Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.87
      1 /*	$NetBSD: if_iwn.c,v 1.87 2018/01/16 07:05:24 maxv Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.87 2018/01/16 07:05:24 maxv Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 /*
    122  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    123  */
    124 static const struct ieee80211_rateset iwn_rateset_11a =
    125 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    126 
    127 static const struct ieee80211_rateset iwn_rateset_11b =
    128 	{ 4, { 2, 4, 11, 22 } };
    129 
    130 static const struct ieee80211_rateset iwn_rateset_11g =
    131 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    132 
    133 static int	iwn_match(device_t , struct cfdata *, void *);
    134 static void	iwn_attach(device_t , device_t , void *);
    135 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    136 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    137 static void	iwn_radiotap_attach(struct iwn_softc *);
    138 static int	iwn_detach(device_t , int);
    139 #if 0
    140 static void	iwn_power(int, void *);
    141 #endif
    142 static bool	iwn_resume(device_t, const pmf_qual_t *);
    143 static int	iwn_nic_lock(struct iwn_softc *);
    144 static int	iwn_eeprom_lock(struct iwn_softc *);
    145 static int	iwn_init_otprom(struct iwn_softc *);
    146 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    147 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    148 		    void **, bus_size_t, bus_size_t);
    149 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    150 static int	iwn_alloc_sched(struct iwn_softc *);
    151 static void	iwn_free_sched(struct iwn_softc *);
    152 static int	iwn_alloc_kw(struct iwn_softc *);
    153 static void	iwn_free_kw(struct iwn_softc *);
    154 static int	iwn_alloc_ict(struct iwn_softc *);
    155 static void	iwn_free_ict(struct iwn_softc *);
    156 static int	iwn_alloc_fwmem(struct iwn_softc *);
    157 static void	iwn_free_fwmem(struct iwn_softc *);
    158 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    159 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    160 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    161 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    162 		    int);
    163 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    164 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    165 static void	iwn5000_ict_reset(struct iwn_softc *);
    166 static int	iwn_read_eeprom(struct iwn_softc *);
    167 static void	iwn4965_read_eeprom(struct iwn_softc *);
    168 
    169 #ifdef IWN_DEBUG
    170 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    171 #endif
    172 static void	iwn5000_read_eeprom(struct iwn_softc *);
    173 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    175 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    176 static void	iwn_newassoc(struct ieee80211_node *, int);
    177 static int	iwn_media_change(struct ifnet *);
    178 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    179 static void	iwn_iter_func(void *, struct ieee80211_node *);
    180 static void	iwn_calib_timeout(void *);
    181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 #ifndef IEEE80211_NO_HT
    186 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    187 		    struct iwn_rx_data *);
    188 #endif
    189 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    190 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    191 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    192 		    struct iwn_rx_data *);
    193 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    194 		    struct iwn_rx_data *);
    195 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    196 		    struct iwn_rx_data *);
    197 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    198 		    uint8_t);
    199 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    200 static void	iwn_notif_intr(struct iwn_softc *);
    201 static void	iwn_wakeup_intr(struct iwn_softc *);
    202 static void	iwn_fatal_intr(struct iwn_softc *);
    203 static int	iwn_intr(void *);
    204 static void	iwn_softintr(void *);
    205 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    206 		    uint16_t);
    207 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    208 		    uint16_t);
    209 #ifdef notyet
    210 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    211 #endif
    212 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    213 		    struct ieee80211_node *, int);
    214 static void	iwn_start(struct ifnet *);
    215 static void	iwn_watchdog(struct ifnet *);
    216 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    217 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    218 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    219 		    int);
    220 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    221 		    int);
    222 static int	iwn_set_link_quality(struct iwn_softc *,
    223 		    struct ieee80211_node *);
    224 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    225 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    226 static int	iwn_set_critical_temp(struct iwn_softc *);
    227 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    228 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    229 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    230 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    231 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    232 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    233 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    234 static int	iwn4965_get_temperature(struct iwn_softc *);
    235 static int	iwn5000_get_temperature(struct iwn_softc *);
    236 static int	iwn_init_sensitivity(struct iwn_softc *);
    237 static void	iwn_collect_noise(struct iwn_softc *,
    238 		    const struct iwn_rx_general_stats *);
    239 static int	iwn4965_init_gains(struct iwn_softc *);
    240 static int	iwn5000_init_gains(struct iwn_softc *);
    241 static int	iwn4965_set_gains(struct iwn_softc *);
    242 static int	iwn5000_set_gains(struct iwn_softc *);
    243 static void	iwn_tune_sensitivity(struct iwn_softc *,
    244 		    const struct iwn_rx_stats *);
    245 static int	iwn_send_sensitivity(struct iwn_softc *);
    246 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    247 static int	iwn5000_runtime_calib(struct iwn_softc *);
    248 
    249 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    250 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    251 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    252 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    253 
    254 static int	iwn_config(struct iwn_softc *);
    255 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    256 		    uint8_t);
    257 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    258 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    259 static int	iwn_scan(struct iwn_softc *, uint16_t);
    260 static int	iwn_auth(struct iwn_softc *);
    261 static int	iwn_run(struct iwn_softc *);
    262 #ifdef IWN_HWCRYPTO
    263 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    264 		    struct ieee80211_key *);
    265 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    266 		    struct ieee80211_key *);
    267 #endif
    268 static int	iwn_wme_update(struct ieee80211com *);
    269 #ifndef IEEE80211_NO_HT
    270 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    271 		    struct ieee80211_node *, uint8_t);
    272 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    273 		    struct ieee80211_node *, uint8_t);
    274 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    275 		    struct ieee80211_node *, uint8_t);
    276 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    277 		    struct ieee80211_node *, uint8_t);
    278 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    279 		    struct ieee80211_node *, uint8_t, uint16_t);
    280 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    281 		    uint8_t, uint16_t);
    282 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    283 		    struct ieee80211_node *, uint8_t, uint16_t);
    284 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    285 		    uint8_t, uint16_t);
    286 #endif
    287 static int	iwn5000_query_calibration(struct iwn_softc *);
    288 static int	iwn5000_send_calibration(struct iwn_softc *);
    289 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    290 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    291 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    292 static int	iwn4965_post_alive(struct iwn_softc *);
    293 static int	iwn5000_post_alive(struct iwn_softc *);
    294 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    295 		    int);
    296 static int	iwn4965_load_firmware(struct iwn_softc *);
    297 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    298 		    const uint8_t *, int);
    299 static int	iwn5000_load_firmware(struct iwn_softc *);
    300 static int	iwn_read_firmware_leg(struct iwn_softc *,
    301 		    struct iwn_fw_info *);
    302 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    303 		    struct iwn_fw_info *, uint16_t);
    304 static int	iwn_read_firmware(struct iwn_softc *);
    305 static int	iwn_clock_wait(struct iwn_softc *);
    306 static int	iwn_apm_init(struct iwn_softc *);
    307 static void	iwn_apm_stop_master(struct iwn_softc *);
    308 static void	iwn_apm_stop(struct iwn_softc *);
    309 static int	iwn4965_nic_config(struct iwn_softc *);
    310 static int	iwn5000_nic_config(struct iwn_softc *);
    311 static int	iwn_hw_prepare(struct iwn_softc *);
    312 static int	iwn_hw_init(struct iwn_softc *);
    313 static void	iwn_hw_stop(struct iwn_softc *);
    314 static int	iwn_init(struct ifnet *);
    315 static void	iwn_stop(struct ifnet *, int);
    316 
    317 /* XXX MCLGETI alternative */
    318 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    319 		    struct ifnet *, u_int);
    320 #ifdef IWN_USE_RBUF
    321 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    322 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    323 static int	iwn_alloc_rpool(struct iwn_softc *);
    324 static void	iwn_free_rpool(struct iwn_softc *);
    325 #endif
    326 
    327 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    328 		    struct iwn_rx_stat *);
    329 
    330 #ifdef IWN_DEBUG
    331 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    332 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    333 int iwn_debug = 0;
    334 #else
    335 #define DPRINTF(x)
    336 #define DPRINTFN(n, x)
    337 #endif
    338 
    339 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    340 	iwn_detach, NULL);
    341 
    342 static int
    343 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    344 {
    345 	struct pci_attach_args *pa = aux;
    346 	size_t i;
    347 
    348 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    349 		return 0;
    350 
    351 	for (i = 0; i < __arraycount(iwn_devices); i++)
    352 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    353 			return 1;
    354 
    355 	return 0;
    356 }
    357 
    358 static void
    359 iwn_attach(device_t parent __unused, device_t self, void *aux)
    360 {
    361 	struct iwn_softc *sc = device_private(self);
    362 	struct ieee80211com *ic = &sc->sc_ic;
    363 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    364 	struct pci_attach_args *pa = aux;
    365 	const char *intrstr;
    366 	pcireg_t memtype, reg;
    367 	int i, error;
    368 	char intrbuf[PCI_INTRSTR_LEN];
    369 
    370 	sc->sc_dev = self;
    371 	sc->sc_pct = pa->pa_pc;
    372 	sc->sc_pcitag = pa->pa_tag;
    373 	sc->sc_dmat = pa->pa_dmat;
    374 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    375 
    376 	callout_init(&sc->calib_to, 0);
    377 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    378 
    379 	pci_aprint_devinfo(pa, NULL);
    380 
    381 	/*
    382 	 * Get the offset of the PCI Express Capability Structure in PCI
    383 	 * Configuration Space.
    384 	 */
    385 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    386 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    387 	if (error == 0) {
    388 		aprint_error_dev(self,
    389 		    "PCIe capability structure not found!\n");
    390 		return;
    391 	}
    392 
    393 	/* Clear device-specific "PCI retry timeout" register (41h). */
    394 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    395 	if (reg & 0xff00)
    396 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    397 
    398 	/* Enable bus-mastering. */
    399 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    400 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    401 	reg |= PCI_COMMAND_MASTER_ENABLE;
    402 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    403 
    404 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    405 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    406 	    &sc->sc_sh, NULL, &sc->sc_sz);
    407 	if (error != 0) {
    408 		aprint_error_dev(self, "can't map mem space\n");
    409 		return;
    410 	}
    411 
    412 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    413 	if (sc->sc_soft_ih == NULL) {
    414 		aprint_error_dev(self, "can't establish soft interrupt\n");
    415 		goto unmap;
    416 	}
    417 
    418 	/* Install interrupt handler. */
    419 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    420 	if (error) {
    421 		aprint_error_dev(self, "can't allocate interrupt\n");
    422 		goto failsi;
    423 	}
    424 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    425 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    426 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    427 	else
    428 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    429 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    430 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    431 	    sizeof(intrbuf));
    432 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    433 	    IPL_NET, iwn_intr, sc, device_xname(self));
    434 	if (sc->sc_ih == NULL) {
    435 		aprint_error_dev(self, "can't establish interrupt");
    436 		if (intrstr != NULL)
    437 			aprint_error(" at %s", intrstr);
    438 		aprint_error("\n");
    439 		goto failia;
    440 	}
    441 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    442 
    443 	/* Read hardware revision and attach. */
    444 	sc->hw_type =
    445 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    446 	      >> IWN_HW_REV_TYPE_SHIFT;
    447 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    448 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    449 	else
    450 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    451 	if (error != 0) {
    452 		aprint_error_dev(self, "could not attach device\n");
    453 		goto failih;
    454 	}
    455 
    456 	if ((error = iwn_hw_prepare(sc)) != 0) {
    457 		aprint_error_dev(self, "hardware not ready\n");
    458 		goto failih;
    459 	}
    460 
    461 	/* Read MAC address, channels, etc from EEPROM. */
    462 	if ((error = iwn_read_eeprom(sc)) != 0) {
    463 		aprint_error_dev(self, "could not read EEPROM\n");
    464 		goto failih;
    465 	}
    466 
    467 	/* Allocate DMA memory for firmware transfers. */
    468 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    469 		aprint_error_dev(self,
    470 		    "could not allocate memory for firmware\n");
    471 		goto failih;
    472 	}
    473 
    474 	/* Allocate "Keep Warm" page. */
    475 	if ((error = iwn_alloc_kw(sc)) != 0) {
    476 		aprint_error_dev(self, "could not allocate keep warm page\n");
    477 		goto fail1;
    478 	}
    479 
    480 	/* Allocate ICT table for 5000 Series. */
    481 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    482 	    (error = iwn_alloc_ict(sc)) != 0) {
    483 		aprint_error_dev(self, "could not allocate ICT table\n");
    484 		goto fail2;
    485 	}
    486 
    487 	/* Allocate TX scheduler "rings". */
    488 	if ((error = iwn_alloc_sched(sc)) != 0) {
    489 		aprint_error_dev(self,
    490 		    "could not allocate TX scheduler rings\n");
    491 		goto fail3;
    492 	}
    493 
    494 #ifdef IWN_USE_RBUF
    495 	/* Allocate RX buffers. */
    496 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    497 		aprint_error_dev(self, "could not allocate RX buffers\n");
    498 		goto fail3;
    499 	}
    500 #endif
    501 
    502 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    503 	for (i = 0; i < sc->ntxqs; i++) {
    504 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    505 			aprint_error_dev(self,
    506 			    "could not allocate TX ring %d\n", i);
    507 			goto fail4;
    508 		}
    509 	}
    510 
    511 	/* Allocate RX ring. */
    512 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    513 		aprint_error_dev(self, "could not allocate RX ring\n");
    514 		goto fail4;
    515 	}
    516 
    517 	/* Clear pending interrupts. */
    518 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    519 
    520 	/* Count the number of available chains. */
    521 	sc->ntxchains =
    522 	    ((sc->txchainmask >> 2) & 1) +
    523 	    ((sc->txchainmask >> 1) & 1) +
    524 	    ((sc->txchainmask >> 0) & 1);
    525 	sc->nrxchains =
    526 	    ((sc->rxchainmask >> 2) & 1) +
    527 	    ((sc->rxchainmask >> 1) & 1) +
    528 	    ((sc->rxchainmask >> 0) & 1);
    529 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    530 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    531 	    ether_sprintf(ic->ic_myaddr));
    532 
    533 	ic->ic_ifp = ifp;
    534 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    535 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    536 	ic->ic_state = IEEE80211_S_INIT;
    537 
    538 	/* Set device capabilities. */
    539 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    540 	 * and IEEE80211_C_PMGT too. */
    541 	ic->ic_caps =
    542 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    543 	    IEEE80211_C_WPA |		/* 802.11i */
    544 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    545 	    IEEE80211_C_TXPMGT |	/* tx power management */
    546 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    547 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    548 	    IEEE80211_C_WME;		/* 802.11e */
    549 
    550 #ifndef IEEE80211_NO_HT
    551 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    552 		/* Set HT capabilities. */
    553 		ic->ic_htcaps =
    554 #if IWN_RBUF_SIZE == 8192
    555 		    IEEE80211_HTCAP_AMSDU7935 |
    556 #endif
    557 		    IEEE80211_HTCAP_CBW20_40 |
    558 		    IEEE80211_HTCAP_SGI20 |
    559 		    IEEE80211_HTCAP_SGI40;
    560 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    561 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    562 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    563 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    564 		else
    565 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    566 	}
    567 #endif	/* !IEEE80211_NO_HT */
    568 
    569 	/* Set supported legacy rates. */
    570 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
    571 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
    572 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    573 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
    574 	}
    575 #ifndef IEEE80211_NO_HT
    576 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    577 		/* Set supported HT rates. */
    578 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    579 		if (sc->nrxchains > 1)
    580 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    581 		if (sc->nrxchains > 2)
    582 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    583 	}
    584 #endif
    585 
    586 	/* IBSS channel undefined for now. */
    587 	ic->ic_ibss_chan = &ic->ic_channels[0];
    588 
    589 	ifp->if_softc = sc;
    590 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    591 	ifp->if_init = iwn_init;
    592 	ifp->if_ioctl = iwn_ioctl;
    593 	ifp->if_start = iwn_start;
    594 	ifp->if_stop = iwn_stop;
    595 	ifp->if_watchdog = iwn_watchdog;
    596 	IFQ_SET_READY(&ifp->if_snd);
    597 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    598 
    599 	error = if_initialize(ifp);
    600 	if (error != 0) {
    601 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    602 		    error);
    603 		goto fail5;
    604 	}
    605 	ieee80211_ifattach(ic);
    606 	/* Use common softint-based if_input */
    607 	ifp->if_percpuq = if_percpuq_create(ifp);
    608 	if_register(ifp);
    609 
    610 	ic->ic_node_alloc = iwn_node_alloc;
    611 	ic->ic_newassoc = iwn_newassoc;
    612 #ifdef IWN_HWCRYPTO
    613 	ic->ic_crypto.cs_key_set = iwn_set_key;
    614 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    615 #endif
    616 	ic->ic_wme.wme_update = iwn_wme_update;
    617 #ifndef IEEE80211_NO_HT
    618 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    619 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    620 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    621 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    622 #endif
    623 
    624 	/* Override 802.11 state transition machine. */
    625 	sc->sc_newstate = ic->ic_newstate;
    626 	ic->ic_newstate = iwn_newstate;
    627 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    628 
    629 	sc->amrr.amrr_min_success_threshold =  1;
    630 	sc->amrr.amrr_max_success_threshold = 15;
    631 
    632 	iwn_radiotap_attach(sc);
    633 
    634 	/*
    635 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    636 	 * callout_init and callout_setfunc, above.
    637 	*/
    638 
    639 	if (pmf_device_register(self, NULL, iwn_resume))
    640 		pmf_class_network_register(self, ifp);
    641 	else
    642 		aprint_error_dev(self, "couldn't establish power handler\n");
    643 
    644 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    645 	ieee80211_announce(ic);
    646 
    647 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    648 	return;
    649 
    650 	/* Free allocated memory if something failed during attachment. */
    651 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
    652 fail4:	while (--i >= 0)
    653 		iwn_free_tx_ring(sc, &sc->txq[i]);
    654 #ifdef IWN_USE_RBUF
    655 	iwn_free_rpool(sc);
    656 #endif
    657 	iwn_free_sched(sc);
    658 fail3:	if (sc->ict != NULL)
    659 		iwn_free_ict(sc);
    660 fail2:	iwn_free_kw(sc);
    661 fail1:	iwn_free_fwmem(sc);
    662 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    663 	sc->sc_ih = NULL;
    664 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    665 	sc->sc_pihp = NULL;
    666 failsi:	softint_disestablish(sc->sc_soft_ih);
    667 	sc->sc_soft_ih = NULL;
    668 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    669 }
    670 
    671 int
    672 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    673 {
    674 	struct iwn_ops *ops = &sc->ops;
    675 
    676 	ops->load_firmware = iwn4965_load_firmware;
    677 	ops->read_eeprom = iwn4965_read_eeprom;
    678 	ops->post_alive = iwn4965_post_alive;
    679 	ops->nic_config = iwn4965_nic_config;
    680 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    681 	ops->update_sched = iwn4965_update_sched;
    682 	ops->get_temperature = iwn4965_get_temperature;
    683 	ops->get_rssi = iwn4965_get_rssi;
    684 	ops->set_txpower = iwn4965_set_txpower;
    685 	ops->init_gains = iwn4965_init_gains;
    686 	ops->set_gains = iwn4965_set_gains;
    687 	ops->add_node = iwn4965_add_node;
    688 	ops->tx_done = iwn4965_tx_done;
    689 #ifndef IEEE80211_NO_HT
    690 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    691 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    692 #endif
    693 	sc->ntxqs = IWN4965_NTXQUEUES;
    694 	sc->ndmachnls = IWN4965_NDMACHNLS;
    695 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    696 	sc->rxonsz = IWN4965_RXONSZ;
    697 	sc->schedsz = IWN4965_SCHEDSZ;
    698 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    699 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    700 	sc->fwsz = IWN4965_FWSZ;
    701 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    702 	sc->limits = &iwn4965_sensitivity_limits;
    703 	sc->fwname = "iwlwifi-4965-2.ucode";
    704 	/* Override chains masks, ROM is known to be broken. */
    705 	sc->txchainmask = IWN_ANT_AB;
    706 	sc->rxchainmask = IWN_ANT_ABC;
    707 
    708 	return 0;
    709 }
    710 
    711 int
    712 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    713 {
    714 	struct iwn_ops *ops = &sc->ops;
    715 
    716 	ops->load_firmware = iwn5000_load_firmware;
    717 	ops->read_eeprom = iwn5000_read_eeprom;
    718 	ops->post_alive = iwn5000_post_alive;
    719 	ops->nic_config = iwn5000_nic_config;
    720 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    721 	ops->update_sched = iwn5000_update_sched;
    722 	ops->get_temperature = iwn5000_get_temperature;
    723 	ops->get_rssi = iwn5000_get_rssi;
    724 	ops->set_txpower = iwn5000_set_txpower;
    725 	ops->init_gains = iwn5000_init_gains;
    726 	ops->set_gains = iwn5000_set_gains;
    727 	ops->add_node = iwn5000_add_node;
    728 	ops->tx_done = iwn5000_tx_done;
    729 #ifndef IEEE80211_NO_HT
    730 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    731 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    732 #endif
    733 	sc->ntxqs = IWN5000_NTXQUEUES;
    734 	sc->ndmachnls = IWN5000_NDMACHNLS;
    735 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    736 	sc->rxonsz = IWN5000_RXONSZ;
    737 	sc->schedsz = IWN5000_SCHEDSZ;
    738 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    739 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    740 	sc->fwsz = IWN5000_FWSZ;
    741 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    742 
    743 	switch (sc->hw_type) {
    744 	case IWN_HW_REV_TYPE_5100:
    745 		sc->limits = &iwn5000_sensitivity_limits;
    746 		sc->fwname = "iwlwifi-5000-2.ucode";
    747 		/* Override chains masks, ROM is known to be broken. */
    748 		sc->txchainmask = IWN_ANT_B;
    749 		sc->rxchainmask = IWN_ANT_AB;
    750 		break;
    751 	case IWN_HW_REV_TYPE_5150:
    752 		sc->limits = &iwn5150_sensitivity_limits;
    753 		sc->fwname = "iwlwifi-5150-2.ucode";
    754 		break;
    755 	case IWN_HW_REV_TYPE_5300:
    756 	case IWN_HW_REV_TYPE_5350:
    757 		sc->limits = &iwn5000_sensitivity_limits;
    758 		sc->fwname = "iwlwifi-5000-2.ucode";
    759 		break;
    760 	case IWN_HW_REV_TYPE_1000:
    761 		sc->limits = &iwn1000_sensitivity_limits;
    762 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    763 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    764 			sc->fwname = "iwlwifi-100-5.ucode";
    765 		else
    766 			sc->fwname = "iwlwifi-1000-3.ucode";
    767 		break;
    768 	case IWN_HW_REV_TYPE_6000:
    769 		sc->limits = &iwn6000_sensitivity_limits;
    770 		sc->fwname = "iwlwifi-6000-4.ucode";
    771 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    772 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    773 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    774 			/* Override chains masks, ROM is known to be broken. */
    775 			sc->txchainmask = IWN_ANT_BC;
    776 			sc->rxchainmask = IWN_ANT_BC;
    777 		}
    778 		break;
    779 	case IWN_HW_REV_TYPE_6050:
    780 		sc->limits = &iwn6000_sensitivity_limits;
    781 		sc->fwname = "iwlwifi-6050-5.ucode";
    782 		break;
    783 	case IWN_HW_REV_TYPE_6005:
    784 		sc->limits = &iwn6000_sensitivity_limits;
    785 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    786 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    787 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    788 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    789 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    790 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    791 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    792 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    793 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    794 		}
    795 		else
    796 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    797 		break;
    798 	case IWN_HW_REV_TYPE_2030:
    799 		sc->limits = &iwn2030_sensitivity_limits;
    800 		sc->fwname = "iwlwifi-2030-6.ucode";
    801 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    802 		break;
    803 	case IWN_HW_REV_TYPE_2000:
    804 		sc->limits = &iwn2000_sensitivity_limits;
    805 		sc->fwname = "iwlwifi-2000-6.ucode";
    806 		break;
    807 	case IWN_HW_REV_TYPE_135:
    808 		sc->limits = &iwn2000_sensitivity_limits;
    809 		sc->fwname = "iwlwifi-135-6.ucode";
    810 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    811 		break;
    812 	case IWN_HW_REV_TYPE_105:
    813 		sc->limits = &iwn2000_sensitivity_limits;
    814 		sc->fwname = "iwlwifi-105-6.ucode";
    815 		break;
    816 	default:
    817 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    818 		return ENOTSUP;
    819 	}
    820 	return 0;
    821 }
    822 
    823 /*
    824  * Attach the interface to 802.11 radiotap.
    825  */
    826 static void
    827 iwn_radiotap_attach(struct iwn_softc *sc)
    828 {
    829 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    830 
    831 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    832 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    833 	    &sc->sc_drvbpf);
    834 
    835 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    836 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    837 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    838 
    839 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    840 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    841 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    842 }
    843 
    844 static int
    845 iwn_detach(device_t self, int flags __unused)
    846 {
    847 	struct iwn_softc *sc = device_private(self);
    848 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    849 	int qid;
    850 
    851 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    852 		return 0;
    853 
    854 	callout_stop(&sc->calib_to);
    855 
    856 	/* Uninstall interrupt handler. */
    857 	if (sc->sc_ih != NULL)
    858 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    859 	if (sc->sc_pihp != NULL)
    860 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    861 	if (sc->sc_soft_ih != NULL)
    862 		softint_disestablish(sc->sc_soft_ih);
    863 
    864 	/* Free DMA resources. */
    865 	iwn_free_rx_ring(sc, &sc->rxq);
    866 	for (qid = 0; qid < sc->ntxqs; qid++)
    867 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    868 #ifdef IWN_USE_RBUF
    869 	iwn_free_rpool(sc);
    870 #endif
    871 	iwn_free_sched(sc);
    872 	iwn_free_kw(sc);
    873 	if (sc->ict != NULL)
    874 		iwn_free_ict(sc);
    875 	iwn_free_fwmem(sc);
    876 
    877 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    878 
    879 	ieee80211_ifdetach(&sc->sc_ic);
    880 	if_detach(ifp);
    881 
    882 	return 0;
    883 }
    884 
    885 #if 0
    886 /*
    887  * XXX Investigate if clearing the PCI retry timeout could eliminate
    888  * the repeated scan calls.  Also the calls to if_init and if_start
    889  * are similar to the effect of adding the call to ifioctl_common .
    890  */
    891 static void
    892 iwn_power(int why, void *arg)
    893 {
    894 	struct iwn_softc *sc = arg;
    895 	struct ifnet *ifp;
    896 	pcireg_t reg;
    897 	int s;
    898 
    899 	if (why != PWR_RESUME)
    900 		return;
    901 
    902 	/* Clear device-specific "PCI retry timeout" register (41h). */
    903 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    904 	if (reg & 0xff00)
    905 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    906 
    907 	s = splnet();
    908 	ifp = &sc->sc_ic.ic_if;
    909 	if (ifp->if_flags & IFF_UP) {
    910 		ifp->if_init(ifp);
    911 		if (ifp->if_flags & IFF_RUNNING)
    912 			ifp->if_start(ifp);
    913 	}
    914 	splx(s);
    915 }
    916 #endif
    917 
    918 static bool
    919 iwn_resume(device_t dv, const pmf_qual_t *qual)
    920 {
    921 	return true;
    922 }
    923 
    924 static int
    925 iwn_nic_lock(struct iwn_softc *sc)
    926 {
    927 	int ntries;
    928 
    929 	/* Request exclusive access to NIC. */
    930 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    931 
    932 	/* Spin until we actually get the lock. */
    933 	for (ntries = 0; ntries < 1000; ntries++) {
    934 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    935 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    936 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    937 			return 0;
    938 		DELAY(10);
    939 	}
    940 	return ETIMEDOUT;
    941 }
    942 
    943 static __inline void
    944 iwn_nic_unlock(struct iwn_softc *sc)
    945 {
    946 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    947 }
    948 
    949 static __inline uint32_t
    950 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    951 {
    952 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    953 	IWN_BARRIER_READ_WRITE(sc);
    954 	return IWN_READ(sc, IWN_PRPH_RDATA);
    955 }
    956 
    957 static __inline void
    958 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    959 {
    960 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    961 	IWN_BARRIER_WRITE(sc);
    962 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    963 }
    964 
    965 static __inline void
    966 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    967 {
    968 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    969 }
    970 
    971 static __inline void
    972 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    973 {
    974 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    975 }
    976 
    977 static __inline void
    978 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    979     const uint32_t *data, int count)
    980 {
    981 	for (; count > 0; count--, data++, addr += 4)
    982 		iwn_prph_write(sc, addr, *data);
    983 }
    984 
    985 static __inline uint32_t
    986 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    987 {
    988 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    989 	IWN_BARRIER_READ_WRITE(sc);
    990 	return IWN_READ(sc, IWN_MEM_RDATA);
    991 }
    992 
    993 static __inline void
    994 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    995 {
    996 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    997 	IWN_BARRIER_WRITE(sc);
    998 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    999 }
   1000 
   1001 #ifndef IEEE80211_NO_HT
   1002 static __inline void
   1003 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
   1004 {
   1005 	uint32_t tmp;
   1006 
   1007 	tmp = iwn_mem_read(sc, addr & ~3);
   1008 	if (addr & 3)
   1009 		tmp = (tmp & 0x0000ffff) | data << 16;
   1010 	else
   1011 		tmp = (tmp & 0xffff0000) | data;
   1012 	iwn_mem_write(sc, addr & ~3, tmp);
   1013 }
   1014 #endif
   1015 
   1016 static __inline void
   1017 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1018     int count)
   1019 {
   1020 	for (; count > 0; count--, addr += 4)
   1021 		*data++ = iwn_mem_read(sc, addr);
   1022 }
   1023 
   1024 static __inline void
   1025 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1026     int count)
   1027 {
   1028 	for (; count > 0; count--, addr += 4)
   1029 		iwn_mem_write(sc, addr, val);
   1030 }
   1031 
   1032 static int
   1033 iwn_eeprom_lock(struct iwn_softc *sc)
   1034 {
   1035 	int i, ntries;
   1036 
   1037 	for (i = 0; i < 100; i++) {
   1038 		/* Request exclusive access to EEPROM. */
   1039 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1040 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1041 
   1042 		/* Spin until we actually get the lock. */
   1043 		for (ntries = 0; ntries < 100; ntries++) {
   1044 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1045 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1046 				return 0;
   1047 			DELAY(10);
   1048 		}
   1049 	}
   1050 	return ETIMEDOUT;
   1051 }
   1052 
   1053 static __inline void
   1054 iwn_eeprom_unlock(struct iwn_softc *sc)
   1055 {
   1056 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1057 }
   1058 
   1059 /*
   1060  * Initialize access by host to One Time Programmable ROM.
   1061  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1062  */
   1063 static int
   1064 iwn_init_otprom(struct iwn_softc *sc)
   1065 {
   1066 	uint16_t prev = 0, base, next;
   1067 	int count, error;
   1068 
   1069 	/* Wait for clock stabilization before accessing prph. */
   1070 	if ((error = iwn_clock_wait(sc)) != 0)
   1071 		return error;
   1072 
   1073 	if ((error = iwn_nic_lock(sc)) != 0)
   1074 		return error;
   1075 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1076 	DELAY(5);
   1077 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1078 	iwn_nic_unlock(sc);
   1079 
   1080 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1081 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1082 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1083 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1084 	}
   1085 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1086 	/* Clear ECC status. */
   1087 	IWN_SETBITS(sc, IWN_OTP_GP,
   1088 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1089 
   1090 	/*
   1091 	 * Find the block before last block (contains the EEPROM image)
   1092 	 * for HW without OTP shadow RAM.
   1093 	 */
   1094 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1095 		/* Switch to absolute addressing mode. */
   1096 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1097 		base = 0;
   1098 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1099 			error = iwn_read_prom_data(sc, base, &next, 2);
   1100 			if (error != 0)
   1101 				return error;
   1102 			if (next == 0)	/* End of linked-list. */
   1103 				break;
   1104 			prev = base;
   1105 			base = le16toh(next);
   1106 		}
   1107 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1108 			return EIO;
   1109 		/* Skip "next" word. */
   1110 		sc->prom_base = prev + 1;
   1111 	}
   1112 	return 0;
   1113 }
   1114 
   1115 static int
   1116 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1117 {
   1118 	uint8_t *out = data;
   1119 	uint32_t val, tmp;
   1120 	int ntries;
   1121 
   1122 	addr += sc->prom_base;
   1123 	for (; count > 0; count -= 2, addr++) {
   1124 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1125 		for (ntries = 0; ntries < 10; ntries++) {
   1126 			val = IWN_READ(sc, IWN_EEPROM);
   1127 			if (val & IWN_EEPROM_READ_VALID)
   1128 				break;
   1129 			DELAY(5);
   1130 		}
   1131 		if (ntries == 10) {
   1132 			aprint_error_dev(sc->sc_dev,
   1133 			    "timeout reading ROM at 0x%x\n", addr);
   1134 			return ETIMEDOUT;
   1135 		}
   1136 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1137 			/* OTPROM, check for ECC errors. */
   1138 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1139 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1140 				aprint_error_dev(sc->sc_dev,
   1141 				    "OTPROM ECC error at 0x%x\n", addr);
   1142 				return EIO;
   1143 			}
   1144 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1145 				/* Correctable ECC error, clear bit. */
   1146 				IWN_SETBITS(sc, IWN_OTP_GP,
   1147 				    IWN_OTP_GP_ECC_CORR_STTS);
   1148 			}
   1149 		}
   1150 		*out++ = val >> 16;
   1151 		if (count > 1)
   1152 			*out++ = val >> 24;
   1153 	}
   1154 	return 0;
   1155 }
   1156 
   1157 static int
   1158 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1159     bus_size_t size, bus_size_t alignment)
   1160 {
   1161 	int nsegs, error;
   1162 
   1163 	dma->tag = tag;
   1164 	dma->size = size;
   1165 
   1166 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1167 	    &dma->map);
   1168 	if (error != 0)
   1169 		goto fail;
   1170 
   1171 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1172 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1173 	if (error != 0)
   1174 		goto fail;
   1175 
   1176 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1177 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1178 	if (error != 0)
   1179 		goto fail;
   1180 
   1181 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1182 	    BUS_DMA_NOWAIT);
   1183 	if (error != 0)
   1184 		goto fail;
   1185 
   1186 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1187 	memset(dma->vaddr, 0, size);
   1188 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1189 
   1190 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1191 	if (kvap != NULL)
   1192 		*kvap = dma->vaddr;
   1193 
   1194 	return 0;
   1195 
   1196 fail:	iwn_dma_contig_free(dma);
   1197 	return error;
   1198 }
   1199 
   1200 static void
   1201 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1202 {
   1203 	if (dma->map != NULL) {
   1204 		if (dma->vaddr != NULL) {
   1205 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1206 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1207 			bus_dmamap_unload(dma->tag, dma->map);
   1208 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1209 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1210 			dma->vaddr = NULL;
   1211 		}
   1212 		bus_dmamap_destroy(dma->tag, dma->map);
   1213 		dma->map = NULL;
   1214 	}
   1215 }
   1216 
   1217 static int
   1218 iwn_alloc_sched(struct iwn_softc *sc)
   1219 {
   1220 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1221 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1222 	    (void **)&sc->sched, sc->schedsz, 1024);
   1223 }
   1224 
   1225 static void
   1226 iwn_free_sched(struct iwn_softc *sc)
   1227 {
   1228 	iwn_dma_contig_free(&sc->sched_dma);
   1229 }
   1230 
   1231 static int
   1232 iwn_alloc_kw(struct iwn_softc *sc)
   1233 {
   1234 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1235 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1236 	    4096);
   1237 }
   1238 
   1239 static void
   1240 iwn_free_kw(struct iwn_softc *sc)
   1241 {
   1242 	iwn_dma_contig_free(&sc->kw_dma);
   1243 }
   1244 
   1245 static int
   1246 iwn_alloc_ict(struct iwn_softc *sc)
   1247 {
   1248 	/* ICT table must be aligned on a 4KB boundary. */
   1249 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1250 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1251 }
   1252 
   1253 static void
   1254 iwn_free_ict(struct iwn_softc *sc)
   1255 {
   1256 	iwn_dma_contig_free(&sc->ict_dma);
   1257 }
   1258 
   1259 static int
   1260 iwn_alloc_fwmem(struct iwn_softc *sc)
   1261 {
   1262 	/* Must be aligned on a 16-byte boundary. */
   1263 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1264 	    sc->fwsz, 16);
   1265 }
   1266 
   1267 static void
   1268 iwn_free_fwmem(struct iwn_softc *sc)
   1269 {
   1270 	iwn_dma_contig_free(&sc->fw_dma);
   1271 }
   1272 
   1273 static int
   1274 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1275 {
   1276 	bus_size_t size;
   1277 	int i, error;
   1278 
   1279 	ring->cur = 0;
   1280 
   1281 	/* Allocate RX descriptors (256-byte aligned). */
   1282 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1283 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1284 	    (void **)&ring->desc, size, 256);
   1285 	if (error != 0) {
   1286 		aprint_error_dev(sc->sc_dev,
   1287 		    "could not allocate RX ring DMA memory\n");
   1288 		goto fail;
   1289 	}
   1290 
   1291 	/* Allocate RX status area (16-byte aligned). */
   1292 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1293 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1294 	if (error != 0) {
   1295 		aprint_error_dev(sc->sc_dev,
   1296 		    "could not allocate RX status DMA memory\n");
   1297 		goto fail;
   1298 	}
   1299 
   1300 	/*
   1301 	 * Allocate and map RX buffers.
   1302 	 */
   1303 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1304 		struct iwn_rx_data *data = &ring->data[i];
   1305 
   1306 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1307 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1308 		    &data->map);
   1309 		if (error != 0) {
   1310 			aprint_error_dev(sc->sc_dev,
   1311 			    "could not create RX buf DMA map\n");
   1312 			goto fail;
   1313 		}
   1314 
   1315 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1316 		if (data->m == NULL) {
   1317 			aprint_error_dev(sc->sc_dev,
   1318 			    "could not allocate RX mbuf\n");
   1319 			error = ENOBUFS;
   1320 			goto fail;
   1321 		}
   1322 
   1323 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1324 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1325 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1326 		if (error != 0) {
   1327 			aprint_error_dev(sc->sc_dev,
   1328 			    "can't not map mbuf (error %d)\n", error);
   1329 			goto fail;
   1330 		}
   1331 
   1332 		/* Set physical address of RX buffer (256-byte aligned). */
   1333 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1334 	}
   1335 
   1336 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1337 	    BUS_DMASYNC_PREWRITE);
   1338 
   1339 	return 0;
   1340 
   1341 fail:	iwn_free_rx_ring(sc, ring);
   1342 	return error;
   1343 }
   1344 
   1345 static void
   1346 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1347 {
   1348 	int ntries;
   1349 
   1350 	if (iwn_nic_lock(sc) == 0) {
   1351 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1352 		for (ntries = 0; ntries < 1000; ntries++) {
   1353 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1354 			    IWN_FH_RX_STATUS_IDLE)
   1355 				break;
   1356 			DELAY(10);
   1357 		}
   1358 		iwn_nic_unlock(sc);
   1359 	}
   1360 	ring->cur = 0;
   1361 	sc->last_rx_valid = 0;
   1362 }
   1363 
   1364 static void
   1365 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1366 {
   1367 	int i;
   1368 
   1369 	iwn_dma_contig_free(&ring->desc_dma);
   1370 	iwn_dma_contig_free(&ring->stat_dma);
   1371 
   1372 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1373 		struct iwn_rx_data *data = &ring->data[i];
   1374 
   1375 		if (data->m != NULL) {
   1376 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1377 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1378 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1379 			m_freem(data->m);
   1380 		}
   1381 		if (data->map != NULL)
   1382 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1383 	}
   1384 }
   1385 
   1386 static int
   1387 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1388 {
   1389 	bus_addr_t paddr;
   1390 	bus_size_t size;
   1391 	int i, error;
   1392 
   1393 	ring->qid = qid;
   1394 	ring->queued = 0;
   1395 	ring->cur = 0;
   1396 
   1397 	/* Allocate TX descriptors (256-byte aligned). */
   1398 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1399 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1400 	    (void **)&ring->desc, size, 256);
   1401 	if (error != 0) {
   1402 		aprint_error_dev(sc->sc_dev,
   1403 		    "could not allocate TX ring DMA memory\n");
   1404 		goto fail;
   1405 	}
   1406 	/*
   1407 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1408 	 * to allocate commands space for other rings.
   1409 	 * XXX Do we really need to allocate descriptors for other rings?
   1410 	 */
   1411 	if (qid > 4)
   1412 		return 0;
   1413 
   1414 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1415 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1416 	    (void **)&ring->cmd, size, 4);
   1417 	if (error != 0) {
   1418 		aprint_error_dev(sc->sc_dev,
   1419 		    "could not allocate TX cmd DMA memory\n");
   1420 		goto fail;
   1421 	}
   1422 
   1423 	paddr = ring->cmd_dma.paddr;
   1424 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1425 		struct iwn_tx_data *data = &ring->data[i];
   1426 
   1427 		data->cmd_paddr = paddr;
   1428 		data->scratch_paddr = paddr + 12;
   1429 		paddr += sizeof (struct iwn_tx_cmd);
   1430 
   1431 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1432 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1433 		    &data->map);
   1434 		if (error != 0) {
   1435 			aprint_error_dev(sc->sc_dev,
   1436 			    "could not create TX buf DMA map\n");
   1437 			goto fail;
   1438 		}
   1439 	}
   1440 	return 0;
   1441 
   1442 fail:	iwn_free_tx_ring(sc, ring);
   1443 	return error;
   1444 }
   1445 
   1446 static void
   1447 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1448 {
   1449 	int i;
   1450 
   1451 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1452 		struct iwn_tx_data *data = &ring->data[i];
   1453 
   1454 		if (data->m != NULL) {
   1455 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1456 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1457 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1458 			m_freem(data->m);
   1459 			data->m = NULL;
   1460 		}
   1461 	}
   1462 	/* Clear TX descriptors. */
   1463 	memset(ring->desc, 0, ring->desc_dma.size);
   1464 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1465 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1466 	sc->qfullmsk &= ~(1 << ring->qid);
   1467 	ring->queued = 0;
   1468 	ring->cur = 0;
   1469 }
   1470 
   1471 static void
   1472 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1473 {
   1474 	int i;
   1475 
   1476 	iwn_dma_contig_free(&ring->desc_dma);
   1477 	iwn_dma_contig_free(&ring->cmd_dma);
   1478 
   1479 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1480 		struct iwn_tx_data *data = &ring->data[i];
   1481 
   1482 		if (data->m != NULL) {
   1483 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1484 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1485 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1486 			m_freem(data->m);
   1487 		}
   1488 		if (data->map != NULL)
   1489 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1490 	}
   1491 }
   1492 
   1493 static void
   1494 iwn5000_ict_reset(struct iwn_softc *sc)
   1495 {
   1496 	/* Disable interrupts. */
   1497 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1498 
   1499 	/* Reset ICT table. */
   1500 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1501 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1502 	    BUS_DMASYNC_PREWRITE);
   1503 	sc->ict_cur = 0;
   1504 
   1505 	/* Set physical address of ICT table (4KB aligned). */
   1506 	DPRINTF(("enabling ICT\n"));
   1507 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1508 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1509 
   1510 	/* Enable periodic RX interrupt. */
   1511 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1512 	/* Switch to ICT interrupt mode in driver. */
   1513 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1514 
   1515 	/* Re-enable interrupts. */
   1516 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1517 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1518 }
   1519 
   1520 static int
   1521 iwn_read_eeprom(struct iwn_softc *sc)
   1522 {
   1523 	struct iwn_ops *ops = &sc->ops;
   1524 	struct ieee80211com *ic = &sc->sc_ic;
   1525 	uint16_t val;
   1526 	int error;
   1527 
   1528 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1529 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1530 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1531 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1532 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1533 	    "OTPROM" : "EEPROM"));
   1534 
   1535 	/* Adapter has to be powered on for EEPROM access to work. */
   1536 	if ((error = iwn_apm_init(sc)) != 0) {
   1537 		aprint_error_dev(sc->sc_dev,
   1538 		    "could not power ON adapter\n");
   1539 		return error;
   1540 	}
   1541 
   1542 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1543 		aprint_error_dev(sc->sc_dev,
   1544 		    "bad ROM signature\n");
   1545 		return EIO;
   1546 	}
   1547 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1548 		aprint_error_dev(sc->sc_dev,
   1549 		    "could not lock ROM (error=%d)\n", error);
   1550 		return error;
   1551 	}
   1552 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1553 		if ((error = iwn_init_otprom(sc)) != 0) {
   1554 			aprint_error_dev(sc->sc_dev,
   1555 			    "could not initialize OTPROM\n");
   1556 			return error;
   1557 		}
   1558 	}
   1559 
   1560 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1561 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1562 	/* Check if HT support is bonded out. */
   1563 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1564 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1565 
   1566 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1567 	sc->rfcfg = le16toh(val);
   1568 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1569 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1570 	if (sc->txchainmask == 0)
   1571 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1572 	if (sc->rxchainmask == 0)
   1573 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1574 
   1575 	/* Read MAC address. */
   1576 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1577 
   1578 	/* Read adapter-specific information from EEPROM. */
   1579 	ops->read_eeprom(sc);
   1580 
   1581 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1582 
   1583 	iwn_eeprom_unlock(sc);
   1584 	return 0;
   1585 }
   1586 
   1587 static void
   1588 iwn4965_read_eeprom(struct iwn_softc *sc)
   1589 {
   1590 	uint32_t addr;
   1591 	uint16_t val;
   1592 	int i;
   1593 
   1594 	/* Read regulatory domain (4 ASCII characters). */
   1595 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1596 
   1597 	/* Read the list of authorized channels (20MHz ones only). */
   1598 	for (i = 0; i < 5; i++) {
   1599 		addr = iwn4965_regulatory_bands[i];
   1600 		iwn_read_eeprom_channels(sc, i, addr);
   1601 	}
   1602 
   1603 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1604 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1605 	sc->maxpwr2GHz = val & 0xff;
   1606 	sc->maxpwr5GHz = val >> 8;
   1607 	/* Check that EEPROM values are within valid range. */
   1608 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1609 		sc->maxpwr5GHz = 38;
   1610 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1611 		sc->maxpwr2GHz = 38;
   1612 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1613 
   1614 	/* Read samples for each TX power group. */
   1615 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1616 	    sizeof sc->bands);
   1617 
   1618 	/* Read voltage at which samples were taken. */
   1619 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1620 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1621 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1622 
   1623 #ifdef IWN_DEBUG
   1624 	/* Print samples. */
   1625 	if (iwn_debug > 0) {
   1626 		for (i = 0; i < IWN_NBANDS; i++)
   1627 			iwn4965_print_power_group(sc, i);
   1628 	}
   1629 #endif
   1630 }
   1631 
   1632 #ifdef IWN_DEBUG
   1633 static void
   1634 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1635 {
   1636 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1637 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1638 	int j, c;
   1639 
   1640 	aprint_normal("===band %d===\n", i);
   1641 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1642 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1643 	for (c = 0; c < 2; c++) {
   1644 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1645 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1646 			    "power=%d pa_det=%d\n", c, j,
   1647 			    chans[0].samples[c][j].temp,
   1648 			    chans[0].samples[c][j].gain,
   1649 			    chans[0].samples[c][j].power,
   1650 			    chans[0].samples[c][j].pa_det);
   1651 		}
   1652 	}
   1653 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1654 	for (c = 0; c < 2; c++) {
   1655 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1656 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1657 			    "power=%d pa_det=%d\n", c, j,
   1658 			    chans[1].samples[c][j].temp,
   1659 			    chans[1].samples[c][j].gain,
   1660 			    chans[1].samples[c][j].power,
   1661 			    chans[1].samples[c][j].pa_det);
   1662 		}
   1663 	}
   1664 }
   1665 #endif
   1666 
   1667 static void
   1668 iwn5000_read_eeprom(struct iwn_softc *sc)
   1669 {
   1670 	struct iwn5000_eeprom_calib_hdr hdr;
   1671 	int32_t volt;
   1672 	uint32_t base, addr;
   1673 	uint16_t val;
   1674 	int i;
   1675 
   1676 	/* Read regulatory domain (4 ASCII characters). */
   1677 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1678 	base = le16toh(val);
   1679 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1680 	    sc->eeprom_domain, 4);
   1681 
   1682 	/* Read the list of authorized channels (20MHz ones only). */
   1683 	for (i = 0; i < 5; i++) {
   1684 		addr = base + iwn5000_regulatory_bands[i];
   1685 		iwn_read_eeprom_channels(sc, i, addr);
   1686 	}
   1687 
   1688 	/* Read enhanced TX power information for 6000 Series. */
   1689 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1690 		iwn_read_eeprom_enhinfo(sc);
   1691 
   1692 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1693 	base = le16toh(val);
   1694 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1695 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1696 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1697 	sc->calib_ver = hdr.version;
   1698 
   1699 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1700 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1701 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1702 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1703 		sc->eeprom_voltage = le16toh(hdr.volt);
   1704 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1705 		sc->eeprom_temp = le16toh(val);
   1706 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1707 		sc->eeprom_rawtemp = le16toh(val);
   1708 	}
   1709 
   1710 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1711 		/* Compute temperature offset. */
   1712 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1713 		sc->eeprom_temp = le16toh(val);
   1714 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1715 		volt = le16toh(val);
   1716 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1717 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1718 		    sc->eeprom_temp, volt, sc->temp_off));
   1719 	} else {
   1720 		/* Read crystal calibration. */
   1721 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1722 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1723 		DPRINTF(("crystal calibration 0x%08x\n",
   1724 		    le32toh(sc->eeprom_crystal)));
   1725 	}
   1726 }
   1727 
   1728 static void
   1729 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1730 {
   1731 	struct ieee80211com *ic = &sc->sc_ic;
   1732 	const struct iwn_chan_band *band = &iwn_bands[n];
   1733 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1734 	uint8_t chan;
   1735 	int i;
   1736 
   1737 	iwn_read_prom_data(sc, addr, channels,
   1738 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1739 
   1740 	for (i = 0; i < band->nchan; i++) {
   1741 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1742 			continue;
   1743 
   1744 		chan = band->chan[i];
   1745 
   1746 		if (n == 0) {	/* 2GHz band */
   1747 			ic->ic_channels[chan].ic_freq =
   1748 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1749 			ic->ic_channels[chan].ic_flags =
   1750 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1751 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1752 
   1753 		} else {	/* 5GHz band */
   1754 			/*
   1755 			 * Some adapters support channels 7, 8, 11 and 12
   1756 			 * both in the 2GHz and 4.9GHz bands.
   1757 			 * Because of limitations in our net80211 layer,
   1758 			 * we don't support them in the 4.9GHz band.
   1759 			 */
   1760 			if (chan <= 14)
   1761 				continue;
   1762 
   1763 			ic->ic_channels[chan].ic_freq =
   1764 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1765 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1766 			/* We have at least one valid 5GHz channel. */
   1767 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1768 		}
   1769 
   1770 		/* Is active scan allowed on this channel? */
   1771 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1772 			ic->ic_channels[chan].ic_flags |=
   1773 			    IEEE80211_CHAN_PASSIVE;
   1774 		}
   1775 
   1776 		/* Save maximum allowed TX power for this channel. */
   1777 		sc->maxpwr[chan] = channels[i].maxpwr;
   1778 
   1779 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1780 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1781 	}
   1782 }
   1783 
   1784 static void
   1785 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1786 {
   1787 	struct iwn_eeprom_enhinfo enhinfo[35];
   1788 	uint16_t val, base;
   1789 	int8_t maxpwr;
   1790 	uint8_t flags;
   1791 	int i;
   1792 
   1793 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1794 	base = le16toh(val);
   1795 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1796 	    enhinfo, sizeof enhinfo);
   1797 
   1798 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1799 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1800 		flags = enhinfo[i].flags;
   1801 		if (!(flags & IWN_ENHINFO_VALID))
   1802 			continue;	/* Skip invalid entries. */
   1803 
   1804 		maxpwr = 0;
   1805 		if (sc->txchainmask & IWN_ANT_A)
   1806 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1807 		if (sc->txchainmask & IWN_ANT_B)
   1808 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1809 		if (sc->txchainmask & IWN_ANT_C)
   1810 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1811 		if (sc->ntxchains == 2)
   1812 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1813 		else if (sc->ntxchains == 3)
   1814 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1815 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1816 
   1817 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1818 		sc->enh_maxpwr[i] = maxpwr;
   1819 	}
   1820 }
   1821 
   1822 static struct ieee80211_node *
   1823 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1824 {
   1825 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1826 }
   1827 
   1828 static void
   1829 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1830 {
   1831 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1832 	struct iwn_node *wn = (void *)ni;
   1833 	uint8_t rate;
   1834 	int ridx, i;
   1835 
   1836 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1837 	/* Start at lowest available bit-rate, AMRR will raise. */
   1838 	ni->ni_txrate = 0;
   1839 
   1840 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1841 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1842 		/* Map 802.11 rate to HW rate index. */
   1843 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1844 			if (iwn_rates[ridx].rate == rate)
   1845 				break;
   1846 		wn->ridx[i] = ridx;
   1847 	}
   1848 }
   1849 
   1850 static int
   1851 iwn_media_change(struct ifnet *ifp)
   1852 {
   1853 	struct iwn_softc *sc = ifp->if_softc;
   1854 	struct ieee80211com *ic = &sc->sc_ic;
   1855 	uint8_t rate, ridx;
   1856 	int error;
   1857 
   1858 	error = ieee80211_media_change(ifp);
   1859 	if (error != ENETRESET)
   1860 		return error;
   1861 
   1862 	if (ic->ic_fixed_rate != -1) {
   1863 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1864 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1865 		/* Map 802.11 rate to HW rate index. */
   1866 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1867 			if (iwn_rates[ridx].rate == rate)
   1868 				break;
   1869 		sc->fixed_ridx = ridx;
   1870 	}
   1871 
   1872 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1873 	    (IFF_UP | IFF_RUNNING)) {
   1874 		iwn_stop(ifp, 0);
   1875 		error = iwn_init(ifp);
   1876 	}
   1877 	return error;
   1878 }
   1879 
   1880 static int
   1881 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1882 {
   1883 	struct ifnet *ifp = ic->ic_ifp;
   1884 	struct iwn_softc *sc = ifp->if_softc;
   1885 	int error;
   1886 
   1887 	callout_stop(&sc->calib_to);
   1888 
   1889 	switch (nstate) {
   1890 	case IEEE80211_S_SCAN:
   1891 		/* XXX Do not abort a running scan. */
   1892 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1893 			if (ic->ic_state != nstate)
   1894 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1895 				    "while scanning(%d) ignored\n", nstate,
   1896 				    ic->ic_state);
   1897 			break;
   1898 		}
   1899 
   1900 		/* XXX Not sure if call and flags are needed. */
   1901 		ieee80211_node_table_reset(&ic->ic_scan);
   1902 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1903 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1904 
   1905 		/* Make the link LED blink while we're scanning. */
   1906 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1907 
   1908 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1909 			aprint_error_dev(sc->sc_dev,
   1910 			    "could not initiate scan\n");
   1911 			return error;
   1912 		}
   1913 		ic->ic_state = nstate;
   1914 		return 0;
   1915 
   1916 	case IEEE80211_S_ASSOC:
   1917 		if (ic->ic_state != IEEE80211_S_RUN)
   1918 			break;
   1919 		/* FALLTHROUGH */
   1920 	case IEEE80211_S_AUTH:
   1921 		/* Reset state to handle reassociations correctly. */
   1922 		sc->rxon.associd = 0;
   1923 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1924 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1925 
   1926 		/* Wait until we hear a beacon before we transmit */
   1927 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1928 			sc->sc_beacon_wait = 1;
   1929 
   1930 		if ((error = iwn_auth(sc)) != 0) {
   1931 			aprint_error_dev(sc->sc_dev,
   1932 			    "could not move to auth state\n");
   1933 			return error;
   1934 		}
   1935 		break;
   1936 
   1937 	case IEEE80211_S_RUN:
   1938 		/*
   1939 		 * RUN -> RUN transition; Just restart timers.
   1940 		 */
   1941 		if (ic->ic_state == IEEE80211_S_RUN) {
   1942 			sc->calib_cnt = 0;
   1943 			break;
   1944 		}
   1945 
   1946 		/* Wait until we hear a beacon before we transmit */
   1947 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1948 			sc->sc_beacon_wait = 1;
   1949 
   1950 		if ((error = iwn_run(sc)) != 0) {
   1951 			aprint_error_dev(sc->sc_dev,
   1952 			    "could not move to run state\n");
   1953 			return error;
   1954 		}
   1955 		break;
   1956 
   1957 	case IEEE80211_S_INIT:
   1958 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1959 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1960 		/*
   1961 		 * Purge the xmit queue so we don't have old frames
   1962 		 * during a new association attempt.
   1963 		 */
   1964 		sc->sc_beacon_wait = 0;
   1965 		ifp->if_flags &= ~IFF_OACTIVE;
   1966 		iwn_start(ifp);
   1967 		break;
   1968 	}
   1969 
   1970 	return sc->sc_newstate(ic, nstate, arg);
   1971 }
   1972 
   1973 static void
   1974 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1975 {
   1976 	struct iwn_softc *sc = arg;
   1977 	struct iwn_node *wn = (struct iwn_node *)ni;
   1978 
   1979 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1980 }
   1981 
   1982 static void
   1983 iwn_calib_timeout(void *arg)
   1984 {
   1985 	struct iwn_softc *sc = arg;
   1986 	struct ieee80211com *ic = &sc->sc_ic;
   1987 	int s;
   1988 
   1989 	s = splnet();
   1990 	if (ic->ic_fixed_rate == -1) {
   1991 		if (ic->ic_opmode == IEEE80211_M_STA)
   1992 			iwn_iter_func(sc, ic->ic_bss);
   1993 		else
   1994 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1995 	}
   1996 	/* Force automatic TX power calibration every 60 secs. */
   1997 	if (++sc->calib_cnt >= 120) {
   1998 		uint32_t flags = 0;
   1999 
   2000 		DPRINTF(("sending request for statistics\n"));
   2001 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   2002 		    sizeof flags, 1);
   2003 		sc->calib_cnt = 0;
   2004 	}
   2005 	splx(s);
   2006 
   2007 	/* Automatic rate control triggered every 500ms. */
   2008 	callout_schedule(&sc->calib_to, mstohz(500));
   2009 }
   2010 
   2011 /*
   2012  * Process an RX_PHY firmware notification.  This is usually immediately
   2013  * followed by an MPDU_RX_DONE notification.
   2014  */
   2015 static void
   2016 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2017     struct iwn_rx_data *data)
   2018 {
   2019 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   2020 
   2021 	DPRINTFN(2, ("received PHY stats\n"));
   2022 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2023 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2024 
   2025 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   2026 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   2027 	sc->last_rx_valid = 1;
   2028 }
   2029 
   2030 /*
   2031  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2032  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2033  */
   2034 static void
   2035 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2036     struct iwn_rx_data *data)
   2037 {
   2038 	struct iwn_ops *ops = &sc->ops;
   2039 	struct ieee80211com *ic = &sc->sc_ic;
   2040 	struct ifnet *ifp = ic->ic_ifp;
   2041 	struct iwn_rx_ring *ring = &sc->rxq;
   2042 	struct ieee80211_frame *wh;
   2043 	struct ieee80211_node *ni;
   2044 	struct mbuf *m, *m1;
   2045 	struct iwn_rx_stat *stat;
   2046 	char	*head;
   2047 	uint32_t flags;
   2048 	int error, len, rssi, s;
   2049 
   2050 	if (desc->type == IWN_MPDU_RX_DONE) {
   2051 		/* Check for prior RX_PHY notification. */
   2052 		if (!sc->last_rx_valid) {
   2053 			DPRINTF(("missing RX_PHY\n"));
   2054 			return;
   2055 		}
   2056 		sc->last_rx_valid = 0;
   2057 		stat = &sc->last_rx_stat;
   2058 	} else
   2059 		stat = (struct iwn_rx_stat *)(desc + 1);
   2060 
   2061 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2062 	    BUS_DMASYNC_POSTREAD);
   2063 
   2064 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2065 		aprint_error_dev(sc->sc_dev,
   2066 		    "invalid RX statistic header\n");
   2067 		return;
   2068 	}
   2069 	if (desc->type == IWN_MPDU_RX_DONE) {
   2070 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2071 		head = (char *)(mpdu + 1);
   2072 		len = le16toh(mpdu->len);
   2073 	} else {
   2074 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2075 		len = le16toh(stat->len);
   2076 	}
   2077 
   2078 	flags = le32toh(*(uint32_t *)(head + len));
   2079 
   2080 	/* Discard frames with a bad FCS early. */
   2081 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2082 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2083 		ifp->if_ierrors++;
   2084 		return;
   2085 	}
   2086 	/* Discard frames that are too short. */
   2087 	if (len < sizeof (*wh)) {
   2088 		DPRINTF(("frame too short: %d\n", len));
   2089 		ic->ic_stats.is_rx_tooshort++;
   2090 		ifp->if_ierrors++;
   2091 		return;
   2092 	}
   2093 
   2094 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2095 	if (m1 == NULL) {
   2096 		ic->ic_stats.is_rx_nobuf++;
   2097 		ifp->if_ierrors++;
   2098 		return;
   2099 	}
   2100 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2101 
   2102 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2103 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2104 	if (error != 0) {
   2105 		m_freem(m1);
   2106 
   2107 		/* Try to reload the old mbuf. */
   2108 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2109 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2110 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2111 		if (error != 0) {
   2112 			panic("%s: could not load old RX mbuf",
   2113 			    device_xname(sc->sc_dev));
   2114 		}
   2115 		/* Physical address may have changed. */
   2116 		ring->desc[ring->cur] =
   2117 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2118 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2119 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2120 		    BUS_DMASYNC_PREWRITE);
   2121 		ifp->if_ierrors++;
   2122 		return;
   2123 	}
   2124 
   2125 	m = data->m;
   2126 	data->m = m1;
   2127 	/* Update RX descriptor. */
   2128 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2129 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2130 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2131 	    BUS_DMASYNC_PREWRITE);
   2132 
   2133 	/* Finalize mbuf. */
   2134 	m_set_rcvif(m, ifp);
   2135 	m->m_data = head;
   2136 	m->m_pkthdr.len = m->m_len = len;
   2137 
   2138 	s = splnet();
   2139 
   2140 	/* Grab a reference to the source node. */
   2141 	wh = mtod(m, struct ieee80211_frame *);
   2142 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2143 
   2144 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2145 	/* NetBSD does decryption in ieee80211_input. */
   2146 
   2147 	rssi = ops->get_rssi(stat);
   2148 
   2149 	/* XXX Added for NetBSD: scans never stop without it */
   2150 	if (ic->ic_state == IEEE80211_S_SCAN)
   2151 		iwn_fix_channel(ic, m, stat);
   2152 
   2153 	if (sc->sc_drvbpf != NULL) {
   2154 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2155 
   2156 		tap->wr_flags = 0;
   2157 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2158 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2159 		tap->wr_chan_freq =
   2160 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2161 		tap->wr_chan_flags =
   2162 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2163 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2164 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2165 		tap->wr_tsft = stat->tstamp;
   2166 		switch (stat->rate) {
   2167 		/* CCK rates. */
   2168 		case  10: tap->wr_rate =   2; break;
   2169 		case  20: tap->wr_rate =   4; break;
   2170 		case  55: tap->wr_rate =  11; break;
   2171 		case 110: tap->wr_rate =  22; break;
   2172 		/* OFDM rates. */
   2173 		case 0xd: tap->wr_rate =  12; break;
   2174 		case 0xf: tap->wr_rate =  18; break;
   2175 		case 0x5: tap->wr_rate =  24; break;
   2176 		case 0x7: tap->wr_rate =  36; break;
   2177 		case 0x9: tap->wr_rate =  48; break;
   2178 		case 0xb: tap->wr_rate =  72; break;
   2179 		case 0x1: tap->wr_rate =  96; break;
   2180 		case 0x3: tap->wr_rate = 108; break;
   2181 		/* Unknown rate: should not happen. */
   2182 		default:  tap->wr_rate =   0;
   2183 		}
   2184 
   2185 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2186 	}
   2187 
   2188 	/*
   2189 	 * If it's a beacon and we're waiting, then do the wakeup.
   2190 	 */
   2191 	if (sc->sc_beacon_wait) {
   2192 		uint8_t type, subtype;
   2193 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2194 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2195 		/*
   2196 		 * This assumes at this point we've received our own
   2197 		 * beacon.
   2198 		 */
   2199 		if (type == IEEE80211_FC0_TYPE_MGT &&
   2200 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
   2201 			sc->sc_beacon_wait = 0;
   2202 			ifp->if_flags &= ~IFF_OACTIVE;
   2203 			iwn_start(ifp);
   2204 		}
   2205 	}
   2206 
   2207 	/* Send the frame to the 802.11 layer. */
   2208 	ieee80211_input(ic, m, ni, rssi, 0);
   2209 
   2210 	/* Node is no longer needed. */
   2211 	ieee80211_free_node(ni);
   2212 
   2213 	splx(s);
   2214 }
   2215 
   2216 #ifndef IEEE80211_NO_HT
   2217 /* Process an incoming Compressed BlockAck. */
   2218 static void
   2219 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2220     struct iwn_rx_data *data)
   2221 {
   2222 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2223 	struct iwn_tx_ring *txq;
   2224 
   2225 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2226 	    BUS_DMASYNC_POSTREAD);
   2227 
   2228 	txq = &sc->txq[le16toh(ba->qid)];
   2229 	/* XXX TBD */
   2230 }
   2231 #endif
   2232 
   2233 /*
   2234  * Process a CALIBRATION_RESULT notification sent by the initialization
   2235  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2236  */
   2237 static void
   2238 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2239     struct iwn_rx_data *data)
   2240 {
   2241 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2242 	int len, idx = -1;
   2243 
   2244 	/* Runtime firmware should not send such a notification. */
   2245 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2246 		return;
   2247 
   2248 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2249 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2250 	    BUS_DMASYNC_POSTREAD);
   2251 
   2252 	switch (calib->code) {
   2253 	case IWN5000_PHY_CALIB_DC:
   2254 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2255 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2256 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2257 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2258 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2259 			idx = 0;
   2260 		break;
   2261 	case IWN5000_PHY_CALIB_LO:
   2262 		idx = 1;
   2263 		break;
   2264 	case IWN5000_PHY_CALIB_TX_IQ:
   2265 		idx = 2;
   2266 		break;
   2267 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2268 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2269 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2270 			idx = 3;
   2271 		break;
   2272 	case IWN5000_PHY_CALIB_BASE_BAND:
   2273 		idx = 4;
   2274 		break;
   2275 	}
   2276 	if (idx == -1)	/* Ignore other results. */
   2277 		return;
   2278 
   2279 	/* Save calibration result. */
   2280 	if (sc->calibcmd[idx].buf != NULL)
   2281 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2282 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2283 	if (sc->calibcmd[idx].buf == NULL) {
   2284 		DPRINTF(("not enough memory for calibration result %d\n",
   2285 		    calib->code));
   2286 		return;
   2287 	}
   2288 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2289 	    calib->code, len));
   2290 	sc->calibcmd[idx].len = len;
   2291 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2292 }
   2293 
   2294 /*
   2295  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2296  * The latter is sent by the firmware after each received beacon.
   2297  */
   2298 static void
   2299 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2300     struct iwn_rx_data *data)
   2301 {
   2302 	struct iwn_ops *ops = &sc->ops;
   2303 	struct ieee80211com *ic = &sc->sc_ic;
   2304 	struct iwn_calib_state *calib = &sc->calib;
   2305 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2306 	int temp;
   2307 
   2308 	/* Ignore statistics received during a scan. */
   2309 	if (ic->ic_state != IEEE80211_S_RUN)
   2310 		return;
   2311 
   2312 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2313 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2314 
   2315 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2316 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2317 
   2318 	/* Test if temperature has changed. */
   2319 	if (stats->general.temp != sc->rawtemp) {
   2320 		/* Convert "raw" temperature to degC. */
   2321 		sc->rawtemp = stats->general.temp;
   2322 		temp = ops->get_temperature(sc);
   2323 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2324 
   2325 		/* Update TX power if need be (4965AGN only). */
   2326 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2327 			iwn4965_power_calibration(sc, temp);
   2328 	}
   2329 
   2330 	if (desc->type != IWN_BEACON_STATISTICS)
   2331 		return;	/* Reply to a statistics request. */
   2332 
   2333 	sc->noise = iwn_get_noise(&stats->rx.general);
   2334 
   2335 	/* Test that RSSI and noise are present in stats report. */
   2336 	if (le32toh(stats->rx.general.flags) != 1) {
   2337 		DPRINTF(("received statistics without RSSI\n"));
   2338 		return;
   2339 	}
   2340 
   2341 	/*
   2342 	 * XXX Differential gain calibration makes the 6005 firmware
   2343 	 * crap out, so skip it for now.  This effectively disables
   2344 	 * sensitivity tuning as well.
   2345 	 */
   2346 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2347 		return;
   2348 
   2349 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2350 		iwn_collect_noise(sc, &stats->rx.general);
   2351 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2352 		iwn_tune_sensitivity(sc, &stats->rx);
   2353 }
   2354 
   2355 /*
   2356  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2357  * and 5000 adapters have different incompatible TX status formats.
   2358  */
   2359 static void
   2360 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2361     struct iwn_rx_data *data)
   2362 {
   2363 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2364 
   2365 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2366 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2367 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2368 }
   2369 
   2370 static void
   2371 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2372     struct iwn_rx_data *data)
   2373 {
   2374 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2375 
   2376 #ifdef notyet
   2377 	/* Reset TX scheduler slot. */
   2378 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2379 #endif
   2380 
   2381 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2382 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2383 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2384 }
   2385 
   2386 /*
   2387  * Adapter-independent backend for TX_DONE firmware notifications.
   2388  */
   2389 static void
   2390 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2391     uint8_t status)
   2392 {
   2393 	struct ieee80211com *ic = &sc->sc_ic;
   2394 	struct ifnet *ifp = ic->ic_ifp;
   2395 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2396 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2397 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2398 	int s;
   2399 
   2400 	s = splnet();
   2401 
   2402 	/* Update rate control statistics. */
   2403 	wn->amn.amn_txcnt++;
   2404 	if (ackfailcnt > 0)
   2405 		wn->amn.amn_retrycnt++;
   2406 
   2407 	if (status != 1 && status != 2)
   2408 		ifp->if_oerrors++;
   2409 	else
   2410 		ifp->if_opackets++;
   2411 
   2412 	/* Unmap and free mbuf. */
   2413 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2414 	    BUS_DMASYNC_POSTWRITE);
   2415 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2416 	m_freem(data->m);
   2417 	data->m = NULL;
   2418 	ieee80211_free_node(data->ni);
   2419 	data->ni = NULL;
   2420 
   2421 	sc->sc_tx_timer = 0;
   2422 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2423 		sc->qfullmsk &= ~(1 << ring->qid);
   2424 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2425 			ifp->if_flags &= ~IFF_OACTIVE;
   2426 			iwn_start(ifp);
   2427 		}
   2428 	}
   2429 
   2430 	splx(s);
   2431 }
   2432 
   2433 /*
   2434  * Process a "command done" firmware notification.  This is where we wakeup
   2435  * processes waiting for a synchronous command completion.
   2436  */
   2437 static void
   2438 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2439 {
   2440 	struct iwn_tx_ring *ring = &sc->txq[4];
   2441 	struct iwn_tx_data *data;
   2442 
   2443 	if ((desc->qid & 0xf) != 4)
   2444 		return;	/* Not a command ack. */
   2445 
   2446 	data = &ring->data[desc->idx];
   2447 
   2448 	/* If the command was mapped in an mbuf, free it. */
   2449 	if (data->m != NULL) {
   2450 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2451 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2452 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2453 		m_freem(data->m);
   2454 		data->m = NULL;
   2455 	}
   2456 	wakeup(&ring->desc[desc->idx]);
   2457 }
   2458 
   2459 /*
   2460  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2461  */
   2462 static void
   2463 iwn_notif_intr(struct iwn_softc *sc)
   2464 {
   2465 	struct iwn_ops *ops = &sc->ops;
   2466 	struct ieee80211com *ic = &sc->sc_ic;
   2467 	struct ifnet *ifp = ic->ic_ifp;
   2468 	uint16_t hw;
   2469 	int s;
   2470 
   2471 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2472 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2473 
   2474 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2475 	while (sc->rxq.cur != hw) {
   2476 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2477 		struct iwn_rx_desc *desc;
   2478 
   2479 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2480 		    BUS_DMASYNC_POSTREAD);
   2481 		desc = mtod(data->m, struct iwn_rx_desc *);
   2482 
   2483 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2484 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2485 
   2486 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2487 			iwn_cmd_done(sc, desc);
   2488 
   2489 		switch (desc->type) {
   2490 		case IWN_RX_PHY:
   2491 			iwn_rx_phy(sc, desc, data);
   2492 			break;
   2493 
   2494 		case IWN_RX_DONE:		/* 4965AGN only. */
   2495 		case IWN_MPDU_RX_DONE:
   2496 			/* An 802.11 frame has been received. */
   2497 			iwn_rx_done(sc, desc, data);
   2498 			break;
   2499 #ifndef IEEE80211_NO_HT
   2500 		case IWN_RX_COMPRESSED_BA:
   2501 			/* A Compressed BlockAck has been received. */
   2502 			iwn_rx_compressed_ba(sc, desc, data);
   2503 			break;
   2504 #endif
   2505 		case IWN_TX_DONE:
   2506 			/* An 802.11 frame has been transmitted. */
   2507 			ops->tx_done(sc, desc, data);
   2508 			break;
   2509 
   2510 		case IWN_RX_STATISTICS:
   2511 		case IWN_BEACON_STATISTICS:
   2512 			iwn_rx_statistics(sc, desc, data);
   2513 			break;
   2514 
   2515 		case IWN_BEACON_MISSED:
   2516 		{
   2517 			struct iwn_beacon_missed *miss =
   2518 			    (struct iwn_beacon_missed *)(desc + 1);
   2519 
   2520 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2521 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2522 			/*
   2523 			 * If more than 5 consecutive beacons are missed,
   2524 			 * reinitialize the sensitivity state machine.
   2525 			 */
   2526 			DPRINTF(("beacons missed %d/%d\n",
   2527 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2528 			if (ic->ic_state == IEEE80211_S_RUN &&
   2529 			    le32toh(miss->consecutive) > 5)
   2530 				(void)iwn_init_sensitivity(sc);
   2531 			break;
   2532 		}
   2533 		case IWN_UC_READY:
   2534 		{
   2535 			struct iwn_ucode_info *uc =
   2536 			    (struct iwn_ucode_info *)(desc + 1);
   2537 
   2538 			/* The microcontroller is ready. */
   2539 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2540 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2541 			DPRINTF(("microcode alive notification version=%d.%d "
   2542 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2543 			    uc->subtype, le32toh(uc->valid)));
   2544 
   2545 			if (le32toh(uc->valid) != 1) {
   2546 				aprint_error_dev(sc->sc_dev,
   2547 				    "microcontroller initialization "
   2548 				    "failed\n");
   2549 				break;
   2550 			}
   2551 			if (uc->subtype == IWN_UCODE_INIT) {
   2552 				/* Save microcontroller report. */
   2553 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2554 			}
   2555 			/* Save the address of the error log in SRAM. */
   2556 			sc->errptr = le32toh(uc->errptr);
   2557 			break;
   2558 		}
   2559 		case IWN_STATE_CHANGED:
   2560 		{
   2561 			uint32_t *status = (uint32_t *)(desc + 1);
   2562 
   2563 			/* Enabled/disabled notification. */
   2564 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2565 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2566 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2567 
   2568 			if (le32toh(*status) & 1) {
   2569 				/* The radio button has to be pushed. */
   2570 				aprint_error_dev(sc->sc_dev,
   2571 				    "Radio transmitter is off\n");
   2572 				/* Turn the interface down. */
   2573 				s = splnet();
   2574 				ifp->if_flags &= ~IFF_UP;
   2575 				iwn_stop(ifp, 1);
   2576 				splx(s);
   2577 				return;	/* No further processing. */
   2578 			}
   2579 			break;
   2580 		}
   2581 		case IWN_START_SCAN:
   2582 		{
   2583 			struct iwn_start_scan *scan =
   2584 			    (struct iwn_start_scan *)(desc + 1);
   2585 
   2586 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2587 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2588 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2589 			    scan->chan, le32toh(scan->status)));
   2590 
   2591 			/* Fix current channel. */
   2592 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2593 			break;
   2594 		}
   2595 		case IWN_STOP_SCAN:
   2596 		{
   2597 			struct iwn_stop_scan *scan =
   2598 			    (struct iwn_stop_scan *)(desc + 1);
   2599 
   2600 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2601 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2602 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2603 			    scan->nchan, scan->status, scan->chan));
   2604 
   2605 			if (scan->status == 1 && scan->chan <= 14 &&
   2606 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2607 				/*
   2608 				 * We just finished scanning 2GHz channels,
   2609 				 * start scanning 5GHz ones.
   2610 				 */
   2611 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2612 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2613 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2614 					break;
   2615 			}
   2616 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2617 			ieee80211_end_scan(ic);
   2618 			break;
   2619 		}
   2620 		case IWN5000_CALIBRATION_RESULT:
   2621 			iwn5000_rx_calib_results(sc, desc, data);
   2622 			break;
   2623 
   2624 		case IWN5000_CALIBRATION_DONE:
   2625 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2626 			wakeup(sc);
   2627 			break;
   2628 		}
   2629 
   2630 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2631 	}
   2632 
   2633 	/* Tell the firmware what we have processed. */
   2634 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2635 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2636 }
   2637 
   2638 /*
   2639  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2640  * from power-down sleep mode.
   2641  */
   2642 static void
   2643 iwn_wakeup_intr(struct iwn_softc *sc)
   2644 {
   2645 	int qid;
   2646 
   2647 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2648 
   2649 	/* Wakeup RX and TX rings. */
   2650 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2651 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2652 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2653 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2654 	}
   2655 }
   2656 
   2657 /*
   2658  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2659  * we can't debug the firmware because it is neither open source nor free, it
   2660  * can help us to identify certain classes of problems.
   2661  */
   2662 static void
   2663 iwn_fatal_intr(struct iwn_softc *sc)
   2664 {
   2665 	struct iwn_fw_dump dump;
   2666 	int i;
   2667 
   2668 	/* Force a complete recalibration on next init. */
   2669 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2670 
   2671 	/* Check that the error log address is valid. */
   2672 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2673 	    sc->errptr + sizeof (dump) >
   2674 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2675 		aprint_error_dev(sc->sc_dev,
   2676 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2677 		return;
   2678 	}
   2679 	if (iwn_nic_lock(sc) != 0) {
   2680 		aprint_error_dev(sc->sc_dev,
   2681 		    "could not read firmware error log\n");
   2682 		return;
   2683 	}
   2684 	/* Read firmware error log from SRAM. */
   2685 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2686 	    sizeof (dump) / sizeof (uint32_t));
   2687 	iwn_nic_unlock(sc);
   2688 
   2689 	if (dump.valid == 0) {
   2690 		aprint_error_dev(sc->sc_dev,
   2691 		    "firmware error log is empty\n");
   2692 		return;
   2693 	}
   2694 	aprint_error("firmware error log:\n");
   2695 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2696 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2697 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2698 	    dump.id);
   2699 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2700 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2701 	aprint_error("  error data      = 0x%08X%08X\n",
   2702 	    dump.error_data[0], dump.error_data[1]);
   2703 	aprint_error("  branch link     = 0x%08X%08X\n",
   2704 	    dump.branch_link[0], dump.branch_link[1]);
   2705 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2706 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2707 	aprint_error("  time            = %u\n", dump.time[0]);
   2708 
   2709 	/* Dump driver status (TX and RX rings) while we're here. */
   2710 	aprint_error("driver status:\n");
   2711 	for (i = 0; i < sc->ntxqs; i++) {
   2712 		struct iwn_tx_ring *ring = &sc->txq[i];
   2713 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2714 		    i, ring->qid, ring->cur, ring->queued);
   2715 	}
   2716 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2717 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2718 }
   2719 
   2720 static int
   2721 iwn_intr(void *arg)
   2722 {
   2723 	struct iwn_softc *sc = arg;
   2724 
   2725 	/* Disable interrupts. */
   2726 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2727 
   2728 	softint_schedule(sc->sc_soft_ih);
   2729 	return 1;
   2730 }
   2731 
   2732 static void
   2733 iwn_softintr(void *arg)
   2734 {
   2735 	struct iwn_softc *sc = arg;
   2736 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2737 	uint32_t r1, r2, tmp;
   2738 	int s;
   2739 
   2740 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2741 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2742 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2743 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2744 		tmp = 0;
   2745 		while (sc->ict[sc->ict_cur] != 0) {
   2746 			tmp |= sc->ict[sc->ict_cur];
   2747 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2748 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2749 		}
   2750 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2751 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2752 		tmp = le32toh(tmp);
   2753 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2754 			tmp = 0;
   2755 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2756 			tmp |= 0x8000;
   2757 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2758 		r2 = 0;	/* Unused. */
   2759 	} else {
   2760 		r1 = IWN_READ(sc, IWN_INT);
   2761 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2762 			return;	/* Hardware gone! */
   2763 		r2 = IWN_READ(sc, IWN_FH_INT);
   2764 	}
   2765 	if (r1 == 0 && r2 == 0) {
   2766 		goto out;	/* Interrupt not for us. */
   2767 	}
   2768 
   2769 	/* Acknowledge interrupts. */
   2770 	IWN_WRITE(sc, IWN_INT, r1);
   2771 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2772 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2773 
   2774 	if (r1 & IWN_INT_RF_TOGGLED) {
   2775 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2776 		aprint_error_dev(sc->sc_dev,
   2777 		    "RF switch: radio %s\n",
   2778 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2779 	}
   2780 	if (r1 & IWN_INT_CT_REACHED) {
   2781 		aprint_error_dev(sc->sc_dev,
   2782 		    "critical temperature reached!\n");
   2783 	}
   2784 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2785 		aprint_error_dev(sc->sc_dev,
   2786 		    "fatal firmware error\n");
   2787 		/* Dump firmware error log and stop. */
   2788 		iwn_fatal_intr(sc);
   2789 		s = splnet();
   2790 		ifp->if_flags &= ~IFF_UP;
   2791 		iwn_stop(ifp, 1);
   2792 		splx(s);
   2793 		return;
   2794 	}
   2795 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2796 	    (r2 & IWN_FH_INT_RX)) {
   2797 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2798 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2799 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2800 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2801 			iwn_notif_intr(sc);
   2802 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2803 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2804 				    IWN_INT_PERIODIC_ENA);
   2805 			}
   2806 		} else
   2807 			iwn_notif_intr(sc);
   2808 	}
   2809 
   2810 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2811 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2812 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2813 		wakeup(sc);	/* FH DMA transfer completed. */
   2814 	}
   2815 
   2816 	if (r1 & IWN_INT_ALIVE)
   2817 		wakeup(sc);	/* Firmware is alive. */
   2818 
   2819 	if (r1 & IWN_INT_WAKEUP)
   2820 		iwn_wakeup_intr(sc);
   2821 
   2822 out:
   2823 	/* Re-enable interrupts. */
   2824 	if (ifp->if_flags & IFF_UP)
   2825 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2826 }
   2827 
   2828 /*
   2829  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2830  * 5000 adapters use a slightly different format).
   2831  */
   2832 static void
   2833 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2834     uint16_t len)
   2835 {
   2836 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2837 
   2838 	*w = htole16(len + 8);
   2839 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2840 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2841 	    sizeof (uint16_t),
   2842 	    BUS_DMASYNC_PREWRITE);
   2843 	if (idx < IWN_SCHED_WINSZ) {
   2844 		*(w + IWN_TX_RING_COUNT) = *w;
   2845 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2846 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2847 		    (char *)(void *)sc->sched_dma.vaddr,
   2848 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2849 	}
   2850 }
   2851 
   2852 static void
   2853 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2854     uint16_t len)
   2855 {
   2856 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2857 
   2858 	*w = htole16(id << 12 | (len + 8));
   2859 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2860 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2861 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2862 	if (idx < IWN_SCHED_WINSZ) {
   2863 		*(w + IWN_TX_RING_COUNT) = *w;
   2864 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2865 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2866 		    (char *)(void *)sc->sched_dma.vaddr,
   2867 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2868 	}
   2869 }
   2870 
   2871 #ifdef notyet
   2872 static void
   2873 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2874 {
   2875 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2876 
   2877 	*w = (*w & htole16(0xf000)) | htole16(1);
   2878 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2879 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2880 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2881 	if (idx < IWN_SCHED_WINSZ) {
   2882 		*(w + IWN_TX_RING_COUNT) = *w;
   2883 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2884 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2885 		    (char *)(void *)sc->sched_dma.vaddr,
   2886 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2887 	}
   2888 }
   2889 #endif
   2890 
   2891 static int
   2892 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2893 {
   2894 	struct ieee80211com *ic = &sc->sc_ic;
   2895 	struct iwn_node *wn = (void *)ni;
   2896 	struct iwn_tx_ring *ring;
   2897 	struct iwn_tx_desc *desc;
   2898 	struct iwn_tx_data *data;
   2899 	struct iwn_tx_cmd *cmd;
   2900 	struct iwn_cmd_data *tx;
   2901 	const struct iwn_rate *rinfo;
   2902 	struct ieee80211_frame *wh;
   2903 	struct ieee80211_key *k = NULL;
   2904 	struct mbuf *m1;
   2905 	uint32_t flags;
   2906 	u_int hdrlen;
   2907 	bus_dma_segment_t *seg;
   2908 	uint8_t tid, ridx, txant, type;
   2909 	int i, totlen, error, pad;
   2910 
   2911 	const struct chanAccParams *cap;
   2912 	int noack;
   2913 	int hdrlen2;
   2914 
   2915 	wh = mtod(m, struct ieee80211_frame *);
   2916 	hdrlen = ieee80211_anyhdrsize(wh);
   2917 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2918 
   2919 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2920 	    sizeof (struct ieee80211_qosframe) :
   2921 	    sizeof (struct ieee80211_frame);
   2922 
   2923 	if (hdrlen != hdrlen2)
   2924 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2925 		hdrlen, hdrlen2);
   2926 
   2927 	/* XXX OpenBSD sets a different tid when using QOS */
   2928 	tid = 0;
   2929 	if (ieee80211_has_qos(wh)) {
   2930 		cap = &ic->ic_wme.wme_chanParams;
   2931 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2932 	}
   2933 	else
   2934 		noack = 0;
   2935 
   2936 	ring = &sc->txq[ac];
   2937 	desc = &ring->desc[ring->cur];
   2938 	data = &ring->data[ring->cur];
   2939 
   2940 	/* Choose a TX rate index. */
   2941 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2942 	    type != IEEE80211_FC0_TYPE_DATA) {
   2943 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2944 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2945 	} else if (ic->ic_fixed_rate != -1) {
   2946 		ridx = sc->fixed_ridx;
   2947 	} else
   2948 		ridx = wn->ridx[ni->ni_txrate];
   2949 	rinfo = &iwn_rates[ridx];
   2950 
   2951 	/* Encrypt the frame if need be. */
   2952 	/*
   2953 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2954 	 * in order to match old code and other drivers. Tests with
   2955 	 * tcpdump indicates that the order is irrelevant, however,
   2956 	 * as bpf produces unencrypted data for both ordering choices.
   2957 	 */
   2958 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2959 		k = ieee80211_crypto_encap(ic, ni, m);
   2960 		if (k == NULL) {
   2961 			m_freem(m);
   2962 			return ENOBUFS;
   2963 		}
   2964 		/* Packet header may have moved, reset our local pointer. */
   2965 		wh = mtod(m, struct ieee80211_frame *);
   2966 	}
   2967 	totlen = m->m_pkthdr.len;
   2968 
   2969 	if (sc->sc_drvbpf != NULL) {
   2970 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2971 
   2972 		tap->wt_flags = 0;
   2973 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2974 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2975 		tap->wt_rate = rinfo->rate;
   2976 		tap->wt_hwqueue = ac;
   2977 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2978 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2979 
   2980 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2981 	}
   2982 
   2983 	/* Prepare TX firmware command. */
   2984 	cmd = &ring->cmd[ring->cur];
   2985 	cmd->code = IWN_CMD_TX_DATA;
   2986 	cmd->flags = 0;
   2987 	cmd->qid = ring->qid;
   2988 	cmd->idx = ring->cur;
   2989 
   2990 	tx = (struct iwn_cmd_data *)cmd->data;
   2991 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2992 	tx->scratch = 0;	/* clear "scratch" area */
   2993 
   2994 	flags = 0;
   2995 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2996 		/* Unicast frame, check if an ACK is expected. */
   2997 		if (!noack)
   2998 			flags |= IWN_TX_NEED_ACK;
   2999 	}
   3000 
   3001 #ifdef notyet
   3002 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   3003 	if ((wh->i_fc[0] &
   3004 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   3005 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   3006 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   3007 #endif
   3008 
   3009 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   3010 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   3011 
   3012 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3013 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3014 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3015 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3016 			flags |= IWN_TX_NEED_RTS;
   3017 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3018 		    ridx >= IWN_RIDX_OFDM6) {
   3019 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3020 				flags |= IWN_TX_NEED_CTS;
   3021 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3022 				flags |= IWN_TX_NEED_RTS;
   3023 		}
   3024 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3025 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3026 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3027 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3028 				flags |= IWN_TX_NEED_PROTECTION;
   3029 			} else
   3030 				flags |= IWN_TX_FULL_TXOP;
   3031 		}
   3032 	}
   3033 
   3034 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3035 	    type != IEEE80211_FC0_TYPE_DATA)
   3036 		tx->id = sc->broadcast_id;
   3037 	else
   3038 		tx->id = wn->id;
   3039 
   3040 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3041 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3042 
   3043 #ifndef IEEE80211_STA_ONLY
   3044 		/* Tell HW to set timestamp in probe responses. */
   3045 		/* XXX NetBSD rev 1.11 added probe requests here but */
   3046 		/* probe requests do not take timestamps (from Bergamini). */
   3047 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3048 			flags |= IWN_TX_INSERT_TSTAMP;
   3049 #endif
   3050 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3051 		/* changes here. These are not needed (from Bergamini). */
   3052 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3053 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3054 			tx->timeout = htole16(3);
   3055 		else
   3056 			tx->timeout = htole16(2);
   3057 	} else
   3058 		tx->timeout = htole16(0);
   3059 
   3060 	if (hdrlen & 3) {
   3061 		/* First segment length must be a multiple of 4. */
   3062 		flags |= IWN_TX_NEED_PADDING;
   3063 		pad = 4 - (hdrlen & 3);
   3064 	} else
   3065 		pad = 0;
   3066 
   3067 	tx->len = htole16(totlen);
   3068 	tx->tid = tid;
   3069 	tx->rts_ntries = 60;
   3070 	tx->data_ntries = 15;
   3071 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3072 	tx->plcp = rinfo->plcp;
   3073 	tx->rflags = rinfo->flags;
   3074 	if (tx->id == sc->broadcast_id) {
   3075 		/* Group or management frame. */
   3076 		tx->linkq = 0;
   3077 		/* XXX Alternate between antenna A and B? */
   3078 		txant = IWN_LSB(sc->txchainmask);
   3079 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3080 	} else {
   3081 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3082 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3083 	}
   3084 	/* Set physical address of "scratch area". */
   3085 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3086 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3087 
   3088 	/* Copy 802.11 header in TX command. */
   3089 	/* XXX NetBSD changed this in rev 1.20 */
   3090 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3091 
   3092 	/* Trim 802.11 header. */
   3093 	m_adj(m, hdrlen);
   3094 	tx->security = 0;
   3095 	tx->flags = htole32(flags);
   3096 
   3097 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3098 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3099 	if (error != 0) {
   3100 		if (error != EFBIG) {
   3101 			aprint_error_dev(sc->sc_dev,
   3102 			    "can't map mbuf (error %d)\n", error);
   3103 			m_freem(m);
   3104 			return error;
   3105 		}
   3106 		/* Too many DMA segments, linearize mbuf. */
   3107 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3108 		if (m1 == NULL) {
   3109 			m_freem(m);
   3110 			return ENOBUFS;
   3111 		}
   3112 		if (m->m_pkthdr.len > MHLEN) {
   3113 			MCLGET(m1, M_DONTWAIT);
   3114 			if (!(m1->m_flags & M_EXT)) {
   3115 				m_freem(m);
   3116 				m_freem(m1);
   3117 				return ENOBUFS;
   3118 			}
   3119 		}
   3120 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3121 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3122 		m_freem(m);
   3123 		m = m1;
   3124 
   3125 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3126 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3127 		if (error != 0) {
   3128 			aprint_error_dev(sc->sc_dev,
   3129 			    "can't map mbuf (error %d)\n", error);
   3130 			m_freem(m);
   3131 			return error;
   3132 		}
   3133 	}
   3134 
   3135 	data->m = m;
   3136 	data->ni = ni;
   3137 
   3138 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3139 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3140 
   3141 	/* Fill TX descriptor. */
   3142 	desc->nsegs = 1 + data->map->dm_nsegs;
   3143 	/* First DMA segment is used by the TX command. */
   3144 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3145 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3146 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3147 	/* Other DMA segments are for data payload. */
   3148 	seg = data->map->dm_segs;
   3149 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3150 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3151 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3152 		    seg->ds_len << 4);
   3153 		seg++;
   3154 	}
   3155 
   3156 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3157 	    BUS_DMASYNC_PREWRITE);
   3158 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3159 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3160 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3161 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3162 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3163 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3164 
   3165 #ifdef notyet
   3166 	/* Update TX scheduler. */
   3167 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3168 #endif
   3169 
   3170 	/* Kick TX ring. */
   3171 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3172 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3173 
   3174 	/* Mark TX ring as full if we reach a certain threshold. */
   3175 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3176 		sc->qfullmsk |= 1 << ring->qid;
   3177 
   3178 	return 0;
   3179 }
   3180 
   3181 static void
   3182 iwn_start(struct ifnet *ifp)
   3183 {
   3184 	struct iwn_softc *sc = ifp->if_softc;
   3185 	struct ieee80211com *ic = &sc->sc_ic;
   3186 	struct ieee80211_node *ni;
   3187 	struct ether_header *eh;
   3188 	struct mbuf *m;
   3189 	int ac;
   3190 
   3191 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3192 		return;
   3193 
   3194 	for (;;) {
   3195 		if (sc->sc_beacon_wait == 1) {
   3196 			ifp->if_flags |= IFF_OACTIVE;
   3197 			break;
   3198 		}
   3199 
   3200 		if (sc->qfullmsk != 0) {
   3201 			ifp->if_flags |= IFF_OACTIVE;
   3202 			break;
   3203 		}
   3204 		/* Send pending management frames first. */
   3205 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3206 		if (m != NULL) {
   3207 			ni = M_GETCTX(m, struct ieee80211_node *);
   3208 			ac = 0;
   3209 			goto sendit;
   3210 		}
   3211 		if (ic->ic_state != IEEE80211_S_RUN)
   3212 			break;
   3213 
   3214 		/* Encapsulate and send data frames. */
   3215 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3216 		if (m == NULL)
   3217 			break;
   3218 		if (m->m_len < sizeof (*eh) &&
   3219 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3220 			ifp->if_oerrors++;
   3221 			continue;
   3222 		}
   3223 		eh = mtod(m, struct ether_header *);
   3224 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3225 		if (ni == NULL) {
   3226 			m_freem(m);
   3227 			ifp->if_oerrors++;
   3228 			continue;
   3229 		}
   3230 		/* classify mbuf so we can find which tx ring to use */
   3231 		if (ieee80211_classify(ic, m, ni) != 0) {
   3232 			m_freem(m);
   3233 			ieee80211_free_node(ni);
   3234 			ifp->if_oerrors++;
   3235 			continue;
   3236 		}
   3237 
   3238 		/* No QoS encapsulation for EAPOL frames. */
   3239 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3240 		    M_WME_GETAC(m) : WME_AC_BE;
   3241 
   3242 		if (sc->sc_beacon_wait == 0)
   3243 			bpf_mtap(ifp, m);
   3244 
   3245 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3246 			ieee80211_free_node(ni);
   3247 			ifp->if_oerrors++;
   3248 			continue;
   3249 		}
   3250 sendit:
   3251 		if (sc->sc_beacon_wait)
   3252 			continue;
   3253 
   3254 		bpf_mtap3(ic->ic_rawbpf, m);
   3255 
   3256 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3257 			ieee80211_free_node(ni);
   3258 			ifp->if_oerrors++;
   3259 			continue;
   3260 		}
   3261 
   3262 		sc->sc_tx_timer = 5;
   3263 		ifp->if_timer = 1;
   3264 	}
   3265 
   3266 	if (sc->sc_beacon_wait > 1)
   3267 		sc->sc_beacon_wait = 0;
   3268 }
   3269 
   3270 static void
   3271 iwn_watchdog(struct ifnet *ifp)
   3272 {
   3273 	struct iwn_softc *sc = ifp->if_softc;
   3274 
   3275 	ifp->if_timer = 0;
   3276 
   3277 	if (sc->sc_tx_timer > 0) {
   3278 		if (--sc->sc_tx_timer == 0) {
   3279 			aprint_error_dev(sc->sc_dev,
   3280 			    "device timeout\n");
   3281 			ifp->if_flags &= ~IFF_UP;
   3282 			iwn_stop(ifp, 1);
   3283 			ifp->if_oerrors++;
   3284 			return;
   3285 		}
   3286 		ifp->if_timer = 1;
   3287 	}
   3288 
   3289 	ieee80211_watchdog(&sc->sc_ic);
   3290 }
   3291 
   3292 static int
   3293 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3294 {
   3295 	struct iwn_softc *sc = ifp->if_softc;
   3296 	struct ieee80211com *ic = &sc->sc_ic;
   3297 	const struct sockaddr *sa;
   3298 	int s, error = 0;
   3299 
   3300 	s = splnet();
   3301 
   3302 	switch (cmd) {
   3303 	case SIOCSIFADDR:
   3304 		ifp->if_flags |= IFF_UP;
   3305 		/* FALLTHROUGH */
   3306 	case SIOCSIFFLAGS:
   3307 		/* XXX Added as it is in every NetBSD driver */
   3308 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3309 			break;
   3310 		if (ifp->if_flags & IFF_UP) {
   3311 			if (!(ifp->if_flags & IFF_RUNNING))
   3312 				error = iwn_init(ifp);
   3313 		} else {
   3314 			if (ifp->if_flags & IFF_RUNNING)
   3315 				iwn_stop(ifp, 1);
   3316 		}
   3317 		break;
   3318 
   3319 	case SIOCADDMULTI:
   3320 	case SIOCDELMULTI:
   3321 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3322 		error = (cmd == SIOCADDMULTI) ?
   3323 		    ether_addmulti(sa, &sc->sc_ec) :
   3324 		    ether_delmulti(sa, &sc->sc_ec);
   3325 
   3326 		if (error == ENETRESET)
   3327 			error = 0;
   3328 		break;
   3329 
   3330 	default:
   3331 		error = ieee80211_ioctl(ic, cmd, data);
   3332 	}
   3333 
   3334 	if (error == ENETRESET) {
   3335 		error = 0;
   3336 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3337 		    (IFF_UP | IFF_RUNNING)) {
   3338 			iwn_stop(ifp, 0);
   3339 			error = iwn_init(ifp);
   3340 		}
   3341 	}
   3342 
   3343 	splx(s);
   3344 	return error;
   3345 }
   3346 
   3347 /*
   3348  * Send a command to the firmware.
   3349  */
   3350 static int
   3351 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3352 {
   3353 	struct iwn_tx_ring *ring = &sc->txq[4];
   3354 	struct iwn_tx_desc *desc;
   3355 	struct iwn_tx_data *data;
   3356 	struct iwn_tx_cmd *cmd;
   3357 	struct mbuf *m;
   3358 	bus_addr_t paddr;
   3359 	int totlen, error;
   3360 
   3361 	desc = &ring->desc[ring->cur];
   3362 	data = &ring->data[ring->cur];
   3363 	totlen = 4 + size;
   3364 
   3365 	if (size > sizeof cmd->data) {
   3366 		/* Command is too large to fit in a descriptor. */
   3367 		if (totlen > MCLBYTES)
   3368 			return EINVAL;
   3369 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3370 		if (m == NULL)
   3371 			return ENOMEM;
   3372 		if (totlen > MHLEN) {
   3373 			MCLGET(m, M_DONTWAIT);
   3374 			if (!(m->m_flags & M_EXT)) {
   3375 				m_freem(m);
   3376 				return ENOMEM;
   3377 			}
   3378 		}
   3379 		cmd = mtod(m, struct iwn_tx_cmd *);
   3380 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3381 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3382 		if (error != 0) {
   3383 			m_freem(m);
   3384 			return error;
   3385 		}
   3386 		data->m = m;
   3387 		paddr = data->map->dm_segs[0].ds_addr;
   3388 	} else {
   3389 		cmd = &ring->cmd[ring->cur];
   3390 		paddr = data->cmd_paddr;
   3391 	}
   3392 
   3393 	cmd->code = code;
   3394 	cmd->flags = 0;
   3395 	cmd->qid = ring->qid;
   3396 	cmd->idx = ring->cur;
   3397 	memcpy(cmd->data, buf, size);
   3398 
   3399 	desc->nsegs = 1;
   3400 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3401 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3402 
   3403 	if (size > sizeof cmd->data) {
   3404 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3405 		    BUS_DMASYNC_PREWRITE);
   3406 	} else {
   3407 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3408 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3409 		    totlen, BUS_DMASYNC_PREWRITE);
   3410 	}
   3411 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3412 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3413 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3414 
   3415 #ifdef notyet
   3416 	/* Update TX scheduler. */
   3417 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3418 #endif
   3419 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3420 
   3421 	/* Kick command ring. */
   3422 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3423 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3424 
   3425 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3426 }
   3427 
   3428 static int
   3429 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3430 {
   3431 	struct iwn4965_node_info hnode;
   3432 	char *src, *dst;
   3433 
   3434 	/*
   3435 	 * We use the node structure for 5000 Series internally (it is
   3436 	 * a superset of the one for 4965AGN). We thus copy the common
   3437 	 * fields before sending the command.
   3438 	 */
   3439 	src = (char *)node;
   3440 	dst = (char *)&hnode;
   3441 	memcpy(dst, src, 48);
   3442 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3443 	memcpy(dst + 48, src + 72, 20);
   3444 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3445 }
   3446 
   3447 static int
   3448 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3449 {
   3450 	/* Direct mapping. */
   3451 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3452 }
   3453 
   3454 static int
   3455 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3456 {
   3457 	struct iwn_node *wn = (void *)ni;
   3458 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3459 	struct iwn_cmd_link_quality linkq;
   3460 	const struct iwn_rate *rinfo;
   3461 	uint8_t txant;
   3462 	int i, txrate;
   3463 
   3464 	/* Use the first valid TX antenna. */
   3465 	txant = IWN_LSB(sc->txchainmask);
   3466 
   3467 	memset(&linkq, 0, sizeof linkq);
   3468 	linkq.id = wn->id;
   3469 	linkq.antmsk_1stream = txant;
   3470 	linkq.antmsk_2stream = IWN_ANT_AB;
   3471 	linkq.ampdu_max = 31;
   3472 	linkq.ampdu_threshold = 3;
   3473 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3474 
   3475 	/* Start at highest available bit-rate. */
   3476 	txrate = rs->rs_nrates - 1;
   3477 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3478 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3479 		linkq.retry[i].plcp = rinfo->plcp;
   3480 		linkq.retry[i].rflags = rinfo->flags;
   3481 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3482 		/* Next retry at immediate lower bit-rate. */
   3483 		if (txrate > 0)
   3484 			txrate--;
   3485 	}
   3486 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3487 }
   3488 
   3489 /*
   3490  * Broadcast node is used to send group-addressed and management frames.
   3491  */
   3492 static int
   3493 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3494 {
   3495 	struct iwn_ops *ops = &sc->ops;
   3496 	struct iwn_node_info node;
   3497 	struct iwn_cmd_link_quality linkq;
   3498 	const struct iwn_rate *rinfo;
   3499 	uint8_t txant;
   3500 	int i, error;
   3501 
   3502 	memset(&node, 0, sizeof node);
   3503 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3504 	node.id = sc->broadcast_id;
   3505 	DPRINTF(("adding broadcast node\n"));
   3506 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3507 		return error;
   3508 
   3509 	/* Use the first valid TX antenna. */
   3510 	txant = IWN_LSB(sc->txchainmask);
   3511 
   3512 	memset(&linkq, 0, sizeof linkq);
   3513 	linkq.id = sc->broadcast_id;
   3514 	linkq.antmsk_1stream = txant;
   3515 	linkq.antmsk_2stream = IWN_ANT_AB;
   3516 	linkq.ampdu_max = 64;
   3517 	linkq.ampdu_threshold = 3;
   3518 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3519 
   3520 	/* Use lowest mandatory bit-rate. */
   3521 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3522 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3523 	linkq.retry[0].plcp = rinfo->plcp;
   3524 	linkq.retry[0].rflags = rinfo->flags;
   3525 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3526 	/* Use same bit-rate for all TX retries. */
   3527 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3528 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3529 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3530 	}
   3531 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3532 }
   3533 
   3534 static void
   3535 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3536 {
   3537 	struct iwn_cmd_led led;
   3538 
   3539 	/* Clear microcode LED ownership. */
   3540 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3541 
   3542 	led.which = which;
   3543 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3544 	led.off = off;
   3545 	led.on = on;
   3546 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3547 }
   3548 
   3549 /*
   3550  * Set the critical temperature at which the firmware will stop the radio
   3551  * and notify us.
   3552  */
   3553 static int
   3554 iwn_set_critical_temp(struct iwn_softc *sc)
   3555 {
   3556 	struct iwn_critical_temp crit;
   3557 	int32_t temp;
   3558 
   3559 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3560 
   3561 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3562 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3563 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3564 		temp = IWN_CTOK(110);
   3565 	else
   3566 		temp = 110;
   3567 	memset(&crit, 0, sizeof crit);
   3568 	crit.tempR = htole32(temp);
   3569 	DPRINTF(("setting critical temperature to %d\n", temp));
   3570 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3571 }
   3572 
   3573 static int
   3574 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3575 {
   3576 	struct iwn_cmd_timing cmd;
   3577 	uint64_t val, mod;
   3578 
   3579 	memset(&cmd, 0, sizeof cmd);
   3580 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3581 	cmd.bintval = htole16(ni->ni_intval);
   3582 	cmd.lintval = htole16(10);
   3583 
   3584 	/* Compute remaining time until next beacon. */
   3585 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3586 	mod = le64toh(cmd.tstamp) % val;
   3587 	cmd.binitval = htole32((uint32_t)(val - mod));
   3588 
   3589 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3590 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3591 
   3592 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3593 }
   3594 
   3595 static void
   3596 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3597 {
   3598 	/* Adjust TX power if need be (delta >= 3 degC). */
   3599 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3600 	if (abs(temp - sc->temp) >= 3) {
   3601 		/* Record temperature of last calibration. */
   3602 		sc->temp = temp;
   3603 		(void)iwn4965_set_txpower(sc, 1);
   3604 	}
   3605 }
   3606 
   3607 /*
   3608  * Set TX power for current channel (each rate has its own power settings).
   3609  * This function takes into account the regulatory information from EEPROM,
   3610  * the current temperature and the current voltage.
   3611  */
   3612 static int
   3613 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3614 {
   3615 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3616 #define fdivround(a, b, n)	\
   3617 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3618 /* Linear interpolation. */
   3619 #define interpolate(x, x1, y1, x2, y2, n)	\
   3620 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3621 
   3622 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3623 	struct ieee80211com *ic = &sc->sc_ic;
   3624 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3625 	struct ieee80211_channel *ch;
   3626 	struct iwn4965_cmd_txpower cmd;
   3627 	struct iwn4965_eeprom_chan_samples *chans;
   3628 	const uint8_t *rf_gain, *dsp_gain;
   3629 	int32_t vdiff, tdiff;
   3630 	int i, c, grp, maxpwr;
   3631 	uint8_t chan;
   3632 
   3633 	/* Retrieve current channel from last RXON. */
   3634 	chan = sc->rxon.chan;
   3635 	DPRINTF(("setting TX power for channel %d\n", chan));
   3636 	ch = &ic->ic_channels[chan];
   3637 
   3638 	memset(&cmd, 0, sizeof cmd);
   3639 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3640 	cmd.chan = chan;
   3641 
   3642 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3643 		maxpwr   = sc->maxpwr5GHz;
   3644 		rf_gain  = iwn4965_rf_gain_5ghz;
   3645 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3646 	} else {
   3647 		maxpwr   = sc->maxpwr2GHz;
   3648 		rf_gain  = iwn4965_rf_gain_2ghz;
   3649 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3650 	}
   3651 
   3652 	/* Compute voltage compensation. */
   3653 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3654 	if (vdiff > 0)
   3655 		vdiff *= 2;
   3656 	if (abs(vdiff) > 2)
   3657 		vdiff = 0;
   3658 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3659 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3660 
   3661 	/* Get channel attenuation group. */
   3662 	if (chan <= 20)		/* 1-20 */
   3663 		grp = 4;
   3664 	else if (chan <= 43)	/* 34-43 */
   3665 		grp = 0;
   3666 	else if (chan <= 70)	/* 44-70 */
   3667 		grp = 1;
   3668 	else if (chan <= 124)	/* 71-124 */
   3669 		grp = 2;
   3670 	else			/* 125-200 */
   3671 		grp = 3;
   3672 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3673 
   3674 	/* Get channel sub-band. */
   3675 	for (i = 0; i < IWN_NBANDS; i++)
   3676 		if (sc->bands[i].lo != 0 &&
   3677 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3678 			break;
   3679 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3680 		return EINVAL;
   3681 	chans = sc->bands[i].chans;
   3682 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3683 
   3684 	for (c = 0; c < 2; c++) {
   3685 		uint8_t power, gain, temp;
   3686 		int maxchpwr, pwr, ridx, idx;
   3687 
   3688 		power = interpolate(chan,
   3689 		    chans[0].num, chans[0].samples[c][1].power,
   3690 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3691 		gain  = interpolate(chan,
   3692 		    chans[0].num, chans[0].samples[c][1].gain,
   3693 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3694 		temp  = interpolate(chan,
   3695 		    chans[0].num, chans[0].samples[c][1].temp,
   3696 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3697 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3698 		    c, power, gain, temp));
   3699 
   3700 		/* Compute temperature compensation. */
   3701 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3702 		DPRINTF(("temperature compensation=%d (current=%d, "
   3703 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3704 
   3705 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3706 			/* Convert dBm to half-dBm. */
   3707 			maxchpwr = sc->maxpwr[chan] * 2;
   3708 			if ((ridx / 8) & 1)
   3709 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3710 
   3711 			pwr = maxpwr;
   3712 
   3713 			/* Adjust TX power based on rate. */
   3714 			if ((ridx % 8) == 5)
   3715 				pwr -= 15;	/* OFDM48: -7.5dB */
   3716 			else if ((ridx % 8) == 6)
   3717 				pwr -= 17;	/* OFDM54: -8.5dB */
   3718 			else if ((ridx % 8) == 7)
   3719 				pwr -= 20;	/* OFDM60: -10dB */
   3720 			else
   3721 				pwr -= 10;	/* Others: -5dB */
   3722 
   3723 			/* Do not exceed channel max TX power. */
   3724 			if (pwr > maxchpwr)
   3725 				pwr = maxchpwr;
   3726 
   3727 			idx = gain - (pwr - power) - tdiff - vdiff;
   3728 			if ((ridx / 8) & 1)	/* MIMO */
   3729 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3730 
   3731 			if (cmd.band == 0)
   3732 				idx += 9;	/* 5GHz */
   3733 			if (ridx == IWN_RIDX_MAX)
   3734 				idx += 5;	/* CCK */
   3735 
   3736 			/* Make sure idx stays in a valid range. */
   3737 			if (idx < 0)
   3738 				idx = 0;
   3739 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3740 				idx = IWN4965_MAX_PWR_INDEX;
   3741 
   3742 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3743 			    c, ridx, idx));
   3744 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3745 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3746 		}
   3747 	}
   3748 
   3749 	DPRINTF(("setting TX power for chan %d\n", chan));
   3750 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3751 
   3752 #undef interpolate
   3753 #undef fdivround
   3754 }
   3755 
   3756 static int
   3757 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3758 {
   3759 	struct iwn5000_cmd_txpower cmd;
   3760 	int cmdid;
   3761 
   3762 	/*
   3763 	 * TX power calibration is handled automatically by the firmware
   3764 	 * for 5000 Series.
   3765 	 */
   3766 	memset(&cmd, 0, sizeof cmd);
   3767 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3768 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3769 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3770 	DPRINTF(("setting TX power\n"));
   3771 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
   3772 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
   3773 	else
   3774 		cmdid = IWN_CMD_TXPOWER_DBM;
   3775 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
   3776 }
   3777 
   3778 /*
   3779  * Retrieve the maximum RSSI (in dBm) among receivers.
   3780  */
   3781 static int
   3782 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3783 {
   3784 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3785 	uint8_t mask, agc;
   3786 	int rssi;
   3787 
   3788 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3789 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3790 
   3791 	rssi = 0;
   3792 	if (mask & IWN_ANT_A)
   3793 		rssi = MAX(rssi, phy->rssi[0]);
   3794 	if (mask & IWN_ANT_B)
   3795 		rssi = MAX(rssi, phy->rssi[2]);
   3796 	if (mask & IWN_ANT_C)
   3797 		rssi = MAX(rssi, phy->rssi[4]);
   3798 
   3799 	return rssi - agc - IWN_RSSI_TO_DBM;
   3800 }
   3801 
   3802 static int
   3803 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3804 {
   3805 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3806 	uint8_t agc;
   3807 	int rssi;
   3808 
   3809 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3810 
   3811 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3812 		   le16toh(phy->rssi[1]) & 0xff);
   3813 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3814 
   3815 	return rssi - agc - IWN_RSSI_TO_DBM;
   3816 }
   3817 
   3818 /*
   3819  * Retrieve the average noise (in dBm) among receivers.
   3820  */
   3821 static int
   3822 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3823 {
   3824 	int i, total, nbant, noise;
   3825 
   3826 	total = nbant = 0;
   3827 	for (i = 0; i < 3; i++) {
   3828 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3829 			continue;
   3830 		total += noise;
   3831 		nbant++;
   3832 	}
   3833 	/* There should be at least one antenna but check anyway. */
   3834 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3835 }
   3836 
   3837 /*
   3838  * Compute temperature (in degC) from last received statistics.
   3839  */
   3840 static int
   3841 iwn4965_get_temperature(struct iwn_softc *sc)
   3842 {
   3843 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3844 	int32_t r1, r2, r3, r4, temp;
   3845 
   3846 	r1 = le32toh(uc->temp[0].chan20MHz);
   3847 	r2 = le32toh(uc->temp[1].chan20MHz);
   3848 	r3 = le32toh(uc->temp[2].chan20MHz);
   3849 	r4 = le32toh(sc->rawtemp);
   3850 
   3851 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3852 		return 0;
   3853 
   3854 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3855 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3856 	/* Compute temperature in Kelvin. */
   3857 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3858 	temp = (temp * 97) / 100 + 8;
   3859 
   3860 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3861 	return IWN_KTOC(temp);
   3862 }
   3863 
   3864 static int
   3865 iwn5000_get_temperature(struct iwn_softc *sc)
   3866 {
   3867 	int32_t temp;
   3868 
   3869 	/*
   3870 	 * Temperature is not used by the driver for 5000 Series because
   3871 	 * TX power calibration is handled by firmware.  We export it to
   3872 	 * users through the sensor framework though.
   3873 	 */
   3874 	temp = le32toh(sc->rawtemp);
   3875 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3876 		temp = (temp / -5) + sc->temp_off;
   3877 		temp = IWN_KTOC(temp);
   3878 	}
   3879 	return temp;
   3880 }
   3881 
   3882 /*
   3883  * Initialize sensitivity calibration state machine.
   3884  */
   3885 static int
   3886 iwn_init_sensitivity(struct iwn_softc *sc)
   3887 {
   3888 	struct iwn_ops *ops = &sc->ops;
   3889 	struct iwn_calib_state *calib = &sc->calib;
   3890 	uint32_t flags;
   3891 	int error;
   3892 
   3893 	/* Reset calibration state machine. */
   3894 	memset(calib, 0, sizeof (*calib));
   3895 	calib->state = IWN_CALIB_STATE_INIT;
   3896 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3897 	/* Set initial correlation values. */
   3898 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3899 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3900 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3901 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3902 	calib->cck_x4      = 125;
   3903 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3904 	calib->energy_cck  = sc->limits->energy_cck;
   3905 
   3906 	/* Write initial sensitivity. */
   3907 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3908 		return error;
   3909 
   3910 	/* Write initial gains. */
   3911 	if ((error = ops->init_gains(sc)) != 0)
   3912 		return error;
   3913 
   3914 	/* Request statistics at each beacon interval. */
   3915 	flags = 0;
   3916 	DPRINTF(("sending request for statistics\n"));
   3917 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3918 }
   3919 
   3920 /*
   3921  * Collect noise and RSSI statistics for the first 20 beacons received
   3922  * after association and use them to determine connected antennas and
   3923  * to set differential gains.
   3924  */
   3925 static void
   3926 iwn_collect_noise(struct iwn_softc *sc,
   3927     const struct iwn_rx_general_stats *stats)
   3928 {
   3929 	struct iwn_ops *ops = &sc->ops;
   3930 	struct iwn_calib_state *calib = &sc->calib;
   3931 	uint32_t val;
   3932 	int i;
   3933 
   3934 	/* Accumulate RSSI and noise for all 3 antennas. */
   3935 	for (i = 0; i < 3; i++) {
   3936 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3937 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3938 	}
   3939 	/* NB: We update differential gains only once after 20 beacons. */
   3940 	if (++calib->nbeacons < 20)
   3941 		return;
   3942 
   3943 	/* Determine highest average RSSI. */
   3944 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3945 	val = MAX(calib->rssi[2], val);
   3946 
   3947 	/* Determine which antennas are connected. */
   3948 	sc->chainmask = sc->rxchainmask;
   3949 	for (i = 0; i < 3; i++)
   3950 		if (val - calib->rssi[i] > 15 * 20)
   3951 			sc->chainmask &= ~(1 << i);
   3952 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3953 	    sc->rxchainmask, sc->chainmask));
   3954 
   3955 	/* If none of the TX antennas are connected, keep at least one. */
   3956 	if ((sc->chainmask & sc->txchainmask) == 0)
   3957 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3958 
   3959 	(void)ops->set_gains(sc);
   3960 	calib->state = IWN_CALIB_STATE_RUN;
   3961 
   3962 #ifdef notyet
   3963 	/* XXX Disable RX chains with no antennas connected. */
   3964 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3965 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3966 #endif
   3967 
   3968 	/* Enable power-saving mode if requested by user. */
   3969 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3970 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3971 }
   3972 
   3973 static int
   3974 iwn4965_init_gains(struct iwn_softc *sc)
   3975 {
   3976 	struct iwn_phy_calib_gain cmd;
   3977 
   3978 	memset(&cmd, 0, sizeof cmd);
   3979 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3980 	/* Differential gains initially set to 0 for all 3 antennas. */
   3981 	DPRINTF(("setting initial differential gains\n"));
   3982 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3983 }
   3984 
   3985 static int
   3986 iwn5000_init_gains(struct iwn_softc *sc)
   3987 {
   3988 	struct iwn_phy_calib cmd;
   3989 
   3990 	memset(&cmd, 0, sizeof cmd);
   3991 	cmd.code = sc->reset_noise_gain;
   3992 	cmd.ngroups = 1;
   3993 	cmd.isvalid = 1;
   3994 	DPRINTF(("setting initial differential gains\n"));
   3995 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3996 }
   3997 
   3998 static int
   3999 iwn4965_set_gains(struct iwn_softc *sc)
   4000 {
   4001 	struct iwn_calib_state *calib = &sc->calib;
   4002 	struct iwn_phy_calib_gain cmd;
   4003 	int i, delta, noise;
   4004 
   4005 	/* Get minimal noise among connected antennas. */
   4006 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   4007 	for (i = 0; i < 3; i++)
   4008 		if (sc->chainmask & (1 << i))
   4009 			noise = MIN(calib->noise[i], noise);
   4010 
   4011 	memset(&cmd, 0, sizeof cmd);
   4012 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4013 	/* Set differential gains for connected antennas. */
   4014 	for (i = 0; i < 3; i++) {
   4015 		if (sc->chainmask & (1 << i)) {
   4016 			/* Compute attenuation (in unit of 1.5dB). */
   4017 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4018 			/* NB: delta <= 0 */
   4019 			/* Limit to [-4.5dB,0]. */
   4020 			cmd.gain[i] = MIN(abs(delta), 3);
   4021 			if (delta < 0)
   4022 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4023 		}
   4024 	}
   4025 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4026 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4027 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4028 }
   4029 
   4030 static int
   4031 iwn5000_set_gains(struct iwn_softc *sc)
   4032 {
   4033 	struct iwn_calib_state *calib = &sc->calib;
   4034 	struct iwn_phy_calib_gain cmd;
   4035 	int i, ant, div, delta;
   4036 
   4037 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4038 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4039 
   4040 	memset(&cmd, 0, sizeof cmd);
   4041 	cmd.code = sc->noise_gain;
   4042 	cmd.ngroups = 1;
   4043 	cmd.isvalid = 1;
   4044 	/* Get first available RX antenna as referential. */
   4045 	ant = IWN_LSB(sc->rxchainmask);
   4046 	/* Set differential gains for other antennas. */
   4047 	for (i = ant + 1; i < 3; i++) {
   4048 		if (sc->chainmask & (1 << i)) {
   4049 			/* The delta is relative to antenna "ant". */
   4050 			delta = ((int32_t)calib->noise[ant] -
   4051 			    (int32_t)calib->noise[i]) / div;
   4052 			/* Limit to [-4.5dB,+4.5dB]. */
   4053 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4054 			if (delta < 0)
   4055 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4056 		}
   4057 	}
   4058 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4059 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4060 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4061 }
   4062 
   4063 /*
   4064  * Tune RF RX sensitivity based on the number of false alarms detected
   4065  * during the last beacon period.
   4066  */
   4067 static void
   4068 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4069 {
   4070 #define inc(val, inc, max)			\
   4071 	if ((val) < (max)) {			\
   4072 		if ((val) < (max) - (inc))	\
   4073 			(val) += (inc);		\
   4074 		else				\
   4075 			(val) = (max);		\
   4076 		needs_update = 1;		\
   4077 	}
   4078 #define dec(val, dec, min)			\
   4079 	if ((val) > (min)) {			\
   4080 		if ((val) > (min) + (dec))	\
   4081 			(val) -= (dec);		\
   4082 		else				\
   4083 			(val) = (min);		\
   4084 		needs_update = 1;		\
   4085 	}
   4086 
   4087 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4088 	struct iwn_calib_state *calib = &sc->calib;
   4089 	uint32_t val, rxena, fa;
   4090 	uint32_t energy[3], energy_min;
   4091 	uint8_t noise[3], noise_ref;
   4092 	int i, needs_update = 0;
   4093 
   4094 	/* Check that we've been enabled long enough. */
   4095 	if ((rxena = le32toh(stats->general.load)) == 0)
   4096 		return;
   4097 
   4098 	/* Compute number of false alarms since last call for OFDM. */
   4099 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4100 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4101 	fa *= 200 * 1024;	/* 200TU */
   4102 
   4103 	/* Save counters values for next call. */
   4104 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4105 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4106 
   4107 	if (fa > 50 * rxena) {
   4108 		/* High false alarm count, decrease sensitivity. */
   4109 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4110 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4111 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4112 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4113 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4114 
   4115 	} else if (fa < 5 * rxena) {
   4116 		/* Low false alarm count, increase sensitivity. */
   4117 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4118 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4119 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4120 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4121 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4122 	}
   4123 
   4124 	/* Compute maximum noise among 3 receivers. */
   4125 	for (i = 0; i < 3; i++)
   4126 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4127 	val = MAX(noise[0], noise[1]);
   4128 	val = MAX(noise[2], val);
   4129 	/* Insert it into our samples table. */
   4130 	calib->noise_samples[calib->cur_noise_sample] = val;
   4131 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4132 
   4133 	/* Compute maximum noise among last 20 samples. */
   4134 	noise_ref = calib->noise_samples[0];
   4135 	for (i = 1; i < 20; i++)
   4136 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4137 
   4138 	/* Compute maximum energy among 3 receivers. */
   4139 	for (i = 0; i < 3; i++)
   4140 		energy[i] = le32toh(stats->general.energy[i]);
   4141 	val = MIN(energy[0], energy[1]);
   4142 	val = MIN(energy[2], val);
   4143 	/* Insert it into our samples table. */
   4144 	calib->energy_samples[calib->cur_energy_sample] = val;
   4145 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4146 
   4147 	/* Compute minimum energy among last 10 samples. */
   4148 	energy_min = calib->energy_samples[0];
   4149 	for (i = 1; i < 10; i++)
   4150 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4151 	energy_min += 6;
   4152 
   4153 	/* Compute number of false alarms since last call for CCK. */
   4154 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4155 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4156 	fa *= 200 * 1024;	/* 200TU */
   4157 
   4158 	/* Save counters values for next call. */
   4159 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4160 	calib->fa_cck = le32toh(stats->cck.fa);
   4161 
   4162 	if (fa > 50 * rxena) {
   4163 		/* High false alarm count, decrease sensitivity. */
   4164 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4165 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4166 		calib->low_fa = 0;
   4167 
   4168 		if (calib->cck_x4 > 160) {
   4169 			calib->noise_ref = noise_ref;
   4170 			if (calib->energy_cck > 2)
   4171 				dec(calib->energy_cck, 2, energy_min);
   4172 		}
   4173 		if (calib->cck_x4 < 160) {
   4174 			calib->cck_x4 = 161;
   4175 			needs_update = 1;
   4176 		} else
   4177 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4178 
   4179 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4180 
   4181 	} else if (fa < 5 * rxena) {
   4182 		/* Low false alarm count, increase sensitivity. */
   4183 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4184 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4185 		calib->low_fa++;
   4186 
   4187 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4188 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4189 		     calib->low_fa > 100)) {
   4190 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4191 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4192 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4193 		}
   4194 	} else {
   4195 		/* Not worth to increase or decrease sensitivity. */
   4196 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4197 		calib->low_fa = 0;
   4198 		calib->noise_ref = noise_ref;
   4199 
   4200 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4201 			/* Previous interval had many false alarms. */
   4202 			dec(calib->energy_cck, 8, energy_min);
   4203 		}
   4204 		calib->cck_state = IWN_CCK_STATE_INIT;
   4205 	}
   4206 
   4207 	if (needs_update)
   4208 		(void)iwn_send_sensitivity(sc);
   4209 #undef dec
   4210 #undef inc
   4211 }
   4212 
   4213 static int
   4214 iwn_send_sensitivity(struct iwn_softc *sc)
   4215 {
   4216 	struct iwn_calib_state *calib = &sc->calib;
   4217 	struct iwn_enhanced_sensitivity_cmd cmd;
   4218 	int len;
   4219 
   4220 	memset(&cmd, 0, sizeof cmd);
   4221 	len = sizeof (struct iwn_sensitivity_cmd);
   4222 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4223 	/* OFDM modulation. */
   4224 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4225 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4226 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4227 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4228 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4229 	cmd.energy_ofdm_th   = htole16(62);
   4230 	/* CCK modulation. */
   4231 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4232 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4233 	cmd.energy_cck       = htole16(calib->energy_cck);
   4234 	/* Barker modulation: use default values. */
   4235 	cmd.corr_barker      = htole16(190);
   4236 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
   4237 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4238 		goto send;
   4239 	/* Enhanced sensitivity settings. */
   4240 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4241 	cmd.ofdm_det_slope_mrc = htole16(668);
   4242 	cmd.ofdm_det_icept_mrc = htole16(4);
   4243 	cmd.ofdm_det_slope     = htole16(486);
   4244 	cmd.ofdm_det_icept     = htole16(37);
   4245 	cmd.cck_det_slope_mrc  = htole16(853);
   4246 	cmd.cck_det_icept_mrc  = htole16(4);
   4247 	cmd.cck_det_slope      = htole16(476);
   4248 	cmd.cck_det_icept      = htole16(99);
   4249 send:
   4250 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4251 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4252 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4253 	    calib->energy_cck));
   4254 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4255 }
   4256 
   4257 /*
   4258  * Set STA mode power saving level (between 0 and 5).
   4259  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4260  */
   4261 static int
   4262 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4263 {
   4264 	struct iwn_pmgt_cmd cmd;
   4265 	const struct iwn_pmgt *pmgt;
   4266 	uint32_t maxp, skip_dtim;
   4267 	pcireg_t reg;
   4268 	int i;
   4269 
   4270 	/* Select which PS parameters to use. */
   4271 	if (dtim <= 2)
   4272 		pmgt = &iwn_pmgt[0][level];
   4273 	else if (dtim <= 10)
   4274 		pmgt = &iwn_pmgt[1][level];
   4275 	else
   4276 		pmgt = &iwn_pmgt[2][level];
   4277 
   4278 	memset(&cmd, 0, sizeof cmd);
   4279 	if (level != 0)	/* not CAM */
   4280 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4281 	if (level == 5)
   4282 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4283 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4284 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4285 	    sc->sc_cap_off + PCIE_LCSR);
   4286 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4287 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4288 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4289 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4290 
   4291 	if (dtim == 0) {
   4292 		dtim = 1;
   4293 		skip_dtim = 0;
   4294 	} else
   4295 		skip_dtim = pmgt->skip_dtim;
   4296 	if (skip_dtim != 0) {
   4297 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4298 		maxp = pmgt->intval[4];
   4299 		if (maxp == (uint32_t)-1)
   4300 			maxp = dtim * (skip_dtim + 1);
   4301 		else if (maxp > dtim)
   4302 			maxp = (maxp / dtim) * dtim;
   4303 	} else
   4304 		maxp = dtim;
   4305 	for (i = 0; i < 5; i++)
   4306 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4307 
   4308 	DPRINTF(("setting power saving level to %d\n", level));
   4309 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4310 }
   4311 
   4312 int
   4313 iwn5000_runtime_calib(struct iwn_softc *sc)
   4314 {
   4315 	struct iwn5000_calib_config cmd;
   4316 
   4317 	memset(&cmd, 0, sizeof cmd);
   4318 	cmd.ucode.once.enable = 0xffffffff;
   4319 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4320 	DPRINTF(("configuring runtime calibration\n"));
   4321 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4322 }
   4323 
   4324 static int
   4325 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4326 {
   4327 	struct iwn_bluetooth bluetooth;
   4328 
   4329 	memset(&bluetooth, 0, sizeof bluetooth);
   4330 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4331 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4332 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4333 
   4334 	DPRINTF(("configuring bluetooth coexistence\n"));
   4335 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4336 }
   4337 
   4338 static int
   4339 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4340 {
   4341 	uint8_t prio_table[16];
   4342 
   4343 	memset(&prio_table, 0, sizeof prio_table);
   4344 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4345 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4346 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4347 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4348 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4349 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4350 	prio_table[ 6] =  6;	/* dtim				*/
   4351 	prio_table[ 7] =  8;	/* scan52			*/
   4352 	prio_table[ 8] = 10;	/* scan24			*/
   4353 
   4354 	DPRINTF(("sending priority lookup table\n"));
   4355 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4356 	               &prio_table, sizeof prio_table, 0);
   4357 }
   4358 
   4359 static int
   4360 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4361     size_t len)
   4362 {
   4363 	struct iwn_btcoex_prot btprot;
   4364 	int error;
   4365 
   4366 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4367 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4368 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4369 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4370 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4371 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4372 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4373 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4374 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4375 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4376 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4377 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4378 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4379 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4380 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4381 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4382 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4383 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4384 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4385 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4386 	basic->reduce_txpower = 0; /* as not implemented */
   4387 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4388 
   4389 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4390 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4391 	if (error != 0) {
   4392 		aprint_error_dev(sc->sc_dev,
   4393 			"could not configure advanced bluetooth coexistence\n");
   4394 		return error;
   4395 	}
   4396 
   4397 	error = iwn_config_bt_coex_prio_table(sc);
   4398 	if (error != 0) {
   4399 		aprint_error_dev(sc->sc_dev,
   4400 			"could not configure send BT priority table\n");
   4401 		return error;
   4402 	}
   4403 
   4404 	/* Force BT state machine change */
   4405 	memset(&btprot, 0, sizeof btprot);
   4406 	btprot.open = 1;
   4407 	btprot.type = 1;
   4408 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4409 	if (error != 0) {
   4410 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4411 		return error;
   4412 	}
   4413 
   4414 	btprot.open = 0;
   4415 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4416 	if (error != 0) {
   4417 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4418 		return error;
   4419 	}
   4420 	return 0;
   4421 }
   4422 
   4423 static int
   4424 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4425 {
   4426 	struct iwn_bt_adv1 d;
   4427 
   4428 	memset(&d, 0, sizeof d);
   4429 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4430 	d.tx_prio_boost = 0;
   4431 	d.rx_prio_boost = 0;
   4432 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4433 }
   4434 
   4435 static int
   4436 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4437 {
   4438 	struct iwn_bt_adv2 d;
   4439 
   4440 	memset(&d, 0, sizeof d);
   4441 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4442 	d.tx_prio_boost = 0;
   4443 	d.rx_prio_boost = 0;
   4444 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4445 }
   4446 
   4447 static int
   4448 iwn_config(struct iwn_softc *sc)
   4449 {
   4450 	struct iwn_ops *ops = &sc->ops;
   4451 	struct ieee80211com *ic = &sc->sc_ic;
   4452 	struct ifnet *ifp = ic->ic_ifp;
   4453 	uint32_t txmask;
   4454 	uint16_t rxchain;
   4455 	int error;
   4456 
   4457 	error = ops->config_bt_coex(sc);
   4458 	if (error != 0) {
   4459 		aprint_error_dev(sc->sc_dev,
   4460 			"could not configure bluetooth coexistence\n");
   4461 		return error;
   4462 	}
   4463 
   4464 	/* Set radio temperature sensor offset. */
   4465 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4466 		error = iwn6000_temp_offset_calib(sc);
   4467 		if (error != 0) {
   4468 			aprint_error_dev(sc->sc_dev,
   4469 			    "could not set temperature offset\n");
   4470 			return error;
   4471 		}
   4472 	}
   4473 
   4474 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4475 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4476 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4477 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4478 		error = iwn2000_temp_offset_calib(sc);
   4479 		if (error != 0) {
   4480 			aprint_error_dev(sc->sc_dev,
   4481 			    "could not set temperature offset\n");
   4482 			return error;
   4483 		}
   4484 	}
   4485 
   4486 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4487 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4488 		/* Configure runtime DC calibration. */
   4489 		error = iwn5000_runtime_calib(sc);
   4490 		if (error != 0) {
   4491 			aprint_error_dev(sc->sc_dev,
   4492 			    "could not configure runtime calibration\n");
   4493 			return error;
   4494 		}
   4495 	}
   4496 
   4497 	/* Configure valid TX chains for 5000 Series. */
   4498 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4499 		txmask = htole32(sc->txchainmask);
   4500 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4501 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4502 		    sizeof txmask, 0);
   4503 		if (error != 0) {
   4504 			aprint_error_dev(sc->sc_dev,
   4505 			    "could not configure valid TX chains\n");
   4506 			return error;
   4507 		}
   4508 	}
   4509 
   4510 	/* Set mode, channel, RX filter and enable RX. */
   4511 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4512 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4513 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4514 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4515 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4516 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4517 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4518 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4519 	switch (ic->ic_opmode) {
   4520 	case IEEE80211_M_STA:
   4521 		sc->rxon.mode = IWN_MODE_STA;
   4522 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4523 		break;
   4524 	case IEEE80211_M_MONITOR:
   4525 		sc->rxon.mode = IWN_MODE_MONITOR;
   4526 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4527 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4528 		break;
   4529 	default:
   4530 		/* Should not get there. */
   4531 		break;
   4532 	}
   4533 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4534 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4535 	sc->rxon.ht_single_mask = 0xff;
   4536 	sc->rxon.ht_dual_mask = 0xff;
   4537 	sc->rxon.ht_triple_mask = 0xff;
   4538 	rxchain =
   4539 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4540 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4541 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4542 	sc->rxon.rxchain = htole16(rxchain);
   4543 	DPRINTF(("setting configuration\n"));
   4544 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4545 	if (error != 0) {
   4546 		aprint_error_dev(sc->sc_dev,
   4547 		    "RXON command failed\n");
   4548 		return error;
   4549 	}
   4550 
   4551 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4552 		aprint_error_dev(sc->sc_dev,
   4553 		    "could not add broadcast node\n");
   4554 		return error;
   4555 	}
   4556 
   4557 	/* Configuration has changed, set TX power accordingly. */
   4558 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4559 		aprint_error_dev(sc->sc_dev,
   4560 		    "could not set TX power\n");
   4561 		return error;
   4562 	}
   4563 
   4564 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4565 		aprint_error_dev(sc->sc_dev,
   4566 		    "could not set critical temperature\n");
   4567 		return error;
   4568 	}
   4569 
   4570 	/* Set power saving level to CAM during initialization. */
   4571 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4572 		aprint_error_dev(sc->sc_dev,
   4573 		    "could not set power saving level\n");
   4574 		return error;
   4575 	}
   4576 	return 0;
   4577 }
   4578 
   4579 static uint16_t
   4580 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4581     uint8_t n_probes)
   4582 {
   4583 	/* No channel? Default to 2GHz settings */
   4584 	if (flags & IEEE80211_CHAN_2GHZ)
   4585 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4586 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4587 
   4588 	/* 5GHz dwell time */
   4589 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4590 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4591 }
   4592 
   4593 /*
   4594  * Limit the total dwell time to 85% of the beacon interval.
   4595  *
   4596  * Returns the dwell time in milliseconds.
   4597  */
   4598 static uint16_t
   4599 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4600 {
   4601 	struct ieee80211com *ic = &sc->sc_ic;
   4602 	struct ieee80211_node *ni = ic->ic_bss;
   4603 	int bintval = 0;
   4604 
   4605 	/* bintval is in TU (1.024mS) */
   4606 	if (ni != NULL)
   4607 		bintval = ni->ni_intval;
   4608 
   4609 	/*
   4610 	 * If it's non-zero, we should calculate the minimum of
   4611 	 * it and the DWELL_BASE.
   4612 	 *
   4613 	 * XXX Yes, the math should take into account that bintval
   4614 	 * is 1.024mS, not 1mS..
   4615 	 */
   4616 	if (bintval > 0)
   4617 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4618 
   4619 	/* No association context? Default */
   4620 	return IWN_PASSIVE_DWELL_BASE;
   4621 }
   4622 
   4623 static uint16_t
   4624 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4625 {
   4626 	uint16_t passive;
   4627 	if (flags & IEEE80211_CHAN_2GHZ)
   4628 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4629 	else
   4630 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4631 
   4632 	/* Clamp to the beacon interval if we're associated */
   4633 	return iwn_limit_dwell(sc, passive);
   4634 }
   4635 
   4636 static int
   4637 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4638 {
   4639 	struct ieee80211com *ic = &sc->sc_ic;
   4640 	struct iwn_scan_hdr *hdr;
   4641 	struct iwn_cmd_data *tx;
   4642 	struct iwn_scan_essid *essid;
   4643 	struct iwn_scan_chan *chan;
   4644 	struct ieee80211_frame *wh;
   4645 	struct ieee80211_rateset *rs;
   4646 	struct ieee80211_channel *c;
   4647 	uint8_t *buf, *frm;
   4648 	uint16_t rxchain, dwell_active, dwell_passive;
   4649 	uint8_t txant;
   4650 	int buflen, error, is_active;
   4651 
   4652 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4653 	if (buf == NULL) {
   4654 		aprint_error_dev(sc->sc_dev,
   4655 		    "could not allocate buffer for scan command\n");
   4656 		return ENOMEM;
   4657 	}
   4658 	hdr = (struct iwn_scan_hdr *)buf;
   4659 	/*
   4660 	 * Move to the next channel if no frames are received within 10ms
   4661 	 * after sending the probe request.
   4662 	 */
   4663 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4664 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4665 
   4666 	/* Select antennas for scanning. */
   4667 	rxchain =
   4668 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4669 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4670 	    IWN_RXCHAIN_DRIVER_FORCE;
   4671 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4672 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4673 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4674 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4675 	} else	/* Use all available RX antennas. */
   4676 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4677 	hdr->rxchain = htole16(rxchain);
   4678 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4679 
   4680 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4681 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4682 	tx->id = sc->broadcast_id;
   4683 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4684 
   4685 	if (flags & IEEE80211_CHAN_5GHZ) {
   4686 		hdr->crc_threshold = 0xffff;
   4687 		/* Send probe requests at 6Mbps. */
   4688 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4689 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4690 	} else {
   4691 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4692 		/* Send probe requests at 1Mbps. */
   4693 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4694 		tx->rflags = IWN_RFLAG_CCK;
   4695 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4696 	}
   4697 	/* Use the first valid TX antenna. */
   4698 	txant = IWN_LSB(sc->txchainmask);
   4699 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4700 
   4701 	/*
   4702 	 * Only do active scanning if we're announcing a probe request
   4703 	 * for a given SSID (or more, if we ever add it to the driver.)
   4704 	 */
   4705 	is_active = 0;
   4706 
   4707 	essid = (struct iwn_scan_essid *)(tx + 1);
   4708 	if (ic->ic_des_esslen != 0) {
   4709 		essid[0].id = IEEE80211_ELEMID_SSID;
   4710 		essid[0].len = ic->ic_des_esslen;
   4711 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4712 
   4713 		is_active = 1;
   4714 	}
   4715 	/*
   4716 	 * Build a probe request frame.  Most of the following code is a
   4717 	 * copy & paste of what is done in net80211.
   4718 	 */
   4719 	wh = (struct ieee80211_frame *)(essid + 20);
   4720 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4721 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4722 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4723 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4724 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4725 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4726 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4727 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4728 
   4729 	frm = (uint8_t *)(wh + 1);
   4730 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4731 	frm = ieee80211_add_rates(frm, rs);
   4732 #ifndef IEEE80211_NO_HT
   4733 	if (ic->ic_flags & IEEE80211_F_HTON)
   4734 		frm = ieee80211_add_htcaps(frm, ic);
   4735 #endif
   4736 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4737 		frm = ieee80211_add_xrates(frm, rs);
   4738 
   4739 	/* Set length of probe request. */
   4740 	tx->len = htole16(frm - (uint8_t *)wh);
   4741 
   4742 
   4743 	/*
   4744 	 * If active scanning is requested but a certain channel is
   4745 	 * marked passive, we can do active scanning if we detect
   4746 	 * transmissions.
   4747 	 *
   4748 	 * There is an issue with some firmware versions that triggers
   4749 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4750 	 * on a radar channel even though this means that we should NOT
   4751 	 * send probes.
   4752 	 *
   4753 	 * The "good CRC threshold" is the number of frames that we
   4754 	 * need to receive during our dwell time on a channel before
   4755 	 * sending out probes -- setting this to a huge value will
   4756 	 * mean we never reach it, but at the same time work around
   4757 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4758 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4759 	 *
   4760 	 * This was fixed in later versions along with some other
   4761 	 * scan changes, and the threshold behaves as a flag in those
   4762 	 * versions.
   4763 	 */
   4764 
   4765 	/*
   4766 	 * If we're doing active scanning, set the crc_threshold
   4767 	 * to a suitable value.  This is different to active veruss
   4768 	 * passive scanning depending upon the channel flags; the
   4769 	 * firmware will obey that particular check for us.
   4770 	 */
   4771 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4772 		hdr->crc_threshold = is_active ?
   4773 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4774 	else
   4775 		hdr->crc_threshold = is_active ?
   4776 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4777 
   4778 	chan = (struct iwn_scan_chan *)frm;
   4779 	for (c  = &ic->ic_channels[1];
   4780 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4781 		if ((c->ic_flags & flags) != flags)
   4782 			continue;
   4783 
   4784 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4785 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4786 		chan->flags = 0;
   4787 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4788 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4789 		if (ic->ic_des_esslen != 0)
   4790 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4791 
   4792 		/*
   4793 		 * Calculate the active/passive dwell times.
   4794 		 */
   4795 
   4796 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4797 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4798 
   4799 		/* Make sure they're valid */
   4800 		if (dwell_passive <= dwell_active)
   4801 			dwell_passive = dwell_active + 1;
   4802 
   4803 		chan->active = htole16(dwell_active);
   4804 		chan->passive = htole16(dwell_passive);
   4805 
   4806 		chan->dsp_gain = 0x6e;
   4807 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4808 			chan->rf_gain = 0x3b;
   4809 		} else {
   4810 			chan->rf_gain = 0x28;
   4811 		}
   4812 		hdr->nchan++;
   4813 		chan++;
   4814 	}
   4815 
   4816 	buflen = (uint8_t *)chan - buf;
   4817 	hdr->len = htole16(buflen);
   4818 
   4819 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4820 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4821 	free(buf, M_DEVBUF);
   4822 	return error;
   4823 }
   4824 
   4825 static int
   4826 iwn_auth(struct iwn_softc *sc)
   4827 {
   4828 	struct iwn_ops *ops = &sc->ops;
   4829 	struct ieee80211com *ic = &sc->sc_ic;
   4830 	struct ieee80211_node *ni = ic->ic_bss;
   4831 	int error;
   4832 
   4833 	/* Update adapter configuration. */
   4834 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4835 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4836 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4837 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4838 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4839 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4840 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4841 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4842 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4843 	switch (ic->ic_curmode) {
   4844 	case IEEE80211_MODE_11A:
   4845 		sc->rxon.cck_mask  = 0;
   4846 		sc->rxon.ofdm_mask = 0x15;
   4847 		break;
   4848 	case IEEE80211_MODE_11B:
   4849 		sc->rxon.cck_mask  = 0x03;
   4850 		sc->rxon.ofdm_mask = 0;
   4851 		break;
   4852 	default:	/* Assume 802.11b/g. */
   4853 		sc->rxon.cck_mask  = 0x0f;
   4854 		sc->rxon.ofdm_mask = 0x15;
   4855 	}
   4856 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4857 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4858 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4859 	if (error != 0) {
   4860 		aprint_error_dev(sc->sc_dev,
   4861 		    "RXON command failed\n");
   4862 		return error;
   4863 	}
   4864 
   4865 	/* Configuration has changed, set TX power accordingly. */
   4866 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4867 		aprint_error_dev(sc->sc_dev,
   4868 		    "could not set TX power\n");
   4869 		return error;
   4870 	}
   4871 	/*
   4872 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4873 	 * add the broadcast node again.
   4874 	 */
   4875 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4876 		aprint_error_dev(sc->sc_dev,
   4877 		    "could not add broadcast node\n");
   4878 		return error;
   4879 	}
   4880 	return 0;
   4881 }
   4882 
   4883 static int
   4884 iwn_run(struct iwn_softc *sc)
   4885 {
   4886 	struct iwn_ops *ops = &sc->ops;
   4887 	struct ieee80211com *ic = &sc->sc_ic;
   4888 	struct ieee80211_node *ni = ic->ic_bss;
   4889 	struct iwn_node_info node;
   4890 	int error;
   4891 
   4892 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4893 		/* Link LED blinks while monitoring. */
   4894 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4895 		return 0;
   4896 	}
   4897 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4898 		aprint_error_dev(sc->sc_dev,
   4899 		    "could not set timing\n");
   4900 		return error;
   4901 	}
   4902 
   4903 	/* Update adapter configuration. */
   4904 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4905 	/* Short preamble and slot time are negotiated when associating. */
   4906 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4907 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4908 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4909 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4910 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4911 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4912 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4913 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4914 	if (error != 0) {
   4915 		aprint_error_dev(sc->sc_dev,
   4916 		    "could not update configuration\n");
   4917 		return error;
   4918 	}
   4919 
   4920 	/* Configuration has changed, set TX power accordingly. */
   4921 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4922 		aprint_error_dev(sc->sc_dev,
   4923 		    "could not set TX power\n");
   4924 		return error;
   4925 	}
   4926 
   4927 	/* Fake a join to initialize the TX rate. */
   4928 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4929 	iwn_newassoc(ni, 1);
   4930 
   4931 	/* Add BSS node. */
   4932 	memset(&node, 0, sizeof node);
   4933 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4934 	node.id = IWN_ID_BSS;
   4935 #ifdef notyet
   4936 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4937 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4938 #endif
   4939 	DPRINTF(("adding BSS node\n"));
   4940 	error = ops->add_node(sc, &node, 1);
   4941 	if (error != 0) {
   4942 		aprint_error_dev(sc->sc_dev,
   4943 		    "could not add BSS node\n");
   4944 		return error;
   4945 	}
   4946 	DPRINTF(("setting link quality for node %d\n", node.id));
   4947 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4948 		aprint_error_dev(sc->sc_dev,
   4949 		    "could not setup link quality for node %d\n", node.id);
   4950 		return error;
   4951 	}
   4952 
   4953 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4954 		aprint_error_dev(sc->sc_dev,
   4955 		    "could not set sensitivity\n");
   4956 		return error;
   4957 	}
   4958 	/* Start periodic calibration timer. */
   4959 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4960 	sc->calib_cnt = 0;
   4961 	callout_schedule(&sc->calib_to, hz/2);
   4962 
   4963 	/* Link LED always on while associated. */
   4964 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4965 	return 0;
   4966 }
   4967 
   4968 #ifdef IWN_HWCRYPTO
   4969 /*
   4970  * We support CCMP hardware encryption/decryption of unicast frames only.
   4971  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4972  */
   4973 static int
   4974 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4975     struct ieee80211_key *k)
   4976 {
   4977 	struct iwn_softc *sc = ic->ic_softc;
   4978 	struct iwn_ops *ops = &sc->ops;
   4979 	struct iwn_node *wn = (void *)ni;
   4980 	struct iwn_node_info node;
   4981 	uint16_t kflags;
   4982 
   4983 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4984 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4985 		return ieee80211_set_key(ic, ni, k);
   4986 
   4987 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4988 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4989 		kflags |= IWN_KFLAG_GROUP;
   4990 
   4991 	memset(&node, 0, sizeof node);
   4992 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4993 	    sc->broadcast_id : wn->id;
   4994 	node.control = IWN_NODE_UPDATE;
   4995 	node.flags = IWN_FLAG_SET_KEY;
   4996 	node.kflags = htole16(kflags);
   4997 	node.kid = k->k_id;
   4998 	memcpy(node.key, k->k_key, k->k_len);
   4999 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   5000 	return ops->add_node(sc, &node, 1);
   5001 }
   5002 
   5003 static void
   5004 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   5005     struct ieee80211_key *k)
   5006 {
   5007 	struct iwn_softc *sc = ic->ic_softc;
   5008 	struct iwn_ops *ops = &sc->ops;
   5009 	struct iwn_node *wn = (void *)ni;
   5010 	struct iwn_node_info node;
   5011 
   5012 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5013 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   5014 		/* See comment about other ciphers above. */
   5015 		ieee80211_delete_key(ic, ni, k);
   5016 		return;
   5017 	}
   5018 	if (ic->ic_state != IEEE80211_S_RUN)
   5019 		return;	/* Nothing to do. */
   5020 	memset(&node, 0, sizeof node);
   5021 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5022 	    sc->broadcast_id : wn->id;
   5023 	node.control = IWN_NODE_UPDATE;
   5024 	node.flags = IWN_FLAG_SET_KEY;
   5025 	node.kflags = htole16(IWN_KFLAG_INVALID);
   5026 	node.kid = 0xff;
   5027 	DPRINTF(("delete keys for node %d\n", node.id));
   5028 	(void)ops->add_node(sc, &node, 1);
   5029 }
   5030 #endif
   5031 
   5032 /* XXX Added for NetBSD (copied from rev 1.39). */
   5033 
   5034 static int
   5035 iwn_wme_update(struct ieee80211com *ic)
   5036 {
   5037 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   5038 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   5039 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   5040 	const struct wmeParams *wmep;
   5041 	struct iwn_edca_params cmd;
   5042 	int ac;
   5043 
   5044 	/* don't override default WME values if WME is not actually enabled */
   5045 	if (!(ic->ic_flags & IEEE80211_F_WME))
   5046 		return 0;
   5047 	cmd.flags = 0;
   5048 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   5049 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   5050 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   5051 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   5052 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   5053 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   5054 
   5055 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   5056 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   5057 					cmd.ac[ac].cwmin,
   5058 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   5059 	}
   5060 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   5061 #undef IWN_USEC
   5062 #undef IWN_EXP2
   5063 }
   5064 
   5065 #ifndef IEEE80211_NO_HT
   5066 /*
   5067  * This function is called by upper layer when an ADDBA request is received
   5068  * from another STA and before the ADDBA response is sent.
   5069  */
   5070 static int
   5071 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5072     uint8_t tid)
   5073 {
   5074 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5075 	struct iwn_softc *sc = ic->ic_softc;
   5076 	struct iwn_ops *ops = &sc->ops;
   5077 	struct iwn_node *wn = (void *)ni;
   5078 	struct iwn_node_info node;
   5079 
   5080 	memset(&node, 0, sizeof node);
   5081 	node.id = wn->id;
   5082 	node.control = IWN_NODE_UPDATE;
   5083 	node.flags = IWN_FLAG_SET_ADDBA;
   5084 	node.addba_tid = tid;
   5085 	node.addba_ssn = htole16(ba->ba_winstart);
   5086 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5087 	    ba->ba_winstart));
   5088 	return ops->add_node(sc, &node, 1);
   5089 }
   5090 
   5091 /*
   5092  * This function is called by upper layer on teardown of an HT-immediate
   5093  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5094  */
   5095 static void
   5096 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5097     uint8_t tid)
   5098 {
   5099 	struct iwn_softc *sc = ic->ic_softc;
   5100 	struct iwn_ops *ops = &sc->ops;
   5101 	struct iwn_node *wn = (void *)ni;
   5102 	struct iwn_node_info node;
   5103 
   5104 	memset(&node, 0, sizeof node);
   5105 	node.id = wn->id;
   5106 	node.control = IWN_NODE_UPDATE;
   5107 	node.flags = IWN_FLAG_SET_DELBA;
   5108 	node.delba_tid = tid;
   5109 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5110 	(void)ops->add_node(sc, &node, 1);
   5111 }
   5112 
   5113 /*
   5114  * This function is called by upper layer when an ADDBA response is received
   5115  * from another STA.
   5116  */
   5117 static int
   5118 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5119     uint8_t tid)
   5120 {
   5121 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5122 	struct iwn_softc *sc = ic->ic_softc;
   5123 	struct iwn_ops *ops = &sc->ops;
   5124 	struct iwn_node *wn = (void *)ni;
   5125 	struct iwn_node_info node;
   5126 	int error;
   5127 
   5128 	/* Enable TX for the specified RA/TID. */
   5129 	wn->disable_tid &= ~(1 << tid);
   5130 	memset(&node, 0, sizeof node);
   5131 	node.id = wn->id;
   5132 	node.control = IWN_NODE_UPDATE;
   5133 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5134 	node.disable_tid = htole16(wn->disable_tid);
   5135 	error = ops->add_node(sc, &node, 1);
   5136 	if (error != 0)
   5137 		return error;
   5138 
   5139 	if ((error = iwn_nic_lock(sc)) != 0)
   5140 		return error;
   5141 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5142 	iwn_nic_unlock(sc);
   5143 	return 0;
   5144 }
   5145 
   5146 static void
   5147 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5148     uint8_t tid)
   5149 {
   5150 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5151 	struct iwn_softc *sc = ic->ic_softc;
   5152 	struct iwn_ops *ops = &sc->ops;
   5153 
   5154 	if (iwn_nic_lock(sc) != 0)
   5155 		return;
   5156 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5157 	iwn_nic_unlock(sc);
   5158 }
   5159 
   5160 static void
   5161 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5162     uint8_t tid, uint16_t ssn)
   5163 {
   5164 	struct iwn_node *wn = (void *)ni;
   5165 	int qid = 7 + tid;
   5166 
   5167 	/* Stop TX scheduler while we're changing its configuration. */
   5168 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5169 	    IWN4965_TXQ_STATUS_CHGACT);
   5170 
   5171 	/* Assign RA/TID translation to the queue. */
   5172 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5173 	    wn->id << 4 | tid);
   5174 
   5175 	/* Enable chain-building mode for the queue. */
   5176 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5177 
   5178 	/* Set starting sequence number from the ADDBA request. */
   5179 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5180 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5181 
   5182 	/* Set scheduler window size. */
   5183 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5184 	    IWN_SCHED_WINSZ);
   5185 	/* Set scheduler frame limit. */
   5186 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5187 	    IWN_SCHED_LIMIT << 16);
   5188 
   5189 	/* Enable interrupts for the queue. */
   5190 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5191 
   5192 	/* Mark the queue as active. */
   5193 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5194 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5195 	    iwn_tid2fifo[tid] << 1);
   5196 }
   5197 
   5198 static void
   5199 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5200 {
   5201 	int qid = 7 + tid;
   5202 
   5203 	/* Stop TX scheduler while we're changing its configuration. */
   5204 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5205 	    IWN4965_TXQ_STATUS_CHGACT);
   5206 
   5207 	/* Set starting sequence number from the ADDBA request. */
   5208 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5209 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5210 
   5211 	/* Disable interrupts for the queue. */
   5212 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5213 
   5214 	/* Mark the queue as inactive. */
   5215 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5216 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5217 }
   5218 
   5219 static void
   5220 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5221     uint8_t tid, uint16_t ssn)
   5222 {
   5223 	struct iwn_node *wn = (void *)ni;
   5224 	int qid = 10 + tid;
   5225 
   5226 	/* Stop TX scheduler while we're changing its configuration. */
   5227 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5228 	    IWN5000_TXQ_STATUS_CHGACT);
   5229 
   5230 	/* Assign RA/TID translation to the queue. */
   5231 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5232 	    wn->id << 4 | tid);
   5233 
   5234 	/* Enable chain-building mode for the queue. */
   5235 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5236 
   5237 	/* Enable aggregation for the queue. */
   5238 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5239 
   5240 	/* Set starting sequence number from the ADDBA request. */
   5241 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5242 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5243 
   5244 	/* Set scheduler window size and frame limit. */
   5245 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5246 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5247 
   5248 	/* Enable interrupts for the queue. */
   5249 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5250 
   5251 	/* Mark the queue as active. */
   5252 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5253 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5254 }
   5255 
   5256 static void
   5257 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5258 {
   5259 	int qid = 10 + tid;
   5260 
   5261 	/* Stop TX scheduler while we're changing its configuration. */
   5262 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5263 	    IWN5000_TXQ_STATUS_CHGACT);
   5264 
   5265 	/* Disable aggregation for the queue. */
   5266 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5267 
   5268 	/* Set starting sequence number from the ADDBA request. */
   5269 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5270 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5271 
   5272 	/* Disable interrupts for the queue. */
   5273 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5274 
   5275 	/* Mark the queue as inactive. */
   5276 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5277 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5278 }
   5279 #endif	/* !IEEE80211_NO_HT */
   5280 
   5281 /*
   5282  * Query calibration tables from the initialization firmware.  We do this
   5283  * only once at first boot.  Called from a process context.
   5284  */
   5285 static int
   5286 iwn5000_query_calibration(struct iwn_softc *sc)
   5287 {
   5288 	struct iwn5000_calib_config cmd;
   5289 	int error;
   5290 
   5291 	memset(&cmd, 0, sizeof cmd);
   5292 	cmd.ucode.once.enable = 0xffffffff;
   5293 	cmd.ucode.once.start  = 0xffffffff;
   5294 	cmd.ucode.once.send   = 0xffffffff;
   5295 	cmd.ucode.flags       = 0xffffffff;
   5296 	DPRINTF(("sending calibration query\n"));
   5297 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5298 	if (error != 0)
   5299 		return error;
   5300 
   5301 	/* Wait at most two seconds for calibration to complete. */
   5302 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5303 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5304 	return error;
   5305 }
   5306 
   5307 /*
   5308  * Send calibration results to the runtime firmware.  These results were
   5309  * obtained on first boot from the initialization firmware.
   5310  */
   5311 static int
   5312 iwn5000_send_calibration(struct iwn_softc *sc)
   5313 {
   5314 	int idx, error;
   5315 
   5316 	for (idx = 0; idx < 5; idx++) {
   5317 		if (sc->calibcmd[idx].buf == NULL)
   5318 			continue;	/* No results available. */
   5319 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5320 		    idx, sc->calibcmd[idx].len));
   5321 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5322 		    sc->calibcmd[idx].len, 0);
   5323 		if (error != 0) {
   5324 			aprint_error_dev(sc->sc_dev,
   5325 			    "could not send calibration result\n");
   5326 			return error;
   5327 		}
   5328 	}
   5329 	return 0;
   5330 }
   5331 
   5332 static int
   5333 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5334 {
   5335 	struct iwn5000_wimax_coex wimax;
   5336 
   5337 #ifdef notyet
   5338 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5339 		/* Enable WiMAX coexistence for combo adapters. */
   5340 		wimax.flags =
   5341 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5342 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5343 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5344 		    IWN_WIMAX_COEX_ENABLE;
   5345 		memcpy(wimax.events, iwn6050_wimax_events,
   5346 		    sizeof iwn6050_wimax_events);
   5347 	} else
   5348 #endif
   5349 	{
   5350 		/* Disable WiMAX coexistence. */
   5351 		wimax.flags = 0;
   5352 		memset(wimax.events, 0, sizeof wimax.events);
   5353 	}
   5354 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5355 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5356 }
   5357 
   5358 static int
   5359 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5360 {
   5361 	struct iwn6000_phy_calib_temp_offset cmd;
   5362 
   5363 	memset(&cmd, 0, sizeof cmd);
   5364 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5365 	cmd.ngroups = 1;
   5366 	cmd.isvalid = 1;
   5367 	if (sc->eeprom_temp != 0)
   5368 		cmd.offset = htole16(sc->eeprom_temp);
   5369 	else
   5370 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5371 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5372 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5373 }
   5374 
   5375 static int
   5376 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5377 {
   5378 	struct iwn2000_phy_calib_temp_offset cmd;
   5379 
   5380 	memset(&cmd, 0, sizeof cmd);
   5381 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5382 	cmd.ngroups = 1;
   5383 	cmd.isvalid = 1;
   5384 	if (sc->eeprom_rawtemp != 0) {
   5385 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5386 		cmd.offset_high = htole16(sc->eeprom_temp);
   5387 	} else {
   5388 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5389 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5390 	}
   5391 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5392 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5393 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5394 	    le16toh(cmd.burnt_voltage_ref)));
   5395 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5396 }
   5397 
   5398 /*
   5399  * This function is called after the runtime firmware notifies us of its
   5400  * readiness (called in a process context).
   5401  */
   5402 static int
   5403 iwn4965_post_alive(struct iwn_softc *sc)
   5404 {
   5405 	int error, qid;
   5406 
   5407 	if ((error = iwn_nic_lock(sc)) != 0)
   5408 		return error;
   5409 
   5410 	/* Clear TX scheduler state in SRAM. */
   5411 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5412 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5413 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5414 
   5415 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5416 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5417 
   5418 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5419 
   5420 	/* Disable chain mode for all our 16 queues. */
   5421 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5422 
   5423 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5424 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5425 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5426 
   5427 		/* Set scheduler window size. */
   5428 		iwn_mem_write(sc, sc->sched_base +
   5429 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5430 		/* Set scheduler frame limit. */
   5431 		iwn_mem_write(sc, sc->sched_base +
   5432 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5433 		    IWN_SCHED_LIMIT << 16);
   5434 	}
   5435 
   5436 	/* Enable interrupts for all our 16 queues. */
   5437 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5438 	/* Identify TX FIFO rings (0-7). */
   5439 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5440 
   5441 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5442 	for (qid = 0; qid < 7; qid++) {
   5443 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5444 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5445 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5446 	}
   5447 	iwn_nic_unlock(sc);
   5448 	return 0;
   5449 }
   5450 
   5451 /*
   5452  * This function is called after the initialization or runtime firmware
   5453  * notifies us of its readiness (called in a process context).
   5454  */
   5455 static int
   5456 iwn5000_post_alive(struct iwn_softc *sc)
   5457 {
   5458 	int error, qid;
   5459 
   5460 	/* Switch to using ICT interrupt mode. */
   5461 	iwn5000_ict_reset(sc);
   5462 
   5463 	if ((error = iwn_nic_lock(sc)) != 0)
   5464 		return error;
   5465 
   5466 	/* Clear TX scheduler state in SRAM. */
   5467 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5468 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5469 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5470 
   5471 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5472 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5473 
   5474 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5475 
   5476 	/* Enable chain mode for all queues, except command queue. */
   5477 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5478 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5479 
   5480 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5481 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5482 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5483 
   5484 		iwn_mem_write(sc, sc->sched_base +
   5485 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5486 		/* Set scheduler window size and frame limit. */
   5487 		iwn_mem_write(sc, sc->sched_base +
   5488 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5489 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5490 	}
   5491 
   5492 	/* Enable interrupts for all our 20 queues. */
   5493 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5494 	/* Identify TX FIFO rings (0-7). */
   5495 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5496 
   5497 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5498 	for (qid = 0; qid < 7; qid++) {
   5499 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5500 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5501 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5502 	}
   5503 	iwn_nic_unlock(sc);
   5504 
   5505 	/* Configure WiMAX coexistence for combo adapters. */
   5506 	error = iwn5000_send_wimax_coex(sc);
   5507 	if (error != 0) {
   5508 		aprint_error_dev(sc->sc_dev,
   5509 		    "could not configure WiMAX coexistence\n");
   5510 		return error;
   5511 	}
   5512 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5513 		struct iwn5000_phy_calib_crystal cmd;
   5514 
   5515 		/* Perform crystal calibration. */
   5516 		memset(&cmd, 0, sizeof cmd);
   5517 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5518 		cmd.ngroups = 1;
   5519 		cmd.isvalid = 1;
   5520 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5521 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5522 		DPRINTF(("sending crystal calibration %d, %d\n",
   5523 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5524 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5525 		if (error != 0) {
   5526 			aprint_error_dev(sc->sc_dev,
   5527 			    "crystal calibration failed\n");
   5528 			return error;
   5529 		}
   5530 	}
   5531 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5532 		/* Query calibration from the initialization firmware. */
   5533 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5534 			aprint_error_dev(sc->sc_dev,
   5535 			    "could not query calibration\n");
   5536 			return error;
   5537 		}
   5538 		/*
   5539 		 * We have the calibration results now, reboot with the
   5540 		 * runtime firmware (call ourselves recursively!)
   5541 		 */
   5542 		iwn_hw_stop(sc);
   5543 		error = iwn_hw_init(sc);
   5544 	} else {
   5545 		/* Send calibration results to runtime firmware. */
   5546 		error = iwn5000_send_calibration(sc);
   5547 	}
   5548 	return error;
   5549 }
   5550 
   5551 /*
   5552  * The firmware boot code is small and is intended to be copied directly into
   5553  * the NIC internal memory (no DMA transfer).
   5554  */
   5555 static int
   5556 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5557 {
   5558 	int error, ntries;
   5559 
   5560 	size /= sizeof (uint32_t);
   5561 
   5562 	if ((error = iwn_nic_lock(sc)) != 0)
   5563 		return error;
   5564 
   5565 	/* Copy microcode image into NIC memory. */
   5566 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5567 	    (const uint32_t *)ucode, size);
   5568 
   5569 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5570 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5571 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5572 
   5573 	/* Start boot load now. */
   5574 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5575 
   5576 	/* Wait for transfer to complete. */
   5577 	for (ntries = 0; ntries < 1000; ntries++) {
   5578 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5579 		    IWN_BSM_WR_CTRL_START))
   5580 			break;
   5581 		DELAY(10);
   5582 	}
   5583 	if (ntries == 1000) {
   5584 		aprint_error_dev(sc->sc_dev,
   5585 		    "could not load boot firmware\n");
   5586 		iwn_nic_unlock(sc);
   5587 		return ETIMEDOUT;
   5588 	}
   5589 
   5590 	/* Enable boot after power up. */
   5591 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5592 
   5593 	iwn_nic_unlock(sc);
   5594 	return 0;
   5595 }
   5596 
   5597 static int
   5598 iwn4965_load_firmware(struct iwn_softc *sc)
   5599 {
   5600 	struct iwn_fw_info *fw = &sc->fw;
   5601 	struct iwn_dma_info *dma = &sc->fw_dma;
   5602 	int error;
   5603 
   5604 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5605 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5606 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5607 	    BUS_DMASYNC_PREWRITE);
   5608 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5609 	    fw->init.text, fw->init.textsz);
   5610 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5611 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5612 
   5613 	/* Tell adapter where to find initialization sections. */
   5614 	if ((error = iwn_nic_lock(sc)) != 0)
   5615 		return error;
   5616 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5617 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5618 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5619 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5620 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5621 	iwn_nic_unlock(sc);
   5622 
   5623 	/* Load firmware boot code. */
   5624 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5625 	if (error != 0) {
   5626 		aprint_error_dev(sc->sc_dev,
   5627 		    "could not load boot firmware\n");
   5628 		return error;
   5629 	}
   5630 	/* Now press "execute". */
   5631 	IWN_WRITE(sc, IWN_RESET, 0);
   5632 
   5633 	/* Wait at most one second for first alive notification. */
   5634 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5635 		aprint_error_dev(sc->sc_dev,
   5636 		    "timeout waiting for adapter to initialize\n");
   5637 		return error;
   5638 	}
   5639 
   5640 	/* Retrieve current temperature for initial TX power calibration. */
   5641 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5642 	sc->temp = iwn4965_get_temperature(sc);
   5643 
   5644 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5645 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5646 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5647 	    BUS_DMASYNC_PREWRITE);
   5648 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5649 	    fw->main.text, fw->main.textsz);
   5650 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5651 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5652 
   5653 	/* Tell adapter where to find runtime sections. */
   5654 	if ((error = iwn_nic_lock(sc)) != 0)
   5655 		return error;
   5656 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5657 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5658 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5659 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5660 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5661 	    IWN_FW_UPDATED | fw->main.textsz);
   5662 	iwn_nic_unlock(sc);
   5663 
   5664 	return 0;
   5665 }
   5666 
   5667 static int
   5668 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5669     const uint8_t *section, int size)
   5670 {
   5671 	struct iwn_dma_info *dma = &sc->fw_dma;
   5672 	int error;
   5673 
   5674 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5675 	memcpy(dma->vaddr, section, size);
   5676 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5677 
   5678 	if ((error = iwn_nic_lock(sc)) != 0)
   5679 		return error;
   5680 
   5681 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5682 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5683 
   5684 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5685 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5686 	    IWN_LOADDR(dma->paddr));
   5687 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5688 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5689 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5690 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5691 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5692 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5693 
   5694 	/* Kick Flow Handler to start DMA transfer. */
   5695 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5696 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5697 
   5698 	iwn_nic_unlock(sc);
   5699 
   5700 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5701 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5702 }
   5703 
   5704 static int
   5705 iwn5000_load_firmware(struct iwn_softc *sc)
   5706 {
   5707 	struct iwn_fw_part *fw;
   5708 	int error;
   5709 
   5710 	/* Load the initialization firmware on first boot only. */
   5711 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5712 	    &sc->fw.main : &sc->fw.init;
   5713 
   5714 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5715 	    fw->text, fw->textsz);
   5716 	if (error != 0) {
   5717 		aprint_error_dev(sc->sc_dev,
   5718 		    "could not load firmware %s section\n", ".text");
   5719 		return error;
   5720 	}
   5721 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5722 	    fw->data, fw->datasz);
   5723 	if (error != 0) {
   5724 		aprint_error_dev(sc->sc_dev,
   5725 		    "could not load firmware %s section\n", ".data");
   5726 		return error;
   5727 	}
   5728 
   5729 	/* Now press "execute". */
   5730 	IWN_WRITE(sc, IWN_RESET, 0);
   5731 	return 0;
   5732 }
   5733 
   5734 /*
   5735  * Extract text and data sections from a legacy firmware image.
   5736  */
   5737 static int
   5738 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5739 {
   5740 	const uint32_t *ptr;
   5741 	size_t hdrlen = 24;
   5742 	uint32_t rev;
   5743 
   5744 	ptr = (const uint32_t *)fw->data;
   5745 	rev = le32toh(*ptr++);
   5746 
   5747 	sc->ucode_rev = rev;
   5748 
   5749 	/* Check firmware API version. */
   5750 	if (IWN_FW_API(rev) <= 1) {
   5751 		aprint_error_dev(sc->sc_dev,
   5752 		    "bad firmware, need API version >=2\n");
   5753 		return EINVAL;
   5754 	}
   5755 	if (IWN_FW_API(rev) >= 3) {
   5756 		/* Skip build number (version 2 header). */
   5757 		hdrlen += 4;
   5758 		ptr++;
   5759 	}
   5760 	if (fw->size < hdrlen) {
   5761 		aprint_error_dev(sc->sc_dev,
   5762 		    "firmware too short: %zd bytes\n", fw->size);
   5763 		return EINVAL;
   5764 	}
   5765 	fw->main.textsz = le32toh(*ptr++);
   5766 	fw->main.datasz = le32toh(*ptr++);
   5767 	fw->init.textsz = le32toh(*ptr++);
   5768 	fw->init.datasz = le32toh(*ptr++);
   5769 	fw->boot.textsz = le32toh(*ptr++);
   5770 
   5771 	/* Check that all firmware sections fit. */
   5772 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5773 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5774 		aprint_error_dev(sc->sc_dev,
   5775 		    "firmware too short: %zd bytes\n", fw->size);
   5776 		return EINVAL;
   5777 	}
   5778 
   5779 	/* Get pointers to firmware sections. */
   5780 	fw->main.text = (const uint8_t *)ptr;
   5781 	fw->main.data = fw->main.text + fw->main.textsz;
   5782 	fw->init.text = fw->main.data + fw->main.datasz;
   5783 	fw->init.data = fw->init.text + fw->init.textsz;
   5784 	fw->boot.text = fw->init.data + fw->init.datasz;
   5785 	return 0;
   5786 }
   5787 
   5788 /*
   5789  * Extract text and data sections from a TLV firmware image.
   5790  */
   5791 static int
   5792 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5793     uint16_t alt)
   5794 {
   5795 	const struct iwn_fw_tlv_hdr *hdr;
   5796 	const struct iwn_fw_tlv *tlv;
   5797 	const uint8_t *ptr, *end;
   5798 	uint64_t altmask;
   5799 	uint32_t len;
   5800 
   5801 	if (fw->size < sizeof (*hdr)) {
   5802 		aprint_error_dev(sc->sc_dev,
   5803 		    "firmware too short: %zd bytes\n", fw->size);
   5804 		return EINVAL;
   5805 	}
   5806 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5807 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5808 		aprint_error_dev(sc->sc_dev,
   5809 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5810 		return EINVAL;
   5811 	}
   5812 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5813 	    le32toh(hdr->build)));
   5814 	sc->ucode_rev = le32toh(hdr->rev);
   5815 
   5816 	/*
   5817 	 * Select the closest supported alternative that is less than
   5818 	 * or equal to the specified one.
   5819 	 */
   5820 	altmask = le64toh(hdr->altmask);
   5821 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5822 		alt--;	/* Downgrade. */
   5823 	DPRINTF(("using alternative %d\n", alt));
   5824 
   5825 	ptr = (const uint8_t *)(hdr + 1);
   5826 	end = (const uint8_t *)(fw->data + fw->size);
   5827 
   5828 	/* Parse type-length-value fields. */
   5829 	while (ptr + sizeof (*tlv) <= end) {
   5830 		tlv = (const struct iwn_fw_tlv *)ptr;
   5831 		len = le32toh(tlv->len);
   5832 
   5833 		ptr += sizeof (*tlv);
   5834 		if (ptr + len > end) {
   5835 			aprint_error_dev(sc->sc_dev,
   5836 			    "firmware too short: %zd bytes\n", fw->size);
   5837 			return EINVAL;
   5838 		}
   5839 		/* Skip other alternatives. */
   5840 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5841 			goto next;
   5842 
   5843 		switch (le16toh(tlv->type)) {
   5844 		case IWN_FW_TLV_MAIN_TEXT:
   5845 			fw->main.text = ptr;
   5846 			fw->main.textsz = len;
   5847 			break;
   5848 		case IWN_FW_TLV_MAIN_DATA:
   5849 			fw->main.data = ptr;
   5850 			fw->main.datasz = len;
   5851 			break;
   5852 		case IWN_FW_TLV_INIT_TEXT:
   5853 			fw->init.text = ptr;
   5854 			fw->init.textsz = len;
   5855 			break;
   5856 		case IWN_FW_TLV_INIT_DATA:
   5857 			fw->init.data = ptr;
   5858 			fw->init.datasz = len;
   5859 			break;
   5860 		case IWN_FW_TLV_BOOT_TEXT:
   5861 			fw->boot.text = ptr;
   5862 			fw->boot.textsz = len;
   5863 			break;
   5864 		case IWN_FW_TLV_ENH_SENS:
   5865 			if (len != 0) {
   5866 				aprint_error_dev(sc->sc_dev,
   5867 				    "TLV type %d has invalid size %u\n",
   5868 				    le16toh(tlv->type), len);
   5869 				goto next;
   5870 			}
   5871 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5872 			break;
   5873 		case IWN_FW_TLV_PHY_CALIB:
   5874 			if (len != sizeof(uint32_t)) {
   5875 				aprint_error_dev(sc->sc_dev,
   5876 				    "TLV type %d has invalid size %u\n",
   5877 				    le16toh(tlv->type), len);
   5878 				goto next;
   5879 			}
   5880 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5881 				sc->reset_noise_gain = le32toh(*ptr);
   5882 				sc->noise_gain = le32toh(*ptr) + 1;
   5883 			}
   5884 			break;
   5885 		case IWN_FW_TLV_FLAGS:
   5886 			if (len < sizeof(uint32_t))
   5887 				break;
   5888 			if (len % sizeof(uint32_t))
   5889 				break;
   5890 			sc->tlv_feature_flags = le32toh(*ptr);
   5891 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5892 			break;
   5893 		default:
   5894 			DPRINTF(("TLV type %d not handled\n",
   5895 			    le16toh(tlv->type)));
   5896 			break;
   5897 		}
   5898  next:		/* TLV fields are 32-bit aligned. */
   5899 		ptr += (len + 3) & ~3;
   5900 	}
   5901 	return 0;
   5902 }
   5903 
   5904 static int
   5905 iwn_read_firmware(struct iwn_softc *sc)
   5906 {
   5907 	struct iwn_fw_info *fw = &sc->fw;
   5908 	firmware_handle_t fwh;
   5909 	int error;
   5910 
   5911 	/*
   5912 	 * Some PHY calibration commands are firmware-dependent; these
   5913 	 * are the default values that will be overridden if
   5914 	 * necessary.
   5915 	 */
   5916 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5917 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5918 
   5919 	/* Initialize for error returns */
   5920 	fw->data = NULL;
   5921 	fw->size = 0;
   5922 
   5923 	/* Open firmware image. */
   5924 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5925 		aprint_error_dev(sc->sc_dev,
   5926 		    "could not get firmware handle %s\n", sc->fwname);
   5927 		return error;
   5928 	}
   5929 	fw->size = firmware_get_size(fwh);
   5930 	if (fw->size < sizeof (uint32_t)) {
   5931 		aprint_error_dev(sc->sc_dev,
   5932 		    "firmware too short: %zd bytes\n", fw->size);
   5933 		firmware_close(fwh);
   5934 		return EINVAL;
   5935 	}
   5936 
   5937 	/* Read the firmware. */
   5938 	fw->data = firmware_malloc(fw->size);
   5939 	if (fw->data == NULL) {
   5940 		aprint_error_dev(sc->sc_dev,
   5941 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5942 		firmware_close(fwh);
   5943 		return ENOMEM;
   5944 	}
   5945 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5946 	firmware_close(fwh);
   5947 	if (error != 0) {
   5948 		aprint_error_dev(sc->sc_dev,
   5949 		    "could not read firmware %s\n", sc->fwname);
   5950 		goto out;
   5951 	}
   5952 
   5953 	/* Retrieve text and data sections. */
   5954 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5955 		error = iwn_read_firmware_leg(sc, fw);
   5956 	else
   5957 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5958 	if (error != 0) {
   5959 		aprint_error_dev(sc->sc_dev,
   5960 		    "could not read firmware sections\n");
   5961 		goto out;
   5962 	}
   5963 
   5964 	/* Make sure text and data sections fit in hardware memory. */
   5965 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5966 	    fw->main.datasz > sc->fw_data_maxsz ||
   5967 	    fw->init.textsz > sc->fw_text_maxsz ||
   5968 	    fw->init.datasz > sc->fw_data_maxsz ||
   5969 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5970 	    (fw->boot.textsz & 3) != 0) {
   5971 		aprint_error_dev(sc->sc_dev,
   5972 		    "firmware sections too large\n");
   5973 		goto out;
   5974 	}
   5975 
   5976 	/* We can proceed with loading the firmware. */
   5977 	return 0;
   5978 out:
   5979 	firmware_free(fw->data, fw->size);
   5980 	fw->data = NULL;
   5981 	fw->size = 0;
   5982 	return error ? error : EINVAL;
   5983 }
   5984 
   5985 static int
   5986 iwn_clock_wait(struct iwn_softc *sc)
   5987 {
   5988 	int ntries;
   5989 
   5990 	/* Set "initialization complete" bit. */
   5991 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5992 
   5993 	/* Wait for clock stabilization. */
   5994 	for (ntries = 0; ntries < 2500; ntries++) {
   5995 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5996 			return 0;
   5997 		DELAY(10);
   5998 	}
   5999 	aprint_error_dev(sc->sc_dev,
   6000 	    "timeout waiting for clock stabilization\n");
   6001 	return ETIMEDOUT;
   6002 }
   6003 
   6004 static int
   6005 iwn_apm_init(struct iwn_softc *sc)
   6006 {
   6007 	pcireg_t reg;
   6008 	int error;
   6009 
   6010 	/* Disable L0s exit timer (NMI bug workaround). */
   6011 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   6012 	/* Don't wait for ICH L0s (ICH bug workaround). */
   6013 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   6014 
   6015 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   6016 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   6017 
   6018 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   6019 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   6020 
   6021 	/* Retrieve PCIe Active State Power Management (ASPM). */
   6022 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   6023 	    sc->sc_cap_off + PCIE_LCSR);
   6024 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   6025 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   6026 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6027 	else
   6028 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6029 
   6030 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   6031 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   6032 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   6033 
   6034 	/* Wait for clock stabilization before accessing prph. */
   6035 	if ((error = iwn_clock_wait(sc)) != 0)
   6036 		return error;
   6037 
   6038 	if ((error = iwn_nic_lock(sc)) != 0)
   6039 		return error;
   6040 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   6041 		/* Enable DMA and BSM (Bootstrap State Machine). */
   6042 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6043 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   6044 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   6045 	} else {
   6046 		/* Enable DMA. */
   6047 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6048 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6049 	}
   6050 	DELAY(20);
   6051 	/* Disable L1-Active. */
   6052 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   6053 	iwn_nic_unlock(sc);
   6054 
   6055 	return 0;
   6056 }
   6057 
   6058 static void
   6059 iwn_apm_stop_master(struct iwn_softc *sc)
   6060 {
   6061 	int ntries;
   6062 
   6063 	/* Stop busmaster DMA activity. */
   6064 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   6065 	for (ntries = 0; ntries < 100; ntries++) {
   6066 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   6067 			return;
   6068 		DELAY(10);
   6069 	}
   6070 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6071 }
   6072 
   6073 static void
   6074 iwn_apm_stop(struct iwn_softc *sc)
   6075 {
   6076 	iwn_apm_stop_master(sc);
   6077 
   6078 	/* Reset the entire device. */
   6079 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6080 	DELAY(10);
   6081 	/* Clear "initialization complete" bit. */
   6082 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6083 }
   6084 
   6085 static int
   6086 iwn4965_nic_config(struct iwn_softc *sc)
   6087 {
   6088 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6089 		/*
   6090 		 * I don't believe this to be correct but this is what the
   6091 		 * vendor driver is doing. Probably the bits should not be
   6092 		 * shifted in IWN_RFCFG_*.
   6093 		 */
   6094 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6095 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6096 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6097 		    IWN_RFCFG_DASH(sc->rfcfg));
   6098 	}
   6099 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6100 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6101 	return 0;
   6102 }
   6103 
   6104 static int
   6105 iwn5000_nic_config(struct iwn_softc *sc)
   6106 {
   6107 	uint32_t tmp;
   6108 	int error;
   6109 
   6110 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6111 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6112 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6113 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6114 		    IWN_RFCFG_DASH(sc->rfcfg));
   6115 	}
   6116 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6117 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6118 
   6119 	if ((error = iwn_nic_lock(sc)) != 0)
   6120 		return error;
   6121 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6122 
   6123 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6124 		/*
   6125 		 * Select first Switching Voltage Regulator (1.32V) to
   6126 		 * solve a stability issue related to noisy DC2DC line
   6127 		 * in the silicon of 1000 Series.
   6128 		 */
   6129 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6130 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6131 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6132 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6133 	}
   6134 	iwn_nic_unlock(sc);
   6135 
   6136 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6137 		/* Use internal power amplifier only. */
   6138 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6139 	}
   6140 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6141 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6142 		/* Indicate that ROM calibration version is >=6. */
   6143 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6144 	}
   6145 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6146 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6147 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6148 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6149 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6150 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6151 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6152 	return 0;
   6153 }
   6154 
   6155 /*
   6156  * Take NIC ownership over Intel Active Management Technology (AMT).
   6157  */
   6158 static int
   6159 iwn_hw_prepare(struct iwn_softc *sc)
   6160 {
   6161 	int ntries;
   6162 
   6163 	/* Check if hardware is ready. */
   6164 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6165 	for (ntries = 0; ntries < 5; ntries++) {
   6166 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6167 		    IWN_HW_IF_CONFIG_NIC_READY)
   6168 			return 0;
   6169 		DELAY(10);
   6170 	}
   6171 
   6172 	/* Hardware not ready, force into ready state. */
   6173 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6174 	for (ntries = 0; ntries < 15000; ntries++) {
   6175 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6176 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6177 			break;
   6178 		DELAY(10);
   6179 	}
   6180 	if (ntries == 15000)
   6181 		return ETIMEDOUT;
   6182 
   6183 	/* Hardware should be ready now. */
   6184 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6185 	for (ntries = 0; ntries < 5; ntries++) {
   6186 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6187 		    IWN_HW_IF_CONFIG_NIC_READY)
   6188 			return 0;
   6189 		DELAY(10);
   6190 	}
   6191 	return ETIMEDOUT;
   6192 }
   6193 
   6194 static int
   6195 iwn_hw_init(struct iwn_softc *sc)
   6196 {
   6197 	struct iwn_ops *ops = &sc->ops;
   6198 	int error, chnl, qid;
   6199 
   6200 	/* Clear pending interrupts. */
   6201 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6202 
   6203 	if ((error = iwn_apm_init(sc)) != 0) {
   6204 		aprint_error_dev(sc->sc_dev,
   6205 		    "could not power ON adapter\n");
   6206 		return error;
   6207 	}
   6208 
   6209 	/* Select VMAIN power source. */
   6210 	if ((error = iwn_nic_lock(sc)) != 0)
   6211 		return error;
   6212 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6213 	iwn_nic_unlock(sc);
   6214 
   6215 	/* Perform adapter-specific initialization. */
   6216 	if ((error = ops->nic_config(sc)) != 0)
   6217 		return error;
   6218 
   6219 	/* Initialize RX ring. */
   6220 	if ((error = iwn_nic_lock(sc)) != 0)
   6221 		return error;
   6222 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6223 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6224 	/* Set physical address of RX ring (256-byte aligned). */
   6225 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6226 	/* Set physical address of RX status (16-byte aligned). */
   6227 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6228 	/* Enable RX. */
   6229 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6230 	    IWN_FH_RX_CONFIG_ENA           |
   6231 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6232 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6233 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6234 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6235 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6236 	iwn_nic_unlock(sc);
   6237 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6238 
   6239 	if ((error = iwn_nic_lock(sc)) != 0)
   6240 		return error;
   6241 
   6242 	/* Initialize TX scheduler. */
   6243 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6244 
   6245 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6246 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6247 
   6248 	/* Initialize TX rings. */
   6249 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6250 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6251 
   6252 		/* Set physical address of TX ring (256-byte aligned). */
   6253 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6254 		    txq->desc_dma.paddr >> 8);
   6255 	}
   6256 	iwn_nic_unlock(sc);
   6257 
   6258 	/* Enable DMA channels. */
   6259 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6260 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6261 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6262 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6263 	}
   6264 
   6265 	/* Clear "radio off" and "commands blocked" bits. */
   6266 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6267 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6268 
   6269 	/* Clear pending interrupts. */
   6270 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6271 	/* Enable interrupt coalescing. */
   6272 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6273 	/* Enable interrupts. */
   6274 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6275 
   6276 	/* _Really_ make sure "radio off" bit is cleared! */
   6277 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6278 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6279 
   6280 	/* Enable shadow registers. */
   6281 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6282 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6283 
   6284 	if ((error = ops->load_firmware(sc)) != 0) {
   6285 		aprint_error_dev(sc->sc_dev,
   6286 		    "could not load firmware\n");
   6287 		return error;
   6288 	}
   6289 	/* Wait at most one second for firmware alive notification. */
   6290 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6291 		aprint_error_dev(sc->sc_dev,
   6292 		    "timeout waiting for adapter to initialize\n");
   6293 		return error;
   6294 	}
   6295 	/* Do post-firmware initialization. */
   6296 	return ops->post_alive(sc);
   6297 }
   6298 
   6299 static void
   6300 iwn_hw_stop(struct iwn_softc *sc)
   6301 {
   6302 	int chnl, qid, ntries;
   6303 
   6304 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6305 
   6306 	/* Disable interrupts. */
   6307 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6308 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6309 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6310 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6311 
   6312 	/* Make sure we no longer hold the NIC lock. */
   6313 	iwn_nic_unlock(sc);
   6314 
   6315 	/* Stop TX scheduler. */
   6316 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6317 
   6318 	/* Stop all DMA channels. */
   6319 	if (iwn_nic_lock(sc) == 0) {
   6320 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6321 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6322 			for (ntries = 0; ntries < 200; ntries++) {
   6323 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6324 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6325 					break;
   6326 				DELAY(10);
   6327 			}
   6328 		}
   6329 		iwn_nic_unlock(sc);
   6330 	}
   6331 
   6332 	/* Stop RX ring. */
   6333 	iwn_reset_rx_ring(sc, &sc->rxq);
   6334 
   6335 	/* Reset all TX rings. */
   6336 	for (qid = 0; qid < sc->ntxqs; qid++)
   6337 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6338 
   6339 	if (iwn_nic_lock(sc) == 0) {
   6340 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6341 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6342 		iwn_nic_unlock(sc);
   6343 	}
   6344 	DELAY(5);
   6345 	/* Power OFF adapter. */
   6346 	iwn_apm_stop(sc);
   6347 }
   6348 
   6349 static int
   6350 iwn_init(struct ifnet *ifp)
   6351 {
   6352 	struct iwn_softc *sc = ifp->if_softc;
   6353 	struct ieee80211com *ic = &sc->sc_ic;
   6354 	int error;
   6355 
   6356 	mutex_enter(&sc->sc_mtx);
   6357 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6358 		goto out;
   6359 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6360 		aprint_error_dev(sc->sc_dev,
   6361 		    "hardware not ready\n");
   6362 		goto fail;
   6363 	}
   6364 
   6365 	/* Check that the radio is not disabled by hardware switch. */
   6366 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6367 		aprint_error_dev(sc->sc_dev,
   6368 		    "radio is disabled by hardware switch\n");
   6369 		error = EPERM;	/* :-) */
   6370 		goto fail;
   6371 	}
   6372 
   6373 	/* Read firmware images from the filesystem. */
   6374 	if ((error = iwn_read_firmware(sc)) != 0) {
   6375 		aprint_error_dev(sc->sc_dev,
   6376 		    "could not read firmware\n");
   6377 		goto fail;
   6378 	}
   6379 
   6380 	/* Initialize interrupt mask to default value. */
   6381 	sc->int_mask = IWN_INT_MASK_DEF;
   6382 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6383 
   6384 	/* Initialize hardware and upload firmware. */
   6385 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6386 	error = iwn_hw_init(sc);
   6387 	firmware_free(sc->fw.data, sc->fw.size);
   6388 	sc->fw.data = NULL;
   6389 	sc->fw.size = 0;
   6390 	if (error != 0) {
   6391 		aprint_error_dev(sc->sc_dev,
   6392 		    "could not initialize hardware\n");
   6393 		goto fail;
   6394 	}
   6395 
   6396 	/* Configure adapter now that it is ready. */
   6397 	if ((error = iwn_config(sc)) != 0) {
   6398 		aprint_error_dev(sc->sc_dev,
   6399 		    "could not configure device\n");
   6400 		goto fail;
   6401 	}
   6402 
   6403 	sc->sc_beacon_wait = 0;
   6404 
   6405 	ifp->if_flags &= ~IFF_OACTIVE;
   6406 	ifp->if_flags |= IFF_RUNNING;
   6407 
   6408 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6409 		ieee80211_begin_scan(ic, 0);
   6410 	else
   6411 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6412 
   6413 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6414 out:
   6415 	mutex_exit(&sc->sc_mtx);
   6416 	return 0;
   6417 
   6418 fail:	mutex_exit(&sc->sc_mtx);
   6419 	iwn_stop(ifp, 1);
   6420 	return error;
   6421 }
   6422 
   6423 static void
   6424 iwn_stop(struct ifnet *ifp, int disable)
   6425 {
   6426 	struct iwn_softc *sc = ifp->if_softc;
   6427 	struct ieee80211com *ic = &sc->sc_ic;
   6428 
   6429 	if (!disable)
   6430 		mutex_enter(&sc->sc_mtx);
   6431 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6432 	ifp->if_timer = sc->sc_tx_timer = 0;
   6433 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6434 
   6435 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6436 
   6437 	/* Power OFF hardware. */
   6438 	iwn_hw_stop(sc);
   6439 
   6440 	if (!disable)
   6441 		mutex_exit(&sc->sc_mtx);
   6442 }
   6443 
   6444 /*
   6445  * XXX MCLGETI alternative
   6446  *
   6447  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6448  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6449  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6450  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6451  */
   6452 
   6453 static struct mbuf *
   6454 MCLGETIalt(struct iwn_softc *sc, int how,
   6455     struct ifnet *ifp __unused, u_int size)
   6456 {
   6457 	struct mbuf *m;
   6458 #ifdef IWN_USE_RBUF
   6459 	struct iwn_rbuf *rbuf;
   6460 #endif
   6461 
   6462 	MGETHDR(m, how, MT_DATA);
   6463 	if (m == NULL)
   6464 		return NULL;
   6465 
   6466 #ifdef IWN_USE_RBUF
   6467 	if (sc->rxq.nb_free_entries > 0 &&
   6468 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6469 		/* Attach buffer to mbuf header. */
   6470 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6471 		m->m_flags |= M_EXT_RW;
   6472 	}
   6473 	else {
   6474 		MEXTMALLOC(m, size, how);
   6475 		if ((m->m_flags & M_EXT) == 0) {
   6476 			m_freem(m);
   6477 			return NULL;
   6478 		}
   6479 	}
   6480 
   6481 #else
   6482 #ifdef MCLGET4K
   6483 	if (size == 4096)
   6484 		MCLGET4K(m, how);
   6485 	else
   6486 		panic("size must be 4k");
   6487 #else
   6488 	MEXTMALLOC(m, size, how);
   6489 #endif
   6490 	if ((m->m_flags & M_EXT) == 0) {
   6491 		m_freem(m);
   6492 		return NULL;
   6493 	}
   6494 #endif
   6495 
   6496 	return m;
   6497 }
   6498 
   6499 #ifdef IWN_USE_RBUF
   6500 static struct iwn_rbuf *
   6501 iwn_alloc_rbuf(struct iwn_softc *sc)
   6502 {
   6503 	struct iwn_rbuf *rbuf;
   6504 	mutex_enter(&sc->rxq.freelist_mtx);
   6505 
   6506 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6507 	if (rbuf != NULL) {
   6508 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6509 		sc->rxq.nb_free_entries --;
   6510 	}
   6511 	mutex_exit(&sc->rxq.freelist_mtx);
   6512 	return rbuf;
   6513 }
   6514 
   6515 /*
   6516  * This is called automatically by the network stack when the mbuf to which
   6517  * our RX buffer is attached is freed.
   6518  */
   6519 static void
   6520 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6521 {
   6522 	struct iwn_rbuf *rbuf = arg;
   6523 	struct iwn_softc *sc = rbuf->sc;
   6524 
   6525 	/* Put the RX buffer back in the free list. */
   6526 	mutex_enter(&sc->rxq.freelist_mtx);
   6527 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6528 	mutex_exit(&sc->rxq.freelist_mtx);
   6529 
   6530 	sc->rxq.nb_free_entries ++;
   6531 	if (__predict_true(m != NULL))
   6532 		pool_cache_put(mb_cache, m);
   6533 }
   6534 
   6535 static int
   6536 iwn_alloc_rpool(struct iwn_softc *sc)
   6537 {
   6538 	struct iwn_rx_ring *ring = &sc->rxq;
   6539 	struct iwn_rbuf *rbuf;
   6540 	int i, error;
   6541 
   6542 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6543 
   6544 	/* Allocate a big chunk of DMA'able memory... */
   6545 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6546 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6547 	if (error != 0) {
   6548 		aprint_error_dev(sc->sc_dev,
   6549 		    "could not allocate RX buffers DMA memory\n");
   6550 		return error;
   6551 	}
   6552 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6553 	SLIST_INIT(&ring->freelist);
   6554 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6555 		rbuf = &ring->rbuf[i];
   6556 
   6557 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6558 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6559 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6560 
   6561 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6562 	}
   6563 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6564 	return 0;
   6565 }
   6566 
   6567 static void
   6568 iwn_free_rpool(struct iwn_softc *sc)
   6569 {
   6570 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6571 }
   6572 #endif
   6573 
   6574 /*
   6575  * XXX: Hack to set the current channel to the value advertised in beacons or
   6576  * probe responses. Only used during AP detection.
   6577  * XXX: Duplicated from if_iwi.c
   6578  */
   6579 static void
   6580 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6581     struct iwn_rx_stat *stat)
   6582 {
   6583 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6584 	struct ieee80211_frame *wh;
   6585 	uint8_t subtype;
   6586 	uint8_t *frm, *efrm;
   6587 
   6588 	wh = mtod(m, struct ieee80211_frame *);
   6589 
   6590 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6591 		return;
   6592 
   6593 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6594 
   6595 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6596 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6597 		return;
   6598 
   6599 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6600 		int chan = le16toh(stat->chan);
   6601 		if (chan < __arraycount(ic->ic_channels))
   6602 			ic->ic_curchan = &ic->ic_channels[chan];
   6603 		return;
   6604 	}
   6605 
   6606 	frm = (uint8_t *)(wh + 1);
   6607 	efrm = mtod(m, uint8_t *) + m->m_len;
   6608 
   6609 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6610 	while (frm + 2 < efrm) {
   6611 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
   6612 #if IEEE80211_CHAN_MAX < 255
   6613 			if (frm[2] <= IEEE80211_CHAN_MAX)
   6614 #endif
   6615 				ic->ic_curchan = &ic->ic_channels[frm[2]];
   6616 		}
   6617 
   6618 		frm += frm[1] + 2;
   6619 	}
   6620 }
   6621 
   6622 #ifdef notyetMODULE
   6623 
   6624 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6625 
   6626 #ifdef _MODULE
   6627 #include "ioconf.c"
   6628 #endif
   6629 
   6630 static int
   6631 if_iwn_modcmd(modcmd_t cmd, void *data)
   6632 {
   6633 	int error = 0;
   6634 
   6635 	switch (cmd) {
   6636 	case MODULE_CMD_INIT:
   6637 #ifdef _MODULE
   6638 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6639 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6640 #endif
   6641 		return error;
   6642 	case MODULE_CMD_FINI:
   6643 #ifdef _MODULE
   6644 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6645 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6646 #endif
   6647 		return error;
   6648 	case MODULE_CMD_AUTOUNLOAD:
   6649 #ifdef _MODULE
   6650 		/* XXX This is not optional! */
   6651 #endif
   6652 		return error;
   6653 	default:
   6654 		return ENOTTY;
   6655 	}
   6656 }
   6657 #endif
   6658