if_iwn.c revision 1.90.2.1 1 /* $NetBSD: if_iwn.c,v 1.90.2.1 2019/06/10 22:07:16 christos Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.90.2.1 2019/06/10 22:07:16 christos Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120
121 static int iwn_match(device_t , struct cfdata *, void *);
122 static void iwn_attach(device_t , device_t , void *);
123 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
124 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
125 static void iwn_radiotap_attach(struct iwn_softc *);
126 static int iwn_detach(device_t , int);
127 #if 0
128 static void iwn_power(int, void *);
129 #endif
130 static bool iwn_resume(device_t, const pmf_qual_t *);
131 static int iwn_nic_lock(struct iwn_softc *);
132 static int iwn_eeprom_lock(struct iwn_softc *);
133 static int iwn_init_otprom(struct iwn_softc *);
134 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
135 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
136 void **, bus_size_t, bus_size_t);
137 static void iwn_dma_contig_free(struct iwn_dma_info *);
138 static int iwn_alloc_sched(struct iwn_softc *);
139 static void iwn_free_sched(struct iwn_softc *);
140 static int iwn_alloc_kw(struct iwn_softc *);
141 static void iwn_free_kw(struct iwn_softc *);
142 static int iwn_alloc_ict(struct iwn_softc *);
143 static void iwn_free_ict(struct iwn_softc *);
144 static int iwn_alloc_fwmem(struct iwn_softc *);
145 static void iwn_free_fwmem(struct iwn_softc *);
146 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
150 int);
151 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void iwn5000_ict_reset(struct iwn_softc *);
154 static int iwn_read_eeprom(struct iwn_softc *);
155 static void iwn4965_read_eeprom(struct iwn_softc *);
156
157 #ifdef IWN_DEBUG
158 static void iwn4965_print_power_group(struct iwn_softc *, int);
159 #endif
160 static void iwn5000_read_eeprom(struct iwn_softc *);
161 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
163 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
164 static void iwn_newassoc(struct ieee80211_node *, int);
165 static int iwn_media_change(struct ifnet *);
166 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
167 static void iwn_iter_func(void *, struct ieee80211_node *);
168 static void iwn_calib_timeout(void *);
169 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
170 struct iwn_rx_data *);
171 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 struct iwn_rx_data *);
173 #ifndef IEEE80211_NO_HT
174 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 #endif
177 static void iwn5000_rx_calib_results(struct iwn_softc *,
178 struct iwn_rx_desc *, struct iwn_rx_data *);
179 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
180 struct iwn_rx_data *);
181 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 struct iwn_rx_data *);
183 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 struct iwn_rx_data *);
185 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
186 uint8_t);
187 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
188 static void iwn_notif_intr(struct iwn_softc *);
189 static void iwn_wakeup_intr(struct iwn_softc *);
190 static void iwn_fatal_intr(struct iwn_softc *);
191 static int iwn_intr(void *);
192 static void iwn_softintr(void *);
193 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
194 uint16_t);
195 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
196 uint16_t);
197 #ifdef notyet
198 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
199 #endif
200 static int iwn_tx(struct iwn_softc *, struct mbuf *,
201 struct ieee80211_node *, int);
202 static void iwn_start(struct ifnet *);
203 static void iwn_watchdog(struct ifnet *);
204 static int iwn_ioctl(struct ifnet *, u_long, void *);
205 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
206 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
207 int);
208 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
209 int);
210 static int iwn_set_link_quality(struct iwn_softc *,
211 struct ieee80211_node *);
212 static int iwn_add_broadcast_node(struct iwn_softc *, int);
213 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
214 static int iwn_set_critical_temp(struct iwn_softc *);
215 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
216 static void iwn4965_power_calibration(struct iwn_softc *, int);
217 static int iwn4965_set_txpower(struct iwn_softc *, int);
218 static int iwn5000_set_txpower(struct iwn_softc *, int);
219 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
220 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
221 static int iwn_get_noise(const struct iwn_rx_general_stats *);
222 static int iwn4965_get_temperature(struct iwn_softc *);
223 static int iwn5000_get_temperature(struct iwn_softc *);
224 static int iwn_init_sensitivity(struct iwn_softc *);
225 static void iwn_collect_noise(struct iwn_softc *,
226 const struct iwn_rx_general_stats *);
227 static int iwn4965_init_gains(struct iwn_softc *);
228 static int iwn5000_init_gains(struct iwn_softc *);
229 static int iwn4965_set_gains(struct iwn_softc *);
230 static int iwn5000_set_gains(struct iwn_softc *);
231 static void iwn_tune_sensitivity(struct iwn_softc *,
232 const struct iwn_rx_stats *);
233 static int iwn_send_sensitivity(struct iwn_softc *);
234 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
235 static int iwn5000_runtime_calib(struct iwn_softc *);
236
237 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
238 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
239 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
240 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
241
242 static int iwn_config(struct iwn_softc *);
243 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
244 uint8_t);
245 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
246 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
247 static int iwn_scan(struct iwn_softc *, uint16_t);
248 static int iwn_auth(struct iwn_softc *);
249 static int iwn_run(struct iwn_softc *);
250 #ifdef IWN_HWCRYPTO
251 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
252 struct ieee80211_key *);
253 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
254 struct ieee80211_key *);
255 #endif
256 static int iwn_wme_update(struct ieee80211com *);
257 #ifndef IEEE80211_NO_HT
258 static int iwn_ampdu_rx_start(struct ieee80211com *,
259 struct ieee80211_node *, uint8_t);
260 static void iwn_ampdu_rx_stop(struct ieee80211com *,
261 struct ieee80211_node *, uint8_t);
262 static int iwn_ampdu_tx_start(struct ieee80211com *,
263 struct ieee80211_node *, uint8_t);
264 static void iwn_ampdu_tx_stop(struct ieee80211com *,
265 struct ieee80211_node *, uint8_t);
266 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
267 struct ieee80211_node *, uint8_t, uint16_t);
268 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
269 uint8_t, uint16_t);
270 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
271 struct ieee80211_node *, uint8_t, uint16_t);
272 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
273 uint8_t, uint16_t);
274 #endif
275 static int iwn5000_query_calibration(struct iwn_softc *);
276 static int iwn5000_send_calibration(struct iwn_softc *);
277 static int iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int iwn6000_temp_offset_calib(struct iwn_softc *);
279 static int iwn2000_temp_offset_calib(struct iwn_softc *);
280 static int iwn4965_post_alive(struct iwn_softc *);
281 static int iwn5000_post_alive(struct iwn_softc *);
282 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 int);
284 static int iwn4965_load_firmware(struct iwn_softc *);
285 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 const uint8_t *, int);
287 static int iwn5000_load_firmware(struct iwn_softc *);
288 static int iwn_read_firmware_leg(struct iwn_softc *,
289 struct iwn_fw_info *);
290 static int iwn_read_firmware_tlv(struct iwn_softc *,
291 struct iwn_fw_info *, uint16_t);
292 static int iwn_read_firmware(struct iwn_softc *);
293 static int iwn_clock_wait(struct iwn_softc *);
294 static int iwn_apm_init(struct iwn_softc *);
295 static void iwn_apm_stop_master(struct iwn_softc *);
296 static void iwn_apm_stop(struct iwn_softc *);
297 static int iwn4965_nic_config(struct iwn_softc *);
298 static int iwn5000_nic_config(struct iwn_softc *);
299 static int iwn_hw_prepare(struct iwn_softc *);
300 static int iwn_hw_init(struct iwn_softc *);
301 static void iwn_hw_stop(struct iwn_softc *);
302 static int iwn_init(struct ifnet *);
303 static void iwn_stop(struct ifnet *, int);
304
305 /* XXX MCLGETI alternative */
306 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
307 struct ifnet *, u_int);
308 #ifdef IWN_USE_RBUF
309 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
310 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
311 static int iwn_alloc_rpool(struct iwn_softc *);
312 static void iwn_free_rpool(struct iwn_softc *);
313 #endif
314
315 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
316 struct iwn_rx_stat *);
317
318 #ifdef IWN_DEBUG
319 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
320 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
321 int iwn_debug = 0;
322 #else
323 #define DPRINTF(x)
324 #define DPRINTFN(n, x)
325 #endif
326
327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
328 iwn_detach, NULL);
329
330 static int
331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
332 {
333 struct pci_attach_args *pa = aux;
334 size_t i;
335
336 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
337 return 0;
338
339 for (i = 0; i < __arraycount(iwn_devices); i++)
340 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
341 return 1;
342
343 return 0;
344 }
345
346 static void
347 iwn_attach(device_t parent __unused, device_t self, void *aux)
348 {
349 struct iwn_softc *sc = device_private(self);
350 struct ieee80211com *ic = &sc->sc_ic;
351 struct ifnet *ifp = &sc->sc_ec.ec_if;
352 struct pci_attach_args *pa = aux;
353 const char *intrstr;
354 pcireg_t memtype, reg;
355 int i, error;
356 char intrbuf[PCI_INTRSTR_LEN];
357
358 sc->sc_dev = self;
359 sc->sc_pct = pa->pa_pc;
360 sc->sc_pcitag = pa->pa_tag;
361 sc->sc_dmat = pa->pa_dmat;
362 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
363
364 callout_init(&sc->calib_to, 0);
365 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
366
367 pci_aprint_devinfo(pa, NULL);
368
369 /*
370 * Get the offset of the PCI Express Capability Structure in PCI
371 * Configuration Space.
372 */
373 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
374 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
375 if (error == 0) {
376 aprint_error_dev(self,
377 "PCIe capability structure not found!\n");
378 return;
379 }
380
381 /* Clear device-specific "PCI retry timeout" register (41h). */
382 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
383 if (reg & 0xff00)
384 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
385
386 /* Enable bus-mastering. */
387 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
388 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
389 reg |= PCI_COMMAND_MASTER_ENABLE;
390 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391
392 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 &sc->sc_sh, NULL, &sc->sc_sz);
395 if (error != 0) {
396 aprint_error_dev(self, "can't map mem space\n");
397 return;
398 }
399
400 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
401 if (sc->sc_soft_ih == NULL) {
402 aprint_error_dev(self, "can't establish soft interrupt\n");
403 goto unmap;
404 }
405
406 /* Install interrupt handler. */
407 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
408 if (error) {
409 aprint_error_dev(self, "can't allocate interrupt\n");
410 goto failsi;
411 }
412 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
413 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
414 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
415 else
416 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
417 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
418 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
419 sizeof(intrbuf));
420 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
421 IPL_NET, iwn_intr, sc, device_xname(self));
422 if (sc->sc_ih == NULL) {
423 aprint_error_dev(self, "can't establish interrupt");
424 if (intrstr != NULL)
425 aprint_error(" at %s", intrstr);
426 aprint_error("\n");
427 goto failia;
428 }
429 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430
431 /* Read hardware revision and attach. */
432 sc->hw_type =
433 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
434 >> IWN_HW_REV_TYPE_SHIFT;
435 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
436 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
437 else
438 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
439 if (error != 0) {
440 aprint_error_dev(self, "could not attach device\n");
441 goto failih;
442 }
443
444 if ((error = iwn_hw_prepare(sc)) != 0) {
445 aprint_error_dev(self, "hardware not ready\n");
446 goto failih;
447 }
448
449 /* Read MAC address, channels, etc from EEPROM. */
450 if ((error = iwn_read_eeprom(sc)) != 0) {
451 aprint_error_dev(self, "could not read EEPROM\n");
452 goto failih;
453 }
454
455 /* Allocate DMA memory for firmware transfers. */
456 if ((error = iwn_alloc_fwmem(sc)) != 0) {
457 aprint_error_dev(self,
458 "could not allocate memory for firmware\n");
459 goto failih;
460 }
461
462 /* Allocate "Keep Warm" page. */
463 if ((error = iwn_alloc_kw(sc)) != 0) {
464 aprint_error_dev(self, "could not allocate keep warm page\n");
465 goto fail1;
466 }
467
468 /* Allocate ICT table for 5000 Series. */
469 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 (error = iwn_alloc_ict(sc)) != 0) {
471 aprint_error_dev(self, "could not allocate ICT table\n");
472 goto fail2;
473 }
474
475 /* Allocate TX scheduler "rings". */
476 if ((error = iwn_alloc_sched(sc)) != 0) {
477 aprint_error_dev(self,
478 "could not allocate TX scheduler rings\n");
479 goto fail3;
480 }
481
482 #ifdef IWN_USE_RBUF
483 /* Allocate RX buffers. */
484 if ((error = iwn_alloc_rpool(sc)) != 0) {
485 aprint_error_dev(self, "could not allocate RX buffers\n");
486 goto fail3;
487 }
488 #endif
489
490 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
491 for (i = 0; i < sc->ntxqs; i++) {
492 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
493 aprint_error_dev(self,
494 "could not allocate TX ring %d\n", i);
495 goto fail4;
496 }
497 }
498
499 /* Allocate RX ring. */
500 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
501 aprint_error_dev(self, "could not allocate RX ring\n");
502 goto fail4;
503 }
504
505 /* Clear pending interrupts. */
506 IWN_WRITE(sc, IWN_INT, 0xffffffff);
507
508 /* Count the number of available chains. */
509 sc->ntxchains =
510 ((sc->txchainmask >> 2) & 1) +
511 ((sc->txchainmask >> 1) & 1) +
512 ((sc->txchainmask >> 0) & 1);
513 sc->nrxchains =
514 ((sc->rxchainmask >> 2) & 1) +
515 ((sc->rxchainmask >> 1) & 1) +
516 ((sc->rxchainmask >> 0) & 1);
517 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
518 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
519 ether_sprintf(ic->ic_myaddr));
520
521 ic->ic_ifp = ifp;
522 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
523 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
524 ic->ic_state = IEEE80211_S_INIT;
525
526 /*
527 * Set device capabilities.
528 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
529 * IEEE80211_C_PMGT too.
530 */
531 ic->ic_caps =
532 IEEE80211_C_IBSS | /* IBSS mode support */
533 IEEE80211_C_WPA | /* 802.11i */
534 IEEE80211_C_MONITOR | /* monitor mode supported */
535 IEEE80211_C_TXPMGT | /* tx power management */
536 IEEE80211_C_SHSLOT | /* short slot time supported */
537 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
538 IEEE80211_C_WME; /* 802.11e */
539
540 #ifndef IEEE80211_NO_HT
541 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
542 /* Set HT capabilities. */
543 ic->ic_htcaps =
544 #if IWN_RBUF_SIZE == 8192
545 IEEE80211_HTCAP_AMSDU7935 |
546 #endif
547 IEEE80211_HTCAP_CBW20_40 |
548 IEEE80211_HTCAP_SGI20 |
549 IEEE80211_HTCAP_SGI40;
550 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
551 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
552 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
553 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
554 else
555 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
556 }
557 #endif /* !IEEE80211_NO_HT */
558
559 /* Set supported legacy rates. */
560 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
561 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
562 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
563 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
564 }
565 #ifndef IEEE80211_NO_HT
566 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
567 /* Set supported HT rates. */
568 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
569 if (sc->nrxchains > 1)
570 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
571 if (sc->nrxchains > 2)
572 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
573 }
574 #endif
575
576 /* IBSS channel undefined for now. */
577 ic->ic_ibss_chan = &ic->ic_channels[0];
578
579 ifp->if_softc = sc;
580 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
581 ifp->if_init = iwn_init;
582 ifp->if_ioctl = iwn_ioctl;
583 ifp->if_start = iwn_start;
584 ifp->if_stop = iwn_stop;
585 ifp->if_watchdog = iwn_watchdog;
586 IFQ_SET_READY(&ifp->if_snd);
587 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
588
589 error = if_initialize(ifp);
590 if (error != 0) {
591 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
592 error);
593 goto fail5;
594 }
595 ieee80211_ifattach(ic);
596 /* Use common softint-based if_input */
597 ifp->if_percpuq = if_percpuq_create(ifp);
598 if_register(ifp);
599
600 ic->ic_node_alloc = iwn_node_alloc;
601 ic->ic_newassoc = iwn_newassoc;
602 #ifdef IWN_HWCRYPTO
603 ic->ic_crypto.cs_key_set = iwn_set_key;
604 ic->ic_crypto.cs_key_delete = iwn_delete_key;
605 #endif
606 ic->ic_wme.wme_update = iwn_wme_update;
607 #ifndef IEEE80211_NO_HT
608 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
609 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
610 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
611 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
612 #endif
613
614 /* Override 802.11 state transition machine. */
615 sc->sc_newstate = ic->ic_newstate;
616 ic->ic_newstate = iwn_newstate;
617 ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
618
619 sc->amrr.amrr_min_success_threshold = 1;
620 sc->amrr.amrr_max_success_threshold = 15;
621
622 iwn_radiotap_attach(sc);
623
624 /*
625 * XXX for NetBSD, OpenBSD timeout_set replaced by
626 * callout_init and callout_setfunc, above.
627 */
628
629 if (pmf_device_register(self, NULL, iwn_resume))
630 pmf_class_network_register(self, ifp);
631 else
632 aprint_error_dev(self, "couldn't establish power handler\n");
633
634 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
635 ieee80211_announce(ic);
636
637 sc->sc_flags |= IWN_FLAG_ATTACHED;
638 return;
639
640 /* Free allocated memory if something failed during attachment. */
641 fail5: iwn_free_rx_ring(sc, &sc->rxq);
642 fail4: while (--i >= 0)
643 iwn_free_tx_ring(sc, &sc->txq[i]);
644 #ifdef IWN_USE_RBUF
645 iwn_free_rpool(sc);
646 #endif
647 iwn_free_sched(sc);
648 fail3: if (sc->ict != NULL)
649 iwn_free_ict(sc);
650 fail2: iwn_free_kw(sc);
651 fail1: iwn_free_fwmem(sc);
652 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
653 sc->sc_ih = NULL;
654 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
655 sc->sc_pihp = NULL;
656 failsi: softint_disestablish(sc->sc_soft_ih);
657 sc->sc_soft_ih = NULL;
658 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
659 }
660
661 int
662 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
663 {
664 struct iwn_ops *ops = &sc->ops;
665
666 ops->load_firmware = iwn4965_load_firmware;
667 ops->read_eeprom = iwn4965_read_eeprom;
668 ops->post_alive = iwn4965_post_alive;
669 ops->nic_config = iwn4965_nic_config;
670 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
671 ops->update_sched = iwn4965_update_sched;
672 ops->get_temperature = iwn4965_get_temperature;
673 ops->get_rssi = iwn4965_get_rssi;
674 ops->set_txpower = iwn4965_set_txpower;
675 ops->init_gains = iwn4965_init_gains;
676 ops->set_gains = iwn4965_set_gains;
677 ops->add_node = iwn4965_add_node;
678 ops->tx_done = iwn4965_tx_done;
679 #ifndef IEEE80211_NO_HT
680 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
681 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
682 #endif
683 sc->ntxqs = IWN4965_NTXQUEUES;
684 sc->ndmachnls = IWN4965_NDMACHNLS;
685 sc->broadcast_id = IWN4965_ID_BROADCAST;
686 sc->rxonsz = IWN4965_RXONSZ;
687 sc->schedsz = IWN4965_SCHEDSZ;
688 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
689 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
690 sc->fwsz = IWN4965_FWSZ;
691 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
692 sc->limits = &iwn4965_sensitivity_limits;
693 sc->fwname = "iwlwifi-4965-2.ucode";
694 /* Override chains masks, ROM is known to be broken. */
695 sc->txchainmask = IWN_ANT_AB;
696 sc->rxchainmask = IWN_ANT_ABC;
697
698 return 0;
699 }
700
701 int
702 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
703 {
704 struct iwn_ops *ops = &sc->ops;
705
706 ops->load_firmware = iwn5000_load_firmware;
707 ops->read_eeprom = iwn5000_read_eeprom;
708 ops->post_alive = iwn5000_post_alive;
709 ops->nic_config = iwn5000_nic_config;
710 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
711 ops->update_sched = iwn5000_update_sched;
712 ops->get_temperature = iwn5000_get_temperature;
713 ops->get_rssi = iwn5000_get_rssi;
714 ops->set_txpower = iwn5000_set_txpower;
715 ops->init_gains = iwn5000_init_gains;
716 ops->set_gains = iwn5000_set_gains;
717 ops->add_node = iwn5000_add_node;
718 ops->tx_done = iwn5000_tx_done;
719 #ifndef IEEE80211_NO_HT
720 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
721 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
722 #endif
723 sc->ntxqs = IWN5000_NTXQUEUES;
724 sc->ndmachnls = IWN5000_NDMACHNLS;
725 sc->broadcast_id = IWN5000_ID_BROADCAST;
726 sc->rxonsz = IWN5000_RXONSZ;
727 sc->schedsz = IWN5000_SCHEDSZ;
728 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
729 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
730 sc->fwsz = IWN5000_FWSZ;
731 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
732
733 switch (sc->hw_type) {
734 case IWN_HW_REV_TYPE_5100:
735 sc->limits = &iwn5000_sensitivity_limits;
736 sc->fwname = "iwlwifi-5000-2.ucode";
737 /* Override chains masks, ROM is known to be broken. */
738 sc->txchainmask = IWN_ANT_B;
739 sc->rxchainmask = IWN_ANT_AB;
740 break;
741 case IWN_HW_REV_TYPE_5150:
742 sc->limits = &iwn5150_sensitivity_limits;
743 sc->fwname = "iwlwifi-5150-2.ucode";
744 break;
745 case IWN_HW_REV_TYPE_5300:
746 case IWN_HW_REV_TYPE_5350:
747 sc->limits = &iwn5000_sensitivity_limits;
748 sc->fwname = "iwlwifi-5000-2.ucode";
749 break;
750 case IWN_HW_REV_TYPE_1000:
751 sc->limits = &iwn1000_sensitivity_limits;
752 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
753 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
754 sc->fwname = "iwlwifi-100-5.ucode";
755 else
756 sc->fwname = "iwlwifi-1000-3.ucode";
757 break;
758 case IWN_HW_REV_TYPE_6000:
759 sc->limits = &iwn6000_sensitivity_limits;
760 sc->fwname = "iwlwifi-6000-4.ucode";
761 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
762 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
763 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
764 /* Override chains masks, ROM is known to be broken. */
765 sc->txchainmask = IWN_ANT_BC;
766 sc->rxchainmask = IWN_ANT_BC;
767 }
768 break;
769 case IWN_HW_REV_TYPE_6050:
770 sc->limits = &iwn6000_sensitivity_limits;
771 sc->fwname = "iwlwifi-6050-5.ucode";
772 break;
773 case IWN_HW_REV_TYPE_6005:
774 sc->limits = &iwn6000_sensitivity_limits;
775 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
776 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
777 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
778 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
779 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
780 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
781 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
782 sc->fwname = "iwlwifi-6000g2b-6.ucode";
783 ops->config_bt_coex = iwn_config_bt_coex_adv1;
784 }
785 /*
786 * This covers:
787 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
788 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
789 */
790 else
791 sc->fwname = "iwlwifi-6000g2a-5.ucode";
792 break;
793 case IWN_HW_REV_TYPE_2030:
794 sc->limits = &iwn2030_sensitivity_limits;
795 sc->fwname = "iwlwifi-2030-6.ucode";
796 ops->config_bt_coex = iwn_config_bt_coex_adv2;
797 break;
798 case IWN_HW_REV_TYPE_2000:
799 sc->limits = &iwn2000_sensitivity_limits;
800 sc->fwname = "iwlwifi-2000-6.ucode";
801 break;
802 case IWN_HW_REV_TYPE_135:
803 sc->limits = &iwn2000_sensitivity_limits;
804 sc->fwname = "iwlwifi-135-6.ucode";
805 ops->config_bt_coex = iwn_config_bt_coex_adv2;
806 break;
807 case IWN_HW_REV_TYPE_105:
808 sc->limits = &iwn2000_sensitivity_limits;
809 sc->fwname = "iwlwifi-105-6.ucode";
810 break;
811 default:
812 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
813 return ENOTSUP;
814 }
815 return 0;
816 }
817
818 /*
819 * Attach the interface to 802.11 radiotap.
820 */
821 static void
822 iwn_radiotap_attach(struct iwn_softc *sc)
823 {
824 struct ifnet *ifp = sc->sc_ic.ic_ifp;
825
826 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
827 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
828 &sc->sc_drvbpf);
829
830 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
831 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
832 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
833
834 sc->sc_txtap_len = sizeof sc->sc_txtapu;
835 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
836 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
837 }
838
839 static int
840 iwn_detach(device_t self, int flags __unused)
841 {
842 struct iwn_softc *sc = device_private(self);
843 struct ifnet *ifp = sc->sc_ic.ic_ifp;
844 int qid;
845
846 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
847 return 0;
848
849 callout_stop(&sc->calib_to);
850
851 /* Uninstall interrupt handler. */
852 if (sc->sc_ih != NULL)
853 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
854 if (sc->sc_pihp != NULL)
855 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
856 if (sc->sc_soft_ih != NULL)
857 softint_disestablish(sc->sc_soft_ih);
858
859 /* Free DMA resources. */
860 iwn_free_rx_ring(sc, &sc->rxq);
861 for (qid = 0; qid < sc->ntxqs; qid++)
862 iwn_free_tx_ring(sc, &sc->txq[qid]);
863 #ifdef IWN_USE_RBUF
864 iwn_free_rpool(sc);
865 #endif
866 iwn_free_sched(sc);
867 iwn_free_kw(sc);
868 if (sc->ict != NULL)
869 iwn_free_ict(sc);
870 iwn_free_fwmem(sc);
871
872 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
873
874 ieee80211_ifdetach(&sc->sc_ic);
875 if_detach(ifp);
876
877 return 0;
878 }
879
880 #if 0
881 /*
882 * XXX Investigate if clearing the PCI retry timeout could eliminate
883 * the repeated scan calls. Also the calls to if_init and if_start
884 * are similar to the effect of adding the call to ifioctl_common .
885 */
886 static void
887 iwn_power(int why, void *arg)
888 {
889 struct iwn_softc *sc = arg;
890 struct ifnet *ifp;
891 pcireg_t reg;
892 int s;
893
894 if (why != PWR_RESUME)
895 return;
896
897 /* Clear device-specific "PCI retry timeout" register (41h). */
898 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
899 if (reg & 0xff00)
900 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
901
902 s = splnet();
903 ifp = &sc->sc_ic.ic_if;
904 if (ifp->if_flags & IFF_UP) {
905 ifp->if_init(ifp);
906 if (ifp->if_flags & IFF_RUNNING)
907 ifp->if_start(ifp);
908 }
909 splx(s);
910 }
911 #endif
912
913 static bool
914 iwn_resume(device_t dv, const pmf_qual_t *qual)
915 {
916 return true;
917 }
918
919 static int
920 iwn_nic_lock(struct iwn_softc *sc)
921 {
922 int ntries;
923
924 /* Request exclusive access to NIC. */
925 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
926
927 /* Spin until we actually get the lock. */
928 for (ntries = 0; ntries < 1000; ntries++) {
929 if ((IWN_READ(sc, IWN_GP_CNTRL) &
930 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
931 IWN_GP_CNTRL_MAC_ACCESS_ENA)
932 return 0;
933 DELAY(10);
934 }
935 return ETIMEDOUT;
936 }
937
938 static __inline void
939 iwn_nic_unlock(struct iwn_softc *sc)
940 {
941 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
942 }
943
944 static __inline uint32_t
945 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
946 {
947 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
948 IWN_BARRIER_READ_WRITE(sc);
949 return IWN_READ(sc, IWN_PRPH_RDATA);
950 }
951
952 static __inline void
953 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
954 {
955 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
956 IWN_BARRIER_WRITE(sc);
957 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
958 }
959
960 static __inline void
961 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
962 {
963 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
964 }
965
966 static __inline void
967 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
968 {
969 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
970 }
971
972 static __inline void
973 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
974 const uint32_t *data, int count)
975 {
976 for (; count > 0; count--, data++, addr += 4)
977 iwn_prph_write(sc, addr, *data);
978 }
979
980 static __inline uint32_t
981 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
982 {
983 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
984 IWN_BARRIER_READ_WRITE(sc);
985 return IWN_READ(sc, IWN_MEM_RDATA);
986 }
987
988 static __inline void
989 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
990 {
991 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
992 IWN_BARRIER_WRITE(sc);
993 IWN_WRITE(sc, IWN_MEM_WDATA, data);
994 }
995
996 #ifndef IEEE80211_NO_HT
997 static __inline void
998 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
999 {
1000 uint32_t tmp;
1001
1002 tmp = iwn_mem_read(sc, addr & ~3);
1003 if (addr & 3)
1004 tmp = (tmp & 0x0000ffff) | data << 16;
1005 else
1006 tmp = (tmp & 0xffff0000) | data;
1007 iwn_mem_write(sc, addr & ~3, tmp);
1008 }
1009 #endif
1010
1011 static __inline void
1012 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1013 int count)
1014 {
1015 for (; count > 0; count--, addr += 4)
1016 *data++ = iwn_mem_read(sc, addr);
1017 }
1018
1019 static __inline void
1020 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1021 int count)
1022 {
1023 for (; count > 0; count--, addr += 4)
1024 iwn_mem_write(sc, addr, val);
1025 }
1026
1027 static int
1028 iwn_eeprom_lock(struct iwn_softc *sc)
1029 {
1030 int i, ntries;
1031
1032 for (i = 0; i < 100; i++) {
1033 /* Request exclusive access to EEPROM. */
1034 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1035 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1036
1037 /* Spin until we actually get the lock. */
1038 for (ntries = 0; ntries < 100; ntries++) {
1039 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1040 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1041 return 0;
1042 DELAY(10);
1043 }
1044 }
1045 return ETIMEDOUT;
1046 }
1047
1048 static __inline void
1049 iwn_eeprom_unlock(struct iwn_softc *sc)
1050 {
1051 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1052 }
1053
1054 /*
1055 * Initialize access by host to One Time Programmable ROM.
1056 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1057 */
1058 static int
1059 iwn_init_otprom(struct iwn_softc *sc)
1060 {
1061 uint16_t prev = 0, base, next;
1062 int count, error;
1063
1064 /* Wait for clock stabilization before accessing prph. */
1065 if ((error = iwn_clock_wait(sc)) != 0)
1066 return error;
1067
1068 if ((error = iwn_nic_lock(sc)) != 0)
1069 return error;
1070 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1071 DELAY(5);
1072 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1073 iwn_nic_unlock(sc);
1074
1075 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1076 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1077 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1078 IWN_RESET_LINK_PWR_MGMT_DIS);
1079 }
1080 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1081 /* Clear ECC status. */
1082 IWN_SETBITS(sc, IWN_OTP_GP,
1083 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1084
1085 /*
1086 * Find the block before last block (contains the EEPROM image)
1087 * for HW without OTP shadow RAM.
1088 */
1089 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1090 /* Switch to absolute addressing mode. */
1091 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1092 base = 0;
1093 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1094 error = iwn_read_prom_data(sc, base, &next, 2);
1095 if (error != 0)
1096 return error;
1097 if (next == 0) /* End of linked-list. */
1098 break;
1099 prev = base;
1100 base = le16toh(next);
1101 }
1102 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1103 return EIO;
1104 /* Skip "next" word. */
1105 sc->prom_base = prev + 1;
1106 }
1107 return 0;
1108 }
1109
1110 static int
1111 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1112 {
1113 uint8_t *out = data;
1114 uint32_t val, tmp;
1115 int ntries;
1116
1117 addr += sc->prom_base;
1118 for (; count > 0; count -= 2, addr++) {
1119 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1120 for (ntries = 0; ntries < 10; ntries++) {
1121 val = IWN_READ(sc, IWN_EEPROM);
1122 if (val & IWN_EEPROM_READ_VALID)
1123 break;
1124 DELAY(5);
1125 }
1126 if (ntries == 10) {
1127 aprint_error_dev(sc->sc_dev,
1128 "timeout reading ROM at 0x%x\n", addr);
1129 return ETIMEDOUT;
1130 }
1131 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1132 /* OTPROM, check for ECC errors. */
1133 tmp = IWN_READ(sc, IWN_OTP_GP);
1134 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1135 aprint_error_dev(sc->sc_dev,
1136 "OTPROM ECC error at 0x%x\n", addr);
1137 return EIO;
1138 }
1139 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1140 /* Correctable ECC error, clear bit. */
1141 IWN_SETBITS(sc, IWN_OTP_GP,
1142 IWN_OTP_GP_ECC_CORR_STTS);
1143 }
1144 }
1145 *out++ = val >> 16;
1146 if (count > 1)
1147 *out++ = val >> 24;
1148 }
1149 return 0;
1150 }
1151
1152 static int
1153 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1154 bus_size_t size, bus_size_t alignment)
1155 {
1156 int nsegs, error;
1157
1158 dma->tag = tag;
1159 dma->size = size;
1160
1161 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1162 &dma->map);
1163 if (error != 0)
1164 goto fail;
1165
1166 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1167 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1168 if (error != 0)
1169 goto fail;
1170
1171 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1172 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1173 if (error != 0)
1174 goto fail;
1175
1176 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1177 BUS_DMA_NOWAIT);
1178 if (error != 0)
1179 goto fail;
1180
1181 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1182 memset(dma->vaddr, 0, size);
1183 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1184
1185 dma->paddr = dma->map->dm_segs[0].ds_addr;
1186 if (kvap != NULL)
1187 *kvap = dma->vaddr;
1188
1189 return 0;
1190
1191 fail: iwn_dma_contig_free(dma);
1192 return error;
1193 }
1194
1195 static void
1196 iwn_dma_contig_free(struct iwn_dma_info *dma)
1197 {
1198 if (dma->map != NULL) {
1199 if (dma->vaddr != NULL) {
1200 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1201 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1202 bus_dmamap_unload(dma->tag, dma->map);
1203 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1204 bus_dmamem_free(dma->tag, &dma->seg, 1);
1205 dma->vaddr = NULL;
1206 }
1207 bus_dmamap_destroy(dma->tag, dma->map);
1208 dma->map = NULL;
1209 }
1210 }
1211
1212 static int
1213 iwn_alloc_sched(struct iwn_softc *sc)
1214 {
1215 /* TX scheduler rings must be aligned on a 1KB boundary. */
1216 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1217 (void **)&sc->sched, sc->schedsz, 1024);
1218 }
1219
1220 static void
1221 iwn_free_sched(struct iwn_softc *sc)
1222 {
1223 iwn_dma_contig_free(&sc->sched_dma);
1224 }
1225
1226 static int
1227 iwn_alloc_kw(struct iwn_softc *sc)
1228 {
1229 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1230 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1231 4096);
1232 }
1233
1234 static void
1235 iwn_free_kw(struct iwn_softc *sc)
1236 {
1237 iwn_dma_contig_free(&sc->kw_dma);
1238 }
1239
1240 static int
1241 iwn_alloc_ict(struct iwn_softc *sc)
1242 {
1243 /* ICT table must be aligned on a 4KB boundary. */
1244 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1245 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1246 }
1247
1248 static void
1249 iwn_free_ict(struct iwn_softc *sc)
1250 {
1251 iwn_dma_contig_free(&sc->ict_dma);
1252 }
1253
1254 static int
1255 iwn_alloc_fwmem(struct iwn_softc *sc)
1256 {
1257 /* Must be aligned on a 16-byte boundary. */
1258 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1259 sc->fwsz, 16);
1260 }
1261
1262 static void
1263 iwn_free_fwmem(struct iwn_softc *sc)
1264 {
1265 iwn_dma_contig_free(&sc->fw_dma);
1266 }
1267
1268 static int
1269 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1270 {
1271 bus_size_t size;
1272 int i, error;
1273
1274 ring->cur = 0;
1275
1276 /* Allocate RX descriptors (256-byte aligned). */
1277 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1278 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1279 (void **)&ring->desc, size, 256);
1280 if (error != 0) {
1281 aprint_error_dev(sc->sc_dev,
1282 "could not allocate RX ring DMA memory\n");
1283 goto fail;
1284 }
1285
1286 /* Allocate RX status area (16-byte aligned). */
1287 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1288 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1289 if (error != 0) {
1290 aprint_error_dev(sc->sc_dev,
1291 "could not allocate RX status DMA memory\n");
1292 goto fail;
1293 }
1294
1295 /*
1296 * Allocate and map RX buffers.
1297 */
1298 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1299 struct iwn_rx_data *data = &ring->data[i];
1300
1301 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1302 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1303 &data->map);
1304 if (error != 0) {
1305 aprint_error_dev(sc->sc_dev,
1306 "could not create RX buf DMA map\n");
1307 goto fail;
1308 }
1309
1310 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1311 if (data->m == NULL) {
1312 aprint_error_dev(sc->sc_dev,
1313 "could not allocate RX mbuf\n");
1314 error = ENOBUFS;
1315 goto fail;
1316 }
1317
1318 error = bus_dmamap_load(sc->sc_dmat, data->map,
1319 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1320 BUS_DMA_NOWAIT | BUS_DMA_READ);
1321 if (error != 0) {
1322 aprint_error_dev(sc->sc_dev,
1323 "can't not map mbuf (error %d)\n", error);
1324 goto fail;
1325 }
1326
1327 /* Set physical address of RX buffer (256-byte aligned). */
1328 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1329 }
1330
1331 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1332 BUS_DMASYNC_PREWRITE);
1333
1334 return 0;
1335
1336 fail: iwn_free_rx_ring(sc, ring);
1337 return error;
1338 }
1339
1340 static void
1341 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1342 {
1343 int ntries;
1344
1345 if (iwn_nic_lock(sc) == 0) {
1346 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1347 for (ntries = 0; ntries < 1000; ntries++) {
1348 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1349 IWN_FH_RX_STATUS_IDLE)
1350 break;
1351 DELAY(10);
1352 }
1353 iwn_nic_unlock(sc);
1354 }
1355 ring->cur = 0;
1356 sc->last_rx_valid = 0;
1357 }
1358
1359 static void
1360 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1361 {
1362 int i;
1363
1364 iwn_dma_contig_free(&ring->desc_dma);
1365 iwn_dma_contig_free(&ring->stat_dma);
1366
1367 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1368 struct iwn_rx_data *data = &ring->data[i];
1369
1370 if (data->m != NULL) {
1371 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1372 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1373 bus_dmamap_unload(sc->sc_dmat, data->map);
1374 m_freem(data->m);
1375 }
1376 if (data->map != NULL)
1377 bus_dmamap_destroy(sc->sc_dmat, data->map);
1378 }
1379 }
1380
1381 static int
1382 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1383 {
1384 bus_addr_t paddr;
1385 bus_size_t size;
1386 int i, error;
1387
1388 ring->qid = qid;
1389 ring->queued = 0;
1390 ring->cur = 0;
1391
1392 /* Allocate TX descriptors (256-byte aligned). */
1393 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1394 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1395 (void **)&ring->desc, size, 256);
1396 if (error != 0) {
1397 aprint_error_dev(sc->sc_dev,
1398 "could not allocate TX ring DMA memory\n");
1399 goto fail;
1400 }
1401 /*
1402 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1403 * to allocate commands space for other rings.
1404 * XXX Do we really need to allocate descriptors for other rings?
1405 */
1406 if (qid > 4)
1407 return 0;
1408
1409 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1410 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1411 (void **)&ring->cmd, size, 4);
1412 if (error != 0) {
1413 aprint_error_dev(sc->sc_dev,
1414 "could not allocate TX cmd DMA memory\n");
1415 goto fail;
1416 }
1417
1418 paddr = ring->cmd_dma.paddr;
1419 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1420 struct iwn_tx_data *data = &ring->data[i];
1421
1422 data->cmd_paddr = paddr;
1423 data->scratch_paddr = paddr + 12;
1424 paddr += sizeof (struct iwn_tx_cmd);
1425
1426 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1427 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1428 &data->map);
1429 if (error != 0) {
1430 aprint_error_dev(sc->sc_dev,
1431 "could not create TX buf DMA map\n");
1432 goto fail;
1433 }
1434 }
1435 return 0;
1436
1437 fail: iwn_free_tx_ring(sc, ring);
1438 return error;
1439 }
1440
1441 static void
1442 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1443 {
1444 int i;
1445
1446 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1447 struct iwn_tx_data *data = &ring->data[i];
1448
1449 if (data->m != NULL) {
1450 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1451 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1452 bus_dmamap_unload(sc->sc_dmat, data->map);
1453 m_freem(data->m);
1454 data->m = NULL;
1455 }
1456 }
1457 /* Clear TX descriptors. */
1458 memset(ring->desc, 0, ring->desc_dma.size);
1459 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1460 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1461 sc->qfullmsk &= ~(1 << ring->qid);
1462 ring->queued = 0;
1463 ring->cur = 0;
1464 }
1465
1466 static void
1467 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1468 {
1469 int i;
1470
1471 iwn_dma_contig_free(&ring->desc_dma);
1472 iwn_dma_contig_free(&ring->cmd_dma);
1473
1474 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1475 struct iwn_tx_data *data = &ring->data[i];
1476
1477 if (data->m != NULL) {
1478 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1479 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1480 bus_dmamap_unload(sc->sc_dmat, data->map);
1481 m_freem(data->m);
1482 }
1483 if (data->map != NULL)
1484 bus_dmamap_destroy(sc->sc_dmat, data->map);
1485 }
1486 }
1487
1488 static void
1489 iwn5000_ict_reset(struct iwn_softc *sc)
1490 {
1491 /* Disable interrupts. */
1492 IWN_WRITE(sc, IWN_INT_MASK, 0);
1493
1494 /* Reset ICT table. */
1495 memset(sc->ict, 0, IWN_ICT_SIZE);
1496 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1497 BUS_DMASYNC_PREWRITE);
1498 sc->ict_cur = 0;
1499
1500 /* Set physical address of ICT table (4KB aligned). */
1501 DPRINTF(("enabling ICT\n"));
1502 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1503 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1504
1505 /* Enable periodic RX interrupt. */
1506 sc->int_mask |= IWN_INT_RX_PERIODIC;
1507 /* Switch to ICT interrupt mode in driver. */
1508 sc->sc_flags |= IWN_FLAG_USE_ICT;
1509
1510 /* Re-enable interrupts. */
1511 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1512 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1513 }
1514
1515 static int
1516 iwn_read_eeprom(struct iwn_softc *sc)
1517 {
1518 struct iwn_ops *ops = &sc->ops;
1519 struct ieee80211com *ic = &sc->sc_ic;
1520 uint16_t val;
1521 int error;
1522
1523 /* Check whether adapter has an EEPROM or an OTPROM. */
1524 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1525 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1526 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1527 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1528 "OTPROM" : "EEPROM"));
1529
1530 /* Adapter has to be powered on for EEPROM access to work. */
1531 if ((error = iwn_apm_init(sc)) != 0) {
1532 aprint_error_dev(sc->sc_dev,
1533 "could not power ON adapter\n");
1534 return error;
1535 }
1536
1537 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1538 aprint_error_dev(sc->sc_dev,
1539 "bad ROM signature\n");
1540 return EIO;
1541 }
1542 if ((error = iwn_eeprom_lock(sc)) != 0) {
1543 aprint_error_dev(sc->sc_dev,
1544 "could not lock ROM (error=%d)\n", error);
1545 return error;
1546 }
1547 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1548 if ((error = iwn_init_otprom(sc)) != 0) {
1549 aprint_error_dev(sc->sc_dev,
1550 "could not initialize OTPROM\n");
1551 return error;
1552 }
1553 }
1554
1555 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1556 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1557 /* Check if HT support is bonded out. */
1558 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1559 sc->sc_flags |= IWN_FLAG_HAS_11N;
1560
1561 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1562 sc->rfcfg = le16toh(val);
1563 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1564 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1565 if (sc->txchainmask == 0)
1566 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1567 if (sc->rxchainmask == 0)
1568 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1569
1570 /* Read MAC address. */
1571 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1572
1573 /* Read adapter-specific information from EEPROM. */
1574 ops->read_eeprom(sc);
1575
1576 iwn_apm_stop(sc); /* Power OFF adapter. */
1577
1578 iwn_eeprom_unlock(sc);
1579 return 0;
1580 }
1581
1582 static void
1583 iwn4965_read_eeprom(struct iwn_softc *sc)
1584 {
1585 uint32_t addr;
1586 uint16_t val;
1587 int i;
1588
1589 /* Read regulatory domain (4 ASCII characters). */
1590 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1591
1592 /* Read the list of authorized channels (20MHz ones only). */
1593 for (i = 0; i < 5; i++) {
1594 addr = iwn4965_regulatory_bands[i];
1595 iwn_read_eeprom_channels(sc, i, addr);
1596 }
1597
1598 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1599 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1600 sc->maxpwr2GHz = val & 0xff;
1601 sc->maxpwr5GHz = val >> 8;
1602 /* Check that EEPROM values are within valid range. */
1603 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1604 sc->maxpwr5GHz = 38;
1605 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1606 sc->maxpwr2GHz = 38;
1607 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1608
1609 /* Read samples for each TX power group. */
1610 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1611 sizeof sc->bands);
1612
1613 /* Read voltage at which samples were taken. */
1614 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1615 sc->eeprom_voltage = (int16_t)le16toh(val);
1616 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1617
1618 #ifdef IWN_DEBUG
1619 /* Print samples. */
1620 if (iwn_debug > 0) {
1621 for (i = 0; i < IWN_NBANDS; i++)
1622 iwn4965_print_power_group(sc, i);
1623 }
1624 #endif
1625 }
1626
1627 #ifdef IWN_DEBUG
1628 static void
1629 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1630 {
1631 struct iwn4965_eeprom_band *band = &sc->bands[i];
1632 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1633 int j, c;
1634
1635 aprint_normal("===band %d===\n", i);
1636 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1637 aprint_normal("chan1 num=%d\n", chans[0].num);
1638 for (c = 0; c < 2; c++) {
1639 for (j = 0; j < IWN_NSAMPLES; j++) {
1640 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1641 "power=%d pa_det=%d\n", c, j,
1642 chans[0].samples[c][j].temp,
1643 chans[0].samples[c][j].gain,
1644 chans[0].samples[c][j].power,
1645 chans[0].samples[c][j].pa_det);
1646 }
1647 }
1648 aprint_normal("chan2 num=%d\n", chans[1].num);
1649 for (c = 0; c < 2; c++) {
1650 for (j = 0; j < IWN_NSAMPLES; j++) {
1651 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1652 "power=%d pa_det=%d\n", c, j,
1653 chans[1].samples[c][j].temp,
1654 chans[1].samples[c][j].gain,
1655 chans[1].samples[c][j].power,
1656 chans[1].samples[c][j].pa_det);
1657 }
1658 }
1659 }
1660 #endif
1661
1662 static void
1663 iwn5000_read_eeprom(struct iwn_softc *sc)
1664 {
1665 struct iwn5000_eeprom_calib_hdr hdr;
1666 int32_t volt;
1667 uint32_t base, addr;
1668 uint16_t val;
1669 int i;
1670
1671 /* Read regulatory domain (4 ASCII characters). */
1672 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1673 base = le16toh(val);
1674 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1675 sc->eeprom_domain, 4);
1676
1677 /* Read the list of authorized channels (20MHz ones only). */
1678 for (i = 0; i < 5; i++) {
1679 addr = base + iwn5000_regulatory_bands[i];
1680 iwn_read_eeprom_channels(sc, i, addr);
1681 }
1682
1683 /* Read enhanced TX power information for 6000 Series. */
1684 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1685 iwn_read_eeprom_enhinfo(sc);
1686
1687 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1688 base = le16toh(val);
1689 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1690 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1691 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1692 sc->calib_ver = hdr.version;
1693
1694 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1695 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1696 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1697 sc->hw_type == IWN_HW_REV_TYPE_105) {
1698 sc->eeprom_voltage = le16toh(hdr.volt);
1699 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1700 sc->eeprom_temp = le16toh(val);
1701 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1702 sc->eeprom_rawtemp = le16toh(val);
1703 }
1704
1705 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1706 /* Compute temperature offset. */
1707 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1708 sc->eeprom_temp = le16toh(val);
1709 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1710 volt = le16toh(val);
1711 sc->temp_off = sc->eeprom_temp - (volt / -5);
1712 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1713 sc->eeprom_temp, volt, sc->temp_off));
1714 } else {
1715 /* Read crystal calibration. */
1716 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1717 &sc->eeprom_crystal, sizeof (uint32_t));
1718 DPRINTF(("crystal calibration 0x%08x\n",
1719 le32toh(sc->eeprom_crystal)));
1720 }
1721 }
1722
1723 static void
1724 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1725 {
1726 struct ieee80211com *ic = &sc->sc_ic;
1727 const struct iwn_chan_band *band = &iwn_bands[n];
1728 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1729 uint8_t chan;
1730 int i;
1731
1732 iwn_read_prom_data(sc, addr, channels,
1733 band->nchan * sizeof (struct iwn_eeprom_chan));
1734
1735 for (i = 0; i < band->nchan; i++) {
1736 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1737 continue;
1738
1739 chan = band->chan[i];
1740
1741 if (n == 0) { /* 2GHz band */
1742 ic->ic_channels[chan].ic_freq =
1743 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1744 ic->ic_channels[chan].ic_flags =
1745 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1746 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1747
1748 } else { /* 5GHz band */
1749 /*
1750 * Some adapters support channels 7, 8, 11 and 12
1751 * both in the 2GHz and 4.9GHz bands.
1752 * Because of limitations in our net80211 layer,
1753 * we don't support them in the 4.9GHz band.
1754 */
1755 if (chan <= 14)
1756 continue;
1757
1758 ic->ic_channels[chan].ic_freq =
1759 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1760 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1761 /* We have at least one valid 5GHz channel. */
1762 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1763 }
1764
1765 /* Is active scan allowed on this channel? */
1766 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1767 ic->ic_channels[chan].ic_flags |=
1768 IEEE80211_CHAN_PASSIVE;
1769 }
1770
1771 /* Save maximum allowed TX power for this channel. */
1772 sc->maxpwr[chan] = channels[i].maxpwr;
1773
1774 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1775 chan, channels[i].flags, sc->maxpwr[chan]));
1776 }
1777 }
1778
1779 static void
1780 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1781 {
1782 struct iwn_eeprom_enhinfo enhinfo[35];
1783 uint16_t val, base;
1784 int8_t maxpwr;
1785 uint8_t flags;
1786 int i;
1787
1788 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1789 base = le16toh(val);
1790 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1791 enhinfo, sizeof enhinfo);
1792
1793 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1794 for (i = 0; i < __arraycount(enhinfo); i++) {
1795 flags = enhinfo[i].flags;
1796 if (!(flags & IWN_ENHINFO_VALID))
1797 continue; /* Skip invalid entries. */
1798
1799 maxpwr = 0;
1800 if (sc->txchainmask & IWN_ANT_A)
1801 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1802 if (sc->txchainmask & IWN_ANT_B)
1803 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1804 if (sc->txchainmask & IWN_ANT_C)
1805 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1806 if (sc->ntxchains == 2)
1807 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1808 else if (sc->ntxchains == 3)
1809 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1810 maxpwr /= 2; /* Convert half-dBm to dBm. */
1811
1812 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1813 sc->enh_maxpwr[i] = maxpwr;
1814 }
1815 }
1816
1817 static struct ieee80211_node *
1818 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1819 {
1820 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1821 }
1822
1823 static void
1824 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1825 {
1826 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1827 struct iwn_node *wn = (void *)ni;
1828 uint8_t rate;
1829 int ridx, i;
1830
1831 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1832 /* Start at lowest available bit-rate, AMRR will raise. */
1833 ni->ni_txrate = 0;
1834
1835 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1836 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1837 /* Map 802.11 rate to HW rate index. */
1838 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1839 if (iwn_rates[ridx].rate == rate)
1840 break;
1841 wn->ridx[i] = ridx;
1842 }
1843 }
1844
1845 static int
1846 iwn_media_change(struct ifnet *ifp)
1847 {
1848 struct iwn_softc *sc = ifp->if_softc;
1849 struct ieee80211com *ic = &sc->sc_ic;
1850 uint8_t rate, ridx;
1851 int error;
1852
1853 error = ieee80211_media_change(ifp);
1854 if (error != ENETRESET)
1855 return error;
1856
1857 if (ic->ic_fixed_rate != -1) {
1858 rate = ic->ic_sup_rates[ic->ic_curmode].
1859 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1860 /* Map 802.11 rate to HW rate index. */
1861 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1862 if (iwn_rates[ridx].rate == rate)
1863 break;
1864 sc->fixed_ridx = ridx;
1865 }
1866
1867 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1868 (IFF_UP | IFF_RUNNING)) {
1869 iwn_stop(ifp, 0);
1870 error = iwn_init(ifp);
1871 }
1872 return error;
1873 }
1874
1875 static int
1876 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1877 {
1878 struct ifnet *ifp = ic->ic_ifp;
1879 struct iwn_softc *sc = ifp->if_softc;
1880 int error;
1881
1882 callout_stop(&sc->calib_to);
1883
1884 switch (nstate) {
1885 case IEEE80211_S_SCAN:
1886 /* XXX Do not abort a running scan. */
1887 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1888 if (ic->ic_state != nstate)
1889 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1890 "while scanning(%d) ignored\n", nstate,
1891 ic->ic_state);
1892 break;
1893 }
1894
1895 /* XXX Not sure if call and flags are needed. */
1896 ieee80211_node_table_reset(&ic->ic_scan);
1897 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1898 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1899
1900 /* Make the link LED blink while we're scanning. */
1901 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1902
1903 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1904 aprint_error_dev(sc->sc_dev,
1905 "could not initiate scan\n");
1906 return error;
1907 }
1908 ic->ic_state = nstate;
1909 return 0;
1910
1911 case IEEE80211_S_ASSOC:
1912 if (ic->ic_state != IEEE80211_S_RUN)
1913 break;
1914 /* FALLTHROUGH */
1915 case IEEE80211_S_AUTH:
1916 /* Reset state to handle reassociations correctly. */
1917 sc->rxon.associd = 0;
1918 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1919 sc->calib.state = IWN_CALIB_STATE_INIT;
1920
1921 /* Wait until we hear a beacon before we transmit */
1922 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1923 sc->sc_beacon_wait = 1;
1924
1925 if ((error = iwn_auth(sc)) != 0) {
1926 aprint_error_dev(sc->sc_dev,
1927 "could not move to auth state\n");
1928 return error;
1929 }
1930 break;
1931
1932 case IEEE80211_S_RUN:
1933 /*
1934 * RUN -> RUN transition; Just restart timers.
1935 */
1936 if (ic->ic_state == IEEE80211_S_RUN) {
1937 sc->calib_cnt = 0;
1938 break;
1939 }
1940
1941 /* Wait until we hear a beacon before we transmit */
1942 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1943 sc->sc_beacon_wait = 1;
1944
1945 if ((error = iwn_run(sc)) != 0) {
1946 aprint_error_dev(sc->sc_dev,
1947 "could not move to run state\n");
1948 return error;
1949 }
1950 break;
1951
1952 case IEEE80211_S_INIT:
1953 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1954 sc->calib.state = IWN_CALIB_STATE_INIT;
1955 /*
1956 * Purge the xmit queue so we don't have old frames
1957 * during a new association attempt.
1958 */
1959 sc->sc_beacon_wait = 0;
1960 ifp->if_flags &= ~IFF_OACTIVE;
1961 iwn_start(ifp);
1962 break;
1963 }
1964
1965 return sc->sc_newstate(ic, nstate, arg);
1966 }
1967
1968 static void
1969 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1970 {
1971 struct iwn_softc *sc = arg;
1972 struct iwn_node *wn = (struct iwn_node *)ni;
1973
1974 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1975 }
1976
1977 static void
1978 iwn_calib_timeout(void *arg)
1979 {
1980 struct iwn_softc *sc = arg;
1981 struct ieee80211com *ic = &sc->sc_ic;
1982 int s;
1983
1984 s = splnet();
1985 if (ic->ic_fixed_rate == -1) {
1986 if (ic->ic_opmode == IEEE80211_M_STA)
1987 iwn_iter_func(sc, ic->ic_bss);
1988 else
1989 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1990 }
1991 /* Force automatic TX power calibration every 60 secs. */
1992 if (++sc->calib_cnt >= 120) {
1993 uint32_t flags = 0;
1994
1995 DPRINTF(("sending request for statistics\n"));
1996 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1997 sizeof flags, 1);
1998 sc->calib_cnt = 0;
1999 }
2000 splx(s);
2001
2002 /* Automatic rate control triggered every 500ms. */
2003 callout_schedule(&sc->calib_to, mstohz(500));
2004 }
2005
2006 /*
2007 * Process an RX_PHY firmware notification. This is usually immediately
2008 * followed by an MPDU_RX_DONE notification.
2009 */
2010 static void
2011 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2012 struct iwn_rx_data *data)
2013 {
2014 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2015
2016 DPRINTFN(2, ("received PHY stats\n"));
2017 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2018 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2019
2020 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2021 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2022 sc->last_rx_valid = 1;
2023 }
2024
2025 /*
2026 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2027 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2028 */
2029 static void
2030 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2031 struct iwn_rx_data *data)
2032 {
2033 struct iwn_ops *ops = &sc->ops;
2034 struct ieee80211com *ic = &sc->sc_ic;
2035 struct ifnet *ifp = ic->ic_ifp;
2036 struct iwn_rx_ring *ring = &sc->rxq;
2037 struct ieee80211_frame *wh;
2038 struct ieee80211_node *ni;
2039 struct mbuf *m, *m1;
2040 struct iwn_rx_stat *stat;
2041 char *head;
2042 uint32_t flags;
2043 int error, len, rssi, s;
2044
2045 if (desc->type == IWN_MPDU_RX_DONE) {
2046 /* Check for prior RX_PHY notification. */
2047 if (!sc->last_rx_valid) {
2048 DPRINTF(("missing RX_PHY\n"));
2049 return;
2050 }
2051 sc->last_rx_valid = 0;
2052 stat = &sc->last_rx_stat;
2053 } else
2054 stat = (struct iwn_rx_stat *)(desc + 1);
2055
2056 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2057 BUS_DMASYNC_POSTREAD);
2058
2059 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2060 aprint_error_dev(sc->sc_dev,
2061 "invalid RX statistic header\n");
2062 return;
2063 }
2064 if (desc->type == IWN_MPDU_RX_DONE) {
2065 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2066 head = (char *)(mpdu + 1);
2067 len = le16toh(mpdu->len);
2068 } else {
2069 head = (char *)(stat + 1) + stat->cfg_phy_len;
2070 len = le16toh(stat->len);
2071 }
2072
2073 flags = le32toh(*(uint32_t *)(head + len));
2074
2075 /* Discard frames with a bad FCS early. */
2076 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2077 DPRINTFN(2, ("RX flags error %x\n", flags));
2078 ifp->if_ierrors++;
2079 return;
2080 }
2081 /* Discard frames that are too short. */
2082 if (len < sizeof (*wh)) {
2083 DPRINTF(("frame too short: %d\n", len));
2084 ic->ic_stats.is_rx_tooshort++;
2085 ifp->if_ierrors++;
2086 return;
2087 }
2088
2089 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2090 if (m1 == NULL) {
2091 ic->ic_stats.is_rx_nobuf++;
2092 ifp->if_ierrors++;
2093 return;
2094 }
2095 bus_dmamap_unload(sc->sc_dmat, data->map);
2096
2097 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2098 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2099 if (error != 0) {
2100 m_freem(m1);
2101
2102 /* Try to reload the old mbuf. */
2103 error = bus_dmamap_load(sc->sc_dmat, data->map,
2104 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2105 BUS_DMA_NOWAIT | BUS_DMA_READ);
2106 if (error != 0) {
2107 panic("%s: could not load old RX mbuf",
2108 device_xname(sc->sc_dev));
2109 }
2110 /* Physical address may have changed. */
2111 ring->desc[ring->cur] =
2112 htole32(data->map->dm_segs[0].ds_addr >> 8);
2113 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2114 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2115 BUS_DMASYNC_PREWRITE);
2116 ifp->if_ierrors++;
2117 return;
2118 }
2119
2120 m = data->m;
2121 data->m = m1;
2122 /* Update RX descriptor. */
2123 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2124 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2125 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2126 BUS_DMASYNC_PREWRITE);
2127
2128 /* Finalize mbuf. */
2129 m_set_rcvif(m, ifp);
2130 m->m_data = head;
2131 m->m_pkthdr.len = m->m_len = len;
2132
2133 s = splnet();
2134
2135 /* Grab a reference to the source node. */
2136 wh = mtod(m, struct ieee80211_frame *);
2137 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2138
2139 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2140 /* NetBSD does decryption in ieee80211_input. */
2141
2142 rssi = ops->get_rssi(stat);
2143
2144 /* XXX Added for NetBSD: scans never stop without it */
2145 if (ic->ic_state == IEEE80211_S_SCAN)
2146 iwn_fix_channel(ic, m, stat);
2147
2148 if (sc->sc_drvbpf != NULL) {
2149 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2150
2151 tap->wr_flags = 0;
2152 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2153 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2154 tap->wr_chan_freq =
2155 htole16(ic->ic_channels[stat->chan].ic_freq);
2156 tap->wr_chan_flags =
2157 htole16(ic->ic_channels[stat->chan].ic_flags);
2158 tap->wr_dbm_antsignal = (int8_t)rssi;
2159 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2160 tap->wr_tsft = stat->tstamp;
2161 switch (stat->rate) {
2162 /* CCK rates. */
2163 case 10: tap->wr_rate = 2; break;
2164 case 20: tap->wr_rate = 4; break;
2165 case 55: tap->wr_rate = 11; break;
2166 case 110: tap->wr_rate = 22; break;
2167 /* OFDM rates. */
2168 case 0xd: tap->wr_rate = 12; break;
2169 case 0xf: tap->wr_rate = 18; break;
2170 case 0x5: tap->wr_rate = 24; break;
2171 case 0x7: tap->wr_rate = 36; break;
2172 case 0x9: tap->wr_rate = 48; break;
2173 case 0xb: tap->wr_rate = 72; break;
2174 case 0x1: tap->wr_rate = 96; break;
2175 case 0x3: tap->wr_rate = 108; break;
2176 /* Unknown rate: should not happen. */
2177 default: tap->wr_rate = 0;
2178 }
2179
2180 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2181 }
2182
2183 /*
2184 * If it's a beacon and we're waiting, then do the wakeup.
2185 */
2186 if (sc->sc_beacon_wait) {
2187 uint8_t type, subtype;
2188 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2189 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2190 /*
2191 * This assumes at this point we've received our own
2192 * beacon.
2193 */
2194 if (type == IEEE80211_FC0_TYPE_MGT &&
2195 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2196 sc->sc_beacon_wait = 0;
2197 ifp->if_flags &= ~IFF_OACTIVE;
2198 iwn_start(ifp);
2199 }
2200 }
2201
2202 /* Send the frame to the 802.11 layer. */
2203 ieee80211_input(ic, m, ni, rssi, 0);
2204
2205 /* Node is no longer needed. */
2206 ieee80211_free_node(ni);
2207
2208 splx(s);
2209 }
2210
2211 #ifndef IEEE80211_NO_HT
2212 /* Process an incoming Compressed BlockAck. */
2213 static void
2214 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2215 struct iwn_rx_data *data)
2216 {
2217 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2218 struct iwn_tx_ring *txq;
2219
2220 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2221 BUS_DMASYNC_POSTREAD);
2222
2223 txq = &sc->txq[le16toh(ba->qid)];
2224 /* XXX TBD */
2225 }
2226 #endif
2227
2228 /*
2229 * Process a CALIBRATION_RESULT notification sent by the initialization
2230 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2231 */
2232 static void
2233 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2234 struct iwn_rx_data *data)
2235 {
2236 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2237 int len, idx = -1;
2238
2239 /* Runtime firmware should not send such a notification. */
2240 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2241 return;
2242
2243 len = (le32toh(desc->len) & 0x3fff) - 4;
2244 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2245 BUS_DMASYNC_POSTREAD);
2246
2247 switch (calib->code) {
2248 case IWN5000_PHY_CALIB_DC:
2249 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2250 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2251 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2252 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2253 sc->hw_type == IWN_HW_REV_TYPE_105)
2254 idx = 0;
2255 break;
2256 case IWN5000_PHY_CALIB_LO:
2257 idx = 1;
2258 break;
2259 case IWN5000_PHY_CALIB_TX_IQ:
2260 idx = 2;
2261 break;
2262 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2263 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2264 sc->hw_type != IWN_HW_REV_TYPE_5150)
2265 idx = 3;
2266 break;
2267 case IWN5000_PHY_CALIB_BASE_BAND:
2268 idx = 4;
2269 break;
2270 }
2271 if (idx == -1) /* Ignore other results. */
2272 return;
2273
2274 /* Save calibration result. */
2275 if (sc->calibcmd[idx].buf != NULL)
2276 free(sc->calibcmd[idx].buf, M_DEVBUF);
2277 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2278 if (sc->calibcmd[idx].buf == NULL) {
2279 DPRINTF(("not enough memory for calibration result %d\n",
2280 calib->code));
2281 return;
2282 }
2283 DPRINTF(("saving calibration result code=%d len=%d\n",
2284 calib->code, len));
2285 sc->calibcmd[idx].len = len;
2286 memcpy(sc->calibcmd[idx].buf, calib, len);
2287 }
2288
2289 /*
2290 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2291 * The latter is sent by the firmware after each received beacon.
2292 */
2293 static void
2294 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2295 struct iwn_rx_data *data)
2296 {
2297 struct iwn_ops *ops = &sc->ops;
2298 struct ieee80211com *ic = &sc->sc_ic;
2299 struct iwn_calib_state *calib = &sc->calib;
2300 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2301 int temp;
2302
2303 /* Ignore statistics received during a scan. */
2304 if (ic->ic_state != IEEE80211_S_RUN)
2305 return;
2306
2307 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2308 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2309
2310 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2311 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2312
2313 /* Test if temperature has changed. */
2314 if (stats->general.temp != sc->rawtemp) {
2315 /* Convert "raw" temperature to degC. */
2316 sc->rawtemp = stats->general.temp;
2317 temp = ops->get_temperature(sc);
2318 DPRINTFN(2, ("temperature=%dC\n", temp));
2319
2320 /* Update TX power if need be (4965AGN only). */
2321 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2322 iwn4965_power_calibration(sc, temp);
2323 }
2324
2325 if (desc->type != IWN_BEACON_STATISTICS)
2326 return; /* Reply to a statistics request. */
2327
2328 sc->noise = iwn_get_noise(&stats->rx.general);
2329
2330 /* Test that RSSI and noise are present in stats report. */
2331 if (le32toh(stats->rx.general.flags) != 1) {
2332 DPRINTF(("received statistics without RSSI\n"));
2333 return;
2334 }
2335
2336 /*
2337 * XXX Differential gain calibration makes the 6005 firmware
2338 * crap out, so skip it for now. This effectively disables
2339 * sensitivity tuning as well.
2340 */
2341 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2342 return;
2343
2344 if (calib->state == IWN_CALIB_STATE_ASSOC)
2345 iwn_collect_noise(sc, &stats->rx.general);
2346 else if (calib->state == IWN_CALIB_STATE_RUN)
2347 iwn_tune_sensitivity(sc, &stats->rx);
2348 }
2349
2350 /*
2351 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2352 * and 5000 adapters have different incompatible TX status formats.
2353 */
2354 static void
2355 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2356 struct iwn_rx_data *data)
2357 {
2358 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2359
2360 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2361 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2362 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2363 }
2364
2365 static void
2366 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2367 struct iwn_rx_data *data)
2368 {
2369 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2370
2371 #ifdef notyet
2372 /* Reset TX scheduler slot. */
2373 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2374 #endif
2375
2376 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2377 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2378 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2379 }
2380
2381 /*
2382 * Adapter-independent backend for TX_DONE firmware notifications.
2383 */
2384 static void
2385 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2386 uint8_t status)
2387 {
2388 struct ieee80211com *ic = &sc->sc_ic;
2389 struct ifnet *ifp = ic->ic_ifp;
2390 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2391 struct iwn_tx_data *data = &ring->data[desc->idx];
2392 struct iwn_node *wn = (struct iwn_node *)data->ni;
2393 int s;
2394
2395 s = splnet();
2396
2397 /* Update rate control statistics. */
2398 wn->amn.amn_txcnt++;
2399 if (ackfailcnt > 0)
2400 wn->amn.amn_retrycnt++;
2401
2402 if (status != 1 && status != 2)
2403 ifp->if_oerrors++;
2404 else
2405 ifp->if_opackets++;
2406
2407 /* Unmap and free mbuf. */
2408 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2409 BUS_DMASYNC_POSTWRITE);
2410 bus_dmamap_unload(sc->sc_dmat, data->map);
2411 m_freem(data->m);
2412 data->m = NULL;
2413 ieee80211_free_node(data->ni);
2414 data->ni = NULL;
2415
2416 sc->sc_tx_timer = 0;
2417 if (--ring->queued < IWN_TX_RING_LOMARK) {
2418 sc->qfullmsk &= ~(1 << ring->qid);
2419 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2420 ifp->if_flags &= ~IFF_OACTIVE;
2421 iwn_start(ifp);
2422 }
2423 }
2424
2425 splx(s);
2426 }
2427
2428 /*
2429 * Process a "command done" firmware notification. This is where we wakeup
2430 * processes waiting for a synchronous command completion.
2431 */
2432 static void
2433 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2434 {
2435 struct iwn_tx_ring *ring = &sc->txq[4];
2436 struct iwn_tx_data *data;
2437
2438 if ((desc->qid & 0xf) != 4)
2439 return; /* Not a command ack. */
2440
2441 data = &ring->data[desc->idx];
2442
2443 /* If the command was mapped in an mbuf, free it. */
2444 if (data->m != NULL) {
2445 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2446 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2447 bus_dmamap_unload(sc->sc_dmat, data->map);
2448 m_freem(data->m);
2449 data->m = NULL;
2450 }
2451 wakeup(&ring->desc[desc->idx]);
2452 }
2453
2454 /*
2455 * Process an INT_FH_RX or INT_SW_RX interrupt.
2456 */
2457 static void
2458 iwn_notif_intr(struct iwn_softc *sc)
2459 {
2460 struct iwn_ops *ops = &sc->ops;
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 struct ifnet *ifp = ic->ic_ifp;
2463 uint16_t hw;
2464 int s;
2465
2466 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2467 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2468
2469 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2470 while (sc->rxq.cur != hw) {
2471 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2472 struct iwn_rx_desc *desc;
2473
2474 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2475 BUS_DMASYNC_POSTREAD);
2476 desc = mtod(data->m, struct iwn_rx_desc *);
2477
2478 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2479 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2480
2481 if (!(desc->qid & 0x80)) /* Reply to a command. */
2482 iwn_cmd_done(sc, desc);
2483
2484 switch (desc->type) {
2485 case IWN_RX_PHY:
2486 iwn_rx_phy(sc, desc, data);
2487 break;
2488
2489 case IWN_RX_DONE: /* 4965AGN only. */
2490 case IWN_MPDU_RX_DONE:
2491 /* An 802.11 frame has been received. */
2492 iwn_rx_done(sc, desc, data);
2493 break;
2494 #ifndef IEEE80211_NO_HT
2495 case IWN_RX_COMPRESSED_BA:
2496 /* A Compressed BlockAck has been received. */
2497 iwn_rx_compressed_ba(sc, desc, data);
2498 break;
2499 #endif
2500 case IWN_TX_DONE:
2501 /* An 802.11 frame has been transmitted. */
2502 ops->tx_done(sc, desc, data);
2503 break;
2504
2505 case IWN_RX_STATISTICS:
2506 case IWN_BEACON_STATISTICS:
2507 iwn_rx_statistics(sc, desc, data);
2508 break;
2509
2510 case IWN_BEACON_MISSED:
2511 {
2512 struct iwn_beacon_missed *miss =
2513 (struct iwn_beacon_missed *)(desc + 1);
2514
2515 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2516 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2517 /*
2518 * If more than 5 consecutive beacons are missed,
2519 * reinitialize the sensitivity state machine.
2520 */
2521 DPRINTF(("beacons missed %d/%d\n",
2522 le32toh(miss->consecutive), le32toh(miss->total)));
2523 if (ic->ic_state == IEEE80211_S_RUN &&
2524 le32toh(miss->consecutive) > 5)
2525 (void)iwn_init_sensitivity(sc);
2526 break;
2527 }
2528 case IWN_UC_READY:
2529 {
2530 struct iwn_ucode_info *uc =
2531 (struct iwn_ucode_info *)(desc + 1);
2532
2533 /* The microcontroller is ready. */
2534 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2535 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2536 DPRINTF(("microcode alive notification version=%d.%d "
2537 "subtype=%x alive=%x\n", uc->major, uc->minor,
2538 uc->subtype, le32toh(uc->valid)));
2539
2540 if (le32toh(uc->valid) != 1) {
2541 aprint_error_dev(sc->sc_dev,
2542 "microcontroller initialization "
2543 "failed\n");
2544 break;
2545 }
2546 if (uc->subtype == IWN_UCODE_INIT) {
2547 /* Save microcontroller report. */
2548 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2549 }
2550 /* Save the address of the error log in SRAM. */
2551 sc->errptr = le32toh(uc->errptr);
2552 break;
2553 }
2554 case IWN_STATE_CHANGED:
2555 {
2556 uint32_t *status = (uint32_t *)(desc + 1);
2557
2558 /* Enabled/disabled notification. */
2559 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2560 sizeof (*status), BUS_DMASYNC_POSTREAD);
2561 DPRINTF(("state changed to %x\n", le32toh(*status)));
2562
2563 if (le32toh(*status) & 1) {
2564 /* The radio button has to be pushed. */
2565 aprint_error_dev(sc->sc_dev,
2566 "Radio transmitter is off\n");
2567 /* Turn the interface down. */
2568 s = splnet();
2569 ifp->if_flags &= ~IFF_UP;
2570 iwn_stop(ifp, 1);
2571 splx(s);
2572 return; /* No further processing. */
2573 }
2574 break;
2575 }
2576 case IWN_START_SCAN:
2577 {
2578 struct iwn_start_scan *scan =
2579 (struct iwn_start_scan *)(desc + 1);
2580
2581 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2582 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2583 DPRINTFN(2, ("scanning channel %d status %x\n",
2584 scan->chan, le32toh(scan->status)));
2585
2586 /* Fix current channel. */
2587 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2588 break;
2589 }
2590 case IWN_STOP_SCAN:
2591 {
2592 struct iwn_stop_scan *scan =
2593 (struct iwn_stop_scan *)(desc + 1);
2594
2595 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2596 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2597 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2598 scan->nchan, scan->status, scan->chan));
2599
2600 if (scan->status == 1 && scan->chan <= 14 &&
2601 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2602 /*
2603 * We just finished scanning 2GHz channels,
2604 * start scanning 5GHz ones.
2605 */
2606 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2607 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2608 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2609 break;
2610 }
2611 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2612 ieee80211_end_scan(ic);
2613 break;
2614 }
2615 case IWN5000_CALIBRATION_RESULT:
2616 iwn5000_rx_calib_results(sc, desc, data);
2617 break;
2618
2619 case IWN5000_CALIBRATION_DONE:
2620 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2621 wakeup(sc);
2622 break;
2623 }
2624
2625 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2626 }
2627
2628 /* Tell the firmware what we have processed. */
2629 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2630 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2631 }
2632
2633 /*
2634 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2635 * from power-down sleep mode.
2636 */
2637 static void
2638 iwn_wakeup_intr(struct iwn_softc *sc)
2639 {
2640 int qid;
2641
2642 DPRINTF(("ucode wakeup from power-down sleep\n"));
2643
2644 /* Wakeup RX and TX rings. */
2645 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2646 for (qid = 0; qid < sc->ntxqs; qid++) {
2647 struct iwn_tx_ring *ring = &sc->txq[qid];
2648 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2649 }
2650 }
2651
2652 /*
2653 * Dump the error log of the firmware when a firmware panic occurs. Although
2654 * we can't debug the firmware because it is neither open source nor free, it
2655 * can help us to identify certain classes of problems.
2656 */
2657 static void
2658 iwn_fatal_intr(struct iwn_softc *sc)
2659 {
2660 struct iwn_fw_dump dump;
2661 int i;
2662
2663 /* Force a complete recalibration on next init. */
2664 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2665
2666 /* Check that the error log address is valid. */
2667 if (sc->errptr < IWN_FW_DATA_BASE ||
2668 sc->errptr + sizeof (dump) >
2669 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2670 aprint_error_dev(sc->sc_dev,
2671 "bad firmware error log address 0x%08x\n", sc->errptr);
2672 return;
2673 }
2674 if (iwn_nic_lock(sc) != 0) {
2675 aprint_error_dev(sc->sc_dev,
2676 "could not read firmware error log\n");
2677 return;
2678 }
2679 /* Read firmware error log from SRAM. */
2680 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2681 sizeof (dump) / sizeof (uint32_t));
2682 iwn_nic_unlock(sc);
2683
2684 if (dump.valid == 0) {
2685 aprint_error_dev(sc->sc_dev,
2686 "firmware error log is empty\n");
2687 return;
2688 }
2689 aprint_error("firmware error log:\n");
2690 aprint_error(" error type = \"%s\" (0x%08X)\n",
2691 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2692 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2693 dump.id);
2694 aprint_error(" program counter = 0x%08X\n", dump.pc);
2695 aprint_error(" source line = 0x%08X\n", dump.src_line);
2696 aprint_error(" error data = 0x%08X%08X\n",
2697 dump.error_data[0], dump.error_data[1]);
2698 aprint_error(" branch link = 0x%08X%08X\n",
2699 dump.branch_link[0], dump.branch_link[1]);
2700 aprint_error(" interrupt link = 0x%08X%08X\n",
2701 dump.interrupt_link[0], dump.interrupt_link[1]);
2702 aprint_error(" time = %u\n", dump.time[0]);
2703
2704 /* Dump driver status (TX and RX rings) while we're here. */
2705 aprint_error("driver status:\n");
2706 for (i = 0; i < sc->ntxqs; i++) {
2707 struct iwn_tx_ring *ring = &sc->txq[i];
2708 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2709 i, ring->qid, ring->cur, ring->queued);
2710 }
2711 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2712 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2713 }
2714
2715 static int
2716 iwn_intr(void *arg)
2717 {
2718 struct iwn_softc *sc = arg;
2719
2720 /* Disable interrupts. */
2721 IWN_WRITE(sc, IWN_INT_MASK, 0);
2722
2723 softint_schedule(sc->sc_soft_ih);
2724 return 1;
2725 }
2726
2727 static void
2728 iwn_softintr(void *arg)
2729 {
2730 struct iwn_softc *sc = arg;
2731 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2732 uint32_t r1, r2, tmp;
2733 int s;
2734
2735 /* Read interrupts from ICT (fast) or from registers (slow). */
2736 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2737 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2738 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2739 tmp = 0;
2740 while (sc->ict[sc->ict_cur] != 0) {
2741 tmp |= sc->ict[sc->ict_cur];
2742 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2743 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2744 }
2745 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2746 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2747 tmp = le32toh(tmp);
2748 if (tmp == 0xffffffff) /* Shouldn't happen. */
2749 tmp = 0;
2750 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2751 tmp |= 0x8000;
2752 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2753 r2 = 0; /* Unused. */
2754 } else {
2755 r1 = IWN_READ(sc, IWN_INT);
2756 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2757 return; /* Hardware gone! */
2758 r2 = IWN_READ(sc, IWN_FH_INT);
2759 }
2760 if (r1 == 0 && r2 == 0) {
2761 goto out; /* Interrupt not for us. */
2762 }
2763
2764 /* Acknowledge interrupts. */
2765 IWN_WRITE(sc, IWN_INT, r1);
2766 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2767 IWN_WRITE(sc, IWN_FH_INT, r2);
2768
2769 if (r1 & IWN_INT_RF_TOGGLED) {
2770 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2771 aprint_error_dev(sc->sc_dev,
2772 "RF switch: radio %s\n",
2773 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2774 }
2775 if (r1 & IWN_INT_CT_REACHED) {
2776 aprint_error_dev(sc->sc_dev,
2777 "critical temperature reached!\n");
2778 }
2779 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2780 aprint_error_dev(sc->sc_dev,
2781 "fatal firmware error\n");
2782 /* Dump firmware error log and stop. */
2783 iwn_fatal_intr(sc);
2784 s = splnet();
2785 ifp->if_flags &= ~IFF_UP;
2786 iwn_stop(ifp, 1);
2787 splx(s);
2788 return;
2789 }
2790 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2791 (r2 & IWN_FH_INT_RX)) {
2792 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2793 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2794 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2795 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2796 iwn_notif_intr(sc);
2797 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2798 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2799 IWN_INT_PERIODIC_ENA);
2800 }
2801 } else
2802 iwn_notif_intr(sc);
2803 }
2804
2805 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2806 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2807 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2808 wakeup(sc); /* FH DMA transfer completed. */
2809 }
2810
2811 if (r1 & IWN_INT_ALIVE)
2812 wakeup(sc); /* Firmware is alive. */
2813
2814 if (r1 & IWN_INT_WAKEUP)
2815 iwn_wakeup_intr(sc);
2816
2817 out:
2818 /* Re-enable interrupts. */
2819 if (ifp->if_flags & IFF_UP)
2820 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2821 }
2822
2823 /*
2824 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2825 * 5000 adapters use a slightly different format).
2826 */
2827 static void
2828 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2829 uint16_t len)
2830 {
2831 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2832
2833 *w = htole16(len + 8);
2834 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2835 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2836 sizeof (uint16_t),
2837 BUS_DMASYNC_PREWRITE);
2838 if (idx < IWN_SCHED_WINSZ) {
2839 *(w + IWN_TX_RING_COUNT) = *w;
2840 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2841 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2842 (char *)(void *)sc->sched_dma.vaddr,
2843 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2844 }
2845 }
2846
2847 static void
2848 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2849 uint16_t len)
2850 {
2851 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2852
2853 *w = htole16(id << 12 | (len + 8));
2854 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2855 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2856 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2857 if (idx < IWN_SCHED_WINSZ) {
2858 *(w + IWN_TX_RING_COUNT) = *w;
2859 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2860 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2861 (char *)(void *)sc->sched_dma.vaddr,
2862 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2863 }
2864 }
2865
2866 #ifdef notyet
2867 static void
2868 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2869 {
2870 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2871
2872 *w = (*w & htole16(0xf000)) | htole16(1);
2873 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2874 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2875 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2876 if (idx < IWN_SCHED_WINSZ) {
2877 *(w + IWN_TX_RING_COUNT) = *w;
2878 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2879 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2880 (char *)(void *)sc->sched_dma.vaddr,
2881 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2882 }
2883 }
2884 #endif
2885
2886 static int
2887 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2888 {
2889 struct ieee80211com *ic = &sc->sc_ic;
2890 struct iwn_node *wn = (void *)ni;
2891 struct iwn_tx_ring *ring;
2892 struct iwn_tx_desc *desc;
2893 struct iwn_tx_data *data;
2894 struct iwn_tx_cmd *cmd;
2895 struct iwn_cmd_data *tx;
2896 const struct iwn_rate *rinfo;
2897 struct ieee80211_frame *wh;
2898 struct ieee80211_key *k = NULL;
2899 struct mbuf *m1;
2900 uint32_t flags;
2901 u_int hdrlen;
2902 bus_dma_segment_t *seg;
2903 uint8_t tid, ridx, txant, type;
2904 int i, totlen, error, pad;
2905
2906 const struct chanAccParams *cap;
2907 int noack;
2908 int hdrlen2;
2909
2910 wh = mtod(m, struct ieee80211_frame *);
2911 hdrlen = ieee80211_anyhdrsize(wh);
2912 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2913
2914 hdrlen2 = (ieee80211_has_qos(wh)) ?
2915 sizeof (struct ieee80211_qosframe) :
2916 sizeof (struct ieee80211_frame);
2917
2918 if (hdrlen != hdrlen2)
2919 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2920 hdrlen, hdrlen2);
2921
2922 /* XXX OpenBSD sets a different tid when using QOS */
2923 tid = 0;
2924 if (ieee80211_has_qos(wh)) {
2925 cap = &ic->ic_wme.wme_chanParams;
2926 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2927 }
2928 else
2929 noack = 0;
2930
2931 ring = &sc->txq[ac];
2932 desc = &ring->desc[ring->cur];
2933 data = &ring->data[ring->cur];
2934
2935 /* Choose a TX rate index. */
2936 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2937 type != IEEE80211_FC0_TYPE_DATA) {
2938 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2939 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2940 } else if (ic->ic_fixed_rate != -1) {
2941 ridx = sc->fixed_ridx;
2942 } else
2943 ridx = wn->ridx[ni->ni_txrate];
2944 rinfo = &iwn_rates[ridx];
2945
2946 /* Encrypt the frame if need be. */
2947 /*
2948 * XXX For now, NetBSD swaps the encryption and bpf sections
2949 * in order to match old code and other drivers. Tests with
2950 * tcpdump indicates that the order is irrelevant, however,
2951 * as bpf produces unencrypted data for both ordering choices.
2952 */
2953 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2954 k = ieee80211_crypto_encap(ic, ni, m);
2955 if (k == NULL) {
2956 m_freem(m);
2957 return ENOBUFS;
2958 }
2959 /* Packet header may have moved, reset our local pointer. */
2960 wh = mtod(m, struct ieee80211_frame *);
2961 }
2962 totlen = m->m_pkthdr.len;
2963
2964 if (sc->sc_drvbpf != NULL) {
2965 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2966
2967 tap->wt_flags = 0;
2968 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2969 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2970 tap->wt_rate = rinfo->rate;
2971 tap->wt_hwqueue = ac;
2972 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2973 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2974
2975 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
2976 }
2977
2978 /* Prepare TX firmware command. */
2979 cmd = &ring->cmd[ring->cur];
2980 cmd->code = IWN_CMD_TX_DATA;
2981 cmd->flags = 0;
2982 cmd->qid = ring->qid;
2983 cmd->idx = ring->cur;
2984
2985 tx = (struct iwn_cmd_data *)cmd->data;
2986 /* NB: No need to clear tx, all fields are reinitialized here. */
2987 tx->scratch = 0; /* clear "scratch" area */
2988
2989 flags = 0;
2990 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2991 /* Unicast frame, check if an ACK is expected. */
2992 if (!noack)
2993 flags |= IWN_TX_NEED_ACK;
2994 }
2995
2996 #ifdef notyet
2997 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
2998 if ((wh->i_fc[0] &
2999 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3000 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3001 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3002 #endif
3003
3004 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3005 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3006
3007 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3008 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3009 /* NB: Group frames are sent using CCK in 802.11b/g. */
3010 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3011 flags |= IWN_TX_NEED_RTS;
3012 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3013 ridx >= IWN_RIDX_OFDM6) {
3014 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3015 flags |= IWN_TX_NEED_CTS;
3016 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3017 flags |= IWN_TX_NEED_RTS;
3018 }
3019 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3020 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3021 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3022 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3023 flags |= IWN_TX_NEED_PROTECTION;
3024 } else
3025 flags |= IWN_TX_FULL_TXOP;
3026 }
3027 }
3028
3029 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3030 type != IEEE80211_FC0_TYPE_DATA)
3031 tx->id = sc->broadcast_id;
3032 else
3033 tx->id = wn->id;
3034
3035 if (type == IEEE80211_FC0_TYPE_MGT) {
3036 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3037
3038 #ifndef IEEE80211_STA_ONLY
3039 /* Tell HW to set timestamp in probe responses. */
3040 /* XXX NetBSD rev 1.11 added probe requests here but */
3041 /* probe requests do not take timestamps (from Bergamini). */
3042 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3043 flags |= IWN_TX_INSERT_TSTAMP;
3044 #endif
3045 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3046 /* changes here. These are not needed (from Bergamini). */
3047 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3048 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3049 tx->timeout = htole16(3);
3050 else
3051 tx->timeout = htole16(2);
3052 } else
3053 tx->timeout = htole16(0);
3054
3055 if (hdrlen & 3) {
3056 /* First segment length must be a multiple of 4. */
3057 flags |= IWN_TX_NEED_PADDING;
3058 pad = 4 - (hdrlen & 3);
3059 } else
3060 pad = 0;
3061
3062 tx->len = htole16(totlen);
3063 tx->tid = tid;
3064 tx->rts_ntries = 60;
3065 tx->data_ntries = 15;
3066 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3067 tx->plcp = rinfo->plcp;
3068 tx->rflags = rinfo->flags;
3069 if (tx->id == sc->broadcast_id) {
3070 /* Group or management frame. */
3071 tx->linkq = 0;
3072 /* XXX Alternate between antenna A and B? */
3073 txant = IWN_LSB(sc->txchainmask);
3074 tx->rflags |= IWN_RFLAG_ANT(txant);
3075 } else {
3076 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3077 flags |= IWN_TX_LINKQ; /* enable MRR */
3078 }
3079 /* Set physical address of "scratch area". */
3080 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3081 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3082
3083 /* Copy 802.11 header in TX command. */
3084 /* XXX NetBSD changed this in rev 1.20 */
3085 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3086
3087 /* Trim 802.11 header. */
3088 m_adj(m, hdrlen);
3089 tx->security = 0;
3090 tx->flags = htole32(flags);
3091
3092 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3093 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3094 if (error != 0) {
3095 if (error != EFBIG) {
3096 aprint_error_dev(sc->sc_dev,
3097 "can't map mbuf (error %d)\n", error);
3098 m_freem(m);
3099 return error;
3100 }
3101 /* Too many DMA segments, linearize mbuf. */
3102 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3103 if (m1 == NULL) {
3104 m_freem(m);
3105 return ENOBUFS;
3106 }
3107 if (m->m_pkthdr.len > MHLEN) {
3108 MCLGET(m1, M_DONTWAIT);
3109 if (!(m1->m_flags & M_EXT)) {
3110 m_freem(m);
3111 m_freem(m1);
3112 return ENOBUFS;
3113 }
3114 }
3115 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3116 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3117 m_freem(m);
3118 m = m1;
3119
3120 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3121 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3122 if (error != 0) {
3123 aprint_error_dev(sc->sc_dev,
3124 "can't map mbuf (error %d)\n", error);
3125 m_freem(m);
3126 return error;
3127 }
3128 }
3129
3130 data->m = m;
3131 data->ni = ni;
3132
3133 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3134 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3135
3136 /* Fill TX descriptor. */
3137 desc->nsegs = 1 + data->map->dm_nsegs;
3138 /* First DMA segment is used by the TX command. */
3139 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3140 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3141 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3142 /* Other DMA segments are for data payload. */
3143 seg = data->map->dm_segs;
3144 for (i = 1; i <= data->map->dm_nsegs; i++) {
3145 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3146 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3147 seg->ds_len << 4);
3148 seg++;
3149 }
3150
3151 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3152 BUS_DMASYNC_PREWRITE);
3153 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3154 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3155 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3156 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3157 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3158 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3159
3160 #ifdef notyet
3161 /* Update TX scheduler. */
3162 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3163 #endif
3164
3165 /* Kick TX ring. */
3166 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3167 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3168
3169 /* Mark TX ring as full if we reach a certain threshold. */
3170 if (++ring->queued > IWN_TX_RING_HIMARK)
3171 sc->qfullmsk |= 1 << ring->qid;
3172
3173 return 0;
3174 }
3175
3176 static void
3177 iwn_start(struct ifnet *ifp)
3178 {
3179 struct iwn_softc *sc = ifp->if_softc;
3180 struct ieee80211com *ic = &sc->sc_ic;
3181 struct ieee80211_node *ni;
3182 struct ether_header *eh;
3183 struct mbuf *m;
3184 int ac;
3185
3186 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3187 return;
3188
3189 for (;;) {
3190 if (sc->sc_beacon_wait == 1) {
3191 ifp->if_flags |= IFF_OACTIVE;
3192 break;
3193 }
3194
3195 if (sc->qfullmsk != 0) {
3196 ifp->if_flags |= IFF_OACTIVE;
3197 break;
3198 }
3199 /* Send pending management frames first. */
3200 IF_DEQUEUE(&ic->ic_mgtq, m);
3201 if (m != NULL) {
3202 ni = M_GETCTX(m, struct ieee80211_node *);
3203 ac = 0;
3204 goto sendit;
3205 }
3206 if (ic->ic_state != IEEE80211_S_RUN)
3207 break;
3208
3209 /* Encapsulate and send data frames. */
3210 IFQ_DEQUEUE(&ifp->if_snd, m);
3211 if (m == NULL)
3212 break;
3213 if (m->m_len < sizeof (*eh) &&
3214 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3215 ifp->if_oerrors++;
3216 continue;
3217 }
3218 eh = mtod(m, struct ether_header *);
3219 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3220 if (ni == NULL) {
3221 m_freem(m);
3222 ifp->if_oerrors++;
3223 continue;
3224 }
3225 /* classify mbuf so we can find which tx ring to use */
3226 if (ieee80211_classify(ic, m, ni) != 0) {
3227 m_freem(m);
3228 ieee80211_free_node(ni);
3229 ifp->if_oerrors++;
3230 continue;
3231 }
3232
3233 /* No QoS encapsulation for EAPOL frames. */
3234 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3235 M_WME_GETAC(m) : WME_AC_BE;
3236
3237 if (sc->sc_beacon_wait == 0)
3238 bpf_mtap(ifp, m, BPF_D_OUT);
3239
3240 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3241 ieee80211_free_node(ni);
3242 ifp->if_oerrors++;
3243 continue;
3244 }
3245 sendit:
3246 if (sc->sc_beacon_wait)
3247 continue;
3248
3249 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3250
3251 if (iwn_tx(sc, m, ni, ac) != 0) {
3252 ieee80211_free_node(ni);
3253 ifp->if_oerrors++;
3254 continue;
3255 }
3256
3257 sc->sc_tx_timer = 5;
3258 ifp->if_timer = 1;
3259 }
3260
3261 if (sc->sc_beacon_wait > 1)
3262 sc->sc_beacon_wait = 0;
3263 }
3264
3265 static void
3266 iwn_watchdog(struct ifnet *ifp)
3267 {
3268 struct iwn_softc *sc = ifp->if_softc;
3269
3270 ifp->if_timer = 0;
3271
3272 if (sc->sc_tx_timer > 0) {
3273 if (--sc->sc_tx_timer == 0) {
3274 aprint_error_dev(sc->sc_dev,
3275 "device timeout\n");
3276 ifp->if_flags &= ~IFF_UP;
3277 iwn_stop(ifp, 1);
3278 ifp->if_oerrors++;
3279 return;
3280 }
3281 ifp->if_timer = 1;
3282 }
3283
3284 ieee80211_watchdog(&sc->sc_ic);
3285 }
3286
3287 static int
3288 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3289 {
3290 struct iwn_softc *sc = ifp->if_softc;
3291 struct ieee80211com *ic = &sc->sc_ic;
3292 const struct sockaddr *sa;
3293 int s, error = 0;
3294
3295 s = splnet();
3296
3297 switch (cmd) {
3298 case SIOCSIFADDR:
3299 ifp->if_flags |= IFF_UP;
3300 /* FALLTHROUGH */
3301 case SIOCSIFFLAGS:
3302 /* XXX Added as it is in every NetBSD driver */
3303 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3304 break;
3305 if (ifp->if_flags & IFF_UP) {
3306 if (!(ifp->if_flags & IFF_RUNNING))
3307 error = iwn_init(ifp);
3308 } else {
3309 if (ifp->if_flags & IFF_RUNNING)
3310 iwn_stop(ifp, 1);
3311 }
3312 break;
3313
3314 case SIOCADDMULTI:
3315 case SIOCDELMULTI:
3316 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3317 error = (cmd == SIOCADDMULTI) ?
3318 ether_addmulti(sa, &sc->sc_ec) :
3319 ether_delmulti(sa, &sc->sc_ec);
3320
3321 if (error == ENETRESET)
3322 error = 0;
3323 break;
3324
3325 default:
3326 error = ieee80211_ioctl(ic, cmd, data);
3327 }
3328
3329 if (error == ENETRESET) {
3330 error = 0;
3331 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3332 (IFF_UP | IFF_RUNNING)) {
3333 iwn_stop(ifp, 0);
3334 error = iwn_init(ifp);
3335 }
3336 }
3337
3338 splx(s);
3339 return error;
3340 }
3341
3342 /*
3343 * Send a command to the firmware.
3344 */
3345 static int
3346 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3347 {
3348 struct iwn_tx_ring *ring = &sc->txq[4];
3349 struct iwn_tx_desc *desc;
3350 struct iwn_tx_data *data;
3351 struct iwn_tx_cmd *cmd;
3352 struct mbuf *m;
3353 bus_addr_t paddr;
3354 int totlen, error;
3355
3356 desc = &ring->desc[ring->cur];
3357 data = &ring->data[ring->cur];
3358 totlen = 4 + size;
3359
3360 if (size > sizeof cmd->data) {
3361 /* Command is too large to fit in a descriptor. */
3362 if (totlen > MCLBYTES)
3363 return EINVAL;
3364 MGETHDR(m, M_DONTWAIT, MT_DATA);
3365 if (m == NULL)
3366 return ENOMEM;
3367 if (totlen > MHLEN) {
3368 MCLGET(m, M_DONTWAIT);
3369 if (!(m->m_flags & M_EXT)) {
3370 m_freem(m);
3371 return ENOMEM;
3372 }
3373 }
3374 cmd = mtod(m, struct iwn_tx_cmd *);
3375 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3376 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3377 if (error != 0) {
3378 m_freem(m);
3379 return error;
3380 }
3381 data->m = m;
3382 paddr = data->map->dm_segs[0].ds_addr;
3383 } else {
3384 cmd = &ring->cmd[ring->cur];
3385 paddr = data->cmd_paddr;
3386 }
3387
3388 cmd->code = code;
3389 cmd->flags = 0;
3390 cmd->qid = ring->qid;
3391 cmd->idx = ring->cur;
3392 /*
3393 * Coverity:[OUT_OF_BOUNDS]
3394 * false positive since, allocated in mbuf if it does not fit
3395 */
3396 memcpy(cmd->data, buf, size);
3397
3398 desc->nsegs = 1;
3399 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3400 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3401
3402 if (size > sizeof cmd->data) {
3403 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3404 BUS_DMASYNC_PREWRITE);
3405 } else {
3406 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3407 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3408 totlen, BUS_DMASYNC_PREWRITE);
3409 }
3410 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3411 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3412 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3413
3414 #ifdef notyet
3415 /* Update TX scheduler. */
3416 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3417 #endif
3418 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3419
3420 /* Kick command ring. */
3421 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3422 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3423
3424 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3425 }
3426
3427 static int
3428 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3429 {
3430 struct iwn4965_node_info hnode;
3431 char *src, *dst;
3432
3433 /*
3434 * We use the node structure for 5000 Series internally (it is
3435 * a superset of the one for 4965AGN). We thus copy the common
3436 * fields before sending the command.
3437 */
3438 src = (char *)node;
3439 dst = (char *)&hnode;
3440 memcpy(dst, src, 48);
3441 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3442 memcpy(dst + 48, src + 72, 20);
3443 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3444 }
3445
3446 static int
3447 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3448 {
3449 /* Direct mapping. */
3450 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3451 }
3452
3453 static int
3454 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3455 {
3456 struct iwn_node *wn = (void *)ni;
3457 struct ieee80211_rateset *rs = &ni->ni_rates;
3458 struct iwn_cmd_link_quality linkq;
3459 const struct iwn_rate *rinfo;
3460 uint8_t txant;
3461 int i, txrate;
3462
3463 /* Use the first valid TX antenna. */
3464 txant = IWN_LSB(sc->txchainmask);
3465
3466 memset(&linkq, 0, sizeof linkq);
3467 linkq.id = wn->id;
3468 linkq.antmsk_1stream = txant;
3469 linkq.antmsk_2stream = IWN_ANT_AB;
3470 linkq.ampdu_max = 31;
3471 linkq.ampdu_threshold = 3;
3472 linkq.ampdu_limit = htole16(4000); /* 4ms */
3473
3474 /* Start at highest available bit-rate. */
3475 txrate = rs->rs_nrates - 1;
3476 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3477 rinfo = &iwn_rates[wn->ridx[txrate]];
3478 linkq.retry[i].plcp = rinfo->plcp;
3479 linkq.retry[i].rflags = rinfo->flags;
3480 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3481 /* Next retry at immediate lower bit-rate. */
3482 if (txrate > 0)
3483 txrate--;
3484 }
3485 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3486 }
3487
3488 /*
3489 * Broadcast node is used to send group-addressed and management frames.
3490 */
3491 static int
3492 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3493 {
3494 struct iwn_ops *ops = &sc->ops;
3495 struct iwn_node_info node;
3496 struct iwn_cmd_link_quality linkq;
3497 const struct iwn_rate *rinfo;
3498 uint8_t txant;
3499 int i, error;
3500
3501 memset(&node, 0, sizeof node);
3502 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3503 node.id = sc->broadcast_id;
3504 DPRINTF(("adding broadcast node\n"));
3505 if ((error = ops->add_node(sc, &node, async)) != 0)
3506 return error;
3507
3508 /* Use the first valid TX antenna. */
3509 txant = IWN_LSB(sc->txchainmask);
3510
3511 memset(&linkq, 0, sizeof linkq);
3512 linkq.id = sc->broadcast_id;
3513 linkq.antmsk_1stream = txant;
3514 linkq.antmsk_2stream = IWN_ANT_AB;
3515 linkq.ampdu_max = 64;
3516 linkq.ampdu_threshold = 3;
3517 linkq.ampdu_limit = htole16(4000); /* 4ms */
3518
3519 /* Use lowest mandatory bit-rate. */
3520 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3521 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3522 linkq.retry[0].plcp = rinfo->plcp;
3523 linkq.retry[0].rflags = rinfo->flags;
3524 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3525 /* Use same bit-rate for all TX retries. */
3526 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3527 linkq.retry[i].plcp = linkq.retry[0].plcp;
3528 linkq.retry[i].rflags = linkq.retry[0].rflags;
3529 }
3530 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3531 }
3532
3533 static void
3534 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3535 {
3536 struct iwn_cmd_led led;
3537
3538 /* Clear microcode LED ownership. */
3539 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3540
3541 led.which = which;
3542 led.unit = htole32(10000); /* on/off in unit of 100ms */
3543 led.off = off;
3544 led.on = on;
3545 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3546 }
3547
3548 /*
3549 * Set the critical temperature at which the firmware will stop the radio
3550 * and notify us.
3551 */
3552 static int
3553 iwn_set_critical_temp(struct iwn_softc *sc)
3554 {
3555 struct iwn_critical_temp crit;
3556 int32_t temp;
3557
3558 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3559
3560 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3561 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3562 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3563 temp = IWN_CTOK(110);
3564 else
3565 temp = 110;
3566 memset(&crit, 0, sizeof crit);
3567 crit.tempR = htole32(temp);
3568 DPRINTF(("setting critical temperature to %d\n", temp));
3569 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3570 }
3571
3572 static int
3573 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3574 {
3575 struct iwn_cmd_timing cmd;
3576 uint64_t val, mod;
3577
3578 memset(&cmd, 0, sizeof cmd);
3579 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3580 cmd.bintval = htole16(ni->ni_intval);
3581 cmd.lintval = htole16(10);
3582
3583 /* Compute remaining time until next beacon. */
3584 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3585 mod = le64toh(cmd.tstamp) % val;
3586 cmd.binitval = htole32((uint32_t)(val - mod));
3587
3588 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3589 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3590
3591 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3592 }
3593
3594 static void
3595 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3596 {
3597 /* Adjust TX power if need be (delta >= 3 degC). */
3598 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3599 if (abs(temp - sc->temp) >= 3) {
3600 /* Record temperature of last calibration. */
3601 sc->temp = temp;
3602 (void)iwn4965_set_txpower(sc, 1);
3603 }
3604 }
3605
3606 /*
3607 * Set TX power for current channel (each rate has its own power settings).
3608 * This function takes into account the regulatory information from EEPROM,
3609 * the current temperature and the current voltage.
3610 */
3611 static int
3612 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3613 {
3614 /* Fixed-point arithmetic division using a n-bit fractional part. */
3615 #define fdivround(a, b, n) \
3616 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3617 /* Linear interpolation. */
3618 #define interpolate(x, x1, y1, x2, y2, n) \
3619 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3620
3621 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3622 struct ieee80211com *ic = &sc->sc_ic;
3623 struct iwn_ucode_info *uc = &sc->ucode_info;
3624 struct ieee80211_channel *ch;
3625 struct iwn4965_cmd_txpower cmd;
3626 struct iwn4965_eeprom_chan_samples *chans;
3627 const uint8_t *rf_gain, *dsp_gain;
3628 int32_t vdiff, tdiff;
3629 int i, c, grp, maxpwr;
3630 uint8_t chan;
3631
3632 /* Retrieve current channel from last RXON. */
3633 chan = sc->rxon.chan;
3634 DPRINTF(("setting TX power for channel %d\n", chan));
3635 ch = &ic->ic_channels[chan];
3636
3637 memset(&cmd, 0, sizeof cmd);
3638 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3639 cmd.chan = chan;
3640
3641 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3642 maxpwr = sc->maxpwr5GHz;
3643 rf_gain = iwn4965_rf_gain_5ghz;
3644 dsp_gain = iwn4965_dsp_gain_5ghz;
3645 } else {
3646 maxpwr = sc->maxpwr2GHz;
3647 rf_gain = iwn4965_rf_gain_2ghz;
3648 dsp_gain = iwn4965_dsp_gain_2ghz;
3649 }
3650
3651 /* Compute voltage compensation. */
3652 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3653 if (vdiff > 0)
3654 vdiff *= 2;
3655 if (abs(vdiff) > 2)
3656 vdiff = 0;
3657 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3658 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3659
3660 /* Get channel attenuation group. */
3661 if (chan <= 20) /* 1-20 */
3662 grp = 4;
3663 else if (chan <= 43) /* 34-43 */
3664 grp = 0;
3665 else if (chan <= 70) /* 44-70 */
3666 grp = 1;
3667 else if (chan <= 124) /* 71-124 */
3668 grp = 2;
3669 else /* 125-200 */
3670 grp = 3;
3671 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3672
3673 /* Get channel sub-band. */
3674 for (i = 0; i < IWN_NBANDS; i++)
3675 if (sc->bands[i].lo != 0 &&
3676 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3677 break;
3678 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3679 return EINVAL;
3680 chans = sc->bands[i].chans;
3681 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3682
3683 for (c = 0; c < 2; c++) {
3684 uint8_t power, gain, temp;
3685 int maxchpwr, pwr, ridx, idx;
3686
3687 power = interpolate(chan,
3688 chans[0].num, chans[0].samples[c][1].power,
3689 chans[1].num, chans[1].samples[c][1].power, 1);
3690 gain = interpolate(chan,
3691 chans[0].num, chans[0].samples[c][1].gain,
3692 chans[1].num, chans[1].samples[c][1].gain, 1);
3693 temp = interpolate(chan,
3694 chans[0].num, chans[0].samples[c][1].temp,
3695 chans[1].num, chans[1].samples[c][1].temp, 1);
3696 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3697 c, power, gain, temp));
3698
3699 /* Compute temperature compensation. */
3700 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3701 DPRINTF(("temperature compensation=%d (current=%d, "
3702 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3703
3704 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3705 /* Convert dBm to half-dBm. */
3706 maxchpwr = sc->maxpwr[chan] * 2;
3707 if ((ridx / 8) & 1)
3708 maxchpwr -= 6; /* MIMO 2T: -3dB */
3709
3710 pwr = maxpwr;
3711
3712 /* Adjust TX power based on rate. */
3713 if ((ridx % 8) == 5)
3714 pwr -= 15; /* OFDM48: -7.5dB */
3715 else if ((ridx % 8) == 6)
3716 pwr -= 17; /* OFDM54: -8.5dB */
3717 else if ((ridx % 8) == 7)
3718 pwr -= 20; /* OFDM60: -10dB */
3719 else
3720 pwr -= 10; /* Others: -5dB */
3721
3722 /* Do not exceed channel max TX power. */
3723 if (pwr > maxchpwr)
3724 pwr = maxchpwr;
3725
3726 idx = gain - (pwr - power) - tdiff - vdiff;
3727 if ((ridx / 8) & 1) /* MIMO */
3728 idx += (int32_t)le32toh(uc->atten[grp][c]);
3729
3730 if (cmd.band == 0)
3731 idx += 9; /* 5GHz */
3732 if (ridx == IWN_RIDX_MAX)
3733 idx += 5; /* CCK */
3734
3735 /* Make sure idx stays in a valid range. */
3736 if (idx < 0)
3737 idx = 0;
3738 else if (idx > IWN4965_MAX_PWR_INDEX)
3739 idx = IWN4965_MAX_PWR_INDEX;
3740
3741 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3742 c, ridx, idx));
3743 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3744 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3745 }
3746 }
3747
3748 DPRINTF(("setting TX power for chan %d\n", chan));
3749 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3750
3751 #undef interpolate
3752 #undef fdivround
3753 }
3754
3755 static int
3756 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3757 {
3758 struct iwn5000_cmd_txpower cmd;
3759 int cmdid;
3760
3761 /*
3762 * TX power calibration is handled automatically by the firmware
3763 * for 5000 Series.
3764 */
3765 memset(&cmd, 0, sizeof cmd);
3766 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3767 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3768 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3769 DPRINTF(("setting TX power\n"));
3770 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3771 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3772 else
3773 cmdid = IWN_CMD_TXPOWER_DBM;
3774 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3775 }
3776
3777 /*
3778 * Retrieve the maximum RSSI (in dBm) among receivers.
3779 */
3780 static int
3781 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3782 {
3783 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3784 uint8_t mask, agc;
3785 int rssi;
3786
3787 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3788 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3789
3790 rssi = 0;
3791 if (mask & IWN_ANT_A)
3792 rssi = MAX(rssi, phy->rssi[0]);
3793 if (mask & IWN_ANT_B)
3794 rssi = MAX(rssi, phy->rssi[2]);
3795 if (mask & IWN_ANT_C)
3796 rssi = MAX(rssi, phy->rssi[4]);
3797
3798 return rssi - agc - IWN_RSSI_TO_DBM;
3799 }
3800
3801 static int
3802 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3803 {
3804 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3805 uint8_t agc;
3806 int rssi;
3807
3808 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3809
3810 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3811 le16toh(phy->rssi[1]) & 0xff);
3812 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3813
3814 return rssi - agc - IWN_RSSI_TO_DBM;
3815 }
3816
3817 /*
3818 * Retrieve the average noise (in dBm) among receivers.
3819 */
3820 static int
3821 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3822 {
3823 int i, total, nbant, noise;
3824
3825 total = nbant = 0;
3826 for (i = 0; i < 3; i++) {
3827 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3828 continue;
3829 total += noise;
3830 nbant++;
3831 }
3832 /* There should be at least one antenna but check anyway. */
3833 return (nbant == 0) ? -127 : (total / nbant) - 107;
3834 }
3835
3836 /*
3837 * Compute temperature (in degC) from last received statistics.
3838 */
3839 static int
3840 iwn4965_get_temperature(struct iwn_softc *sc)
3841 {
3842 struct iwn_ucode_info *uc = &sc->ucode_info;
3843 int32_t r1, r2, r3, r4, temp;
3844
3845 r1 = le32toh(uc->temp[0].chan20MHz);
3846 r2 = le32toh(uc->temp[1].chan20MHz);
3847 r3 = le32toh(uc->temp[2].chan20MHz);
3848 r4 = le32toh(sc->rawtemp);
3849
3850 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3851 return 0;
3852
3853 /* Sign-extend 23-bit R4 value to 32-bit. */
3854 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3855 /* Compute temperature in Kelvin. */
3856 temp = (259 * (r4 - r2)) / (r3 - r1);
3857 temp = (temp * 97) / 100 + 8;
3858
3859 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3860 return IWN_KTOC(temp);
3861 }
3862
3863 static int
3864 iwn5000_get_temperature(struct iwn_softc *sc)
3865 {
3866 int32_t temp;
3867
3868 /*
3869 * Temperature is not used by the driver for 5000 Series because
3870 * TX power calibration is handled by firmware. We export it to
3871 * users through the sensor framework though.
3872 */
3873 temp = le32toh(sc->rawtemp);
3874 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3875 temp = (temp / -5) + sc->temp_off;
3876 temp = IWN_KTOC(temp);
3877 }
3878 return temp;
3879 }
3880
3881 /*
3882 * Initialize sensitivity calibration state machine.
3883 */
3884 static int
3885 iwn_init_sensitivity(struct iwn_softc *sc)
3886 {
3887 struct iwn_ops *ops = &sc->ops;
3888 struct iwn_calib_state *calib = &sc->calib;
3889 uint32_t flags;
3890 int error;
3891
3892 /* Reset calibration state machine. */
3893 memset(calib, 0, sizeof (*calib));
3894 calib->state = IWN_CALIB_STATE_INIT;
3895 calib->cck_state = IWN_CCK_STATE_HIFA;
3896 /* Set initial correlation values. */
3897 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3898 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3899 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3900 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3901 calib->cck_x4 = 125;
3902 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3903 calib->energy_cck = sc->limits->energy_cck;
3904
3905 /* Write initial sensitivity. */
3906 if ((error = iwn_send_sensitivity(sc)) != 0)
3907 return error;
3908
3909 /* Write initial gains. */
3910 if ((error = ops->init_gains(sc)) != 0)
3911 return error;
3912
3913 /* Request statistics at each beacon interval. */
3914 flags = 0;
3915 DPRINTF(("sending request for statistics\n"));
3916 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3917 }
3918
3919 /*
3920 * Collect noise and RSSI statistics for the first 20 beacons received
3921 * after association and use them to determine connected antennas and
3922 * to set differential gains.
3923 */
3924 static void
3925 iwn_collect_noise(struct iwn_softc *sc,
3926 const struct iwn_rx_general_stats *stats)
3927 {
3928 struct iwn_ops *ops = &sc->ops;
3929 struct iwn_calib_state *calib = &sc->calib;
3930 uint32_t val;
3931 int i;
3932
3933 /* Accumulate RSSI and noise for all 3 antennas. */
3934 for (i = 0; i < 3; i++) {
3935 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3936 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3937 }
3938 /* NB: We update differential gains only once after 20 beacons. */
3939 if (++calib->nbeacons < 20)
3940 return;
3941
3942 /* Determine highest average RSSI. */
3943 val = MAX(calib->rssi[0], calib->rssi[1]);
3944 val = MAX(calib->rssi[2], val);
3945
3946 /* Determine which antennas are connected. */
3947 sc->chainmask = sc->rxchainmask;
3948 for (i = 0; i < 3; i++)
3949 if (val - calib->rssi[i] > 15 * 20)
3950 sc->chainmask &= ~(1 << i);
3951 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3952 sc->rxchainmask, sc->chainmask));
3953
3954 /* If none of the TX antennas are connected, keep at least one. */
3955 if ((sc->chainmask & sc->txchainmask) == 0)
3956 sc->chainmask |= IWN_LSB(sc->txchainmask);
3957
3958 (void)ops->set_gains(sc);
3959 calib->state = IWN_CALIB_STATE_RUN;
3960
3961 #ifdef notyet
3962 /* XXX Disable RX chains with no antennas connected. */
3963 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3964 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3965 #endif
3966
3967 /* Enable power-saving mode if requested by user. */
3968 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3969 (void)iwn_set_pslevel(sc, 0, 3, 1);
3970 }
3971
3972 static int
3973 iwn4965_init_gains(struct iwn_softc *sc)
3974 {
3975 struct iwn_phy_calib_gain cmd;
3976
3977 memset(&cmd, 0, sizeof cmd);
3978 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3979 /* Differential gains initially set to 0 for all 3 antennas. */
3980 DPRINTF(("setting initial differential gains\n"));
3981 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3982 }
3983
3984 static int
3985 iwn5000_init_gains(struct iwn_softc *sc)
3986 {
3987 struct iwn_phy_calib cmd;
3988
3989 memset(&cmd, 0, sizeof cmd);
3990 cmd.code = sc->reset_noise_gain;
3991 cmd.ngroups = 1;
3992 cmd.isvalid = 1;
3993 DPRINTF(("setting initial differential gains\n"));
3994 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3995 }
3996
3997 static int
3998 iwn4965_set_gains(struct iwn_softc *sc)
3999 {
4000 struct iwn_calib_state *calib = &sc->calib;
4001 struct iwn_phy_calib_gain cmd;
4002 int i, delta, noise;
4003
4004 /* Get minimal noise among connected antennas. */
4005 noise = INT_MAX; /* NB: There's at least one antenna. */
4006 for (i = 0; i < 3; i++)
4007 if (sc->chainmask & (1 << i))
4008 noise = MIN(calib->noise[i], noise);
4009
4010 memset(&cmd, 0, sizeof cmd);
4011 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4012 /* Set differential gains for connected antennas. */
4013 for (i = 0; i < 3; i++) {
4014 if (sc->chainmask & (1 << i)) {
4015 /* Compute attenuation (in unit of 1.5dB). */
4016 delta = (noise - (int32_t)calib->noise[i]) / 30;
4017 /* NB: delta <= 0 */
4018 /* Limit to [-4.5dB,0]. */
4019 cmd.gain[i] = MIN(abs(delta), 3);
4020 if (delta < 0)
4021 cmd.gain[i] |= 1 << 2; /* sign bit */
4022 }
4023 }
4024 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4025 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4026 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4027 }
4028
4029 static int
4030 iwn5000_set_gains(struct iwn_softc *sc)
4031 {
4032 struct iwn_calib_state *calib = &sc->calib;
4033 struct iwn_phy_calib_gain cmd;
4034 int i, ant, div, delta;
4035
4036 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4037 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4038
4039 memset(&cmd, 0, sizeof cmd);
4040 cmd.code = sc->noise_gain;
4041 cmd.ngroups = 1;
4042 cmd.isvalid = 1;
4043 /* Get first available RX antenna as referential. */
4044 ant = IWN_LSB(sc->rxchainmask);
4045 /* Set differential gains for other antennas. */
4046 for (i = ant + 1; i < 3; i++) {
4047 if (sc->chainmask & (1 << i)) {
4048 /* The delta is relative to antenna "ant". */
4049 delta = ((int32_t)calib->noise[ant] -
4050 (int32_t)calib->noise[i]) / div;
4051 /* Limit to [-4.5dB,+4.5dB]. */
4052 cmd.gain[i - 1] = MIN(abs(delta), 3);
4053 if (delta < 0)
4054 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4055 }
4056 }
4057 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4058 cmd.gain[0], cmd.gain[1], sc->chainmask));
4059 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4060 }
4061
4062 /*
4063 * Tune RF RX sensitivity based on the number of false alarms detected
4064 * during the last beacon period.
4065 */
4066 static void
4067 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4068 {
4069 #define inc(val, inc, max) \
4070 if ((val) < (max)) { \
4071 if ((val) < (max) - (inc)) \
4072 (val) += (inc); \
4073 else \
4074 (val) = (max); \
4075 needs_update = 1; \
4076 }
4077 #define dec(val, dec, min) \
4078 if ((val) > (min)) { \
4079 if ((val) > (min) + (dec)) \
4080 (val) -= (dec); \
4081 else \
4082 (val) = (min); \
4083 needs_update = 1; \
4084 }
4085
4086 const struct iwn_sensitivity_limits *limits = sc->limits;
4087 struct iwn_calib_state *calib = &sc->calib;
4088 uint32_t val, rxena, fa;
4089 uint32_t energy[3], energy_min;
4090 uint8_t noise[3], noise_ref;
4091 int i, needs_update = 0;
4092
4093 /* Check that we've been enabled long enough. */
4094 if ((rxena = le32toh(stats->general.load)) == 0)
4095 return;
4096
4097 /* Compute number of false alarms since last call for OFDM. */
4098 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4099 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4100 fa *= 200 * 1024; /* 200TU */
4101
4102 /* Save counters values for next call. */
4103 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4104 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4105
4106 if (fa > 50 * rxena) {
4107 /* High false alarm count, decrease sensitivity. */
4108 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4109 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4110 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4111 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4112 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4113
4114 } else if (fa < 5 * rxena) {
4115 /* Low false alarm count, increase sensitivity. */
4116 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4117 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4118 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4119 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4120 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4121 }
4122
4123 /* Compute maximum noise among 3 receivers. */
4124 for (i = 0; i < 3; i++)
4125 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4126 val = MAX(noise[0], noise[1]);
4127 val = MAX(noise[2], val);
4128 /* Insert it into our samples table. */
4129 calib->noise_samples[calib->cur_noise_sample] = val;
4130 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4131
4132 /* Compute maximum noise among last 20 samples. */
4133 noise_ref = calib->noise_samples[0];
4134 for (i = 1; i < 20; i++)
4135 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4136
4137 /* Compute maximum energy among 3 receivers. */
4138 for (i = 0; i < 3; i++)
4139 energy[i] = le32toh(stats->general.energy[i]);
4140 val = MIN(energy[0], energy[1]);
4141 val = MIN(energy[2], val);
4142 /* Insert it into our samples table. */
4143 calib->energy_samples[calib->cur_energy_sample] = val;
4144 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4145
4146 /* Compute minimum energy among last 10 samples. */
4147 energy_min = calib->energy_samples[0];
4148 for (i = 1; i < 10; i++)
4149 energy_min = MAX(energy_min, calib->energy_samples[i]);
4150 energy_min += 6;
4151
4152 /* Compute number of false alarms since last call for CCK. */
4153 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4154 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4155 fa *= 200 * 1024; /* 200TU */
4156
4157 /* Save counters values for next call. */
4158 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4159 calib->fa_cck = le32toh(stats->cck.fa);
4160
4161 if (fa > 50 * rxena) {
4162 /* High false alarm count, decrease sensitivity. */
4163 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4164 calib->cck_state = IWN_CCK_STATE_HIFA;
4165 calib->low_fa = 0;
4166
4167 if (calib->cck_x4 > 160) {
4168 calib->noise_ref = noise_ref;
4169 if (calib->energy_cck > 2)
4170 dec(calib->energy_cck, 2, energy_min);
4171 }
4172 if (calib->cck_x4 < 160) {
4173 calib->cck_x4 = 161;
4174 needs_update = 1;
4175 } else
4176 inc(calib->cck_x4, 3, limits->max_cck_x4);
4177
4178 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4179
4180 } else if (fa < 5 * rxena) {
4181 /* Low false alarm count, increase sensitivity. */
4182 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4183 calib->cck_state = IWN_CCK_STATE_LOFA;
4184 calib->low_fa++;
4185
4186 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4187 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4188 calib->low_fa > 100)) {
4189 inc(calib->energy_cck, 2, limits->min_energy_cck);
4190 dec(calib->cck_x4, 3, limits->min_cck_x4);
4191 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4192 }
4193 } else {
4194 /* Not worth to increase or decrease sensitivity. */
4195 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4196 calib->low_fa = 0;
4197 calib->noise_ref = noise_ref;
4198
4199 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4200 /* Previous interval had many false alarms. */
4201 dec(calib->energy_cck, 8, energy_min);
4202 }
4203 calib->cck_state = IWN_CCK_STATE_INIT;
4204 }
4205
4206 if (needs_update)
4207 (void)iwn_send_sensitivity(sc);
4208 #undef dec
4209 #undef inc
4210 }
4211
4212 static int
4213 iwn_send_sensitivity(struct iwn_softc *sc)
4214 {
4215 struct iwn_calib_state *calib = &sc->calib;
4216 struct iwn_enhanced_sensitivity_cmd cmd;
4217 int len;
4218
4219 memset(&cmd, 0, sizeof cmd);
4220 len = sizeof (struct iwn_sensitivity_cmd);
4221 cmd.which = IWN_SENSITIVITY_WORKTBL;
4222 /* OFDM modulation. */
4223 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4224 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4225 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4226 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4227 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4228 cmd.energy_ofdm_th = htole16(62);
4229 /* CCK modulation. */
4230 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4231 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4232 cmd.energy_cck = htole16(calib->energy_cck);
4233 /* Barker modulation: use default values. */
4234 cmd.corr_barker = htole16(190);
4235 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4236 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4237 goto send;
4238 /* Enhanced sensitivity settings. */
4239 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4240 cmd.ofdm_det_slope_mrc = htole16(668);
4241 cmd.ofdm_det_icept_mrc = htole16(4);
4242 cmd.ofdm_det_slope = htole16(486);
4243 cmd.ofdm_det_icept = htole16(37);
4244 cmd.cck_det_slope_mrc = htole16(853);
4245 cmd.cck_det_icept_mrc = htole16(4);
4246 cmd.cck_det_slope = htole16(476);
4247 cmd.cck_det_icept = htole16(99);
4248 send:
4249 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4250 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4251 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4252 calib->energy_cck));
4253 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4254 }
4255
4256 /*
4257 * Set STA mode power saving level (between 0 and 5).
4258 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4259 */
4260 static int
4261 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4262 {
4263 struct iwn_pmgt_cmd cmd;
4264 const struct iwn_pmgt *pmgt;
4265 uint32_t maxp, skip_dtim;
4266 pcireg_t reg;
4267 int i;
4268
4269 /* Select which PS parameters to use. */
4270 if (dtim <= 2)
4271 pmgt = &iwn_pmgt[0][level];
4272 else if (dtim <= 10)
4273 pmgt = &iwn_pmgt[1][level];
4274 else
4275 pmgt = &iwn_pmgt[2][level];
4276
4277 memset(&cmd, 0, sizeof cmd);
4278 if (level != 0) /* not CAM */
4279 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4280 if (level == 5)
4281 cmd.flags |= htole16(IWN_PS_FAST_PD);
4282 /* Retrieve PCIe Active State Power Management (ASPM). */
4283 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4284 sc->sc_cap_off + PCIE_LCSR);
4285 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4286 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4287 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4288 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4289
4290 if (dtim == 0) {
4291 dtim = 1;
4292 skip_dtim = 0;
4293 } else
4294 skip_dtim = pmgt->skip_dtim;
4295 if (skip_dtim != 0) {
4296 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4297 maxp = pmgt->intval[4];
4298 if (maxp == (uint32_t)-1)
4299 maxp = dtim * (skip_dtim + 1);
4300 else if (maxp > dtim)
4301 maxp = (maxp / dtim) * dtim;
4302 } else
4303 maxp = dtim;
4304 for (i = 0; i < 5; i++)
4305 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4306
4307 DPRINTF(("setting power saving level to %d\n", level));
4308 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4309 }
4310
4311 int
4312 iwn5000_runtime_calib(struct iwn_softc *sc)
4313 {
4314 struct iwn5000_calib_config cmd;
4315
4316 memset(&cmd, 0, sizeof cmd);
4317 cmd.ucode.once.enable = 0xffffffff;
4318 cmd.ucode.once.start = IWN5000_CALIB_DC;
4319 DPRINTF(("configuring runtime calibration\n"));
4320 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4321 }
4322
4323 static int
4324 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4325 {
4326 struct iwn_bluetooth bluetooth;
4327
4328 memset(&bluetooth, 0, sizeof bluetooth);
4329 bluetooth.flags = IWN_BT_COEX_ENABLE;
4330 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4331 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4332
4333 DPRINTF(("configuring bluetooth coexistence\n"));
4334 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4335 }
4336
4337 static int
4338 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4339 {
4340 uint8_t prio_table[16];
4341
4342 memset(&prio_table, 0, sizeof prio_table);
4343 prio_table[ 0] = 6; /* init calibration 1 */
4344 prio_table[ 1] = 7; /* init calibration 2 */
4345 prio_table[ 2] = 2; /* periodic calib low 1 */
4346 prio_table[ 3] = 3; /* periodic calib low 2 */
4347 prio_table[ 4] = 4; /* periodic calib high 1 */
4348 prio_table[ 5] = 5; /* periodic calib high 2 */
4349 prio_table[ 6] = 6; /* dtim */
4350 prio_table[ 7] = 8; /* scan52 */
4351 prio_table[ 8] = 10; /* scan24 */
4352
4353 DPRINTF(("sending priority lookup table\n"));
4354 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4355 &prio_table, sizeof prio_table, 0);
4356 }
4357
4358 static int
4359 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4360 size_t len)
4361 {
4362 struct iwn_btcoex_prot btprot;
4363 int error;
4364
4365 basic->bt.flags = IWN_BT_COEX_ENABLE;
4366 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4367 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4368 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4369 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4370 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4371 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4372 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4373 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4374 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4375 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4376 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4377 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4378 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4379 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4380 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4381 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4382 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4383 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4384 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4385 basic->reduce_txpower = 0; /* as not implemented */
4386 basic->valid = IWN_BT_ALL_VALID_MASK;
4387
4388 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4389 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4390 if (error != 0) {
4391 aprint_error_dev(sc->sc_dev,
4392 "could not configure advanced bluetooth coexistence\n");
4393 return error;
4394 }
4395
4396 error = iwn_config_bt_coex_prio_table(sc);
4397 if (error != 0) {
4398 aprint_error_dev(sc->sc_dev,
4399 "could not configure send BT priority table\n");
4400 return error;
4401 }
4402
4403 /* Force BT state machine change */
4404 memset(&btprot, 0, sizeof btprot);
4405 btprot.open = 1;
4406 btprot.type = 1;
4407 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4408 if (error != 0) {
4409 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4410 return error;
4411 }
4412
4413 btprot.open = 0;
4414 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4415 if (error != 0) {
4416 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4417 return error;
4418 }
4419 return 0;
4420 }
4421
4422 static int
4423 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4424 {
4425 struct iwn_bt_adv1 d;
4426
4427 memset(&d, 0, sizeof d);
4428 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4429 d.tx_prio_boost = 0;
4430 d.rx_prio_boost = 0;
4431 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4432 }
4433
4434 static int
4435 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4436 {
4437 struct iwn_bt_adv2 d;
4438
4439 memset(&d, 0, sizeof d);
4440 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4441 d.tx_prio_boost = 0;
4442 d.rx_prio_boost = 0;
4443 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4444 }
4445
4446 static int
4447 iwn_config(struct iwn_softc *sc)
4448 {
4449 struct iwn_ops *ops = &sc->ops;
4450 struct ieee80211com *ic = &sc->sc_ic;
4451 struct ifnet *ifp = ic->ic_ifp;
4452 uint32_t txmask;
4453 uint16_t rxchain;
4454 int error;
4455
4456 error = ops->config_bt_coex(sc);
4457 if (error != 0) {
4458 aprint_error_dev(sc->sc_dev,
4459 "could not configure bluetooth coexistence\n");
4460 return error;
4461 }
4462
4463 /* Set radio temperature sensor offset. */
4464 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4465 error = iwn6000_temp_offset_calib(sc);
4466 if (error != 0) {
4467 aprint_error_dev(sc->sc_dev,
4468 "could not set temperature offset\n");
4469 return error;
4470 }
4471 }
4472
4473 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4474 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4475 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4476 sc->hw_type == IWN_HW_REV_TYPE_105) {
4477 error = iwn2000_temp_offset_calib(sc);
4478 if (error != 0) {
4479 aprint_error_dev(sc->sc_dev,
4480 "could not set temperature offset\n");
4481 return error;
4482 }
4483 }
4484
4485 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4486 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4487 /* Configure runtime DC calibration. */
4488 error = iwn5000_runtime_calib(sc);
4489 if (error != 0) {
4490 aprint_error_dev(sc->sc_dev,
4491 "could not configure runtime calibration\n");
4492 return error;
4493 }
4494 }
4495
4496 /* Configure valid TX chains for 5000 Series. */
4497 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4498 txmask = htole32(sc->txchainmask);
4499 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4500 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4501 sizeof txmask, 0);
4502 if (error != 0) {
4503 aprint_error_dev(sc->sc_dev,
4504 "could not configure valid TX chains\n");
4505 return error;
4506 }
4507 }
4508
4509 /* Set mode, channel, RX filter and enable RX. */
4510 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4511 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4512 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4513 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4514 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4515 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4516 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4517 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4518 switch (ic->ic_opmode) {
4519 case IEEE80211_M_STA:
4520 sc->rxon.mode = IWN_MODE_STA;
4521 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4522 break;
4523 case IEEE80211_M_MONITOR:
4524 sc->rxon.mode = IWN_MODE_MONITOR;
4525 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4526 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4527 break;
4528 default:
4529 /* Should not get there. */
4530 break;
4531 }
4532 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4533 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4534 sc->rxon.ht_single_mask = 0xff;
4535 sc->rxon.ht_dual_mask = 0xff;
4536 sc->rxon.ht_triple_mask = 0xff;
4537 rxchain =
4538 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4539 IWN_RXCHAIN_MIMO_COUNT(2) |
4540 IWN_RXCHAIN_IDLE_COUNT(2);
4541 sc->rxon.rxchain = htole16(rxchain);
4542 DPRINTF(("setting configuration\n"));
4543 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4544 if (error != 0) {
4545 aprint_error_dev(sc->sc_dev,
4546 "RXON command failed\n");
4547 return error;
4548 }
4549
4550 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4551 aprint_error_dev(sc->sc_dev,
4552 "could not add broadcast node\n");
4553 return error;
4554 }
4555
4556 /* Configuration has changed, set TX power accordingly. */
4557 if ((error = ops->set_txpower(sc, 0)) != 0) {
4558 aprint_error_dev(sc->sc_dev,
4559 "could not set TX power\n");
4560 return error;
4561 }
4562
4563 if ((error = iwn_set_critical_temp(sc)) != 0) {
4564 aprint_error_dev(sc->sc_dev,
4565 "could not set critical temperature\n");
4566 return error;
4567 }
4568
4569 /* Set power saving level to CAM during initialization. */
4570 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4571 aprint_error_dev(sc->sc_dev,
4572 "could not set power saving level\n");
4573 return error;
4574 }
4575 return 0;
4576 }
4577
4578 static uint16_t
4579 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4580 uint8_t n_probes)
4581 {
4582 /* No channel? Default to 2GHz settings */
4583 if (flags & IEEE80211_CHAN_2GHZ)
4584 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4585 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4586
4587 /* 5GHz dwell time */
4588 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4589 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4590 }
4591
4592 /*
4593 * Limit the total dwell time to 85% of the beacon interval.
4594 *
4595 * Returns the dwell time in milliseconds.
4596 */
4597 static uint16_t
4598 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4599 {
4600 struct ieee80211com *ic = &sc->sc_ic;
4601 struct ieee80211_node *ni = ic->ic_bss;
4602 int bintval = 0;
4603
4604 /* bintval is in TU (1.024mS) */
4605 if (ni != NULL)
4606 bintval = ni->ni_intval;
4607
4608 /*
4609 * If it's non-zero, we should calculate the minimum of
4610 * it and the DWELL_BASE.
4611 *
4612 * XXX Yes, the math should take into account that bintval
4613 * is 1.024mS, not 1mS..
4614 */
4615 if (bintval > 0)
4616 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4617
4618 /* No association context? Default */
4619 return IWN_PASSIVE_DWELL_BASE;
4620 }
4621
4622 static uint16_t
4623 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4624 {
4625 uint16_t passive;
4626 if (flags & IEEE80211_CHAN_2GHZ)
4627 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4628 else
4629 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4630
4631 /* Clamp to the beacon interval if we're associated */
4632 return iwn_limit_dwell(sc, passive);
4633 }
4634
4635 static int
4636 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4637 {
4638 struct ieee80211com *ic = &sc->sc_ic;
4639 struct iwn_scan_hdr *hdr;
4640 struct iwn_cmd_data *tx;
4641 struct iwn_scan_essid *essid;
4642 struct iwn_scan_chan *chan;
4643 struct ieee80211_frame *wh;
4644 struct ieee80211_rateset *rs;
4645 struct ieee80211_channel *c;
4646 uint8_t *buf, *frm;
4647 uint16_t rxchain, dwell_active, dwell_passive;
4648 uint8_t txant;
4649 int buflen, error, is_active;
4650
4651 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4652 if (buf == NULL) {
4653 aprint_error_dev(sc->sc_dev,
4654 "could not allocate buffer for scan command\n");
4655 return ENOMEM;
4656 }
4657 hdr = (struct iwn_scan_hdr *)buf;
4658 /*
4659 * Move to the next channel if no frames are received within 10ms
4660 * after sending the probe request.
4661 */
4662 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4663 hdr->quiet_threshold = htole16(1); /* min # of packets */
4664
4665 /* Select antennas for scanning. */
4666 rxchain =
4667 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4668 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4669 IWN_RXCHAIN_DRIVER_FORCE;
4670 if ((flags & IEEE80211_CHAN_5GHZ) &&
4671 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4672 /* Ant A must be avoided in 5GHz because of an HW bug. */
4673 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4674 } else /* Use all available RX antennas. */
4675 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4676 hdr->rxchain = htole16(rxchain);
4677 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4678
4679 tx = (struct iwn_cmd_data *)(hdr + 1);
4680 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4681 tx->id = sc->broadcast_id;
4682 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4683
4684 if (flags & IEEE80211_CHAN_5GHZ) {
4685 hdr->crc_threshold = 0xffff;
4686 /* Send probe requests at 6Mbps. */
4687 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4688 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4689 } else {
4690 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4691 /* Send probe requests at 1Mbps. */
4692 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4693 tx->rflags = IWN_RFLAG_CCK;
4694 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4695 }
4696 /* Use the first valid TX antenna. */
4697 txant = IWN_LSB(sc->txchainmask);
4698 tx->rflags |= IWN_RFLAG_ANT(txant);
4699
4700 /*
4701 * Only do active scanning if we're announcing a probe request
4702 * for a given SSID (or more, if we ever add it to the driver.)
4703 */
4704 is_active = 0;
4705
4706 essid = (struct iwn_scan_essid *)(tx + 1);
4707 if (ic->ic_des_esslen != 0) {
4708 essid[0].id = IEEE80211_ELEMID_SSID;
4709 essid[0].len = ic->ic_des_esslen;
4710 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4711
4712 is_active = 1;
4713 }
4714 /*
4715 * Build a probe request frame. Most of the following code is a
4716 * copy & paste of what is done in net80211.
4717 */
4718 wh = (struct ieee80211_frame *)(essid + 20);
4719 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4720 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4721 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4722 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4723 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4724 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4725 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4726 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4727
4728 frm = (uint8_t *)(wh + 1);
4729 frm = ieee80211_add_ssid(frm, NULL, 0);
4730 frm = ieee80211_add_rates(frm, rs);
4731 #ifndef IEEE80211_NO_HT
4732 if (ic->ic_flags & IEEE80211_F_HTON)
4733 frm = ieee80211_add_htcaps(frm, ic);
4734 #endif
4735 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4736 frm = ieee80211_add_xrates(frm, rs);
4737
4738 /* Set length of probe request. */
4739 tx->len = htole16(frm - (uint8_t *)wh);
4740
4741
4742 /*
4743 * If active scanning is requested but a certain channel is
4744 * marked passive, we can do active scanning if we detect
4745 * transmissions.
4746 *
4747 * There is an issue with some firmware versions that triggers
4748 * a sysassert on a "good CRC threshold" of zero (== disabled),
4749 * on a radar channel even though this means that we should NOT
4750 * send probes.
4751 *
4752 * The "good CRC threshold" is the number of frames that we
4753 * need to receive during our dwell time on a channel before
4754 * sending out probes -- setting this to a huge value will
4755 * mean we never reach it, but at the same time work around
4756 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4757 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4758 *
4759 * This was fixed in later versions along with some other
4760 * scan changes, and the threshold behaves as a flag in those
4761 * versions.
4762 */
4763
4764 /*
4765 * If we're doing active scanning, set the crc_threshold
4766 * to a suitable value. This is different to active veruss
4767 * passive scanning depending upon the channel flags; the
4768 * firmware will obey that particular check for us.
4769 */
4770 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4771 hdr->crc_threshold = is_active ?
4772 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4773 else
4774 hdr->crc_threshold = is_active ?
4775 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4776
4777 chan = (struct iwn_scan_chan *)frm;
4778 for (c = &ic->ic_channels[1];
4779 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4780 if ((c->ic_flags & flags) != flags)
4781 continue;
4782
4783 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4784 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4785 chan->flags = 0;
4786 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4787 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4788 if (ic->ic_des_esslen != 0)
4789 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4790
4791 /*
4792 * Calculate the active/passive dwell times.
4793 */
4794
4795 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4796 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4797
4798 /* Make sure they're valid */
4799 if (dwell_passive <= dwell_active)
4800 dwell_passive = dwell_active + 1;
4801
4802 chan->active = htole16(dwell_active);
4803 chan->passive = htole16(dwell_passive);
4804
4805 chan->dsp_gain = 0x6e;
4806 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4807 chan->rf_gain = 0x3b;
4808 } else {
4809 chan->rf_gain = 0x28;
4810 }
4811 hdr->nchan++;
4812 chan++;
4813 }
4814
4815 buflen = (uint8_t *)chan - buf;
4816 hdr->len = htole16(buflen);
4817
4818 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4819 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4820 free(buf, M_DEVBUF);
4821 return error;
4822 }
4823
4824 static int
4825 iwn_auth(struct iwn_softc *sc)
4826 {
4827 struct iwn_ops *ops = &sc->ops;
4828 struct ieee80211com *ic = &sc->sc_ic;
4829 struct ieee80211_node *ni = ic->ic_bss;
4830 int error;
4831
4832 /* Update adapter configuration. */
4833 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4834 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4835 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4836 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4837 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4838 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4839 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4840 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4841 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4842 switch (ic->ic_curmode) {
4843 case IEEE80211_MODE_11A:
4844 sc->rxon.cck_mask = 0;
4845 sc->rxon.ofdm_mask = 0x15;
4846 break;
4847 case IEEE80211_MODE_11B:
4848 sc->rxon.cck_mask = 0x03;
4849 sc->rxon.ofdm_mask = 0;
4850 break;
4851 default: /* Assume 802.11b/g. */
4852 sc->rxon.cck_mask = 0x0f;
4853 sc->rxon.ofdm_mask = 0x15;
4854 }
4855 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4856 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4857 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4858 if (error != 0) {
4859 aprint_error_dev(sc->sc_dev,
4860 "RXON command failed\n");
4861 return error;
4862 }
4863
4864 /* Configuration has changed, set TX power accordingly. */
4865 if ((error = ops->set_txpower(sc, 1)) != 0) {
4866 aprint_error_dev(sc->sc_dev,
4867 "could not set TX power\n");
4868 return error;
4869 }
4870 /*
4871 * Reconfiguring RXON clears the firmware nodes table so we must
4872 * add the broadcast node again.
4873 */
4874 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4875 aprint_error_dev(sc->sc_dev,
4876 "could not add broadcast node\n");
4877 return error;
4878 }
4879 return 0;
4880 }
4881
4882 static int
4883 iwn_run(struct iwn_softc *sc)
4884 {
4885 struct iwn_ops *ops = &sc->ops;
4886 struct ieee80211com *ic = &sc->sc_ic;
4887 struct ieee80211_node *ni = ic->ic_bss;
4888 struct iwn_node_info node;
4889 int error;
4890
4891 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4892 /* Link LED blinks while monitoring. */
4893 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4894 return 0;
4895 }
4896 if ((error = iwn_set_timing(sc, ni)) != 0) {
4897 aprint_error_dev(sc->sc_dev,
4898 "could not set timing\n");
4899 return error;
4900 }
4901
4902 /* Update adapter configuration. */
4903 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4904 /* Short preamble and slot time are negotiated when associating. */
4905 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4906 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4907 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4908 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4909 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4910 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4911 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4912 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4913 if (error != 0) {
4914 aprint_error_dev(sc->sc_dev,
4915 "could not update configuration\n");
4916 return error;
4917 }
4918
4919 /* Configuration has changed, set TX power accordingly. */
4920 if ((error = ops->set_txpower(sc, 1)) != 0) {
4921 aprint_error_dev(sc->sc_dev,
4922 "could not set TX power\n");
4923 return error;
4924 }
4925
4926 /* Fake a join to initialize the TX rate. */
4927 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4928 iwn_newassoc(ni, 1);
4929
4930 /* Add BSS node. */
4931 memset(&node, 0, sizeof node);
4932 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4933 node.id = IWN_ID_BSS;
4934 #ifdef notyet
4935 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4936 IWN_AMDPU_DENSITY(5)); /* 2us */
4937 #endif
4938 DPRINTF(("adding BSS node\n"));
4939 error = ops->add_node(sc, &node, 1);
4940 if (error != 0) {
4941 aprint_error_dev(sc->sc_dev,
4942 "could not add BSS node\n");
4943 return error;
4944 }
4945 DPRINTF(("setting link quality for node %d\n", node.id));
4946 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4947 aprint_error_dev(sc->sc_dev,
4948 "could not setup link quality for node %d\n", node.id);
4949 return error;
4950 }
4951
4952 if ((error = iwn_init_sensitivity(sc)) != 0) {
4953 aprint_error_dev(sc->sc_dev,
4954 "could not set sensitivity\n");
4955 return error;
4956 }
4957 /* Start periodic calibration timer. */
4958 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4959 sc->calib_cnt = 0;
4960 callout_schedule(&sc->calib_to, hz/2);
4961
4962 /* Link LED always on while associated. */
4963 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4964 return 0;
4965 }
4966
4967 #ifdef IWN_HWCRYPTO
4968 /*
4969 * We support CCMP hardware encryption/decryption of unicast frames only.
4970 * HW support for TKIP really sucks. We should let TKIP die anyway.
4971 */
4972 static int
4973 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4974 struct ieee80211_key *k)
4975 {
4976 struct iwn_softc *sc = ic->ic_softc;
4977 struct iwn_ops *ops = &sc->ops;
4978 struct iwn_node *wn = (void *)ni;
4979 struct iwn_node_info node;
4980 uint16_t kflags;
4981
4982 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4983 k->k_cipher != IEEE80211_CIPHER_CCMP)
4984 return ieee80211_set_key(ic, ni, k);
4985
4986 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4987 if (k->k_flags & IEEE80211_KEY_GROUP)
4988 kflags |= IWN_KFLAG_GROUP;
4989
4990 memset(&node, 0, sizeof node);
4991 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4992 sc->broadcast_id : wn->id;
4993 node.control = IWN_NODE_UPDATE;
4994 node.flags = IWN_FLAG_SET_KEY;
4995 node.kflags = htole16(kflags);
4996 node.kid = k->k_id;
4997 memcpy(node.key, k->k_key, k->k_len);
4998 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
4999 return ops->add_node(sc, &node, 1);
5000 }
5001
5002 static void
5003 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5004 struct ieee80211_key *k)
5005 {
5006 struct iwn_softc *sc = ic->ic_softc;
5007 struct iwn_ops *ops = &sc->ops;
5008 struct iwn_node *wn = (void *)ni;
5009 struct iwn_node_info node;
5010
5011 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5012 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5013 /* See comment about other ciphers above. */
5014 ieee80211_delete_key(ic, ni, k);
5015 return;
5016 }
5017 if (ic->ic_state != IEEE80211_S_RUN)
5018 return; /* Nothing to do. */
5019 memset(&node, 0, sizeof node);
5020 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5021 sc->broadcast_id : wn->id;
5022 node.control = IWN_NODE_UPDATE;
5023 node.flags = IWN_FLAG_SET_KEY;
5024 node.kflags = htole16(IWN_KFLAG_INVALID);
5025 node.kid = 0xff;
5026 DPRINTF(("delete keys for node %d\n", node.id));
5027 (void)ops->add_node(sc, &node, 1);
5028 }
5029 #endif
5030
5031 /* XXX Added for NetBSD (copied from rev 1.39). */
5032
5033 static int
5034 iwn_wme_update(struct ieee80211com *ic)
5035 {
5036 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5037 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5038 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5039 const struct wmeParams *wmep;
5040 struct iwn_edca_params cmd;
5041 int ac;
5042
5043 /* don't override default WME values if WME is not actually enabled */
5044 if (!(ic->ic_flags & IEEE80211_F_WME))
5045 return 0;
5046 cmd.flags = 0;
5047 for (ac = 0; ac < WME_NUM_AC; ac++) {
5048 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5049 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5050 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5051 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5052 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5053
5054 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5055 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5056 cmd.ac[ac].cwmin,
5057 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5058 }
5059 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5060 #undef IWN_USEC
5061 #undef IWN_EXP2
5062 }
5063
5064 #ifndef IEEE80211_NO_HT
5065 /*
5066 * This function is called by upper layer when an ADDBA request is received
5067 * from another STA and before the ADDBA response is sent.
5068 */
5069 static int
5070 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5071 uint8_t tid)
5072 {
5073 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5074 struct iwn_softc *sc = ic->ic_softc;
5075 struct iwn_ops *ops = &sc->ops;
5076 struct iwn_node *wn = (void *)ni;
5077 struct iwn_node_info node;
5078
5079 memset(&node, 0, sizeof node);
5080 node.id = wn->id;
5081 node.control = IWN_NODE_UPDATE;
5082 node.flags = IWN_FLAG_SET_ADDBA;
5083 node.addba_tid = tid;
5084 node.addba_ssn = htole16(ba->ba_winstart);
5085 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5086 ba->ba_winstart));
5087 return ops->add_node(sc, &node, 1);
5088 }
5089
5090 /*
5091 * This function is called by upper layer on teardown of an HT-immediate
5092 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5093 */
5094 static void
5095 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5096 uint8_t tid)
5097 {
5098 struct iwn_softc *sc = ic->ic_softc;
5099 struct iwn_ops *ops = &sc->ops;
5100 struct iwn_node *wn = (void *)ni;
5101 struct iwn_node_info node;
5102
5103 memset(&node, 0, sizeof node);
5104 node.id = wn->id;
5105 node.control = IWN_NODE_UPDATE;
5106 node.flags = IWN_FLAG_SET_DELBA;
5107 node.delba_tid = tid;
5108 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5109 (void)ops->add_node(sc, &node, 1);
5110 }
5111
5112 /*
5113 * This function is called by upper layer when an ADDBA response is received
5114 * from another STA.
5115 */
5116 static int
5117 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5118 uint8_t tid)
5119 {
5120 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5121 struct iwn_softc *sc = ic->ic_softc;
5122 struct iwn_ops *ops = &sc->ops;
5123 struct iwn_node *wn = (void *)ni;
5124 struct iwn_node_info node;
5125 int error;
5126
5127 /* Enable TX for the specified RA/TID. */
5128 wn->disable_tid &= ~(1 << tid);
5129 memset(&node, 0, sizeof node);
5130 node.id = wn->id;
5131 node.control = IWN_NODE_UPDATE;
5132 node.flags = IWN_FLAG_SET_DISABLE_TID;
5133 node.disable_tid = htole16(wn->disable_tid);
5134 error = ops->add_node(sc, &node, 1);
5135 if (error != 0)
5136 return error;
5137
5138 if ((error = iwn_nic_lock(sc)) != 0)
5139 return error;
5140 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5141 iwn_nic_unlock(sc);
5142 return 0;
5143 }
5144
5145 static void
5146 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5147 uint8_t tid)
5148 {
5149 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5150 struct iwn_softc *sc = ic->ic_softc;
5151 struct iwn_ops *ops = &sc->ops;
5152
5153 if (iwn_nic_lock(sc) != 0)
5154 return;
5155 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5156 iwn_nic_unlock(sc);
5157 }
5158
5159 static void
5160 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5161 uint8_t tid, uint16_t ssn)
5162 {
5163 struct iwn_node *wn = (void *)ni;
5164 int qid = 7 + tid;
5165
5166 /* Stop TX scheduler while we're changing its configuration. */
5167 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5168 IWN4965_TXQ_STATUS_CHGACT);
5169
5170 /* Assign RA/TID translation to the queue. */
5171 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5172 wn->id << 4 | tid);
5173
5174 /* Enable chain-building mode for the queue. */
5175 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5176
5177 /* Set starting sequence number from the ADDBA request. */
5178 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5179 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5180
5181 /* Set scheduler window size. */
5182 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5183 IWN_SCHED_WINSZ);
5184 /* Set scheduler frame limit. */
5185 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5186 IWN_SCHED_LIMIT << 16);
5187
5188 /* Enable interrupts for the queue. */
5189 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5190
5191 /* Mark the queue as active. */
5192 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5193 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5194 iwn_tid2fifo[tid] << 1);
5195 }
5196
5197 static void
5198 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5199 {
5200 int qid = 7 + tid;
5201
5202 /* Stop TX scheduler while we're changing its configuration. */
5203 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5204 IWN4965_TXQ_STATUS_CHGACT);
5205
5206 /* Set starting sequence number from the ADDBA request. */
5207 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5208 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5209
5210 /* Disable interrupts for the queue. */
5211 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5212
5213 /* Mark the queue as inactive. */
5214 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5215 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5216 }
5217
5218 static void
5219 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5220 uint8_t tid, uint16_t ssn)
5221 {
5222 struct iwn_node *wn = (void *)ni;
5223 int qid = 10 + tid;
5224
5225 /* Stop TX scheduler while we're changing its configuration. */
5226 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5227 IWN5000_TXQ_STATUS_CHGACT);
5228
5229 /* Assign RA/TID translation to the queue. */
5230 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5231 wn->id << 4 | tid);
5232
5233 /* Enable chain-building mode for the queue. */
5234 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5235
5236 /* Enable aggregation for the queue. */
5237 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5238
5239 /* Set starting sequence number from the ADDBA request. */
5240 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5241 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5242
5243 /* Set scheduler window size and frame limit. */
5244 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5245 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5246
5247 /* Enable interrupts for the queue. */
5248 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5249
5250 /* Mark the queue as active. */
5251 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5252 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5253 }
5254
5255 static void
5256 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5257 {
5258 int qid = 10 + tid;
5259
5260 /* Stop TX scheduler while we're changing its configuration. */
5261 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5262 IWN5000_TXQ_STATUS_CHGACT);
5263
5264 /* Disable aggregation for the queue. */
5265 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5266
5267 /* Set starting sequence number from the ADDBA request. */
5268 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5269 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5270
5271 /* Disable interrupts for the queue. */
5272 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5273
5274 /* Mark the queue as inactive. */
5275 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5276 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5277 }
5278 #endif /* !IEEE80211_NO_HT */
5279
5280 /*
5281 * Query calibration tables from the initialization firmware. We do this
5282 * only once at first boot. Called from a process context.
5283 */
5284 static int
5285 iwn5000_query_calibration(struct iwn_softc *sc)
5286 {
5287 struct iwn5000_calib_config cmd;
5288 int error;
5289
5290 memset(&cmd, 0, sizeof cmd);
5291 cmd.ucode.once.enable = 0xffffffff;
5292 cmd.ucode.once.start = 0xffffffff;
5293 cmd.ucode.once.send = 0xffffffff;
5294 cmd.ucode.flags = 0xffffffff;
5295 DPRINTF(("sending calibration query\n"));
5296 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5297 if (error != 0)
5298 return error;
5299
5300 /* Wait at most two seconds for calibration to complete. */
5301 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5302 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5303 return error;
5304 }
5305
5306 /*
5307 * Send calibration results to the runtime firmware. These results were
5308 * obtained on first boot from the initialization firmware.
5309 */
5310 static int
5311 iwn5000_send_calibration(struct iwn_softc *sc)
5312 {
5313 int idx, error;
5314
5315 for (idx = 0; idx < 5; idx++) {
5316 if (sc->calibcmd[idx].buf == NULL)
5317 continue; /* No results available. */
5318 DPRINTF(("send calibration result idx=%d len=%d\n",
5319 idx, sc->calibcmd[idx].len));
5320 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5321 sc->calibcmd[idx].len, 0);
5322 if (error != 0) {
5323 aprint_error_dev(sc->sc_dev,
5324 "could not send calibration result\n");
5325 return error;
5326 }
5327 }
5328 return 0;
5329 }
5330
5331 static int
5332 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5333 {
5334 struct iwn5000_wimax_coex wimax;
5335
5336 #ifdef notyet
5337 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5338 /* Enable WiMAX coexistence for combo adapters. */
5339 wimax.flags =
5340 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5341 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5342 IWN_WIMAX_COEX_STA_TABLE_VALID |
5343 IWN_WIMAX_COEX_ENABLE;
5344 memcpy(wimax.events, iwn6050_wimax_events,
5345 sizeof iwn6050_wimax_events);
5346 } else
5347 #endif
5348 {
5349 /* Disable WiMAX coexistence. */
5350 wimax.flags = 0;
5351 memset(wimax.events, 0, sizeof wimax.events);
5352 }
5353 DPRINTF(("Configuring WiMAX coexistence\n"));
5354 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5355 }
5356
5357 static int
5358 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5359 {
5360 struct iwn6000_phy_calib_temp_offset cmd;
5361
5362 memset(&cmd, 0, sizeof cmd);
5363 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5364 cmd.ngroups = 1;
5365 cmd.isvalid = 1;
5366 if (sc->eeprom_temp != 0)
5367 cmd.offset = htole16(sc->eeprom_temp);
5368 else
5369 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5370 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5371 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5372 }
5373
5374 static int
5375 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5376 {
5377 struct iwn2000_phy_calib_temp_offset cmd;
5378
5379 memset(&cmd, 0, sizeof cmd);
5380 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5381 cmd.ngroups = 1;
5382 cmd.isvalid = 1;
5383 if (sc->eeprom_rawtemp != 0) {
5384 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5385 cmd.offset_high = htole16(sc->eeprom_temp);
5386 } else {
5387 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5388 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5389 }
5390 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5391 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5392 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5393 le16toh(cmd.burnt_voltage_ref)));
5394 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5395 }
5396
5397 /*
5398 * This function is called after the runtime firmware notifies us of its
5399 * readiness (called in a process context).
5400 */
5401 static int
5402 iwn4965_post_alive(struct iwn_softc *sc)
5403 {
5404 int error, qid;
5405
5406 if ((error = iwn_nic_lock(sc)) != 0)
5407 return error;
5408
5409 /* Clear TX scheduler state in SRAM. */
5410 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5411 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5412 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5413
5414 /* Set physical address of TX scheduler rings (1KB aligned). */
5415 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5416
5417 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5418
5419 /* Disable chain mode for all our 16 queues. */
5420 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5421
5422 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5423 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5424 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5425
5426 /* Set scheduler window size. */
5427 iwn_mem_write(sc, sc->sched_base +
5428 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5429 /* Set scheduler frame limit. */
5430 iwn_mem_write(sc, sc->sched_base +
5431 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5432 IWN_SCHED_LIMIT << 16);
5433 }
5434
5435 /* Enable interrupts for all our 16 queues. */
5436 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5437 /* Identify TX FIFO rings (0-7). */
5438 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5439
5440 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5441 for (qid = 0; qid < 7; qid++) {
5442 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5443 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5444 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5445 }
5446 iwn_nic_unlock(sc);
5447 return 0;
5448 }
5449
5450 /*
5451 * This function is called after the initialization or runtime firmware
5452 * notifies us of its readiness (called in a process context).
5453 */
5454 static int
5455 iwn5000_post_alive(struct iwn_softc *sc)
5456 {
5457 int error, qid;
5458
5459 /* Switch to using ICT interrupt mode. */
5460 iwn5000_ict_reset(sc);
5461
5462 if ((error = iwn_nic_lock(sc)) != 0)
5463 return error;
5464
5465 /* Clear TX scheduler state in SRAM. */
5466 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5467 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5468 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5469
5470 /* Set physical address of TX scheduler rings (1KB aligned). */
5471 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5472
5473 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5474
5475 /* Enable chain mode for all queues, except command queue. */
5476 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5477 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5478
5479 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5480 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5481 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5482
5483 iwn_mem_write(sc, sc->sched_base +
5484 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5485 /* Set scheduler window size and frame limit. */
5486 iwn_mem_write(sc, sc->sched_base +
5487 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5488 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5489 }
5490
5491 /* Enable interrupts for all our 20 queues. */
5492 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5493 /* Identify TX FIFO rings (0-7). */
5494 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5495
5496 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5497 for (qid = 0; qid < 7; qid++) {
5498 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5499 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5500 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5501 }
5502 iwn_nic_unlock(sc);
5503
5504 /* Configure WiMAX coexistence for combo adapters. */
5505 error = iwn5000_send_wimax_coex(sc);
5506 if (error != 0) {
5507 aprint_error_dev(sc->sc_dev,
5508 "could not configure WiMAX coexistence\n");
5509 return error;
5510 }
5511 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5512 struct iwn5000_phy_calib_crystal cmd;
5513
5514 /* Perform crystal calibration. */
5515 memset(&cmd, 0, sizeof cmd);
5516 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5517 cmd.ngroups = 1;
5518 cmd.isvalid = 1;
5519 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5520 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5521 DPRINTF(("sending crystal calibration %d, %d\n",
5522 cmd.cap_pin[0], cmd.cap_pin[1]));
5523 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5524 if (error != 0) {
5525 aprint_error_dev(sc->sc_dev,
5526 "crystal calibration failed\n");
5527 return error;
5528 }
5529 }
5530 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5531 /* Query calibration from the initialization firmware. */
5532 if ((error = iwn5000_query_calibration(sc)) != 0) {
5533 aprint_error_dev(sc->sc_dev,
5534 "could not query calibration\n");
5535 return error;
5536 }
5537 /*
5538 * We have the calibration results now, reboot with the
5539 * runtime firmware (call ourselves recursively!)
5540 */
5541 iwn_hw_stop(sc);
5542 error = iwn_hw_init(sc);
5543 } else {
5544 /* Send calibration results to runtime firmware. */
5545 error = iwn5000_send_calibration(sc);
5546 }
5547 return error;
5548 }
5549
5550 /*
5551 * The firmware boot code is small and is intended to be copied directly into
5552 * the NIC internal memory (no DMA transfer).
5553 */
5554 static int
5555 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5556 {
5557 int error, ntries;
5558
5559 size /= sizeof (uint32_t);
5560
5561 if ((error = iwn_nic_lock(sc)) != 0)
5562 return error;
5563
5564 /* Copy microcode image into NIC memory. */
5565 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5566 (const uint32_t *)ucode, size);
5567
5568 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5569 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5570 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5571
5572 /* Start boot load now. */
5573 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5574
5575 /* Wait for transfer to complete. */
5576 for (ntries = 0; ntries < 1000; ntries++) {
5577 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5578 IWN_BSM_WR_CTRL_START))
5579 break;
5580 DELAY(10);
5581 }
5582 if (ntries == 1000) {
5583 aprint_error_dev(sc->sc_dev,
5584 "could not load boot firmware\n");
5585 iwn_nic_unlock(sc);
5586 return ETIMEDOUT;
5587 }
5588
5589 /* Enable boot after power up. */
5590 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5591
5592 iwn_nic_unlock(sc);
5593 return 0;
5594 }
5595
5596 static int
5597 iwn4965_load_firmware(struct iwn_softc *sc)
5598 {
5599 struct iwn_fw_info *fw = &sc->fw;
5600 struct iwn_dma_info *dma = &sc->fw_dma;
5601 int error;
5602
5603 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5604 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5605 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5606 BUS_DMASYNC_PREWRITE);
5607 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5608 fw->init.text, fw->init.textsz);
5609 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5610 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5611
5612 /* Tell adapter where to find initialization sections. */
5613 if ((error = iwn_nic_lock(sc)) != 0)
5614 return error;
5615 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5616 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5617 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5618 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5619 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5620 iwn_nic_unlock(sc);
5621
5622 /* Load firmware boot code. */
5623 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5624 if (error != 0) {
5625 aprint_error_dev(sc->sc_dev,
5626 "could not load boot firmware\n");
5627 return error;
5628 }
5629 /* Now press "execute". */
5630 IWN_WRITE(sc, IWN_RESET, 0);
5631
5632 /* Wait at most one second for first alive notification. */
5633 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5634 aprint_error_dev(sc->sc_dev,
5635 "timeout waiting for adapter to initialize\n");
5636 return error;
5637 }
5638
5639 /* Retrieve current temperature for initial TX power calibration. */
5640 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5641 sc->temp = iwn4965_get_temperature(sc);
5642
5643 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5644 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5645 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5646 BUS_DMASYNC_PREWRITE);
5647 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5648 fw->main.text, fw->main.textsz);
5649 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5650 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5651
5652 /* Tell adapter where to find runtime sections. */
5653 if ((error = iwn_nic_lock(sc)) != 0)
5654 return error;
5655 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5656 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5657 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5658 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5659 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5660 IWN_FW_UPDATED | fw->main.textsz);
5661 iwn_nic_unlock(sc);
5662
5663 return 0;
5664 }
5665
5666 static int
5667 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5668 const uint8_t *section, int size)
5669 {
5670 struct iwn_dma_info *dma = &sc->fw_dma;
5671 int error;
5672
5673 /* Copy firmware section into pre-allocated DMA-safe memory. */
5674 memcpy(dma->vaddr, section, size);
5675 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5676
5677 if ((error = iwn_nic_lock(sc)) != 0)
5678 return error;
5679
5680 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5681 IWN_FH_TX_CONFIG_DMA_PAUSE);
5682
5683 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5684 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5685 IWN_LOADDR(dma->paddr));
5686 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5687 IWN_HIADDR(dma->paddr) << 28 | size);
5688 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5689 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5690 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5691 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5692
5693 /* Kick Flow Handler to start DMA transfer. */
5694 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5695 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5696
5697 iwn_nic_unlock(sc);
5698
5699 /* Wait at most five seconds for FH DMA transfer to complete. */
5700 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5701 }
5702
5703 static int
5704 iwn5000_load_firmware(struct iwn_softc *sc)
5705 {
5706 struct iwn_fw_part *fw;
5707 int error;
5708
5709 /* Load the initialization firmware on first boot only. */
5710 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5711 &sc->fw.main : &sc->fw.init;
5712
5713 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5714 fw->text, fw->textsz);
5715 if (error != 0) {
5716 aprint_error_dev(sc->sc_dev,
5717 "could not load firmware %s section\n", ".text");
5718 return error;
5719 }
5720 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5721 fw->data, fw->datasz);
5722 if (error != 0) {
5723 aprint_error_dev(sc->sc_dev,
5724 "could not load firmware %s section\n", ".data");
5725 return error;
5726 }
5727
5728 /* Now press "execute". */
5729 IWN_WRITE(sc, IWN_RESET, 0);
5730 return 0;
5731 }
5732
5733 /*
5734 * Extract text and data sections from a legacy firmware image.
5735 */
5736 static int
5737 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5738 {
5739 const uint32_t *ptr;
5740 size_t hdrlen = 24;
5741 uint32_t rev;
5742
5743 ptr = (const uint32_t *)fw->data;
5744 rev = le32toh(*ptr++);
5745
5746 sc->ucode_rev = rev;
5747
5748 /* Check firmware API version. */
5749 if (IWN_FW_API(rev) <= 1) {
5750 aprint_error_dev(sc->sc_dev,
5751 "bad firmware, need API version >=2\n");
5752 return EINVAL;
5753 }
5754 if (IWN_FW_API(rev) >= 3) {
5755 /* Skip build number (version 2 header). */
5756 hdrlen += 4;
5757 ptr++;
5758 }
5759 if (fw->size < hdrlen) {
5760 aprint_error_dev(sc->sc_dev,
5761 "firmware too short: %zd bytes\n", fw->size);
5762 return EINVAL;
5763 }
5764 fw->main.textsz = le32toh(*ptr++);
5765 fw->main.datasz = le32toh(*ptr++);
5766 fw->init.textsz = le32toh(*ptr++);
5767 fw->init.datasz = le32toh(*ptr++);
5768 fw->boot.textsz = le32toh(*ptr++);
5769
5770 /* Check that all firmware sections fit. */
5771 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5772 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5773 aprint_error_dev(sc->sc_dev,
5774 "firmware too short: %zd bytes\n", fw->size);
5775 return EINVAL;
5776 }
5777
5778 /* Get pointers to firmware sections. */
5779 fw->main.text = (const uint8_t *)ptr;
5780 fw->main.data = fw->main.text + fw->main.textsz;
5781 fw->init.text = fw->main.data + fw->main.datasz;
5782 fw->init.data = fw->init.text + fw->init.textsz;
5783 fw->boot.text = fw->init.data + fw->init.datasz;
5784 return 0;
5785 }
5786
5787 /*
5788 * Extract text and data sections from a TLV firmware image.
5789 */
5790 static int
5791 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5792 uint16_t alt)
5793 {
5794 const struct iwn_fw_tlv_hdr *hdr;
5795 const struct iwn_fw_tlv *tlv;
5796 const uint8_t *ptr, *end;
5797 uint64_t altmask;
5798 uint32_t len;
5799
5800 if (fw->size < sizeof (*hdr)) {
5801 aprint_error_dev(sc->sc_dev,
5802 "firmware too short: %zd bytes\n", fw->size);
5803 return EINVAL;
5804 }
5805 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5806 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5807 aprint_error_dev(sc->sc_dev,
5808 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5809 return EINVAL;
5810 }
5811 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5812 le32toh(hdr->build)));
5813 sc->ucode_rev = le32toh(hdr->rev);
5814
5815 /*
5816 * Select the closest supported alternative that is less than
5817 * or equal to the specified one.
5818 */
5819 altmask = le64toh(hdr->altmask);
5820 while (alt > 0 && !(altmask & (1ULL << alt)))
5821 alt--; /* Downgrade. */
5822 DPRINTF(("using alternative %d\n", alt));
5823
5824 ptr = (const uint8_t *)(hdr + 1);
5825 end = (const uint8_t *)(fw->data + fw->size);
5826
5827 /* Parse type-length-value fields. */
5828 while (ptr + sizeof (*tlv) <= end) {
5829 tlv = (const struct iwn_fw_tlv *)ptr;
5830 len = le32toh(tlv->len);
5831
5832 ptr += sizeof (*tlv);
5833 if (ptr + len > end) {
5834 aprint_error_dev(sc->sc_dev,
5835 "firmware too short: %zd bytes\n", fw->size);
5836 return EINVAL;
5837 }
5838 /* Skip other alternatives. */
5839 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5840 goto next;
5841
5842 switch (le16toh(tlv->type)) {
5843 case IWN_FW_TLV_MAIN_TEXT:
5844 fw->main.text = ptr;
5845 fw->main.textsz = len;
5846 break;
5847 case IWN_FW_TLV_MAIN_DATA:
5848 fw->main.data = ptr;
5849 fw->main.datasz = len;
5850 break;
5851 case IWN_FW_TLV_INIT_TEXT:
5852 fw->init.text = ptr;
5853 fw->init.textsz = len;
5854 break;
5855 case IWN_FW_TLV_INIT_DATA:
5856 fw->init.data = ptr;
5857 fw->init.datasz = len;
5858 break;
5859 case IWN_FW_TLV_BOOT_TEXT:
5860 fw->boot.text = ptr;
5861 fw->boot.textsz = len;
5862 break;
5863 case IWN_FW_TLV_ENH_SENS:
5864 if (len != 0) {
5865 aprint_error_dev(sc->sc_dev,
5866 "TLV type %d has invalid size %u\n",
5867 le16toh(tlv->type), len);
5868 goto next;
5869 }
5870 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5871 break;
5872 case IWN_FW_TLV_PHY_CALIB:
5873 if (len != sizeof(uint32_t)) {
5874 aprint_error_dev(sc->sc_dev,
5875 "TLV type %d has invalid size %u\n",
5876 le16toh(tlv->type), len);
5877 goto next;
5878 }
5879 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5880 sc->reset_noise_gain = le32toh(*ptr);
5881 sc->noise_gain = le32toh(*ptr) + 1;
5882 }
5883 break;
5884 case IWN_FW_TLV_FLAGS:
5885 if (len < sizeof(uint32_t))
5886 break;
5887 if (len % sizeof(uint32_t))
5888 break;
5889 sc->tlv_feature_flags = le32toh(*ptr);
5890 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5891 break;
5892 default:
5893 DPRINTF(("TLV type %d not handled\n",
5894 le16toh(tlv->type)));
5895 break;
5896 }
5897 next: /* TLV fields are 32-bit aligned. */
5898 ptr += (len + 3) & ~3;
5899 }
5900 return 0;
5901 }
5902
5903 static int
5904 iwn_read_firmware(struct iwn_softc *sc)
5905 {
5906 struct iwn_fw_info *fw = &sc->fw;
5907 firmware_handle_t fwh;
5908 int error;
5909
5910 /*
5911 * Some PHY calibration commands are firmware-dependent; these
5912 * are the default values that will be overridden if
5913 * necessary.
5914 */
5915 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5916 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5917
5918 /* Initialize for error returns */
5919 fw->data = NULL;
5920 fw->size = 0;
5921
5922 /* Open firmware image. */
5923 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5924 aprint_error_dev(sc->sc_dev,
5925 "could not get firmware handle %s\n", sc->fwname);
5926 return error;
5927 }
5928 fw->size = firmware_get_size(fwh);
5929 if (fw->size < sizeof (uint32_t)) {
5930 aprint_error_dev(sc->sc_dev,
5931 "firmware too short: %zd bytes\n", fw->size);
5932 firmware_close(fwh);
5933 return EINVAL;
5934 }
5935
5936 /* Read the firmware. */
5937 fw->data = firmware_malloc(fw->size);
5938 if (fw->data == NULL) {
5939 aprint_error_dev(sc->sc_dev,
5940 "not enough memory to stock firmware %s\n", sc->fwname);
5941 firmware_close(fwh);
5942 return ENOMEM;
5943 }
5944 error = firmware_read(fwh, 0, fw->data, fw->size);
5945 firmware_close(fwh);
5946 if (error != 0) {
5947 aprint_error_dev(sc->sc_dev,
5948 "could not read firmware %s\n", sc->fwname);
5949 goto out;
5950 }
5951
5952 /* Retrieve text and data sections. */
5953 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5954 error = iwn_read_firmware_leg(sc, fw);
5955 else
5956 error = iwn_read_firmware_tlv(sc, fw, 1);
5957 if (error != 0) {
5958 aprint_error_dev(sc->sc_dev,
5959 "could not read firmware sections\n");
5960 goto out;
5961 }
5962
5963 /* Make sure text and data sections fit in hardware memory. */
5964 if (fw->main.textsz > sc->fw_text_maxsz ||
5965 fw->main.datasz > sc->fw_data_maxsz ||
5966 fw->init.textsz > sc->fw_text_maxsz ||
5967 fw->init.datasz > sc->fw_data_maxsz ||
5968 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5969 (fw->boot.textsz & 3) != 0) {
5970 aprint_error_dev(sc->sc_dev,
5971 "firmware sections too large\n");
5972 goto out;
5973 }
5974
5975 /* We can proceed with loading the firmware. */
5976 return 0;
5977 out:
5978 firmware_free(fw->data, fw->size);
5979 fw->data = NULL;
5980 fw->size = 0;
5981 return error ? error : EINVAL;
5982 }
5983
5984 static int
5985 iwn_clock_wait(struct iwn_softc *sc)
5986 {
5987 int ntries;
5988
5989 /* Set "initialization complete" bit. */
5990 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5991
5992 /* Wait for clock stabilization. */
5993 for (ntries = 0; ntries < 2500; ntries++) {
5994 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5995 return 0;
5996 DELAY(10);
5997 }
5998 aprint_error_dev(sc->sc_dev,
5999 "timeout waiting for clock stabilization\n");
6000 return ETIMEDOUT;
6001 }
6002
6003 static int
6004 iwn_apm_init(struct iwn_softc *sc)
6005 {
6006 pcireg_t reg;
6007 int error;
6008
6009 /* Disable L0s exit timer (NMI bug workaround). */
6010 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6011 /* Don't wait for ICH L0s (ICH bug workaround). */
6012 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6013
6014 /* Set FH wait threshold to max (HW bug under stress workaround). */
6015 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6016
6017 /* Enable HAP INTA to move adapter from L1a to L0s. */
6018 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6019
6020 /* Retrieve PCIe Active State Power Management (ASPM). */
6021 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6022 sc->sc_cap_off + PCIE_LCSR);
6023 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6024 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6025 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6026 else
6027 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6028
6029 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6030 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6031 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6032
6033 /* Wait for clock stabilization before accessing prph. */
6034 if ((error = iwn_clock_wait(sc)) != 0)
6035 return error;
6036
6037 if ((error = iwn_nic_lock(sc)) != 0)
6038 return error;
6039 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6040 /* Enable DMA and BSM (Bootstrap State Machine). */
6041 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6042 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6043 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6044 } else {
6045 /* Enable DMA. */
6046 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6047 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6048 }
6049 DELAY(20);
6050 /* Disable L1-Active. */
6051 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6052 iwn_nic_unlock(sc);
6053
6054 return 0;
6055 }
6056
6057 static void
6058 iwn_apm_stop_master(struct iwn_softc *sc)
6059 {
6060 int ntries;
6061
6062 /* Stop busmaster DMA activity. */
6063 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6064 for (ntries = 0; ntries < 100; ntries++) {
6065 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6066 return;
6067 DELAY(10);
6068 }
6069 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6070 }
6071
6072 static void
6073 iwn_apm_stop(struct iwn_softc *sc)
6074 {
6075 iwn_apm_stop_master(sc);
6076
6077 /* Reset the entire device. */
6078 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6079 DELAY(10);
6080 /* Clear "initialization complete" bit. */
6081 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6082 }
6083
6084 static int
6085 iwn4965_nic_config(struct iwn_softc *sc)
6086 {
6087 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6088 /*
6089 * I don't believe this to be correct but this is what the
6090 * vendor driver is doing. Probably the bits should not be
6091 * shifted in IWN_RFCFG_*.
6092 */
6093 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6094 IWN_RFCFG_TYPE(sc->rfcfg) |
6095 IWN_RFCFG_STEP(sc->rfcfg) |
6096 IWN_RFCFG_DASH(sc->rfcfg));
6097 }
6098 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6099 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6100 return 0;
6101 }
6102
6103 static int
6104 iwn5000_nic_config(struct iwn_softc *sc)
6105 {
6106 uint32_t tmp;
6107 int error;
6108
6109 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6110 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6111 IWN_RFCFG_TYPE(sc->rfcfg) |
6112 IWN_RFCFG_STEP(sc->rfcfg) |
6113 IWN_RFCFG_DASH(sc->rfcfg));
6114 }
6115 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6116 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6117
6118 if ((error = iwn_nic_lock(sc)) != 0)
6119 return error;
6120 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6121
6122 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6123 /*
6124 * Select first Switching Voltage Regulator (1.32V) to
6125 * solve a stability issue related to noisy DC2DC line
6126 * in the silicon of 1000 Series.
6127 */
6128 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6129 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6130 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6131 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6132 }
6133 iwn_nic_unlock(sc);
6134
6135 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6136 /* Use internal power amplifier only. */
6137 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6138 }
6139 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6140 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6141 /* Indicate that ROM calibration version is >=6. */
6142 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6143 }
6144 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6145 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6146 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6147 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6148 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6149 sc->hw_type == IWN_HW_REV_TYPE_105)
6150 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6151 return 0;
6152 }
6153
6154 /*
6155 * Take NIC ownership over Intel Active Management Technology (AMT).
6156 */
6157 static int
6158 iwn_hw_prepare(struct iwn_softc *sc)
6159 {
6160 int ntries;
6161
6162 /* Check if hardware is ready. */
6163 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6164 for (ntries = 0; ntries < 5; ntries++) {
6165 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6166 IWN_HW_IF_CONFIG_NIC_READY)
6167 return 0;
6168 DELAY(10);
6169 }
6170
6171 /* Hardware not ready, force into ready state. */
6172 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6173 for (ntries = 0; ntries < 15000; ntries++) {
6174 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6175 IWN_HW_IF_CONFIG_PREPARE_DONE))
6176 break;
6177 DELAY(10);
6178 }
6179 if (ntries == 15000)
6180 return ETIMEDOUT;
6181
6182 /* Hardware should be ready now. */
6183 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6184 for (ntries = 0; ntries < 5; ntries++) {
6185 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6186 IWN_HW_IF_CONFIG_NIC_READY)
6187 return 0;
6188 DELAY(10);
6189 }
6190 return ETIMEDOUT;
6191 }
6192
6193 static int
6194 iwn_hw_init(struct iwn_softc *sc)
6195 {
6196 struct iwn_ops *ops = &sc->ops;
6197 int error, chnl, qid;
6198
6199 /* Clear pending interrupts. */
6200 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6201
6202 if ((error = iwn_apm_init(sc)) != 0) {
6203 aprint_error_dev(sc->sc_dev,
6204 "could not power ON adapter\n");
6205 return error;
6206 }
6207
6208 /* Select VMAIN power source. */
6209 if ((error = iwn_nic_lock(sc)) != 0)
6210 return error;
6211 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6212 iwn_nic_unlock(sc);
6213
6214 /* Perform adapter-specific initialization. */
6215 if ((error = ops->nic_config(sc)) != 0)
6216 return error;
6217
6218 /* Initialize RX ring. */
6219 if ((error = iwn_nic_lock(sc)) != 0)
6220 return error;
6221 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6222 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6223 /* Set physical address of RX ring (256-byte aligned). */
6224 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6225 /* Set physical address of RX status (16-byte aligned). */
6226 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6227 /* Enable RX. */
6228 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6229 IWN_FH_RX_CONFIG_ENA |
6230 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6231 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6232 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6233 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6234 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6235 iwn_nic_unlock(sc);
6236 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6237
6238 if ((error = iwn_nic_lock(sc)) != 0)
6239 return error;
6240
6241 /* Initialize TX scheduler. */
6242 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6243
6244 /* Set physical address of "keep warm" page (16-byte aligned). */
6245 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6246
6247 /* Initialize TX rings. */
6248 for (qid = 0; qid < sc->ntxqs; qid++) {
6249 struct iwn_tx_ring *txq = &sc->txq[qid];
6250
6251 /* Set physical address of TX ring (256-byte aligned). */
6252 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6253 txq->desc_dma.paddr >> 8);
6254 }
6255 iwn_nic_unlock(sc);
6256
6257 /* Enable DMA channels. */
6258 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6259 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6260 IWN_FH_TX_CONFIG_DMA_ENA |
6261 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6262 }
6263
6264 /* Clear "radio off" and "commands blocked" bits. */
6265 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6266 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6267
6268 /* Clear pending interrupts. */
6269 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6270 /* Enable interrupt coalescing. */
6271 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6272 /* Enable interrupts. */
6273 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6274
6275 /* _Really_ make sure "radio off" bit is cleared! */
6276 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6277 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6278
6279 /* Enable shadow registers. */
6280 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6281 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6282
6283 if ((error = ops->load_firmware(sc)) != 0) {
6284 aprint_error_dev(sc->sc_dev,
6285 "could not load firmware\n");
6286 return error;
6287 }
6288 /* Wait at most one second for firmware alive notification. */
6289 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6290 aprint_error_dev(sc->sc_dev,
6291 "timeout waiting for adapter to initialize\n");
6292 return error;
6293 }
6294 /* Do post-firmware initialization. */
6295 return ops->post_alive(sc);
6296 }
6297
6298 static void
6299 iwn_hw_stop(struct iwn_softc *sc)
6300 {
6301 int chnl, qid, ntries;
6302
6303 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6304
6305 /* Disable interrupts. */
6306 IWN_WRITE(sc, IWN_INT_MASK, 0);
6307 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6308 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6309 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6310
6311 /* Make sure we no longer hold the NIC lock. */
6312 iwn_nic_unlock(sc);
6313
6314 /* Stop TX scheduler. */
6315 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6316
6317 /* Stop all DMA channels. */
6318 if (iwn_nic_lock(sc) == 0) {
6319 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6320 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6321 for (ntries = 0; ntries < 200; ntries++) {
6322 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6323 IWN_FH_TX_STATUS_IDLE(chnl))
6324 break;
6325 DELAY(10);
6326 }
6327 }
6328 iwn_nic_unlock(sc);
6329 }
6330
6331 /* Stop RX ring. */
6332 iwn_reset_rx_ring(sc, &sc->rxq);
6333
6334 /* Reset all TX rings. */
6335 for (qid = 0; qid < sc->ntxqs; qid++)
6336 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6337
6338 if (iwn_nic_lock(sc) == 0) {
6339 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6340 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6341 iwn_nic_unlock(sc);
6342 }
6343 DELAY(5);
6344 /* Power OFF adapter. */
6345 iwn_apm_stop(sc);
6346 }
6347
6348 static int
6349 iwn_init(struct ifnet *ifp)
6350 {
6351 struct iwn_softc *sc = ifp->if_softc;
6352 struct ieee80211com *ic = &sc->sc_ic;
6353 int error;
6354
6355 mutex_enter(&sc->sc_mtx);
6356 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6357 goto out;
6358 if ((error = iwn_hw_prepare(sc)) != 0) {
6359 aprint_error_dev(sc->sc_dev,
6360 "hardware not ready\n");
6361 goto fail;
6362 }
6363
6364 /* Check that the radio is not disabled by hardware switch. */
6365 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6366 aprint_error_dev(sc->sc_dev,
6367 "radio is disabled by hardware switch\n");
6368 error = EPERM; /* :-) */
6369 goto fail;
6370 }
6371
6372 /* Read firmware images from the filesystem. */
6373 if ((error = iwn_read_firmware(sc)) != 0) {
6374 aprint_error_dev(sc->sc_dev,
6375 "could not read firmware\n");
6376 goto fail;
6377 }
6378
6379 /* Initialize interrupt mask to default value. */
6380 sc->int_mask = IWN_INT_MASK_DEF;
6381 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6382
6383 /* Initialize hardware and upload firmware. */
6384 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6385 error = iwn_hw_init(sc);
6386 firmware_free(sc->fw.data, sc->fw.size);
6387 sc->fw.data = NULL;
6388 sc->fw.size = 0;
6389 if (error != 0) {
6390 aprint_error_dev(sc->sc_dev,
6391 "could not initialize hardware\n");
6392 goto fail;
6393 }
6394
6395 /* Configure adapter now that it is ready. */
6396 if ((error = iwn_config(sc)) != 0) {
6397 aprint_error_dev(sc->sc_dev,
6398 "could not configure device\n");
6399 goto fail;
6400 }
6401
6402 sc->sc_beacon_wait = 0;
6403
6404 ifp->if_flags &= ~IFF_OACTIVE;
6405 ifp->if_flags |= IFF_RUNNING;
6406
6407 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6408 ieee80211_begin_scan(ic, 0);
6409 else
6410 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6411
6412 sc->sc_flags |= IWN_FLAG_HW_INITED;
6413 out:
6414 mutex_exit(&sc->sc_mtx);
6415 return 0;
6416
6417 fail: mutex_exit(&sc->sc_mtx);
6418 iwn_stop(ifp, 1);
6419 return error;
6420 }
6421
6422 static void
6423 iwn_stop(struct ifnet *ifp, int disable)
6424 {
6425 struct iwn_softc *sc = ifp->if_softc;
6426 struct ieee80211com *ic = &sc->sc_ic;
6427
6428 if (!disable)
6429 mutex_enter(&sc->sc_mtx);
6430 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6431 ifp->if_timer = sc->sc_tx_timer = 0;
6432 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6433
6434 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6435
6436 /* Power OFF hardware. */
6437 iwn_hw_stop(sc);
6438
6439 if (!disable)
6440 mutex_exit(&sc->sc_mtx);
6441 }
6442
6443 /*
6444 * XXX MCLGETI alternative
6445 *
6446 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6447 * as long as there are available free buffers then it uses MEXTMALLOC.,
6448 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6449 * The MCLGET4K code is used for testing an alternative mbuf cache.
6450 */
6451
6452 static struct mbuf *
6453 MCLGETIalt(struct iwn_softc *sc, int how,
6454 struct ifnet *ifp __unused, u_int size)
6455 {
6456 struct mbuf *m;
6457 #ifdef IWN_USE_RBUF
6458 struct iwn_rbuf *rbuf;
6459 #endif
6460
6461 MGETHDR(m, how, MT_DATA);
6462 if (m == NULL)
6463 return NULL;
6464
6465 #ifdef IWN_USE_RBUF
6466 if (sc->rxq.nb_free_entries > 0 &&
6467 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6468 /* Attach buffer to mbuf header. */
6469 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6470 m->m_flags |= M_EXT_RW;
6471 }
6472 else {
6473 MEXTMALLOC(m, size, how);
6474 if ((m->m_flags & M_EXT) == 0) {
6475 m_freem(m);
6476 return NULL;
6477 }
6478 }
6479
6480 #else
6481 #ifdef MCLGET4K
6482 if (size == 4096)
6483 MCLGET4K(m, how);
6484 else
6485 panic("size must be 4k");
6486 #else
6487 MEXTMALLOC(m, size, how);
6488 #endif
6489 if ((m->m_flags & M_EXT) == 0) {
6490 m_freem(m);
6491 return NULL;
6492 }
6493 #endif
6494
6495 return m;
6496 }
6497
6498 #ifdef IWN_USE_RBUF
6499 static struct iwn_rbuf *
6500 iwn_alloc_rbuf(struct iwn_softc *sc)
6501 {
6502 struct iwn_rbuf *rbuf;
6503 mutex_enter(&sc->rxq.freelist_mtx);
6504
6505 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6506 if (rbuf != NULL) {
6507 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6508 sc->rxq.nb_free_entries --;
6509 }
6510 mutex_exit(&sc->rxq.freelist_mtx);
6511 return rbuf;
6512 }
6513
6514 /*
6515 * This is called automatically by the network stack when the mbuf to which
6516 * our RX buffer is attached is freed.
6517 */
6518 static void
6519 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6520 {
6521 struct iwn_rbuf *rbuf = arg;
6522 struct iwn_softc *sc = rbuf->sc;
6523
6524 /* Put the RX buffer back in the free list. */
6525 mutex_enter(&sc->rxq.freelist_mtx);
6526 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6527 mutex_exit(&sc->rxq.freelist_mtx);
6528
6529 sc->rxq.nb_free_entries ++;
6530 if (__predict_true(m != NULL))
6531 pool_cache_put(mb_cache, m);
6532 }
6533
6534 static int
6535 iwn_alloc_rpool(struct iwn_softc *sc)
6536 {
6537 struct iwn_rx_ring *ring = &sc->rxq;
6538 struct iwn_rbuf *rbuf;
6539 int i, error;
6540
6541 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6542
6543 /* Allocate a big chunk of DMA'able memory... */
6544 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6545 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6546 if (error != 0) {
6547 aprint_error_dev(sc->sc_dev,
6548 "could not allocate RX buffers DMA memory\n");
6549 return error;
6550 }
6551 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6552 SLIST_INIT(&ring->freelist);
6553 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6554 rbuf = &ring->rbuf[i];
6555
6556 rbuf->sc = sc; /* Backpointer for callbacks. */
6557 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6558 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6559
6560 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6561 }
6562 ring->nb_free_entries = IWN_RBUF_COUNT;
6563 return 0;
6564 }
6565
6566 static void
6567 iwn_free_rpool(struct iwn_softc *sc)
6568 {
6569 iwn_dma_contig_free(&sc->rxq.buf_dma);
6570 }
6571 #endif
6572
6573 /*
6574 * XXX: Hack to set the current channel to the value advertised in beacons or
6575 * probe responses. Only used during AP detection.
6576 * XXX: Duplicated from if_iwi.c
6577 */
6578 static void
6579 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6580 struct iwn_rx_stat *stat)
6581 {
6582 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6583 struct ieee80211_frame *wh;
6584 uint8_t subtype;
6585 uint8_t *frm, *efrm;
6586
6587 wh = mtod(m, struct ieee80211_frame *);
6588
6589 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6590 return;
6591
6592 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6593
6594 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6595 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6596 return;
6597
6598 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6599 int chan = le16toh(stat->chan);
6600 if (chan < __arraycount(ic->ic_channels))
6601 ic->ic_curchan = &ic->ic_channels[chan];
6602 return;
6603 }
6604
6605 frm = (uint8_t *)(wh + 1);
6606 efrm = mtod(m, uint8_t *) + m->m_len;
6607
6608 frm += 12; /* skip tstamp, bintval and capinfo fields */
6609 while (frm + 2 < efrm) {
6610 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6611 #if IEEE80211_CHAN_MAX < 255
6612 if (frm[2] <= IEEE80211_CHAN_MAX)
6613 #endif
6614 ic->ic_curchan = &ic->ic_channels[frm[2]];
6615 }
6616
6617 frm += frm[1] + 2;
6618 }
6619 }
6620
6621 #ifdef notyetMODULE
6622
6623 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6624
6625 #ifdef _MODULE
6626 #include "ioconf.c"
6627 #endif
6628
6629 static int
6630 if_iwn_modcmd(modcmd_t cmd, void *data)
6631 {
6632 int error = 0;
6633
6634 switch (cmd) {
6635 case MODULE_CMD_INIT:
6636 #ifdef _MODULE
6637 error = config_init_component(cfdriver_ioconf_if_iwn,
6638 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6639 #endif
6640 return error;
6641 case MODULE_CMD_FINI:
6642 #ifdef _MODULE
6643 error = config_fini_component(cfdriver_ioconf_if_iwn,
6644 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6645 #endif
6646 return error;
6647 case MODULE_CMD_AUTOUNLOAD:
6648 #ifdef _MODULE
6649 /* XXX This is not optional! */
6650 #endif
6651 return error;
6652 default:
6653 return ENOTTY;
6654 }
6655 }
6656 #endif
6657