= 1 << ring->qid;
   3127 
   3128 	return 0;
   3129 }
   3130 
   3131 static void
   3132 iwn_start(struct ifnet *ifp)
   3133 {
   3134 	struct iwn_softc *sc = ifp->if_softc;
   3135 	struct ieee80211com *ic = &sc->sc_ic;
   3136 	struct ieee80211_node *ni;
   3137 	struct ether_header *eh;
   3138 	struct mbuf *m;
   3139 	int ac;
   3140 
   3141 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3142 		return;
   3143 
   3144 	for (;;) {
   3145 		if (sc->qfullmsk != 0) {
   3146 			ifp->if_flags |= IFF_OACTIVE;
   3147 			break;
   3148 		}
   3149 		/* Send pending management frames first. */
   3150 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3151 		if (m != NULL) {
   3152 			ni = M_GETCTX(m, struct ieee80211_node *);
   3153 			ac = 0;
   3154 			goto sendit;
   3155 		}
   3156 		if (ic->ic_state != IEEE80211_S_RUN)
   3157 			break;
   3158 
   3159 		/* Encapsulate and send data frames. */
   3160 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3161 		if (m == NULL)
   3162 			break;
   3163 		if (m->m_len < sizeof (*eh) &&
   3164 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3165 			ifp->if_oerrors++;
   3166 			continue;
   3167 		}
   3168 		eh = mtod(m, struct ether_header *);
   3169 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3170 		if (ni == NULL) {
   3171 			m_freem(m);
   3172 			ifp->if_oerrors++;
   3173 			continue;
   3174 		}
   3175 		/* classify mbuf so we can find which tx ring to use */
   3176 		if (ieee80211_classify(ic, m, ni) != 0) {
   3177 			m_freem(m);
   3178 			ieee80211_free_node(ni);
   3179 			ifp->if_oerrors++;
   3180 			continue;
   3181 		}
   3182 
   3183 		/* No QoS encapsulation for EAPOL frames. */
   3184 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3185 		    M_WME_GETAC(m) : WME_AC_BE;
   3186 
   3187 		bpf_mtap(ifp, m);
   3188 
   3189 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3190 			ieee80211_free_node(ni);
   3191 			ifp->if_oerrors++;
   3192 			continue;
   3193 		}
   3194 sendit:
   3195 		bpf_mtap3(ic->ic_rawbpf, m);
   3196 
   3197 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3198 			ieee80211_free_node(ni);
   3199 			ifp->if_oerrors++;
   3200 			continue;
   3201 		}
   3202 
   3203 		sc->sc_tx_timer = 5;
   3204 		ifp->if_timer = 1;
   3205 	}
   3206 }
   3207 
   3208 static void
   3209 iwn_watchdog(struct ifnet *ifp)
   3210 {
   3211 	struct iwn_softc *sc = ifp->if_softc;
   3212 
   3213 	ifp->if_timer = 0;
   3214 
   3215 	if (sc->sc_tx_timer > 0) {
   3216 		if (--sc->sc_tx_timer == 0) {
   3217 			aprint_error_dev(sc->sc_dev,
   3218 			    "device timeout\n");
   3219 			ifp->if_flags &= ~IFF_UP;
   3220 			iwn_stop(ifp, 1);
   3221 			ifp->if_oerrors++;
   3222 			return;
   3223 		}
   3224 		ifp->if_timer = 1;
   3225 	}
   3226 
   3227 	ieee80211_watchdog(&sc->sc_ic);
   3228 }
   3229 
   3230 static int
   3231 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3232 {
   3233 	struct iwn_softc *sc = ifp->if_softc;
   3234 	struct ieee80211com *ic = &sc->sc_ic;
   3235 	const struct sockaddr *sa;
   3236 	int s, error = 0;
   3237 
   3238 	s = splnet();
   3239 
   3240 	switch (cmd) {
   3241 	case SIOCSIFADDR:
   3242 		ifp->if_flags |= IFF_UP;
   3243 		/* FALLTHROUGH */
   3244 	case SIOCSIFFLAGS:
   3245 		/* XXX Added as it is in every NetBSD driver */
   3246 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3247 			break;
   3248 		if (ifp->if_flags & IFF_UP) {
   3249 			if (!(ifp->if_flags & IFF_RUNNING))
   3250 				error = iwn_init(ifp);
   3251 		} else {
   3252 			if (ifp->if_flags & IFF_RUNNING)
   3253 				iwn_stop(ifp, 1);
   3254 		}
   3255 		break;
   3256 
   3257 	case SIOCADDMULTI:
   3258 	case SIOCDELMULTI:
   3259 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3260 		error = (cmd == SIOCADDMULTI) ?
   3261 		    ether_addmulti(sa, &sc->sc_ec) :
   3262 		    ether_delmulti(sa, &sc->sc_ec);
   3263 
   3264 		if (error == ENETRESET)
   3265 			error = 0;
   3266 		break;
   3267 
   3268 	default:
   3269 		error = ieee80211_ioctl(ic, cmd, data);
   3270 	}
   3271 
   3272 	if (error == ENETRESET) {
   3273 		error = 0;
   3274 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3275 		    (IFF_UP | IFF_RUNNING)) {
   3276 			iwn_stop(ifp, 0);
   3277 			error = iwn_init(ifp);
   3278 		}
   3279 	}
   3280 
   3281 	splx(s);
   3282 	return error;
   3283 }
   3284 
   3285 /*
   3286  * Send a command to the firmware.
   3287  */
   3288 static int
   3289 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3290 {
   3291 	struct iwn_tx_ring *ring = &sc->txq[4];
   3292 	struct iwn_tx_desc *desc;
   3293 	struct iwn_tx_data *data;
   3294 	struct iwn_tx_cmd *cmd;
   3295 	struct mbuf *m;
   3296 	bus_addr_t paddr;
   3297 	int totlen, error;
   3298 
   3299 	desc = &ring->desc[ring->cur];
   3300 	data = &ring->data[ring->cur];
   3301 	totlen = 4 + size;
   3302 
   3303 	if (size > sizeof cmd->data) {
   3304 		/* Command is too large to fit in a descriptor. */
   3305 		if (totlen > MCLBYTES)
   3306 			return EINVAL;
   3307 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3308 		if (m == NULL)
   3309 			return ENOMEM;
   3310 		if (totlen > MHLEN) {
   3311 			MCLGET(m, M_DONTWAIT);
   3312 			if (!(m->m_flags & M_EXT)) {
   3313 				m_freem(m);
   3314 				return ENOMEM;
   3315 			}
   3316 		}
   3317 		cmd = mtod(m, struct iwn_tx_cmd *);
   3318 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3319 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3320 		if (error != 0) {
   3321 			m_freem(m);
   3322 			return error;
   3323 		}
   3324 		data->m = m;
   3325 		paddr = data->map->dm_segs[0].ds_addr;
   3326 	} else {
   3327 		cmd = &ring->cmd[ring->cur];
   3328 		paddr = data->cmd_paddr;
   3329 	}
   3330 
   3331 	cmd->code = code;
   3332 	cmd->flags = 0;
   3333 	cmd->qid = ring->qid;
   3334 	cmd->idx = ring->cur;
   3335 	memcpy(cmd->data, buf, size);
   3336 
   3337 	desc->nsegs = 1;
   3338 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3339 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3340 
   3341 	if (size > sizeof cmd->data) {
   3342 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3343 		    BUS_DMASYNC_PREWRITE);
   3344 	} else {
   3345 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3346 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3347 		    totlen, BUS_DMASYNC_PREWRITE);
   3348 	}
   3349 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3350 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3351 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3352 
   3353 #ifdef notyet
   3354 	/* Update TX scheduler. */
   3355 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3356 #endif
   3357 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3358 
   3359 	/* Kick command ring. */
   3360 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3361 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3362 
   3363 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3364 }
   3365 
   3366 static int
   3367 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3368 {
   3369 	struct iwn4965_node_info hnode;
   3370 	char *src, *dst;
   3371 
   3372 	/*
   3373 	 * We use the node structure for 5000 Series internally (it is
   3374 	 * a superset of the one for 4965AGN). We thus copy the common
   3375 	 * fields before sending the command.
   3376 	 */
   3377 	src = (char *)node;
   3378 	dst = (char *)&hnode;
   3379 	memcpy(dst, src, 48);
   3380 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3381 	memcpy(dst + 48, src + 72, 20);
   3382 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3383 }
   3384 
   3385 static int
   3386 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3387 {
   3388 	/* Direct mapping. */
   3389 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3390 }
   3391 
   3392 static int
   3393 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3394 {
   3395 	struct iwn_node *wn = (void *)ni;
   3396 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3397 	struct iwn_cmd_link_quality linkq;
   3398 	const struct iwn_rate *rinfo;
   3399 	uint8_t txant;
   3400 	int i, txrate;
   3401 
   3402 	/* Use the first valid TX antenna. */
   3403 	txant = IWN_LSB(sc->txchainmask);
   3404 
   3405 	memset(&linkq, 0, sizeof linkq);
   3406 	linkq.id = wn->id;
   3407 	linkq.antmsk_1stream = txant;
   3408 	linkq.antmsk_2stream = IWN_ANT_AB;
   3409 	linkq.ampdu_max = 31;
   3410 	linkq.ampdu_threshold = 3;
   3411 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3412 
   3413 	/* Start at highest available bit-rate. */
   3414 	txrate = rs->rs_nrates - 1;
   3415 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3416 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3417 		linkq.retry[i].plcp = rinfo->plcp;
   3418 		linkq.retry[i].rflags = rinfo->flags;
   3419 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3420 		/* Next retry at immediate lower bit-rate. */
   3421 		if (txrate > 0)
   3422 			txrate--;
   3423 	}
   3424 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3425 }
   3426 
   3427 /*
   3428  * Broadcast node is used to send group-addressed and management frames.
   3429  */
   3430 static int
   3431 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3432 {
   3433 	struct iwn_ops *ops = &sc->ops;
   3434 	struct iwn_node_info node;
   3435 	struct iwn_cmd_link_quality linkq;
   3436 	const struct iwn_rate *rinfo;
   3437 	uint8_t txant;
   3438 	int i, error;
   3439 
   3440 	memset(&node, 0, sizeof node);
   3441 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3442 	node.id = sc->broadcast_id;
   3443 	DPRINTF(("adding broadcast node\n"));
   3444 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3445 		return error;
   3446 
   3447 	/* Use the first valid TX antenna. */
   3448 	txant = IWN_LSB(sc->txchainmask);
   3449 
   3450 	memset(&linkq, 0, sizeof linkq);
   3451 	linkq.id = sc->broadcast_id;
   3452 	linkq.antmsk_1stream = txant;
   3453 	linkq.antmsk_2stream = IWN_ANT_AB;
   3454 	linkq.ampdu_max = 64;
   3455 	linkq.ampdu_threshold = 3;
   3456 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3457 
   3458 	/* Use lowest mandatory bit-rate. */
   3459 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3460 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3461 	linkq.retry[0].plcp = rinfo->plcp;
   3462 	linkq.retry[0].rflags = rinfo->flags;
   3463 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3464 	/* Use same bit-rate for all TX retries. */
   3465 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3466 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3467 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3468 	}
   3469 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3470 }
   3471 
   3472 static void
   3473 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3474 {
   3475 	struct iwn_cmd_led led;
   3476 
   3477 	/* Clear microcode LED ownership. */
   3478 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3479 
   3480 	led.which = which;
   3481 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3482 	led.off = off;
   3483 	led.on = on;
   3484 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3485 }
   3486 
   3487 /*
   3488  * Set the critical temperature at which the firmware will stop the radio
   3489  * and notify us.
   3490  */
   3491 static int
   3492 iwn_set_critical_temp(struct iwn_softc *sc)
   3493 {
   3494 	struct iwn_critical_temp crit;
   3495 	int32_t temp;
   3496 
   3497 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3498 
   3499 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3500 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3501 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3502 		temp = IWN_CTOK(110);
   3503 	else
   3504 		temp = 110;
   3505 	memset(&crit, 0, sizeof crit);
   3506 	crit.tempR = htole32(temp);
   3507 	DPRINTF(("setting critical temperature to %d\n", temp));
   3508 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3509 }
   3510 
   3511 static int
   3512 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3513 {
   3514 	struct iwn_cmd_timing cmd;
   3515 	uint64_t val, mod;
   3516 
   3517 	memset(&cmd, 0, sizeof cmd);
   3518 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3519 	cmd.bintval = htole16(ni->ni_intval);
   3520 	cmd.lintval = htole16(10);
   3521 
   3522 	/* Compute remaining time until next beacon. */
   3523 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3524 	mod = le64toh(cmd.tstamp) % val;
   3525 	cmd.binitval = htole32((uint32_t)(val - mod));
   3526 
   3527 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3528 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3529 
   3530 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3531 }
   3532 
   3533 static void
   3534 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3535 {
   3536 	/* Adjust TX power if need be (delta >= 3 degC). */
   3537 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3538 	if (abs(temp - sc->temp) >= 3) {
   3539 		/* Record temperature of last calibration. */
   3540 		sc->temp = temp;
   3541 		(void)iwn4965_set_txpower(sc, 1);
   3542 	}
   3543 }
   3544 
   3545 /*
   3546  * Set TX power for current channel (each rate has its own power settings).
   3547  * This function takes into account the regulatory information from EEPROM,
   3548  * the current temperature and the current voltage.
   3549  */
   3550 static int
   3551 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3552 {
   3553 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3554 #define fdivround(a, b, n)	\
   3555 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3556 /* Linear interpolation. */
   3557 #define interpolate(x, x1, y1, x2, y2, n)	\
   3558 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3559 
   3560 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3561 	struct ieee80211com *ic = &sc->sc_ic;
   3562 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3563 	struct ieee80211_channel *ch;
   3564 	struct iwn4965_cmd_txpower cmd;
   3565 	struct iwn4965_eeprom_chan_samples *chans;
   3566 	const uint8_t *rf_gain, *dsp_gain;
   3567 	int32_t vdiff, tdiff;
   3568 	int i, c, grp, maxpwr;
   3569 	uint8_t chan;
   3570 
   3571 	/* Retrieve current channel from last RXON. */
   3572 	chan = sc->rxon.chan;
   3573 	DPRINTF(("setting TX power for channel %d\n", chan));
   3574 	ch = &ic->ic_channels[chan];
   3575 
   3576 	memset(&cmd, 0, sizeof cmd);
   3577 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3578 	cmd.chan = chan;
   3579 
   3580 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3581 		maxpwr   = sc->maxpwr5GHz;
   3582 		rf_gain  = iwn4965_rf_gain_5ghz;
   3583 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3584 	} else {
   3585 		maxpwr   = sc->maxpwr2GHz;
   3586 		rf_gain  = iwn4965_rf_gain_2ghz;
   3587 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3588 	}
   3589 
   3590 	/* Compute voltage compensation. */
   3591 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3592 	if (vdiff > 0)
   3593 		vdiff *= 2;
   3594 	if (abs(vdiff) > 2)
   3595 		vdiff = 0;
   3596 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3597 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3598 
   3599 	/* Get channel attenuation group. */
   3600 	if (chan <= 20)		/* 1-20 */
   3601 		grp = 4;
   3602 	else if (chan <= 43)	/* 34-43 */
   3603 		grp = 0;
   3604 	else if (chan <= 70)	/* 44-70 */
   3605 		grp = 1;
   3606 	else if (chan <= 124)	/* 71-124 */
   3607 		grp = 2;
   3608 	else			/* 125-200 */
   3609 		grp = 3;
   3610 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3611 
   3612 	/* Get channel sub-band. */
   3613 	for (i = 0; i < IWN_NBANDS; i++)
   3614 		if (sc->bands[i].lo != 0 &&
   3615 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3616 			break;
   3617 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3618 		return EINVAL;
   3619 	chans = sc->bands[i].chans;
   3620 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3621 
   3622 	for (c = 0; c < 2; c++) {
   3623 		uint8_t power, gain, temp;
   3624 		int maxchpwr, pwr, ridx, idx;
   3625 
   3626 		power = interpolate(chan,
   3627 		    chans[0].num, chans[0].samples[c][1].power,
   3628 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3629 		gain  = interpolate(chan,
   3630 		    chans[0].num, chans[0].samples[c][1].gain,
   3631 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3632 		temp  = interpolate(chan,
   3633 		    chans[0].num, chans[0].samples[c][1].temp,
   3634 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3635 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3636 		    c, power, gain, temp));
   3637 
   3638 		/* Compute temperature compensation. */
   3639 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3640 		DPRINTF(("temperature compensation=%d (current=%d, "
   3641 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3642 
   3643 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3644 			/* Convert dBm to half-dBm. */
   3645 			maxchpwr = sc->maxpwr[chan] * 2;
   3646 			if ((ridx / 8) & 1)
   3647 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3648 
   3649 			pwr = maxpwr;
   3650 
   3651 			/* Adjust TX power based on rate. */
   3652 			if ((ridx % 8) == 5)
   3653 				pwr -= 15;	/* OFDM48: -7.5dB */
   3654 			else if ((ridx % 8) == 6)
   3655 				pwr -= 17;	/* OFDM54: -8.5dB */
   3656 			else if ((ridx % 8) == 7)
   3657 				pwr -= 20;	/* OFDM60: -10dB */
   3658 			else
   3659 				pwr -= 10;	/* Others: -5dB */
   3660 
   3661 			/* Do not exceed channel max TX power. */
   3662 			if (pwr > maxchpwr)
   3663 				pwr = maxchpwr;
   3664 
   3665 			idx = gain - (pwr - power) - tdiff - vdiff;
   3666 			if ((ridx / 8) & 1)	/* MIMO */
   3667 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3668 
   3669 			if (cmd.band == 0)
   3670 				idx += 9;	/* 5GHz */
   3671 			if (ridx == IWN_RIDX_MAX)
   3672 				idx += 5;	/* CCK */
   3673 
   3674 			/* Make sure idx stays in a valid range. */
   3675 			if (idx < 0)
   3676 				idx = 0;
   3677 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3678 				idx = IWN4965_MAX_PWR_INDEX;
   3679 
   3680 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3681 			    c, ridx, idx));
   3682 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3683 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3684 		}
   3685 	}
   3686 
   3687 	DPRINTF(("setting TX power for chan %d\n", chan));
   3688 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3689 
   3690 #undef interpolate
   3691 #undef fdivround
   3692 }
   3693 
   3694 static int
   3695 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3696 {
   3697 	struct iwn5000_cmd_txpower cmd;
   3698 
   3699 	/*
   3700 	 * TX power calibration is handled automatically by the firmware
   3701 	 * for 5000 Series.
   3702 	 */
   3703 	memset(&cmd, 0, sizeof cmd);
   3704 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3705 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3706 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3707 	DPRINTF(("setting TX power\n"));
   3708 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
   3709 }
   3710 
   3711 /*
   3712  * Retrieve the maximum RSSI (in dBm) among receivers.
   3713  */
   3714 static int
   3715 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3716 {
   3717 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3718 	uint8_t mask, agc;
   3719 	int rssi;
   3720 
   3721 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3722 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3723 
   3724 	rssi = 0;
   3725 	if (mask & IWN_ANT_A)
   3726 		rssi = MAX(rssi, phy->rssi[0]);
   3727 	if (mask & IWN_ANT_B)
   3728 		rssi = MAX(rssi, phy->rssi[2]);
   3729 	if (mask & IWN_ANT_C)
   3730 		rssi = MAX(rssi, phy->rssi[4]);
   3731 
   3732 	return rssi - agc - IWN_RSSI_TO_DBM;
   3733 }
   3734 
   3735 static int
   3736 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3737 {
   3738 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3739 	uint8_t agc;
   3740 	int rssi;
   3741 
   3742 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3743 
   3744 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3745 		   le16toh(phy->rssi[1]) & 0xff);
   3746 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3747 
   3748 	return rssi - agc - IWN_RSSI_TO_DBM;
   3749 }
   3750 
   3751 /*
   3752  * Retrieve the average noise (in dBm) among receivers.
   3753  */
   3754 static int
   3755 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3756 {
   3757 	int i, total, nbant, noise;
   3758 
   3759 	total = nbant = 0;
   3760 	for (i = 0; i < 3; i++) {
   3761 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3762 			continue;
   3763 		total += noise;
   3764 		nbant++;
   3765 	}
   3766 	/* There should be at least one antenna but check anyway. */
   3767 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3768 }
   3769 
   3770 /*
   3771  * Compute temperature (in degC) from last received statistics.
   3772  */
   3773 static int
   3774 iwn4965_get_temperature(struct iwn_softc *sc)
   3775 {
   3776 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3777 	int32_t r1, r2, r3, r4, temp;
   3778 
   3779 	r1 = le32toh(uc->temp[0].chan20MHz);
   3780 	r2 = le32toh(uc->temp[1].chan20MHz);
   3781 	r3 = le32toh(uc->temp[2].chan20MHz);
   3782 	r4 = le32toh(sc->rawtemp);
   3783 
   3784 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3785 		return 0;
   3786 
   3787 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3788 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3789 	/* Compute temperature in Kelvin. */
   3790 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3791 	temp = (temp * 97) / 100 + 8;
   3792 
   3793 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3794 	return IWN_KTOC(temp);
   3795 }
   3796 
   3797 static int
   3798 iwn5000_get_temperature(struct iwn_softc *sc)
   3799 {
   3800 	int32_t temp;
   3801 
   3802 	/*
   3803 	 * Temperature is not used by the driver for 5000 Series because
   3804 	 * TX power calibration is handled by firmware.  We export it to
   3805 	 * users through the sensor framework though.
   3806 	 */
   3807 	temp = le32toh(sc->rawtemp);
   3808 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3809 		temp = (temp / -5) + sc->temp_off;
   3810 		temp = IWN_KTOC(temp);
   3811 	}
   3812 	return temp;
   3813 }
   3814 
   3815 /*
   3816  * Initialize sensitivity calibration state machine.
   3817  */
   3818 static int
   3819 iwn_init_sensitivity(struct iwn_softc *sc)
   3820 {
   3821 	struct iwn_ops *ops = &sc->ops;
   3822 	struct iwn_calib_state *calib = &sc->calib;
   3823 	uint32_t flags;
   3824 	int error;
   3825 
   3826 	/* Reset calibration state machine. */
   3827 	memset(calib, 0, sizeof (*calib));
   3828 	calib->state = IWN_CALIB_STATE_INIT;
   3829 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3830 	/* Set initial correlation values. */
   3831 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3832 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3833 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3834 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3835 	calib->cck_x4      = 125;
   3836 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3837 	calib->energy_cck  = sc->limits->energy_cck;
   3838 
   3839 	/* Write initial sensitivity. */
   3840 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3841 		return error;
   3842 
   3843 	/* Write initial gains. */
   3844 	if ((error = ops->init_gains(sc)) != 0)
   3845 		return error;
   3846 
   3847 	/* Request statistics at each beacon interval. */
   3848 	flags = 0;
   3849 	DPRINTF(("sending request for statistics\n"));
   3850 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3851 }
   3852 
   3853 /*
   3854  * Collect noise and RSSI statistics for the first 20 beacons received
   3855  * after association and use them to determine connected antennas and
   3856  * to set differential gains.
   3857  */
   3858 static void
   3859 iwn_collect_noise(struct iwn_softc *sc,
   3860     const struct iwn_rx_general_stats *stats)
   3861 {
   3862 	struct iwn_ops *ops = &sc->ops;
   3863 	struct iwn_calib_state *calib = &sc->calib;
   3864 	uint32_t val;
   3865 	int i;
   3866 
   3867 	/* Accumulate RSSI and noise for all 3 antennas. */
   3868 	for (i = 0; i < 3; i++) {
   3869 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3870 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3871 	}
   3872 	/* NB: We update differential gains only once after 20 beacons. */
   3873 	if (++calib->nbeacons < 20)
   3874 		return;
   3875 
   3876 	/* Determine highest average RSSI. */
   3877 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3878 	val = MAX(calib->rssi[2], val);
   3879 
   3880 	/* Determine which antennas are connected. */
   3881 	sc->chainmask = sc->rxchainmask;
   3882 	for (i = 0; i < 3; i++)
   3883 		if (val - calib->rssi[i] > 15 * 20)
   3884 			sc->chainmask &= ~(1 << i);
   3885 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3886 	    sc->rxchainmask, sc->chainmask));
   3887 
   3888 	/* If none of the TX antennas are connected, keep at least one. */
   3889 	if ((sc->chainmask & sc->txchainmask) == 0)
   3890 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3891 
   3892 	(void)ops->set_gains(sc);
   3893 	calib->state = IWN_CALIB_STATE_RUN;
   3894 
   3895 #ifdef notyet
   3896 	/* XXX Disable RX chains with no antennas connected. */
   3897 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3898 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3899 #endif
   3900 
   3901 	/* Enable power-saving mode if requested by user. */
   3902 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3903 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3904 }
   3905 
   3906 static int
   3907 iwn4965_init_gains(struct iwn_softc *sc)
   3908 {
   3909 	struct iwn_phy_calib_gain cmd;
   3910 
   3911 	memset(&cmd, 0, sizeof cmd);
   3912 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3913 	/* Differential gains initially set to 0 for all 3 antennas. */
   3914 	DPRINTF(("setting initial differential gains\n"));
   3915 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3916 }
   3917 
   3918 static int
   3919 iwn5000_init_gains(struct iwn_softc *sc)
   3920 {
   3921 	struct iwn_phy_calib cmd;
   3922 
   3923 	memset(&cmd, 0, sizeof cmd);
   3924 	cmd.code = sc->reset_noise_gain;
   3925 	cmd.ngroups = 1;
   3926 	cmd.isvalid = 1;
   3927 	DPRINTF(("setting initial differential gains\n"));
   3928 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3929 }
   3930 
   3931 static int
   3932 iwn4965_set_gains(struct iwn_softc *sc)
   3933 {
   3934 	struct iwn_calib_state *calib = &sc->calib;
   3935 	struct iwn_phy_calib_gain cmd;
   3936 	int i, delta, noise;
   3937 
   3938 	/* Get minimal noise among connected antennas. */
   3939 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3940 	for (i = 0; i < 3; i++)
   3941 		if (sc->chainmask & (1 << i))
   3942 			noise = MIN(calib->noise[i], noise);
   3943 
   3944 	memset(&cmd, 0, sizeof cmd);
   3945 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3946 	/* Set differential gains for connected antennas. */
   3947 	for (i = 0; i < 3; i++) {
   3948 		if (sc->chainmask & (1 << i)) {
   3949 			/* Compute attenuation (in unit of 1.5dB). */
   3950 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   3951 			/* NB: delta <= 0 */
   3952 			/* Limit to [-4.5dB,0]. */
   3953 			cmd.gain[i] = MIN(abs(delta), 3);
   3954 			if (delta < 0)
   3955 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   3956 		}
   3957 	}
   3958 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   3959 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   3960 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3961 }
   3962 
   3963 static int
   3964 iwn5000_set_gains(struct iwn_softc *sc)
   3965 {
   3966 	struct iwn_calib_state *calib = &sc->calib;
   3967 	struct iwn_phy_calib_gain cmd;
   3968 	int i, ant, div, delta;
   3969 
   3970 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   3971 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   3972 
   3973 	memset(&cmd, 0, sizeof cmd);
   3974 	cmd.code = sc->noise_gain;
   3975 	cmd.ngroups = 1;
   3976 	cmd.isvalid = 1;
   3977 	/* Get first available RX antenna as referential. */
   3978 	ant = IWN_LSB(sc->rxchainmask);
   3979 	/* Set differential gains for other antennas. */
   3980 	for (i = ant + 1; i < 3; i++) {
   3981 		if (sc->chainmask & (1 << i)) {
   3982 			/* The delta is relative to antenna "ant". */
   3983 			delta = ((int32_t)calib->noise[ant] -
   3984 			    (int32_t)calib->noise[i]) / div;
   3985 			/* Limit to [-4.5dB,+4.5dB]. */
   3986 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   3987 			if (delta < 0)
   3988 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   3989 		}
   3990 	}
   3991 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   3992 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   3993 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3994 }
   3995 
   3996 /*
   3997  * Tune RF RX sensitivity based on the number of false alarms detected
   3998  * during the last beacon period.
   3999  */
   4000 static void
   4001 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4002 {
   4003 #define inc(val, inc, max)			\
   4004 	if ((val) < (max)) {			\
   4005 		if ((val) < (max) - (inc))	\
   4006 			(val) += (inc);		\
   4007 		else				\
   4008 			(val) = (max);		\
   4009 		needs_update = 1;		\
   4010 	}
   4011 #define dec(val, dec, min)			\
   4012 	if ((val) > (min)) {			\
   4013 		if ((val) > (min) + (dec))	\
   4014 			(val) -= (dec);		\
   4015 		else				\
   4016 			(val) = (min);		\
   4017 		needs_update = 1;		\
   4018 	}
   4019 
   4020 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4021 	struct iwn_calib_state *calib = &sc->calib;
   4022 	uint32_t val, rxena, fa;
   4023 	uint32_t energy[3], energy_min;
   4024 	uint8_t noise[3], noise_ref;
   4025 	int i, needs_update = 0;
   4026 
   4027 	/* Check that we've been enabled long enough. */
   4028 	if ((rxena = le32toh(stats->general.load)) == 0)
   4029 		return;
   4030 
   4031 	/* Compute number of false alarms since last call for OFDM. */
   4032 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4033 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4034 	fa *= 200 * 1024;	/* 200TU */
   4035 
   4036 	/* Save counters values for next call. */
   4037 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4038 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4039 
   4040 	if (fa > 50 * rxena) {
   4041 		/* High false alarm count, decrease sensitivity. */
   4042 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4043 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4044 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4045 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4046 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4047 
   4048 	} else if (fa < 5 * rxena) {
   4049 		/* Low false alarm count, increase sensitivity. */
   4050 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4051 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4052 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4053 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4054 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4055 	}
   4056 
   4057 	/* Compute maximum noise among 3 receivers. */
   4058 	for (i = 0; i < 3; i++)
   4059 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4060 	val = MAX(noise[0], noise[1]);
   4061 	val = MAX(noise[2], val);
   4062 	/* Insert it into our samples table. */
   4063 	calib->noise_samples[calib->cur_noise_sample] = val;
   4064 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4065 
   4066 	/* Compute maximum noise among last 20 samples. */
   4067 	noise_ref = calib->noise_samples[0];
   4068 	for (i = 1; i < 20; i++)
   4069 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4070 
   4071 	/* Compute maximum energy among 3 receivers. */
   4072 	for (i = 0; i < 3; i++)
   4073 		energy[i] = le32toh(stats->general.energy[i]);
   4074 	val = MIN(energy[0], energy[1]);
   4075 	val = MIN(energy[2], val);
   4076 	/* Insert it into our samples table. */
   4077 	calib->energy_samples[calib->cur_energy_sample] = val;
   4078 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4079 
   4080 	/* Compute minimum energy among last 10 samples. */
   4081 	energy_min = calib->energy_samples[0];
   4082 	for (i = 1; i < 10; i++)
   4083 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4084 	energy_min += 6;
   4085 
   4086 	/* Compute number of false alarms since last call for CCK. */
   4087 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4088 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4089 	fa *= 200 * 1024;	/* 200TU */
   4090 
   4091 	/* Save counters values for next call. */
   4092 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4093 	calib->fa_cck = le32toh(stats->cck.fa);
   4094 
   4095 	if (fa > 50 * rxena) {
   4096 		/* High false alarm count, decrease sensitivity. */
   4097 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4098 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4099 		calib->low_fa = 0;
   4100 
   4101 		if (calib->cck_x4 > 160) {
   4102 			calib->noise_ref = noise_ref;
   4103 			if (calib->energy_cck > 2)
   4104 				dec(calib->energy_cck, 2, energy_min);
   4105 		}
   4106 		if (calib->cck_x4 < 160) {
   4107 			calib->cck_x4 = 161;
   4108 			needs_update = 1;
   4109 		} else
   4110 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4111 
   4112 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4113 
   4114 	} else if (fa < 5 * rxena) {
   4115 		/* Low false alarm count, increase sensitivity. */
   4116 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4117 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4118 		calib->low_fa++;
   4119 
   4120 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4121 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4122 		     calib->low_fa > 100)) {
   4123 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4124 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4125 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4126 		}
   4127 	} else {
   4128 		/* Not worth to increase or decrease sensitivity. */
   4129 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4130 		calib->low_fa = 0;
   4131 		calib->noise_ref = noise_ref;
   4132 
   4133 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4134 			/* Previous interval had many false alarms. */
   4135 			dec(calib->energy_cck, 8, energy_min);
   4136 		}
   4137 		calib->cck_state = IWN_CCK_STATE_INIT;
   4138 	}
   4139 
   4140 	if (needs_update)
   4141 		(void)iwn_send_sensitivity(sc);
   4142 #undef dec
   4143 #undef inc
   4144 }
   4145 
   4146 static int
   4147 iwn_send_sensitivity(struct iwn_softc *sc)
   4148 {
   4149 	struct iwn_calib_state *calib = &sc->calib;
   4150 	struct iwn_enhanced_sensitivity_cmd cmd;
   4151 	int len;
   4152 
   4153 	memset(&cmd, 0, sizeof cmd);
   4154 	len = sizeof (struct iwn_sensitivity_cmd);
   4155 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4156 	/* OFDM modulation. */
   4157 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4158 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4159 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4160 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4161 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4162 	cmd.energy_ofdm_th   = htole16(62);
   4163 	/* CCK modulation. */
   4164 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4165 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4166 	cmd.energy_cck       = htole16(calib->energy_cck);
   4167 	/* Barker modulation: use default values. */
   4168 	cmd.corr_barker      = htole16(190);
   4169 	cmd.corr_barker_mrc  = htole16(390);
   4170 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4171 		goto send;
   4172 	/* Enhanced sensitivity settings. */
   4173 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4174 	cmd.ofdm_det_slope_mrc = htole16(668);
   4175 	cmd.ofdm_det_icept_mrc = htole16(4);
   4176 	cmd.ofdm_det_slope     = htole16(486);
   4177 	cmd.ofdm_det_icept     = htole16(37);
   4178 	cmd.cck_det_slope_mrc  = htole16(853);
   4179 	cmd.cck_det_icept_mrc  = htole16(4);
   4180 	cmd.cck_det_slope      = htole16(476);
   4181 	cmd.cck_det_icept      = htole16(99);
   4182 send:
   4183 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4184 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4185 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4186 	    calib->energy_cck));
   4187 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4188 }
   4189 
   4190 /*
   4191  * Set STA mode power saving level (between 0 and 5).
   4192  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4193  */
   4194 static int
   4195 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4196 {
   4197 	struct iwn_pmgt_cmd cmd;
   4198 	const struct iwn_pmgt *pmgt;
   4199 	uint32_t maxp, skip_dtim;
   4200 	pcireg_t reg;
   4201 	int i;
   4202 
   4203 	/* Select which PS parameters to use. */
   4204 	if (dtim <= 2)
   4205 		pmgt = &iwn_pmgt[0][level];
   4206 	else if (dtim <= 10)
   4207 		pmgt = &iwn_pmgt[1][level];
   4208 	else
   4209 		pmgt = &iwn_pmgt[2][level];
   4210 
   4211 	memset(&cmd, 0, sizeof cmd);
   4212 	if (level != 0)	/* not CAM */
   4213 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4214 	if (level == 5)
   4215 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4216 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4217 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4218 	    sc->sc_cap_off + PCIE_LCSR);
   4219 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4220 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4221 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4222 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4223 
   4224 	if (dtim == 0) {
   4225 		dtim = 1;
   4226 		skip_dtim = 0;
   4227 	} else
   4228 		skip_dtim = pmgt->skip_dtim;
   4229 	if (skip_dtim != 0) {
   4230 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4231 		maxp = pmgt->intval[4];
   4232 		if (maxp == (uint32_t)-1)
   4233 			maxp = dtim * (skip_dtim + 1);
   4234 		else if (maxp > dtim)
   4235 			maxp = (maxp / dtim) * dtim;
   4236 	} else
   4237 		maxp = dtim;
   4238 	for (i = 0; i < 5; i++)
   4239 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4240 
   4241 	DPRINTF(("setting power saving level to %d\n", level));
   4242 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4243 }
   4244 
   4245 int
   4246 iwn5000_runtime_calib(struct iwn_softc *sc)
   4247 {
   4248 	struct iwn5000_calib_config cmd;
   4249 
   4250 	memset(&cmd, 0, sizeof cmd);
   4251 	cmd.ucode.once.enable = 0xffffffff;
   4252 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4253 	DPRINTF(("configuring runtime calibration\n"));
   4254 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4255 }
   4256 
   4257 static int
   4258 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4259 {
   4260 	struct iwn_bluetooth bluetooth;
   4261 
   4262 	memset(&bluetooth, 0, sizeof bluetooth);
   4263 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4264 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4265 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4266 
   4267 	DPRINTF(("configuring bluetooth coexistence\n"));
   4268 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4269 }
   4270 
   4271 static int
   4272 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4273 {
   4274 	uint8_t prio_table[16];
   4275 
   4276 	memset(&prio_table, 0, sizeof prio_table);
   4277 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4278 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4279 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4280 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4281 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4282 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4283 	prio_table[ 6] =  6;	/* dtim				*/
   4284 	prio_table[ 7] =  8;	/* scan52			*/
   4285 	prio_table[ 8] = 10;	/* scan24			*/
   4286 
   4287 	DPRINTF(("sending priority lookup table\n"));
   4288 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4289 	               &prio_table, sizeof prio_table, 0);
   4290 }
   4291 
   4292 static int
   4293 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4294     size_t len)
   4295 {
   4296 	struct iwn_btcoex_prot btprot;
   4297 	int error;
   4298 
   4299 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4300 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4301 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4302 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4303 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4304 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4305 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4306 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4307 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4308 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4309 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4310 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4311 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4312 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4313 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4314 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4315 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4316 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4317 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4318 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4319 	basic->reduce_txpower = 0; /* as not implemented */
   4320 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4321 
   4322 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4323 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4324 	if (error != 0) {
   4325 		aprint_error_dev(sc->sc_dev,
   4326 			"could not configure advanced bluetooth coexistence\n");
   4327 		return error;
   4328 	}
   4329 
   4330 	error = iwn_config_bt_coex_prio_table(sc);
   4331 	if (error != 0) {
   4332 		aprint_error_dev(sc->sc_dev,
   4333 			"could not configure send BT priority table\n");
   4334 		return error;
   4335 	}
   4336 
   4337 	/* Force BT state machine change */
   4338 	memset(&btprot, 0, sizeof btprot);
   4339 	btprot.open = 1;
   4340 	btprot.type = 1;
   4341 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4342 	if (error != 0) {
   4343 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4344 		return error;
   4345 	}
   4346 
   4347 	btprot.open = 0;
   4348 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4349 	if (error != 0) {
   4350 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4351 		return error;
   4352 	}
   4353 	return 0;
   4354 }
   4355 
   4356 static int
   4357 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4358 {
   4359 	struct iwn_bt_adv1 d;
   4360 
   4361 	memset(&d, 0, sizeof d);
   4362 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4363 	d.tx_prio_boost = 0;
   4364 	d.rx_prio_boost = 0;
   4365 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4366 }
   4367 
   4368 static int
   4369 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4370 {
   4371 	struct iwn_bt_adv2 d;
   4372 
   4373 	memset(&d, 0, sizeof d);
   4374 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4375 	d.tx_prio_boost = 0;
   4376 	d.rx_prio_boost = 0;
   4377 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4378 }
   4379 
   4380 static int
   4381 iwn_config(struct iwn_softc *sc)
   4382 {
   4383 	struct iwn_ops *ops = &sc->ops;
   4384 	struct ieee80211com *ic = &sc->sc_ic;
   4385 	struct ifnet *ifp = ic->ic_ifp;
   4386 	uint32_t txmask;
   4387 	uint16_t rxchain;
   4388 	int error;
   4389 
   4390 	error = ops->config_bt_coex(sc);
   4391 	if (error != 0) {
   4392 		aprint_error_dev(sc->sc_dev,
   4393 			"could not configure bluetooth coexistence\n");
   4394 		return error;
   4395 	}
   4396 
   4397 	/* Set radio temperature sensor offset. */
   4398 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4399 		error = iwn6000_temp_offset_calib(sc);
   4400 		if (error != 0) {
   4401 			aprint_error_dev(sc->sc_dev,
   4402 			    "could not set temperature offset\n");
   4403 			return error;
   4404 		}
   4405 	}
   4406 
   4407 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4408 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4409 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4410 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4411 		error = iwn2000_temp_offset_calib(sc);
   4412 		if (error != 0) {
   4413 			aprint_error_dev(sc->sc_dev,
   4414 			    "could not set temperature offset\n");
   4415 			return error;
   4416 		}
   4417 	}
   4418 
   4419 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4420 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4421 		/* Configure runtime DC calibration. */
   4422 		error = iwn5000_runtime_calib(sc);
   4423 		if (error != 0) {
   4424 			aprint_error_dev(sc->sc_dev,
   4425 			    "could not configure runtime calibration\n");
   4426 			return error;
   4427 		}
   4428 	}
   4429 
   4430 	/* Configure valid TX chains for 5000 Series. */
   4431 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4432 		txmask = htole32(sc->txchainmask);
   4433 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4434 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4435 		    sizeof txmask, 0);
   4436 		if (error != 0) {
   4437 			aprint_error_dev(sc->sc_dev,
   4438 			    "could not configure valid TX chains\n");
   4439 			return error;
   4440 		}
   4441 	}
   4442 
   4443 	/* Set mode, channel, RX filter and enable RX. */
   4444 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4445 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4446 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4447 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4448 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4449 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4450 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4451 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4452 	switch (ic->ic_opmode) {
   4453 	case IEEE80211_M_STA:
   4454 		sc->rxon.mode = IWN_MODE_STA;
   4455 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4456 		break;
   4457 	case IEEE80211_M_MONITOR:
   4458 		sc->rxon.mode = IWN_MODE_MONITOR;
   4459 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4460 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4461 		break;
   4462 	default:
   4463 		/* Should not get there. */
   4464 		break;
   4465 	}
   4466 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4467 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4468 	sc->rxon.ht_single_mask = 0xff;
   4469 	sc->rxon.ht_dual_mask = 0xff;
   4470 	sc->rxon.ht_triple_mask = 0xff;
   4471 	rxchain =
   4472 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4473 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4474 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4475 	sc->rxon.rxchain = htole16(rxchain);
   4476 	DPRINTF(("setting configuration\n"));
   4477 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4478 	if (error != 0) {
   4479 		aprint_error_dev(sc->sc_dev,
   4480 		    "RXON command failed\n");
   4481 		return error;
   4482 	}
   4483 
   4484 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4485 		aprint_error_dev(sc->sc_dev,
   4486 		    "could not add broadcast node\n");
   4487 		return error;
   4488 	}
   4489 
   4490 	/* Configuration has changed, set TX power accordingly. */
   4491 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4492 		aprint_error_dev(sc->sc_dev,
   4493 		    "could not set TX power\n");
   4494 		return error;
   4495 	}
   4496 
   4497 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4498 		aprint_error_dev(sc->sc_dev,
   4499 		    "could not set critical temperature\n");
   4500 		return error;
   4501 	}
   4502 
   4503 	/* Set power saving level to CAM during initialization. */
   4504 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4505 		aprint_error_dev(sc->sc_dev,
   4506 		    "could not set power saving level\n");
   4507 		return error;
   4508 	}
   4509 	return 0;
   4510 }
   4511 
   4512 static uint16_t
   4513 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4514     uint8_t n_probes)
   4515 {
   4516 	/* No channel? Default to 2GHz settings */
   4517 	if (flags & IEEE80211_CHAN_2GHZ)
   4518 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4519 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4520 
   4521 	/* 5GHz dwell time */
   4522 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4523 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4524 }
   4525 
   4526 /*
   4527  * Limit the total dwell time to 85% of the beacon interval.
   4528  *
   4529  * Returns the dwell time in milliseconds.
   4530  */
   4531 static uint16_t
   4532 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4533 {
   4534 	struct ieee80211com *ic = &sc->sc_ic;
   4535 	struct ieee80211_node *ni = ic->ic_bss;
   4536 	int bintval = 0;
   4537 
   4538 	/* bintval is in TU (1.024mS) */
   4539 	if (ni != NULL)
   4540 		bintval = ni->ni_intval;
   4541 
   4542 	/*
   4543 	 * If it's non-zero, we should calculate the minimum of
   4544 	 * it and the DWELL_BASE.
   4545 	 *
   4546 	 * XXX Yes, the math should take into account that bintval
   4547 	 * is 1.024mS, not 1mS..
   4548 	 */
   4549 	if (bintval > 0)
   4550 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4551 
   4552 	/* No association context? Default */
   4553 	return IWN_PASSIVE_DWELL_BASE;
   4554 }
   4555 
   4556 static uint16_t
   4557 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4558 {
   4559 	uint16_t passive;
   4560 	if (flags & IEEE80211_CHAN_2GHZ)
   4561 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4562 	else
   4563 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4564 
   4565 	/* Clamp to the beacon interval if we're associated */
   4566 	return iwn_limit_dwell(sc, passive);
   4567 }
   4568 
   4569 static int
   4570 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4571 {
   4572 	struct ieee80211com *ic = &sc->sc_ic;
   4573 	struct iwn_scan_hdr *hdr;
   4574 	struct iwn_cmd_data *tx;
   4575 	struct iwn_scan_essid *essid;
   4576 	struct iwn_scan_chan *chan;
   4577 	struct ieee80211_frame *wh;
   4578 	struct ieee80211_rateset *rs;
   4579 	struct ieee80211_channel *c;
   4580 	uint8_t *buf, *frm;
   4581 	uint16_t rxchain, dwell_active, dwell_passive;
   4582 	uint8_t txant;
   4583 	int buflen, error, is_active;
   4584 
   4585 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4586 	if (buf == NULL) {
   4587 		aprint_error_dev(sc->sc_dev,
   4588 		    "could not allocate buffer for scan command\n");
   4589 		return ENOMEM;
   4590 	}
   4591 	hdr = (struct iwn_scan_hdr *)buf;
   4592 	/*
   4593 	 * Move to the next channel if no frames are received within 10ms
   4594 	 * after sending the probe request.
   4595 	 */
   4596 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4597 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4598 
   4599 	/* Select antennas for scanning. */
   4600 	rxchain =
   4601 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4602 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4603 	    IWN_RXCHAIN_DRIVER_FORCE;
   4604 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4605 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4606 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4607 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4608 	} else	/* Use all available RX antennas. */
   4609 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4610 	hdr->rxchain = htole16(rxchain);
   4611 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4612 
   4613 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4614 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4615 	tx->id = sc->broadcast_id;
   4616 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4617 
   4618 	if (flags & IEEE80211_CHAN_5GHZ) {
   4619 		hdr->crc_threshold = 0xffff;
   4620 		/* Send probe requests at 6Mbps. */
   4621 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4622 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4623 	} else {
   4624 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4625 		/* Send probe requests at 1Mbps. */
   4626 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4627 		tx->rflags = IWN_RFLAG_CCK;
   4628 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4629 	}
   4630 	/* Use the first valid TX antenna. */
   4631 	txant = IWN_LSB(sc->txchainmask);
   4632 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4633 
   4634 	/*
   4635 	 * Only do active scanning if we're announcing a probe request
   4636 	 * for a given SSID (or more, if we ever add it to the driver.)
   4637 	 */
   4638 	is_active = 0;
   4639 
   4640 	essid = (struct iwn_scan_essid *)(tx + 1);
   4641 	if (ic->ic_des_esslen != 0) {
   4642 		essid[0].id = IEEE80211_ELEMID_SSID;
   4643 		essid[0].len = ic->ic_des_esslen;
   4644 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4645 
   4646 		is_active = 1;
   4647 	}
   4648 	/*
   4649 	 * Build a probe request frame.  Most of the following code is a
   4650 	 * copy & paste of what is done in net80211.
   4651 	 */
   4652 	wh = (struct ieee80211_frame *)(essid + 20);
   4653 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4654 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4655 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4656 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4657 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4658 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4659 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4660 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4661 
   4662 	frm = (uint8_t *)(wh + 1);
   4663 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4664 	frm = ieee80211_add_rates(frm, rs);
   4665 #ifndef IEEE80211_NO_HT
   4666 	if (ic->ic_flags & IEEE80211_F_HTON)
   4667 		frm = ieee80211_add_htcaps(frm, ic);
   4668 #endif
   4669 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4670 		frm = ieee80211_add_xrates(frm, rs);
   4671 
   4672 	/* Set length of probe request. */
   4673 	tx->len = htole16(frm - (uint8_t *)wh);
   4674 
   4675 
   4676 	/*
   4677 	 * If active scanning is requested but a certain channel is
   4678 	 * marked passive, we can do active scanning if we detect
   4679 	 * transmissions.
   4680 	 *
   4681 	 * There is an issue with some firmware versions that triggers
   4682 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4683 	 * on a radar channel even though this means that we should NOT
   4684 	 * send probes.
   4685 	 *
   4686 	 * The "good CRC threshold" is the number of frames that we
   4687 	 * need to receive during our dwell time on a channel before
   4688 	 * sending out probes -- setting this to a huge value will
   4689 	 * mean we never reach it, but at the same time work around
   4690 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4691 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4692 	 *
   4693 	 * This was fixed in later versions along with some other
   4694 	 * scan changes, and the threshold behaves as a flag in those
   4695 	 * versions.
   4696 	 */
   4697 
   4698 	/*
   4699 	 * If we're doing active scanning, set the crc_threshold
   4700 	 * to a suitable value.  This is different to active veruss
   4701 	 * passive scanning depending upon the channel flags; the
   4702 	 * firmware will obey that particular check for us.
   4703 	 */
   4704 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4705 		hdr->crc_threshold = is_active ?
   4706 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4707 	else
   4708 		hdr->crc_threshold = is_active ?
   4709 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4710 
   4711 	chan = (struct iwn_scan_chan *)frm;
   4712 	for (c  = &ic->ic_channels[1];
   4713 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4714 		if ((c->ic_flags & flags) != flags)
   4715 			continue;
   4716 
   4717 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4718 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4719 		chan->flags = 0;
   4720 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4721 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4722 		if (ic->ic_des_esslen != 0)
   4723 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4724 
   4725 		/*
   4726 		 * Calculate the active/passive dwell times.
   4727 		 */
   4728 
   4729 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4730 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4731 
   4732 		/* Make sure they're valid */
   4733 		if (dwell_passive <= dwell_active)
   4734 			dwell_passive = dwell_active + 1;
   4735 
   4736 		chan->active = htole16(dwell_active);
   4737 		chan->passive = htole16(dwell_passive);
   4738 
   4739 		chan->dsp_gain = 0x6e;
   4740 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4741 			chan->rf_gain = 0x3b;
   4742 		} else {
   4743 			chan->rf_gain = 0x28;
   4744 		}
   4745 		hdr->nchan++;
   4746 		chan++;
   4747 	}
   4748 
   4749 	buflen = (uint8_t *)chan - buf;
   4750 	hdr->len = htole16(buflen);
   4751 
   4752 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4753 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4754 	free(buf, M_DEVBUF);
   4755 	return error;
   4756 }
   4757 
   4758 static int
   4759 iwn_auth(struct iwn_softc *sc)
   4760 {
   4761 	struct iwn_ops *ops = &sc->ops;
   4762 	struct ieee80211com *ic = &sc->sc_ic;
   4763 	struct ieee80211_node *ni = ic->ic_bss;
   4764 	int error;
   4765 
   4766 	/* Update adapter configuration. */
   4767 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4768 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4769 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4770 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4771 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4772 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4773 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4774 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4775 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4776 	switch (ic->ic_curmode) {
   4777 	case IEEE80211_MODE_11A:
   4778 		sc->rxon.cck_mask  = 0;
   4779 		sc->rxon.ofdm_mask = 0x15;
   4780 		break;
   4781 	case IEEE80211_MODE_11B:
   4782 		sc->rxon.cck_mask  = 0x03;
   4783 		sc->rxon.ofdm_mask = 0;
   4784 		break;
   4785 	default:	/* Assume 802.11b/g. */
   4786 		sc->rxon.cck_mask  = 0x0f;
   4787 		sc->rxon.ofdm_mask = 0x15;
   4788 	}
   4789 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4790 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4791 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4792 	if (error != 0) {
   4793 		aprint_error_dev(sc->sc_dev,
   4794 		    "RXON command failed\n");
   4795 		return error;
   4796 	}
   4797 
   4798 	/* Configuration has changed, set TX power accordingly. */
   4799 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4800 		aprint_error_dev(sc->sc_dev,
   4801 		    "could not set TX power\n");
   4802 		return error;
   4803 	}
   4804 	/*
   4805 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4806 	 * add the broadcast node again.
   4807 	 */
   4808 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4809 		aprint_error_dev(sc->sc_dev,
   4810 		    "could not add broadcast node\n");
   4811 		return error;
   4812 	}
   4813 	return 0;
   4814 }
   4815 
   4816 static int
   4817 iwn_run(struct iwn_softc *sc)
   4818 {
   4819 	struct iwn_ops *ops = &sc->ops;
   4820 	struct ieee80211com *ic = &sc->sc_ic;
   4821 	struct ieee80211_node *ni = ic->ic_bss;
   4822 	struct iwn_node_info node;
   4823 	int error;
   4824 
   4825 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4826 		/* Link LED blinks while monitoring. */
   4827 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4828 		return 0;
   4829 	}
   4830 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4831 		aprint_error_dev(sc->sc_dev,
   4832 		    "could not set timing\n");
   4833 		return error;
   4834 	}
   4835 
   4836 	/* Update adapter configuration. */
   4837 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4838 	/* Short preamble and slot time are negotiated when associating. */
   4839 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4840 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4841 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4842 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4843 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4844 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4845 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4846 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4847 	if (error != 0) {
   4848 		aprint_error_dev(sc->sc_dev,
   4849 		    "could not update configuration\n");
   4850 		return error;
   4851 	}
   4852 
   4853 	/* Configuration has changed, set TX power accordingly. */
   4854 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4855 		aprint_error_dev(sc->sc_dev,
   4856 		    "could not set TX power\n");
   4857 		return error;
   4858 	}
   4859 
   4860 	/* Fake a join to initialize the TX rate. */
   4861 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4862 	iwn_newassoc(ni, 1);
   4863 
   4864 	/* Add BSS node. */
   4865 	memset(&node, 0, sizeof node);
   4866 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4867 	node.id = IWN_ID_BSS;
   4868 #ifdef notyet
   4869 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4870 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4871 #endif
   4872 	DPRINTF(("adding BSS node\n"));
   4873 	error = ops->add_node(sc, &node, 1);
   4874 	if (error != 0) {
   4875 		aprint_error_dev(sc->sc_dev,
   4876 		    "could not add BSS node\n");
   4877 		return error;
   4878 	}
   4879 	DPRINTF(("setting link quality for node %d\n", node.id));
   4880 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4881 		aprint_error_dev(sc->sc_dev,
   4882 		    "could not setup link quality for node %d\n", node.id);
   4883 		return error;
   4884 	}
   4885 
   4886 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4887 		aprint_error_dev(sc->sc_dev,
   4888 		    "could not set sensitivity\n");
   4889 		return error;
   4890 	}
   4891 	/* Start periodic calibration timer. */
   4892 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4893 	sc->calib_cnt = 0;
   4894 	callout_schedule(&sc->calib_to, hz/2);
   4895 
   4896 	/* Link LED always on while associated. */
   4897 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4898 	return 0;
   4899 }
   4900 
   4901 #ifdef IWN_HWCRYPTO
   4902 /*
   4903  * We support CCMP hardware encryption/decryption of unicast frames only.
   4904  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4905  */
   4906 static int
   4907 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4908     struct ieee80211_key *k)
   4909 {
   4910 	struct iwn_softc *sc = ic->ic_softc;
   4911 	struct iwn_ops *ops = &sc->ops;
   4912 	struct iwn_node *wn = (void *)ni;
   4913 	struct iwn_node_info node;
   4914 	uint16_t kflags;
   4915 
   4916 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4917 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4918 		return ieee80211_set_key(ic, ni, k);
   4919 
   4920 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4921 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4922 		kflags |= IWN_KFLAG_GROUP;
   4923 
   4924 	memset(&node, 0, sizeof node);
   4925 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4926 	    sc->broadcast_id : wn->id;
   4927 	node.control = IWN_NODE_UPDATE;
   4928 	node.flags = IWN_FLAG_SET_KEY;
   4929 	node.kflags = htole16(kflags);
   4930 	node.kid = k->k_id;
   4931 	memcpy(node.key, k->k_key, k->k_len);
   4932 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4933 	return ops->add_node(sc, &node, 1);
   4934 }
   4935 
   4936 static void
   4937 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4938     struct ieee80211_key *k)
   4939 {
   4940 	struct iwn_softc *sc = ic->ic_softc;
   4941 	struct iwn_ops *ops = &sc->ops;
   4942 	struct iwn_node *wn = (void *)ni;
   4943 	struct iwn_node_info node;
   4944 
   4945 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4946 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   4947 		/* See comment about other ciphers above. */
   4948 		ieee80211_delete_key(ic, ni, k);
   4949 		return;
   4950 	}
   4951 	if (ic->ic_state != IEEE80211_S_RUN)
   4952 		return;	/* Nothing to do. */
   4953 	memset(&node, 0, sizeof node);
   4954 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4955 	    sc->broadcast_id : wn->id;
   4956 	node.control = IWN_NODE_UPDATE;
   4957 	node.flags = IWN_FLAG_SET_KEY;
   4958 	node.kflags = htole16(IWN_KFLAG_INVALID);
   4959 	node.kid = 0xff;
   4960 	DPRINTF(("delete keys for node %d\n", node.id));
   4961 	(void)ops->add_node(sc, &node, 1);
   4962 }
   4963 #endif
   4964 
   4965 /* XXX Added for NetBSD (copied from rev 1.39). */
   4966 
   4967 static int
   4968 iwn_wme_update(struct ieee80211com *ic)
   4969 {
   4970 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   4971 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   4972 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   4973 	const struct wmeParams *wmep;
   4974 	struct iwn_edca_params cmd;
   4975 	int ac;
   4976 
   4977 	/* don't override default WME values if WME is not actually enabled */
   4978 	if (!(ic->ic_flags & IEEE80211_F_WME))
   4979 		return 0;
   4980 	cmd.flags = 0;
   4981 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   4982 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   4983 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   4984 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   4985 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   4986 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   4987 
   4988 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   4989 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   4990 					cmd.ac[ac].cwmin,
   4991 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   4992 	}
   4993 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   4994 #undef IWN_USEC
   4995 #undef IWN_EXP2
   4996 }
   4997 
   4998 #ifndef IEEE80211_NO_HT
   4999 /*
   5000  * This function is called by upper layer when an ADDBA request is received
   5001  * from another STA and before the ADDBA response is sent.
   5002  */
   5003 static int
   5004 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5005     uint8_t tid)
   5006 {
   5007 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5008 	struct iwn_softc *sc = ic->ic_softc;
   5009 	struct iwn_ops *ops = &sc->ops;
   5010 	struct iwn_node *wn = (void *)ni;
   5011 	struct iwn_node_info node;
   5012 
   5013 	memset(&node, 0, sizeof node);
   5014 	node.id = wn->id;
   5015 	node.control = IWN_NODE_UPDATE;
   5016 	node.flags = IWN_FLAG_SET_ADDBA;
   5017 	node.addba_tid = tid;
   5018 	node.addba_ssn = htole16(ba->ba_winstart);
   5019 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5020 	    ba->ba_winstart));
   5021 	return ops->add_node(sc, &node, 1);
   5022 }
   5023 
   5024 /*
   5025  * This function is called by upper layer on teardown of an HT-immediate
   5026  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5027  */
   5028 static void
   5029 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5030     uint8_t tid)
   5031 {
   5032 	struct iwn_softc *sc = ic->ic_softc;
   5033 	struct iwn_ops *ops = &sc->ops;
   5034 	struct iwn_node *wn = (void *)ni;
   5035 	struct iwn_node_info node;
   5036 
   5037 	memset(&node, 0, sizeof node);
   5038 	node.id = wn->id;
   5039 	node.control = IWN_NODE_UPDATE;
   5040 	node.flags = IWN_FLAG_SET_DELBA;
   5041 	node.delba_tid = tid;
   5042 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5043 	(void)ops->add_node(sc, &node, 1);
   5044 }
   5045 
   5046 /*
   5047  * This function is called by upper layer when an ADDBA response is received
   5048  * from another STA.
   5049  */
   5050 static int
   5051 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5052     uint8_t tid)
   5053 {
   5054 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5055 	struct iwn_softc *sc = ic->ic_softc;
   5056 	struct iwn_ops *ops = &sc->ops;
   5057 	struct iwn_node *wn = (void *)ni;
   5058 	struct iwn_node_info node;
   5059 	int error;
   5060 
   5061 	/* Enable TX for the specified RA/TID. */
   5062 	wn->disable_tid &= ~(1 << tid);
   5063 	memset(&node, 0, sizeof node);
   5064 	node.id = wn->id;
   5065 	node.control = IWN_NODE_UPDATE;
   5066 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5067 	node.disable_tid = htole16(wn->disable_tid);
   5068 	error = ops->add_node(sc, &node, 1);
   5069 	if (error != 0)
   5070 		return error;
   5071 
   5072 	if ((error = iwn_nic_lock(sc)) != 0)
   5073 		return error;
   5074 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5075 	iwn_nic_unlock(sc);
   5076 	return 0;
   5077 }
   5078 
   5079 static void
   5080 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5081     uint8_t tid)
   5082 {
   5083 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5084 	struct iwn_softc *sc = ic->ic_softc;
   5085 	struct iwn_ops *ops = &sc->ops;
   5086 
   5087 	if (iwn_nic_lock(sc) != 0)
   5088 		return;
   5089 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5090 	iwn_nic_unlock(sc);
   5091 }
   5092 
   5093 static void
   5094 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5095     uint8_t tid, uint16_t ssn)
   5096 {
   5097 	struct iwn_node *wn = (void *)ni;
   5098 	int qid = 7 + tid;
   5099 
   5100 	/* Stop TX scheduler while we're changing its configuration. */
   5101 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5102 	    IWN4965_TXQ_STATUS_CHGACT);
   5103 
   5104 	/* Assign RA/TID translation to the queue. */
   5105 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5106 	    wn->id << 4 | tid);
   5107 
   5108 	/* Enable chain-building mode for the queue. */
   5109 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5110 
   5111 	/* Set starting sequence number from the ADDBA request. */
   5112 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5113 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5114 
   5115 	/* Set scheduler window size. */
   5116 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5117 	    IWN_SCHED_WINSZ);
   5118 	/* Set scheduler frame limit. */
   5119 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5120 	    IWN_SCHED_LIMIT << 16);
   5121 
   5122 	/* Enable interrupts for the queue. */
   5123 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5124 
   5125 	/* Mark the queue as active. */
   5126 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5127 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5128 	    iwn_tid2fifo[tid] << 1);
   5129 }
   5130 
   5131 static void
   5132 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5133 {
   5134 	int qid = 7 + tid;
   5135 
   5136 	/* Stop TX scheduler while we're changing its configuration. */
   5137 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5138 	    IWN4965_TXQ_STATUS_CHGACT);
   5139 
   5140 	/* Set starting sequence number from the ADDBA request. */
   5141 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5142 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5143 
   5144 	/* Disable interrupts for the queue. */
   5145 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5146 
   5147 	/* Mark the queue as inactive. */
   5148 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5149 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5150 }
   5151 
   5152 static void
   5153 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5154     uint8_t tid, uint16_t ssn)
   5155 {
   5156 	struct iwn_node *wn = (void *)ni;
   5157 	int qid = 10 + tid;
   5158 
   5159 	/* Stop TX scheduler while we're changing its configuration. */
   5160 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5161 	    IWN5000_TXQ_STATUS_CHGACT);
   5162 
   5163 	/* Assign RA/TID translation to the queue. */
   5164 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5165 	    wn->id << 4 | tid);
   5166 
   5167 	/* Enable chain-building mode for the queue. */
   5168 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5169 
   5170 	/* Enable aggregation for the queue. */
   5171 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5172 
   5173 	/* Set starting sequence number from the ADDBA request. */
   5174 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5175 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5176 
   5177 	/* Set scheduler window size and frame limit. */
   5178 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5179 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5180 
   5181 	/* Enable interrupts for the queue. */
   5182 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5183 
   5184 	/* Mark the queue as active. */
   5185 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5186 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5187 }
   5188 
   5189 static void
   5190 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5191 {
   5192 	int qid = 10 + tid;
   5193 
   5194 	/* Stop TX scheduler while we're changing its configuration. */
   5195 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5196 	    IWN5000_TXQ_STATUS_CHGACT);
   5197 
   5198 	/* Disable aggregation for the queue. */
   5199 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5200 
   5201 	/* Set starting sequence number from the ADDBA request. */
   5202 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5203 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5204 
   5205 	/* Disable interrupts for the queue. */
   5206 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5207 
   5208 	/* Mark the queue as inactive. */
   5209 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5210 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5211 }
   5212 #endif	/* !IEEE80211_NO_HT */
   5213 
   5214 /*
   5215  * Query calibration tables from the initialization firmware.  We do this
   5216  * only once at first boot.  Called from a process context.
   5217  */
   5218 static int
   5219 iwn5000_query_calibration(struct iwn_softc *sc)
   5220 {
   5221 	struct iwn5000_calib_config cmd;
   5222 	int error;
   5223 
   5224 	memset(&cmd, 0, sizeof cmd);
   5225 	cmd.ucode.once.enable = 0xffffffff;
   5226 	cmd.ucode.once.start  = 0xffffffff;
   5227 	cmd.ucode.once.send   = 0xffffffff;
   5228 	cmd.ucode.flags       = 0xffffffff;
   5229 	DPRINTF(("sending calibration query\n"));
   5230 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5231 	if (error != 0)
   5232 		return error;
   5233 
   5234 	/* Wait at most two seconds for calibration to complete. */
   5235 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5236 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5237 	return error;
   5238 }
   5239 
   5240 /*
   5241  * Send calibration results to the runtime firmware.  These results were
   5242  * obtained on first boot from the initialization firmware.
   5243  */
   5244 static int
   5245 iwn5000_send_calibration(struct iwn_softc *sc)
   5246 {
   5247 	int idx, error;
   5248 
   5249 	for (idx = 0; idx < 5; idx++) {
   5250 		if (sc->calibcmd[idx].buf == NULL)
   5251 			continue;	/* No results available. */
   5252 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5253 		    idx, sc->calibcmd[idx].len));
   5254 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5255 		    sc->calibcmd[idx].len, 0);
   5256 		if (error != 0) {
   5257 			aprint_error_dev(sc->sc_dev,
   5258 			    "could not send calibration result\n");
   5259 			return error;
   5260 		}
   5261 	}
   5262 	return 0;
   5263 }
   5264 
   5265 static int
   5266 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5267 {
   5268 	struct iwn5000_wimax_coex wimax;
   5269 
   5270 #ifdef notyet
   5271 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5272 		/* Enable WiMAX coexistence for combo adapters. */
   5273 		wimax.flags =
   5274 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5275 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5276 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5277 		    IWN_WIMAX_COEX_ENABLE;
   5278 		memcpy(wimax.events, iwn6050_wimax_events,
   5279 		    sizeof iwn6050_wimax_events);
   5280 	} else
   5281 #endif
   5282 	{
   5283 		/* Disable WiMAX coexistence. */
   5284 		wimax.flags = 0;
   5285 		memset(wimax.events, 0, sizeof wimax.events);
   5286 	}
   5287 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5288 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5289 }
   5290 
   5291 static int
   5292 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5293 {
   5294 	struct iwn6000_phy_calib_temp_offset cmd;
   5295 
   5296 	memset(&cmd, 0, sizeof cmd);
   5297 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5298 	cmd.ngroups = 1;
   5299 	cmd.isvalid = 1;
   5300 	if (sc->eeprom_temp != 0)
   5301 		cmd.offset = htole16(sc->eeprom_temp);
   5302 	else
   5303 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5304 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5305 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5306 }
   5307 
   5308 static int
   5309 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5310 {
   5311 	struct iwn2000_phy_calib_temp_offset cmd;
   5312 
   5313 	memset(&cmd, 0, sizeof cmd);
   5314 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5315 	cmd.ngroups = 1;
   5316 	cmd.isvalid = 1;
   5317 	if (sc->eeprom_rawtemp != 0) {
   5318 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5319 		cmd.offset_high = htole16(sc->eeprom_temp);
   5320 	} else {
   5321 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5322 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5323 	}
   5324 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5325 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5326 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5327 	    le16toh(cmd.burnt_voltage_ref)));
   5328 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5329 }
   5330 
   5331 /*
   5332  * This function is called after the runtime firmware notifies us of its
   5333  * readiness (called in a process context).
   5334  */
   5335 static int
   5336 iwn4965_post_alive(struct iwn_softc *sc)
   5337 {
   5338 	int error, qid;
   5339 
   5340 	if ((error = iwn_nic_lock(sc)) != 0)
   5341 		return error;
   5342 
   5343 	/* Clear TX scheduler state in SRAM. */
   5344 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5345 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5346 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5347 
   5348 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5349 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5350 
   5351 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5352 
   5353 	/* Disable chain mode for all our 16 queues. */
   5354 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5355 
   5356 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5357 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5358 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5359 
   5360 		/* Set scheduler window size. */
   5361 		iwn_mem_write(sc, sc->sched_base +
   5362 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5363 		/* Set scheduler frame limit. */
   5364 		iwn_mem_write(sc, sc->sched_base +
   5365 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5366 		    IWN_SCHED_LIMIT << 16);
   5367 	}
   5368 
   5369 	/* Enable interrupts for all our 16 queues. */
   5370 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5371 	/* Identify TX FIFO rings (0-7). */
   5372 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5373 
   5374 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5375 	for (qid = 0; qid < 7; qid++) {
   5376 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5377 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5378 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5379 	}
   5380 	iwn_nic_unlock(sc);
   5381 	return 0;
   5382 }
   5383 
   5384 /*
   5385  * This function is called after the initialization or runtime firmware
   5386  * notifies us of its readiness (called in a process context).
   5387  */
   5388 static int
   5389 iwn5000_post_alive(struct iwn_softc *sc)
   5390 {
   5391 	int error, qid;
   5392 
   5393 	/* Switch to using ICT interrupt mode. */
   5394 	iwn5000_ict_reset(sc);
   5395 
   5396 	if ((error = iwn_nic_lock(sc)) != 0)
   5397 		return error;
   5398 
   5399 	/* Clear TX scheduler state in SRAM. */
   5400 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5401 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5402 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5403 
   5404 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5405 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5406 
   5407 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5408 
   5409 	/* Enable chain mode for all queues, except command queue. */
   5410 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5411 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5412 
   5413 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5414 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5415 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5416 
   5417 		iwn_mem_write(sc, sc->sched_base +
   5418 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5419 		/* Set scheduler window size and frame limit. */
   5420 		iwn_mem_write(sc, sc->sched_base +
   5421 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5422 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5423 	}
   5424 
   5425 	/* Enable interrupts for all our 20 queues. */
   5426 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5427 	/* Identify TX FIFO rings (0-7). */
   5428 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5429 
   5430 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5431 	for (qid = 0; qid < 7; qid++) {
   5432 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5433 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5434 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5435 	}
   5436 	iwn_nic_unlock(sc);
   5437 
   5438 	/* Configure WiMAX coexistence for combo adapters. */
   5439 	error = iwn5000_send_wimax_coex(sc);
   5440 	if (error != 0) {
   5441 		aprint_error_dev(sc->sc_dev,
   5442 		    "could not configure WiMAX coexistence\n");
   5443 		return error;
   5444 	}
   5445 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5446 		struct iwn5000_phy_calib_crystal cmd;
   5447 
   5448 		/* Perform crystal calibration. */
   5449 		memset(&cmd, 0, sizeof cmd);
   5450 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5451 		cmd.ngroups = 1;
   5452 		cmd.isvalid = 1;
   5453 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5454 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5455 		DPRINTF(("sending crystal calibration %d, %d\n",
   5456 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5457 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5458 		if (error != 0) {
   5459 			aprint_error_dev(sc->sc_dev,
   5460 			    "crystal calibration failed\n");
   5461 			return error;
   5462 		}
   5463 	}
   5464 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5465 		/* Query calibration from the initialization firmware. */
   5466 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5467 			aprint_error_dev(sc->sc_dev,
   5468 			    "could not query calibration\n");
   5469 			return error;
   5470 		}
   5471 		/*
   5472 		 * We have the calibration results now, reboot with the
   5473 		 * runtime firmware (call ourselves recursively!)
   5474 		 */
   5475 		iwn_hw_stop(sc);
   5476 		error = iwn_hw_init(sc);
   5477 	} else {
   5478 		/* Send calibration results to runtime firmware. */
   5479 		error = iwn5000_send_calibration(sc);
   5480 	}
   5481 	return error;
   5482 }
   5483 
   5484 /*
   5485  * The firmware boot code is small and is intended to be copied directly into
   5486  * the NIC internal memory (no DMA transfer).
   5487  */
   5488 static int
   5489 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5490 {
   5491 	int error, ntries;
   5492 
   5493 	size /= sizeof (uint32_t);
   5494 
   5495 	if ((error = iwn_nic_lock(sc)) != 0)
   5496 		return error;
   5497 
   5498 	/* Copy microcode image into NIC memory. */
   5499 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5500 	    (const uint32_t *)ucode, size);
   5501 
   5502 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5503 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5504 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5505 
   5506 	/* Start boot load now. */
   5507 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5508 
   5509 	/* Wait for transfer to complete. */
   5510 	for (ntries = 0; ntries < 1000; ntries++) {
   5511 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5512 		    IWN_BSM_WR_CTRL_START))
   5513 			break;
   5514 		DELAY(10);
   5515 	}
   5516 	if (ntries == 1000) {
   5517 		aprint_error_dev(sc->sc_dev,
   5518 		    "could not load boot firmware\n");
   5519 		iwn_nic_unlock(sc);
   5520 		return ETIMEDOUT;
   5521 	}
   5522 
   5523 	/* Enable boot after power up. */
   5524 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5525 
   5526 	iwn_nic_unlock(sc);
   5527 	return 0;
   5528 }
   5529 
   5530 static int
   5531 iwn4965_load_firmware(struct iwn_softc *sc)
   5532 {
   5533 	struct iwn_fw_info *fw = &sc->fw;
   5534 	struct iwn_dma_info *dma = &sc->fw_dma;
   5535 	int error;
   5536 
   5537 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5538 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5539 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5540 	    BUS_DMASYNC_PREWRITE);
   5541 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5542 	    fw->init.text, fw->init.textsz);
   5543 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5544 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5545 
   5546 	/* Tell adapter where to find initialization sections. */
   5547 	if ((error = iwn_nic_lock(sc)) != 0)
   5548 		return error;
   5549 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5550 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5551 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5552 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5553 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5554 	iwn_nic_unlock(sc);
   5555 
   5556 	/* Load firmware boot code. */
   5557 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5558 	if (error != 0) {
   5559 		aprint_error_dev(sc->sc_dev,
   5560 		    "could not load boot firmware\n");
   5561 		return error;
   5562 	}
   5563 	/* Now press "execute". */
   5564 	IWN_WRITE(sc, IWN_RESET, 0);
   5565 
   5566 	/* Wait at most one second for first alive notification. */
   5567 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5568 		aprint_error_dev(sc->sc_dev,
   5569 		    "timeout waiting for adapter to initialize\n");
   5570 		return error;
   5571 	}
   5572 
   5573 	/* Retrieve current temperature for initial TX power calibration. */
   5574 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5575 	sc->temp = iwn4965_get_temperature(sc);
   5576 
   5577 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5578 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5579 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5580 	    BUS_DMASYNC_PREWRITE);
   5581 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5582 	    fw->main.text, fw->main.textsz);
   5583 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5584 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5585 
   5586 	/* Tell adapter where to find runtime sections. */
   5587 	if ((error = iwn_nic_lock(sc)) != 0)
   5588 		return error;
   5589 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5590 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5591 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5592 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5593 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5594 	    IWN_FW_UPDATED | fw->main.textsz);
   5595 	iwn_nic_unlock(sc);
   5596 
   5597 	return 0;
   5598 }
   5599 
   5600 static int
   5601 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5602     const uint8_t *section, int size)
   5603 {
   5604 	struct iwn_dma_info *dma = &sc->fw_dma;
   5605 	int error;
   5606 
   5607 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5608 	memcpy(dma->vaddr, section, size);
   5609 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5610 
   5611 	if ((error = iwn_nic_lock(sc)) != 0)
   5612 		return error;
   5613 
   5614 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5615 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5616 
   5617 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5618 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5619 	    IWN_LOADDR(dma->paddr));
   5620 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5621 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5622 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5623 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5624 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5625 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5626 
   5627 	/* Kick Flow Handler to start DMA transfer. */
   5628 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5629 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5630 
   5631 	iwn_nic_unlock(sc);
   5632 
   5633 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5634 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5635 }
   5636 
   5637 static int
   5638 iwn5000_load_firmware(struct iwn_softc *sc)
   5639 {
   5640 	struct iwn_fw_part *fw;
   5641 	int error;
   5642 
   5643 	/* Load the initialization firmware on first boot only. */
   5644 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5645 	    &sc->fw.main : &sc->fw.init;
   5646 
   5647 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5648 	    fw->text, fw->textsz);
   5649 	if (error != 0) {
   5650 		aprint_error_dev(sc->sc_dev,
   5651 		    "could not load firmware %s section\n", ".text");
   5652 		return error;
   5653 	}
   5654 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5655 	    fw->data, fw->datasz);
   5656 	if (error != 0) {
   5657 		aprint_error_dev(sc->sc_dev,
   5658 		    "could not load firmware %s section\n", ".data");
   5659 		return error;
   5660 	}
   5661 
   5662 	/* Now press "execute". */
   5663 	IWN_WRITE(sc, IWN_RESET, 0);
   5664 	return 0;
   5665 }
   5666 
   5667 /*
   5668  * Extract text and data sections from a legacy firmware image.
   5669  */
   5670 static int
   5671 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5672 {
   5673 	const uint32_t *ptr;
   5674 	size_t hdrlen = 24;
   5675 	uint32_t rev;
   5676 
   5677 	ptr = (const uint32_t *)fw->data;
   5678 	rev = le32toh(*ptr++);
   5679 
   5680 	/* Check firmware API version. */
   5681 	if (IWN_FW_API(rev) <= 1) {
   5682 		aprint_error_dev(sc->sc_dev,
   5683 		    "bad firmware, need API version >=2\n");
   5684 		return EINVAL;
   5685 	}
   5686 	if (IWN_FW_API(rev) >= 3) {
   5687 		/* Skip build number (version 2 header). */
   5688 		hdrlen += 4;
   5689 		ptr++;
   5690 	}
   5691 	if (fw->size < hdrlen) {
   5692 		aprint_error_dev(sc->sc_dev,
   5693 		    "firmware too short: %zd bytes\n", fw->size);
   5694 		return EINVAL;
   5695 	}
   5696 	fw->main.textsz = le32toh(*ptr++);
   5697 	fw->main.datasz = le32toh(*ptr++);
   5698 	fw->init.textsz = le32toh(*ptr++);
   5699 	fw->init.datasz = le32toh(*ptr++);
   5700 	fw->boot.textsz = le32toh(*ptr++);
   5701 
   5702 	/* Check that all firmware sections fit. */
   5703 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5704 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5705 		aprint_error_dev(sc->sc_dev,
   5706 		    "firmware too short: %zd bytes\n", fw->size);
   5707 		return EINVAL;
   5708 	}
   5709 
   5710 	/* Get pointers to firmware sections. */
   5711 	fw->main.text = (const uint8_t *)ptr;
   5712 	fw->main.data = fw->main.text + fw->main.textsz;
   5713 	fw->init.text = fw->main.data + fw->main.datasz;
   5714 	fw->init.data = fw->init.text + fw->init.textsz;
   5715 	fw->boot.text = fw->init.data + fw->init.datasz;
   5716 	return 0;
   5717 }
   5718 
   5719 /*
   5720  * Extract text and data sections from a TLV firmware image.
   5721  */
   5722 static int
   5723 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5724     uint16_t alt)
   5725 {
   5726 	const struct iwn_fw_tlv_hdr *hdr;
   5727 	const struct iwn_fw_tlv *tlv;
   5728 	const uint8_t *ptr, *end;
   5729 	uint64_t altmask;
   5730 	uint32_t len;
   5731 
   5732 	if (fw->size < sizeof (*hdr)) {
   5733 		aprint_error_dev(sc->sc_dev,
   5734 		    "firmware too short: %zd bytes\n", fw->size);
   5735 		return EINVAL;
   5736 	}
   5737 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5738 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5739 		aprint_error_dev(sc->sc_dev,
   5740 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5741 		return EINVAL;
   5742 	}
   5743 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5744 	    le32toh(hdr->build)));
   5745 
   5746 	/*
   5747 	 * Select the closest supported alternative that is less than
   5748 	 * or equal to the specified one.
   5749 	 */
   5750 	altmask = le64toh(hdr->altmask);
   5751 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5752 		alt--;	/* Downgrade. */
   5753 	DPRINTF(("using alternative %d\n", alt));
   5754 
   5755 	ptr = (const uint8_t *)(hdr + 1);
   5756 	end = (const uint8_t *)(fw->data + fw->size);
   5757 
   5758 	/* Parse type-length-value fields. */
   5759 	while (ptr + sizeof (*tlv) <= end) {
   5760 		tlv = (const struct iwn_fw_tlv *)ptr;
   5761 		len = le32toh(tlv->len);
   5762 
   5763 		ptr += sizeof (*tlv);
   5764 		if (ptr + len > end) {
   5765 			aprint_error_dev(sc->sc_dev,
   5766 			    "firmware too short: %zd bytes\n", fw->size);
   5767 			return EINVAL;
   5768 		}
   5769 		/* Skip other alternatives. */
   5770 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5771 			goto next;
   5772 
   5773 		switch (le16toh(tlv->type)) {
   5774 		case IWN_FW_TLV_MAIN_TEXT:
   5775 			fw->main.text = ptr;
   5776 			fw->main.textsz = len;
   5777 			break;
   5778 		case IWN_FW_TLV_MAIN_DATA:
   5779 			fw->main.data = ptr;
   5780 			fw->main.datasz = len;
   5781 			break;
   5782 		case IWN_FW_TLV_INIT_TEXT:
   5783 			fw->init.text = ptr;
   5784 			fw->init.textsz = len;
   5785 			break;
   5786 		case IWN_FW_TLV_INIT_DATA:
   5787 			fw->init.data = ptr;
   5788 			fw->init.datasz = len;
   5789 			break;
   5790 		case IWN_FW_TLV_BOOT_TEXT:
   5791 			fw->boot.text = ptr;
   5792 			fw->boot.textsz = len;
   5793 			break;
   5794 		case IWN_FW_TLV_ENH_SENS:
   5795 			if (len != 0) {
   5796 				aprint_error_dev(sc->sc_dev,
   5797 				    "TLV type %d has invalid size %u\n",
   5798 				    le16toh(tlv->type), len);
   5799 				goto next;
   5800 			}
   5801 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5802 			break;
   5803 		case IWN_FW_TLV_PHY_CALIB:
   5804 			if (len != sizeof(uint32_t)) {
   5805 				aprint_error_dev(sc->sc_dev,
   5806 				    "TLV type %d has invalid size %u\n",
   5807 				    le16toh(tlv->type), len);
   5808 				goto next;
   5809 			}
   5810 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5811 				sc->reset_noise_gain = le32toh(*ptr);
   5812 				sc->noise_gain = le32toh(*ptr) + 1;
   5813 			}
   5814 			break;
   5815 		case IWN_FW_TLV_FLAGS:
   5816 			if (len < sizeof(uint32_t))
   5817 				break;
   5818 			if (len % sizeof(uint32_t))
   5819 				break;
   5820 			sc->tlv_feature_flags = le32toh(*ptr);
   5821 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5822 			break;
   5823 		default:
   5824 			DPRINTF(("TLV type %d not handled\n",
   5825 			    le16toh(tlv->type)));
   5826 			break;
   5827 		}
   5828  next:		/* TLV fields are 32-bit aligned. */
   5829 		ptr += (len + 3) & ~3;
   5830 	}
   5831 	return 0;
   5832 }
   5833 
   5834 static int
   5835 iwn_read_firmware(struct iwn_softc *sc)
   5836 {
   5837 	struct iwn_fw_info *fw = &sc->fw;
   5838 	firmware_handle_t fwh;
   5839 	int error;
   5840 
   5841 	/*
   5842 	 * Some PHY calibration commands are firmware-dependent; these
   5843 	 * are the default values that will be overridden if
   5844 	 * necessary.
   5845 	 */
   5846 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5847 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5848 
   5849 	/* Initialize for error returns */
   5850 	fw->data = NULL;
   5851 	fw->size = 0;
   5852 
   5853 	/* Open firmware image. */
   5854 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5855 		aprint_error_dev(sc->sc_dev,
   5856 		    "could not get firmware handle %s\n", sc->fwname);
   5857 		return error;
   5858 	}
   5859 	fw->size = firmware_get_size(fwh);
   5860 	if (fw->size < sizeof (uint32_t)) {
   5861 		aprint_error_dev(sc->sc_dev,
   5862 		    "firmware too short: %zd bytes\n", fw->size);
   5863 		firmware_close(fwh);
   5864 		return EINVAL;
   5865 	}
   5866 
   5867 	/* Read the firmware. */
   5868 	fw->data = firmware_malloc(fw->size);
   5869 	if (fw->data == NULL) {
   5870 		aprint_error_dev(sc->sc_dev,
   5871 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5872 		firmware_close(fwh);
   5873 		return ENOMEM;
   5874 	}
   5875 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5876 	firmware_close(fwh);
   5877 	if (error != 0) {
   5878 		aprint_error_dev(sc->sc_dev,
   5879 		    "could not read firmware %s\n", sc->fwname);
   5880 		goto out;
   5881 	}
   5882 
   5883 	/* Retrieve text and data sections. */
   5884 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5885 		error = iwn_read_firmware_leg(sc, fw);
   5886 	else
   5887 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5888 	if (error != 0) {
   5889 		aprint_error_dev(sc->sc_dev,
   5890 		    "could not read firmware sections\n");
   5891 		goto out;
   5892 	}
   5893 
   5894 	/* Make sure text and data sections fit in hardware memory. */
   5895 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5896 	    fw->main.datasz > sc->fw_data_maxsz ||
   5897 	    fw->init.textsz > sc->fw_text_maxsz ||
   5898 	    fw->init.datasz > sc->fw_data_maxsz ||
   5899 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5900 	    (fw->boot.textsz & 3) != 0) {
   5901 		aprint_error_dev(sc->sc_dev,
   5902 		    "firmware sections too large\n");
   5903 		goto out;
   5904 	}
   5905 
   5906 	/* We can proceed with loading the firmware. */
   5907 	return 0;
   5908 out:
   5909 	firmware_free(fw->data, fw->size);
   5910 	fw->data = NULL;
   5911 	fw->size = 0;
   5912 	return error ? error : EINVAL;
   5913 }
   5914 
   5915 static int
   5916 iwn_clock_wait(struct iwn_softc *sc)
   5917 {
   5918 	int ntries;
   5919 
   5920 	/* Set "initialization complete" bit. */
   5921 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5922 
   5923 	/* Wait for clock stabilization. */
   5924 	for (ntries = 0; ntries < 2500; ntries++) {
   5925 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5926 			return 0;
   5927 		DELAY(10);
   5928 	}
   5929 	aprint_error_dev(sc->sc_dev,
   5930 	    "timeout waiting for clock stabilization\n");
   5931 	return ETIMEDOUT;
   5932 }
   5933 
   5934 static int
   5935 iwn_apm_init(struct iwn_softc *sc)
   5936 {
   5937 	pcireg_t reg;
   5938 	int error;
   5939 
   5940 	/* Disable L0s exit timer (NMI bug workaround). */
   5941 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   5942 	/* Don't wait for ICH L0s (ICH bug workaround). */
   5943 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   5944 
   5945 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   5946 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   5947 
   5948 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   5949 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   5950 
   5951 	/* Retrieve PCIe Active State Power Management (ASPM). */
   5952 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   5953 	    sc->sc_cap_off + PCIE_LCSR);
   5954 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   5955 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   5956 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5957 	else
   5958 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   5959 
   5960 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   5961 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   5962 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   5963 
   5964 	/* Wait for clock stabilization before accessing prph. */
   5965 	if ((error = iwn_clock_wait(sc)) != 0)
   5966 		return error;
   5967 
   5968 	if ((error = iwn_nic_lock(sc)) != 0)
   5969 		return error;
   5970 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   5971 		/* Enable DMA and BSM (Bootstrap State Machine). */
   5972 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5973 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   5974 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   5975 	} else {
   5976 		/* Enable DMA. */
   5977 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   5978 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   5979 	}
   5980 	DELAY(20);
   5981 	/* Disable L1-Active. */
   5982 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   5983 	iwn_nic_unlock(sc);
   5984 
   5985 	return 0;
   5986 }
   5987 
   5988 static void
   5989 iwn_apm_stop_master(struct iwn_softc *sc)
   5990 {
   5991 	int ntries;
   5992 
   5993 	/* Stop busmaster DMA activity. */
   5994 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   5995 	for (ntries = 0; ntries < 100; ntries++) {
   5996 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   5997 			return;
   5998 		DELAY(10);
   5999 	}
   6000 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6001 }
   6002 
   6003 static void
   6004 iwn_apm_stop(struct iwn_softc *sc)
   6005 {
   6006 	iwn_apm_stop_master(sc);
   6007 
   6008 	/* Reset the entire device. */
   6009 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6010 	DELAY(10);
   6011 	/* Clear "initialization complete" bit. */
   6012 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6013 }
   6014 
   6015 static int
   6016 iwn4965_nic_config(struct iwn_softc *sc)
   6017 {
   6018 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6019 		/*
   6020 		 * I don't believe this to be correct but this is what the
   6021 		 * vendor driver is doing. Probably the bits should not be
   6022 		 * shifted in IWN_RFCFG_*.
   6023 		 */
   6024 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6025 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6026 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6027 		    IWN_RFCFG_DASH(sc->rfcfg));
   6028 	}
   6029 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6030 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6031 	return 0;
   6032 }
   6033 
   6034 static int
   6035 iwn5000_nic_config(struct iwn_softc *sc)
   6036 {
   6037 	uint32_t tmp;
   6038 	int error;
   6039 
   6040 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6041 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6042 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6043 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6044 		    IWN_RFCFG_DASH(sc->rfcfg));
   6045 	}
   6046 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6047 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6048 
   6049 	if ((error = iwn_nic_lock(sc)) != 0)
   6050 		return error;
   6051 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6052 
   6053 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6054 		/*
   6055 		 * Select first Switching Voltage Regulator (1.32V) to
   6056 		 * solve a stability issue related to noisy DC2DC line
   6057 		 * in the silicon of 1000 Series.
   6058 		 */
   6059 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6060 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6061 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6062 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6063 	}
   6064 	iwn_nic_unlock(sc);
   6065 
   6066 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6067 		/* Use internal power amplifier only. */
   6068 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6069 	}
   6070 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6071 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6072 		/* Indicate that ROM calibration version is >=6. */
   6073 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6074 	}
   6075 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6076 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6077 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6078 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6079 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6080 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6081 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6082 	return 0;
   6083 }
   6084 
   6085 /*
   6086  * Take NIC ownership over Intel Active Management Technology (AMT).
   6087  */
   6088 static int
   6089 iwn_hw_prepare(struct iwn_softc *sc)
   6090 {
   6091 	int ntries;
   6092 
   6093 	/* Check if hardware is ready. */
   6094 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6095 	for (ntries = 0; ntries < 5; ntries++) {
   6096 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6097 		    IWN_HW_IF_CONFIG_NIC_READY)
   6098 			return 0;
   6099 		DELAY(10);
   6100 	}
   6101 
   6102 	/* Hardware not ready, force into ready state. */
   6103 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6104 	for (ntries = 0; ntries < 15000; ntries++) {
   6105 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6106 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6107 			break;
   6108 		DELAY(10);
   6109 	}
   6110 	if (ntries == 15000)
   6111 		return ETIMEDOUT;
   6112 
   6113 	/* Hardware should be ready now. */
   6114 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6115 	for (ntries = 0; ntries < 5; ntries++) {
   6116 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6117 		    IWN_HW_IF_CONFIG_NIC_READY)
   6118 			return 0;
   6119 		DELAY(10);
   6120 	}
   6121 	return ETIMEDOUT;
   6122 }
   6123 
   6124 static int
   6125 iwn_hw_init(struct iwn_softc *sc)
   6126 {
   6127 	struct iwn_ops *ops = &sc->ops;
   6128 	int error, chnl, qid;
   6129 
   6130 	/* Clear pending interrupts. */
   6131 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6132 
   6133 	if ((error = iwn_apm_init(sc)) != 0) {
   6134 		aprint_error_dev(sc->sc_dev,
   6135 		    "could not power ON adapter\n");
   6136 		return error;
   6137 	}
   6138 
   6139 	/* Select VMAIN power source. */
   6140 	if ((error = iwn_nic_lock(sc)) != 0)
   6141 		return error;
   6142 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6143 	iwn_nic_unlock(sc);
   6144 
   6145 	/* Perform adapter-specific initialization. */
   6146 	if ((error = ops->nic_config(sc)) != 0)
   6147 		return error;
   6148 
   6149 	/* Initialize RX ring. */
   6150 	if ((error = iwn_nic_lock(sc)) != 0)
   6151 		return error;
   6152 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6153 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6154 	/* Set physical address of RX ring (256-byte aligned). */
   6155 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6156 	/* Set physical address of RX status (16-byte aligned). */
   6157 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6158 	/* Enable RX. */
   6159 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6160 	    IWN_FH_RX_CONFIG_ENA           |
   6161 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6162 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6163 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6164 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6165 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6166 	iwn_nic_unlock(sc);
   6167 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6168 
   6169 	if ((error = iwn_nic_lock(sc)) != 0)
   6170 		return error;
   6171 
   6172 	/* Initialize TX scheduler. */
   6173 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6174 
   6175 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6176 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6177 
   6178 	/* Initialize TX rings. */
   6179 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6180 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6181 
   6182 		/* Set physical address of TX ring (256-byte aligned). */
   6183 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6184 		    txq->desc_dma.paddr >> 8);
   6185 	}
   6186 	iwn_nic_unlock(sc);
   6187 
   6188 	/* Enable DMA channels. */
   6189 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6190 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6191 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6192 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6193 	}
   6194 
   6195 	/* Clear "radio off" and "commands blocked" bits. */
   6196 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6197 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6198 
   6199 	/* Clear pending interrupts. */
   6200 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6201 	/* Enable interrupt coalescing. */
   6202 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6203 	/* Enable interrupts. */
   6204 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6205 
   6206 	/* _Really_ make sure "radio off" bit is cleared! */
   6207 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6208 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6209 
   6210 	/* Enable shadow registers. */
   6211 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6212 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6213 
   6214 	if ((error = ops->load_firmware(sc)) != 0) {
   6215 		aprint_error_dev(sc->sc_dev,
   6216 		    "could not load firmware\n");
   6217 		return error;
   6218 	}
   6219 	/* Wait at most one second for firmware alive notification. */
   6220 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6221 		aprint_error_dev(sc->sc_dev,
   6222 		    "timeout waiting for adapter to initialize\n");
   6223 		return error;
   6224 	}
   6225 	/* Do post-firmware initialization. */
   6226 	return ops->post_alive(sc);
   6227 }
   6228 
   6229 static void
   6230 iwn_hw_stop(struct iwn_softc *sc)
   6231 {
   6232 	int chnl, qid, ntries;
   6233 
   6234 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6235 
   6236 	/* Disable interrupts. */
   6237 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6238 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6239 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6240 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6241 
   6242 	/* Make sure we no longer hold the NIC lock. */
   6243 	iwn_nic_unlock(sc);
   6244 
   6245 	/* Stop TX scheduler. */
   6246 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6247 
   6248 	/* Stop all DMA channels. */
   6249 	if (iwn_nic_lock(sc) == 0) {
   6250 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6251 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6252 			for (ntries = 0; ntries < 200; ntries++) {
   6253 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6254 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6255 					break;
   6256 				DELAY(10);
   6257 			}
   6258 		}
   6259 		iwn_nic_unlock(sc);
   6260 	}
   6261 
   6262 	/* Stop RX ring. */
   6263 	iwn_reset_rx_ring(sc, &sc->rxq);
   6264 
   6265 	/* Reset all TX rings. */
   6266 	for (qid = 0; qid < sc->ntxqs; qid++)
   6267 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6268 
   6269 	if (iwn_nic_lock(sc) == 0) {
   6270 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6271 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6272 		iwn_nic_unlock(sc);
   6273 	}
   6274 	DELAY(5);
   6275 	/* Power OFF adapter. */
   6276 	iwn_apm_stop(sc);
   6277 }
   6278 
   6279 static int
   6280 iwn_init(struct ifnet *ifp)
   6281 {
   6282 	struct iwn_softc *sc = ifp->if_softc;
   6283 	struct ieee80211com *ic = &sc->sc_ic;
   6284 	int error;
   6285 
   6286 	mutex_enter(&sc->sc_mtx);
   6287 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6288 		goto out;
   6289 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6290 		aprint_error_dev(sc->sc_dev,
   6291 		    "hardware not ready\n");
   6292 		goto fail;
   6293 	}
   6294 
   6295 	/* Check that the radio is not disabled by hardware switch. */
   6296 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6297 		aprint_error_dev(sc->sc_dev,
   6298 		    "radio is disabled by hardware switch\n");
   6299 		error = EPERM;	/* :-) */
   6300 		goto fail;
   6301 	}
   6302 
   6303 	/* Read firmware images from the filesystem. */
   6304 	if ((error = iwn_read_firmware(sc)) != 0) {
   6305 		aprint_error_dev(sc->sc_dev,
   6306 		    "could not read firmware\n");
   6307 		goto fail;
   6308 	}
   6309 
   6310 	/* Initialize interrupt mask to default value. */
   6311 	sc->int_mask = IWN_INT_MASK_DEF;
   6312 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6313 
   6314 	/* Initialize hardware and upload firmware. */
   6315 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6316 	error = iwn_hw_init(sc);
   6317 	firmware_free(sc->fw.data, sc->fw.size);
   6318 	sc->fw.data = NULL;
   6319 	sc->fw.size = 0;
   6320 	if (error != 0) {
   6321 		aprint_error_dev(sc->sc_dev,
   6322 		    "could not initialize hardware\n");
   6323 		goto fail;
   6324 	}
   6325 
   6326 	/* Configure adapter now that it is ready. */
   6327 	if ((error = iwn_config(sc)) != 0) {
   6328 		aprint_error_dev(sc->sc_dev,
   6329 		    "could not configure device\n");
   6330 		goto fail;
   6331 	}
   6332 
   6333 	ifp->if_flags &= ~IFF_OACTIVE;
   6334 	ifp->if_flags |= IFF_RUNNING;
   6335 
   6336 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6337 		ieee80211_begin_scan(ic, 0);
   6338 	else
   6339 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6340 
   6341 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6342 out:
   6343 	mutex_exit(&sc->sc_mtx);
   6344 	return 0;
   6345 
   6346 fail:	mutex_exit(&sc->sc_mtx);
   6347 	iwn_stop(ifp, 1);
   6348 	return error;
   6349 }
   6350 
   6351 static void
   6352 iwn_stop(struct ifnet *ifp, int disable)
   6353 {
   6354 	struct iwn_softc *sc = ifp->if_softc;
   6355 	struct ieee80211com *ic = &sc->sc_ic;
   6356 
   6357 	if (!disable)
   6358 		mutex_enter(&sc->sc_mtx);
   6359 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6360 	ifp->if_timer = sc->sc_tx_timer = 0;
   6361 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6362 
   6363 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6364 
   6365 	/* Power OFF hardware. */
   6366 	iwn_hw_stop(sc);
   6367 
   6368 	if (!disable)
   6369 		mutex_exit(&sc->sc_mtx);
   6370 }
   6371 
   6372 /*
   6373  * XXX MCLGETI alternative
   6374  *
   6375  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6376  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6377  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6378  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6379  */
   6380 
   6381 static struct mbuf *
   6382 MCLGETIalt(struct iwn_softc *sc, int how,
   6383     struct ifnet *ifp __unused, u_int size)
   6384 {
   6385 	struct mbuf *m;
   6386 #ifdef IWN_USE_RBUF
   6387 	struct iwn_rbuf *rbuf;
   6388 #endif
   6389 
   6390 	MGETHDR(m, how, MT_DATA);
   6391 	if (m == NULL)
   6392 		return NULL;
   6393 
   6394 #ifdef IWN_USE_RBUF
   6395 	if (sc->rxq.nb_free_entries > 0 &&
   6396 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6397 		/* Attach buffer to mbuf header. */
   6398 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6399 		m->m_flags |= M_EXT_RW;
   6400 	}
   6401 	else {
   6402 		MEXTMALLOC(m, size, how);
   6403 		if ((m->m_flags & M_EXT) == 0) {
   6404 			m_freem(m);
   6405 			return NULL;
   6406 		}
   6407 	}
   6408 
   6409 #else
   6410 #ifdef MCLGET4K
   6411 	if (size == 4096)
   6412 		MCLGET4K(m, how);
   6413 	else
   6414 		panic("size must be 4k");
   6415 #else
   6416 	MEXTMALLOC(m, size, how);
   6417 #endif
   6418 	if ((m->m_flags & M_EXT) == 0) {
   6419 		m_freem(m);
   6420 		return NULL;
   6421 	}
   6422 #endif
   6423 
   6424 	return m;
   6425 }
   6426 
   6427 #ifdef IWN_USE_RBUF
   6428 static struct iwn_rbuf *
   6429 iwn_alloc_rbuf(struct iwn_softc *sc)
   6430 {
   6431 	struct iwn_rbuf *rbuf;
   6432 	mutex_enter(&sc->rxq.freelist_mtx);
   6433 
   6434 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6435 	if (rbuf != NULL) {
   6436 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6437 		sc->rxq.nb_free_entries --;
   6438 	}
   6439 	mutex_exit(&sc->rxq.freelist_mtx);
   6440 	return rbuf;
   6441 }
   6442 
   6443 /*
   6444  * This is called automatically by the network stack when the mbuf to which
   6445  * our RX buffer is attached is freed.
   6446  */
   6447 static void
   6448 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6449 {
   6450 	struct iwn_rbuf *rbuf = arg;
   6451 	struct iwn_softc *sc = rbuf->sc;
   6452 
   6453 	/* Put the RX buffer back in the free list. */
   6454 	mutex_enter(&sc->rxq.freelist_mtx);
   6455 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6456 	mutex_exit(&sc->rxq.freelist_mtx);
   6457 
   6458 	sc->rxq.nb_free_entries ++;
   6459 	if (__predict_true(m != NULL))
   6460 		pool_cache_put(mb_cache, m);
   6461 }
   6462 
   6463 static int
   6464 iwn_alloc_rpool(struct iwn_softc *sc)
   6465 {
   6466 	struct iwn_rx_ring *ring = &sc->rxq;
   6467 	struct iwn_rbuf *rbuf;
   6468 	int i, error;
   6469 
   6470 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6471 
   6472 	/* Allocate a big chunk of DMA'able memory... */
   6473 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6474 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6475 	if (error != 0) {
   6476 		aprint_error_dev(sc->sc_dev,
   6477 		    "could not allocate RX buffers DMA memory\n");
   6478 		return error;
   6479 	}
   6480 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6481 	SLIST_INIT(&ring->freelist);
   6482 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6483 		rbuf = &ring->rbuf[i];
   6484 
   6485 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6486 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6487 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6488 
   6489 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6490 	}
   6491 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6492 	return 0;
   6493 }
   6494 
   6495 static void
   6496 iwn_free_rpool(struct iwn_softc *sc)
   6497 {
   6498 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6499 }
   6500 #endif
   6501 
   6502 /*
   6503  * XXX: Hack to set the current channel to the value advertised in beacons or
   6504  * probe responses. Only used during AP detection.
   6505  * XXX: Duplicated from if_iwi.c
   6506  */
   6507 static void
   6508 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6509     struct iwn_rx_stat *stat)
   6510 {
   6511 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6512 	struct ieee80211_frame *wh;
   6513 	uint8_t subtype;
   6514 	uint8_t *frm, *efrm;
   6515 
   6516 	wh = mtod(m, struct ieee80211_frame *);
   6517 
   6518 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6519 		return;
   6520 
   6521 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6522 
   6523 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6524 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6525 		return;
   6526 
   6527 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6528 		int chan = le16toh(stat->chan);
   6529 		if (chan < __arraycount(ic->ic_channels))
   6530 			ic->ic_curchan = &ic->ic_channels[chan];
   6531 		return;
   6532 	}
   6533 
   6534 	frm = (uint8_t *)(wh + 1);
   6535 	efrm = mtod(m, uint8_t *) + m->m_len;
   6536 
   6537 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6538 	while (frm < efrm) {
   6539 		if (*frm == IEEE80211_ELEMID_DSPARMS)
   6540 #if IEEE80211_CHAN_MAX < 255
   6541 		if (frm[2] <= IEEE80211_CHAN_MAX)
   6542 #endif
   6543 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   6544 
   6545 		frm += frm[1] + 2;
   6546 	}
   6547 }
   6548 
   6549 #ifdef notyetMODULE
   6550 
   6551 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6552 
   6553 #ifdef _MODULE
   6554 #include "ioconf.c"
   6555 #endif
   6556 
   6557 static int
   6558 if_iwn_modcmd(modcmd_t cmd, void *data)
   6559 {
   6560 	int error = 0;
   6561 
   6562 	switch (cmd) {
   6563 	case MODULE_CMD_INIT:
   6564 #ifdef _MODULE
   6565 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6566 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6567 #endif
   6568 		return error;
   6569 	case MODULE_CMD_FINI:
   6570 #ifdef _MODULE
   6571 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6572 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6573 #endif
   6574 		return error;
   6575 	case MODULE_CMD_AUTOUNLOAD:
   6576 #ifdef _MODULE
   6577 		/* XXX This is not optional! */
   6578 #endif
   6579 		return error;
   6580 	default:
   6581 		return ENOTTY;
   6582 	}
   6583 }
   6584 #endif
   6585