Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.89
      1 /*	$NetBSD: if_iwn.c,v 1.89 2018/05/01 16:18:13 maya Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.89 2018/05/01 16:18:13 maya Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 static int	iwn_match(device_t , struct cfdata *, void *);
    122 static void	iwn_attach(device_t , device_t , void *);
    123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    125 static void	iwn_radiotap_attach(struct iwn_softc *);
    126 static int	iwn_detach(device_t , int);
    127 #if 0
    128 static void	iwn_power(int, void *);
    129 #endif
    130 static bool	iwn_resume(device_t, const pmf_qual_t *);
    131 static int	iwn_nic_lock(struct iwn_softc *);
    132 static int	iwn_eeprom_lock(struct iwn_softc *);
    133 static int	iwn_init_otprom(struct iwn_softc *);
    134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    136 		    void **, bus_size_t, bus_size_t);
    137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    138 static int	iwn_alloc_sched(struct iwn_softc *);
    139 static void	iwn_free_sched(struct iwn_softc *);
    140 static int	iwn_alloc_kw(struct iwn_softc *);
    141 static void	iwn_free_kw(struct iwn_softc *);
    142 static int	iwn_alloc_ict(struct iwn_softc *);
    143 static void	iwn_free_ict(struct iwn_softc *);
    144 static int	iwn_alloc_fwmem(struct iwn_softc *);
    145 static void	iwn_free_fwmem(struct iwn_softc *);
    146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    150 		    int);
    151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    153 static void	iwn5000_ict_reset(struct iwn_softc *);
    154 static int	iwn_read_eeprom(struct iwn_softc *);
    155 static void	iwn4965_read_eeprom(struct iwn_softc *);
    156 
    157 #ifdef IWN_DEBUG
    158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    159 #endif
    160 static void	iwn5000_read_eeprom(struct iwn_softc *);
    161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    164 static void	iwn_newassoc(struct ieee80211_node *, int);
    165 static int	iwn_media_change(struct ifnet *);
    166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    167 static void	iwn_iter_func(void *, struct ieee80211_node *);
    168 static void	iwn_calib_timeout(void *);
    169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    172 		    struct iwn_rx_data *);
    173 #ifndef IEEE80211_NO_HT
    174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 #endif
    177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    180 		    struct iwn_rx_data *);
    181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    186 		    uint8_t);
    187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    188 static void	iwn_notif_intr(struct iwn_softc *);
    189 static void	iwn_wakeup_intr(struct iwn_softc *);
    190 static void	iwn_fatal_intr(struct iwn_softc *);
    191 static int	iwn_intr(void *);
    192 static void	iwn_softintr(void *);
    193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    194 		    uint16_t);
    195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    196 		    uint16_t);
    197 #ifdef notyet
    198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    199 #endif
    200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    201 		    struct ieee80211_node *, int);
    202 static void	iwn_start(struct ifnet *);
    203 static void	iwn_watchdog(struct ifnet *);
    204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    207 		    int);
    208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    209 		    int);
    210 static int	iwn_set_link_quality(struct iwn_softc *,
    211 		    struct ieee80211_node *);
    212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    214 static int	iwn_set_critical_temp(struct iwn_softc *);
    215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    222 static int	iwn4965_get_temperature(struct iwn_softc *);
    223 static int	iwn5000_get_temperature(struct iwn_softc *);
    224 static int	iwn_init_sensitivity(struct iwn_softc *);
    225 static void	iwn_collect_noise(struct iwn_softc *,
    226 		    const struct iwn_rx_general_stats *);
    227 static int	iwn4965_init_gains(struct iwn_softc *);
    228 static int	iwn5000_init_gains(struct iwn_softc *);
    229 static int	iwn4965_set_gains(struct iwn_softc *);
    230 static int	iwn5000_set_gains(struct iwn_softc *);
    231 static void	iwn_tune_sensitivity(struct iwn_softc *,
    232 		    const struct iwn_rx_stats *);
    233 static int	iwn_send_sensitivity(struct iwn_softc *);
    234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    235 static int	iwn5000_runtime_calib(struct iwn_softc *);
    236 
    237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    241 
    242 static int	iwn_config(struct iwn_softc *);
    243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    244 		    uint8_t);
    245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    247 static int	iwn_scan(struct iwn_softc *, uint16_t);
    248 static int	iwn_auth(struct iwn_softc *);
    249 static int	iwn_run(struct iwn_softc *);
    250 #ifdef IWN_HWCRYPTO
    251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    252 		    struct ieee80211_key *);
    253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    254 		    struct ieee80211_key *);
    255 #endif
    256 static int	iwn_wme_update(struct ieee80211com *);
    257 #ifndef IEEE80211_NO_HT
    258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    259 		    struct ieee80211_node *, uint8_t);
    260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    261 		    struct ieee80211_node *, uint8_t);
    262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    263 		    struct ieee80211_node *, uint8_t);
    264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    265 		    struct ieee80211_node *, uint8_t);
    266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    267 		    struct ieee80211_node *, uint8_t, uint16_t);
    268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    269 		    uint8_t, uint16_t);
    270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    271 		    struct ieee80211_node *, uint8_t, uint16_t);
    272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    273 		    uint8_t, uint16_t);
    274 #endif
    275 static int	iwn5000_query_calibration(struct iwn_softc *);
    276 static int	iwn5000_send_calibration(struct iwn_softc *);
    277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    280 static int	iwn4965_post_alive(struct iwn_softc *);
    281 static int	iwn5000_post_alive(struct iwn_softc *);
    282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    283 		    int);
    284 static int	iwn4965_load_firmware(struct iwn_softc *);
    285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    286 		    const uint8_t *, int);
    287 static int	iwn5000_load_firmware(struct iwn_softc *);
    288 static int	iwn_read_firmware_leg(struct iwn_softc *,
    289 		    struct iwn_fw_info *);
    290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    291 		    struct iwn_fw_info *, uint16_t);
    292 static int	iwn_read_firmware(struct iwn_softc *);
    293 static int	iwn_clock_wait(struct iwn_softc *);
    294 static int	iwn_apm_init(struct iwn_softc *);
    295 static void	iwn_apm_stop_master(struct iwn_softc *);
    296 static void	iwn_apm_stop(struct iwn_softc *);
    297 static int	iwn4965_nic_config(struct iwn_softc *);
    298 static int	iwn5000_nic_config(struct iwn_softc *);
    299 static int	iwn_hw_prepare(struct iwn_softc *);
    300 static int	iwn_hw_init(struct iwn_softc *);
    301 static void	iwn_hw_stop(struct iwn_softc *);
    302 static int	iwn_init(struct ifnet *);
    303 static void	iwn_stop(struct ifnet *, int);
    304 
    305 /* XXX MCLGETI alternative */
    306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    307 		    struct ifnet *, u_int);
    308 #ifdef IWN_USE_RBUF
    309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    311 static int	iwn_alloc_rpool(struct iwn_softc *);
    312 static void	iwn_free_rpool(struct iwn_softc *);
    313 #endif
    314 
    315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    316 		    struct iwn_rx_stat *);
    317 
    318 #ifdef IWN_DEBUG
    319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    321 int iwn_debug = 0;
    322 #else
    323 #define DPRINTF(x)
    324 #define DPRINTFN(n, x)
    325 #endif
    326 
    327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    328 	iwn_detach, NULL);
    329 
    330 static int
    331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    332 {
    333 	struct pci_attach_args *pa = aux;
    334 	size_t i;
    335 
    336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    337 		return 0;
    338 
    339 	for (i = 0; i < __arraycount(iwn_devices); i++)
    340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    341 			return 1;
    342 
    343 	return 0;
    344 }
    345 
    346 static void
    347 iwn_attach(device_t parent __unused, device_t self, void *aux)
    348 {
    349 	struct iwn_softc *sc = device_private(self);
    350 	struct ieee80211com *ic = &sc->sc_ic;
    351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    352 	struct pci_attach_args *pa = aux;
    353 	const char *intrstr;
    354 	pcireg_t memtype, reg;
    355 	int i, error;
    356 	char intrbuf[PCI_INTRSTR_LEN];
    357 
    358 	sc->sc_dev = self;
    359 	sc->sc_pct = pa->pa_pc;
    360 	sc->sc_pcitag = pa->pa_tag;
    361 	sc->sc_dmat = pa->pa_dmat;
    362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    363 
    364 	callout_init(&sc->calib_to, 0);
    365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    366 
    367 	pci_aprint_devinfo(pa, NULL);
    368 
    369 	/*
    370 	 * Get the offset of the PCI Express Capability Structure in PCI
    371 	 * Configuration Space.
    372 	 */
    373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    375 	if (error == 0) {
    376 		aprint_error_dev(self,
    377 		    "PCIe capability structure not found!\n");
    378 		return;
    379 	}
    380 
    381 	/* Clear device-specific "PCI retry timeout" register (41h). */
    382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    383 	if (reg & 0xff00)
    384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    385 
    386 	/* Enable bus-mastering. */
    387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    389 	reg |= PCI_COMMAND_MASTER_ENABLE;
    390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    391 
    392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    394 	    &sc->sc_sh, NULL, &sc->sc_sz);
    395 	if (error != 0) {
    396 		aprint_error_dev(self, "can't map mem space\n");
    397 		return;
    398 	}
    399 
    400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    401 	if (sc->sc_soft_ih == NULL) {
    402 		aprint_error_dev(self, "can't establish soft interrupt\n");
    403 		goto unmap;
    404 	}
    405 
    406 	/* Install interrupt handler. */
    407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    408 	if (error) {
    409 		aprint_error_dev(self, "can't allocate interrupt\n");
    410 		goto failsi;
    411 	}
    412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    415 	else
    416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    419 	    sizeof(intrbuf));
    420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    421 	    IPL_NET, iwn_intr, sc, device_xname(self));
    422 	if (sc->sc_ih == NULL) {
    423 		aprint_error_dev(self, "can't establish interrupt");
    424 		if (intrstr != NULL)
    425 			aprint_error(" at %s", intrstr);
    426 		aprint_error("\n");
    427 		goto failia;
    428 	}
    429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    430 
    431 	/* Read hardware revision and attach. */
    432 	sc->hw_type =
    433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    434 	      >> IWN_HW_REV_TYPE_SHIFT;
    435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    437 	else
    438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    439 	if (error != 0) {
    440 		aprint_error_dev(self, "could not attach device\n");
    441 		goto failih;
    442 	}
    443 
    444 	if ((error = iwn_hw_prepare(sc)) != 0) {
    445 		aprint_error_dev(self, "hardware not ready\n");
    446 		goto failih;
    447 	}
    448 
    449 	/* Read MAC address, channels, etc from EEPROM. */
    450 	if ((error = iwn_read_eeprom(sc)) != 0) {
    451 		aprint_error_dev(self, "could not read EEPROM\n");
    452 		goto failih;
    453 	}
    454 
    455 	/* Allocate DMA memory for firmware transfers. */
    456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    457 		aprint_error_dev(self,
    458 		    "could not allocate memory for firmware\n");
    459 		goto failih;
    460 	}
    461 
    462 	/* Allocate "Keep Warm" page. */
    463 	if ((error = iwn_alloc_kw(sc)) != 0) {
    464 		aprint_error_dev(self, "could not allocate keep warm page\n");
    465 		goto fail1;
    466 	}
    467 
    468 	/* Allocate ICT table for 5000 Series. */
    469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    470 	    (error = iwn_alloc_ict(sc)) != 0) {
    471 		aprint_error_dev(self, "could not allocate ICT table\n");
    472 		goto fail2;
    473 	}
    474 
    475 	/* Allocate TX scheduler "rings". */
    476 	if ((error = iwn_alloc_sched(sc)) != 0) {
    477 		aprint_error_dev(self,
    478 		    "could not allocate TX scheduler rings\n");
    479 		goto fail3;
    480 	}
    481 
    482 #ifdef IWN_USE_RBUF
    483 	/* Allocate RX buffers. */
    484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    485 		aprint_error_dev(self, "could not allocate RX buffers\n");
    486 		goto fail3;
    487 	}
    488 #endif
    489 
    490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    491 	for (i = 0; i < sc->ntxqs; i++) {
    492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    493 			aprint_error_dev(self,
    494 			    "could not allocate TX ring %d\n", i);
    495 			goto fail4;
    496 		}
    497 	}
    498 
    499 	/* Allocate RX ring. */
    500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    501 		aprint_error_dev(self, "could not allocate RX ring\n");
    502 		goto fail4;
    503 	}
    504 
    505 	/* Clear pending interrupts. */
    506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    507 
    508 	/* Count the number of available chains. */
    509 	sc->ntxchains =
    510 	    ((sc->txchainmask >> 2) & 1) +
    511 	    ((sc->txchainmask >> 1) & 1) +
    512 	    ((sc->txchainmask >> 0) & 1);
    513 	sc->nrxchains =
    514 	    ((sc->rxchainmask >> 2) & 1) +
    515 	    ((sc->rxchainmask >> 1) & 1) +
    516 	    ((sc->rxchainmask >> 0) & 1);
    517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    519 	    ether_sprintf(ic->ic_myaddr));
    520 
    521 	ic->ic_ifp = ifp;
    522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    524 	ic->ic_state = IEEE80211_S_INIT;
    525 
    526 	/* Set device capabilities. */
    527 	/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
    528 	 * and IEEE80211_C_PMGT too. */
    529 	ic->ic_caps =
    530 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    531 	    IEEE80211_C_WPA |		/* 802.11i */
    532 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    533 	    IEEE80211_C_TXPMGT |	/* tx power management */
    534 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    535 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    536 	    IEEE80211_C_WME;		/* 802.11e */
    537 
    538 #ifndef IEEE80211_NO_HT
    539 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    540 		/* Set HT capabilities. */
    541 		ic->ic_htcaps =
    542 #if IWN_RBUF_SIZE == 8192
    543 		    IEEE80211_HTCAP_AMSDU7935 |
    544 #endif
    545 		    IEEE80211_HTCAP_CBW20_40 |
    546 		    IEEE80211_HTCAP_SGI20 |
    547 		    IEEE80211_HTCAP_SGI40;
    548 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    549 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    550 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    551 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    552 		else
    553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    554 	}
    555 #endif	/* !IEEE80211_NO_HT */
    556 
    557 	/* Set supported legacy rates. */
    558 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    559 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    560 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    561 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    562 	}
    563 #ifndef IEEE80211_NO_HT
    564 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    565 		/* Set supported HT rates. */
    566 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    567 		if (sc->nrxchains > 1)
    568 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    569 		if (sc->nrxchains > 2)
    570 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    571 	}
    572 #endif
    573 
    574 	/* IBSS channel undefined for now. */
    575 	ic->ic_ibss_chan = &ic->ic_channels[0];
    576 
    577 	ifp->if_softc = sc;
    578 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    579 	ifp->if_init = iwn_init;
    580 	ifp->if_ioctl = iwn_ioctl;
    581 	ifp->if_start = iwn_start;
    582 	ifp->if_stop = iwn_stop;
    583 	ifp->if_watchdog = iwn_watchdog;
    584 	IFQ_SET_READY(&ifp->if_snd);
    585 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    586 
    587 	error = if_initialize(ifp);
    588 	if (error != 0) {
    589 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    590 		    error);
    591 		goto fail5;
    592 	}
    593 	ieee80211_ifattach(ic);
    594 	/* Use common softint-based if_input */
    595 	ifp->if_percpuq = if_percpuq_create(ifp);
    596 	if_register(ifp);
    597 
    598 	ic->ic_node_alloc = iwn_node_alloc;
    599 	ic->ic_newassoc = iwn_newassoc;
    600 #ifdef IWN_HWCRYPTO
    601 	ic->ic_crypto.cs_key_set = iwn_set_key;
    602 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    603 #endif
    604 	ic->ic_wme.wme_update = iwn_wme_update;
    605 #ifndef IEEE80211_NO_HT
    606 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    607 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    608 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    609 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    610 #endif
    611 
    612 	/* Override 802.11 state transition machine. */
    613 	sc->sc_newstate = ic->ic_newstate;
    614 	ic->ic_newstate = iwn_newstate;
    615 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    616 
    617 	sc->amrr.amrr_min_success_threshold =  1;
    618 	sc->amrr.amrr_max_success_threshold = 15;
    619 
    620 	iwn_radiotap_attach(sc);
    621 
    622 	/*
    623 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    624 	 * callout_init and callout_setfunc, above.
    625 	*/
    626 
    627 	if (pmf_device_register(self, NULL, iwn_resume))
    628 		pmf_class_network_register(self, ifp);
    629 	else
    630 		aprint_error_dev(self, "couldn't establish power handler\n");
    631 
    632 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    633 	ieee80211_announce(ic);
    634 
    635 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    636 	return;
    637 
    638 	/* Free allocated memory if something failed during attachment. */
    639 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
    640 fail4:	while (--i >= 0)
    641 		iwn_free_tx_ring(sc, &sc->txq[i]);
    642 #ifdef IWN_USE_RBUF
    643 	iwn_free_rpool(sc);
    644 #endif
    645 	iwn_free_sched(sc);
    646 fail3:	if (sc->ict != NULL)
    647 		iwn_free_ict(sc);
    648 fail2:	iwn_free_kw(sc);
    649 fail1:	iwn_free_fwmem(sc);
    650 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    651 	sc->sc_ih = NULL;
    652 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    653 	sc->sc_pihp = NULL;
    654 failsi:	softint_disestablish(sc->sc_soft_ih);
    655 	sc->sc_soft_ih = NULL;
    656 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    657 }
    658 
    659 int
    660 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    661 {
    662 	struct iwn_ops *ops = &sc->ops;
    663 
    664 	ops->load_firmware = iwn4965_load_firmware;
    665 	ops->read_eeprom = iwn4965_read_eeprom;
    666 	ops->post_alive = iwn4965_post_alive;
    667 	ops->nic_config = iwn4965_nic_config;
    668 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    669 	ops->update_sched = iwn4965_update_sched;
    670 	ops->get_temperature = iwn4965_get_temperature;
    671 	ops->get_rssi = iwn4965_get_rssi;
    672 	ops->set_txpower = iwn4965_set_txpower;
    673 	ops->init_gains = iwn4965_init_gains;
    674 	ops->set_gains = iwn4965_set_gains;
    675 	ops->add_node = iwn4965_add_node;
    676 	ops->tx_done = iwn4965_tx_done;
    677 #ifndef IEEE80211_NO_HT
    678 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    679 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    680 #endif
    681 	sc->ntxqs = IWN4965_NTXQUEUES;
    682 	sc->ndmachnls = IWN4965_NDMACHNLS;
    683 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    684 	sc->rxonsz = IWN4965_RXONSZ;
    685 	sc->schedsz = IWN4965_SCHEDSZ;
    686 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    687 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    688 	sc->fwsz = IWN4965_FWSZ;
    689 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    690 	sc->limits = &iwn4965_sensitivity_limits;
    691 	sc->fwname = "iwlwifi-4965-2.ucode";
    692 	/* Override chains masks, ROM is known to be broken. */
    693 	sc->txchainmask = IWN_ANT_AB;
    694 	sc->rxchainmask = IWN_ANT_ABC;
    695 
    696 	return 0;
    697 }
    698 
    699 int
    700 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    701 {
    702 	struct iwn_ops *ops = &sc->ops;
    703 
    704 	ops->load_firmware = iwn5000_load_firmware;
    705 	ops->read_eeprom = iwn5000_read_eeprom;
    706 	ops->post_alive = iwn5000_post_alive;
    707 	ops->nic_config = iwn5000_nic_config;
    708 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    709 	ops->update_sched = iwn5000_update_sched;
    710 	ops->get_temperature = iwn5000_get_temperature;
    711 	ops->get_rssi = iwn5000_get_rssi;
    712 	ops->set_txpower = iwn5000_set_txpower;
    713 	ops->init_gains = iwn5000_init_gains;
    714 	ops->set_gains = iwn5000_set_gains;
    715 	ops->add_node = iwn5000_add_node;
    716 	ops->tx_done = iwn5000_tx_done;
    717 #ifndef IEEE80211_NO_HT
    718 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    719 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    720 #endif
    721 	sc->ntxqs = IWN5000_NTXQUEUES;
    722 	sc->ndmachnls = IWN5000_NDMACHNLS;
    723 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    724 	sc->rxonsz = IWN5000_RXONSZ;
    725 	sc->schedsz = IWN5000_SCHEDSZ;
    726 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    727 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    728 	sc->fwsz = IWN5000_FWSZ;
    729 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    730 
    731 	switch (sc->hw_type) {
    732 	case IWN_HW_REV_TYPE_5100:
    733 		sc->limits = &iwn5000_sensitivity_limits;
    734 		sc->fwname = "iwlwifi-5000-2.ucode";
    735 		/* Override chains masks, ROM is known to be broken. */
    736 		sc->txchainmask = IWN_ANT_B;
    737 		sc->rxchainmask = IWN_ANT_AB;
    738 		break;
    739 	case IWN_HW_REV_TYPE_5150:
    740 		sc->limits = &iwn5150_sensitivity_limits;
    741 		sc->fwname = "iwlwifi-5150-2.ucode";
    742 		break;
    743 	case IWN_HW_REV_TYPE_5300:
    744 	case IWN_HW_REV_TYPE_5350:
    745 		sc->limits = &iwn5000_sensitivity_limits;
    746 		sc->fwname = "iwlwifi-5000-2.ucode";
    747 		break;
    748 	case IWN_HW_REV_TYPE_1000:
    749 		sc->limits = &iwn1000_sensitivity_limits;
    750 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    751 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    752 			sc->fwname = "iwlwifi-100-5.ucode";
    753 		else
    754 			sc->fwname = "iwlwifi-1000-3.ucode";
    755 		break;
    756 	case IWN_HW_REV_TYPE_6000:
    757 		sc->limits = &iwn6000_sensitivity_limits;
    758 		sc->fwname = "iwlwifi-6000-4.ucode";
    759 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    760 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    761 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    762 			/* Override chains masks, ROM is known to be broken. */
    763 			sc->txchainmask = IWN_ANT_BC;
    764 			sc->rxchainmask = IWN_ANT_BC;
    765 		}
    766 		break;
    767 	case IWN_HW_REV_TYPE_6050:
    768 		sc->limits = &iwn6000_sensitivity_limits;
    769 		sc->fwname = "iwlwifi-6050-5.ucode";
    770 		break;
    771 	case IWN_HW_REV_TYPE_6005:
    772 		sc->limits = &iwn6000_sensitivity_limits;
    773 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    774 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    775 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    776 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    777 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    778 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    779 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    780 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    781 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    782 		}
    783 		else
    784 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    785 		break;
    786 	case IWN_HW_REV_TYPE_2030:
    787 		sc->limits = &iwn2030_sensitivity_limits;
    788 		sc->fwname = "iwlwifi-2030-6.ucode";
    789 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    790 		break;
    791 	case IWN_HW_REV_TYPE_2000:
    792 		sc->limits = &iwn2000_sensitivity_limits;
    793 		sc->fwname = "iwlwifi-2000-6.ucode";
    794 		break;
    795 	case IWN_HW_REV_TYPE_135:
    796 		sc->limits = &iwn2000_sensitivity_limits;
    797 		sc->fwname = "iwlwifi-135-6.ucode";
    798 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    799 		break;
    800 	case IWN_HW_REV_TYPE_105:
    801 		sc->limits = &iwn2000_sensitivity_limits;
    802 		sc->fwname = "iwlwifi-105-6.ucode";
    803 		break;
    804 	default:
    805 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    806 		return ENOTSUP;
    807 	}
    808 	return 0;
    809 }
    810 
    811 /*
    812  * Attach the interface to 802.11 radiotap.
    813  */
    814 static void
    815 iwn_radiotap_attach(struct iwn_softc *sc)
    816 {
    817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    818 
    819 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    820 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    821 	    &sc->sc_drvbpf);
    822 
    823 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    824 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    825 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    826 
    827 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    828 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    829 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    830 }
    831 
    832 static int
    833 iwn_detach(device_t self, int flags __unused)
    834 {
    835 	struct iwn_softc *sc = device_private(self);
    836 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    837 	int qid;
    838 
    839 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    840 		return 0;
    841 
    842 	callout_stop(&sc->calib_to);
    843 
    844 	/* Uninstall interrupt handler. */
    845 	if (sc->sc_ih != NULL)
    846 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    847 	if (sc->sc_pihp != NULL)
    848 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    849 	if (sc->sc_soft_ih != NULL)
    850 		softint_disestablish(sc->sc_soft_ih);
    851 
    852 	/* Free DMA resources. */
    853 	iwn_free_rx_ring(sc, &sc->rxq);
    854 	for (qid = 0; qid < sc->ntxqs; qid++)
    855 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    856 #ifdef IWN_USE_RBUF
    857 	iwn_free_rpool(sc);
    858 #endif
    859 	iwn_free_sched(sc);
    860 	iwn_free_kw(sc);
    861 	if (sc->ict != NULL)
    862 		iwn_free_ict(sc);
    863 	iwn_free_fwmem(sc);
    864 
    865 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    866 
    867 	ieee80211_ifdetach(&sc->sc_ic);
    868 	if_detach(ifp);
    869 
    870 	return 0;
    871 }
    872 
    873 #if 0
    874 /*
    875  * XXX Investigate if clearing the PCI retry timeout could eliminate
    876  * the repeated scan calls.  Also the calls to if_init and if_start
    877  * are similar to the effect of adding the call to ifioctl_common .
    878  */
    879 static void
    880 iwn_power(int why, void *arg)
    881 {
    882 	struct iwn_softc *sc = arg;
    883 	struct ifnet *ifp;
    884 	pcireg_t reg;
    885 	int s;
    886 
    887 	if (why != PWR_RESUME)
    888 		return;
    889 
    890 	/* Clear device-specific "PCI retry timeout" register (41h). */
    891 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    892 	if (reg & 0xff00)
    893 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    894 
    895 	s = splnet();
    896 	ifp = &sc->sc_ic.ic_if;
    897 	if (ifp->if_flags & IFF_UP) {
    898 		ifp->if_init(ifp);
    899 		if (ifp->if_flags & IFF_RUNNING)
    900 			ifp->if_start(ifp);
    901 	}
    902 	splx(s);
    903 }
    904 #endif
    905 
    906 static bool
    907 iwn_resume(device_t dv, const pmf_qual_t *qual)
    908 {
    909 	return true;
    910 }
    911 
    912 static int
    913 iwn_nic_lock(struct iwn_softc *sc)
    914 {
    915 	int ntries;
    916 
    917 	/* Request exclusive access to NIC. */
    918 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    919 
    920 	/* Spin until we actually get the lock. */
    921 	for (ntries = 0; ntries < 1000; ntries++) {
    922 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    923 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    924 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    925 			return 0;
    926 		DELAY(10);
    927 	}
    928 	return ETIMEDOUT;
    929 }
    930 
    931 static __inline void
    932 iwn_nic_unlock(struct iwn_softc *sc)
    933 {
    934 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    935 }
    936 
    937 static __inline uint32_t
    938 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    939 {
    940 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    941 	IWN_BARRIER_READ_WRITE(sc);
    942 	return IWN_READ(sc, IWN_PRPH_RDATA);
    943 }
    944 
    945 static __inline void
    946 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    947 {
    948 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    949 	IWN_BARRIER_WRITE(sc);
    950 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    951 }
    952 
    953 static __inline void
    954 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    955 {
    956 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    957 }
    958 
    959 static __inline void
    960 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    961 {
    962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    963 }
    964 
    965 static __inline void
    966 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    967     const uint32_t *data, int count)
    968 {
    969 	for (; count > 0; count--, data++, addr += 4)
    970 		iwn_prph_write(sc, addr, *data);
    971 }
    972 
    973 static __inline uint32_t
    974 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    975 {
    976 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    977 	IWN_BARRIER_READ_WRITE(sc);
    978 	return IWN_READ(sc, IWN_MEM_RDATA);
    979 }
    980 
    981 static __inline void
    982 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    983 {
    984 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    985 	IWN_BARRIER_WRITE(sc);
    986 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    987 }
    988 
    989 #ifndef IEEE80211_NO_HT
    990 static __inline void
    991 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
    992 {
    993 	uint32_t tmp;
    994 
    995 	tmp = iwn_mem_read(sc, addr & ~3);
    996 	if (addr & 3)
    997 		tmp = (tmp & 0x0000ffff) | data << 16;
    998 	else
    999 		tmp = (tmp & 0xffff0000) | data;
   1000 	iwn_mem_write(sc, addr & ~3, tmp);
   1001 }
   1002 #endif
   1003 
   1004 static __inline void
   1005 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1006     int count)
   1007 {
   1008 	for (; count > 0; count--, addr += 4)
   1009 		*data++ = iwn_mem_read(sc, addr);
   1010 }
   1011 
   1012 static __inline void
   1013 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1014     int count)
   1015 {
   1016 	for (; count > 0; count--, addr += 4)
   1017 		iwn_mem_write(sc, addr, val);
   1018 }
   1019 
   1020 static int
   1021 iwn_eeprom_lock(struct iwn_softc *sc)
   1022 {
   1023 	int i, ntries;
   1024 
   1025 	for (i = 0; i < 100; i++) {
   1026 		/* Request exclusive access to EEPROM. */
   1027 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1028 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1029 
   1030 		/* Spin until we actually get the lock. */
   1031 		for (ntries = 0; ntries < 100; ntries++) {
   1032 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1033 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1034 				return 0;
   1035 			DELAY(10);
   1036 		}
   1037 	}
   1038 	return ETIMEDOUT;
   1039 }
   1040 
   1041 static __inline void
   1042 iwn_eeprom_unlock(struct iwn_softc *sc)
   1043 {
   1044 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1045 }
   1046 
   1047 /*
   1048  * Initialize access by host to One Time Programmable ROM.
   1049  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1050  */
   1051 static int
   1052 iwn_init_otprom(struct iwn_softc *sc)
   1053 {
   1054 	uint16_t prev = 0, base, next;
   1055 	int count, error;
   1056 
   1057 	/* Wait for clock stabilization before accessing prph. */
   1058 	if ((error = iwn_clock_wait(sc)) != 0)
   1059 		return error;
   1060 
   1061 	if ((error = iwn_nic_lock(sc)) != 0)
   1062 		return error;
   1063 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1064 	DELAY(5);
   1065 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1066 	iwn_nic_unlock(sc);
   1067 
   1068 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1069 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1070 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1071 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1072 	}
   1073 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1074 	/* Clear ECC status. */
   1075 	IWN_SETBITS(sc, IWN_OTP_GP,
   1076 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1077 
   1078 	/*
   1079 	 * Find the block before last block (contains the EEPROM image)
   1080 	 * for HW without OTP shadow RAM.
   1081 	 */
   1082 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1083 		/* Switch to absolute addressing mode. */
   1084 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1085 		base = 0;
   1086 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1087 			error = iwn_read_prom_data(sc, base, &next, 2);
   1088 			if (error != 0)
   1089 				return error;
   1090 			if (next == 0)	/* End of linked-list. */
   1091 				break;
   1092 			prev = base;
   1093 			base = le16toh(next);
   1094 		}
   1095 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1096 			return EIO;
   1097 		/* Skip "next" word. */
   1098 		sc->prom_base = prev + 1;
   1099 	}
   1100 	return 0;
   1101 }
   1102 
   1103 static int
   1104 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1105 {
   1106 	uint8_t *out = data;
   1107 	uint32_t val, tmp;
   1108 	int ntries;
   1109 
   1110 	addr += sc->prom_base;
   1111 	for (; count > 0; count -= 2, addr++) {
   1112 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1113 		for (ntries = 0; ntries < 10; ntries++) {
   1114 			val = IWN_READ(sc, IWN_EEPROM);
   1115 			if (val & IWN_EEPROM_READ_VALID)
   1116 				break;
   1117 			DELAY(5);
   1118 		}
   1119 		if (ntries == 10) {
   1120 			aprint_error_dev(sc->sc_dev,
   1121 			    "timeout reading ROM at 0x%x\n", addr);
   1122 			return ETIMEDOUT;
   1123 		}
   1124 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1125 			/* OTPROM, check for ECC errors. */
   1126 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1127 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1128 				aprint_error_dev(sc->sc_dev,
   1129 				    "OTPROM ECC error at 0x%x\n", addr);
   1130 				return EIO;
   1131 			}
   1132 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1133 				/* Correctable ECC error, clear bit. */
   1134 				IWN_SETBITS(sc, IWN_OTP_GP,
   1135 				    IWN_OTP_GP_ECC_CORR_STTS);
   1136 			}
   1137 		}
   1138 		*out++ = val >> 16;
   1139 		if (count > 1)
   1140 			*out++ = val >> 24;
   1141 	}
   1142 	return 0;
   1143 }
   1144 
   1145 static int
   1146 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1147     bus_size_t size, bus_size_t alignment)
   1148 {
   1149 	int nsegs, error;
   1150 
   1151 	dma->tag = tag;
   1152 	dma->size = size;
   1153 
   1154 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1155 	    &dma->map);
   1156 	if (error != 0)
   1157 		goto fail;
   1158 
   1159 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1160 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1161 	if (error != 0)
   1162 		goto fail;
   1163 
   1164 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1165 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1166 	if (error != 0)
   1167 		goto fail;
   1168 
   1169 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1170 	    BUS_DMA_NOWAIT);
   1171 	if (error != 0)
   1172 		goto fail;
   1173 
   1174 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1175 	memset(dma->vaddr, 0, size);
   1176 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1177 
   1178 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1179 	if (kvap != NULL)
   1180 		*kvap = dma->vaddr;
   1181 
   1182 	return 0;
   1183 
   1184 fail:	iwn_dma_contig_free(dma);
   1185 	return error;
   1186 }
   1187 
   1188 static void
   1189 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1190 {
   1191 	if (dma->map != NULL) {
   1192 		if (dma->vaddr != NULL) {
   1193 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1194 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1195 			bus_dmamap_unload(dma->tag, dma->map);
   1196 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1197 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1198 			dma->vaddr = NULL;
   1199 		}
   1200 		bus_dmamap_destroy(dma->tag, dma->map);
   1201 		dma->map = NULL;
   1202 	}
   1203 }
   1204 
   1205 static int
   1206 iwn_alloc_sched(struct iwn_softc *sc)
   1207 {
   1208 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1209 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1210 	    (void **)&sc->sched, sc->schedsz, 1024);
   1211 }
   1212 
   1213 static void
   1214 iwn_free_sched(struct iwn_softc *sc)
   1215 {
   1216 	iwn_dma_contig_free(&sc->sched_dma);
   1217 }
   1218 
   1219 static int
   1220 iwn_alloc_kw(struct iwn_softc *sc)
   1221 {
   1222 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1223 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1224 	    4096);
   1225 }
   1226 
   1227 static void
   1228 iwn_free_kw(struct iwn_softc *sc)
   1229 {
   1230 	iwn_dma_contig_free(&sc->kw_dma);
   1231 }
   1232 
   1233 static int
   1234 iwn_alloc_ict(struct iwn_softc *sc)
   1235 {
   1236 	/* ICT table must be aligned on a 4KB boundary. */
   1237 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1238 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1239 }
   1240 
   1241 static void
   1242 iwn_free_ict(struct iwn_softc *sc)
   1243 {
   1244 	iwn_dma_contig_free(&sc->ict_dma);
   1245 }
   1246 
   1247 static int
   1248 iwn_alloc_fwmem(struct iwn_softc *sc)
   1249 {
   1250 	/* Must be aligned on a 16-byte boundary. */
   1251 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1252 	    sc->fwsz, 16);
   1253 }
   1254 
   1255 static void
   1256 iwn_free_fwmem(struct iwn_softc *sc)
   1257 {
   1258 	iwn_dma_contig_free(&sc->fw_dma);
   1259 }
   1260 
   1261 static int
   1262 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1263 {
   1264 	bus_size_t size;
   1265 	int i, error;
   1266 
   1267 	ring->cur = 0;
   1268 
   1269 	/* Allocate RX descriptors (256-byte aligned). */
   1270 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1271 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1272 	    (void **)&ring->desc, size, 256);
   1273 	if (error != 0) {
   1274 		aprint_error_dev(sc->sc_dev,
   1275 		    "could not allocate RX ring DMA memory\n");
   1276 		goto fail;
   1277 	}
   1278 
   1279 	/* Allocate RX status area (16-byte aligned). */
   1280 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1281 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1282 	if (error != 0) {
   1283 		aprint_error_dev(sc->sc_dev,
   1284 		    "could not allocate RX status DMA memory\n");
   1285 		goto fail;
   1286 	}
   1287 
   1288 	/*
   1289 	 * Allocate and map RX buffers.
   1290 	 */
   1291 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1292 		struct iwn_rx_data *data = &ring->data[i];
   1293 
   1294 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1295 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1296 		    &data->map);
   1297 		if (error != 0) {
   1298 			aprint_error_dev(sc->sc_dev,
   1299 			    "could not create RX buf DMA map\n");
   1300 			goto fail;
   1301 		}
   1302 
   1303 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1304 		if (data->m == NULL) {
   1305 			aprint_error_dev(sc->sc_dev,
   1306 			    "could not allocate RX mbuf\n");
   1307 			error = ENOBUFS;
   1308 			goto fail;
   1309 		}
   1310 
   1311 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1312 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1313 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1314 		if (error != 0) {
   1315 			aprint_error_dev(sc->sc_dev,
   1316 			    "can't not map mbuf (error %d)\n", error);
   1317 			goto fail;
   1318 		}
   1319 
   1320 		/* Set physical address of RX buffer (256-byte aligned). */
   1321 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1322 	}
   1323 
   1324 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1325 	    BUS_DMASYNC_PREWRITE);
   1326 
   1327 	return 0;
   1328 
   1329 fail:	iwn_free_rx_ring(sc, ring);
   1330 	return error;
   1331 }
   1332 
   1333 static void
   1334 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1335 {
   1336 	int ntries;
   1337 
   1338 	if (iwn_nic_lock(sc) == 0) {
   1339 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1340 		for (ntries = 0; ntries < 1000; ntries++) {
   1341 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1342 			    IWN_FH_RX_STATUS_IDLE)
   1343 				break;
   1344 			DELAY(10);
   1345 		}
   1346 		iwn_nic_unlock(sc);
   1347 	}
   1348 	ring->cur = 0;
   1349 	sc->last_rx_valid = 0;
   1350 }
   1351 
   1352 static void
   1353 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1354 {
   1355 	int i;
   1356 
   1357 	iwn_dma_contig_free(&ring->desc_dma);
   1358 	iwn_dma_contig_free(&ring->stat_dma);
   1359 
   1360 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1361 		struct iwn_rx_data *data = &ring->data[i];
   1362 
   1363 		if (data->m != NULL) {
   1364 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1365 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1366 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1367 			m_freem(data->m);
   1368 		}
   1369 		if (data->map != NULL)
   1370 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1371 	}
   1372 }
   1373 
   1374 static int
   1375 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1376 {
   1377 	bus_addr_t paddr;
   1378 	bus_size_t size;
   1379 	int i, error;
   1380 
   1381 	ring->qid = qid;
   1382 	ring->queued = 0;
   1383 	ring->cur = 0;
   1384 
   1385 	/* Allocate TX descriptors (256-byte aligned). */
   1386 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1387 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1388 	    (void **)&ring->desc, size, 256);
   1389 	if (error != 0) {
   1390 		aprint_error_dev(sc->sc_dev,
   1391 		    "could not allocate TX ring DMA memory\n");
   1392 		goto fail;
   1393 	}
   1394 	/*
   1395 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1396 	 * to allocate commands space for other rings.
   1397 	 * XXX Do we really need to allocate descriptors for other rings?
   1398 	 */
   1399 	if (qid > 4)
   1400 		return 0;
   1401 
   1402 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1403 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1404 	    (void **)&ring->cmd, size, 4);
   1405 	if (error != 0) {
   1406 		aprint_error_dev(sc->sc_dev,
   1407 		    "could not allocate TX cmd DMA memory\n");
   1408 		goto fail;
   1409 	}
   1410 
   1411 	paddr = ring->cmd_dma.paddr;
   1412 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1413 		struct iwn_tx_data *data = &ring->data[i];
   1414 
   1415 		data->cmd_paddr = paddr;
   1416 		data->scratch_paddr = paddr + 12;
   1417 		paddr += sizeof (struct iwn_tx_cmd);
   1418 
   1419 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1420 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1421 		    &data->map);
   1422 		if (error != 0) {
   1423 			aprint_error_dev(sc->sc_dev,
   1424 			    "could not create TX buf DMA map\n");
   1425 			goto fail;
   1426 		}
   1427 	}
   1428 	return 0;
   1429 
   1430 fail:	iwn_free_tx_ring(sc, ring);
   1431 	return error;
   1432 }
   1433 
   1434 static void
   1435 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1436 {
   1437 	int i;
   1438 
   1439 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1440 		struct iwn_tx_data *data = &ring->data[i];
   1441 
   1442 		if (data->m != NULL) {
   1443 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1444 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1445 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1446 			m_freem(data->m);
   1447 			data->m = NULL;
   1448 		}
   1449 	}
   1450 	/* Clear TX descriptors. */
   1451 	memset(ring->desc, 0, ring->desc_dma.size);
   1452 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1453 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1454 	sc->qfullmsk &= ~(1 << ring->qid);
   1455 	ring->queued = 0;
   1456 	ring->cur = 0;
   1457 }
   1458 
   1459 static void
   1460 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1461 {
   1462 	int i;
   1463 
   1464 	iwn_dma_contig_free(&ring->desc_dma);
   1465 	iwn_dma_contig_free(&ring->cmd_dma);
   1466 
   1467 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1468 		struct iwn_tx_data *data = &ring->data[i];
   1469 
   1470 		if (data->m != NULL) {
   1471 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1472 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1473 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1474 			m_freem(data->m);
   1475 		}
   1476 		if (data->map != NULL)
   1477 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1478 	}
   1479 }
   1480 
   1481 static void
   1482 iwn5000_ict_reset(struct iwn_softc *sc)
   1483 {
   1484 	/* Disable interrupts. */
   1485 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1486 
   1487 	/* Reset ICT table. */
   1488 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1489 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1490 	    BUS_DMASYNC_PREWRITE);
   1491 	sc->ict_cur = 0;
   1492 
   1493 	/* Set physical address of ICT table (4KB aligned). */
   1494 	DPRINTF(("enabling ICT\n"));
   1495 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1496 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1497 
   1498 	/* Enable periodic RX interrupt. */
   1499 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1500 	/* Switch to ICT interrupt mode in driver. */
   1501 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1502 
   1503 	/* Re-enable interrupts. */
   1504 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1505 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1506 }
   1507 
   1508 static int
   1509 iwn_read_eeprom(struct iwn_softc *sc)
   1510 {
   1511 	struct iwn_ops *ops = &sc->ops;
   1512 	struct ieee80211com *ic = &sc->sc_ic;
   1513 	uint16_t val;
   1514 	int error;
   1515 
   1516 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1517 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1518 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1519 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1520 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1521 	    "OTPROM" : "EEPROM"));
   1522 
   1523 	/* Adapter has to be powered on for EEPROM access to work. */
   1524 	if ((error = iwn_apm_init(sc)) != 0) {
   1525 		aprint_error_dev(sc->sc_dev,
   1526 		    "could not power ON adapter\n");
   1527 		return error;
   1528 	}
   1529 
   1530 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1531 		aprint_error_dev(sc->sc_dev,
   1532 		    "bad ROM signature\n");
   1533 		return EIO;
   1534 	}
   1535 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1536 		aprint_error_dev(sc->sc_dev,
   1537 		    "could not lock ROM (error=%d)\n", error);
   1538 		return error;
   1539 	}
   1540 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1541 		if ((error = iwn_init_otprom(sc)) != 0) {
   1542 			aprint_error_dev(sc->sc_dev,
   1543 			    "could not initialize OTPROM\n");
   1544 			return error;
   1545 		}
   1546 	}
   1547 
   1548 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1549 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1550 	/* Check if HT support is bonded out. */
   1551 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1552 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1553 
   1554 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1555 	sc->rfcfg = le16toh(val);
   1556 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1557 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1558 	if (sc->txchainmask == 0)
   1559 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1560 	if (sc->rxchainmask == 0)
   1561 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1562 
   1563 	/* Read MAC address. */
   1564 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1565 
   1566 	/* Read adapter-specific information from EEPROM. */
   1567 	ops->read_eeprom(sc);
   1568 
   1569 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1570 
   1571 	iwn_eeprom_unlock(sc);
   1572 	return 0;
   1573 }
   1574 
   1575 static void
   1576 iwn4965_read_eeprom(struct iwn_softc *sc)
   1577 {
   1578 	uint32_t addr;
   1579 	uint16_t val;
   1580 	int i;
   1581 
   1582 	/* Read regulatory domain (4 ASCII characters). */
   1583 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1584 
   1585 	/* Read the list of authorized channels (20MHz ones only). */
   1586 	for (i = 0; i < 5; i++) {
   1587 		addr = iwn4965_regulatory_bands[i];
   1588 		iwn_read_eeprom_channels(sc, i, addr);
   1589 	}
   1590 
   1591 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1592 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1593 	sc->maxpwr2GHz = val & 0xff;
   1594 	sc->maxpwr5GHz = val >> 8;
   1595 	/* Check that EEPROM values are within valid range. */
   1596 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1597 		sc->maxpwr5GHz = 38;
   1598 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1599 		sc->maxpwr2GHz = 38;
   1600 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1601 
   1602 	/* Read samples for each TX power group. */
   1603 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1604 	    sizeof sc->bands);
   1605 
   1606 	/* Read voltage at which samples were taken. */
   1607 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1608 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1609 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1610 
   1611 #ifdef IWN_DEBUG
   1612 	/* Print samples. */
   1613 	if (iwn_debug > 0) {
   1614 		for (i = 0; i < IWN_NBANDS; i++)
   1615 			iwn4965_print_power_group(sc, i);
   1616 	}
   1617 #endif
   1618 }
   1619 
   1620 #ifdef IWN_DEBUG
   1621 static void
   1622 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1623 {
   1624 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1625 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1626 	int j, c;
   1627 
   1628 	aprint_normal("===band %d===\n", i);
   1629 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1630 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1631 	for (c = 0; c < 2; c++) {
   1632 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1633 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1634 			    "power=%d pa_det=%d\n", c, j,
   1635 			    chans[0].samples[c][j].temp,
   1636 			    chans[0].samples[c][j].gain,
   1637 			    chans[0].samples[c][j].power,
   1638 			    chans[0].samples[c][j].pa_det);
   1639 		}
   1640 	}
   1641 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1642 	for (c = 0; c < 2; c++) {
   1643 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1644 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1645 			    "power=%d pa_det=%d\n", c, j,
   1646 			    chans[1].samples[c][j].temp,
   1647 			    chans[1].samples[c][j].gain,
   1648 			    chans[1].samples[c][j].power,
   1649 			    chans[1].samples[c][j].pa_det);
   1650 		}
   1651 	}
   1652 }
   1653 #endif
   1654 
   1655 static void
   1656 iwn5000_read_eeprom(struct iwn_softc *sc)
   1657 {
   1658 	struct iwn5000_eeprom_calib_hdr hdr;
   1659 	int32_t volt;
   1660 	uint32_t base, addr;
   1661 	uint16_t val;
   1662 	int i;
   1663 
   1664 	/* Read regulatory domain (4 ASCII characters). */
   1665 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1666 	base = le16toh(val);
   1667 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1668 	    sc->eeprom_domain, 4);
   1669 
   1670 	/* Read the list of authorized channels (20MHz ones only). */
   1671 	for (i = 0; i < 5; i++) {
   1672 		addr = base + iwn5000_regulatory_bands[i];
   1673 		iwn_read_eeprom_channels(sc, i, addr);
   1674 	}
   1675 
   1676 	/* Read enhanced TX power information for 6000 Series. */
   1677 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1678 		iwn_read_eeprom_enhinfo(sc);
   1679 
   1680 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1681 	base = le16toh(val);
   1682 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1683 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1684 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1685 	sc->calib_ver = hdr.version;
   1686 
   1687 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1688 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1689 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1690 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1691 		sc->eeprom_voltage = le16toh(hdr.volt);
   1692 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1693 		sc->eeprom_temp = le16toh(val);
   1694 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1695 		sc->eeprom_rawtemp = le16toh(val);
   1696 	}
   1697 
   1698 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1699 		/* Compute temperature offset. */
   1700 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1701 		sc->eeprom_temp = le16toh(val);
   1702 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1703 		volt = le16toh(val);
   1704 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1705 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1706 		    sc->eeprom_temp, volt, sc->temp_off));
   1707 	} else {
   1708 		/* Read crystal calibration. */
   1709 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1710 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1711 		DPRINTF(("crystal calibration 0x%08x\n",
   1712 		    le32toh(sc->eeprom_crystal)));
   1713 	}
   1714 }
   1715 
   1716 static void
   1717 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1718 {
   1719 	struct ieee80211com *ic = &sc->sc_ic;
   1720 	const struct iwn_chan_band *band = &iwn_bands[n];
   1721 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1722 	uint8_t chan;
   1723 	int i;
   1724 
   1725 	iwn_read_prom_data(sc, addr, channels,
   1726 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1727 
   1728 	for (i = 0; i < band->nchan; i++) {
   1729 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1730 			continue;
   1731 
   1732 		chan = band->chan[i];
   1733 
   1734 		if (n == 0) {	/* 2GHz band */
   1735 			ic->ic_channels[chan].ic_freq =
   1736 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1737 			ic->ic_channels[chan].ic_flags =
   1738 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1739 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1740 
   1741 		} else {	/* 5GHz band */
   1742 			/*
   1743 			 * Some adapters support channels 7, 8, 11 and 12
   1744 			 * both in the 2GHz and 4.9GHz bands.
   1745 			 * Because of limitations in our net80211 layer,
   1746 			 * we don't support them in the 4.9GHz band.
   1747 			 */
   1748 			if (chan <= 14)
   1749 				continue;
   1750 
   1751 			ic->ic_channels[chan].ic_freq =
   1752 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1753 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1754 			/* We have at least one valid 5GHz channel. */
   1755 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1756 		}
   1757 
   1758 		/* Is active scan allowed on this channel? */
   1759 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1760 			ic->ic_channels[chan].ic_flags |=
   1761 			    IEEE80211_CHAN_PASSIVE;
   1762 		}
   1763 
   1764 		/* Save maximum allowed TX power for this channel. */
   1765 		sc->maxpwr[chan] = channels[i].maxpwr;
   1766 
   1767 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1768 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1769 	}
   1770 }
   1771 
   1772 static void
   1773 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1774 {
   1775 	struct iwn_eeprom_enhinfo enhinfo[35];
   1776 	uint16_t val, base;
   1777 	int8_t maxpwr;
   1778 	uint8_t flags;
   1779 	int i;
   1780 
   1781 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1782 	base = le16toh(val);
   1783 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1784 	    enhinfo, sizeof enhinfo);
   1785 
   1786 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1787 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1788 		flags = enhinfo[i].flags;
   1789 		if (!(flags & IWN_ENHINFO_VALID))
   1790 			continue;	/* Skip invalid entries. */
   1791 
   1792 		maxpwr = 0;
   1793 		if (sc->txchainmask & IWN_ANT_A)
   1794 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1795 		if (sc->txchainmask & IWN_ANT_B)
   1796 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1797 		if (sc->txchainmask & IWN_ANT_C)
   1798 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1799 		if (sc->ntxchains == 2)
   1800 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1801 		else if (sc->ntxchains == 3)
   1802 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1803 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1804 
   1805 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1806 		sc->enh_maxpwr[i] = maxpwr;
   1807 	}
   1808 }
   1809 
   1810 static struct ieee80211_node *
   1811 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1812 {
   1813 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1814 }
   1815 
   1816 static void
   1817 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1818 {
   1819 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1820 	struct iwn_node *wn = (void *)ni;
   1821 	uint8_t rate;
   1822 	int ridx, i;
   1823 
   1824 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1825 	/* Start at lowest available bit-rate, AMRR will raise. */
   1826 	ni->ni_txrate = 0;
   1827 
   1828 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1829 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1830 		/* Map 802.11 rate to HW rate index. */
   1831 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1832 			if (iwn_rates[ridx].rate == rate)
   1833 				break;
   1834 		wn->ridx[i] = ridx;
   1835 	}
   1836 }
   1837 
   1838 static int
   1839 iwn_media_change(struct ifnet *ifp)
   1840 {
   1841 	struct iwn_softc *sc = ifp->if_softc;
   1842 	struct ieee80211com *ic = &sc->sc_ic;
   1843 	uint8_t rate, ridx;
   1844 	int error;
   1845 
   1846 	error = ieee80211_media_change(ifp);
   1847 	if (error != ENETRESET)
   1848 		return error;
   1849 
   1850 	if (ic->ic_fixed_rate != -1) {
   1851 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1852 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1853 		/* Map 802.11 rate to HW rate index. */
   1854 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1855 			if (iwn_rates[ridx].rate == rate)
   1856 				break;
   1857 		sc->fixed_ridx = ridx;
   1858 	}
   1859 
   1860 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1861 	    (IFF_UP | IFF_RUNNING)) {
   1862 		iwn_stop(ifp, 0);
   1863 		error = iwn_init(ifp);
   1864 	}
   1865 	return error;
   1866 }
   1867 
   1868 static int
   1869 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1870 {
   1871 	struct ifnet *ifp = ic->ic_ifp;
   1872 	struct iwn_softc *sc = ifp->if_softc;
   1873 	int error;
   1874 
   1875 	callout_stop(&sc->calib_to);
   1876 
   1877 	switch (nstate) {
   1878 	case IEEE80211_S_SCAN:
   1879 		/* XXX Do not abort a running scan. */
   1880 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1881 			if (ic->ic_state != nstate)
   1882 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1883 				    "while scanning(%d) ignored\n", nstate,
   1884 				    ic->ic_state);
   1885 			break;
   1886 		}
   1887 
   1888 		/* XXX Not sure if call and flags are needed. */
   1889 		ieee80211_node_table_reset(&ic->ic_scan);
   1890 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1891 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1892 
   1893 		/* Make the link LED blink while we're scanning. */
   1894 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1895 
   1896 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1897 			aprint_error_dev(sc->sc_dev,
   1898 			    "could not initiate scan\n");
   1899 			return error;
   1900 		}
   1901 		ic->ic_state = nstate;
   1902 		return 0;
   1903 
   1904 	case IEEE80211_S_ASSOC:
   1905 		if (ic->ic_state != IEEE80211_S_RUN)
   1906 			break;
   1907 		/* FALLTHROUGH */
   1908 	case IEEE80211_S_AUTH:
   1909 		/* Reset state to handle reassociations correctly. */
   1910 		sc->rxon.associd = 0;
   1911 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1912 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1913 
   1914 		/* Wait until we hear a beacon before we transmit */
   1915 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1916 			sc->sc_beacon_wait = 1;
   1917 
   1918 		if ((error = iwn_auth(sc)) != 0) {
   1919 			aprint_error_dev(sc->sc_dev,
   1920 			    "could not move to auth state\n");
   1921 			return error;
   1922 		}
   1923 		break;
   1924 
   1925 	case IEEE80211_S_RUN:
   1926 		/*
   1927 		 * RUN -> RUN transition; Just restart timers.
   1928 		 */
   1929 		if (ic->ic_state == IEEE80211_S_RUN) {
   1930 			sc->calib_cnt = 0;
   1931 			break;
   1932 		}
   1933 
   1934 		/* Wait until we hear a beacon before we transmit */
   1935 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1936 			sc->sc_beacon_wait = 1;
   1937 
   1938 		if ((error = iwn_run(sc)) != 0) {
   1939 			aprint_error_dev(sc->sc_dev,
   1940 			    "could not move to run state\n");
   1941 			return error;
   1942 		}
   1943 		break;
   1944 
   1945 	case IEEE80211_S_INIT:
   1946 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1947 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1948 		/*
   1949 		 * Purge the xmit queue so we don't have old frames
   1950 		 * during a new association attempt.
   1951 		 */
   1952 		sc->sc_beacon_wait = 0;
   1953 		ifp->if_flags &= ~IFF_OACTIVE;
   1954 		iwn_start(ifp);
   1955 		break;
   1956 	}
   1957 
   1958 	return sc->sc_newstate(ic, nstate, arg);
   1959 }
   1960 
   1961 static void
   1962 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1963 {
   1964 	struct iwn_softc *sc = arg;
   1965 	struct iwn_node *wn = (struct iwn_node *)ni;
   1966 
   1967 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1968 }
   1969 
   1970 static void
   1971 iwn_calib_timeout(void *arg)
   1972 {
   1973 	struct iwn_softc *sc = arg;
   1974 	struct ieee80211com *ic = &sc->sc_ic;
   1975 	int s;
   1976 
   1977 	s = splnet();
   1978 	if (ic->ic_fixed_rate == -1) {
   1979 		if (ic->ic_opmode == IEEE80211_M_STA)
   1980 			iwn_iter_func(sc, ic->ic_bss);
   1981 		else
   1982 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1983 	}
   1984 	/* Force automatic TX power calibration every 60 secs. */
   1985 	if (++sc->calib_cnt >= 120) {
   1986 		uint32_t flags = 0;
   1987 
   1988 		DPRINTF(("sending request for statistics\n"));
   1989 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1990 		    sizeof flags, 1);
   1991 		sc->calib_cnt = 0;
   1992 	}
   1993 	splx(s);
   1994 
   1995 	/* Automatic rate control triggered every 500ms. */
   1996 	callout_schedule(&sc->calib_to, mstohz(500));
   1997 }
   1998 
   1999 /*
   2000  * Process an RX_PHY firmware notification.  This is usually immediately
   2001  * followed by an MPDU_RX_DONE notification.
   2002  */
   2003 static void
   2004 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2005     struct iwn_rx_data *data)
   2006 {
   2007 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   2008 
   2009 	DPRINTFN(2, ("received PHY stats\n"));
   2010 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2011 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2012 
   2013 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   2014 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   2015 	sc->last_rx_valid = 1;
   2016 }
   2017 
   2018 /*
   2019  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2020  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2021  */
   2022 static void
   2023 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2024     struct iwn_rx_data *data)
   2025 {
   2026 	struct iwn_ops *ops = &sc->ops;
   2027 	struct ieee80211com *ic = &sc->sc_ic;
   2028 	struct ifnet *ifp = ic->ic_ifp;
   2029 	struct iwn_rx_ring *ring = &sc->rxq;
   2030 	struct ieee80211_frame *wh;
   2031 	struct ieee80211_node *ni;
   2032 	struct mbuf *m, *m1;
   2033 	struct iwn_rx_stat *stat;
   2034 	char	*head;
   2035 	uint32_t flags;
   2036 	int error, len, rssi, s;
   2037 
   2038 	if (desc->type == IWN_MPDU_RX_DONE) {
   2039 		/* Check for prior RX_PHY notification. */
   2040 		if (!sc->last_rx_valid) {
   2041 			DPRINTF(("missing RX_PHY\n"));
   2042 			return;
   2043 		}
   2044 		sc->last_rx_valid = 0;
   2045 		stat = &sc->last_rx_stat;
   2046 	} else
   2047 		stat = (struct iwn_rx_stat *)(desc + 1);
   2048 
   2049 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2050 	    BUS_DMASYNC_POSTREAD);
   2051 
   2052 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2053 		aprint_error_dev(sc->sc_dev,
   2054 		    "invalid RX statistic header\n");
   2055 		return;
   2056 	}
   2057 	if (desc->type == IWN_MPDU_RX_DONE) {
   2058 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2059 		head = (char *)(mpdu + 1);
   2060 		len = le16toh(mpdu->len);
   2061 	} else {
   2062 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2063 		len = le16toh(stat->len);
   2064 	}
   2065 
   2066 	flags = le32toh(*(uint32_t *)(head + len));
   2067 
   2068 	/* Discard frames with a bad FCS early. */
   2069 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2070 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2071 		ifp->if_ierrors++;
   2072 		return;
   2073 	}
   2074 	/* Discard frames that are too short. */
   2075 	if (len < sizeof (*wh)) {
   2076 		DPRINTF(("frame too short: %d\n", len));
   2077 		ic->ic_stats.is_rx_tooshort++;
   2078 		ifp->if_ierrors++;
   2079 		return;
   2080 	}
   2081 
   2082 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2083 	if (m1 == NULL) {
   2084 		ic->ic_stats.is_rx_nobuf++;
   2085 		ifp->if_ierrors++;
   2086 		return;
   2087 	}
   2088 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2089 
   2090 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2091 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2092 	if (error != 0) {
   2093 		m_freem(m1);
   2094 
   2095 		/* Try to reload the old mbuf. */
   2096 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2097 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2098 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2099 		if (error != 0) {
   2100 			panic("%s: could not load old RX mbuf",
   2101 			    device_xname(sc->sc_dev));
   2102 		}
   2103 		/* Physical address may have changed. */
   2104 		ring->desc[ring->cur] =
   2105 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2106 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2107 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2108 		    BUS_DMASYNC_PREWRITE);
   2109 		ifp->if_ierrors++;
   2110 		return;
   2111 	}
   2112 
   2113 	m = data->m;
   2114 	data->m = m1;
   2115 	/* Update RX descriptor. */
   2116 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2117 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2118 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2119 	    BUS_DMASYNC_PREWRITE);
   2120 
   2121 	/* Finalize mbuf. */
   2122 	m_set_rcvif(m, ifp);
   2123 	m->m_data = head;
   2124 	m->m_pkthdr.len = m->m_len = len;
   2125 
   2126 	s = splnet();
   2127 
   2128 	/* Grab a reference to the source node. */
   2129 	wh = mtod(m, struct ieee80211_frame *);
   2130 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2131 
   2132 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2133 	/* NetBSD does decryption in ieee80211_input. */
   2134 
   2135 	rssi = ops->get_rssi(stat);
   2136 
   2137 	/* XXX Added for NetBSD: scans never stop without it */
   2138 	if (ic->ic_state == IEEE80211_S_SCAN)
   2139 		iwn_fix_channel(ic, m, stat);
   2140 
   2141 	if (sc->sc_drvbpf != NULL) {
   2142 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2143 
   2144 		tap->wr_flags = 0;
   2145 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2146 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2147 		tap->wr_chan_freq =
   2148 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2149 		tap->wr_chan_flags =
   2150 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2151 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2152 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2153 		tap->wr_tsft = stat->tstamp;
   2154 		switch (stat->rate) {
   2155 		/* CCK rates. */
   2156 		case  10: tap->wr_rate =   2; break;
   2157 		case  20: tap->wr_rate =   4; break;
   2158 		case  55: tap->wr_rate =  11; break;
   2159 		case 110: tap->wr_rate =  22; break;
   2160 		/* OFDM rates. */
   2161 		case 0xd: tap->wr_rate =  12; break;
   2162 		case 0xf: tap->wr_rate =  18; break;
   2163 		case 0x5: tap->wr_rate =  24; break;
   2164 		case 0x7: tap->wr_rate =  36; break;
   2165 		case 0x9: tap->wr_rate =  48; break;
   2166 		case 0xb: tap->wr_rate =  72; break;
   2167 		case 0x1: tap->wr_rate =  96; break;
   2168 		case 0x3: tap->wr_rate = 108; break;
   2169 		/* Unknown rate: should not happen. */
   2170 		default:  tap->wr_rate =   0;
   2171 		}
   2172 
   2173 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   2174 	}
   2175 
   2176 	/*
   2177 	 * If it's a beacon and we're waiting, then do the wakeup.
   2178 	 */
   2179 	if (sc->sc_beacon_wait) {
   2180 		uint8_t type, subtype;
   2181 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2182 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2183 		/*
   2184 		 * This assumes at this point we've received our own
   2185 		 * beacon.
   2186 		 */
   2187 		if (type == IEEE80211_FC0_TYPE_MGT &&
   2188 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
   2189 			sc->sc_beacon_wait = 0;
   2190 			ifp->if_flags &= ~IFF_OACTIVE;
   2191 			iwn_start(ifp);
   2192 		}
   2193 	}
   2194 
   2195 	/* Send the frame to the 802.11 layer. */
   2196 	ieee80211_input(ic, m, ni, rssi, 0);
   2197 
   2198 	/* Node is no longer needed. */
   2199 	ieee80211_free_node(ni);
   2200 
   2201 	splx(s);
   2202 }
   2203 
   2204 #ifndef IEEE80211_NO_HT
   2205 /* Process an incoming Compressed BlockAck. */
   2206 static void
   2207 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2208     struct iwn_rx_data *data)
   2209 {
   2210 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2211 	struct iwn_tx_ring *txq;
   2212 
   2213 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2214 	    BUS_DMASYNC_POSTREAD);
   2215 
   2216 	txq = &sc->txq[le16toh(ba->qid)];
   2217 	/* XXX TBD */
   2218 }
   2219 #endif
   2220 
   2221 /*
   2222  * Process a CALIBRATION_RESULT notification sent by the initialization
   2223  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2224  */
   2225 static void
   2226 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2227     struct iwn_rx_data *data)
   2228 {
   2229 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2230 	int len, idx = -1;
   2231 
   2232 	/* Runtime firmware should not send such a notification. */
   2233 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2234 		return;
   2235 
   2236 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2237 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2238 	    BUS_DMASYNC_POSTREAD);
   2239 
   2240 	switch (calib->code) {
   2241 	case IWN5000_PHY_CALIB_DC:
   2242 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2243 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2244 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2245 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2246 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2247 			idx = 0;
   2248 		break;
   2249 	case IWN5000_PHY_CALIB_LO:
   2250 		idx = 1;
   2251 		break;
   2252 	case IWN5000_PHY_CALIB_TX_IQ:
   2253 		idx = 2;
   2254 		break;
   2255 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2256 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2257 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2258 			idx = 3;
   2259 		break;
   2260 	case IWN5000_PHY_CALIB_BASE_BAND:
   2261 		idx = 4;
   2262 		break;
   2263 	}
   2264 	if (idx == -1)	/* Ignore other results. */
   2265 		return;
   2266 
   2267 	/* Save calibration result. */
   2268 	if (sc->calibcmd[idx].buf != NULL)
   2269 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2270 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2271 	if (sc->calibcmd[idx].buf == NULL) {
   2272 		DPRINTF(("not enough memory for calibration result %d\n",
   2273 		    calib->code));
   2274 		return;
   2275 	}
   2276 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2277 	    calib->code, len));
   2278 	sc->calibcmd[idx].len = len;
   2279 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2280 }
   2281 
   2282 /*
   2283  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2284  * The latter is sent by the firmware after each received beacon.
   2285  */
   2286 static void
   2287 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2288     struct iwn_rx_data *data)
   2289 {
   2290 	struct iwn_ops *ops = &sc->ops;
   2291 	struct ieee80211com *ic = &sc->sc_ic;
   2292 	struct iwn_calib_state *calib = &sc->calib;
   2293 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2294 	int temp;
   2295 
   2296 	/* Ignore statistics received during a scan. */
   2297 	if (ic->ic_state != IEEE80211_S_RUN)
   2298 		return;
   2299 
   2300 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2301 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2302 
   2303 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2304 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2305 
   2306 	/* Test if temperature has changed. */
   2307 	if (stats->general.temp != sc->rawtemp) {
   2308 		/* Convert "raw" temperature to degC. */
   2309 		sc->rawtemp = stats->general.temp;
   2310 		temp = ops->get_temperature(sc);
   2311 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2312 
   2313 		/* Update TX power if need be (4965AGN only). */
   2314 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2315 			iwn4965_power_calibration(sc, temp);
   2316 	}
   2317 
   2318 	if (desc->type != IWN_BEACON_STATISTICS)
   2319 		return;	/* Reply to a statistics request. */
   2320 
   2321 	sc->noise = iwn_get_noise(&stats->rx.general);
   2322 
   2323 	/* Test that RSSI and noise are present in stats report. */
   2324 	if (le32toh(stats->rx.general.flags) != 1) {
   2325 		DPRINTF(("received statistics without RSSI\n"));
   2326 		return;
   2327 	}
   2328 
   2329 	/*
   2330 	 * XXX Differential gain calibration makes the 6005 firmware
   2331 	 * crap out, so skip it for now.  This effectively disables
   2332 	 * sensitivity tuning as well.
   2333 	 */
   2334 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2335 		return;
   2336 
   2337 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2338 		iwn_collect_noise(sc, &stats->rx.general);
   2339 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2340 		iwn_tune_sensitivity(sc, &stats->rx);
   2341 }
   2342 
   2343 /*
   2344  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2345  * and 5000 adapters have different incompatible TX status formats.
   2346  */
   2347 static void
   2348 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2349     struct iwn_rx_data *data)
   2350 {
   2351 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2352 
   2353 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2354 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2355 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2356 }
   2357 
   2358 static void
   2359 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2360     struct iwn_rx_data *data)
   2361 {
   2362 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2363 
   2364 #ifdef notyet
   2365 	/* Reset TX scheduler slot. */
   2366 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2367 #endif
   2368 
   2369 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2370 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2371 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2372 }
   2373 
   2374 /*
   2375  * Adapter-independent backend for TX_DONE firmware notifications.
   2376  */
   2377 static void
   2378 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2379     uint8_t status)
   2380 {
   2381 	struct ieee80211com *ic = &sc->sc_ic;
   2382 	struct ifnet *ifp = ic->ic_ifp;
   2383 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2384 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2385 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2386 	int s;
   2387 
   2388 	s = splnet();
   2389 
   2390 	/* Update rate control statistics. */
   2391 	wn->amn.amn_txcnt++;
   2392 	if (ackfailcnt > 0)
   2393 		wn->amn.amn_retrycnt++;
   2394 
   2395 	if (status != 1 && status != 2)
   2396 		ifp->if_oerrors++;
   2397 	else
   2398 		ifp->if_opackets++;
   2399 
   2400 	/* Unmap and free mbuf. */
   2401 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2402 	    BUS_DMASYNC_POSTWRITE);
   2403 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2404 	m_freem(data->m);
   2405 	data->m = NULL;
   2406 	ieee80211_free_node(data->ni);
   2407 	data->ni = NULL;
   2408 
   2409 	sc->sc_tx_timer = 0;
   2410 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2411 		sc->qfullmsk &= ~(1 << ring->qid);
   2412 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2413 			ifp->if_flags &= ~IFF_OACTIVE;
   2414 			iwn_start(ifp);
   2415 		}
   2416 	}
   2417 
   2418 	splx(s);
   2419 }
   2420 
   2421 /*
   2422  * Process a "command done" firmware notification.  This is where we wakeup
   2423  * processes waiting for a synchronous command completion.
   2424  */
   2425 static void
   2426 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2427 {
   2428 	struct iwn_tx_ring *ring = &sc->txq[4];
   2429 	struct iwn_tx_data *data;
   2430 
   2431 	if ((desc->qid & 0xf) != 4)
   2432 		return;	/* Not a command ack. */
   2433 
   2434 	data = &ring->data[desc->idx];
   2435 
   2436 	/* If the command was mapped in an mbuf, free it. */
   2437 	if (data->m != NULL) {
   2438 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2439 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2440 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2441 		m_freem(data->m);
   2442 		data->m = NULL;
   2443 	}
   2444 	wakeup(&ring->desc[desc->idx]);
   2445 }
   2446 
   2447 /*
   2448  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2449  */
   2450 static void
   2451 iwn_notif_intr(struct iwn_softc *sc)
   2452 {
   2453 	struct iwn_ops *ops = &sc->ops;
   2454 	struct ieee80211com *ic = &sc->sc_ic;
   2455 	struct ifnet *ifp = ic->ic_ifp;
   2456 	uint16_t hw;
   2457 	int s;
   2458 
   2459 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2460 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2461 
   2462 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2463 	while (sc->rxq.cur != hw) {
   2464 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2465 		struct iwn_rx_desc *desc;
   2466 
   2467 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2468 		    BUS_DMASYNC_POSTREAD);
   2469 		desc = mtod(data->m, struct iwn_rx_desc *);
   2470 
   2471 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2472 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2473 
   2474 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2475 			iwn_cmd_done(sc, desc);
   2476 
   2477 		switch (desc->type) {
   2478 		case IWN_RX_PHY:
   2479 			iwn_rx_phy(sc, desc, data);
   2480 			break;
   2481 
   2482 		case IWN_RX_DONE:		/* 4965AGN only. */
   2483 		case IWN_MPDU_RX_DONE:
   2484 			/* An 802.11 frame has been received. */
   2485 			iwn_rx_done(sc, desc, data);
   2486 			break;
   2487 #ifndef IEEE80211_NO_HT
   2488 		case IWN_RX_COMPRESSED_BA:
   2489 			/* A Compressed BlockAck has been received. */
   2490 			iwn_rx_compressed_ba(sc, desc, data);
   2491 			break;
   2492 #endif
   2493 		case IWN_TX_DONE:
   2494 			/* An 802.11 frame has been transmitted. */
   2495 			ops->tx_done(sc, desc, data);
   2496 			break;
   2497 
   2498 		case IWN_RX_STATISTICS:
   2499 		case IWN_BEACON_STATISTICS:
   2500 			iwn_rx_statistics(sc, desc, data);
   2501 			break;
   2502 
   2503 		case IWN_BEACON_MISSED:
   2504 		{
   2505 			struct iwn_beacon_missed *miss =
   2506 			    (struct iwn_beacon_missed *)(desc + 1);
   2507 
   2508 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2509 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2510 			/*
   2511 			 * If more than 5 consecutive beacons are missed,
   2512 			 * reinitialize the sensitivity state machine.
   2513 			 */
   2514 			DPRINTF(("beacons missed %d/%d\n",
   2515 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2516 			if (ic->ic_state == IEEE80211_S_RUN &&
   2517 			    le32toh(miss->consecutive) > 5)
   2518 				(void)iwn_init_sensitivity(sc);
   2519 			break;
   2520 		}
   2521 		case IWN_UC_READY:
   2522 		{
   2523 			struct iwn_ucode_info *uc =
   2524 			    (struct iwn_ucode_info *)(desc + 1);
   2525 
   2526 			/* The microcontroller is ready. */
   2527 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2528 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2529 			DPRINTF(("microcode alive notification version=%d.%d "
   2530 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2531 			    uc->subtype, le32toh(uc->valid)));
   2532 
   2533 			if (le32toh(uc->valid) != 1) {
   2534 				aprint_error_dev(sc->sc_dev,
   2535 				    "microcontroller initialization "
   2536 				    "failed\n");
   2537 				break;
   2538 			}
   2539 			if (uc->subtype == IWN_UCODE_INIT) {
   2540 				/* Save microcontroller report. */
   2541 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2542 			}
   2543 			/* Save the address of the error log in SRAM. */
   2544 			sc->errptr = le32toh(uc->errptr);
   2545 			break;
   2546 		}
   2547 		case IWN_STATE_CHANGED:
   2548 		{
   2549 			uint32_t *status = (uint32_t *)(desc + 1);
   2550 
   2551 			/* Enabled/disabled notification. */
   2552 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2553 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2554 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2555 
   2556 			if (le32toh(*status) & 1) {
   2557 				/* The radio button has to be pushed. */
   2558 				aprint_error_dev(sc->sc_dev,
   2559 				    "Radio transmitter is off\n");
   2560 				/* Turn the interface down. */
   2561 				s = splnet();
   2562 				ifp->if_flags &= ~IFF_UP;
   2563 				iwn_stop(ifp, 1);
   2564 				splx(s);
   2565 				return;	/* No further processing. */
   2566 			}
   2567 			break;
   2568 		}
   2569 		case IWN_START_SCAN:
   2570 		{
   2571 			struct iwn_start_scan *scan =
   2572 			    (struct iwn_start_scan *)(desc + 1);
   2573 
   2574 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2575 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2576 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2577 			    scan->chan, le32toh(scan->status)));
   2578 
   2579 			/* Fix current channel. */
   2580 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2581 			break;
   2582 		}
   2583 		case IWN_STOP_SCAN:
   2584 		{
   2585 			struct iwn_stop_scan *scan =
   2586 			    (struct iwn_stop_scan *)(desc + 1);
   2587 
   2588 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2589 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2590 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2591 			    scan->nchan, scan->status, scan->chan));
   2592 
   2593 			if (scan->status == 1 && scan->chan <= 14 &&
   2594 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2595 				/*
   2596 				 * We just finished scanning 2GHz channels,
   2597 				 * start scanning 5GHz ones.
   2598 				 */
   2599 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2600 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2601 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2602 					break;
   2603 			}
   2604 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2605 			ieee80211_end_scan(ic);
   2606 			break;
   2607 		}
   2608 		case IWN5000_CALIBRATION_RESULT:
   2609 			iwn5000_rx_calib_results(sc, desc, data);
   2610 			break;
   2611 
   2612 		case IWN5000_CALIBRATION_DONE:
   2613 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2614 			wakeup(sc);
   2615 			break;
   2616 		}
   2617 
   2618 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2619 	}
   2620 
   2621 	/* Tell the firmware what we have processed. */
   2622 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2623 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2624 }
   2625 
   2626 /*
   2627  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2628  * from power-down sleep mode.
   2629  */
   2630 static void
   2631 iwn_wakeup_intr(struct iwn_softc *sc)
   2632 {
   2633 	int qid;
   2634 
   2635 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2636 
   2637 	/* Wakeup RX and TX rings. */
   2638 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2639 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2640 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2641 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2642 	}
   2643 }
   2644 
   2645 /*
   2646  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2647  * we can't debug the firmware because it is neither open source nor free, it
   2648  * can help us to identify certain classes of problems.
   2649  */
   2650 static void
   2651 iwn_fatal_intr(struct iwn_softc *sc)
   2652 {
   2653 	struct iwn_fw_dump dump;
   2654 	int i;
   2655 
   2656 	/* Force a complete recalibration on next init. */
   2657 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2658 
   2659 	/* Check that the error log address is valid. */
   2660 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2661 	    sc->errptr + sizeof (dump) >
   2662 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2663 		aprint_error_dev(sc->sc_dev,
   2664 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2665 		return;
   2666 	}
   2667 	if (iwn_nic_lock(sc) != 0) {
   2668 		aprint_error_dev(sc->sc_dev,
   2669 		    "could not read firmware error log\n");
   2670 		return;
   2671 	}
   2672 	/* Read firmware error log from SRAM. */
   2673 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2674 	    sizeof (dump) / sizeof (uint32_t));
   2675 	iwn_nic_unlock(sc);
   2676 
   2677 	if (dump.valid == 0) {
   2678 		aprint_error_dev(sc->sc_dev,
   2679 		    "firmware error log is empty\n");
   2680 		return;
   2681 	}
   2682 	aprint_error("firmware error log:\n");
   2683 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2684 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2685 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2686 	    dump.id);
   2687 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2688 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2689 	aprint_error("  error data      = 0x%08X%08X\n",
   2690 	    dump.error_data[0], dump.error_data[1]);
   2691 	aprint_error("  branch link     = 0x%08X%08X\n",
   2692 	    dump.branch_link[0], dump.branch_link[1]);
   2693 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2694 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2695 	aprint_error("  time            = %u\n", dump.time[0]);
   2696 
   2697 	/* Dump driver status (TX and RX rings) while we're here. */
   2698 	aprint_error("driver status:\n");
   2699 	for (i = 0; i < sc->ntxqs; i++) {
   2700 		struct iwn_tx_ring *ring = &sc->txq[i];
   2701 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2702 		    i, ring->qid, ring->cur, ring->queued);
   2703 	}
   2704 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2705 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2706 }
   2707 
   2708 static int
   2709 iwn_intr(void *arg)
   2710 {
   2711 	struct iwn_softc *sc = arg;
   2712 
   2713 	/* Disable interrupts. */
   2714 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2715 
   2716 	softint_schedule(sc->sc_soft_ih);
   2717 	return 1;
   2718 }
   2719 
   2720 static void
   2721 iwn_softintr(void *arg)
   2722 {
   2723 	struct iwn_softc *sc = arg;
   2724 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2725 	uint32_t r1, r2, tmp;
   2726 	int s;
   2727 
   2728 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2729 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2730 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2731 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2732 		tmp = 0;
   2733 		while (sc->ict[sc->ict_cur] != 0) {
   2734 			tmp |= sc->ict[sc->ict_cur];
   2735 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2736 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2737 		}
   2738 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2739 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2740 		tmp = le32toh(tmp);
   2741 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2742 			tmp = 0;
   2743 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2744 			tmp |= 0x8000;
   2745 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2746 		r2 = 0;	/* Unused. */
   2747 	} else {
   2748 		r1 = IWN_READ(sc, IWN_INT);
   2749 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2750 			return;	/* Hardware gone! */
   2751 		r2 = IWN_READ(sc, IWN_FH_INT);
   2752 	}
   2753 	if (r1 == 0 && r2 == 0) {
   2754 		goto out;	/* Interrupt not for us. */
   2755 	}
   2756 
   2757 	/* Acknowledge interrupts. */
   2758 	IWN_WRITE(sc, IWN_INT, r1);
   2759 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2760 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2761 
   2762 	if (r1 & IWN_INT_RF_TOGGLED) {
   2763 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2764 		aprint_error_dev(sc->sc_dev,
   2765 		    "RF switch: radio %s\n",
   2766 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2767 	}
   2768 	if (r1 & IWN_INT_CT_REACHED) {
   2769 		aprint_error_dev(sc->sc_dev,
   2770 		    "critical temperature reached!\n");
   2771 	}
   2772 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2773 		aprint_error_dev(sc->sc_dev,
   2774 		    "fatal firmware error\n");
   2775 		/* Dump firmware error log and stop. */
   2776 		iwn_fatal_intr(sc);
   2777 		s = splnet();
   2778 		ifp->if_flags &= ~IFF_UP;
   2779 		iwn_stop(ifp, 1);
   2780 		splx(s);
   2781 		return;
   2782 	}
   2783 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2784 	    (r2 & IWN_FH_INT_RX)) {
   2785 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2786 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2787 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2788 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2789 			iwn_notif_intr(sc);
   2790 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2791 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2792 				    IWN_INT_PERIODIC_ENA);
   2793 			}
   2794 		} else
   2795 			iwn_notif_intr(sc);
   2796 	}
   2797 
   2798 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2799 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2800 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2801 		wakeup(sc);	/* FH DMA transfer completed. */
   2802 	}
   2803 
   2804 	if (r1 & IWN_INT_ALIVE)
   2805 		wakeup(sc);	/* Firmware is alive. */
   2806 
   2807 	if (r1 & IWN_INT_WAKEUP)
   2808 		iwn_wakeup_intr(sc);
   2809 
   2810 out:
   2811 	/* Re-enable interrupts. */
   2812 	if (ifp->if_flags & IFF_UP)
   2813 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2814 }
   2815 
   2816 /*
   2817  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2818  * 5000 adapters use a slightly different format).
   2819  */
   2820 static void
   2821 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2822     uint16_t len)
   2823 {
   2824 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2825 
   2826 	*w = htole16(len + 8);
   2827 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2828 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2829 	    sizeof (uint16_t),
   2830 	    BUS_DMASYNC_PREWRITE);
   2831 	if (idx < IWN_SCHED_WINSZ) {
   2832 		*(w + IWN_TX_RING_COUNT) = *w;
   2833 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2834 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2835 		    (char *)(void *)sc->sched_dma.vaddr,
   2836 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2837 	}
   2838 }
   2839 
   2840 static void
   2841 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2842     uint16_t len)
   2843 {
   2844 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2845 
   2846 	*w = htole16(id << 12 | (len + 8));
   2847 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2848 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2849 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2850 	if (idx < IWN_SCHED_WINSZ) {
   2851 		*(w + IWN_TX_RING_COUNT) = *w;
   2852 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2853 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2854 		    (char *)(void *)sc->sched_dma.vaddr,
   2855 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2856 	}
   2857 }
   2858 
   2859 #ifdef notyet
   2860 static void
   2861 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2862 {
   2863 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2864 
   2865 	*w = (*w & htole16(0xf000)) | htole16(1);
   2866 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2867 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2868 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2869 	if (idx < IWN_SCHED_WINSZ) {
   2870 		*(w + IWN_TX_RING_COUNT) = *w;
   2871 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2872 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2873 		    (char *)(void *)sc->sched_dma.vaddr,
   2874 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2875 	}
   2876 }
   2877 #endif
   2878 
   2879 static int
   2880 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2881 {
   2882 	struct ieee80211com *ic = &sc->sc_ic;
   2883 	struct iwn_node *wn = (void *)ni;
   2884 	struct iwn_tx_ring *ring;
   2885 	struct iwn_tx_desc *desc;
   2886 	struct iwn_tx_data *data;
   2887 	struct iwn_tx_cmd *cmd;
   2888 	struct iwn_cmd_data *tx;
   2889 	const struct iwn_rate *rinfo;
   2890 	struct ieee80211_frame *wh;
   2891 	struct ieee80211_key *k = NULL;
   2892 	struct mbuf *m1;
   2893 	uint32_t flags;
   2894 	u_int hdrlen;
   2895 	bus_dma_segment_t *seg;
   2896 	uint8_t tid, ridx, txant, type;
   2897 	int i, totlen, error, pad;
   2898 
   2899 	const struct chanAccParams *cap;
   2900 	int noack;
   2901 	int hdrlen2;
   2902 
   2903 	wh = mtod(m, struct ieee80211_frame *);
   2904 	hdrlen = ieee80211_anyhdrsize(wh);
   2905 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2906 
   2907 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2908 	    sizeof (struct ieee80211_qosframe) :
   2909 	    sizeof (struct ieee80211_frame);
   2910 
   2911 	if (hdrlen != hdrlen2)
   2912 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2913 		hdrlen, hdrlen2);
   2914 
   2915 	/* XXX OpenBSD sets a different tid when using QOS */
   2916 	tid = 0;
   2917 	if (ieee80211_has_qos(wh)) {
   2918 		cap = &ic->ic_wme.wme_chanParams;
   2919 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2920 	}
   2921 	else
   2922 		noack = 0;
   2923 
   2924 	ring = &sc->txq[ac];
   2925 	desc = &ring->desc[ring->cur];
   2926 	data = &ring->data[ring->cur];
   2927 
   2928 	/* Choose a TX rate index. */
   2929 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2930 	    type != IEEE80211_FC0_TYPE_DATA) {
   2931 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2932 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2933 	} else if (ic->ic_fixed_rate != -1) {
   2934 		ridx = sc->fixed_ridx;
   2935 	} else
   2936 		ridx = wn->ridx[ni->ni_txrate];
   2937 	rinfo = &iwn_rates[ridx];
   2938 
   2939 	/* Encrypt the frame if need be. */
   2940 	/*
   2941 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2942 	 * in order to match old code and other drivers. Tests with
   2943 	 * tcpdump indicates that the order is irrelevant, however,
   2944 	 * as bpf produces unencrypted data for both ordering choices.
   2945 	 */
   2946 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2947 		k = ieee80211_crypto_encap(ic, ni, m);
   2948 		if (k == NULL) {
   2949 			m_freem(m);
   2950 			return ENOBUFS;
   2951 		}
   2952 		/* Packet header may have moved, reset our local pointer. */
   2953 		wh = mtod(m, struct ieee80211_frame *);
   2954 	}
   2955 	totlen = m->m_pkthdr.len;
   2956 
   2957 	if (sc->sc_drvbpf != NULL) {
   2958 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2959 
   2960 		tap->wt_flags = 0;
   2961 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2962 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2963 		tap->wt_rate = rinfo->rate;
   2964 		tap->wt_hwqueue = ac;
   2965 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2966 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2967 
   2968 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   2969 	}
   2970 
   2971 	/* Prepare TX firmware command. */
   2972 	cmd = &ring->cmd[ring->cur];
   2973 	cmd->code = IWN_CMD_TX_DATA;
   2974 	cmd->flags = 0;
   2975 	cmd->qid = ring->qid;
   2976 	cmd->idx = ring->cur;
   2977 
   2978 	tx = (struct iwn_cmd_data *)cmd->data;
   2979 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2980 	tx->scratch = 0;	/* clear "scratch" area */
   2981 
   2982 	flags = 0;
   2983 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2984 		/* Unicast frame, check if an ACK is expected. */
   2985 		if (!noack)
   2986 			flags |= IWN_TX_NEED_ACK;
   2987 	}
   2988 
   2989 #ifdef notyet
   2990 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   2991 	if ((wh->i_fc[0] &
   2992 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   2993 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   2994 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   2995 #endif
   2996 
   2997 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   2998 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   2999 
   3000 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3001 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3002 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3003 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3004 			flags |= IWN_TX_NEED_RTS;
   3005 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3006 		    ridx >= IWN_RIDX_OFDM6) {
   3007 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3008 				flags |= IWN_TX_NEED_CTS;
   3009 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3010 				flags |= IWN_TX_NEED_RTS;
   3011 		}
   3012 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3013 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3014 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3015 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3016 				flags |= IWN_TX_NEED_PROTECTION;
   3017 			} else
   3018 				flags |= IWN_TX_FULL_TXOP;
   3019 		}
   3020 	}
   3021 
   3022 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3023 	    type != IEEE80211_FC0_TYPE_DATA)
   3024 		tx->id = sc->broadcast_id;
   3025 	else
   3026 		tx->id = wn->id;
   3027 
   3028 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3029 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3030 
   3031 #ifndef IEEE80211_STA_ONLY
   3032 		/* Tell HW to set timestamp in probe responses. */
   3033 		/* XXX NetBSD rev 1.11 added probe requests here but */
   3034 		/* probe requests do not take timestamps (from Bergamini). */
   3035 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3036 			flags |= IWN_TX_INSERT_TSTAMP;
   3037 #endif
   3038 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3039 		/* changes here. These are not needed (from Bergamini). */
   3040 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3041 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3042 			tx->timeout = htole16(3);
   3043 		else
   3044 			tx->timeout = htole16(2);
   3045 	} else
   3046 		tx->timeout = htole16(0);
   3047 
   3048 	if (hdrlen & 3) {
   3049 		/* First segment length must be a multiple of 4. */
   3050 		flags |= IWN_TX_NEED_PADDING;
   3051 		pad = 4 - (hdrlen & 3);
   3052 	} else
   3053 		pad = 0;
   3054 
   3055 	tx->len = htole16(totlen);
   3056 	tx->tid = tid;
   3057 	tx->rts_ntries = 60;
   3058 	tx->data_ntries = 15;
   3059 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3060 	tx->plcp = rinfo->plcp;
   3061 	tx->rflags = rinfo->flags;
   3062 	if (tx->id == sc->broadcast_id) {
   3063 		/* Group or management frame. */
   3064 		tx->linkq = 0;
   3065 		/* XXX Alternate between antenna A and B? */
   3066 		txant = IWN_LSB(sc->txchainmask);
   3067 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3068 	} else {
   3069 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3070 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3071 	}
   3072 	/* Set physical address of "scratch area". */
   3073 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3074 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3075 
   3076 	/* Copy 802.11 header in TX command. */
   3077 	/* XXX NetBSD changed this in rev 1.20 */
   3078 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3079 
   3080 	/* Trim 802.11 header. */
   3081 	m_adj(m, hdrlen);
   3082 	tx->security = 0;
   3083 	tx->flags = htole32(flags);
   3084 
   3085 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3086 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3087 	if (error != 0) {
   3088 		if (error != EFBIG) {
   3089 			aprint_error_dev(sc->sc_dev,
   3090 			    "can't map mbuf (error %d)\n", error);
   3091 			m_freem(m);
   3092 			return error;
   3093 		}
   3094 		/* Too many DMA segments, linearize mbuf. */
   3095 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3096 		if (m1 == NULL) {
   3097 			m_freem(m);
   3098 			return ENOBUFS;
   3099 		}
   3100 		if (m->m_pkthdr.len > MHLEN) {
   3101 			MCLGET(m1, M_DONTWAIT);
   3102 			if (!(m1->m_flags & M_EXT)) {
   3103 				m_freem(m);
   3104 				m_freem(m1);
   3105 				return ENOBUFS;
   3106 			}
   3107 		}
   3108 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3109 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3110 		m_freem(m);
   3111 		m = m1;
   3112 
   3113 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3114 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3115 		if (error != 0) {
   3116 			aprint_error_dev(sc->sc_dev,
   3117 			    "can't map mbuf (error %d)\n", error);
   3118 			m_freem(m);
   3119 			return error;
   3120 		}
   3121 	}
   3122 
   3123 	data->m = m;
   3124 	data->ni = ni;
   3125 
   3126 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3127 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3128 
   3129 	/* Fill TX descriptor. */
   3130 	desc->nsegs = 1 + data->map->dm_nsegs;
   3131 	/* First DMA segment is used by the TX command. */
   3132 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3133 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3134 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3135 	/* Other DMA segments are for data payload. */
   3136 	seg = data->map->dm_segs;
   3137 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3138 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3139 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3140 		    seg->ds_len << 4);
   3141 		seg++;
   3142 	}
   3143 
   3144 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3145 	    BUS_DMASYNC_PREWRITE);
   3146 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3147 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3148 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3149 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3150 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3151 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3152 
   3153 #ifdef notyet
   3154 	/* Update TX scheduler. */
   3155 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3156 #endif
   3157 
   3158 	/* Kick TX ring. */
   3159 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3160 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3161 
   3162 	/* Mark TX ring as full if we reach a certain threshold. */
   3163 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3164 		sc->qfullmsk |= 1 << ring->qid;
   3165 
   3166 	return 0;
   3167 }
   3168 
   3169 static void
   3170 iwn_start(struct ifnet *ifp)
   3171 {
   3172 	struct iwn_softc *sc = ifp->if_softc;
   3173 	struct ieee80211com *ic = &sc->sc_ic;
   3174 	struct ieee80211_node *ni;
   3175 	struct ether_header *eh;
   3176 	struct mbuf *m;
   3177 	int ac;
   3178 
   3179 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3180 		return;
   3181 
   3182 	for (;;) {
   3183 		if (sc->sc_beacon_wait == 1) {
   3184 			ifp->if_flags |= IFF_OACTIVE;
   3185 			break;
   3186 		}
   3187 
   3188 		if (sc->qfullmsk != 0) {
   3189 			ifp->if_flags |= IFF_OACTIVE;
   3190 			break;
   3191 		}
   3192 		/* Send pending management frames first. */
   3193 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3194 		if (m != NULL) {
   3195 			ni = M_GETCTX(m, struct ieee80211_node *);
   3196 			ac = 0;
   3197 			goto sendit;
   3198 		}
   3199 		if (ic->ic_state != IEEE80211_S_RUN)
   3200 			break;
   3201 
   3202 		/* Encapsulate and send data frames. */
   3203 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3204 		if (m == NULL)
   3205 			break;
   3206 		if (m->m_len < sizeof (*eh) &&
   3207 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3208 			ifp->if_oerrors++;
   3209 			continue;
   3210 		}
   3211 		eh = mtod(m, struct ether_header *);
   3212 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3213 		if (ni == NULL) {
   3214 			m_freem(m);
   3215 			ifp->if_oerrors++;
   3216 			continue;
   3217 		}
   3218 		/* classify mbuf so we can find which tx ring to use */
   3219 		if (ieee80211_classify(ic, m, ni) != 0) {
   3220 			m_freem(m);
   3221 			ieee80211_free_node(ni);
   3222 			ifp->if_oerrors++;
   3223 			continue;
   3224 		}
   3225 
   3226 		/* No QoS encapsulation for EAPOL frames. */
   3227 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3228 		    M_WME_GETAC(m) : WME_AC_BE;
   3229 
   3230 		if (sc->sc_beacon_wait == 0)
   3231 			bpf_mtap(ifp, m);
   3232 
   3233 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3234 			ieee80211_free_node(ni);
   3235 			ifp->if_oerrors++;
   3236 			continue;
   3237 		}
   3238 sendit:
   3239 		if (sc->sc_beacon_wait)
   3240 			continue;
   3241 
   3242 		bpf_mtap3(ic->ic_rawbpf, m);
   3243 
   3244 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3245 			ieee80211_free_node(ni);
   3246 			ifp->if_oerrors++;
   3247 			continue;
   3248 		}
   3249 
   3250 		sc->sc_tx_timer = 5;
   3251 		ifp->if_timer = 1;
   3252 	}
   3253 
   3254 	if (sc->sc_beacon_wait > 1)
   3255 		sc->sc_beacon_wait = 0;
   3256 }
   3257 
   3258 static void
   3259 iwn_watchdog(struct ifnet *ifp)
   3260 {
   3261 	struct iwn_softc *sc = ifp->if_softc;
   3262 
   3263 	ifp->if_timer = 0;
   3264 
   3265 	if (sc->sc_tx_timer > 0) {
   3266 		if (--sc->sc_tx_timer == 0) {
   3267 			aprint_error_dev(sc->sc_dev,
   3268 			    "device timeout\n");
   3269 			ifp->if_flags &= ~IFF_UP;
   3270 			iwn_stop(ifp, 1);
   3271 			ifp->if_oerrors++;
   3272 			return;
   3273 		}
   3274 		ifp->if_timer = 1;
   3275 	}
   3276 
   3277 	ieee80211_watchdog(&sc->sc_ic);
   3278 }
   3279 
   3280 static int
   3281 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3282 {
   3283 	struct iwn_softc *sc = ifp->if_softc;
   3284 	struct ieee80211com *ic = &sc->sc_ic;
   3285 	const struct sockaddr *sa;
   3286 	int s, error = 0;
   3287 
   3288 	s = splnet();
   3289 
   3290 	switch (cmd) {
   3291 	case SIOCSIFADDR:
   3292 		ifp->if_flags |= IFF_UP;
   3293 		/* FALLTHROUGH */
   3294 	case SIOCSIFFLAGS:
   3295 		/* XXX Added as it is in every NetBSD driver */
   3296 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3297 			break;
   3298 		if (ifp->if_flags & IFF_UP) {
   3299 			if (!(ifp->if_flags & IFF_RUNNING))
   3300 				error = iwn_init(ifp);
   3301 		} else {
   3302 			if (ifp->if_flags & IFF_RUNNING)
   3303 				iwn_stop(ifp, 1);
   3304 		}
   3305 		break;
   3306 
   3307 	case SIOCADDMULTI:
   3308 	case SIOCDELMULTI:
   3309 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3310 		error = (cmd == SIOCADDMULTI) ?
   3311 		    ether_addmulti(sa, &sc->sc_ec) :
   3312 		    ether_delmulti(sa, &sc->sc_ec);
   3313 
   3314 		if (error == ENETRESET)
   3315 			error = 0;
   3316 		break;
   3317 
   3318 	default:
   3319 		error = ieee80211_ioctl(ic, cmd, data);
   3320 	}
   3321 
   3322 	if (error == ENETRESET) {
   3323 		error = 0;
   3324 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3325 		    (IFF_UP | IFF_RUNNING)) {
   3326 			iwn_stop(ifp, 0);
   3327 			error = iwn_init(ifp);
   3328 		}
   3329 	}
   3330 
   3331 	splx(s);
   3332 	return error;
   3333 }
   3334 
   3335 /*
   3336  * Send a command to the firmware.
   3337  */
   3338 static int
   3339 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3340 {
   3341 	struct iwn_tx_ring *ring = &sc->txq[4];
   3342 	struct iwn_tx_desc *desc;
   3343 	struct iwn_tx_data *data;
   3344 	struct iwn_tx_cmd *cmd;
   3345 	struct mbuf *m;
   3346 	bus_addr_t paddr;
   3347 	int totlen, error;
   3348 
   3349 	desc = &ring->desc[ring->cur];
   3350 	data = &ring->data[ring->cur];
   3351 	totlen = 4 + size;
   3352 
   3353 	if (size > sizeof cmd->data) {
   3354 		/* Command is too large to fit in a descriptor. */
   3355 		if (totlen > MCLBYTES)
   3356 			return EINVAL;
   3357 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3358 		if (m == NULL)
   3359 			return ENOMEM;
   3360 		if (totlen > MHLEN) {
   3361 			MCLGET(m, M_DONTWAIT);
   3362 			if (!(m->m_flags & M_EXT)) {
   3363 				m_freem(m);
   3364 				return ENOMEM;
   3365 			}
   3366 		}
   3367 		cmd = mtod(m, struct iwn_tx_cmd *);
   3368 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3369 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3370 		if (error != 0) {
   3371 			m_freem(m);
   3372 			return error;
   3373 		}
   3374 		data->m = m;
   3375 		paddr = data->map->dm_segs[0].ds_addr;
   3376 	} else {
   3377 		cmd = &ring->cmd[ring->cur];
   3378 		paddr = data->cmd_paddr;
   3379 	}
   3380 
   3381 	cmd->code = code;
   3382 	cmd->flags = 0;
   3383 	cmd->qid = ring->qid;
   3384 	cmd->idx = ring->cur;
   3385 	/*
   3386 	 * Coverity:[OUT_OF_BOUNDS]
   3387 	 * false positive since, allocated in mbuf if it does not fit
   3388 	 */
   3389 	memcpy(cmd->data, buf, size);
   3390 
   3391 	desc->nsegs = 1;
   3392 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3393 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3394 
   3395 	if (size > sizeof cmd->data) {
   3396 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3397 		    BUS_DMASYNC_PREWRITE);
   3398 	} else {
   3399 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3400 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3401 		    totlen, BUS_DMASYNC_PREWRITE);
   3402 	}
   3403 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3404 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3405 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3406 
   3407 #ifdef notyet
   3408 	/* Update TX scheduler. */
   3409 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3410 #endif
   3411 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3412 
   3413 	/* Kick command ring. */
   3414 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3415 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3416 
   3417 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3418 }
   3419 
   3420 static int
   3421 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3422 {
   3423 	struct iwn4965_node_info hnode;
   3424 	char *src, *dst;
   3425 
   3426 	/*
   3427 	 * We use the node structure for 5000 Series internally (it is
   3428 	 * a superset of the one for 4965AGN). We thus copy the common
   3429 	 * fields before sending the command.
   3430 	 */
   3431 	src = (char *)node;
   3432 	dst = (char *)&hnode;
   3433 	memcpy(dst, src, 48);
   3434 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3435 	memcpy(dst + 48, src + 72, 20);
   3436 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3437 }
   3438 
   3439 static int
   3440 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3441 {
   3442 	/* Direct mapping. */
   3443 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3444 }
   3445 
   3446 static int
   3447 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3448 {
   3449 	struct iwn_node *wn = (void *)ni;
   3450 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3451 	struct iwn_cmd_link_quality linkq;
   3452 	const struct iwn_rate *rinfo;
   3453 	uint8_t txant;
   3454 	int i, txrate;
   3455 
   3456 	/* Use the first valid TX antenna. */
   3457 	txant = IWN_LSB(sc->txchainmask);
   3458 
   3459 	memset(&linkq, 0, sizeof linkq);
   3460 	linkq.id = wn->id;
   3461 	linkq.antmsk_1stream = txant;
   3462 	linkq.antmsk_2stream = IWN_ANT_AB;
   3463 	linkq.ampdu_max = 31;
   3464 	linkq.ampdu_threshold = 3;
   3465 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3466 
   3467 	/* Start at highest available bit-rate. */
   3468 	txrate = rs->rs_nrates - 1;
   3469 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3470 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3471 		linkq.retry[i].plcp = rinfo->plcp;
   3472 		linkq.retry[i].rflags = rinfo->flags;
   3473 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3474 		/* Next retry at immediate lower bit-rate. */
   3475 		if (txrate > 0)
   3476 			txrate--;
   3477 	}
   3478 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3479 }
   3480 
   3481 /*
   3482  * Broadcast node is used to send group-addressed and management frames.
   3483  */
   3484 static int
   3485 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3486 {
   3487 	struct iwn_ops *ops = &sc->ops;
   3488 	struct iwn_node_info node;
   3489 	struct iwn_cmd_link_quality linkq;
   3490 	const struct iwn_rate *rinfo;
   3491 	uint8_t txant;
   3492 	int i, error;
   3493 
   3494 	memset(&node, 0, sizeof node);
   3495 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3496 	node.id = sc->broadcast_id;
   3497 	DPRINTF(("adding broadcast node\n"));
   3498 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3499 		return error;
   3500 
   3501 	/* Use the first valid TX antenna. */
   3502 	txant = IWN_LSB(sc->txchainmask);
   3503 
   3504 	memset(&linkq, 0, sizeof linkq);
   3505 	linkq.id = sc->broadcast_id;
   3506 	linkq.antmsk_1stream = txant;
   3507 	linkq.antmsk_2stream = IWN_ANT_AB;
   3508 	linkq.ampdu_max = 64;
   3509 	linkq.ampdu_threshold = 3;
   3510 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3511 
   3512 	/* Use lowest mandatory bit-rate. */
   3513 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3514 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3515 	linkq.retry[0].plcp = rinfo->plcp;
   3516 	linkq.retry[0].rflags = rinfo->flags;
   3517 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3518 	/* Use same bit-rate for all TX retries. */
   3519 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3520 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3521 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3522 	}
   3523 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3524 }
   3525 
   3526 static void
   3527 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3528 {
   3529 	struct iwn_cmd_led led;
   3530 
   3531 	/* Clear microcode LED ownership. */
   3532 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3533 
   3534 	led.which = which;
   3535 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3536 	led.off = off;
   3537 	led.on = on;
   3538 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3539 }
   3540 
   3541 /*
   3542  * Set the critical temperature at which the firmware will stop the radio
   3543  * and notify us.
   3544  */
   3545 static int
   3546 iwn_set_critical_temp(struct iwn_softc *sc)
   3547 {
   3548 	struct iwn_critical_temp crit;
   3549 	int32_t temp;
   3550 
   3551 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3552 
   3553 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3554 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3555 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3556 		temp = IWN_CTOK(110);
   3557 	else
   3558 		temp = 110;
   3559 	memset(&crit, 0, sizeof crit);
   3560 	crit.tempR = htole32(temp);
   3561 	DPRINTF(("setting critical temperature to %d\n", temp));
   3562 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3563 }
   3564 
   3565 static int
   3566 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3567 {
   3568 	struct iwn_cmd_timing cmd;
   3569 	uint64_t val, mod;
   3570 
   3571 	memset(&cmd, 0, sizeof cmd);
   3572 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3573 	cmd.bintval = htole16(ni->ni_intval);
   3574 	cmd.lintval = htole16(10);
   3575 
   3576 	/* Compute remaining time until next beacon. */
   3577 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3578 	mod = le64toh(cmd.tstamp) % val;
   3579 	cmd.binitval = htole32((uint32_t)(val - mod));
   3580 
   3581 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3582 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3583 
   3584 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3585 }
   3586 
   3587 static void
   3588 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3589 {
   3590 	/* Adjust TX power if need be (delta >= 3 degC). */
   3591 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3592 	if (abs(temp - sc->temp) >= 3) {
   3593 		/* Record temperature of last calibration. */
   3594 		sc->temp = temp;
   3595 		(void)iwn4965_set_txpower(sc, 1);
   3596 	}
   3597 }
   3598 
   3599 /*
   3600  * Set TX power for current channel (each rate has its own power settings).
   3601  * This function takes into account the regulatory information from EEPROM,
   3602  * the current temperature and the current voltage.
   3603  */
   3604 static int
   3605 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3606 {
   3607 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3608 #define fdivround(a, b, n)	\
   3609 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3610 /* Linear interpolation. */
   3611 #define interpolate(x, x1, y1, x2, y2, n)	\
   3612 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3613 
   3614 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3615 	struct ieee80211com *ic = &sc->sc_ic;
   3616 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3617 	struct ieee80211_channel *ch;
   3618 	struct iwn4965_cmd_txpower cmd;
   3619 	struct iwn4965_eeprom_chan_samples *chans;
   3620 	const uint8_t *rf_gain, *dsp_gain;
   3621 	int32_t vdiff, tdiff;
   3622 	int i, c, grp, maxpwr;
   3623 	uint8_t chan;
   3624 
   3625 	/* Retrieve current channel from last RXON. */
   3626 	chan = sc->rxon.chan;
   3627 	DPRINTF(("setting TX power for channel %d\n", chan));
   3628 	ch = &ic->ic_channels[chan];
   3629 
   3630 	memset(&cmd, 0, sizeof cmd);
   3631 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3632 	cmd.chan = chan;
   3633 
   3634 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3635 		maxpwr   = sc->maxpwr5GHz;
   3636 		rf_gain  = iwn4965_rf_gain_5ghz;
   3637 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3638 	} else {
   3639 		maxpwr   = sc->maxpwr2GHz;
   3640 		rf_gain  = iwn4965_rf_gain_2ghz;
   3641 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3642 	}
   3643 
   3644 	/* Compute voltage compensation. */
   3645 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3646 	if (vdiff > 0)
   3647 		vdiff *= 2;
   3648 	if (abs(vdiff) > 2)
   3649 		vdiff = 0;
   3650 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3651 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3652 
   3653 	/* Get channel attenuation group. */
   3654 	if (chan <= 20)		/* 1-20 */
   3655 		grp = 4;
   3656 	else if (chan <= 43)	/* 34-43 */
   3657 		grp = 0;
   3658 	else if (chan <= 70)	/* 44-70 */
   3659 		grp = 1;
   3660 	else if (chan <= 124)	/* 71-124 */
   3661 		grp = 2;
   3662 	else			/* 125-200 */
   3663 		grp = 3;
   3664 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3665 
   3666 	/* Get channel sub-band. */
   3667 	for (i = 0; i < IWN_NBANDS; i++)
   3668 		if (sc->bands[i].lo != 0 &&
   3669 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3670 			break;
   3671 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3672 		return EINVAL;
   3673 	chans = sc->bands[i].chans;
   3674 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3675 
   3676 	for (c = 0; c < 2; c++) {
   3677 		uint8_t power, gain, temp;
   3678 		int maxchpwr, pwr, ridx, idx;
   3679 
   3680 		power = interpolate(chan,
   3681 		    chans[0].num, chans[0].samples[c][1].power,
   3682 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3683 		gain  = interpolate(chan,
   3684 		    chans[0].num, chans[0].samples[c][1].gain,
   3685 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3686 		temp  = interpolate(chan,
   3687 		    chans[0].num, chans[0].samples[c][1].temp,
   3688 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3689 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3690 		    c, power, gain, temp));
   3691 
   3692 		/* Compute temperature compensation. */
   3693 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3694 		DPRINTF(("temperature compensation=%d (current=%d, "
   3695 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3696 
   3697 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3698 			/* Convert dBm to half-dBm. */
   3699 			maxchpwr = sc->maxpwr[chan] * 2;
   3700 			if ((ridx / 8) & 1)
   3701 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3702 
   3703 			pwr = maxpwr;
   3704 
   3705 			/* Adjust TX power based on rate. */
   3706 			if ((ridx % 8) == 5)
   3707 				pwr -= 15;	/* OFDM48: -7.5dB */
   3708 			else if ((ridx % 8) == 6)
   3709 				pwr -= 17;	/* OFDM54: -8.5dB */
   3710 			else if ((ridx % 8) == 7)
   3711 				pwr -= 20;	/* OFDM60: -10dB */
   3712 			else
   3713 				pwr -= 10;	/* Others: -5dB */
   3714 
   3715 			/* Do not exceed channel max TX power. */
   3716 			if (pwr > maxchpwr)
   3717 				pwr = maxchpwr;
   3718 
   3719 			idx = gain - (pwr - power) - tdiff - vdiff;
   3720 			if ((ridx / 8) & 1)	/* MIMO */
   3721 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3722 
   3723 			if (cmd.band == 0)
   3724 				idx += 9;	/* 5GHz */
   3725 			if (ridx == IWN_RIDX_MAX)
   3726 				idx += 5;	/* CCK */
   3727 
   3728 			/* Make sure idx stays in a valid range. */
   3729 			if (idx < 0)
   3730 				idx = 0;
   3731 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3732 				idx = IWN4965_MAX_PWR_INDEX;
   3733 
   3734 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3735 			    c, ridx, idx));
   3736 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3737 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3738 		}
   3739 	}
   3740 
   3741 	DPRINTF(("setting TX power for chan %d\n", chan));
   3742 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3743 
   3744 #undef interpolate
   3745 #undef fdivround
   3746 }
   3747 
   3748 static int
   3749 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3750 {
   3751 	struct iwn5000_cmd_txpower cmd;
   3752 	int cmdid;
   3753 
   3754 	/*
   3755 	 * TX power calibration is handled automatically by the firmware
   3756 	 * for 5000 Series.
   3757 	 */
   3758 	memset(&cmd, 0, sizeof cmd);
   3759 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3760 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3761 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3762 	DPRINTF(("setting TX power\n"));
   3763 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
   3764 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
   3765 	else
   3766 		cmdid = IWN_CMD_TXPOWER_DBM;
   3767 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
   3768 }
   3769 
   3770 /*
   3771  * Retrieve the maximum RSSI (in dBm) among receivers.
   3772  */
   3773 static int
   3774 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3775 {
   3776 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3777 	uint8_t mask, agc;
   3778 	int rssi;
   3779 
   3780 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3781 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3782 
   3783 	rssi = 0;
   3784 	if (mask & IWN_ANT_A)
   3785 		rssi = MAX(rssi, phy->rssi[0]);
   3786 	if (mask & IWN_ANT_B)
   3787 		rssi = MAX(rssi, phy->rssi[2]);
   3788 	if (mask & IWN_ANT_C)
   3789 		rssi = MAX(rssi, phy->rssi[4]);
   3790 
   3791 	return rssi - agc - IWN_RSSI_TO_DBM;
   3792 }
   3793 
   3794 static int
   3795 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3796 {
   3797 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3798 	uint8_t agc;
   3799 	int rssi;
   3800 
   3801 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3802 
   3803 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3804 		   le16toh(phy->rssi[1]) & 0xff);
   3805 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3806 
   3807 	return rssi - agc - IWN_RSSI_TO_DBM;
   3808 }
   3809 
   3810 /*
   3811  * Retrieve the average noise (in dBm) among receivers.
   3812  */
   3813 static int
   3814 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3815 {
   3816 	int i, total, nbant, noise;
   3817 
   3818 	total = nbant = 0;
   3819 	for (i = 0; i < 3; i++) {
   3820 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3821 			continue;
   3822 		total += noise;
   3823 		nbant++;
   3824 	}
   3825 	/* There should be at least one antenna but check anyway. */
   3826 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3827 }
   3828 
   3829 /*
   3830  * Compute temperature (in degC) from last received statistics.
   3831  */
   3832 static int
   3833 iwn4965_get_temperature(struct iwn_softc *sc)
   3834 {
   3835 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3836 	int32_t r1, r2, r3, r4, temp;
   3837 
   3838 	r1 = le32toh(uc->temp[0].chan20MHz);
   3839 	r2 = le32toh(uc->temp[1].chan20MHz);
   3840 	r3 = le32toh(uc->temp[2].chan20MHz);
   3841 	r4 = le32toh(sc->rawtemp);
   3842 
   3843 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3844 		return 0;
   3845 
   3846 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3847 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3848 	/* Compute temperature in Kelvin. */
   3849 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3850 	temp = (temp * 97) / 100 + 8;
   3851 
   3852 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3853 	return IWN_KTOC(temp);
   3854 }
   3855 
   3856 static int
   3857 iwn5000_get_temperature(struct iwn_softc *sc)
   3858 {
   3859 	int32_t temp;
   3860 
   3861 	/*
   3862 	 * Temperature is not used by the driver for 5000 Series because
   3863 	 * TX power calibration is handled by firmware.  We export it to
   3864 	 * users through the sensor framework though.
   3865 	 */
   3866 	temp = le32toh(sc->rawtemp);
   3867 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3868 		temp = (temp / -5) + sc->temp_off;
   3869 		temp = IWN_KTOC(temp);
   3870 	}
   3871 	return temp;
   3872 }
   3873 
   3874 /*
   3875  * Initialize sensitivity calibration state machine.
   3876  */
   3877 static int
   3878 iwn_init_sensitivity(struct iwn_softc *sc)
   3879 {
   3880 	struct iwn_ops *ops = &sc->ops;
   3881 	struct iwn_calib_state *calib = &sc->calib;
   3882 	uint32_t flags;
   3883 	int error;
   3884 
   3885 	/* Reset calibration state machine. */
   3886 	memset(calib, 0, sizeof (*calib));
   3887 	calib->state = IWN_CALIB_STATE_INIT;
   3888 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3889 	/* Set initial correlation values. */
   3890 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3891 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3892 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3893 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3894 	calib->cck_x4      = 125;
   3895 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3896 	calib->energy_cck  = sc->limits->energy_cck;
   3897 
   3898 	/* Write initial sensitivity. */
   3899 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3900 		return error;
   3901 
   3902 	/* Write initial gains. */
   3903 	if ((error = ops->init_gains(sc)) != 0)
   3904 		return error;
   3905 
   3906 	/* Request statistics at each beacon interval. */
   3907 	flags = 0;
   3908 	DPRINTF(("sending request for statistics\n"));
   3909 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3910 }
   3911 
   3912 /*
   3913  * Collect noise and RSSI statistics for the first 20 beacons received
   3914  * after association and use them to determine connected antennas and
   3915  * to set differential gains.
   3916  */
   3917 static void
   3918 iwn_collect_noise(struct iwn_softc *sc,
   3919     const struct iwn_rx_general_stats *stats)
   3920 {
   3921 	struct iwn_ops *ops = &sc->ops;
   3922 	struct iwn_calib_state *calib = &sc->calib;
   3923 	uint32_t val;
   3924 	int i;
   3925 
   3926 	/* Accumulate RSSI and noise for all 3 antennas. */
   3927 	for (i = 0; i < 3; i++) {
   3928 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3929 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3930 	}
   3931 	/* NB: We update differential gains only once after 20 beacons. */
   3932 	if (++calib->nbeacons < 20)
   3933 		return;
   3934 
   3935 	/* Determine highest average RSSI. */
   3936 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3937 	val = MAX(calib->rssi[2], val);
   3938 
   3939 	/* Determine which antennas are connected. */
   3940 	sc->chainmask = sc->rxchainmask;
   3941 	for (i = 0; i < 3; i++)
   3942 		if (val - calib->rssi[i] > 15 * 20)
   3943 			sc->chainmask &= ~(1 << i);
   3944 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3945 	    sc->rxchainmask, sc->chainmask));
   3946 
   3947 	/* If none of the TX antennas are connected, keep at least one. */
   3948 	if ((sc->chainmask & sc->txchainmask) == 0)
   3949 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3950 
   3951 	(void)ops->set_gains(sc);
   3952 	calib->state = IWN_CALIB_STATE_RUN;
   3953 
   3954 #ifdef notyet
   3955 	/* XXX Disable RX chains with no antennas connected. */
   3956 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3957 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3958 #endif
   3959 
   3960 	/* Enable power-saving mode if requested by user. */
   3961 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3962 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3963 }
   3964 
   3965 static int
   3966 iwn4965_init_gains(struct iwn_softc *sc)
   3967 {
   3968 	struct iwn_phy_calib_gain cmd;
   3969 
   3970 	memset(&cmd, 0, sizeof cmd);
   3971 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3972 	/* Differential gains initially set to 0 for all 3 antennas. */
   3973 	DPRINTF(("setting initial differential gains\n"));
   3974 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3975 }
   3976 
   3977 static int
   3978 iwn5000_init_gains(struct iwn_softc *sc)
   3979 {
   3980 	struct iwn_phy_calib cmd;
   3981 
   3982 	memset(&cmd, 0, sizeof cmd);
   3983 	cmd.code = sc->reset_noise_gain;
   3984 	cmd.ngroups = 1;
   3985 	cmd.isvalid = 1;
   3986 	DPRINTF(("setting initial differential gains\n"));
   3987 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3988 }
   3989 
   3990 static int
   3991 iwn4965_set_gains(struct iwn_softc *sc)
   3992 {
   3993 	struct iwn_calib_state *calib = &sc->calib;
   3994 	struct iwn_phy_calib_gain cmd;
   3995 	int i, delta, noise;
   3996 
   3997 	/* Get minimal noise among connected antennas. */
   3998 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   3999 	for (i = 0; i < 3; i++)
   4000 		if (sc->chainmask & (1 << i))
   4001 			noise = MIN(calib->noise[i], noise);
   4002 
   4003 	memset(&cmd, 0, sizeof cmd);
   4004 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4005 	/* Set differential gains for connected antennas. */
   4006 	for (i = 0; i < 3; i++) {
   4007 		if (sc->chainmask & (1 << i)) {
   4008 			/* Compute attenuation (in unit of 1.5dB). */
   4009 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4010 			/* NB: delta <= 0 */
   4011 			/* Limit to [-4.5dB,0]. */
   4012 			cmd.gain[i] = MIN(abs(delta), 3);
   4013 			if (delta < 0)
   4014 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4015 		}
   4016 	}
   4017 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4018 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4019 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4020 }
   4021 
   4022 static int
   4023 iwn5000_set_gains(struct iwn_softc *sc)
   4024 {
   4025 	struct iwn_calib_state *calib = &sc->calib;
   4026 	struct iwn_phy_calib_gain cmd;
   4027 	int i, ant, div, delta;
   4028 
   4029 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4030 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4031 
   4032 	memset(&cmd, 0, sizeof cmd);
   4033 	cmd.code = sc->noise_gain;
   4034 	cmd.ngroups = 1;
   4035 	cmd.isvalid = 1;
   4036 	/* Get first available RX antenna as referential. */
   4037 	ant = IWN_LSB(sc->rxchainmask);
   4038 	/* Set differential gains for other antennas. */
   4039 	for (i = ant + 1; i < 3; i++) {
   4040 		if (sc->chainmask & (1 << i)) {
   4041 			/* The delta is relative to antenna "ant". */
   4042 			delta = ((int32_t)calib->noise[ant] -
   4043 			    (int32_t)calib->noise[i]) / div;
   4044 			/* Limit to [-4.5dB,+4.5dB]. */
   4045 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4046 			if (delta < 0)
   4047 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4048 		}
   4049 	}
   4050 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4051 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4052 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4053 }
   4054 
   4055 /*
   4056  * Tune RF RX sensitivity based on the number of false alarms detected
   4057  * during the last beacon period.
   4058  */
   4059 static void
   4060 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4061 {
   4062 #define inc(val, inc, max)			\
   4063 	if ((val) < (max)) {			\
   4064 		if ((val) < (max) - (inc))	\
   4065 			(val) += (inc);		\
   4066 		else				\
   4067 			(val) = (max);		\
   4068 		needs_update = 1;		\
   4069 	}
   4070 #define dec(val, dec, min)			\
   4071 	if ((val) > (min)) {			\
   4072 		if ((val) > (min) + (dec))	\
   4073 			(val) -= (dec);		\
   4074 		else				\
   4075 			(val) = (min);		\
   4076 		needs_update = 1;		\
   4077 	}
   4078 
   4079 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4080 	struct iwn_calib_state *calib = &sc->calib;
   4081 	uint32_t val, rxena, fa;
   4082 	uint32_t energy[3], energy_min;
   4083 	uint8_t noise[3], noise_ref;
   4084 	int i, needs_update = 0;
   4085 
   4086 	/* Check that we've been enabled long enough. */
   4087 	if ((rxena = le32toh(stats->general.load)) == 0)
   4088 		return;
   4089 
   4090 	/* Compute number of false alarms since last call for OFDM. */
   4091 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4092 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4093 	fa *= 200 * 1024;	/* 200TU */
   4094 
   4095 	/* Save counters values for next call. */
   4096 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4097 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4098 
   4099 	if (fa > 50 * rxena) {
   4100 		/* High false alarm count, decrease sensitivity. */
   4101 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4102 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4103 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4104 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4105 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4106 
   4107 	} else if (fa < 5 * rxena) {
   4108 		/* Low false alarm count, increase sensitivity. */
   4109 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4110 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4111 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4112 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4113 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4114 	}
   4115 
   4116 	/* Compute maximum noise among 3 receivers. */
   4117 	for (i = 0; i < 3; i++)
   4118 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4119 	val = MAX(noise[0], noise[1]);
   4120 	val = MAX(noise[2], val);
   4121 	/* Insert it into our samples table. */
   4122 	calib->noise_samples[calib->cur_noise_sample] = val;
   4123 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4124 
   4125 	/* Compute maximum noise among last 20 samples. */
   4126 	noise_ref = calib->noise_samples[0];
   4127 	for (i = 1; i < 20; i++)
   4128 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4129 
   4130 	/* Compute maximum energy among 3 receivers. */
   4131 	for (i = 0; i < 3; i++)
   4132 		energy[i] = le32toh(stats->general.energy[i]);
   4133 	val = MIN(energy[0], energy[1]);
   4134 	val = MIN(energy[2], val);
   4135 	/* Insert it into our samples table. */
   4136 	calib->energy_samples[calib->cur_energy_sample] = val;
   4137 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4138 
   4139 	/* Compute minimum energy among last 10 samples. */
   4140 	energy_min = calib->energy_samples[0];
   4141 	for (i = 1; i < 10; i++)
   4142 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4143 	energy_min += 6;
   4144 
   4145 	/* Compute number of false alarms since last call for CCK. */
   4146 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4147 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4148 	fa *= 200 * 1024;	/* 200TU */
   4149 
   4150 	/* Save counters values for next call. */
   4151 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4152 	calib->fa_cck = le32toh(stats->cck.fa);
   4153 
   4154 	if (fa > 50 * rxena) {
   4155 		/* High false alarm count, decrease sensitivity. */
   4156 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4157 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4158 		calib->low_fa = 0;
   4159 
   4160 		if (calib->cck_x4 > 160) {
   4161 			calib->noise_ref = noise_ref;
   4162 			if (calib->energy_cck > 2)
   4163 				dec(calib->energy_cck, 2, energy_min);
   4164 		}
   4165 		if (calib->cck_x4 < 160) {
   4166 			calib->cck_x4 = 161;
   4167 			needs_update = 1;
   4168 		} else
   4169 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4170 
   4171 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4172 
   4173 	} else if (fa < 5 * rxena) {
   4174 		/* Low false alarm count, increase sensitivity. */
   4175 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4176 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4177 		calib->low_fa++;
   4178 
   4179 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4180 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4181 		     calib->low_fa > 100)) {
   4182 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4183 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4184 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4185 		}
   4186 	} else {
   4187 		/* Not worth to increase or decrease sensitivity. */
   4188 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4189 		calib->low_fa = 0;
   4190 		calib->noise_ref = noise_ref;
   4191 
   4192 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4193 			/* Previous interval had many false alarms. */
   4194 			dec(calib->energy_cck, 8, energy_min);
   4195 		}
   4196 		calib->cck_state = IWN_CCK_STATE_INIT;
   4197 	}
   4198 
   4199 	if (needs_update)
   4200 		(void)iwn_send_sensitivity(sc);
   4201 #undef dec
   4202 #undef inc
   4203 }
   4204 
   4205 static int
   4206 iwn_send_sensitivity(struct iwn_softc *sc)
   4207 {
   4208 	struct iwn_calib_state *calib = &sc->calib;
   4209 	struct iwn_enhanced_sensitivity_cmd cmd;
   4210 	int len;
   4211 
   4212 	memset(&cmd, 0, sizeof cmd);
   4213 	len = sizeof (struct iwn_sensitivity_cmd);
   4214 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4215 	/* OFDM modulation. */
   4216 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4217 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4218 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4219 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4220 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4221 	cmd.energy_ofdm_th   = htole16(62);
   4222 	/* CCK modulation. */
   4223 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4224 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4225 	cmd.energy_cck       = htole16(calib->energy_cck);
   4226 	/* Barker modulation: use default values. */
   4227 	cmd.corr_barker      = htole16(190);
   4228 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
   4229 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4230 		goto send;
   4231 	/* Enhanced sensitivity settings. */
   4232 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4233 	cmd.ofdm_det_slope_mrc = htole16(668);
   4234 	cmd.ofdm_det_icept_mrc = htole16(4);
   4235 	cmd.ofdm_det_slope     = htole16(486);
   4236 	cmd.ofdm_det_icept     = htole16(37);
   4237 	cmd.cck_det_slope_mrc  = htole16(853);
   4238 	cmd.cck_det_icept_mrc  = htole16(4);
   4239 	cmd.cck_det_slope      = htole16(476);
   4240 	cmd.cck_det_icept      = htole16(99);
   4241 send:
   4242 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4243 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4244 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4245 	    calib->energy_cck));
   4246 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4247 }
   4248 
   4249 /*
   4250  * Set STA mode power saving level (between 0 and 5).
   4251  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4252  */
   4253 static int
   4254 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4255 {
   4256 	struct iwn_pmgt_cmd cmd;
   4257 	const struct iwn_pmgt *pmgt;
   4258 	uint32_t maxp, skip_dtim;
   4259 	pcireg_t reg;
   4260 	int i;
   4261 
   4262 	/* Select which PS parameters to use. */
   4263 	if (dtim <= 2)
   4264 		pmgt = &iwn_pmgt[0][level];
   4265 	else if (dtim <= 10)
   4266 		pmgt = &iwn_pmgt[1][level];
   4267 	else
   4268 		pmgt = &iwn_pmgt[2][level];
   4269 
   4270 	memset(&cmd, 0, sizeof cmd);
   4271 	if (level != 0)	/* not CAM */
   4272 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4273 	if (level == 5)
   4274 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4275 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4276 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4277 	    sc->sc_cap_off + PCIE_LCSR);
   4278 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4279 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4280 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4281 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4282 
   4283 	if (dtim == 0) {
   4284 		dtim = 1;
   4285 		skip_dtim = 0;
   4286 	} else
   4287 		skip_dtim = pmgt->skip_dtim;
   4288 	if (skip_dtim != 0) {
   4289 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4290 		maxp = pmgt->intval[4];
   4291 		if (maxp == (uint32_t)-1)
   4292 			maxp = dtim * (skip_dtim + 1);
   4293 		else if (maxp > dtim)
   4294 			maxp = (maxp / dtim) * dtim;
   4295 	} else
   4296 		maxp = dtim;
   4297 	for (i = 0; i < 5; i++)
   4298 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4299 
   4300 	DPRINTF(("setting power saving level to %d\n", level));
   4301 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4302 }
   4303 
   4304 int
   4305 iwn5000_runtime_calib(struct iwn_softc *sc)
   4306 {
   4307 	struct iwn5000_calib_config cmd;
   4308 
   4309 	memset(&cmd, 0, sizeof cmd);
   4310 	cmd.ucode.once.enable = 0xffffffff;
   4311 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4312 	DPRINTF(("configuring runtime calibration\n"));
   4313 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4314 }
   4315 
   4316 static int
   4317 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4318 {
   4319 	struct iwn_bluetooth bluetooth;
   4320 
   4321 	memset(&bluetooth, 0, sizeof bluetooth);
   4322 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4323 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4324 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4325 
   4326 	DPRINTF(("configuring bluetooth coexistence\n"));
   4327 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4328 }
   4329 
   4330 static int
   4331 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4332 {
   4333 	uint8_t prio_table[16];
   4334 
   4335 	memset(&prio_table, 0, sizeof prio_table);
   4336 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4337 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4338 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4339 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4340 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4341 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4342 	prio_table[ 6] =  6;	/* dtim				*/
   4343 	prio_table[ 7] =  8;	/* scan52			*/
   4344 	prio_table[ 8] = 10;	/* scan24			*/
   4345 
   4346 	DPRINTF(("sending priority lookup table\n"));
   4347 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4348 	               &prio_table, sizeof prio_table, 0);
   4349 }
   4350 
   4351 static int
   4352 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4353     size_t len)
   4354 {
   4355 	struct iwn_btcoex_prot btprot;
   4356 	int error;
   4357 
   4358 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4359 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4360 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4361 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4362 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4363 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4364 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4365 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4366 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4367 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4368 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4369 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4370 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4371 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4372 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4373 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4374 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4375 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4376 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4377 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4378 	basic->reduce_txpower = 0; /* as not implemented */
   4379 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4380 
   4381 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4382 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4383 	if (error != 0) {
   4384 		aprint_error_dev(sc->sc_dev,
   4385 			"could not configure advanced bluetooth coexistence\n");
   4386 		return error;
   4387 	}
   4388 
   4389 	error = iwn_config_bt_coex_prio_table(sc);
   4390 	if (error != 0) {
   4391 		aprint_error_dev(sc->sc_dev,
   4392 			"could not configure send BT priority table\n");
   4393 		return error;
   4394 	}
   4395 
   4396 	/* Force BT state machine change */
   4397 	memset(&btprot, 0, sizeof btprot);
   4398 	btprot.open = 1;
   4399 	btprot.type = 1;
   4400 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4401 	if (error != 0) {
   4402 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4403 		return error;
   4404 	}
   4405 
   4406 	btprot.open = 0;
   4407 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4408 	if (error != 0) {
   4409 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4410 		return error;
   4411 	}
   4412 	return 0;
   4413 }
   4414 
   4415 static int
   4416 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4417 {
   4418 	struct iwn_bt_adv1 d;
   4419 
   4420 	memset(&d, 0, sizeof d);
   4421 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4422 	d.tx_prio_boost = 0;
   4423 	d.rx_prio_boost = 0;
   4424 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4425 }
   4426 
   4427 static int
   4428 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4429 {
   4430 	struct iwn_bt_adv2 d;
   4431 
   4432 	memset(&d, 0, sizeof d);
   4433 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4434 	d.tx_prio_boost = 0;
   4435 	d.rx_prio_boost = 0;
   4436 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4437 }
   4438 
   4439 static int
   4440 iwn_config(struct iwn_softc *sc)
   4441 {
   4442 	struct iwn_ops *ops = &sc->ops;
   4443 	struct ieee80211com *ic = &sc->sc_ic;
   4444 	struct ifnet *ifp = ic->ic_ifp;
   4445 	uint32_t txmask;
   4446 	uint16_t rxchain;
   4447 	int error;
   4448 
   4449 	error = ops->config_bt_coex(sc);
   4450 	if (error != 0) {
   4451 		aprint_error_dev(sc->sc_dev,
   4452 			"could not configure bluetooth coexistence\n");
   4453 		return error;
   4454 	}
   4455 
   4456 	/* Set radio temperature sensor offset. */
   4457 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4458 		error = iwn6000_temp_offset_calib(sc);
   4459 		if (error != 0) {
   4460 			aprint_error_dev(sc->sc_dev,
   4461 			    "could not set temperature offset\n");
   4462 			return error;
   4463 		}
   4464 	}
   4465 
   4466 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4467 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4468 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4469 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4470 		error = iwn2000_temp_offset_calib(sc);
   4471 		if (error != 0) {
   4472 			aprint_error_dev(sc->sc_dev,
   4473 			    "could not set temperature offset\n");
   4474 			return error;
   4475 		}
   4476 	}
   4477 
   4478 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4479 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4480 		/* Configure runtime DC calibration. */
   4481 		error = iwn5000_runtime_calib(sc);
   4482 		if (error != 0) {
   4483 			aprint_error_dev(sc->sc_dev,
   4484 			    "could not configure runtime calibration\n");
   4485 			return error;
   4486 		}
   4487 	}
   4488 
   4489 	/* Configure valid TX chains for 5000 Series. */
   4490 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4491 		txmask = htole32(sc->txchainmask);
   4492 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4493 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4494 		    sizeof txmask, 0);
   4495 		if (error != 0) {
   4496 			aprint_error_dev(sc->sc_dev,
   4497 			    "could not configure valid TX chains\n");
   4498 			return error;
   4499 		}
   4500 	}
   4501 
   4502 	/* Set mode, channel, RX filter and enable RX. */
   4503 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4504 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4505 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4506 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4507 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4508 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4509 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4510 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4511 	switch (ic->ic_opmode) {
   4512 	case IEEE80211_M_STA:
   4513 		sc->rxon.mode = IWN_MODE_STA;
   4514 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4515 		break;
   4516 	case IEEE80211_M_MONITOR:
   4517 		sc->rxon.mode = IWN_MODE_MONITOR;
   4518 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4519 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4520 		break;
   4521 	default:
   4522 		/* Should not get there. */
   4523 		break;
   4524 	}
   4525 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4526 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4527 	sc->rxon.ht_single_mask = 0xff;
   4528 	sc->rxon.ht_dual_mask = 0xff;
   4529 	sc->rxon.ht_triple_mask = 0xff;
   4530 	rxchain =
   4531 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4532 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4533 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4534 	sc->rxon.rxchain = htole16(rxchain);
   4535 	DPRINTF(("setting configuration\n"));
   4536 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4537 	if (error != 0) {
   4538 		aprint_error_dev(sc->sc_dev,
   4539 		    "RXON command failed\n");
   4540 		return error;
   4541 	}
   4542 
   4543 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4544 		aprint_error_dev(sc->sc_dev,
   4545 		    "could not add broadcast node\n");
   4546 		return error;
   4547 	}
   4548 
   4549 	/* Configuration has changed, set TX power accordingly. */
   4550 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4551 		aprint_error_dev(sc->sc_dev,
   4552 		    "could not set TX power\n");
   4553 		return error;
   4554 	}
   4555 
   4556 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4557 		aprint_error_dev(sc->sc_dev,
   4558 		    "could not set critical temperature\n");
   4559 		return error;
   4560 	}
   4561 
   4562 	/* Set power saving level to CAM during initialization. */
   4563 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4564 		aprint_error_dev(sc->sc_dev,
   4565 		    "could not set power saving level\n");
   4566 		return error;
   4567 	}
   4568 	return 0;
   4569 }
   4570 
   4571 static uint16_t
   4572 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4573     uint8_t n_probes)
   4574 {
   4575 	/* No channel? Default to 2GHz settings */
   4576 	if (flags & IEEE80211_CHAN_2GHZ)
   4577 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4578 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4579 
   4580 	/* 5GHz dwell time */
   4581 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4582 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4583 }
   4584 
   4585 /*
   4586  * Limit the total dwell time to 85% of the beacon interval.
   4587  *
   4588  * Returns the dwell time in milliseconds.
   4589  */
   4590 static uint16_t
   4591 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4592 {
   4593 	struct ieee80211com *ic = &sc->sc_ic;
   4594 	struct ieee80211_node *ni = ic->ic_bss;
   4595 	int bintval = 0;
   4596 
   4597 	/* bintval is in TU (1.024mS) */
   4598 	if (ni != NULL)
   4599 		bintval = ni->ni_intval;
   4600 
   4601 	/*
   4602 	 * If it's non-zero, we should calculate the minimum of
   4603 	 * it and the DWELL_BASE.
   4604 	 *
   4605 	 * XXX Yes, the math should take into account that bintval
   4606 	 * is 1.024mS, not 1mS..
   4607 	 */
   4608 	if (bintval > 0)
   4609 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4610 
   4611 	/* No association context? Default */
   4612 	return IWN_PASSIVE_DWELL_BASE;
   4613 }
   4614 
   4615 static uint16_t
   4616 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4617 {
   4618 	uint16_t passive;
   4619 	if (flags & IEEE80211_CHAN_2GHZ)
   4620 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4621 	else
   4622 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4623 
   4624 	/* Clamp to the beacon interval if we're associated */
   4625 	return iwn_limit_dwell(sc, passive);
   4626 }
   4627 
   4628 static int
   4629 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4630 {
   4631 	struct ieee80211com *ic = &sc->sc_ic;
   4632 	struct iwn_scan_hdr *hdr;
   4633 	struct iwn_cmd_data *tx;
   4634 	struct iwn_scan_essid *essid;
   4635 	struct iwn_scan_chan *chan;
   4636 	struct ieee80211_frame *wh;
   4637 	struct ieee80211_rateset *rs;
   4638 	struct ieee80211_channel *c;
   4639 	uint8_t *buf, *frm;
   4640 	uint16_t rxchain, dwell_active, dwell_passive;
   4641 	uint8_t txant;
   4642 	int buflen, error, is_active;
   4643 
   4644 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4645 	if (buf == NULL) {
   4646 		aprint_error_dev(sc->sc_dev,
   4647 		    "could not allocate buffer for scan command\n");
   4648 		return ENOMEM;
   4649 	}
   4650 	hdr = (struct iwn_scan_hdr *)buf;
   4651 	/*
   4652 	 * Move to the next channel if no frames are received within 10ms
   4653 	 * after sending the probe request.
   4654 	 */
   4655 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4656 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4657 
   4658 	/* Select antennas for scanning. */
   4659 	rxchain =
   4660 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4661 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4662 	    IWN_RXCHAIN_DRIVER_FORCE;
   4663 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4664 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4665 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4666 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4667 	} else	/* Use all available RX antennas. */
   4668 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4669 	hdr->rxchain = htole16(rxchain);
   4670 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4671 
   4672 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4673 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4674 	tx->id = sc->broadcast_id;
   4675 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4676 
   4677 	if (flags & IEEE80211_CHAN_5GHZ) {
   4678 		hdr->crc_threshold = 0xffff;
   4679 		/* Send probe requests at 6Mbps. */
   4680 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4681 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4682 	} else {
   4683 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4684 		/* Send probe requests at 1Mbps. */
   4685 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4686 		tx->rflags = IWN_RFLAG_CCK;
   4687 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4688 	}
   4689 	/* Use the first valid TX antenna. */
   4690 	txant = IWN_LSB(sc->txchainmask);
   4691 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4692 
   4693 	/*
   4694 	 * Only do active scanning if we're announcing a probe request
   4695 	 * for a given SSID (or more, if we ever add it to the driver.)
   4696 	 */
   4697 	is_active = 0;
   4698 
   4699 	essid = (struct iwn_scan_essid *)(tx + 1);
   4700 	if (ic->ic_des_esslen != 0) {
   4701 		essid[0].id = IEEE80211_ELEMID_SSID;
   4702 		essid[0].len = ic->ic_des_esslen;
   4703 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4704 
   4705 		is_active = 1;
   4706 	}
   4707 	/*
   4708 	 * Build a probe request frame.  Most of the following code is a
   4709 	 * copy & paste of what is done in net80211.
   4710 	 */
   4711 	wh = (struct ieee80211_frame *)(essid + 20);
   4712 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4713 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4714 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4715 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4716 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4717 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4718 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4719 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4720 
   4721 	frm = (uint8_t *)(wh + 1);
   4722 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4723 	frm = ieee80211_add_rates(frm, rs);
   4724 #ifndef IEEE80211_NO_HT
   4725 	if (ic->ic_flags & IEEE80211_F_HTON)
   4726 		frm = ieee80211_add_htcaps(frm, ic);
   4727 #endif
   4728 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4729 		frm = ieee80211_add_xrates(frm, rs);
   4730 
   4731 	/* Set length of probe request. */
   4732 	tx->len = htole16(frm - (uint8_t *)wh);
   4733 
   4734 
   4735 	/*
   4736 	 * If active scanning is requested but a certain channel is
   4737 	 * marked passive, we can do active scanning if we detect
   4738 	 * transmissions.
   4739 	 *
   4740 	 * There is an issue with some firmware versions that triggers
   4741 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4742 	 * on a radar channel even though this means that we should NOT
   4743 	 * send probes.
   4744 	 *
   4745 	 * The "good CRC threshold" is the number of frames that we
   4746 	 * need to receive during our dwell time on a channel before
   4747 	 * sending out probes -- setting this to a huge value will
   4748 	 * mean we never reach it, but at the same time work around
   4749 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4750 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4751 	 *
   4752 	 * This was fixed in later versions along with some other
   4753 	 * scan changes, and the threshold behaves as a flag in those
   4754 	 * versions.
   4755 	 */
   4756 
   4757 	/*
   4758 	 * If we're doing active scanning, set the crc_threshold
   4759 	 * to a suitable value.  This is different to active veruss
   4760 	 * passive scanning depending upon the channel flags; the
   4761 	 * firmware will obey that particular check for us.
   4762 	 */
   4763 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4764 		hdr->crc_threshold = is_active ?
   4765 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4766 	else
   4767 		hdr->crc_threshold = is_active ?
   4768 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4769 
   4770 	chan = (struct iwn_scan_chan *)frm;
   4771 	for (c  = &ic->ic_channels[1];
   4772 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4773 		if ((c->ic_flags & flags) != flags)
   4774 			continue;
   4775 
   4776 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4777 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4778 		chan->flags = 0;
   4779 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4780 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4781 		if (ic->ic_des_esslen != 0)
   4782 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4783 
   4784 		/*
   4785 		 * Calculate the active/passive dwell times.
   4786 		 */
   4787 
   4788 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4789 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4790 
   4791 		/* Make sure they're valid */
   4792 		if (dwell_passive <= dwell_active)
   4793 			dwell_passive = dwell_active + 1;
   4794 
   4795 		chan->active = htole16(dwell_active);
   4796 		chan->passive = htole16(dwell_passive);
   4797 
   4798 		chan->dsp_gain = 0x6e;
   4799 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4800 			chan->rf_gain = 0x3b;
   4801 		} else {
   4802 			chan->rf_gain = 0x28;
   4803 		}
   4804 		hdr->nchan++;
   4805 		chan++;
   4806 	}
   4807 
   4808 	buflen = (uint8_t *)chan - buf;
   4809 	hdr->len = htole16(buflen);
   4810 
   4811 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4812 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4813 	free(buf, M_DEVBUF);
   4814 	return error;
   4815 }
   4816 
   4817 static int
   4818 iwn_auth(struct iwn_softc *sc)
   4819 {
   4820 	struct iwn_ops *ops = &sc->ops;
   4821 	struct ieee80211com *ic = &sc->sc_ic;
   4822 	struct ieee80211_node *ni = ic->ic_bss;
   4823 	int error;
   4824 
   4825 	/* Update adapter configuration. */
   4826 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4827 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4828 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4829 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4830 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4831 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4832 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4833 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4834 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4835 	switch (ic->ic_curmode) {
   4836 	case IEEE80211_MODE_11A:
   4837 		sc->rxon.cck_mask  = 0;
   4838 		sc->rxon.ofdm_mask = 0x15;
   4839 		break;
   4840 	case IEEE80211_MODE_11B:
   4841 		sc->rxon.cck_mask  = 0x03;
   4842 		sc->rxon.ofdm_mask = 0;
   4843 		break;
   4844 	default:	/* Assume 802.11b/g. */
   4845 		sc->rxon.cck_mask  = 0x0f;
   4846 		sc->rxon.ofdm_mask = 0x15;
   4847 	}
   4848 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4849 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4850 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4851 	if (error != 0) {
   4852 		aprint_error_dev(sc->sc_dev,
   4853 		    "RXON command failed\n");
   4854 		return error;
   4855 	}
   4856 
   4857 	/* Configuration has changed, set TX power accordingly. */
   4858 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4859 		aprint_error_dev(sc->sc_dev,
   4860 		    "could not set TX power\n");
   4861 		return error;
   4862 	}
   4863 	/*
   4864 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4865 	 * add the broadcast node again.
   4866 	 */
   4867 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4868 		aprint_error_dev(sc->sc_dev,
   4869 		    "could not add broadcast node\n");
   4870 		return error;
   4871 	}
   4872 	return 0;
   4873 }
   4874 
   4875 static int
   4876 iwn_run(struct iwn_softc *sc)
   4877 {
   4878 	struct iwn_ops *ops = &sc->ops;
   4879 	struct ieee80211com *ic = &sc->sc_ic;
   4880 	struct ieee80211_node *ni = ic->ic_bss;
   4881 	struct iwn_node_info node;
   4882 	int error;
   4883 
   4884 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4885 		/* Link LED blinks while monitoring. */
   4886 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4887 		return 0;
   4888 	}
   4889 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4890 		aprint_error_dev(sc->sc_dev,
   4891 		    "could not set timing\n");
   4892 		return error;
   4893 	}
   4894 
   4895 	/* Update adapter configuration. */
   4896 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4897 	/* Short preamble and slot time are negotiated when associating. */
   4898 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4899 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4900 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4901 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4902 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4903 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4904 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4905 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4906 	if (error != 0) {
   4907 		aprint_error_dev(sc->sc_dev,
   4908 		    "could not update configuration\n");
   4909 		return error;
   4910 	}
   4911 
   4912 	/* Configuration has changed, set TX power accordingly. */
   4913 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4914 		aprint_error_dev(sc->sc_dev,
   4915 		    "could not set TX power\n");
   4916 		return error;
   4917 	}
   4918 
   4919 	/* Fake a join to initialize the TX rate. */
   4920 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4921 	iwn_newassoc(ni, 1);
   4922 
   4923 	/* Add BSS node. */
   4924 	memset(&node, 0, sizeof node);
   4925 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4926 	node.id = IWN_ID_BSS;
   4927 #ifdef notyet
   4928 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4929 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4930 #endif
   4931 	DPRINTF(("adding BSS node\n"));
   4932 	error = ops->add_node(sc, &node, 1);
   4933 	if (error != 0) {
   4934 		aprint_error_dev(sc->sc_dev,
   4935 		    "could not add BSS node\n");
   4936 		return error;
   4937 	}
   4938 	DPRINTF(("setting link quality for node %d\n", node.id));
   4939 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4940 		aprint_error_dev(sc->sc_dev,
   4941 		    "could not setup link quality for node %d\n", node.id);
   4942 		return error;
   4943 	}
   4944 
   4945 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4946 		aprint_error_dev(sc->sc_dev,
   4947 		    "could not set sensitivity\n");
   4948 		return error;
   4949 	}
   4950 	/* Start periodic calibration timer. */
   4951 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4952 	sc->calib_cnt = 0;
   4953 	callout_schedule(&sc->calib_to, hz/2);
   4954 
   4955 	/* Link LED always on while associated. */
   4956 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4957 	return 0;
   4958 }
   4959 
   4960 #ifdef IWN_HWCRYPTO
   4961 /*
   4962  * We support CCMP hardware encryption/decryption of unicast frames only.
   4963  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4964  */
   4965 static int
   4966 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4967     struct ieee80211_key *k)
   4968 {
   4969 	struct iwn_softc *sc = ic->ic_softc;
   4970 	struct iwn_ops *ops = &sc->ops;
   4971 	struct iwn_node *wn = (void *)ni;
   4972 	struct iwn_node_info node;
   4973 	uint16_t kflags;
   4974 
   4975 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4976 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4977 		return ieee80211_set_key(ic, ni, k);
   4978 
   4979 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4980 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4981 		kflags |= IWN_KFLAG_GROUP;
   4982 
   4983 	memset(&node, 0, sizeof node);
   4984 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4985 	    sc->broadcast_id : wn->id;
   4986 	node.control = IWN_NODE_UPDATE;
   4987 	node.flags = IWN_FLAG_SET_KEY;
   4988 	node.kflags = htole16(kflags);
   4989 	node.kid = k->k_id;
   4990 	memcpy(node.key, k->k_key, k->k_len);
   4991 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   4992 	return ops->add_node(sc, &node, 1);
   4993 }
   4994 
   4995 static void
   4996 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4997     struct ieee80211_key *k)
   4998 {
   4999 	struct iwn_softc *sc = ic->ic_softc;
   5000 	struct iwn_ops *ops = &sc->ops;
   5001 	struct iwn_node *wn = (void *)ni;
   5002 	struct iwn_node_info node;
   5003 
   5004 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5005 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   5006 		/* See comment about other ciphers above. */
   5007 		ieee80211_delete_key(ic, ni, k);
   5008 		return;
   5009 	}
   5010 	if (ic->ic_state != IEEE80211_S_RUN)
   5011 		return;	/* Nothing to do. */
   5012 	memset(&node, 0, sizeof node);
   5013 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5014 	    sc->broadcast_id : wn->id;
   5015 	node.control = IWN_NODE_UPDATE;
   5016 	node.flags = IWN_FLAG_SET_KEY;
   5017 	node.kflags = htole16(IWN_KFLAG_INVALID);
   5018 	node.kid = 0xff;
   5019 	DPRINTF(("delete keys for node %d\n", node.id));
   5020 	(void)ops->add_node(sc, &node, 1);
   5021 }
   5022 #endif
   5023 
   5024 /* XXX Added for NetBSD (copied from rev 1.39). */
   5025 
   5026 static int
   5027 iwn_wme_update(struct ieee80211com *ic)
   5028 {
   5029 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   5030 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   5031 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   5032 	const struct wmeParams *wmep;
   5033 	struct iwn_edca_params cmd;
   5034 	int ac;
   5035 
   5036 	/* don't override default WME values if WME is not actually enabled */
   5037 	if (!(ic->ic_flags & IEEE80211_F_WME))
   5038 		return 0;
   5039 	cmd.flags = 0;
   5040 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   5041 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   5042 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   5043 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   5044 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   5045 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   5046 
   5047 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   5048 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   5049 					cmd.ac[ac].cwmin,
   5050 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   5051 	}
   5052 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   5053 #undef IWN_USEC
   5054 #undef IWN_EXP2
   5055 }
   5056 
   5057 #ifndef IEEE80211_NO_HT
   5058 /*
   5059  * This function is called by upper layer when an ADDBA request is received
   5060  * from another STA and before the ADDBA response is sent.
   5061  */
   5062 static int
   5063 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5064     uint8_t tid)
   5065 {
   5066 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5067 	struct iwn_softc *sc = ic->ic_softc;
   5068 	struct iwn_ops *ops = &sc->ops;
   5069 	struct iwn_node *wn = (void *)ni;
   5070 	struct iwn_node_info node;
   5071 
   5072 	memset(&node, 0, sizeof node);
   5073 	node.id = wn->id;
   5074 	node.control = IWN_NODE_UPDATE;
   5075 	node.flags = IWN_FLAG_SET_ADDBA;
   5076 	node.addba_tid = tid;
   5077 	node.addba_ssn = htole16(ba->ba_winstart);
   5078 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5079 	    ba->ba_winstart));
   5080 	return ops->add_node(sc, &node, 1);
   5081 }
   5082 
   5083 /*
   5084  * This function is called by upper layer on teardown of an HT-immediate
   5085  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5086  */
   5087 static void
   5088 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5089     uint8_t tid)
   5090 {
   5091 	struct iwn_softc *sc = ic->ic_softc;
   5092 	struct iwn_ops *ops = &sc->ops;
   5093 	struct iwn_node *wn = (void *)ni;
   5094 	struct iwn_node_info node;
   5095 
   5096 	memset(&node, 0, sizeof node);
   5097 	node.id = wn->id;
   5098 	node.control = IWN_NODE_UPDATE;
   5099 	node.flags = IWN_FLAG_SET_DELBA;
   5100 	node.delba_tid = tid;
   5101 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5102 	(void)ops->add_node(sc, &node, 1);
   5103 }
   5104 
   5105 /*
   5106  * This function is called by upper layer when an ADDBA response is received
   5107  * from another STA.
   5108  */
   5109 static int
   5110 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5111     uint8_t tid)
   5112 {
   5113 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5114 	struct iwn_softc *sc = ic->ic_softc;
   5115 	struct iwn_ops *ops = &sc->ops;
   5116 	struct iwn_node *wn = (void *)ni;
   5117 	struct iwn_node_info node;
   5118 	int error;
   5119 
   5120 	/* Enable TX for the specified RA/TID. */
   5121 	wn->disable_tid &= ~(1 << tid);
   5122 	memset(&node, 0, sizeof node);
   5123 	node.id = wn->id;
   5124 	node.control = IWN_NODE_UPDATE;
   5125 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5126 	node.disable_tid = htole16(wn->disable_tid);
   5127 	error = ops->add_node(sc, &node, 1);
   5128 	if (error != 0)
   5129 		return error;
   5130 
   5131 	if ((error = iwn_nic_lock(sc)) != 0)
   5132 		return error;
   5133 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5134 	iwn_nic_unlock(sc);
   5135 	return 0;
   5136 }
   5137 
   5138 static void
   5139 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5140     uint8_t tid)
   5141 {
   5142 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5143 	struct iwn_softc *sc = ic->ic_softc;
   5144 	struct iwn_ops *ops = &sc->ops;
   5145 
   5146 	if (iwn_nic_lock(sc) != 0)
   5147 		return;
   5148 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5149 	iwn_nic_unlock(sc);
   5150 }
   5151 
   5152 static void
   5153 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5154     uint8_t tid, uint16_t ssn)
   5155 {
   5156 	struct iwn_node *wn = (void *)ni;
   5157 	int qid = 7 + tid;
   5158 
   5159 	/* Stop TX scheduler while we're changing its configuration. */
   5160 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5161 	    IWN4965_TXQ_STATUS_CHGACT);
   5162 
   5163 	/* Assign RA/TID translation to the queue. */
   5164 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5165 	    wn->id << 4 | tid);
   5166 
   5167 	/* Enable chain-building mode for the queue. */
   5168 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5169 
   5170 	/* Set starting sequence number from the ADDBA request. */
   5171 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5172 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5173 
   5174 	/* Set scheduler window size. */
   5175 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5176 	    IWN_SCHED_WINSZ);
   5177 	/* Set scheduler frame limit. */
   5178 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5179 	    IWN_SCHED_LIMIT << 16);
   5180 
   5181 	/* Enable interrupts for the queue. */
   5182 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5183 
   5184 	/* Mark the queue as active. */
   5185 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5186 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5187 	    iwn_tid2fifo[tid] << 1);
   5188 }
   5189 
   5190 static void
   5191 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5192 {
   5193 	int qid = 7 + tid;
   5194 
   5195 	/* Stop TX scheduler while we're changing its configuration. */
   5196 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5197 	    IWN4965_TXQ_STATUS_CHGACT);
   5198 
   5199 	/* Set starting sequence number from the ADDBA request. */
   5200 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5201 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5202 
   5203 	/* Disable interrupts for the queue. */
   5204 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5205 
   5206 	/* Mark the queue as inactive. */
   5207 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5208 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5209 }
   5210 
   5211 static void
   5212 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5213     uint8_t tid, uint16_t ssn)
   5214 {
   5215 	struct iwn_node *wn = (void *)ni;
   5216 	int qid = 10 + tid;
   5217 
   5218 	/* Stop TX scheduler while we're changing its configuration. */
   5219 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5220 	    IWN5000_TXQ_STATUS_CHGACT);
   5221 
   5222 	/* Assign RA/TID translation to the queue. */
   5223 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5224 	    wn->id << 4 | tid);
   5225 
   5226 	/* Enable chain-building mode for the queue. */
   5227 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5228 
   5229 	/* Enable aggregation for the queue. */
   5230 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5231 
   5232 	/* Set starting sequence number from the ADDBA request. */
   5233 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5234 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5235 
   5236 	/* Set scheduler window size and frame limit. */
   5237 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5238 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5239 
   5240 	/* Enable interrupts for the queue. */
   5241 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5242 
   5243 	/* Mark the queue as active. */
   5244 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5245 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5246 }
   5247 
   5248 static void
   5249 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5250 {
   5251 	int qid = 10 + tid;
   5252 
   5253 	/* Stop TX scheduler while we're changing its configuration. */
   5254 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5255 	    IWN5000_TXQ_STATUS_CHGACT);
   5256 
   5257 	/* Disable aggregation for the queue. */
   5258 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5259 
   5260 	/* Set starting sequence number from the ADDBA request. */
   5261 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5262 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5263 
   5264 	/* Disable interrupts for the queue. */
   5265 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5266 
   5267 	/* Mark the queue as inactive. */
   5268 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5269 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5270 }
   5271 #endif	/* !IEEE80211_NO_HT */
   5272 
   5273 /*
   5274  * Query calibration tables from the initialization firmware.  We do this
   5275  * only once at first boot.  Called from a process context.
   5276  */
   5277 static int
   5278 iwn5000_query_calibration(struct iwn_softc *sc)
   5279 {
   5280 	struct iwn5000_calib_config cmd;
   5281 	int error;
   5282 
   5283 	memset(&cmd, 0, sizeof cmd);
   5284 	cmd.ucode.once.enable = 0xffffffff;
   5285 	cmd.ucode.once.start  = 0xffffffff;
   5286 	cmd.ucode.once.send   = 0xffffffff;
   5287 	cmd.ucode.flags       = 0xffffffff;
   5288 	DPRINTF(("sending calibration query\n"));
   5289 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5290 	if (error != 0)
   5291 		return error;
   5292 
   5293 	/* Wait at most two seconds for calibration to complete. */
   5294 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5295 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5296 	return error;
   5297 }
   5298 
   5299 /*
   5300  * Send calibration results to the runtime firmware.  These results were
   5301  * obtained on first boot from the initialization firmware.
   5302  */
   5303 static int
   5304 iwn5000_send_calibration(struct iwn_softc *sc)
   5305 {
   5306 	int idx, error;
   5307 
   5308 	for (idx = 0; idx < 5; idx++) {
   5309 		if (sc->calibcmd[idx].buf == NULL)
   5310 			continue;	/* No results available. */
   5311 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5312 		    idx, sc->calibcmd[idx].len));
   5313 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5314 		    sc->calibcmd[idx].len, 0);
   5315 		if (error != 0) {
   5316 			aprint_error_dev(sc->sc_dev,
   5317 			    "could not send calibration result\n");
   5318 			return error;
   5319 		}
   5320 	}
   5321 	return 0;
   5322 }
   5323 
   5324 static int
   5325 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5326 {
   5327 	struct iwn5000_wimax_coex wimax;
   5328 
   5329 #ifdef notyet
   5330 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5331 		/* Enable WiMAX coexistence for combo adapters. */
   5332 		wimax.flags =
   5333 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5334 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5335 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5336 		    IWN_WIMAX_COEX_ENABLE;
   5337 		memcpy(wimax.events, iwn6050_wimax_events,
   5338 		    sizeof iwn6050_wimax_events);
   5339 	} else
   5340 #endif
   5341 	{
   5342 		/* Disable WiMAX coexistence. */
   5343 		wimax.flags = 0;
   5344 		memset(wimax.events, 0, sizeof wimax.events);
   5345 	}
   5346 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5347 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5348 }
   5349 
   5350 static int
   5351 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5352 {
   5353 	struct iwn6000_phy_calib_temp_offset cmd;
   5354 
   5355 	memset(&cmd, 0, sizeof cmd);
   5356 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5357 	cmd.ngroups = 1;
   5358 	cmd.isvalid = 1;
   5359 	if (sc->eeprom_temp != 0)
   5360 		cmd.offset = htole16(sc->eeprom_temp);
   5361 	else
   5362 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5363 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5364 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5365 }
   5366 
   5367 static int
   5368 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5369 {
   5370 	struct iwn2000_phy_calib_temp_offset cmd;
   5371 
   5372 	memset(&cmd, 0, sizeof cmd);
   5373 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5374 	cmd.ngroups = 1;
   5375 	cmd.isvalid = 1;
   5376 	if (sc->eeprom_rawtemp != 0) {
   5377 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5378 		cmd.offset_high = htole16(sc->eeprom_temp);
   5379 	} else {
   5380 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5381 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5382 	}
   5383 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5384 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5385 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5386 	    le16toh(cmd.burnt_voltage_ref)));
   5387 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5388 }
   5389 
   5390 /*
   5391  * This function is called after the runtime firmware notifies us of its
   5392  * readiness (called in a process context).
   5393  */
   5394 static int
   5395 iwn4965_post_alive(struct iwn_softc *sc)
   5396 {
   5397 	int error, qid;
   5398 
   5399 	if ((error = iwn_nic_lock(sc)) != 0)
   5400 		return error;
   5401 
   5402 	/* Clear TX scheduler state in SRAM. */
   5403 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5404 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5405 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5406 
   5407 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5408 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5409 
   5410 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5411 
   5412 	/* Disable chain mode for all our 16 queues. */
   5413 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5414 
   5415 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5416 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5417 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5418 
   5419 		/* Set scheduler window size. */
   5420 		iwn_mem_write(sc, sc->sched_base +
   5421 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5422 		/* Set scheduler frame limit. */
   5423 		iwn_mem_write(sc, sc->sched_base +
   5424 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5425 		    IWN_SCHED_LIMIT << 16);
   5426 	}
   5427 
   5428 	/* Enable interrupts for all our 16 queues. */
   5429 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5430 	/* Identify TX FIFO rings (0-7). */
   5431 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5432 
   5433 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5434 	for (qid = 0; qid < 7; qid++) {
   5435 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5436 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5437 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5438 	}
   5439 	iwn_nic_unlock(sc);
   5440 	return 0;
   5441 }
   5442 
   5443 /*
   5444  * This function is called after the initialization or runtime firmware
   5445  * notifies us of its readiness (called in a process context).
   5446  */
   5447 static int
   5448 iwn5000_post_alive(struct iwn_softc *sc)
   5449 {
   5450 	int error, qid;
   5451 
   5452 	/* Switch to using ICT interrupt mode. */
   5453 	iwn5000_ict_reset(sc);
   5454 
   5455 	if ((error = iwn_nic_lock(sc)) != 0)
   5456 		return error;
   5457 
   5458 	/* Clear TX scheduler state in SRAM. */
   5459 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5460 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5461 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5462 
   5463 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5464 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5465 
   5466 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5467 
   5468 	/* Enable chain mode for all queues, except command queue. */
   5469 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5470 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5471 
   5472 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5473 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5474 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5475 
   5476 		iwn_mem_write(sc, sc->sched_base +
   5477 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5478 		/* Set scheduler window size and frame limit. */
   5479 		iwn_mem_write(sc, sc->sched_base +
   5480 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5481 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5482 	}
   5483 
   5484 	/* Enable interrupts for all our 20 queues. */
   5485 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5486 	/* Identify TX FIFO rings (0-7). */
   5487 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5488 
   5489 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5490 	for (qid = 0; qid < 7; qid++) {
   5491 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5492 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5493 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5494 	}
   5495 	iwn_nic_unlock(sc);
   5496 
   5497 	/* Configure WiMAX coexistence for combo adapters. */
   5498 	error = iwn5000_send_wimax_coex(sc);
   5499 	if (error != 0) {
   5500 		aprint_error_dev(sc->sc_dev,
   5501 		    "could not configure WiMAX coexistence\n");
   5502 		return error;
   5503 	}
   5504 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5505 		struct iwn5000_phy_calib_crystal cmd;
   5506 
   5507 		/* Perform crystal calibration. */
   5508 		memset(&cmd, 0, sizeof cmd);
   5509 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5510 		cmd.ngroups = 1;
   5511 		cmd.isvalid = 1;
   5512 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5513 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5514 		DPRINTF(("sending crystal calibration %d, %d\n",
   5515 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5516 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5517 		if (error != 0) {
   5518 			aprint_error_dev(sc->sc_dev,
   5519 			    "crystal calibration failed\n");
   5520 			return error;
   5521 		}
   5522 	}
   5523 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5524 		/* Query calibration from the initialization firmware. */
   5525 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5526 			aprint_error_dev(sc->sc_dev,
   5527 			    "could not query calibration\n");
   5528 			return error;
   5529 		}
   5530 		/*
   5531 		 * We have the calibration results now, reboot with the
   5532 		 * runtime firmware (call ourselves recursively!)
   5533 		 */
   5534 		iwn_hw_stop(sc);
   5535 		error = iwn_hw_init(sc);
   5536 	} else {
   5537 		/* Send calibration results to runtime firmware. */
   5538 		error = iwn5000_send_calibration(sc);
   5539 	}
   5540 	return error;
   5541 }
   5542 
   5543 /*
   5544  * The firmware boot code is small and is intended to be copied directly into
   5545  * the NIC internal memory (no DMA transfer).
   5546  */
   5547 static int
   5548 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5549 {
   5550 	int error, ntries;
   5551 
   5552 	size /= sizeof (uint32_t);
   5553 
   5554 	if ((error = iwn_nic_lock(sc)) != 0)
   5555 		return error;
   5556 
   5557 	/* Copy microcode image into NIC memory. */
   5558 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5559 	    (const uint32_t *)ucode, size);
   5560 
   5561 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5562 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5563 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5564 
   5565 	/* Start boot load now. */
   5566 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5567 
   5568 	/* Wait for transfer to complete. */
   5569 	for (ntries = 0; ntries < 1000; ntries++) {
   5570 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5571 		    IWN_BSM_WR_CTRL_START))
   5572 			break;
   5573 		DELAY(10);
   5574 	}
   5575 	if (ntries == 1000) {
   5576 		aprint_error_dev(sc->sc_dev,
   5577 		    "could not load boot firmware\n");
   5578 		iwn_nic_unlock(sc);
   5579 		return ETIMEDOUT;
   5580 	}
   5581 
   5582 	/* Enable boot after power up. */
   5583 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5584 
   5585 	iwn_nic_unlock(sc);
   5586 	return 0;
   5587 }
   5588 
   5589 static int
   5590 iwn4965_load_firmware(struct iwn_softc *sc)
   5591 {
   5592 	struct iwn_fw_info *fw = &sc->fw;
   5593 	struct iwn_dma_info *dma = &sc->fw_dma;
   5594 	int error;
   5595 
   5596 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5597 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5598 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5599 	    BUS_DMASYNC_PREWRITE);
   5600 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5601 	    fw->init.text, fw->init.textsz);
   5602 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5603 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5604 
   5605 	/* Tell adapter where to find initialization sections. */
   5606 	if ((error = iwn_nic_lock(sc)) != 0)
   5607 		return error;
   5608 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5609 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5610 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5611 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5612 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5613 	iwn_nic_unlock(sc);
   5614 
   5615 	/* Load firmware boot code. */
   5616 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5617 	if (error != 0) {
   5618 		aprint_error_dev(sc->sc_dev,
   5619 		    "could not load boot firmware\n");
   5620 		return error;
   5621 	}
   5622 	/* Now press "execute". */
   5623 	IWN_WRITE(sc, IWN_RESET, 0);
   5624 
   5625 	/* Wait at most one second for first alive notification. */
   5626 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5627 		aprint_error_dev(sc->sc_dev,
   5628 		    "timeout waiting for adapter to initialize\n");
   5629 		return error;
   5630 	}
   5631 
   5632 	/* Retrieve current temperature for initial TX power calibration. */
   5633 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5634 	sc->temp = iwn4965_get_temperature(sc);
   5635 
   5636 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5637 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5638 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5639 	    BUS_DMASYNC_PREWRITE);
   5640 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5641 	    fw->main.text, fw->main.textsz);
   5642 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5643 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5644 
   5645 	/* Tell adapter where to find runtime sections. */
   5646 	if ((error = iwn_nic_lock(sc)) != 0)
   5647 		return error;
   5648 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5649 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5650 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5651 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5652 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5653 	    IWN_FW_UPDATED | fw->main.textsz);
   5654 	iwn_nic_unlock(sc);
   5655 
   5656 	return 0;
   5657 }
   5658 
   5659 static int
   5660 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5661     const uint8_t *section, int size)
   5662 {
   5663 	struct iwn_dma_info *dma = &sc->fw_dma;
   5664 	int error;
   5665 
   5666 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5667 	memcpy(dma->vaddr, section, size);
   5668 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5669 
   5670 	if ((error = iwn_nic_lock(sc)) != 0)
   5671 		return error;
   5672 
   5673 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5674 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5675 
   5676 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5677 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5678 	    IWN_LOADDR(dma->paddr));
   5679 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5680 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5681 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5682 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5683 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5684 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5685 
   5686 	/* Kick Flow Handler to start DMA transfer. */
   5687 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5688 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5689 
   5690 	iwn_nic_unlock(sc);
   5691 
   5692 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5693 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5694 }
   5695 
   5696 static int
   5697 iwn5000_load_firmware(struct iwn_softc *sc)
   5698 {
   5699 	struct iwn_fw_part *fw;
   5700 	int error;
   5701 
   5702 	/* Load the initialization firmware on first boot only. */
   5703 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5704 	    &sc->fw.main : &sc->fw.init;
   5705 
   5706 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5707 	    fw->text, fw->textsz);
   5708 	if (error != 0) {
   5709 		aprint_error_dev(sc->sc_dev,
   5710 		    "could not load firmware %s section\n", ".text");
   5711 		return error;
   5712 	}
   5713 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5714 	    fw->data, fw->datasz);
   5715 	if (error != 0) {
   5716 		aprint_error_dev(sc->sc_dev,
   5717 		    "could not load firmware %s section\n", ".data");
   5718 		return error;
   5719 	}
   5720 
   5721 	/* Now press "execute". */
   5722 	IWN_WRITE(sc, IWN_RESET, 0);
   5723 	return 0;
   5724 }
   5725 
   5726 /*
   5727  * Extract text and data sections from a legacy firmware image.
   5728  */
   5729 static int
   5730 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5731 {
   5732 	const uint32_t *ptr;
   5733 	size_t hdrlen = 24;
   5734 	uint32_t rev;
   5735 
   5736 	ptr = (const uint32_t *)fw->data;
   5737 	rev = le32toh(*ptr++);
   5738 
   5739 	sc->ucode_rev = rev;
   5740 
   5741 	/* Check firmware API version. */
   5742 	if (IWN_FW_API(rev) <= 1) {
   5743 		aprint_error_dev(sc->sc_dev,
   5744 		    "bad firmware, need API version >=2\n");
   5745 		return EINVAL;
   5746 	}
   5747 	if (IWN_FW_API(rev) >= 3) {
   5748 		/* Skip build number (version 2 header). */
   5749 		hdrlen += 4;
   5750 		ptr++;
   5751 	}
   5752 	if (fw->size < hdrlen) {
   5753 		aprint_error_dev(sc->sc_dev,
   5754 		    "firmware too short: %zd bytes\n", fw->size);
   5755 		return EINVAL;
   5756 	}
   5757 	fw->main.textsz = le32toh(*ptr++);
   5758 	fw->main.datasz = le32toh(*ptr++);
   5759 	fw->init.textsz = le32toh(*ptr++);
   5760 	fw->init.datasz = le32toh(*ptr++);
   5761 	fw->boot.textsz = le32toh(*ptr++);
   5762 
   5763 	/* Check that all firmware sections fit. */
   5764 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5765 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5766 		aprint_error_dev(sc->sc_dev,
   5767 		    "firmware too short: %zd bytes\n", fw->size);
   5768 		return EINVAL;
   5769 	}
   5770 
   5771 	/* Get pointers to firmware sections. */
   5772 	fw->main.text = (const uint8_t *)ptr;
   5773 	fw->main.data = fw->main.text + fw->main.textsz;
   5774 	fw->init.text = fw->main.data + fw->main.datasz;
   5775 	fw->init.data = fw->init.text + fw->init.textsz;
   5776 	fw->boot.text = fw->init.data + fw->init.datasz;
   5777 	return 0;
   5778 }
   5779 
   5780 /*
   5781  * Extract text and data sections from a TLV firmware image.
   5782  */
   5783 static int
   5784 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5785     uint16_t alt)
   5786 {
   5787 	const struct iwn_fw_tlv_hdr *hdr;
   5788 	const struct iwn_fw_tlv *tlv;
   5789 	const uint8_t *ptr, *end;
   5790 	uint64_t altmask;
   5791 	uint32_t len;
   5792 
   5793 	if (fw->size < sizeof (*hdr)) {
   5794 		aprint_error_dev(sc->sc_dev,
   5795 		    "firmware too short: %zd bytes\n", fw->size);
   5796 		return EINVAL;
   5797 	}
   5798 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5799 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5800 		aprint_error_dev(sc->sc_dev,
   5801 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5802 		return EINVAL;
   5803 	}
   5804 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5805 	    le32toh(hdr->build)));
   5806 	sc->ucode_rev = le32toh(hdr->rev);
   5807 
   5808 	/*
   5809 	 * Select the closest supported alternative that is less than
   5810 	 * or equal to the specified one.
   5811 	 */
   5812 	altmask = le64toh(hdr->altmask);
   5813 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5814 		alt--;	/* Downgrade. */
   5815 	DPRINTF(("using alternative %d\n", alt));
   5816 
   5817 	ptr = (const uint8_t *)(hdr + 1);
   5818 	end = (const uint8_t *)(fw->data + fw->size);
   5819 
   5820 	/* Parse type-length-value fields. */
   5821 	while (ptr + sizeof (*tlv) <= end) {
   5822 		tlv = (const struct iwn_fw_tlv *)ptr;
   5823 		len = le32toh(tlv->len);
   5824 
   5825 		ptr += sizeof (*tlv);
   5826 		if (ptr + len > end) {
   5827 			aprint_error_dev(sc->sc_dev,
   5828 			    "firmware too short: %zd bytes\n", fw->size);
   5829 			return EINVAL;
   5830 		}
   5831 		/* Skip other alternatives. */
   5832 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5833 			goto next;
   5834 
   5835 		switch (le16toh(tlv->type)) {
   5836 		case IWN_FW_TLV_MAIN_TEXT:
   5837 			fw->main.text = ptr;
   5838 			fw->main.textsz = len;
   5839 			break;
   5840 		case IWN_FW_TLV_MAIN_DATA:
   5841 			fw->main.data = ptr;
   5842 			fw->main.datasz = len;
   5843 			break;
   5844 		case IWN_FW_TLV_INIT_TEXT:
   5845 			fw->init.text = ptr;
   5846 			fw->init.textsz = len;
   5847 			break;
   5848 		case IWN_FW_TLV_INIT_DATA:
   5849 			fw->init.data = ptr;
   5850 			fw->init.datasz = len;
   5851 			break;
   5852 		case IWN_FW_TLV_BOOT_TEXT:
   5853 			fw->boot.text = ptr;
   5854 			fw->boot.textsz = len;
   5855 			break;
   5856 		case IWN_FW_TLV_ENH_SENS:
   5857 			if (len != 0) {
   5858 				aprint_error_dev(sc->sc_dev,
   5859 				    "TLV type %d has invalid size %u\n",
   5860 				    le16toh(tlv->type), len);
   5861 				goto next;
   5862 			}
   5863 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5864 			break;
   5865 		case IWN_FW_TLV_PHY_CALIB:
   5866 			if (len != sizeof(uint32_t)) {
   5867 				aprint_error_dev(sc->sc_dev,
   5868 				    "TLV type %d has invalid size %u\n",
   5869 				    le16toh(tlv->type), len);
   5870 				goto next;
   5871 			}
   5872 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5873 				sc->reset_noise_gain = le32toh(*ptr);
   5874 				sc->noise_gain = le32toh(*ptr) + 1;
   5875 			}
   5876 			break;
   5877 		case IWN_FW_TLV_FLAGS:
   5878 			if (len < sizeof(uint32_t))
   5879 				break;
   5880 			if (len % sizeof(uint32_t))
   5881 				break;
   5882 			sc->tlv_feature_flags = le32toh(*ptr);
   5883 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5884 			break;
   5885 		default:
   5886 			DPRINTF(("TLV type %d not handled\n",
   5887 			    le16toh(tlv->type)));
   5888 			break;
   5889 		}
   5890  next:		/* TLV fields are 32-bit aligned. */
   5891 		ptr += (len + 3) & ~3;
   5892 	}
   5893 	return 0;
   5894 }
   5895 
   5896 static int
   5897 iwn_read_firmware(struct iwn_softc *sc)
   5898 {
   5899 	struct iwn_fw_info *fw = &sc->fw;
   5900 	firmware_handle_t fwh;
   5901 	int error;
   5902 
   5903 	/*
   5904 	 * Some PHY calibration commands are firmware-dependent; these
   5905 	 * are the default values that will be overridden if
   5906 	 * necessary.
   5907 	 */
   5908 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5909 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5910 
   5911 	/* Initialize for error returns */
   5912 	fw->data = NULL;
   5913 	fw->size = 0;
   5914 
   5915 	/* Open firmware image. */
   5916 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5917 		aprint_error_dev(sc->sc_dev,
   5918 		    "could not get firmware handle %s\n", sc->fwname);
   5919 		return error;
   5920 	}
   5921 	fw->size = firmware_get_size(fwh);
   5922 	if (fw->size < sizeof (uint32_t)) {
   5923 		aprint_error_dev(sc->sc_dev,
   5924 		    "firmware too short: %zd bytes\n", fw->size);
   5925 		firmware_close(fwh);
   5926 		return EINVAL;
   5927 	}
   5928 
   5929 	/* Read the firmware. */
   5930 	fw->data = firmware_malloc(fw->size);
   5931 	if (fw->data == NULL) {
   5932 		aprint_error_dev(sc->sc_dev,
   5933 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5934 		firmware_close(fwh);
   5935 		return ENOMEM;
   5936 	}
   5937 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5938 	firmware_close(fwh);
   5939 	if (error != 0) {
   5940 		aprint_error_dev(sc->sc_dev,
   5941 		    "could not read firmware %s\n", sc->fwname);
   5942 		goto out;
   5943 	}
   5944 
   5945 	/* Retrieve text and data sections. */
   5946 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5947 		error = iwn_read_firmware_leg(sc, fw);
   5948 	else
   5949 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5950 	if (error != 0) {
   5951 		aprint_error_dev(sc->sc_dev,
   5952 		    "could not read firmware sections\n");
   5953 		goto out;
   5954 	}
   5955 
   5956 	/* Make sure text and data sections fit in hardware memory. */
   5957 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5958 	    fw->main.datasz > sc->fw_data_maxsz ||
   5959 	    fw->init.textsz > sc->fw_text_maxsz ||
   5960 	    fw->init.datasz > sc->fw_data_maxsz ||
   5961 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5962 	    (fw->boot.textsz & 3) != 0) {
   5963 		aprint_error_dev(sc->sc_dev,
   5964 		    "firmware sections too large\n");
   5965 		goto out;
   5966 	}
   5967 
   5968 	/* We can proceed with loading the firmware. */
   5969 	return 0;
   5970 out:
   5971 	firmware_free(fw->data, fw->size);
   5972 	fw->data = NULL;
   5973 	fw->size = 0;
   5974 	return error ? error : EINVAL;
   5975 }
   5976 
   5977 static int
   5978 iwn_clock_wait(struct iwn_softc *sc)
   5979 {
   5980 	int ntries;
   5981 
   5982 	/* Set "initialization complete" bit. */
   5983 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5984 
   5985 	/* Wait for clock stabilization. */
   5986 	for (ntries = 0; ntries < 2500; ntries++) {
   5987 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5988 			return 0;
   5989 		DELAY(10);
   5990 	}
   5991 	aprint_error_dev(sc->sc_dev,
   5992 	    "timeout waiting for clock stabilization\n");
   5993 	return ETIMEDOUT;
   5994 }
   5995 
   5996 static int
   5997 iwn_apm_init(struct iwn_softc *sc)
   5998 {
   5999 	pcireg_t reg;
   6000 	int error;
   6001 
   6002 	/* Disable L0s exit timer (NMI bug workaround). */
   6003 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   6004 	/* Don't wait for ICH L0s (ICH bug workaround). */
   6005 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   6006 
   6007 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   6008 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   6009 
   6010 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   6011 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   6012 
   6013 	/* Retrieve PCIe Active State Power Management (ASPM). */
   6014 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   6015 	    sc->sc_cap_off + PCIE_LCSR);
   6016 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   6017 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   6018 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6019 	else
   6020 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6021 
   6022 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   6023 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   6024 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   6025 
   6026 	/* Wait for clock stabilization before accessing prph. */
   6027 	if ((error = iwn_clock_wait(sc)) != 0)
   6028 		return error;
   6029 
   6030 	if ((error = iwn_nic_lock(sc)) != 0)
   6031 		return error;
   6032 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   6033 		/* Enable DMA and BSM (Bootstrap State Machine). */
   6034 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6035 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   6036 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   6037 	} else {
   6038 		/* Enable DMA. */
   6039 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6040 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6041 	}
   6042 	DELAY(20);
   6043 	/* Disable L1-Active. */
   6044 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   6045 	iwn_nic_unlock(sc);
   6046 
   6047 	return 0;
   6048 }
   6049 
   6050 static void
   6051 iwn_apm_stop_master(struct iwn_softc *sc)
   6052 {
   6053 	int ntries;
   6054 
   6055 	/* Stop busmaster DMA activity. */
   6056 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   6057 	for (ntries = 0; ntries < 100; ntries++) {
   6058 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   6059 			return;
   6060 		DELAY(10);
   6061 	}
   6062 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6063 }
   6064 
   6065 static void
   6066 iwn_apm_stop(struct iwn_softc *sc)
   6067 {
   6068 	iwn_apm_stop_master(sc);
   6069 
   6070 	/* Reset the entire device. */
   6071 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6072 	DELAY(10);
   6073 	/* Clear "initialization complete" bit. */
   6074 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6075 }
   6076 
   6077 static int
   6078 iwn4965_nic_config(struct iwn_softc *sc)
   6079 {
   6080 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6081 		/*
   6082 		 * I don't believe this to be correct but this is what the
   6083 		 * vendor driver is doing. Probably the bits should not be
   6084 		 * shifted in IWN_RFCFG_*.
   6085 		 */
   6086 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6087 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6088 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6089 		    IWN_RFCFG_DASH(sc->rfcfg));
   6090 	}
   6091 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6092 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6093 	return 0;
   6094 }
   6095 
   6096 static int
   6097 iwn5000_nic_config(struct iwn_softc *sc)
   6098 {
   6099 	uint32_t tmp;
   6100 	int error;
   6101 
   6102 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6103 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6104 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6105 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6106 		    IWN_RFCFG_DASH(sc->rfcfg));
   6107 	}
   6108 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6109 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6110 
   6111 	if ((error = iwn_nic_lock(sc)) != 0)
   6112 		return error;
   6113 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6114 
   6115 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6116 		/*
   6117 		 * Select first Switching Voltage Regulator (1.32V) to
   6118 		 * solve a stability issue related to noisy DC2DC line
   6119 		 * in the silicon of 1000 Series.
   6120 		 */
   6121 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6122 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6123 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6124 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6125 	}
   6126 	iwn_nic_unlock(sc);
   6127 
   6128 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6129 		/* Use internal power amplifier only. */
   6130 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6131 	}
   6132 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6133 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6134 		/* Indicate that ROM calibration version is >=6. */
   6135 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6136 	}
   6137 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6138 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6139 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6140 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6141 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6142 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6143 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6144 	return 0;
   6145 }
   6146 
   6147 /*
   6148  * Take NIC ownership over Intel Active Management Technology (AMT).
   6149  */
   6150 static int
   6151 iwn_hw_prepare(struct iwn_softc *sc)
   6152 {
   6153 	int ntries;
   6154 
   6155 	/* Check if hardware is ready. */
   6156 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6157 	for (ntries = 0; ntries < 5; ntries++) {
   6158 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6159 		    IWN_HW_IF_CONFIG_NIC_READY)
   6160 			return 0;
   6161 		DELAY(10);
   6162 	}
   6163 
   6164 	/* Hardware not ready, force into ready state. */
   6165 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6166 	for (ntries = 0; ntries < 15000; ntries++) {
   6167 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6168 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6169 			break;
   6170 		DELAY(10);
   6171 	}
   6172 	if (ntries == 15000)
   6173 		return ETIMEDOUT;
   6174 
   6175 	/* Hardware should be ready now. */
   6176 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6177 	for (ntries = 0; ntries < 5; ntries++) {
   6178 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6179 		    IWN_HW_IF_CONFIG_NIC_READY)
   6180 			return 0;
   6181 		DELAY(10);
   6182 	}
   6183 	return ETIMEDOUT;
   6184 }
   6185 
   6186 static int
   6187 iwn_hw_init(struct iwn_softc *sc)
   6188 {
   6189 	struct iwn_ops *ops = &sc->ops;
   6190 	int error, chnl, qid;
   6191 
   6192 	/* Clear pending interrupts. */
   6193 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6194 
   6195 	if ((error = iwn_apm_init(sc)) != 0) {
   6196 		aprint_error_dev(sc->sc_dev,
   6197 		    "could not power ON adapter\n");
   6198 		return error;
   6199 	}
   6200 
   6201 	/* Select VMAIN power source. */
   6202 	if ((error = iwn_nic_lock(sc)) != 0)
   6203 		return error;
   6204 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6205 	iwn_nic_unlock(sc);
   6206 
   6207 	/* Perform adapter-specific initialization. */
   6208 	if ((error = ops->nic_config(sc)) != 0)
   6209 		return error;
   6210 
   6211 	/* Initialize RX ring. */
   6212 	if ((error = iwn_nic_lock(sc)) != 0)
   6213 		return error;
   6214 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6215 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6216 	/* Set physical address of RX ring (256-byte aligned). */
   6217 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6218 	/* Set physical address of RX status (16-byte aligned). */
   6219 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6220 	/* Enable RX. */
   6221 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6222 	    IWN_FH_RX_CONFIG_ENA           |
   6223 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6224 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6225 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6226 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6227 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6228 	iwn_nic_unlock(sc);
   6229 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6230 
   6231 	if ((error = iwn_nic_lock(sc)) != 0)
   6232 		return error;
   6233 
   6234 	/* Initialize TX scheduler. */
   6235 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6236 
   6237 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6238 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6239 
   6240 	/* Initialize TX rings. */
   6241 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6242 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6243 
   6244 		/* Set physical address of TX ring (256-byte aligned). */
   6245 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6246 		    txq->desc_dma.paddr >> 8);
   6247 	}
   6248 	iwn_nic_unlock(sc);
   6249 
   6250 	/* Enable DMA channels. */
   6251 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6252 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6253 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6254 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6255 	}
   6256 
   6257 	/* Clear "radio off" and "commands blocked" bits. */
   6258 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6259 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6260 
   6261 	/* Clear pending interrupts. */
   6262 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6263 	/* Enable interrupt coalescing. */
   6264 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6265 	/* Enable interrupts. */
   6266 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6267 
   6268 	/* _Really_ make sure "radio off" bit is cleared! */
   6269 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6270 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6271 
   6272 	/* Enable shadow registers. */
   6273 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6274 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6275 
   6276 	if ((error = ops->load_firmware(sc)) != 0) {
   6277 		aprint_error_dev(sc->sc_dev,
   6278 		    "could not load firmware\n");
   6279 		return error;
   6280 	}
   6281 	/* Wait at most one second for firmware alive notification. */
   6282 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6283 		aprint_error_dev(sc->sc_dev,
   6284 		    "timeout waiting for adapter to initialize\n");
   6285 		return error;
   6286 	}
   6287 	/* Do post-firmware initialization. */
   6288 	return ops->post_alive(sc);
   6289 }
   6290 
   6291 static void
   6292 iwn_hw_stop(struct iwn_softc *sc)
   6293 {
   6294 	int chnl, qid, ntries;
   6295 
   6296 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6297 
   6298 	/* Disable interrupts. */
   6299 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6300 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6301 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6302 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6303 
   6304 	/* Make sure we no longer hold the NIC lock. */
   6305 	iwn_nic_unlock(sc);
   6306 
   6307 	/* Stop TX scheduler. */
   6308 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6309 
   6310 	/* Stop all DMA channels. */
   6311 	if (iwn_nic_lock(sc) == 0) {
   6312 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6313 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6314 			for (ntries = 0; ntries < 200; ntries++) {
   6315 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6316 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6317 					break;
   6318 				DELAY(10);
   6319 			}
   6320 		}
   6321 		iwn_nic_unlock(sc);
   6322 	}
   6323 
   6324 	/* Stop RX ring. */
   6325 	iwn_reset_rx_ring(sc, &sc->rxq);
   6326 
   6327 	/* Reset all TX rings. */
   6328 	for (qid = 0; qid < sc->ntxqs; qid++)
   6329 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6330 
   6331 	if (iwn_nic_lock(sc) == 0) {
   6332 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6333 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6334 		iwn_nic_unlock(sc);
   6335 	}
   6336 	DELAY(5);
   6337 	/* Power OFF adapter. */
   6338 	iwn_apm_stop(sc);
   6339 }
   6340 
   6341 static int
   6342 iwn_init(struct ifnet *ifp)
   6343 {
   6344 	struct iwn_softc *sc = ifp->if_softc;
   6345 	struct ieee80211com *ic = &sc->sc_ic;
   6346 	int error;
   6347 
   6348 	mutex_enter(&sc->sc_mtx);
   6349 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6350 		goto out;
   6351 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6352 		aprint_error_dev(sc->sc_dev,
   6353 		    "hardware not ready\n");
   6354 		goto fail;
   6355 	}
   6356 
   6357 	/* Check that the radio is not disabled by hardware switch. */
   6358 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6359 		aprint_error_dev(sc->sc_dev,
   6360 		    "radio is disabled by hardware switch\n");
   6361 		error = EPERM;	/* :-) */
   6362 		goto fail;
   6363 	}
   6364 
   6365 	/* Read firmware images from the filesystem. */
   6366 	if ((error = iwn_read_firmware(sc)) != 0) {
   6367 		aprint_error_dev(sc->sc_dev,
   6368 		    "could not read firmware\n");
   6369 		goto fail;
   6370 	}
   6371 
   6372 	/* Initialize interrupt mask to default value. */
   6373 	sc->int_mask = IWN_INT_MASK_DEF;
   6374 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6375 
   6376 	/* Initialize hardware and upload firmware. */
   6377 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6378 	error = iwn_hw_init(sc);
   6379 	firmware_free(sc->fw.data, sc->fw.size);
   6380 	sc->fw.data = NULL;
   6381 	sc->fw.size = 0;
   6382 	if (error != 0) {
   6383 		aprint_error_dev(sc->sc_dev,
   6384 		    "could not initialize hardware\n");
   6385 		goto fail;
   6386 	}
   6387 
   6388 	/* Configure adapter now that it is ready. */
   6389 	if ((error = iwn_config(sc)) != 0) {
   6390 		aprint_error_dev(sc->sc_dev,
   6391 		    "could not configure device\n");
   6392 		goto fail;
   6393 	}
   6394 
   6395 	sc->sc_beacon_wait = 0;
   6396 
   6397 	ifp->if_flags &= ~IFF_OACTIVE;
   6398 	ifp->if_flags |= IFF_RUNNING;
   6399 
   6400 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6401 		ieee80211_begin_scan(ic, 0);
   6402 	else
   6403 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6404 
   6405 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6406 out:
   6407 	mutex_exit(&sc->sc_mtx);
   6408 	return 0;
   6409 
   6410 fail:	mutex_exit(&sc->sc_mtx);
   6411 	iwn_stop(ifp, 1);
   6412 	return error;
   6413 }
   6414 
   6415 static void
   6416 iwn_stop(struct ifnet *ifp, int disable)
   6417 {
   6418 	struct iwn_softc *sc = ifp->if_softc;
   6419 	struct ieee80211com *ic = &sc->sc_ic;
   6420 
   6421 	if (!disable)
   6422 		mutex_enter(&sc->sc_mtx);
   6423 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6424 	ifp->if_timer = sc->sc_tx_timer = 0;
   6425 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6426 
   6427 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6428 
   6429 	/* Power OFF hardware. */
   6430 	iwn_hw_stop(sc);
   6431 
   6432 	if (!disable)
   6433 		mutex_exit(&sc->sc_mtx);
   6434 }
   6435 
   6436 /*
   6437  * XXX MCLGETI alternative
   6438  *
   6439  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6440  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6441  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6442  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6443  */
   6444 
   6445 static struct mbuf *
   6446 MCLGETIalt(struct iwn_softc *sc, int how,
   6447     struct ifnet *ifp __unused, u_int size)
   6448 {
   6449 	struct mbuf *m;
   6450 #ifdef IWN_USE_RBUF
   6451 	struct iwn_rbuf *rbuf;
   6452 #endif
   6453 
   6454 	MGETHDR(m, how, MT_DATA);
   6455 	if (m == NULL)
   6456 		return NULL;
   6457 
   6458 #ifdef IWN_USE_RBUF
   6459 	if (sc->rxq.nb_free_entries > 0 &&
   6460 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6461 		/* Attach buffer to mbuf header. */
   6462 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6463 		m->m_flags |= M_EXT_RW;
   6464 	}
   6465 	else {
   6466 		MEXTMALLOC(m, size, how);
   6467 		if ((m->m_flags & M_EXT) == 0) {
   6468 			m_freem(m);
   6469 			return NULL;
   6470 		}
   6471 	}
   6472 
   6473 #else
   6474 #ifdef MCLGET4K
   6475 	if (size == 4096)
   6476 		MCLGET4K(m, how);
   6477 	else
   6478 		panic("size must be 4k");
   6479 #else
   6480 	MEXTMALLOC(m, size, how);
   6481 #endif
   6482 	if ((m->m_flags & M_EXT) == 0) {
   6483 		m_freem(m);
   6484 		return NULL;
   6485 	}
   6486 #endif
   6487 
   6488 	return m;
   6489 }
   6490 
   6491 #ifdef IWN_USE_RBUF
   6492 static struct iwn_rbuf *
   6493 iwn_alloc_rbuf(struct iwn_softc *sc)
   6494 {
   6495 	struct iwn_rbuf *rbuf;
   6496 	mutex_enter(&sc->rxq.freelist_mtx);
   6497 
   6498 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6499 	if (rbuf != NULL) {
   6500 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6501 		sc->rxq.nb_free_entries --;
   6502 	}
   6503 	mutex_exit(&sc->rxq.freelist_mtx);
   6504 	return rbuf;
   6505 }
   6506 
   6507 /*
   6508  * This is called automatically by the network stack when the mbuf to which
   6509  * our RX buffer is attached is freed.
   6510  */
   6511 static void
   6512 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6513 {
   6514 	struct iwn_rbuf *rbuf = arg;
   6515 	struct iwn_softc *sc = rbuf->sc;
   6516 
   6517 	/* Put the RX buffer back in the free list. */
   6518 	mutex_enter(&sc->rxq.freelist_mtx);
   6519 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6520 	mutex_exit(&sc->rxq.freelist_mtx);
   6521 
   6522 	sc->rxq.nb_free_entries ++;
   6523 	if (__predict_true(m != NULL))
   6524 		pool_cache_put(mb_cache, m);
   6525 }
   6526 
   6527 static int
   6528 iwn_alloc_rpool(struct iwn_softc *sc)
   6529 {
   6530 	struct iwn_rx_ring *ring = &sc->rxq;
   6531 	struct iwn_rbuf *rbuf;
   6532 	int i, error;
   6533 
   6534 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6535 
   6536 	/* Allocate a big chunk of DMA'able memory... */
   6537 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6538 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6539 	if (error != 0) {
   6540 		aprint_error_dev(sc->sc_dev,
   6541 		    "could not allocate RX buffers DMA memory\n");
   6542 		return error;
   6543 	}
   6544 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6545 	SLIST_INIT(&ring->freelist);
   6546 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6547 		rbuf = &ring->rbuf[i];
   6548 
   6549 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6550 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6551 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6552 
   6553 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6554 	}
   6555 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6556 	return 0;
   6557 }
   6558 
   6559 static void
   6560 iwn_free_rpool(struct iwn_softc *sc)
   6561 {
   6562 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6563 }
   6564 #endif
   6565 
   6566 /*
   6567  * XXX: Hack to set the current channel to the value advertised in beacons or
   6568  * probe responses. Only used during AP detection.
   6569  * XXX: Duplicated from if_iwi.c
   6570  */
   6571 static void
   6572 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6573     struct iwn_rx_stat *stat)
   6574 {
   6575 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6576 	struct ieee80211_frame *wh;
   6577 	uint8_t subtype;
   6578 	uint8_t *frm, *efrm;
   6579 
   6580 	wh = mtod(m, struct ieee80211_frame *);
   6581 
   6582 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6583 		return;
   6584 
   6585 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6586 
   6587 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6588 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6589 		return;
   6590 
   6591 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6592 		int chan = le16toh(stat->chan);
   6593 		if (chan < __arraycount(ic->ic_channels))
   6594 			ic->ic_curchan = &ic->ic_channels[chan];
   6595 		return;
   6596 	}
   6597 
   6598 	frm = (uint8_t *)(wh + 1);
   6599 	efrm = mtod(m, uint8_t *) + m->m_len;
   6600 
   6601 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6602 	while (frm + 2 < efrm) {
   6603 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
   6604 #if IEEE80211_CHAN_MAX < 255
   6605 			if (frm[2] <= IEEE80211_CHAN_MAX)
   6606 #endif
   6607 				ic->ic_curchan = &ic->ic_channels[frm[2]];
   6608 		}
   6609 
   6610 		frm += frm[1] + 2;
   6611 	}
   6612 }
   6613 
   6614 #ifdef notyetMODULE
   6615 
   6616 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6617 
   6618 #ifdef _MODULE
   6619 #include "ioconf.c"
   6620 #endif
   6621 
   6622 static int
   6623 if_iwn_modcmd(modcmd_t cmd, void *data)
   6624 {
   6625 	int error = 0;
   6626 
   6627 	switch (cmd) {
   6628 	case MODULE_CMD_INIT:
   6629 #ifdef _MODULE
   6630 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6631 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6632 #endif
   6633 		return error;
   6634 	case MODULE_CMD_FINI:
   6635 #ifdef _MODULE
   6636 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6637 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6638 #endif
   6639 		return error;
   6640 	case MODULE_CMD_AUTOUNLOAD:
   6641 #ifdef _MODULE
   6642 		/* XXX This is not optional! */
   6643 #endif
   6644 		return error;
   6645 	default:
   6646 		return ENOTTY;
   6647 	}
   6648 }
   6649 #endif
   6650