Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.91.4.1
      1 /*	$NetBSD: if_iwn.c,v 1.91.4.1 2024/04/17 16:24:26 martin Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.91.4.1 2024/04/17 16:24:26 martin Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 static int	iwn_match(device_t , struct cfdata *, void *);
    122 static void	iwn_attach(device_t , device_t , void *);
    123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    125 static void	iwn_radiotap_attach(struct iwn_softc *);
    126 static int	iwn_detach(device_t , int);
    127 #if 0
    128 static void	iwn_power(int, void *);
    129 #endif
    130 static bool	iwn_resume(device_t, const pmf_qual_t *);
    131 static int	iwn_nic_lock(struct iwn_softc *);
    132 static int	iwn_eeprom_lock(struct iwn_softc *);
    133 static int	iwn_init_otprom(struct iwn_softc *);
    134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    136 		    void **, bus_size_t, bus_size_t);
    137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    138 static int	iwn_alloc_sched(struct iwn_softc *);
    139 static void	iwn_free_sched(struct iwn_softc *);
    140 static int	iwn_alloc_kw(struct iwn_softc *);
    141 static void	iwn_free_kw(struct iwn_softc *);
    142 static int	iwn_alloc_ict(struct iwn_softc *);
    143 static void	iwn_free_ict(struct iwn_softc *);
    144 static int	iwn_alloc_fwmem(struct iwn_softc *);
    145 static void	iwn_free_fwmem(struct iwn_softc *);
    146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    150 		    int);
    151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    153 static void	iwn5000_ict_reset(struct iwn_softc *);
    154 static int	iwn_read_eeprom(struct iwn_softc *);
    155 static void	iwn4965_read_eeprom(struct iwn_softc *);
    156 
    157 #ifdef IWN_DEBUG
    158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    159 #endif
    160 static void	iwn5000_read_eeprom(struct iwn_softc *);
    161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    164 static void	iwn_newassoc(struct ieee80211_node *, int);
    165 static int	iwn_media_change(struct ifnet *);
    166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    167 static void	iwn_iter_func(void *, struct ieee80211_node *);
    168 static void	iwn_calib_timeout(void *);
    169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    172 		    struct iwn_rx_data *);
    173 #ifndef IEEE80211_NO_HT
    174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 #endif
    177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    180 		    struct iwn_rx_data *);
    181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    186 		    uint8_t);
    187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    188 static void	iwn_notif_intr(struct iwn_softc *);
    189 static void	iwn_wakeup_intr(struct iwn_softc *);
    190 static void	iwn_fatal_intr(struct iwn_softc *);
    191 static int	iwn_intr(void *);
    192 static void	iwn_softintr(void *);
    193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    194 		    uint16_t);
    195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    196 		    uint16_t);
    197 #ifdef notyet
    198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    199 #endif
    200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    201 		    struct ieee80211_node *, int);
    202 static void	iwn_start(struct ifnet *);
    203 static void	iwn_watchdog(struct ifnet *);
    204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    207 		    int);
    208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    209 		    int);
    210 static int	iwn_set_link_quality(struct iwn_softc *,
    211 		    struct ieee80211_node *);
    212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    214 static int	iwn_set_critical_temp(struct iwn_softc *);
    215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    222 static int	iwn4965_get_temperature(struct iwn_softc *);
    223 static int	iwn5000_get_temperature(struct iwn_softc *);
    224 static int	iwn_init_sensitivity(struct iwn_softc *);
    225 static void	iwn_collect_noise(struct iwn_softc *,
    226 		    const struct iwn_rx_general_stats *);
    227 static int	iwn4965_init_gains(struct iwn_softc *);
    228 static int	iwn5000_init_gains(struct iwn_softc *);
    229 static int	iwn4965_set_gains(struct iwn_softc *);
    230 static int	iwn5000_set_gains(struct iwn_softc *);
    231 static void	iwn_tune_sensitivity(struct iwn_softc *,
    232 		    const struct iwn_rx_stats *);
    233 static int	iwn_send_sensitivity(struct iwn_softc *);
    234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    235 static int	iwn5000_runtime_calib(struct iwn_softc *);
    236 
    237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    241 
    242 static int	iwn_config(struct iwn_softc *);
    243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    244 		    uint8_t);
    245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    247 static int	iwn_scan(struct iwn_softc *, uint16_t);
    248 static int	iwn_auth(struct iwn_softc *);
    249 static int	iwn_run(struct iwn_softc *);
    250 #ifdef IWN_HWCRYPTO
    251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    252 		    struct ieee80211_key *);
    253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    254 		    struct ieee80211_key *);
    255 #endif
    256 static int	iwn_wme_update(struct ieee80211com *);
    257 #ifndef IEEE80211_NO_HT
    258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    259 		    struct ieee80211_node *, uint8_t);
    260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    261 		    struct ieee80211_node *, uint8_t);
    262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    263 		    struct ieee80211_node *, uint8_t);
    264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    265 		    struct ieee80211_node *, uint8_t);
    266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    267 		    struct ieee80211_node *, uint8_t, uint16_t);
    268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    269 		    uint8_t, uint16_t);
    270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    271 		    struct ieee80211_node *, uint8_t, uint16_t);
    272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    273 		    uint8_t, uint16_t);
    274 #endif
    275 static int	iwn5000_query_calibration(struct iwn_softc *);
    276 static int	iwn5000_send_calibration(struct iwn_softc *);
    277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    280 static int	iwn4965_post_alive(struct iwn_softc *);
    281 static int	iwn5000_post_alive(struct iwn_softc *);
    282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    283 		    int);
    284 static int	iwn4965_load_firmware(struct iwn_softc *);
    285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    286 		    const uint8_t *, int);
    287 static int	iwn5000_load_firmware(struct iwn_softc *);
    288 static int	iwn_read_firmware_leg(struct iwn_softc *,
    289 		    struct iwn_fw_info *);
    290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    291 		    struct iwn_fw_info *, uint16_t);
    292 static int	iwn_read_firmware(struct iwn_softc *);
    293 static int	iwn_clock_wait(struct iwn_softc *);
    294 static int	iwn_apm_init(struct iwn_softc *);
    295 static void	iwn_apm_stop_master(struct iwn_softc *);
    296 static void	iwn_apm_stop(struct iwn_softc *);
    297 static int	iwn4965_nic_config(struct iwn_softc *);
    298 static int	iwn5000_nic_config(struct iwn_softc *);
    299 static int	iwn_hw_prepare(struct iwn_softc *);
    300 static int	iwn_hw_init(struct iwn_softc *);
    301 static void	iwn_hw_stop(struct iwn_softc *);
    302 static int	iwn_init(struct ifnet *);
    303 static void	iwn_stop(struct ifnet *, int);
    304 
    305 /* XXX MCLGETI alternative */
    306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    307 		    struct ifnet *, u_int);
    308 #ifdef IWN_USE_RBUF
    309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    311 static int	iwn_alloc_rpool(struct iwn_softc *);
    312 static void	iwn_free_rpool(struct iwn_softc *);
    313 #endif
    314 
    315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    316 		    struct iwn_rx_stat *);
    317 
    318 #ifdef IWN_DEBUG
    319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    321 int iwn_debug = 0;
    322 #else
    323 #define DPRINTF(x)
    324 #define DPRINTFN(n, x)
    325 #endif
    326 
    327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    328 	iwn_detach, NULL);
    329 
    330 static int
    331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    332 {
    333 	struct pci_attach_args *pa = aux;
    334 	size_t i;
    335 
    336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    337 		return 0;
    338 
    339 	for (i = 0; i < __arraycount(iwn_devices); i++)
    340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    341 			return 1;
    342 
    343 	return 0;
    344 }
    345 
    346 static void
    347 iwn_attach(device_t parent __unused, device_t self, void *aux)
    348 {
    349 	struct iwn_softc *sc = device_private(self);
    350 	struct ieee80211com *ic = &sc->sc_ic;
    351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    352 	struct pci_attach_args *pa = aux;
    353 	const char *intrstr;
    354 	pcireg_t memtype, reg;
    355 	int i, error;
    356 	char intrbuf[PCI_INTRSTR_LEN];
    357 
    358 	sc->sc_dev = self;
    359 	sc->sc_pct = pa->pa_pc;
    360 	sc->sc_pcitag = pa->pa_tag;
    361 	sc->sc_dmat = pa->pa_dmat;
    362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    363 
    364 	callout_init(&sc->calib_to, 0);
    365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    366 
    367 	pci_aprint_devinfo(pa, NULL);
    368 
    369 	/*
    370 	 * Get the offset of the PCI Express Capability Structure in PCI
    371 	 * Configuration Space.
    372 	 */
    373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    375 	if (error == 0) {
    376 		aprint_error_dev(self,
    377 		    "PCIe capability structure not found!\n");
    378 		return;
    379 	}
    380 
    381 	/* Clear device-specific "PCI retry timeout" register (41h). */
    382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    383 	if (reg & 0xff00)
    384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    385 
    386 	/* Enable bus-mastering. */
    387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    389 	reg |= PCI_COMMAND_MASTER_ENABLE;
    390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    391 
    392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    394 	    &sc->sc_sh, NULL, &sc->sc_sz);
    395 	if (error != 0) {
    396 		aprint_error_dev(self, "can't map mem space\n");
    397 		return;
    398 	}
    399 
    400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    401 	if (sc->sc_soft_ih == NULL) {
    402 		aprint_error_dev(self, "can't establish soft interrupt\n");
    403 		goto unmap;
    404 	}
    405 
    406 	/* Install interrupt handler. */
    407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    408 	if (error) {
    409 		aprint_error_dev(self, "can't allocate interrupt\n");
    410 		goto failsi;
    411 	}
    412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    415 	else
    416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    419 	    sizeof(intrbuf));
    420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    421 	    IPL_NET, iwn_intr, sc, device_xname(self));
    422 	if (sc->sc_ih == NULL) {
    423 		aprint_error_dev(self, "can't establish interrupt");
    424 		if (intrstr != NULL)
    425 			aprint_error(" at %s", intrstr);
    426 		aprint_error("\n");
    427 		goto failia;
    428 	}
    429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    430 
    431 	/* Read hardware revision and attach. */
    432 	sc->hw_type =
    433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    434 	      >> IWN_HW_REV_TYPE_SHIFT;
    435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    437 	else
    438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    439 	if (error != 0) {
    440 		aprint_error_dev(self, "could not attach device\n");
    441 		goto failih;
    442 	}
    443 
    444 	if ((error = iwn_hw_prepare(sc)) != 0) {
    445 		aprint_error_dev(self, "hardware not ready\n");
    446 		goto failih;
    447 	}
    448 
    449 	/* Read MAC address, channels, etc from EEPROM. */
    450 	if ((error = iwn_read_eeprom(sc)) != 0) {
    451 		aprint_error_dev(self, "could not read EEPROM\n");
    452 		goto failih;
    453 	}
    454 
    455 	/* Allocate DMA memory for firmware transfers. */
    456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    457 		aprint_error_dev(self,
    458 		    "could not allocate memory for firmware\n");
    459 		goto failih;
    460 	}
    461 
    462 	/* Allocate "Keep Warm" page. */
    463 	if ((error = iwn_alloc_kw(sc)) != 0) {
    464 		aprint_error_dev(self, "could not allocate keep warm page\n");
    465 		goto fail1;
    466 	}
    467 
    468 	/* Allocate ICT table for 5000 Series. */
    469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    470 	    (error = iwn_alloc_ict(sc)) != 0) {
    471 		aprint_error_dev(self, "could not allocate ICT table\n");
    472 		goto fail2;
    473 	}
    474 
    475 	/* Allocate TX scheduler "rings". */
    476 	if ((error = iwn_alloc_sched(sc)) != 0) {
    477 		aprint_error_dev(self,
    478 		    "could not allocate TX scheduler rings\n");
    479 		goto fail3;
    480 	}
    481 
    482 #ifdef IWN_USE_RBUF
    483 	/* Allocate RX buffers. */
    484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    485 		aprint_error_dev(self, "could not allocate RX buffers\n");
    486 		goto fail3;
    487 	}
    488 #endif
    489 
    490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    491 	for (i = 0; i < sc->ntxqs; i++) {
    492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    493 			aprint_error_dev(self,
    494 			    "could not allocate TX ring %d\n", i);
    495 			goto fail4;
    496 		}
    497 	}
    498 
    499 	/* Allocate RX ring. */
    500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    501 		aprint_error_dev(self, "could not allocate RX ring\n");
    502 		goto fail4;
    503 	}
    504 
    505 	/* Clear pending interrupts. */
    506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    507 
    508 	/* Count the number of available chains. */
    509 	sc->ntxchains =
    510 	    ((sc->txchainmask >> 2) & 1) +
    511 	    ((sc->txchainmask >> 1) & 1) +
    512 	    ((sc->txchainmask >> 0) & 1);
    513 	sc->nrxchains =
    514 	    ((sc->rxchainmask >> 2) & 1) +
    515 	    ((sc->rxchainmask >> 1) & 1) +
    516 	    ((sc->rxchainmask >> 0) & 1);
    517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    519 	    ether_sprintf(ic->ic_myaddr));
    520 
    521 	ic->ic_ifp = ifp;
    522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    524 	ic->ic_state = IEEE80211_S_INIT;
    525 
    526 	/*
    527 	 * Set device capabilities.
    528 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
    529 	 * IEEE80211_C_PMGT too.
    530 	 */
    531 	ic->ic_caps =
    532 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    533 	    IEEE80211_C_WPA |		/* 802.11i */
    534 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    535 	    IEEE80211_C_TXPMGT |	/* tx power management */
    536 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    537 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    538 	    IEEE80211_C_WME;		/* 802.11e */
    539 
    540 #ifndef IEEE80211_NO_HT
    541 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    542 		/* Set HT capabilities. */
    543 		ic->ic_htcaps =
    544 #if IWN_RBUF_SIZE == 8192
    545 		    IEEE80211_HTCAP_AMSDU7935 |
    546 #endif
    547 		    IEEE80211_HTCAP_CBW20_40 |
    548 		    IEEE80211_HTCAP_SGI20 |
    549 		    IEEE80211_HTCAP_SGI40;
    550 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    551 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    552 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    554 		else
    555 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    556 	}
    557 #endif	/* !IEEE80211_NO_HT */
    558 
    559 	/* Set supported legacy rates. */
    560 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    561 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    562 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    563 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    564 	}
    565 #ifndef IEEE80211_NO_HT
    566 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    567 		/* Set supported HT rates. */
    568 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    569 		if (sc->nrxchains > 1)
    570 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    571 		if (sc->nrxchains > 2)
    572 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    573 	}
    574 #endif
    575 
    576 	/* IBSS channel undefined for now. */
    577 	ic->ic_ibss_chan = &ic->ic_channels[0];
    578 
    579 	ifp->if_softc = sc;
    580 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    581 	ifp->if_init = iwn_init;
    582 	ifp->if_ioctl = iwn_ioctl;
    583 	ifp->if_start = iwn_start;
    584 	ifp->if_stop = iwn_stop;
    585 	ifp->if_watchdog = iwn_watchdog;
    586 	IFQ_SET_READY(&ifp->if_snd);
    587 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    588 
    589 	error = if_initialize(ifp);
    590 	if (error != 0) {
    591 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    592 		    error);
    593 		goto fail5;
    594 	}
    595 	ieee80211_ifattach(ic);
    596 	/* Use common softint-based if_input */
    597 	ifp->if_percpuq = if_percpuq_create(ifp);
    598 	if_register(ifp);
    599 
    600 	ic->ic_node_alloc = iwn_node_alloc;
    601 	ic->ic_newassoc = iwn_newassoc;
    602 #ifdef IWN_HWCRYPTO
    603 	ic->ic_crypto.cs_key_set = iwn_set_key;
    604 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    605 #endif
    606 	ic->ic_wme.wme_update = iwn_wme_update;
    607 #ifndef IEEE80211_NO_HT
    608 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    609 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    610 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    611 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    612 #endif
    613 
    614 	/* Override 802.11 state transition machine. */
    615 	sc->sc_newstate = ic->ic_newstate;
    616 	ic->ic_newstate = iwn_newstate;
    617 	ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
    618 
    619 	sc->amrr.amrr_min_success_threshold =  1;
    620 	sc->amrr.amrr_max_success_threshold = 15;
    621 
    622 	iwn_radiotap_attach(sc);
    623 
    624 	/*
    625 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    626 	 * callout_init and callout_setfunc, above.
    627 	 */
    628 
    629 	if (pmf_device_register(self, NULL, iwn_resume))
    630 		pmf_class_network_register(self, ifp);
    631 	else
    632 		aprint_error_dev(self, "couldn't establish power handler\n");
    633 
    634 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    635 	ieee80211_announce(ic);
    636 
    637 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    638 	return;
    639 
    640 	/* Free allocated memory if something failed during attachment. */
    641 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
    642 fail4:	while (--i >= 0)
    643 		iwn_free_tx_ring(sc, &sc->txq[i]);
    644 #ifdef IWN_USE_RBUF
    645 	iwn_free_rpool(sc);
    646 #endif
    647 	iwn_free_sched(sc);
    648 fail3:	if (sc->ict != NULL)
    649 		iwn_free_ict(sc);
    650 fail2:	iwn_free_kw(sc);
    651 fail1:	iwn_free_fwmem(sc);
    652 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    653 	sc->sc_ih = NULL;
    654 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    655 	sc->sc_pihp = NULL;
    656 failsi:	softint_disestablish(sc->sc_soft_ih);
    657 	sc->sc_soft_ih = NULL;
    658 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    659 }
    660 
    661 int
    662 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    663 {
    664 	struct iwn_ops *ops = &sc->ops;
    665 
    666 	ops->load_firmware = iwn4965_load_firmware;
    667 	ops->read_eeprom = iwn4965_read_eeprom;
    668 	ops->post_alive = iwn4965_post_alive;
    669 	ops->nic_config = iwn4965_nic_config;
    670 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    671 	ops->update_sched = iwn4965_update_sched;
    672 	ops->get_temperature = iwn4965_get_temperature;
    673 	ops->get_rssi = iwn4965_get_rssi;
    674 	ops->set_txpower = iwn4965_set_txpower;
    675 	ops->init_gains = iwn4965_init_gains;
    676 	ops->set_gains = iwn4965_set_gains;
    677 	ops->add_node = iwn4965_add_node;
    678 	ops->tx_done = iwn4965_tx_done;
    679 #ifndef IEEE80211_NO_HT
    680 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    681 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    682 #endif
    683 	sc->ntxqs = IWN4965_NTXQUEUES;
    684 	sc->ndmachnls = IWN4965_NDMACHNLS;
    685 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    686 	sc->rxonsz = IWN4965_RXONSZ;
    687 	sc->schedsz = IWN4965_SCHEDSZ;
    688 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    689 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    690 	sc->fwsz = IWN4965_FWSZ;
    691 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    692 	sc->limits = &iwn4965_sensitivity_limits;
    693 	sc->fwname = "iwlwifi-4965-2.ucode";
    694 	/* Override chains masks, ROM is known to be broken. */
    695 	sc->txchainmask = IWN_ANT_AB;
    696 	sc->rxchainmask = IWN_ANT_ABC;
    697 
    698 	return 0;
    699 }
    700 
    701 int
    702 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    703 {
    704 	struct iwn_ops *ops = &sc->ops;
    705 
    706 	ops->load_firmware = iwn5000_load_firmware;
    707 	ops->read_eeprom = iwn5000_read_eeprom;
    708 	ops->post_alive = iwn5000_post_alive;
    709 	ops->nic_config = iwn5000_nic_config;
    710 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    711 	ops->update_sched = iwn5000_update_sched;
    712 	ops->get_temperature = iwn5000_get_temperature;
    713 	ops->get_rssi = iwn5000_get_rssi;
    714 	ops->set_txpower = iwn5000_set_txpower;
    715 	ops->init_gains = iwn5000_init_gains;
    716 	ops->set_gains = iwn5000_set_gains;
    717 	ops->add_node = iwn5000_add_node;
    718 	ops->tx_done = iwn5000_tx_done;
    719 #ifndef IEEE80211_NO_HT
    720 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    721 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    722 #endif
    723 	sc->ntxqs = IWN5000_NTXQUEUES;
    724 	sc->ndmachnls = IWN5000_NDMACHNLS;
    725 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    726 	sc->rxonsz = IWN5000_RXONSZ;
    727 	sc->schedsz = IWN5000_SCHEDSZ;
    728 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    729 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    730 	sc->fwsz = IWN5000_FWSZ;
    731 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    732 
    733 	switch (sc->hw_type) {
    734 	case IWN_HW_REV_TYPE_5100:
    735 		sc->limits = &iwn5000_sensitivity_limits;
    736 		sc->fwname = "iwlwifi-5000-2.ucode";
    737 		/* Override chains masks, ROM is known to be broken. */
    738 		sc->txchainmask = IWN_ANT_B;
    739 		sc->rxchainmask = IWN_ANT_AB;
    740 		break;
    741 	case IWN_HW_REV_TYPE_5150:
    742 		sc->limits = &iwn5150_sensitivity_limits;
    743 		sc->fwname = "iwlwifi-5150-2.ucode";
    744 		break;
    745 	case IWN_HW_REV_TYPE_5300:
    746 	case IWN_HW_REV_TYPE_5350:
    747 		sc->limits = &iwn5000_sensitivity_limits;
    748 		sc->fwname = "iwlwifi-5000-2.ucode";
    749 		break;
    750 	case IWN_HW_REV_TYPE_1000:
    751 		sc->limits = &iwn1000_sensitivity_limits;
    752 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    753 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    754 			sc->fwname = "iwlwifi-100-5.ucode";
    755 		else
    756 			sc->fwname = "iwlwifi-1000-3.ucode";
    757 		break;
    758 	case IWN_HW_REV_TYPE_6000:
    759 		sc->limits = &iwn6000_sensitivity_limits;
    760 		sc->fwname = "iwlwifi-6000-4.ucode";
    761 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    762 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    763 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    764 			/* Override chains masks, ROM is known to be broken. */
    765 			sc->txchainmask = IWN_ANT_BC;
    766 			sc->rxchainmask = IWN_ANT_BC;
    767 		}
    768 		break;
    769 	case IWN_HW_REV_TYPE_6050:
    770 		sc->limits = &iwn6000_sensitivity_limits;
    771 		sc->fwname = "iwlwifi-6050-5.ucode";
    772 		break;
    773 	case IWN_HW_REV_TYPE_6005:
    774 		sc->limits = &iwn6000_sensitivity_limits;
    775 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    776 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    777 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    778 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1  ||
    779 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2  ||
    780 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    782 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    783 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    784 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    785 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    786 		}
    787 		/*
    788 		 * This covers:
    789 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
    790 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
    791 		 */
    792 		else
    793 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    794 		break;
    795 	case IWN_HW_REV_TYPE_2030:
    796 		sc->limits = &iwn2030_sensitivity_limits;
    797 		sc->fwname = "iwlwifi-2030-6.ucode";
    798 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    799 		break;
    800 	case IWN_HW_REV_TYPE_2000:
    801 		sc->limits = &iwn2000_sensitivity_limits;
    802 		sc->fwname = "iwlwifi-2000-6.ucode";
    803 		break;
    804 	case IWN_HW_REV_TYPE_135:
    805 		sc->limits = &iwn2000_sensitivity_limits;
    806 		sc->fwname = "iwlwifi-135-6.ucode";
    807 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    808 		break;
    809 	case IWN_HW_REV_TYPE_105:
    810 		sc->limits = &iwn2000_sensitivity_limits;
    811 		sc->fwname = "iwlwifi-105-6.ucode";
    812 		break;
    813 	default:
    814 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    815 		return ENOTSUP;
    816 	}
    817 	return 0;
    818 }
    819 
    820 /*
    821  * Attach the interface to 802.11 radiotap.
    822  */
    823 static void
    824 iwn_radiotap_attach(struct iwn_softc *sc)
    825 {
    826 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    827 
    828 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    829 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    830 	    &sc->sc_drvbpf);
    831 
    832 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    833 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    834 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    835 
    836 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    837 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    838 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    839 }
    840 
    841 static int
    842 iwn_detach(device_t self, int flags __unused)
    843 {
    844 	struct iwn_softc *sc = device_private(self);
    845 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    846 	int qid;
    847 
    848 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    849 		return 0;
    850 
    851 	callout_stop(&sc->calib_to);
    852 
    853 	/* Uninstall interrupt handler. */
    854 	if (sc->sc_ih != NULL)
    855 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    856 	if (sc->sc_pihp != NULL)
    857 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    858 	if (sc->sc_soft_ih != NULL)
    859 		softint_disestablish(sc->sc_soft_ih);
    860 
    861 	/* Free DMA resources. */
    862 	iwn_free_rx_ring(sc, &sc->rxq);
    863 	for (qid = 0; qid < sc->ntxqs; qid++)
    864 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    865 #ifdef IWN_USE_RBUF
    866 	iwn_free_rpool(sc);
    867 #endif
    868 	iwn_free_sched(sc);
    869 	iwn_free_kw(sc);
    870 	if (sc->ict != NULL)
    871 		iwn_free_ict(sc);
    872 	iwn_free_fwmem(sc);
    873 
    874 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    875 
    876 	ieee80211_ifdetach(&sc->sc_ic);
    877 	if_detach(ifp);
    878 
    879 	return 0;
    880 }
    881 
    882 #if 0
    883 /*
    884  * XXX Investigate if clearing the PCI retry timeout could eliminate
    885  * the repeated scan calls.  Also the calls to if_init and if_start
    886  * are similar to the effect of adding the call to ifioctl_common .
    887  */
    888 static void
    889 iwn_power(int why, void *arg)
    890 {
    891 	struct iwn_softc *sc = arg;
    892 	struct ifnet *ifp;
    893 	pcireg_t reg;
    894 	int s;
    895 
    896 	if (why != PWR_RESUME)
    897 		return;
    898 
    899 	/* Clear device-specific "PCI retry timeout" register (41h). */
    900 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    901 	if (reg & 0xff00)
    902 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    903 
    904 	s = splnet();
    905 	ifp = &sc->sc_ic.ic_if;
    906 	if (ifp->if_flags & IFF_UP) {
    907 		ifp->if_init(ifp);
    908 		if (ifp->if_flags & IFF_RUNNING)
    909 			ifp->if_start(ifp);
    910 	}
    911 	splx(s);
    912 }
    913 #endif
    914 
    915 static bool
    916 iwn_resume(device_t dv, const pmf_qual_t *qual)
    917 {
    918 	return true;
    919 }
    920 
    921 static int
    922 iwn_nic_lock(struct iwn_softc *sc)
    923 {
    924 	int ntries;
    925 
    926 	/* Request exclusive access to NIC. */
    927 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    928 
    929 	/* Spin until we actually get the lock. */
    930 	for (ntries = 0; ntries < 1000; ntries++) {
    931 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    932 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    933 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    934 			return 0;
    935 		DELAY(10);
    936 	}
    937 	return ETIMEDOUT;
    938 }
    939 
    940 static __inline void
    941 iwn_nic_unlock(struct iwn_softc *sc)
    942 {
    943 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    944 }
    945 
    946 static __inline uint32_t
    947 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    948 {
    949 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    950 	IWN_BARRIER_READ_WRITE(sc);
    951 	return IWN_READ(sc, IWN_PRPH_RDATA);
    952 }
    953 
    954 static __inline void
    955 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    956 {
    957 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    958 	IWN_BARRIER_WRITE(sc);
    959 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    960 }
    961 
    962 static __inline void
    963 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    964 {
    965 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    966 }
    967 
    968 static __inline void
    969 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    970 {
    971 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    972 }
    973 
    974 static __inline void
    975 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    976     const uint32_t *data, int count)
    977 {
    978 	for (; count > 0; count--, data++, addr += 4)
    979 		iwn_prph_write(sc, addr, *data);
    980 }
    981 
    982 static __inline uint32_t
    983 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    984 {
    985 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    986 	IWN_BARRIER_READ_WRITE(sc);
    987 	return IWN_READ(sc, IWN_MEM_RDATA);
    988 }
    989 
    990 static __inline void
    991 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    992 {
    993 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    994 	IWN_BARRIER_WRITE(sc);
    995 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    996 }
    997 
    998 #ifndef IEEE80211_NO_HT
    999 static __inline void
   1000 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
   1001 {
   1002 	uint32_t tmp;
   1003 
   1004 	tmp = iwn_mem_read(sc, addr & ~3);
   1005 	if (addr & 3)
   1006 		tmp = (tmp & 0x0000ffff) | data << 16;
   1007 	else
   1008 		tmp = (tmp & 0xffff0000) | data;
   1009 	iwn_mem_write(sc, addr & ~3, tmp);
   1010 }
   1011 #endif
   1012 
   1013 static __inline void
   1014 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1015     int count)
   1016 {
   1017 	for (; count > 0; count--, addr += 4)
   1018 		*data++ = iwn_mem_read(sc, addr);
   1019 }
   1020 
   1021 static __inline void
   1022 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1023     int count)
   1024 {
   1025 	for (; count > 0; count--, addr += 4)
   1026 		iwn_mem_write(sc, addr, val);
   1027 }
   1028 
   1029 static int
   1030 iwn_eeprom_lock(struct iwn_softc *sc)
   1031 {
   1032 	int i, ntries;
   1033 
   1034 	for (i = 0; i < 100; i++) {
   1035 		/* Request exclusive access to EEPROM. */
   1036 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1037 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1038 
   1039 		/* Spin until we actually get the lock. */
   1040 		for (ntries = 0; ntries < 100; ntries++) {
   1041 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1042 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1043 				return 0;
   1044 			DELAY(10);
   1045 		}
   1046 	}
   1047 	return ETIMEDOUT;
   1048 }
   1049 
   1050 static __inline void
   1051 iwn_eeprom_unlock(struct iwn_softc *sc)
   1052 {
   1053 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1054 }
   1055 
   1056 /*
   1057  * Initialize access by host to One Time Programmable ROM.
   1058  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1059  */
   1060 static int
   1061 iwn_init_otprom(struct iwn_softc *sc)
   1062 {
   1063 	uint16_t prev = 0, base, next;
   1064 	int count, error;
   1065 
   1066 	/* Wait for clock stabilization before accessing prph. */
   1067 	if ((error = iwn_clock_wait(sc)) != 0)
   1068 		return error;
   1069 
   1070 	if ((error = iwn_nic_lock(sc)) != 0)
   1071 		return error;
   1072 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1073 	DELAY(5);
   1074 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1075 	iwn_nic_unlock(sc);
   1076 
   1077 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1078 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1079 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1080 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1081 	}
   1082 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1083 	/* Clear ECC status. */
   1084 	IWN_SETBITS(sc, IWN_OTP_GP,
   1085 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1086 
   1087 	/*
   1088 	 * Find the block before last block (contains the EEPROM image)
   1089 	 * for HW without OTP shadow RAM.
   1090 	 */
   1091 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1092 		/* Switch to absolute addressing mode. */
   1093 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1094 		base = 0;
   1095 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1096 			error = iwn_read_prom_data(sc, base, &next, 2);
   1097 			if (error != 0)
   1098 				return error;
   1099 			if (next == 0)	/* End of linked-list. */
   1100 				break;
   1101 			prev = base;
   1102 			base = le16toh(next);
   1103 		}
   1104 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1105 			return EIO;
   1106 		/* Skip "next" word. */
   1107 		sc->prom_base = prev + 1;
   1108 	}
   1109 	return 0;
   1110 }
   1111 
   1112 static int
   1113 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1114 {
   1115 	uint8_t *out = data;
   1116 	uint32_t val, tmp;
   1117 	int ntries;
   1118 
   1119 	addr += sc->prom_base;
   1120 	for (; count > 0; count -= 2, addr++) {
   1121 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1122 		for (ntries = 0; ntries < 10; ntries++) {
   1123 			val = IWN_READ(sc, IWN_EEPROM);
   1124 			if (val & IWN_EEPROM_READ_VALID)
   1125 				break;
   1126 			DELAY(5);
   1127 		}
   1128 		if (ntries == 10) {
   1129 			aprint_error_dev(sc->sc_dev,
   1130 			    "timeout reading ROM at 0x%x\n", addr);
   1131 			return ETIMEDOUT;
   1132 		}
   1133 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1134 			/* OTPROM, check for ECC errors. */
   1135 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1136 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1137 				aprint_error_dev(sc->sc_dev,
   1138 				    "OTPROM ECC error at 0x%x\n", addr);
   1139 				return EIO;
   1140 			}
   1141 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1142 				/* Correctable ECC error, clear bit. */
   1143 				IWN_SETBITS(sc, IWN_OTP_GP,
   1144 				    IWN_OTP_GP_ECC_CORR_STTS);
   1145 			}
   1146 		}
   1147 		*out++ = val >> 16;
   1148 		if (count > 1)
   1149 			*out++ = val >> 24;
   1150 	}
   1151 	return 0;
   1152 }
   1153 
   1154 static int
   1155 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1156     bus_size_t size, bus_size_t alignment)
   1157 {
   1158 	int nsegs, error;
   1159 
   1160 	dma->tag = tag;
   1161 	dma->size = size;
   1162 
   1163 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1164 	    &dma->map);
   1165 	if (error != 0)
   1166 		goto fail;
   1167 
   1168 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1169 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1170 	if (error != 0)
   1171 		goto fail;
   1172 
   1173 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1174 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1175 	if (error != 0)
   1176 		goto fail;
   1177 
   1178 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1179 	    BUS_DMA_NOWAIT);
   1180 	if (error != 0)
   1181 		goto fail;
   1182 
   1183 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1184 	memset(dma->vaddr, 0, size);
   1185 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1186 
   1187 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1188 	if (kvap != NULL)
   1189 		*kvap = dma->vaddr;
   1190 
   1191 	return 0;
   1192 
   1193 fail:	iwn_dma_contig_free(dma);
   1194 	return error;
   1195 }
   1196 
   1197 static void
   1198 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1199 {
   1200 	if (dma->map != NULL) {
   1201 		if (dma->vaddr != NULL) {
   1202 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1203 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1204 			bus_dmamap_unload(dma->tag, dma->map);
   1205 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1206 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1207 			dma->vaddr = NULL;
   1208 		}
   1209 		bus_dmamap_destroy(dma->tag, dma->map);
   1210 		dma->map = NULL;
   1211 	}
   1212 }
   1213 
   1214 static int
   1215 iwn_alloc_sched(struct iwn_softc *sc)
   1216 {
   1217 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1218 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1219 	    (void **)&sc->sched, sc->schedsz, 1024);
   1220 }
   1221 
   1222 static void
   1223 iwn_free_sched(struct iwn_softc *sc)
   1224 {
   1225 	iwn_dma_contig_free(&sc->sched_dma);
   1226 }
   1227 
   1228 static int
   1229 iwn_alloc_kw(struct iwn_softc *sc)
   1230 {
   1231 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1232 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1233 	    4096);
   1234 }
   1235 
   1236 static void
   1237 iwn_free_kw(struct iwn_softc *sc)
   1238 {
   1239 	iwn_dma_contig_free(&sc->kw_dma);
   1240 }
   1241 
   1242 static int
   1243 iwn_alloc_ict(struct iwn_softc *sc)
   1244 {
   1245 	/* ICT table must be aligned on a 4KB boundary. */
   1246 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1247 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1248 }
   1249 
   1250 static void
   1251 iwn_free_ict(struct iwn_softc *sc)
   1252 {
   1253 	iwn_dma_contig_free(&sc->ict_dma);
   1254 }
   1255 
   1256 static int
   1257 iwn_alloc_fwmem(struct iwn_softc *sc)
   1258 {
   1259 	/* Must be aligned on a 16-byte boundary. */
   1260 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1261 	    sc->fwsz, 16);
   1262 }
   1263 
   1264 static void
   1265 iwn_free_fwmem(struct iwn_softc *sc)
   1266 {
   1267 	iwn_dma_contig_free(&sc->fw_dma);
   1268 }
   1269 
   1270 static int
   1271 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1272 {
   1273 	bus_size_t size;
   1274 	int i, error;
   1275 
   1276 	ring->cur = 0;
   1277 
   1278 	/* Allocate RX descriptors (256-byte aligned). */
   1279 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1280 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1281 	    (void **)&ring->desc, size, 256);
   1282 	if (error != 0) {
   1283 		aprint_error_dev(sc->sc_dev,
   1284 		    "could not allocate RX ring DMA memory\n");
   1285 		goto fail;
   1286 	}
   1287 
   1288 	/* Allocate RX status area (16-byte aligned). */
   1289 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1290 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1291 	if (error != 0) {
   1292 		aprint_error_dev(sc->sc_dev,
   1293 		    "could not allocate RX status DMA memory\n");
   1294 		goto fail;
   1295 	}
   1296 
   1297 	/*
   1298 	 * Allocate and map RX buffers.
   1299 	 */
   1300 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1301 		struct iwn_rx_data *data = &ring->data[i];
   1302 
   1303 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1304 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1305 		    &data->map);
   1306 		if (error != 0) {
   1307 			aprint_error_dev(sc->sc_dev,
   1308 			    "could not create RX buf DMA map\n");
   1309 			goto fail;
   1310 		}
   1311 
   1312 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1313 		if (data->m == NULL) {
   1314 			aprint_error_dev(sc->sc_dev,
   1315 			    "could not allocate RX mbuf\n");
   1316 			error = ENOBUFS;
   1317 			goto fail;
   1318 		}
   1319 
   1320 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1321 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1322 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1323 		if (error != 0) {
   1324 			aprint_error_dev(sc->sc_dev,
   1325 			    "can't not map mbuf (error %d)\n", error);
   1326 			goto fail;
   1327 		}
   1328 
   1329 		/* Set physical address of RX buffer (256-byte aligned). */
   1330 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1331 	}
   1332 
   1333 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1334 	    BUS_DMASYNC_PREWRITE);
   1335 
   1336 	return 0;
   1337 
   1338 fail:	iwn_free_rx_ring(sc, ring);
   1339 	return error;
   1340 }
   1341 
   1342 static void
   1343 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1344 {
   1345 	int ntries;
   1346 
   1347 	if (iwn_nic_lock(sc) == 0) {
   1348 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1349 		for (ntries = 0; ntries < 1000; ntries++) {
   1350 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1351 			    IWN_FH_RX_STATUS_IDLE)
   1352 				break;
   1353 			DELAY(10);
   1354 		}
   1355 		iwn_nic_unlock(sc);
   1356 	}
   1357 	ring->cur = 0;
   1358 	sc->last_rx_valid = 0;
   1359 }
   1360 
   1361 static void
   1362 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1363 {
   1364 	int i;
   1365 
   1366 	iwn_dma_contig_free(&ring->desc_dma);
   1367 	iwn_dma_contig_free(&ring->stat_dma);
   1368 
   1369 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1370 		struct iwn_rx_data *data = &ring->data[i];
   1371 
   1372 		if (data->m != NULL) {
   1373 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1374 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1375 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1376 			m_freem(data->m);
   1377 		}
   1378 		if (data->map != NULL)
   1379 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1380 	}
   1381 }
   1382 
   1383 static int
   1384 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1385 {
   1386 	bus_addr_t paddr;
   1387 	bus_size_t size;
   1388 	int i, error;
   1389 
   1390 	ring->qid = qid;
   1391 	ring->queued = 0;
   1392 	ring->cur = 0;
   1393 
   1394 	/* Allocate TX descriptors (256-byte aligned). */
   1395 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1396 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1397 	    (void **)&ring->desc, size, 256);
   1398 	if (error != 0) {
   1399 		aprint_error_dev(sc->sc_dev,
   1400 		    "could not allocate TX ring DMA memory\n");
   1401 		goto fail;
   1402 	}
   1403 	/*
   1404 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1405 	 * to allocate commands space for other rings.
   1406 	 * XXX Do we really need to allocate descriptors for other rings?
   1407 	 */
   1408 	if (qid > 4)
   1409 		return 0;
   1410 
   1411 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1412 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1413 	    (void **)&ring->cmd, size, 4);
   1414 	if (error != 0) {
   1415 		aprint_error_dev(sc->sc_dev,
   1416 		    "could not allocate TX cmd DMA memory\n");
   1417 		goto fail;
   1418 	}
   1419 
   1420 	paddr = ring->cmd_dma.paddr;
   1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1422 		struct iwn_tx_data *data = &ring->data[i];
   1423 
   1424 		data->cmd_paddr = paddr;
   1425 		data->scratch_paddr = paddr + 12;
   1426 		paddr += sizeof (struct iwn_tx_cmd);
   1427 
   1428 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1429 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1430 		    &data->map);
   1431 		if (error != 0) {
   1432 			aprint_error_dev(sc->sc_dev,
   1433 			    "could not create TX buf DMA map\n");
   1434 			goto fail;
   1435 		}
   1436 	}
   1437 	return 0;
   1438 
   1439 fail:	iwn_free_tx_ring(sc, ring);
   1440 	return error;
   1441 }
   1442 
   1443 static void
   1444 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1445 {
   1446 	int i;
   1447 
   1448 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1449 		struct iwn_tx_data *data = &ring->data[i];
   1450 
   1451 		if (data->m != NULL) {
   1452 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1453 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1454 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1455 			m_freem(data->m);
   1456 			data->m = NULL;
   1457 		}
   1458 	}
   1459 	/* Clear TX descriptors. */
   1460 	memset(ring->desc, 0, ring->desc_dma.size);
   1461 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1462 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1463 	sc->qfullmsk &= ~(1 << ring->qid);
   1464 	ring->queued = 0;
   1465 	ring->cur = 0;
   1466 }
   1467 
   1468 static void
   1469 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1470 {
   1471 	int i;
   1472 
   1473 	iwn_dma_contig_free(&ring->desc_dma);
   1474 	iwn_dma_contig_free(&ring->cmd_dma);
   1475 
   1476 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1477 		struct iwn_tx_data *data = &ring->data[i];
   1478 
   1479 		if (data->m != NULL) {
   1480 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1481 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1482 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1483 			m_freem(data->m);
   1484 		}
   1485 		if (data->map != NULL)
   1486 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1487 	}
   1488 }
   1489 
   1490 static void
   1491 iwn5000_ict_reset(struct iwn_softc *sc)
   1492 {
   1493 	/* Disable interrupts. */
   1494 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1495 
   1496 	/* Reset ICT table. */
   1497 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1498 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1499 	    BUS_DMASYNC_PREWRITE);
   1500 	sc->ict_cur = 0;
   1501 
   1502 	/* Set physical address of ICT table (4KB aligned). */
   1503 	DPRINTF(("enabling ICT\n"));
   1504 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1505 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1506 
   1507 	/* Enable periodic RX interrupt. */
   1508 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1509 	/* Switch to ICT interrupt mode in driver. */
   1510 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1511 
   1512 	/* Re-enable interrupts. */
   1513 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1514 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1515 }
   1516 
   1517 static int
   1518 iwn_read_eeprom(struct iwn_softc *sc)
   1519 {
   1520 	struct iwn_ops *ops = &sc->ops;
   1521 	struct ieee80211com *ic = &sc->sc_ic;
   1522 	uint16_t val;
   1523 	int error;
   1524 
   1525 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1526 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1527 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1528 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1529 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1530 	    "OTPROM" : "EEPROM"));
   1531 
   1532 	/* Adapter has to be powered on for EEPROM access to work. */
   1533 	if ((error = iwn_apm_init(sc)) != 0) {
   1534 		aprint_error_dev(sc->sc_dev,
   1535 		    "could not power ON adapter\n");
   1536 		return error;
   1537 	}
   1538 
   1539 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1540 		aprint_error_dev(sc->sc_dev,
   1541 		    "bad ROM signature\n");
   1542 		return EIO;
   1543 	}
   1544 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1545 		aprint_error_dev(sc->sc_dev,
   1546 		    "could not lock ROM (error=%d)\n", error);
   1547 		return error;
   1548 	}
   1549 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1550 		if ((error = iwn_init_otprom(sc)) != 0) {
   1551 			aprint_error_dev(sc->sc_dev,
   1552 			    "could not initialize OTPROM\n");
   1553 			return error;
   1554 		}
   1555 	}
   1556 
   1557 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1558 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1559 	/* Check if HT support is bonded out. */
   1560 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1561 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1562 
   1563 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1564 	sc->rfcfg = le16toh(val);
   1565 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1566 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1567 	if (sc->txchainmask == 0)
   1568 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1569 	if (sc->rxchainmask == 0)
   1570 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1571 
   1572 	/* Read MAC address. */
   1573 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
   1574 
   1575 	/* Read adapter-specific information from EEPROM. */
   1576 	ops->read_eeprom(sc);
   1577 
   1578 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1579 
   1580 	iwn_eeprom_unlock(sc);
   1581 	return 0;
   1582 }
   1583 
   1584 static void
   1585 iwn4965_read_eeprom(struct iwn_softc *sc)
   1586 {
   1587 	uint32_t addr;
   1588 	uint16_t val;
   1589 	int i;
   1590 
   1591 	/* Read regulatory domain (4 ASCII characters). */
   1592 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1593 
   1594 	/* Read the list of authorized channels (20MHz ones only). */
   1595 	for (i = 0; i < 5; i++) {
   1596 		addr = iwn4965_regulatory_bands[i];
   1597 		iwn_read_eeprom_channels(sc, i, addr);
   1598 	}
   1599 
   1600 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1601 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1602 	sc->maxpwr2GHz = val & 0xff;
   1603 	sc->maxpwr5GHz = val >> 8;
   1604 	/* Check that EEPROM values are within valid range. */
   1605 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1606 		sc->maxpwr5GHz = 38;
   1607 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1608 		sc->maxpwr2GHz = 38;
   1609 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1610 
   1611 	/* Read samples for each TX power group. */
   1612 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1613 	    sizeof sc->bands);
   1614 
   1615 	/* Read voltage at which samples were taken. */
   1616 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1617 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1618 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1619 
   1620 #ifdef IWN_DEBUG
   1621 	/* Print samples. */
   1622 	if (iwn_debug > 0) {
   1623 		for (i = 0; i < IWN_NBANDS; i++)
   1624 			iwn4965_print_power_group(sc, i);
   1625 	}
   1626 #endif
   1627 }
   1628 
   1629 #ifdef IWN_DEBUG
   1630 static void
   1631 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1632 {
   1633 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1634 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1635 	int j, c;
   1636 
   1637 	aprint_normal("===band %d===\n", i);
   1638 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1639 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1640 	for (c = 0; c < 2; c++) {
   1641 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1642 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1643 			    "power=%d pa_det=%d\n", c, j,
   1644 			    chans[0].samples[c][j].temp,
   1645 			    chans[0].samples[c][j].gain,
   1646 			    chans[0].samples[c][j].power,
   1647 			    chans[0].samples[c][j].pa_det);
   1648 		}
   1649 	}
   1650 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1651 	for (c = 0; c < 2; c++) {
   1652 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1653 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1654 			    "power=%d pa_det=%d\n", c, j,
   1655 			    chans[1].samples[c][j].temp,
   1656 			    chans[1].samples[c][j].gain,
   1657 			    chans[1].samples[c][j].power,
   1658 			    chans[1].samples[c][j].pa_det);
   1659 		}
   1660 	}
   1661 }
   1662 #endif
   1663 
   1664 static void
   1665 iwn5000_read_eeprom(struct iwn_softc *sc)
   1666 {
   1667 	struct iwn5000_eeprom_calib_hdr hdr;
   1668 	int32_t volt;
   1669 	uint32_t base, addr;
   1670 	uint16_t val;
   1671 	int i;
   1672 
   1673 	/* Read regulatory domain (4 ASCII characters). */
   1674 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1675 	base = le16toh(val);
   1676 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1677 	    sc->eeprom_domain, 4);
   1678 
   1679 	/* Read the list of authorized channels (20MHz ones only). */
   1680 	for (i = 0; i < 5; i++) {
   1681 		addr = base + iwn5000_regulatory_bands[i];
   1682 		iwn_read_eeprom_channels(sc, i, addr);
   1683 	}
   1684 
   1685 	/* Read enhanced TX power information for 6000 Series. */
   1686 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1687 		iwn_read_eeprom_enhinfo(sc);
   1688 
   1689 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1690 	base = le16toh(val);
   1691 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1692 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1693 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1694 	sc->calib_ver = hdr.version;
   1695 
   1696 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1697 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1698 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1699 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1700 		sc->eeprom_voltage = le16toh(hdr.volt);
   1701 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1702 		sc->eeprom_temp = le16toh(val);
   1703 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1704 		sc->eeprom_rawtemp = le16toh(val);
   1705 	}
   1706 
   1707 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1708 		/* Compute temperature offset. */
   1709 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1710 		sc->eeprom_temp = le16toh(val);
   1711 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1712 		volt = le16toh(val);
   1713 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1714 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1715 		    sc->eeprom_temp, volt, sc->temp_off));
   1716 	} else {
   1717 		/* Read crystal calibration. */
   1718 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1719 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1720 		DPRINTF(("crystal calibration 0x%08x\n",
   1721 		    le32toh(sc->eeprom_crystal)));
   1722 	}
   1723 }
   1724 
   1725 static void
   1726 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1727 {
   1728 	struct ieee80211com *ic = &sc->sc_ic;
   1729 	const struct iwn_chan_band *band = &iwn_bands[n];
   1730 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1731 	uint8_t chan;
   1732 	int i;
   1733 
   1734 	iwn_read_prom_data(sc, addr, channels,
   1735 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1736 
   1737 	for (i = 0; i < band->nchan; i++) {
   1738 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1739 			continue;
   1740 
   1741 		chan = band->chan[i];
   1742 
   1743 		if (n == 0) {	/* 2GHz band */
   1744 			ic->ic_channels[chan].ic_freq =
   1745 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1746 			ic->ic_channels[chan].ic_flags =
   1747 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1748 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1749 
   1750 		} else {	/* 5GHz band */
   1751 			/*
   1752 			 * Some adapters support channels 7, 8, 11 and 12
   1753 			 * both in the 2GHz and 4.9GHz bands.
   1754 			 * Because of limitations in our net80211 layer,
   1755 			 * we don't support them in the 4.9GHz band.
   1756 			 */
   1757 			if (chan <= 14)
   1758 				continue;
   1759 
   1760 			ic->ic_channels[chan].ic_freq =
   1761 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1762 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1763 			/* We have at least one valid 5GHz channel. */
   1764 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1765 		}
   1766 
   1767 		/* Is active scan allowed on this channel? */
   1768 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1769 			ic->ic_channels[chan].ic_flags |=
   1770 			    IEEE80211_CHAN_PASSIVE;
   1771 		}
   1772 
   1773 		/* Save maximum allowed TX power for this channel. */
   1774 		sc->maxpwr[chan] = channels[i].maxpwr;
   1775 
   1776 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1777 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1778 	}
   1779 }
   1780 
   1781 static void
   1782 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1783 {
   1784 	struct iwn_eeprom_enhinfo enhinfo[35];
   1785 	uint16_t val, base;
   1786 	int8_t maxpwr;
   1787 	uint8_t flags;
   1788 	int i;
   1789 
   1790 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1791 	base = le16toh(val);
   1792 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1793 	    enhinfo, sizeof enhinfo);
   1794 
   1795 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1796 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1797 		flags = enhinfo[i].flags;
   1798 		if (!(flags & IWN_ENHINFO_VALID))
   1799 			continue;	/* Skip invalid entries. */
   1800 
   1801 		maxpwr = 0;
   1802 		if (sc->txchainmask & IWN_ANT_A)
   1803 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1804 		if (sc->txchainmask & IWN_ANT_B)
   1805 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1806 		if (sc->txchainmask & IWN_ANT_C)
   1807 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1808 		if (sc->ntxchains == 2)
   1809 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1810 		else if (sc->ntxchains == 3)
   1811 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1812 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1813 
   1814 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1815 		sc->enh_maxpwr[i] = maxpwr;
   1816 	}
   1817 }
   1818 
   1819 static struct ieee80211_node *
   1820 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1821 {
   1822 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1823 }
   1824 
   1825 static void
   1826 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1827 {
   1828 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1829 	struct iwn_node *wn = (void *)ni;
   1830 	uint8_t rate;
   1831 	int ridx, i;
   1832 
   1833 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1834 	/* Start at lowest available bit-rate, AMRR will raise. */
   1835 	ni->ni_txrate = 0;
   1836 
   1837 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1838 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1839 		/* Map 802.11 rate to HW rate index. */
   1840 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1841 			if (iwn_rates[ridx].rate == rate)
   1842 				break;
   1843 		wn->ridx[i] = ridx;
   1844 	}
   1845 }
   1846 
   1847 static int
   1848 iwn_media_change(struct ifnet *ifp)
   1849 {
   1850 	struct iwn_softc *sc = ifp->if_softc;
   1851 	struct ieee80211com *ic = &sc->sc_ic;
   1852 	uint8_t rate, ridx;
   1853 	int error;
   1854 
   1855 	error = ieee80211_media_change(ifp);
   1856 	if (error != ENETRESET)
   1857 		return error;
   1858 
   1859 	if (ic->ic_fixed_rate != -1) {
   1860 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1861 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1862 		/* Map 802.11 rate to HW rate index. */
   1863 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1864 			if (iwn_rates[ridx].rate == rate)
   1865 				break;
   1866 		sc->fixed_ridx = ridx;
   1867 	}
   1868 
   1869 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1870 	    (IFF_UP | IFF_RUNNING)) {
   1871 		iwn_stop(ifp, 0);
   1872 		error = iwn_init(ifp);
   1873 	}
   1874 	return error;
   1875 }
   1876 
   1877 static int
   1878 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1879 {
   1880 	struct ifnet *ifp = ic->ic_ifp;
   1881 	struct iwn_softc *sc = ifp->if_softc;
   1882 	int error;
   1883 
   1884 	callout_stop(&sc->calib_to);
   1885 
   1886 	switch (nstate) {
   1887 	case IEEE80211_S_SCAN:
   1888 		/* XXX Do not abort a running scan. */
   1889 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1890 			if (ic->ic_state != nstate)
   1891 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1892 				    "while scanning(%d) ignored\n", nstate,
   1893 				    ic->ic_state);
   1894 			break;
   1895 		}
   1896 
   1897 		/* XXX Not sure if call and flags are needed. */
   1898 		ieee80211_node_table_reset(&ic->ic_scan);
   1899 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1900 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1901 
   1902 		/* Make the link LED blink while we're scanning. */
   1903 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1904 
   1905 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1906 			aprint_error_dev(sc->sc_dev,
   1907 			    "could not initiate scan\n");
   1908 			return error;
   1909 		}
   1910 		ic->ic_state = nstate;
   1911 		return 0;
   1912 
   1913 	case IEEE80211_S_ASSOC:
   1914 		if (ic->ic_state != IEEE80211_S_RUN)
   1915 			break;
   1916 		/* FALLTHROUGH */
   1917 	case IEEE80211_S_AUTH:
   1918 		/* Reset state to handle reassociations correctly. */
   1919 		sc->rxon.associd = 0;
   1920 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1921 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1922 
   1923 		/* Wait until we hear a beacon before we transmit */
   1924 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1925 			sc->sc_beacon_wait = 1;
   1926 
   1927 		if ((error = iwn_auth(sc)) != 0) {
   1928 			aprint_error_dev(sc->sc_dev,
   1929 			    "could not move to auth state\n");
   1930 			return error;
   1931 		}
   1932 		break;
   1933 
   1934 	case IEEE80211_S_RUN:
   1935 		/*
   1936 		 * RUN -> RUN transition; Just restart timers.
   1937 		 */
   1938 		if (ic->ic_state == IEEE80211_S_RUN) {
   1939 			sc->calib_cnt = 0;
   1940 			break;
   1941 		}
   1942 
   1943 		/* Wait until we hear a beacon before we transmit */
   1944 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1945 			sc->sc_beacon_wait = 1;
   1946 
   1947 		if ((error = iwn_run(sc)) != 0) {
   1948 			aprint_error_dev(sc->sc_dev,
   1949 			    "could not move to run state\n");
   1950 			return error;
   1951 		}
   1952 		break;
   1953 
   1954 	case IEEE80211_S_INIT:
   1955 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1956 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1957 		/*
   1958 		 * Purge the xmit queue so we don't have old frames
   1959 		 * during a new association attempt.
   1960 		 */
   1961 		sc->sc_beacon_wait = 0;
   1962 		ifp->if_flags &= ~IFF_OACTIVE;
   1963 		iwn_start(ifp);
   1964 		break;
   1965 	}
   1966 
   1967 	return sc->sc_newstate(ic, nstate, arg);
   1968 }
   1969 
   1970 static void
   1971 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1972 {
   1973 	struct iwn_softc *sc = arg;
   1974 	struct iwn_node *wn = (struct iwn_node *)ni;
   1975 
   1976 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1977 }
   1978 
   1979 static void
   1980 iwn_calib_timeout(void *arg)
   1981 {
   1982 	struct iwn_softc *sc = arg;
   1983 	struct ieee80211com *ic = &sc->sc_ic;
   1984 	int s;
   1985 
   1986 	s = splnet();
   1987 	if (ic->ic_fixed_rate == -1) {
   1988 		if (ic->ic_opmode == IEEE80211_M_STA)
   1989 			iwn_iter_func(sc, ic->ic_bss);
   1990 		else
   1991 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1992 	}
   1993 	/* Force automatic TX power calibration every 60 secs. */
   1994 	if (++sc->calib_cnt >= 120) {
   1995 		uint32_t flags = 0;
   1996 
   1997 		DPRINTF(("sending request for statistics\n"));
   1998 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   1999 		    sizeof flags, 1);
   2000 		sc->calib_cnt = 0;
   2001 	}
   2002 	splx(s);
   2003 
   2004 	/* Automatic rate control triggered every 500ms. */
   2005 	callout_schedule(&sc->calib_to, mstohz(500));
   2006 }
   2007 
   2008 /*
   2009  * Process an RX_PHY firmware notification.  This is usually immediately
   2010  * followed by an MPDU_RX_DONE notification.
   2011  */
   2012 static void
   2013 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2014     struct iwn_rx_data *data)
   2015 {
   2016 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   2017 
   2018 	DPRINTFN(2, ("received PHY stats\n"));
   2019 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2020 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2021 
   2022 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   2023 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   2024 	sc->last_rx_valid = 1;
   2025 }
   2026 
   2027 /*
   2028  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2029  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2030  */
   2031 static void
   2032 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2033     struct iwn_rx_data *data)
   2034 {
   2035 	struct iwn_ops *ops = &sc->ops;
   2036 	struct ieee80211com *ic = &sc->sc_ic;
   2037 	struct ifnet *ifp = ic->ic_ifp;
   2038 	struct iwn_rx_ring *ring = &sc->rxq;
   2039 	struct ieee80211_frame *wh;
   2040 	struct ieee80211_node *ni;
   2041 	struct mbuf *m, *m1;
   2042 	struct iwn_rx_stat *stat;
   2043 	char	*head;
   2044 	uint32_t flags;
   2045 	int error, len, rssi, s;
   2046 
   2047 	if (desc->type == IWN_MPDU_RX_DONE) {
   2048 		/* Check for prior RX_PHY notification. */
   2049 		if (!sc->last_rx_valid) {
   2050 			DPRINTF(("missing RX_PHY\n"));
   2051 			return;
   2052 		}
   2053 		sc->last_rx_valid = 0;
   2054 		stat = &sc->last_rx_stat;
   2055 	} else
   2056 		stat = (struct iwn_rx_stat *)(desc + 1);
   2057 
   2058 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2059 	    BUS_DMASYNC_POSTREAD);
   2060 
   2061 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2062 		aprint_error_dev(sc->sc_dev,
   2063 		    "invalid RX statistic header\n");
   2064 		return;
   2065 	}
   2066 	if (desc->type == IWN_MPDU_RX_DONE) {
   2067 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2068 		head = (char *)(mpdu + 1);
   2069 		len = le16toh(mpdu->len);
   2070 	} else {
   2071 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2072 		len = le16toh(stat->len);
   2073 	}
   2074 
   2075 	flags = le32toh(*(uint32_t *)(head + len));
   2076 
   2077 	/* Discard frames with a bad FCS early. */
   2078 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2079 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2080 		ifp->if_ierrors++;
   2081 		return;
   2082 	}
   2083 	/* Discard frames that are too short. */
   2084 	if (len < sizeof (*wh)) {
   2085 		DPRINTF(("frame too short: %d\n", len));
   2086 		ic->ic_stats.is_rx_tooshort++;
   2087 		ifp->if_ierrors++;
   2088 		return;
   2089 	}
   2090 
   2091 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2092 	if (m1 == NULL) {
   2093 		ic->ic_stats.is_rx_nobuf++;
   2094 		ifp->if_ierrors++;
   2095 		return;
   2096 	}
   2097 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2098 
   2099 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2100 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2101 	if (error != 0) {
   2102 		m_freem(m1);
   2103 
   2104 		/* Try to reload the old mbuf. */
   2105 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2106 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2107 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2108 		if (error != 0) {
   2109 			panic("%s: could not load old RX mbuf",
   2110 			    device_xname(sc->sc_dev));
   2111 		}
   2112 		/* Physical address may have changed. */
   2113 		ring->desc[ring->cur] =
   2114 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2115 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2116 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2117 		    BUS_DMASYNC_PREWRITE);
   2118 		ifp->if_ierrors++;
   2119 		return;
   2120 	}
   2121 
   2122 	m = data->m;
   2123 	data->m = m1;
   2124 	/* Update RX descriptor. */
   2125 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2126 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2127 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2128 	    BUS_DMASYNC_PREWRITE);
   2129 
   2130 	/* Finalize mbuf. */
   2131 	m_set_rcvif(m, ifp);
   2132 	m->m_data = head;
   2133 	m->m_pkthdr.len = m->m_len = len;
   2134 
   2135 	s = splnet();
   2136 
   2137 	/* Grab a reference to the source node. */
   2138 	wh = mtod(m, struct ieee80211_frame *);
   2139 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2140 
   2141 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2142 	/* NetBSD does decryption in ieee80211_input. */
   2143 
   2144 	rssi = ops->get_rssi(stat);
   2145 
   2146 	/* XXX Added for NetBSD: scans never stop without it */
   2147 	if (ic->ic_state == IEEE80211_S_SCAN)
   2148 		iwn_fix_channel(ic, m, stat);
   2149 
   2150 	if (sc->sc_drvbpf != NULL) {
   2151 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2152 
   2153 		tap->wr_flags = 0;
   2154 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2155 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2156 		tap->wr_chan_freq =
   2157 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2158 		tap->wr_chan_flags =
   2159 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2160 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2161 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2162 		tap->wr_tsft = stat->tstamp;
   2163 		switch (stat->rate) {
   2164 		/* CCK rates. */
   2165 		case  10: tap->wr_rate =   2; break;
   2166 		case  20: tap->wr_rate =   4; break;
   2167 		case  55: tap->wr_rate =  11; break;
   2168 		case 110: tap->wr_rate =  22; break;
   2169 		/* OFDM rates. */
   2170 		case 0xd: tap->wr_rate =  12; break;
   2171 		case 0xf: tap->wr_rate =  18; break;
   2172 		case 0x5: tap->wr_rate =  24; break;
   2173 		case 0x7: tap->wr_rate =  36; break;
   2174 		case 0x9: tap->wr_rate =  48; break;
   2175 		case 0xb: tap->wr_rate =  72; break;
   2176 		case 0x1: tap->wr_rate =  96; break;
   2177 		case 0x3: tap->wr_rate = 108; break;
   2178 		/* Unknown rate: should not happen. */
   2179 		default:  tap->wr_rate =   0;
   2180 		}
   2181 
   2182 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   2183 	}
   2184 
   2185 	/*
   2186 	 * If it's a beacon and we're waiting, then do the wakeup.
   2187 	 */
   2188 	if (sc->sc_beacon_wait) {
   2189 		uint8_t type, subtype;
   2190 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2191 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2192 		/*
   2193 		 * This assumes at this point we've received our own
   2194 		 * beacon.
   2195 		 */
   2196 		if (type == IEEE80211_FC0_TYPE_MGT &&
   2197 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
   2198 			sc->sc_beacon_wait = 0;
   2199 			ifp->if_flags &= ~IFF_OACTIVE;
   2200 			iwn_start(ifp);
   2201 		}
   2202 	}
   2203 
   2204 	/* Send the frame to the 802.11 layer. */
   2205 	ieee80211_input(ic, m, ni, rssi, 0);
   2206 
   2207 	/* Node is no longer needed. */
   2208 	ieee80211_free_node(ni);
   2209 
   2210 	splx(s);
   2211 }
   2212 
   2213 #ifndef IEEE80211_NO_HT
   2214 /* Process an incoming Compressed BlockAck. */
   2215 static void
   2216 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2217     struct iwn_rx_data *data)
   2218 {
   2219 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2220 	struct iwn_tx_ring *txq;
   2221 
   2222 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2223 	    BUS_DMASYNC_POSTREAD);
   2224 
   2225 	txq = &sc->txq[le16toh(ba->qid)];
   2226 	/* XXX TBD */
   2227 }
   2228 #endif
   2229 
   2230 /*
   2231  * Process a CALIBRATION_RESULT notification sent by the initialization
   2232  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2233  */
   2234 static void
   2235 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2236     struct iwn_rx_data *data)
   2237 {
   2238 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2239 	int len, idx = -1;
   2240 
   2241 	/* Runtime firmware should not send such a notification. */
   2242 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2243 		return;
   2244 
   2245 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2246 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2247 	    BUS_DMASYNC_POSTREAD);
   2248 
   2249 	switch (calib->code) {
   2250 	case IWN5000_PHY_CALIB_DC:
   2251 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2252 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2253 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2254 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2255 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2256 			idx = 0;
   2257 		break;
   2258 	case IWN5000_PHY_CALIB_LO:
   2259 		idx = 1;
   2260 		break;
   2261 	case IWN5000_PHY_CALIB_TX_IQ:
   2262 		idx = 2;
   2263 		break;
   2264 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2265 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2266 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2267 			idx = 3;
   2268 		break;
   2269 	case IWN5000_PHY_CALIB_BASE_BAND:
   2270 		idx = 4;
   2271 		break;
   2272 	}
   2273 	if (idx == -1)	/* Ignore other results. */
   2274 		return;
   2275 
   2276 	/* Save calibration result. */
   2277 	if (sc->calibcmd[idx].buf != NULL)
   2278 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2279 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2280 	if (sc->calibcmd[idx].buf == NULL) {
   2281 		DPRINTF(("not enough memory for calibration result %d\n",
   2282 		    calib->code));
   2283 		return;
   2284 	}
   2285 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2286 	    calib->code, len));
   2287 	sc->calibcmd[idx].len = len;
   2288 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2289 }
   2290 
   2291 /*
   2292  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2293  * The latter is sent by the firmware after each received beacon.
   2294  */
   2295 static void
   2296 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2297     struct iwn_rx_data *data)
   2298 {
   2299 	struct iwn_ops *ops = &sc->ops;
   2300 	struct ieee80211com *ic = &sc->sc_ic;
   2301 	struct iwn_calib_state *calib = &sc->calib;
   2302 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2303 	int temp;
   2304 
   2305 	/* Ignore statistics received during a scan. */
   2306 	if (ic->ic_state != IEEE80211_S_RUN)
   2307 		return;
   2308 
   2309 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2310 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2311 
   2312 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2313 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2314 
   2315 	/* Test if temperature has changed. */
   2316 	if (stats->general.temp != sc->rawtemp) {
   2317 		/* Convert "raw" temperature to degC. */
   2318 		sc->rawtemp = stats->general.temp;
   2319 		temp = ops->get_temperature(sc);
   2320 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2321 
   2322 		/* Update TX power if need be (4965AGN only). */
   2323 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2324 			iwn4965_power_calibration(sc, temp);
   2325 	}
   2326 
   2327 	if (desc->type != IWN_BEACON_STATISTICS)
   2328 		return;	/* Reply to a statistics request. */
   2329 
   2330 	sc->noise = iwn_get_noise(&stats->rx.general);
   2331 
   2332 	/* Test that RSSI and noise are present in stats report. */
   2333 	if (le32toh(stats->rx.general.flags) != 1) {
   2334 		DPRINTF(("received statistics without RSSI\n"));
   2335 		return;
   2336 	}
   2337 
   2338 	/*
   2339 	 * XXX Differential gain calibration makes the 6005 firmware
   2340 	 * crap out, so skip it for now.  This effectively disables
   2341 	 * sensitivity tuning as well.
   2342 	 */
   2343 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2344 		return;
   2345 
   2346 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2347 		iwn_collect_noise(sc, &stats->rx.general);
   2348 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2349 		iwn_tune_sensitivity(sc, &stats->rx);
   2350 }
   2351 
   2352 /*
   2353  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2354  * and 5000 adapters have different incompatible TX status formats.
   2355  */
   2356 static void
   2357 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2358     struct iwn_rx_data *data)
   2359 {
   2360 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2361 
   2362 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2363 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2364 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2365 }
   2366 
   2367 static void
   2368 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2369     struct iwn_rx_data *data)
   2370 {
   2371 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2372 
   2373 #ifdef notyet
   2374 	/* Reset TX scheduler slot. */
   2375 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2376 #endif
   2377 
   2378 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2379 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2380 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2381 }
   2382 
   2383 /*
   2384  * Adapter-independent backend for TX_DONE firmware notifications.
   2385  */
   2386 static void
   2387 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2388     uint8_t status)
   2389 {
   2390 	struct ieee80211com *ic = &sc->sc_ic;
   2391 	struct ifnet *ifp = ic->ic_ifp;
   2392 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2393 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2394 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2395 	int s;
   2396 
   2397 	s = splnet();
   2398 
   2399 	/* Update rate control statistics. */
   2400 	wn->amn.amn_txcnt++;
   2401 	if (ackfailcnt > 0)
   2402 		wn->amn.amn_retrycnt++;
   2403 
   2404 	if (status != 1 && status != 2)
   2405 		ifp->if_oerrors++;
   2406 	else
   2407 		ifp->if_opackets++;
   2408 
   2409 	/* Unmap and free mbuf. */
   2410 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2411 	    BUS_DMASYNC_POSTWRITE);
   2412 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2413 	m_freem(data->m);
   2414 	data->m = NULL;
   2415 	ieee80211_free_node(data->ni);
   2416 	data->ni = NULL;
   2417 
   2418 	sc->sc_tx_timer = 0;
   2419 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2420 		sc->qfullmsk &= ~(1 << ring->qid);
   2421 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2422 			ifp->if_flags &= ~IFF_OACTIVE;
   2423 			iwn_start(ifp);
   2424 		}
   2425 	}
   2426 
   2427 	splx(s);
   2428 }
   2429 
   2430 /*
   2431  * Process a "command done" firmware notification.  This is where we wakeup
   2432  * processes waiting for a synchronous command completion.
   2433  */
   2434 static void
   2435 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2436 {
   2437 	struct iwn_tx_ring *ring = &sc->txq[4];
   2438 	struct iwn_tx_data *data;
   2439 
   2440 	if ((desc->qid & 0xf) != 4)
   2441 		return;	/* Not a command ack. */
   2442 
   2443 	data = &ring->data[desc->idx];
   2444 
   2445 	/* If the command was mapped in an mbuf, free it. */
   2446 	if (data->m != NULL) {
   2447 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2448 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2449 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2450 		m_freem(data->m);
   2451 		data->m = NULL;
   2452 	}
   2453 	wakeup(&ring->desc[desc->idx]);
   2454 }
   2455 
   2456 /*
   2457  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2458  */
   2459 static void
   2460 iwn_notif_intr(struct iwn_softc *sc)
   2461 {
   2462 	struct iwn_ops *ops = &sc->ops;
   2463 	struct ieee80211com *ic = &sc->sc_ic;
   2464 	struct ifnet *ifp = ic->ic_ifp;
   2465 	uint16_t hw;
   2466 	int s;
   2467 
   2468 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2469 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2470 
   2471 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2472 	while (sc->rxq.cur != hw) {
   2473 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2474 		struct iwn_rx_desc *desc;
   2475 
   2476 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2477 		    BUS_DMASYNC_POSTREAD);
   2478 		desc = mtod(data->m, struct iwn_rx_desc *);
   2479 
   2480 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2481 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2482 
   2483 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2484 			iwn_cmd_done(sc, desc);
   2485 
   2486 		switch (desc->type) {
   2487 		case IWN_RX_PHY:
   2488 			iwn_rx_phy(sc, desc, data);
   2489 			break;
   2490 
   2491 		case IWN_RX_DONE:		/* 4965AGN only. */
   2492 		case IWN_MPDU_RX_DONE:
   2493 			/* An 802.11 frame has been received. */
   2494 			iwn_rx_done(sc, desc, data);
   2495 			break;
   2496 #ifndef IEEE80211_NO_HT
   2497 		case IWN_RX_COMPRESSED_BA:
   2498 			/* A Compressed BlockAck has been received. */
   2499 			iwn_rx_compressed_ba(sc, desc, data);
   2500 			break;
   2501 #endif
   2502 		case IWN_TX_DONE:
   2503 			/* An 802.11 frame has been transmitted. */
   2504 			ops->tx_done(sc, desc, data);
   2505 			break;
   2506 
   2507 		case IWN_RX_STATISTICS:
   2508 		case IWN_BEACON_STATISTICS:
   2509 			iwn_rx_statistics(sc, desc, data);
   2510 			break;
   2511 
   2512 		case IWN_BEACON_MISSED:
   2513 		{
   2514 			struct iwn_beacon_missed *miss =
   2515 			    (struct iwn_beacon_missed *)(desc + 1);
   2516 
   2517 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2518 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2519 			/*
   2520 			 * If more than 5 consecutive beacons are missed,
   2521 			 * reinitialize the sensitivity state machine.
   2522 			 */
   2523 			DPRINTF(("beacons missed %d/%d\n",
   2524 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2525 			if (ic->ic_state == IEEE80211_S_RUN &&
   2526 			    le32toh(miss->consecutive) > 5)
   2527 				(void)iwn_init_sensitivity(sc);
   2528 			break;
   2529 		}
   2530 		case IWN_UC_READY:
   2531 		{
   2532 			struct iwn_ucode_info *uc =
   2533 			    (struct iwn_ucode_info *)(desc + 1);
   2534 
   2535 			/* The microcontroller is ready. */
   2536 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2537 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2538 			DPRINTF(("microcode alive notification version=%d.%d "
   2539 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2540 			    uc->subtype, le32toh(uc->valid)));
   2541 
   2542 			if (le32toh(uc->valid) != 1) {
   2543 				aprint_error_dev(sc->sc_dev,
   2544 				    "microcontroller initialization "
   2545 				    "failed\n");
   2546 				break;
   2547 			}
   2548 			if (uc->subtype == IWN_UCODE_INIT) {
   2549 				/* Save microcontroller report. */
   2550 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2551 			}
   2552 			/* Save the address of the error log in SRAM. */
   2553 			sc->errptr = le32toh(uc->errptr);
   2554 			break;
   2555 		}
   2556 		case IWN_STATE_CHANGED:
   2557 		{
   2558 			uint32_t *status = (uint32_t *)(desc + 1);
   2559 
   2560 			/* Enabled/disabled notification. */
   2561 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2562 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2563 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2564 
   2565 			if (le32toh(*status) & 1) {
   2566 				/* The radio button has to be pushed. */
   2567 				aprint_error_dev(sc->sc_dev,
   2568 				    "Radio transmitter is off\n");
   2569 				/* Turn the interface down. */
   2570 				s = splnet();
   2571 				ifp->if_flags &= ~IFF_UP;
   2572 				iwn_stop(ifp, 1);
   2573 				splx(s);
   2574 				return;	/* No further processing. */
   2575 			}
   2576 			break;
   2577 		}
   2578 		case IWN_START_SCAN:
   2579 		{
   2580 			struct iwn_start_scan *scan =
   2581 			    (struct iwn_start_scan *)(desc + 1);
   2582 
   2583 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2584 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2585 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2586 			    scan->chan, le32toh(scan->status)));
   2587 
   2588 			/* Fix current channel. */
   2589 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2590 			break;
   2591 		}
   2592 		case IWN_STOP_SCAN:
   2593 		{
   2594 			struct iwn_stop_scan *scan =
   2595 			    (struct iwn_stop_scan *)(desc + 1);
   2596 
   2597 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2598 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2599 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2600 			    scan->nchan, scan->status, scan->chan));
   2601 
   2602 			if (scan->status == 1 && scan->chan <= 14 &&
   2603 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2604 				/*
   2605 				 * We just finished scanning 2GHz channels,
   2606 				 * start scanning 5GHz ones.
   2607 				 */
   2608 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2609 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2610 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2611 					break;
   2612 			}
   2613 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2614 			ieee80211_end_scan(ic);
   2615 			break;
   2616 		}
   2617 		case IWN5000_CALIBRATION_RESULT:
   2618 			iwn5000_rx_calib_results(sc, desc, data);
   2619 			break;
   2620 
   2621 		case IWN5000_CALIBRATION_DONE:
   2622 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2623 			wakeup(sc);
   2624 			break;
   2625 		}
   2626 
   2627 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2628 	}
   2629 
   2630 	/* Tell the firmware what we have processed. */
   2631 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2632 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2633 }
   2634 
   2635 /*
   2636  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2637  * from power-down sleep mode.
   2638  */
   2639 static void
   2640 iwn_wakeup_intr(struct iwn_softc *sc)
   2641 {
   2642 	int qid;
   2643 
   2644 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2645 
   2646 	/* Wakeup RX and TX rings. */
   2647 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2648 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2649 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2650 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2651 	}
   2652 }
   2653 
   2654 /*
   2655  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2656  * we can't debug the firmware because it is neither open source nor free, it
   2657  * can help us to identify certain classes of problems.
   2658  */
   2659 static void
   2660 iwn_fatal_intr(struct iwn_softc *sc)
   2661 {
   2662 	struct iwn_fw_dump dump;
   2663 	int i;
   2664 
   2665 	/* Force a complete recalibration on next init. */
   2666 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2667 
   2668 	/* Check that the error log address is valid. */
   2669 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2670 	    sc->errptr + sizeof (dump) >
   2671 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2672 		aprint_error_dev(sc->sc_dev,
   2673 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2674 		return;
   2675 	}
   2676 	if (iwn_nic_lock(sc) != 0) {
   2677 		aprint_error_dev(sc->sc_dev,
   2678 		    "could not read firmware error log\n");
   2679 		return;
   2680 	}
   2681 	/* Read firmware error log from SRAM. */
   2682 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2683 	    sizeof (dump) / sizeof (uint32_t));
   2684 	iwn_nic_unlock(sc);
   2685 
   2686 	if (dump.valid == 0) {
   2687 		aprint_error_dev(sc->sc_dev,
   2688 		    "firmware error log is empty\n");
   2689 		return;
   2690 	}
   2691 	aprint_error("firmware error log:\n");
   2692 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2693 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2694 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2695 	    dump.id);
   2696 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2697 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2698 	aprint_error("  error data      = 0x%08X%08X\n",
   2699 	    dump.error_data[0], dump.error_data[1]);
   2700 	aprint_error("  branch link     = 0x%08X%08X\n",
   2701 	    dump.branch_link[0], dump.branch_link[1]);
   2702 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2703 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2704 	aprint_error("  time            = %u\n", dump.time[0]);
   2705 
   2706 	/* Dump driver status (TX and RX rings) while we're here. */
   2707 	aprint_error("driver status:\n");
   2708 	for (i = 0; i < sc->ntxqs; i++) {
   2709 		struct iwn_tx_ring *ring = &sc->txq[i];
   2710 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2711 		    i, ring->qid, ring->cur, ring->queued);
   2712 	}
   2713 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2714 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2715 }
   2716 
   2717 static int
   2718 iwn_intr(void *arg)
   2719 {
   2720 	struct iwn_softc *sc = arg;
   2721 
   2722 	/* Disable interrupts. */
   2723 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2724 
   2725 	softint_schedule(sc->sc_soft_ih);
   2726 	return 1;
   2727 }
   2728 
   2729 static void
   2730 iwn_softintr(void *arg)
   2731 {
   2732 	struct iwn_softc *sc = arg;
   2733 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2734 	uint32_t r1, r2, tmp;
   2735 	int s;
   2736 
   2737 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2738 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2739 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2740 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2741 		tmp = 0;
   2742 		while (sc->ict[sc->ict_cur] != 0) {
   2743 			tmp |= sc->ict[sc->ict_cur];
   2744 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2745 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2746 		}
   2747 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2748 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2749 		tmp = le32toh(tmp);
   2750 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2751 			tmp = 0;
   2752 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2753 			tmp |= 0x8000;
   2754 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2755 		r2 = 0;	/* Unused. */
   2756 	} else {
   2757 		r1 = IWN_READ(sc, IWN_INT);
   2758 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2759 			return;	/* Hardware gone! */
   2760 		r2 = IWN_READ(sc, IWN_FH_INT);
   2761 	}
   2762 	if (r1 == 0 && r2 == 0) {
   2763 		goto out;	/* Interrupt not for us. */
   2764 	}
   2765 
   2766 	/* Acknowledge interrupts. */
   2767 	IWN_WRITE(sc, IWN_INT, r1);
   2768 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2769 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2770 
   2771 	if (r1 & IWN_INT_RF_TOGGLED) {
   2772 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2773 		aprint_error_dev(sc->sc_dev,
   2774 		    "RF switch: radio %s\n",
   2775 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2776 	}
   2777 	if (r1 & IWN_INT_CT_REACHED) {
   2778 		aprint_error_dev(sc->sc_dev,
   2779 		    "critical temperature reached!\n");
   2780 	}
   2781 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2782 		aprint_error_dev(sc->sc_dev,
   2783 		    "fatal firmware error\n");
   2784 		/* Dump firmware error log and stop. */
   2785 		iwn_fatal_intr(sc);
   2786 		s = splnet();
   2787 		ifp->if_flags &= ~IFF_UP;
   2788 		iwn_stop(ifp, 1);
   2789 		splx(s);
   2790 		return;
   2791 	}
   2792 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2793 	    (r2 & IWN_FH_INT_RX)) {
   2794 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2795 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2796 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2797 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2798 			iwn_notif_intr(sc);
   2799 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2800 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2801 				    IWN_INT_PERIODIC_ENA);
   2802 			}
   2803 		} else
   2804 			iwn_notif_intr(sc);
   2805 	}
   2806 
   2807 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2808 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2809 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2810 		wakeup(sc);	/* FH DMA transfer completed. */
   2811 	}
   2812 
   2813 	if (r1 & IWN_INT_ALIVE)
   2814 		wakeup(sc);	/* Firmware is alive. */
   2815 
   2816 	if (r1 & IWN_INT_WAKEUP)
   2817 		iwn_wakeup_intr(sc);
   2818 
   2819 out:
   2820 	/* Re-enable interrupts. */
   2821 	if (ifp->if_flags & IFF_UP)
   2822 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2823 }
   2824 
   2825 /*
   2826  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2827  * 5000 adapters use a slightly different format).
   2828  */
   2829 static void
   2830 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2831     uint16_t len)
   2832 {
   2833 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2834 
   2835 	*w = htole16(len + 8);
   2836 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2837 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2838 	    sizeof (uint16_t),
   2839 	    BUS_DMASYNC_PREWRITE);
   2840 	if (idx < IWN_SCHED_WINSZ) {
   2841 		*(w + IWN_TX_RING_COUNT) = *w;
   2842 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2843 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2844 		    (char *)(void *)sc->sched_dma.vaddr,
   2845 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2846 	}
   2847 }
   2848 
   2849 static void
   2850 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2851     uint16_t len)
   2852 {
   2853 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2854 
   2855 	*w = htole16(id << 12 | (len + 8));
   2856 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2857 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2858 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2859 	if (idx < IWN_SCHED_WINSZ) {
   2860 		*(w + IWN_TX_RING_COUNT) = *w;
   2861 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2862 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2863 		    (char *)(void *)sc->sched_dma.vaddr,
   2864 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2865 	}
   2866 }
   2867 
   2868 #ifdef notyet
   2869 static void
   2870 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2871 {
   2872 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2873 
   2874 	*w = (*w & htole16(0xf000)) | htole16(1);
   2875 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2876 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2877 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2878 	if (idx < IWN_SCHED_WINSZ) {
   2879 		*(w + IWN_TX_RING_COUNT) = *w;
   2880 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2881 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2882 		    (char *)(void *)sc->sched_dma.vaddr,
   2883 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2884 	}
   2885 }
   2886 #endif
   2887 
   2888 static int
   2889 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2890 {
   2891 	struct ieee80211com *ic = &sc->sc_ic;
   2892 	struct iwn_node *wn = (void *)ni;
   2893 	struct iwn_tx_ring *ring;
   2894 	struct iwn_tx_desc *desc;
   2895 	struct iwn_tx_data *data;
   2896 	struct iwn_tx_cmd *cmd;
   2897 	struct iwn_cmd_data *tx;
   2898 	const struct iwn_rate *rinfo;
   2899 	struct ieee80211_frame *wh;
   2900 	struct ieee80211_key *k = NULL;
   2901 	struct mbuf *m1;
   2902 	uint32_t flags;
   2903 	u_int hdrlen;
   2904 	bus_dma_segment_t *seg;
   2905 	uint8_t tid, ridx, txant, type;
   2906 	int i, totlen, error, pad;
   2907 
   2908 	const struct chanAccParams *cap;
   2909 	int noack;
   2910 	int hdrlen2;
   2911 
   2912 	wh = mtod(m, struct ieee80211_frame *);
   2913 	hdrlen = ieee80211_anyhdrsize(wh);
   2914 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2915 
   2916 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2917 	    sizeof (struct ieee80211_qosframe) :
   2918 	    sizeof (struct ieee80211_frame);
   2919 
   2920 	if (hdrlen != hdrlen2)
   2921 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2922 		hdrlen, hdrlen2);
   2923 
   2924 	/* XXX OpenBSD sets a different tid when using QOS */
   2925 	tid = 0;
   2926 	if (ieee80211_has_qos(wh)) {
   2927 		cap = &ic->ic_wme.wme_chanParams;
   2928 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2929 	}
   2930 	else
   2931 		noack = 0;
   2932 
   2933 	ring = &sc->txq[ac];
   2934 	desc = &ring->desc[ring->cur];
   2935 	data = &ring->data[ring->cur];
   2936 
   2937 	/* Choose a TX rate index. */
   2938 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2939 	    type != IEEE80211_FC0_TYPE_DATA) {
   2940 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2941 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2942 	} else if (ic->ic_fixed_rate != -1) {
   2943 		ridx = sc->fixed_ridx;
   2944 	} else
   2945 		ridx = wn->ridx[ni->ni_txrate];
   2946 	rinfo = &iwn_rates[ridx];
   2947 
   2948 	/* Encrypt the frame if need be. */
   2949 	/*
   2950 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2951 	 * in order to match old code and other drivers. Tests with
   2952 	 * tcpdump indicates that the order is irrelevant, however,
   2953 	 * as bpf produces unencrypted data for both ordering choices.
   2954 	 */
   2955 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2956 		k = ieee80211_crypto_encap(ic, ni, m);
   2957 		if (k == NULL) {
   2958 			m_freem(m);
   2959 			return ENOBUFS;
   2960 		}
   2961 		/* Packet header may have moved, reset our local pointer. */
   2962 		wh = mtod(m, struct ieee80211_frame *);
   2963 	}
   2964 	totlen = m->m_pkthdr.len;
   2965 
   2966 	if (sc->sc_drvbpf != NULL) {
   2967 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2968 
   2969 		tap->wt_flags = 0;
   2970 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2971 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2972 		tap->wt_rate = rinfo->rate;
   2973 		tap->wt_hwqueue = ac;
   2974 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2975 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2976 
   2977 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
   2978 	}
   2979 
   2980 	/* Prepare TX firmware command. */
   2981 	cmd = &ring->cmd[ring->cur];
   2982 	cmd->code = IWN_CMD_TX_DATA;
   2983 	cmd->flags = 0;
   2984 	cmd->qid = ring->qid;
   2985 	cmd->idx = ring->cur;
   2986 
   2987 	tx = (struct iwn_cmd_data *)cmd->data;
   2988 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2989 	tx->scratch = 0;	/* clear "scratch" area */
   2990 
   2991 	flags = 0;
   2992 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2993 		/* Unicast frame, check if an ACK is expected. */
   2994 		if (!noack)
   2995 			flags |= IWN_TX_NEED_ACK;
   2996 	}
   2997 
   2998 #ifdef notyet
   2999 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   3000 	if ((wh->i_fc[0] &
   3001 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   3002 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   3003 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   3004 #endif
   3005 
   3006 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   3007 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   3008 
   3009 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3010 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3011 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3012 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3013 			flags |= IWN_TX_NEED_RTS;
   3014 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3015 		    ridx >= IWN_RIDX_OFDM6) {
   3016 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3017 				flags |= IWN_TX_NEED_CTS;
   3018 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3019 				flags |= IWN_TX_NEED_RTS;
   3020 		}
   3021 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3022 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3023 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3024 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3025 				flags |= IWN_TX_NEED_PROTECTION;
   3026 			} else
   3027 				flags |= IWN_TX_FULL_TXOP;
   3028 		}
   3029 	}
   3030 
   3031 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3032 	    type != IEEE80211_FC0_TYPE_DATA)
   3033 		tx->id = sc->broadcast_id;
   3034 	else
   3035 		tx->id = wn->id;
   3036 
   3037 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3038 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3039 
   3040 #ifndef IEEE80211_STA_ONLY
   3041 		/* Tell HW to set timestamp in probe responses. */
   3042 		/* XXX NetBSD rev 1.11 added probe requests here but */
   3043 		/* probe requests do not take timestamps (from Bergamini). */
   3044 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3045 			flags |= IWN_TX_INSERT_TSTAMP;
   3046 #endif
   3047 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3048 		/* changes here. These are not needed (from Bergamini). */
   3049 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3050 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3051 			tx->timeout = htole16(3);
   3052 		else
   3053 			tx->timeout = htole16(2);
   3054 	} else
   3055 		tx->timeout = htole16(0);
   3056 
   3057 	if (hdrlen & 3) {
   3058 		/* First segment length must be a multiple of 4. */
   3059 		flags |= IWN_TX_NEED_PADDING;
   3060 		pad = 4 - (hdrlen & 3);
   3061 	} else
   3062 		pad = 0;
   3063 
   3064 	tx->len = htole16(totlen);
   3065 	tx->tid = tid;
   3066 	tx->rts_ntries = 60;
   3067 	tx->data_ntries = 15;
   3068 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3069 	tx->plcp = rinfo->plcp;
   3070 	tx->rflags = rinfo->flags;
   3071 	if (tx->id == sc->broadcast_id) {
   3072 		/* Group or management frame. */
   3073 		tx->linkq = 0;
   3074 		/* XXX Alternate between antenna A and B? */
   3075 		txant = IWN_LSB(sc->txchainmask);
   3076 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3077 	} else {
   3078 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3079 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3080 	}
   3081 	/* Set physical address of "scratch area". */
   3082 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3083 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3084 
   3085 	/* Copy 802.11 header in TX command. */
   3086 	/* XXX NetBSD changed this in rev 1.20 */
   3087 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3088 
   3089 	/* Trim 802.11 header. */
   3090 	m_adj(m, hdrlen);
   3091 	tx->security = 0;
   3092 	tx->flags = htole32(flags);
   3093 
   3094 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3095 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3096 	if (error != 0) {
   3097 		if (error != EFBIG) {
   3098 			aprint_error_dev(sc->sc_dev,
   3099 			    "can't map mbuf (error %d)\n", error);
   3100 			m_freem(m);
   3101 			return error;
   3102 		}
   3103 		/* Too many DMA segments, linearize mbuf. */
   3104 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3105 		if (m1 == NULL) {
   3106 			m_freem(m);
   3107 			return ENOBUFS;
   3108 		}
   3109 		if (m->m_pkthdr.len > MHLEN) {
   3110 			MCLGET(m1, M_DONTWAIT);
   3111 			if (!(m1->m_flags & M_EXT)) {
   3112 				m_freem(m);
   3113 				m_freem(m1);
   3114 				return ENOBUFS;
   3115 			}
   3116 		}
   3117 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3118 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3119 		m_freem(m);
   3120 		m = m1;
   3121 
   3122 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3123 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3124 		if (error != 0) {
   3125 			aprint_error_dev(sc->sc_dev,
   3126 			    "can't map mbuf (error %d)\n", error);
   3127 			m_freem(m);
   3128 			return error;
   3129 		}
   3130 	}
   3131 
   3132 	data->m = m;
   3133 	data->ni = ni;
   3134 
   3135 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3136 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3137 
   3138 	/* Fill TX descriptor. */
   3139 	desc->nsegs = 1 + data->map->dm_nsegs;
   3140 	/* First DMA segment is used by the TX command. */
   3141 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3142 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3143 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3144 	/* Other DMA segments are for data payload. */
   3145 	seg = data->map->dm_segs;
   3146 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3147 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3148 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3149 		    seg->ds_len << 4);
   3150 		seg++;
   3151 	}
   3152 
   3153 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3154 	    BUS_DMASYNC_PREWRITE);
   3155 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3156 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3157 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3158 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3159 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3160 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3161 
   3162 #ifdef notyet
   3163 	/* Update TX scheduler. */
   3164 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3165 #endif
   3166 
   3167 	/* Kick TX ring. */
   3168 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3169 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3170 
   3171 	/* Mark TX ring as full if we reach a certain threshold. */
   3172 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3173 		sc->qfullmsk |= 1 << ring->qid;
   3174 
   3175 	return 0;
   3176 }
   3177 
   3178 static void
   3179 iwn_start(struct ifnet *ifp)
   3180 {
   3181 	struct iwn_softc *sc = ifp->if_softc;
   3182 	struct ieee80211com *ic = &sc->sc_ic;
   3183 	struct ieee80211_node *ni;
   3184 	struct ether_header *eh;
   3185 	struct mbuf *m;
   3186 	int ac;
   3187 
   3188 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3189 		return;
   3190 
   3191 	for (;;) {
   3192 		if (sc->sc_beacon_wait == 1) {
   3193 			ifp->if_flags |= IFF_OACTIVE;
   3194 			break;
   3195 		}
   3196 
   3197 		if (sc->qfullmsk != 0) {
   3198 			ifp->if_flags |= IFF_OACTIVE;
   3199 			break;
   3200 		}
   3201 		/* Send pending management frames first. */
   3202 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3203 		if (m != NULL) {
   3204 			ni = M_GETCTX(m, struct ieee80211_node *);
   3205 			ac = 0;
   3206 			goto sendit;
   3207 		}
   3208 		if (ic->ic_state != IEEE80211_S_RUN)
   3209 			break;
   3210 
   3211 		/* Encapsulate and send data frames. */
   3212 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3213 		if (m == NULL)
   3214 			break;
   3215 		if (m->m_len < sizeof (*eh) &&
   3216 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3217 			ifp->if_oerrors++;
   3218 			continue;
   3219 		}
   3220 		eh = mtod(m, struct ether_header *);
   3221 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3222 		if (ni == NULL) {
   3223 			m_freem(m);
   3224 			ifp->if_oerrors++;
   3225 			continue;
   3226 		}
   3227 		/* classify mbuf so we can find which tx ring to use */
   3228 		if (ieee80211_classify(ic, m, ni) != 0) {
   3229 			m_freem(m);
   3230 			ieee80211_free_node(ni);
   3231 			ifp->if_oerrors++;
   3232 			continue;
   3233 		}
   3234 
   3235 		/* No QoS encapsulation for EAPOL frames. */
   3236 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3237 		    M_WME_GETAC(m) : WME_AC_BE;
   3238 
   3239 		if (sc->sc_beacon_wait == 0)
   3240 			bpf_mtap(ifp, m, BPF_D_OUT);
   3241 
   3242 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3243 			ieee80211_free_node(ni);
   3244 			ifp->if_oerrors++;
   3245 			continue;
   3246 		}
   3247 sendit:
   3248 		if (sc->sc_beacon_wait)
   3249 			continue;
   3250 
   3251 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   3252 
   3253 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3254 			ieee80211_free_node(ni);
   3255 			ifp->if_oerrors++;
   3256 			continue;
   3257 		}
   3258 
   3259 		sc->sc_tx_timer = 5;
   3260 		ifp->if_timer = 1;
   3261 	}
   3262 
   3263 	if (sc->sc_beacon_wait > 1)
   3264 		sc->sc_beacon_wait = 0;
   3265 }
   3266 
   3267 static void
   3268 iwn_watchdog(struct ifnet *ifp)
   3269 {
   3270 	struct iwn_softc *sc = ifp->if_softc;
   3271 
   3272 	ifp->if_timer = 0;
   3273 
   3274 	if (sc->sc_tx_timer > 0) {
   3275 		if (--sc->sc_tx_timer == 0) {
   3276 			aprint_error_dev(sc->sc_dev,
   3277 			    "device timeout\n");
   3278 			ifp->if_flags &= ~IFF_UP;
   3279 			iwn_stop(ifp, 1);
   3280 			ifp->if_oerrors++;
   3281 			return;
   3282 		}
   3283 		ifp->if_timer = 1;
   3284 	}
   3285 
   3286 	ieee80211_watchdog(&sc->sc_ic);
   3287 }
   3288 
   3289 static int
   3290 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3291 {
   3292 	struct iwn_softc *sc = ifp->if_softc;
   3293 	struct ieee80211com *ic = &sc->sc_ic;
   3294 	const struct sockaddr *sa;
   3295 	int s, error = 0;
   3296 
   3297 	s = splnet();
   3298 
   3299 	switch (cmd) {
   3300 	case SIOCSIFADDR:
   3301 		ifp->if_flags |= IFF_UP;
   3302 		/* FALLTHROUGH */
   3303 	case SIOCSIFFLAGS:
   3304 		/* XXX Added as it is in every NetBSD driver */
   3305 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3306 			break;
   3307 		if (ifp->if_flags & IFF_UP) {
   3308 			if (!(ifp->if_flags & IFF_RUNNING))
   3309 				error = iwn_init(ifp);
   3310 		} else {
   3311 			if (ifp->if_flags & IFF_RUNNING)
   3312 				iwn_stop(ifp, 1);
   3313 		}
   3314 		break;
   3315 
   3316 	case SIOCADDMULTI:
   3317 	case SIOCDELMULTI:
   3318 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3319 		error = (cmd == SIOCADDMULTI) ?
   3320 		    ether_addmulti(sa, &sc->sc_ec) :
   3321 		    ether_delmulti(sa, &sc->sc_ec);
   3322 
   3323 		if (error == ENETRESET)
   3324 			error = 0;
   3325 		break;
   3326 
   3327 	default:
   3328 		error = ieee80211_ioctl(ic, cmd, data);
   3329 	}
   3330 
   3331 	if (error == ENETRESET) {
   3332 		error = 0;
   3333 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3334 		    (IFF_UP | IFF_RUNNING)) {
   3335 			iwn_stop(ifp, 0);
   3336 			error = iwn_init(ifp);
   3337 		}
   3338 	}
   3339 
   3340 	splx(s);
   3341 	return error;
   3342 }
   3343 
   3344 /*
   3345  * Send a command to the firmware.
   3346  */
   3347 static int
   3348 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3349 {
   3350 	struct iwn_tx_ring *ring = &sc->txq[4];
   3351 	struct iwn_tx_desc *desc;
   3352 	struct iwn_tx_data *data;
   3353 	struct iwn_tx_cmd *cmd;
   3354 	struct mbuf *m;
   3355 	bus_addr_t paddr;
   3356 	int totlen, error;
   3357 
   3358 	desc = &ring->desc[ring->cur];
   3359 	data = &ring->data[ring->cur];
   3360 	totlen = 4 + size;
   3361 
   3362 	if (size > sizeof cmd->data) {
   3363 		/* Command is too large to fit in a descriptor. */
   3364 		if (totlen > MCLBYTES)
   3365 			return EINVAL;
   3366 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3367 		if (m == NULL)
   3368 			return ENOMEM;
   3369 		if (totlen > MHLEN) {
   3370 			MCLGET(m, M_DONTWAIT);
   3371 			if (!(m->m_flags & M_EXT)) {
   3372 				m_freem(m);
   3373 				return ENOMEM;
   3374 			}
   3375 		}
   3376 		cmd = mtod(m, struct iwn_tx_cmd *);
   3377 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3378 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3379 		if (error != 0) {
   3380 			m_freem(m);
   3381 			return error;
   3382 		}
   3383 		data->m = m;
   3384 		paddr = data->map->dm_segs[0].ds_addr;
   3385 	} else {
   3386 		cmd = &ring->cmd[ring->cur];
   3387 		paddr = data->cmd_paddr;
   3388 	}
   3389 
   3390 	cmd->code = code;
   3391 	cmd->flags = 0;
   3392 	cmd->qid = ring->qid;
   3393 	cmd->idx = ring->cur;
   3394 	/*
   3395 	 * Coverity:[OUT_OF_BOUNDS]
   3396 	 * false positive since, allocated in mbuf if it does not fit
   3397 	 */
   3398 	memcpy(cmd->data, buf, size);
   3399 
   3400 	desc->nsegs = 1;
   3401 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3402 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3403 
   3404 	if (size > sizeof cmd->data) {
   3405 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3406 		    BUS_DMASYNC_PREWRITE);
   3407 	} else {
   3408 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3409 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3410 		    totlen, BUS_DMASYNC_PREWRITE);
   3411 	}
   3412 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3413 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3414 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3415 
   3416 #ifdef notyet
   3417 	/* Update TX scheduler. */
   3418 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3419 #endif
   3420 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3421 
   3422 	/* Kick command ring. */
   3423 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3424 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3425 
   3426 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3427 }
   3428 
   3429 static int
   3430 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3431 {
   3432 	struct iwn4965_node_info hnode;
   3433 	char *src, *dst;
   3434 
   3435 	/*
   3436 	 * We use the node structure for 5000 Series internally (it is
   3437 	 * a superset of the one for 4965AGN). We thus copy the common
   3438 	 * fields before sending the command.
   3439 	 */
   3440 	src = (char *)node;
   3441 	dst = (char *)&hnode;
   3442 	memcpy(dst, src, 48);
   3443 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3444 	memcpy(dst + 48, src + 72, 20);
   3445 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3446 }
   3447 
   3448 static int
   3449 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3450 {
   3451 	/* Direct mapping. */
   3452 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3453 }
   3454 
   3455 static int
   3456 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3457 {
   3458 	struct iwn_node *wn = (void *)ni;
   3459 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3460 	struct iwn_cmd_link_quality linkq;
   3461 	const struct iwn_rate *rinfo;
   3462 	uint8_t txant;
   3463 	int i, txrate;
   3464 
   3465 	/* Use the first valid TX antenna. */
   3466 	txant = IWN_LSB(sc->txchainmask);
   3467 
   3468 	memset(&linkq, 0, sizeof linkq);
   3469 	linkq.id = wn->id;
   3470 	linkq.antmsk_1stream = txant;
   3471 	linkq.antmsk_2stream = IWN_ANT_AB;
   3472 	linkq.ampdu_max = 31;
   3473 	linkq.ampdu_threshold = 3;
   3474 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3475 
   3476 	/* Start at highest available bit-rate. */
   3477 	txrate = rs->rs_nrates - 1;
   3478 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3479 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3480 		linkq.retry[i].plcp = rinfo->plcp;
   3481 		linkq.retry[i].rflags = rinfo->flags;
   3482 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3483 		/* Next retry at immediate lower bit-rate. */
   3484 		if (txrate > 0)
   3485 			txrate--;
   3486 	}
   3487 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3488 }
   3489 
   3490 /*
   3491  * Broadcast node is used to send group-addressed and management frames.
   3492  */
   3493 static int
   3494 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3495 {
   3496 	struct iwn_ops *ops = &sc->ops;
   3497 	struct iwn_node_info node;
   3498 	struct iwn_cmd_link_quality linkq;
   3499 	const struct iwn_rate *rinfo;
   3500 	uint8_t txant;
   3501 	int i, error;
   3502 
   3503 	memset(&node, 0, sizeof node);
   3504 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3505 	node.id = sc->broadcast_id;
   3506 	DPRINTF(("adding broadcast node\n"));
   3507 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3508 		return error;
   3509 
   3510 	/* Use the first valid TX antenna. */
   3511 	txant = IWN_LSB(sc->txchainmask);
   3512 
   3513 	memset(&linkq, 0, sizeof linkq);
   3514 	linkq.id = sc->broadcast_id;
   3515 	linkq.antmsk_1stream = txant;
   3516 	linkq.antmsk_2stream = IWN_ANT_AB;
   3517 	linkq.ampdu_max = 64;
   3518 	linkq.ampdu_threshold = 3;
   3519 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3520 
   3521 	/* Use lowest mandatory bit-rate. */
   3522 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3523 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3524 	linkq.retry[0].plcp = rinfo->plcp;
   3525 	linkq.retry[0].rflags = rinfo->flags;
   3526 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3527 	/* Use same bit-rate for all TX retries. */
   3528 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3529 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3530 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3531 	}
   3532 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3533 }
   3534 
   3535 static void
   3536 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3537 {
   3538 	struct iwn_cmd_led led;
   3539 
   3540 	/* Clear microcode LED ownership. */
   3541 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3542 
   3543 	led.which = which;
   3544 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3545 	led.off = off;
   3546 	led.on = on;
   3547 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3548 }
   3549 
   3550 /*
   3551  * Set the critical temperature at which the firmware will stop the radio
   3552  * and notify us.
   3553  */
   3554 static int
   3555 iwn_set_critical_temp(struct iwn_softc *sc)
   3556 {
   3557 	struct iwn_critical_temp crit;
   3558 	int32_t temp;
   3559 
   3560 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3561 
   3562 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3563 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3564 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3565 		temp = IWN_CTOK(110);
   3566 	else
   3567 		temp = 110;
   3568 	memset(&crit, 0, sizeof crit);
   3569 	crit.tempR = htole32(temp);
   3570 	DPRINTF(("setting critical temperature to %d\n", temp));
   3571 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3572 }
   3573 
   3574 static int
   3575 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3576 {
   3577 	struct iwn_cmd_timing cmd;
   3578 	uint64_t val, mod;
   3579 
   3580 	memset(&cmd, 0, sizeof cmd);
   3581 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3582 	cmd.bintval = htole16(ni->ni_intval);
   3583 	cmd.lintval = htole16(10);
   3584 
   3585 	/* Compute remaining time until next beacon. */
   3586 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3587 	mod = le64toh(cmd.tstamp) % val;
   3588 	cmd.binitval = htole32((uint32_t)(val - mod));
   3589 
   3590 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3591 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3592 
   3593 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3594 }
   3595 
   3596 static void
   3597 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3598 {
   3599 	/* Adjust TX power if need be (delta >= 3 degC). */
   3600 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3601 	if (abs(temp - sc->temp) >= 3) {
   3602 		/* Record temperature of last calibration. */
   3603 		sc->temp = temp;
   3604 		(void)iwn4965_set_txpower(sc, 1);
   3605 	}
   3606 }
   3607 
   3608 /*
   3609  * Set TX power for current channel (each rate has its own power settings).
   3610  * This function takes into account the regulatory information from EEPROM,
   3611  * the current temperature and the current voltage.
   3612  */
   3613 static int
   3614 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3615 {
   3616 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3617 #define fdivround(a, b, n)	\
   3618 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3619 /* Linear interpolation. */
   3620 #define interpolate(x, x1, y1, x2, y2, n)	\
   3621 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3622 
   3623 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3624 	struct ieee80211com *ic = &sc->sc_ic;
   3625 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3626 	struct ieee80211_channel *ch;
   3627 	struct iwn4965_cmd_txpower cmd;
   3628 	struct iwn4965_eeprom_chan_samples *chans;
   3629 	const uint8_t *rf_gain, *dsp_gain;
   3630 	int32_t vdiff, tdiff;
   3631 	int i, c, grp, maxpwr;
   3632 	uint8_t chan;
   3633 
   3634 	/* Retrieve current channel from last RXON. */
   3635 	chan = sc->rxon.chan;
   3636 	DPRINTF(("setting TX power for channel %d\n", chan));
   3637 	ch = &ic->ic_channels[chan];
   3638 
   3639 	memset(&cmd, 0, sizeof cmd);
   3640 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3641 	cmd.chan = chan;
   3642 
   3643 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3644 		maxpwr   = sc->maxpwr5GHz;
   3645 		rf_gain  = iwn4965_rf_gain_5ghz;
   3646 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3647 	} else {
   3648 		maxpwr   = sc->maxpwr2GHz;
   3649 		rf_gain  = iwn4965_rf_gain_2ghz;
   3650 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3651 	}
   3652 
   3653 	/* Compute voltage compensation. */
   3654 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3655 	if (vdiff > 0)
   3656 		vdiff *= 2;
   3657 	if (abs(vdiff) > 2)
   3658 		vdiff = 0;
   3659 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3660 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3661 
   3662 	/* Get channel attenuation group. */
   3663 	if (chan <= 20)		/* 1-20 */
   3664 		grp = 4;
   3665 	else if (chan <= 43)	/* 34-43 */
   3666 		grp = 0;
   3667 	else if (chan <= 70)	/* 44-70 */
   3668 		grp = 1;
   3669 	else if (chan <= 124)	/* 71-124 */
   3670 		grp = 2;
   3671 	else			/* 125-200 */
   3672 		grp = 3;
   3673 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3674 
   3675 	/* Get channel sub-band. */
   3676 	for (i = 0; i < IWN_NBANDS; i++)
   3677 		if (sc->bands[i].lo != 0 &&
   3678 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3679 			break;
   3680 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3681 		return EINVAL;
   3682 	chans = sc->bands[i].chans;
   3683 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3684 
   3685 	for (c = 0; c < 2; c++) {
   3686 		uint8_t power, gain, temp;
   3687 		int maxchpwr, pwr, ridx, idx;
   3688 
   3689 		power = interpolate(chan,
   3690 		    chans[0].num, chans[0].samples[c][1].power,
   3691 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3692 		gain  = interpolate(chan,
   3693 		    chans[0].num, chans[0].samples[c][1].gain,
   3694 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3695 		temp  = interpolate(chan,
   3696 		    chans[0].num, chans[0].samples[c][1].temp,
   3697 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3698 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3699 		    c, power, gain, temp));
   3700 
   3701 		/* Compute temperature compensation. */
   3702 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3703 		DPRINTF(("temperature compensation=%d (current=%d, "
   3704 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3705 
   3706 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3707 			/* Convert dBm to half-dBm. */
   3708 			maxchpwr = sc->maxpwr[chan] * 2;
   3709 			if ((ridx / 8) & 1)
   3710 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3711 
   3712 			pwr = maxpwr;
   3713 
   3714 			/* Adjust TX power based on rate. */
   3715 			if ((ridx % 8) == 5)
   3716 				pwr -= 15;	/* OFDM48: -7.5dB */
   3717 			else if ((ridx % 8) == 6)
   3718 				pwr -= 17;	/* OFDM54: -8.5dB */
   3719 			else if ((ridx % 8) == 7)
   3720 				pwr -= 20;	/* OFDM60: -10dB */
   3721 			else
   3722 				pwr -= 10;	/* Others: -5dB */
   3723 
   3724 			/* Do not exceed channel max TX power. */
   3725 			if (pwr > maxchpwr)
   3726 				pwr = maxchpwr;
   3727 
   3728 			idx = gain - (pwr - power) - tdiff - vdiff;
   3729 			if ((ridx / 8) & 1)	/* MIMO */
   3730 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3731 
   3732 			if (cmd.band == 0)
   3733 				idx += 9;	/* 5GHz */
   3734 			if (ridx == IWN_RIDX_MAX)
   3735 				idx += 5;	/* CCK */
   3736 
   3737 			/* Make sure idx stays in a valid range. */
   3738 			if (idx < 0)
   3739 				idx = 0;
   3740 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3741 				idx = IWN4965_MAX_PWR_INDEX;
   3742 
   3743 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3744 			    c, ridx, idx));
   3745 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3746 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3747 		}
   3748 	}
   3749 
   3750 	DPRINTF(("setting TX power for chan %d\n", chan));
   3751 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3752 
   3753 #undef interpolate
   3754 #undef fdivround
   3755 }
   3756 
   3757 static int
   3758 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3759 {
   3760 	struct iwn5000_cmd_txpower cmd;
   3761 	int cmdid;
   3762 
   3763 	/*
   3764 	 * TX power calibration is handled automatically by the firmware
   3765 	 * for 5000 Series.
   3766 	 */
   3767 	memset(&cmd, 0, sizeof cmd);
   3768 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3769 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3770 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3771 	DPRINTF(("setting TX power\n"));
   3772 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
   3773 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
   3774 	else
   3775 		cmdid = IWN_CMD_TXPOWER_DBM;
   3776 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
   3777 }
   3778 
   3779 /*
   3780  * Retrieve the maximum RSSI (in dBm) among receivers.
   3781  */
   3782 static int
   3783 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3784 {
   3785 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3786 	uint8_t mask, agc;
   3787 	int rssi;
   3788 
   3789 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3790 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3791 
   3792 	rssi = 0;
   3793 	if (mask & IWN_ANT_A)
   3794 		rssi = MAX(rssi, phy->rssi[0]);
   3795 	if (mask & IWN_ANT_B)
   3796 		rssi = MAX(rssi, phy->rssi[2]);
   3797 	if (mask & IWN_ANT_C)
   3798 		rssi = MAX(rssi, phy->rssi[4]);
   3799 
   3800 	return rssi - agc - IWN_RSSI_TO_DBM;
   3801 }
   3802 
   3803 static int
   3804 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3805 {
   3806 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3807 	uint8_t agc;
   3808 	int rssi;
   3809 
   3810 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3811 
   3812 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3813 		   le16toh(phy->rssi[1]) & 0xff);
   3814 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3815 
   3816 	return rssi - agc - IWN_RSSI_TO_DBM;
   3817 }
   3818 
   3819 /*
   3820  * Retrieve the average noise (in dBm) among receivers.
   3821  */
   3822 static int
   3823 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3824 {
   3825 	int i, total, nbant, noise;
   3826 
   3827 	total = nbant = 0;
   3828 	for (i = 0; i < 3; i++) {
   3829 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3830 			continue;
   3831 		total += noise;
   3832 		nbant++;
   3833 	}
   3834 	/* There should be at least one antenna but check anyway. */
   3835 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3836 }
   3837 
   3838 /*
   3839  * Compute temperature (in degC) from last received statistics.
   3840  */
   3841 static int
   3842 iwn4965_get_temperature(struct iwn_softc *sc)
   3843 {
   3844 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3845 	int32_t r1, r2, r3, r4, temp;
   3846 
   3847 	r1 = le32toh(uc->temp[0].chan20MHz);
   3848 	r2 = le32toh(uc->temp[1].chan20MHz);
   3849 	r3 = le32toh(uc->temp[2].chan20MHz);
   3850 	r4 = le32toh(sc->rawtemp);
   3851 
   3852 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3853 		return 0;
   3854 
   3855 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3856 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3857 	/* Compute temperature in Kelvin. */
   3858 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3859 	temp = (temp * 97) / 100 + 8;
   3860 
   3861 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3862 	return IWN_KTOC(temp);
   3863 }
   3864 
   3865 static int
   3866 iwn5000_get_temperature(struct iwn_softc *sc)
   3867 {
   3868 	int32_t temp;
   3869 
   3870 	/*
   3871 	 * Temperature is not used by the driver for 5000 Series because
   3872 	 * TX power calibration is handled by firmware.  We export it to
   3873 	 * users through the sensor framework though.
   3874 	 */
   3875 	temp = le32toh(sc->rawtemp);
   3876 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3877 		temp = (temp / -5) + sc->temp_off;
   3878 		temp = IWN_KTOC(temp);
   3879 	}
   3880 	return temp;
   3881 }
   3882 
   3883 /*
   3884  * Initialize sensitivity calibration state machine.
   3885  */
   3886 static int
   3887 iwn_init_sensitivity(struct iwn_softc *sc)
   3888 {
   3889 	struct iwn_ops *ops = &sc->ops;
   3890 	struct iwn_calib_state *calib = &sc->calib;
   3891 	uint32_t flags;
   3892 	int error;
   3893 
   3894 	/* Reset calibration state machine. */
   3895 	memset(calib, 0, sizeof (*calib));
   3896 	calib->state = IWN_CALIB_STATE_INIT;
   3897 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3898 	/* Set initial correlation values. */
   3899 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3900 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3901 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3902 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3903 	calib->cck_x4      = 125;
   3904 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3905 	calib->energy_cck  = sc->limits->energy_cck;
   3906 
   3907 	/* Write initial sensitivity. */
   3908 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3909 		return error;
   3910 
   3911 	/* Write initial gains. */
   3912 	if ((error = ops->init_gains(sc)) != 0)
   3913 		return error;
   3914 
   3915 	/* Request statistics at each beacon interval. */
   3916 	flags = 0;
   3917 	DPRINTF(("sending request for statistics\n"));
   3918 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3919 }
   3920 
   3921 /*
   3922  * Collect noise and RSSI statistics for the first 20 beacons received
   3923  * after association and use them to determine connected antennas and
   3924  * to set differential gains.
   3925  */
   3926 static void
   3927 iwn_collect_noise(struct iwn_softc *sc,
   3928     const struct iwn_rx_general_stats *stats)
   3929 {
   3930 	struct iwn_ops *ops = &sc->ops;
   3931 	struct iwn_calib_state *calib = &sc->calib;
   3932 	uint32_t val;
   3933 	int i;
   3934 
   3935 	/* Accumulate RSSI and noise for all 3 antennas. */
   3936 	for (i = 0; i < 3; i++) {
   3937 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3938 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3939 	}
   3940 	/* NB: We update differential gains only once after 20 beacons. */
   3941 	if (++calib->nbeacons < 20)
   3942 		return;
   3943 
   3944 	/* Determine highest average RSSI. */
   3945 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3946 	val = MAX(calib->rssi[2], val);
   3947 
   3948 	/* Determine which antennas are connected. */
   3949 	sc->chainmask = sc->rxchainmask;
   3950 	for (i = 0; i < 3; i++)
   3951 		if (val - calib->rssi[i] > 15 * 20)
   3952 			sc->chainmask &= ~(1 << i);
   3953 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3954 	    sc->rxchainmask, sc->chainmask));
   3955 
   3956 	/* If none of the TX antennas are connected, keep at least one. */
   3957 	if ((sc->chainmask & sc->txchainmask) == 0)
   3958 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3959 
   3960 	(void)ops->set_gains(sc);
   3961 	calib->state = IWN_CALIB_STATE_RUN;
   3962 
   3963 #ifdef notyet
   3964 	/* XXX Disable RX chains with no antennas connected. */
   3965 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3966 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3967 #endif
   3968 
   3969 	/* Enable power-saving mode if requested by user. */
   3970 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3971 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3972 }
   3973 
   3974 static int
   3975 iwn4965_init_gains(struct iwn_softc *sc)
   3976 {
   3977 	struct iwn_phy_calib_gain cmd;
   3978 
   3979 	memset(&cmd, 0, sizeof cmd);
   3980 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3981 	/* Differential gains initially set to 0 for all 3 antennas. */
   3982 	DPRINTF(("setting initial differential gains\n"));
   3983 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3984 }
   3985 
   3986 static int
   3987 iwn5000_init_gains(struct iwn_softc *sc)
   3988 {
   3989 	struct iwn_phy_calib cmd;
   3990 
   3991 	memset(&cmd, 0, sizeof cmd);
   3992 	cmd.code = sc->reset_noise_gain;
   3993 	cmd.ngroups = 1;
   3994 	cmd.isvalid = 1;
   3995 	DPRINTF(("setting initial differential gains\n"));
   3996 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3997 }
   3998 
   3999 static int
   4000 iwn4965_set_gains(struct iwn_softc *sc)
   4001 {
   4002 	struct iwn_calib_state *calib = &sc->calib;
   4003 	struct iwn_phy_calib_gain cmd;
   4004 	int i, delta, noise;
   4005 
   4006 	/* Get minimal noise among connected antennas. */
   4007 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   4008 	for (i = 0; i < 3; i++)
   4009 		if (sc->chainmask & (1 << i))
   4010 			noise = MIN(calib->noise[i], noise);
   4011 
   4012 	memset(&cmd, 0, sizeof cmd);
   4013 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4014 	/* Set differential gains for connected antennas. */
   4015 	for (i = 0; i < 3; i++) {
   4016 		if (sc->chainmask & (1 << i)) {
   4017 			/* Compute attenuation (in unit of 1.5dB). */
   4018 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4019 			/* NB: delta <= 0 */
   4020 			/* Limit to [-4.5dB,0]. */
   4021 			cmd.gain[i] = MIN(abs(delta), 3);
   4022 			if (delta < 0)
   4023 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4024 		}
   4025 	}
   4026 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4027 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4028 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4029 }
   4030 
   4031 static int
   4032 iwn5000_set_gains(struct iwn_softc *sc)
   4033 {
   4034 	struct iwn_calib_state *calib = &sc->calib;
   4035 	struct iwn_phy_calib_gain cmd;
   4036 	int i, ant, div, delta;
   4037 
   4038 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4039 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4040 
   4041 	memset(&cmd, 0, sizeof cmd);
   4042 	cmd.code = sc->noise_gain;
   4043 	cmd.ngroups = 1;
   4044 	cmd.isvalid = 1;
   4045 	/* Get first available RX antenna as referential. */
   4046 	ant = IWN_LSB(sc->rxchainmask);
   4047 	/* Set differential gains for other antennas. */
   4048 	for (i = ant + 1; i < 3; i++) {
   4049 		if (sc->chainmask & (1 << i)) {
   4050 			/* The delta is relative to antenna "ant". */
   4051 			delta = ((int32_t)calib->noise[ant] -
   4052 			    (int32_t)calib->noise[i]) / div;
   4053 			/* Limit to [-4.5dB,+4.5dB]. */
   4054 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4055 			if (delta < 0)
   4056 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4057 		}
   4058 	}
   4059 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4060 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4061 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4062 }
   4063 
   4064 /*
   4065  * Tune RF RX sensitivity based on the number of false alarms detected
   4066  * during the last beacon period.
   4067  */
   4068 static void
   4069 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4070 {
   4071 #define inc(val, inc, max)			\
   4072 	if ((val) < (max)) {			\
   4073 		if ((val) < (max) - (inc))	\
   4074 			(val) += (inc);		\
   4075 		else				\
   4076 			(val) = (max);		\
   4077 		needs_update = 1;		\
   4078 	}
   4079 #define dec(val, dec, min)			\
   4080 	if ((val) > (min)) {			\
   4081 		if ((val) > (min) + (dec))	\
   4082 			(val) -= (dec);		\
   4083 		else				\
   4084 			(val) = (min);		\
   4085 		needs_update = 1;		\
   4086 	}
   4087 
   4088 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4089 	struct iwn_calib_state *calib = &sc->calib;
   4090 	uint32_t val, rxena, fa;
   4091 	uint32_t energy[3], energy_min;
   4092 	uint8_t noise[3], noise_ref;
   4093 	int i, needs_update = 0;
   4094 
   4095 	/* Check that we've been enabled long enough. */
   4096 	if ((rxena = le32toh(stats->general.load)) == 0)
   4097 		return;
   4098 
   4099 	/* Compute number of false alarms since last call for OFDM. */
   4100 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4101 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4102 	fa *= 200 * 1024;	/* 200TU */
   4103 
   4104 	/* Save counters values for next call. */
   4105 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4106 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4107 
   4108 	if (fa > 50 * rxena) {
   4109 		/* High false alarm count, decrease sensitivity. */
   4110 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4111 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4112 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4113 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4114 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4115 
   4116 	} else if (fa < 5 * rxena) {
   4117 		/* Low false alarm count, increase sensitivity. */
   4118 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4119 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4120 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4121 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4122 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4123 	}
   4124 
   4125 	/* Compute maximum noise among 3 receivers. */
   4126 	for (i = 0; i < 3; i++)
   4127 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4128 	val = MAX(noise[0], noise[1]);
   4129 	val = MAX(noise[2], val);
   4130 	/* Insert it into our samples table. */
   4131 	calib->noise_samples[calib->cur_noise_sample] = val;
   4132 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4133 
   4134 	/* Compute maximum noise among last 20 samples. */
   4135 	noise_ref = calib->noise_samples[0];
   4136 	for (i = 1; i < 20; i++)
   4137 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4138 
   4139 	/* Compute maximum energy among 3 receivers. */
   4140 	for (i = 0; i < 3; i++)
   4141 		energy[i] = le32toh(stats->general.energy[i]);
   4142 	val = MIN(energy[0], energy[1]);
   4143 	val = MIN(energy[2], val);
   4144 	/* Insert it into our samples table. */
   4145 	calib->energy_samples[calib->cur_energy_sample] = val;
   4146 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4147 
   4148 	/* Compute minimum energy among last 10 samples. */
   4149 	energy_min = calib->energy_samples[0];
   4150 	for (i = 1; i < 10; i++)
   4151 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4152 	energy_min += 6;
   4153 
   4154 	/* Compute number of false alarms since last call for CCK. */
   4155 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4156 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4157 	fa *= 200 * 1024;	/* 200TU */
   4158 
   4159 	/* Save counters values for next call. */
   4160 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4161 	calib->fa_cck = le32toh(stats->cck.fa);
   4162 
   4163 	if (fa > 50 * rxena) {
   4164 		/* High false alarm count, decrease sensitivity. */
   4165 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4166 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4167 		calib->low_fa = 0;
   4168 
   4169 		if (calib->cck_x4 > 160) {
   4170 			calib->noise_ref = noise_ref;
   4171 			if (calib->energy_cck > 2)
   4172 				dec(calib->energy_cck, 2, energy_min);
   4173 		}
   4174 		if (calib->cck_x4 < 160) {
   4175 			calib->cck_x4 = 161;
   4176 			needs_update = 1;
   4177 		} else
   4178 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4179 
   4180 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4181 
   4182 	} else if (fa < 5 * rxena) {
   4183 		/* Low false alarm count, increase sensitivity. */
   4184 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4185 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4186 		calib->low_fa++;
   4187 
   4188 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4189 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4190 		     calib->low_fa > 100)) {
   4191 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4192 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4193 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4194 		}
   4195 	} else {
   4196 		/* Not worth to increase or decrease sensitivity. */
   4197 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4198 		calib->low_fa = 0;
   4199 		calib->noise_ref = noise_ref;
   4200 
   4201 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4202 			/* Previous interval had many false alarms. */
   4203 			dec(calib->energy_cck, 8, energy_min);
   4204 		}
   4205 		calib->cck_state = IWN_CCK_STATE_INIT;
   4206 	}
   4207 
   4208 	if (needs_update)
   4209 		(void)iwn_send_sensitivity(sc);
   4210 #undef dec
   4211 #undef inc
   4212 }
   4213 
   4214 static int
   4215 iwn_send_sensitivity(struct iwn_softc *sc)
   4216 {
   4217 	struct iwn_calib_state *calib = &sc->calib;
   4218 	struct iwn_enhanced_sensitivity_cmd cmd;
   4219 	int len;
   4220 
   4221 	memset(&cmd, 0, sizeof cmd);
   4222 	len = sizeof (struct iwn_sensitivity_cmd);
   4223 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4224 	/* OFDM modulation. */
   4225 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4226 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4227 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4228 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4229 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4230 	cmd.energy_ofdm_th   = htole16(62);
   4231 	/* CCK modulation. */
   4232 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4233 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4234 	cmd.energy_cck       = htole16(calib->energy_cck);
   4235 	/* Barker modulation: use default values. */
   4236 	cmd.corr_barker      = htole16(190);
   4237 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
   4238 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4239 		goto send;
   4240 	/* Enhanced sensitivity settings. */
   4241 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4242 	cmd.ofdm_det_slope_mrc = htole16(668);
   4243 	cmd.ofdm_det_icept_mrc = htole16(4);
   4244 	cmd.ofdm_det_slope     = htole16(486);
   4245 	cmd.ofdm_det_icept     = htole16(37);
   4246 	cmd.cck_det_slope_mrc  = htole16(853);
   4247 	cmd.cck_det_icept_mrc  = htole16(4);
   4248 	cmd.cck_det_slope      = htole16(476);
   4249 	cmd.cck_det_icept      = htole16(99);
   4250 send:
   4251 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4252 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4253 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4254 	    calib->energy_cck));
   4255 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4256 }
   4257 
   4258 /*
   4259  * Set STA mode power saving level (between 0 and 5).
   4260  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4261  */
   4262 static int
   4263 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4264 {
   4265 	struct iwn_pmgt_cmd cmd;
   4266 	const struct iwn_pmgt *pmgt;
   4267 	uint32_t maxp, skip_dtim;
   4268 	pcireg_t reg;
   4269 	int i;
   4270 
   4271 	/* Select which PS parameters to use. */
   4272 	if (dtim <= 2)
   4273 		pmgt = &iwn_pmgt[0][level];
   4274 	else if (dtim <= 10)
   4275 		pmgt = &iwn_pmgt[1][level];
   4276 	else
   4277 		pmgt = &iwn_pmgt[2][level];
   4278 
   4279 	memset(&cmd, 0, sizeof cmd);
   4280 	if (level != 0)	/* not CAM */
   4281 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4282 	if (level == 5)
   4283 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4284 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4285 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4286 	    sc->sc_cap_off + PCIE_LCSR);
   4287 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4288 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4289 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4290 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4291 
   4292 	if (dtim == 0) {
   4293 		dtim = 1;
   4294 		skip_dtim = 0;
   4295 	} else
   4296 		skip_dtim = pmgt->skip_dtim;
   4297 	if (skip_dtim != 0) {
   4298 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4299 		maxp = pmgt->intval[4];
   4300 		if (maxp == (uint32_t)-1)
   4301 			maxp = dtim * (skip_dtim + 1);
   4302 		else if (maxp > dtim)
   4303 			maxp = (maxp / dtim) * dtim;
   4304 	} else
   4305 		maxp = dtim;
   4306 	for (i = 0; i < 5; i++)
   4307 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4308 
   4309 	DPRINTF(("setting power saving level to %d\n", level));
   4310 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4311 }
   4312 
   4313 int
   4314 iwn5000_runtime_calib(struct iwn_softc *sc)
   4315 {
   4316 	struct iwn5000_calib_config cmd;
   4317 
   4318 	memset(&cmd, 0, sizeof cmd);
   4319 	cmd.ucode.once.enable = 0xffffffff;
   4320 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4321 	DPRINTF(("configuring runtime calibration\n"));
   4322 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4323 }
   4324 
   4325 static int
   4326 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4327 {
   4328 	struct iwn_bluetooth bluetooth;
   4329 
   4330 	memset(&bluetooth, 0, sizeof bluetooth);
   4331 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4332 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4333 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4334 
   4335 	DPRINTF(("configuring bluetooth coexistence\n"));
   4336 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4337 }
   4338 
   4339 static int
   4340 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4341 {
   4342 	uint8_t prio_table[16];
   4343 
   4344 	memset(&prio_table, 0, sizeof prio_table);
   4345 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4346 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4347 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4348 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4349 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4350 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4351 	prio_table[ 6] =  6;	/* dtim				*/
   4352 	prio_table[ 7] =  8;	/* scan52			*/
   4353 	prio_table[ 8] = 10;	/* scan24			*/
   4354 
   4355 	DPRINTF(("sending priority lookup table\n"));
   4356 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4357 	               &prio_table, sizeof prio_table, 0);
   4358 }
   4359 
   4360 static int
   4361 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4362     size_t len)
   4363 {
   4364 	struct iwn_btcoex_prot btprot;
   4365 	int error;
   4366 
   4367 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4368 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4369 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4370 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4371 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4372 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4373 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4374 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4375 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4376 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4377 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4378 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4379 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4380 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4381 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4382 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4383 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4384 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4385 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4386 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4387 	basic->reduce_txpower = 0; /* as not implemented */
   4388 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4389 
   4390 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4391 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4392 	if (error != 0) {
   4393 		aprint_error_dev(sc->sc_dev,
   4394 			"could not configure advanced bluetooth coexistence\n");
   4395 		return error;
   4396 	}
   4397 
   4398 	error = iwn_config_bt_coex_prio_table(sc);
   4399 	if (error != 0) {
   4400 		aprint_error_dev(sc->sc_dev,
   4401 			"could not configure send BT priority table\n");
   4402 		return error;
   4403 	}
   4404 
   4405 	/* Force BT state machine change */
   4406 	memset(&btprot, 0, sizeof btprot);
   4407 	btprot.open = 1;
   4408 	btprot.type = 1;
   4409 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4410 	if (error != 0) {
   4411 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4412 		return error;
   4413 	}
   4414 
   4415 	btprot.open = 0;
   4416 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4417 	if (error != 0) {
   4418 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4419 		return error;
   4420 	}
   4421 	return 0;
   4422 }
   4423 
   4424 static int
   4425 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4426 {
   4427 	struct iwn_bt_adv1 d;
   4428 
   4429 	memset(&d, 0, sizeof d);
   4430 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4431 	d.tx_prio_boost = 0;
   4432 	d.rx_prio_boost = 0;
   4433 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4434 }
   4435 
   4436 static int
   4437 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4438 {
   4439 	struct iwn_bt_adv2 d;
   4440 
   4441 	memset(&d, 0, sizeof d);
   4442 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4443 	d.tx_prio_boost = 0;
   4444 	d.rx_prio_boost = 0;
   4445 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4446 }
   4447 
   4448 static int
   4449 iwn_config(struct iwn_softc *sc)
   4450 {
   4451 	struct iwn_ops *ops = &sc->ops;
   4452 	struct ieee80211com *ic = &sc->sc_ic;
   4453 	struct ifnet *ifp = ic->ic_ifp;
   4454 	uint32_t txmask;
   4455 	uint16_t rxchain;
   4456 	int error;
   4457 
   4458 	error = ops->config_bt_coex(sc);
   4459 	if (error != 0) {
   4460 		aprint_error_dev(sc->sc_dev,
   4461 			"could not configure bluetooth coexistence\n");
   4462 		return error;
   4463 	}
   4464 
   4465 	/* Set radio temperature sensor offset. */
   4466 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4467 		error = iwn6000_temp_offset_calib(sc);
   4468 		if (error != 0) {
   4469 			aprint_error_dev(sc->sc_dev,
   4470 			    "could not set temperature offset\n");
   4471 			return error;
   4472 		}
   4473 	}
   4474 
   4475 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4476 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4477 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4478 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4479 		error = iwn2000_temp_offset_calib(sc);
   4480 		if (error != 0) {
   4481 			aprint_error_dev(sc->sc_dev,
   4482 			    "could not set temperature offset\n");
   4483 			return error;
   4484 		}
   4485 	}
   4486 
   4487 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4488 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4489 		/* Configure runtime DC calibration. */
   4490 		error = iwn5000_runtime_calib(sc);
   4491 		if (error != 0) {
   4492 			aprint_error_dev(sc->sc_dev,
   4493 			    "could not configure runtime calibration\n");
   4494 			return error;
   4495 		}
   4496 	}
   4497 
   4498 	/* Configure valid TX chains for 5000 Series. */
   4499 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4500 		txmask = htole32(sc->txchainmask);
   4501 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4502 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4503 		    sizeof txmask, 0);
   4504 		if (error != 0) {
   4505 			aprint_error_dev(sc->sc_dev,
   4506 			    "could not configure valid TX chains\n");
   4507 			return error;
   4508 		}
   4509 	}
   4510 
   4511 	/* Set mode, channel, RX filter and enable RX. */
   4512 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4513 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4514 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4515 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4516 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4517 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4518 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4519 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4520 	switch (ic->ic_opmode) {
   4521 	case IEEE80211_M_STA:
   4522 		sc->rxon.mode = IWN_MODE_STA;
   4523 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4524 		break;
   4525 	case IEEE80211_M_MONITOR:
   4526 		sc->rxon.mode = IWN_MODE_MONITOR;
   4527 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4528 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4529 		break;
   4530 	default:
   4531 		/* Should not get there. */
   4532 		break;
   4533 	}
   4534 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4535 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4536 	sc->rxon.ht_single_mask = 0xff;
   4537 	sc->rxon.ht_dual_mask = 0xff;
   4538 	sc->rxon.ht_triple_mask = 0xff;
   4539 	rxchain =
   4540 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4541 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4542 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4543 	sc->rxon.rxchain = htole16(rxchain);
   4544 	DPRINTF(("setting configuration\n"));
   4545 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4546 	if (error != 0) {
   4547 		aprint_error_dev(sc->sc_dev,
   4548 		    "RXON command failed\n");
   4549 		return error;
   4550 	}
   4551 
   4552 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4553 		aprint_error_dev(sc->sc_dev,
   4554 		    "could not add broadcast node\n");
   4555 		return error;
   4556 	}
   4557 
   4558 	/* Configuration has changed, set TX power accordingly. */
   4559 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4560 		aprint_error_dev(sc->sc_dev,
   4561 		    "could not set TX power\n");
   4562 		return error;
   4563 	}
   4564 
   4565 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4566 		aprint_error_dev(sc->sc_dev,
   4567 		    "could not set critical temperature\n");
   4568 		return error;
   4569 	}
   4570 
   4571 	/* Set power saving level to CAM during initialization. */
   4572 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4573 		aprint_error_dev(sc->sc_dev,
   4574 		    "could not set power saving level\n");
   4575 		return error;
   4576 	}
   4577 	return 0;
   4578 }
   4579 
   4580 static uint16_t
   4581 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4582     uint8_t n_probes)
   4583 {
   4584 	/* No channel? Default to 2GHz settings */
   4585 	if (flags & IEEE80211_CHAN_2GHZ)
   4586 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4587 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4588 
   4589 	/* 5GHz dwell time */
   4590 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4591 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4592 }
   4593 
   4594 /*
   4595  * Limit the total dwell time to 85% of the beacon interval.
   4596  *
   4597  * Returns the dwell time in milliseconds.
   4598  */
   4599 static uint16_t
   4600 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4601 {
   4602 	struct ieee80211com *ic = &sc->sc_ic;
   4603 	struct ieee80211_node *ni = ic->ic_bss;
   4604 	int bintval = 0;
   4605 
   4606 	/* bintval is in TU (1.024mS) */
   4607 	if (ni != NULL)
   4608 		bintval = ni->ni_intval;
   4609 
   4610 	/*
   4611 	 * If it's non-zero, we should calculate the minimum of
   4612 	 * it and the DWELL_BASE.
   4613 	 *
   4614 	 * XXX Yes, the math should take into account that bintval
   4615 	 * is 1.024mS, not 1mS..
   4616 	 */
   4617 	if (bintval > 0)
   4618 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4619 
   4620 	/* No association context? Default */
   4621 	return IWN_PASSIVE_DWELL_BASE;
   4622 }
   4623 
   4624 static uint16_t
   4625 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4626 {
   4627 	uint16_t passive;
   4628 	if (flags & IEEE80211_CHAN_2GHZ)
   4629 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4630 	else
   4631 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4632 
   4633 	/* Clamp to the beacon interval if we're associated */
   4634 	return iwn_limit_dwell(sc, passive);
   4635 }
   4636 
   4637 static int
   4638 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4639 {
   4640 	struct ieee80211com *ic = &sc->sc_ic;
   4641 	struct iwn_scan_hdr *hdr;
   4642 	struct iwn_cmd_data *tx;
   4643 	struct iwn_scan_essid *essid;
   4644 	struct iwn_scan_chan *chan;
   4645 	struct ieee80211_frame *wh;
   4646 	struct ieee80211_rateset *rs;
   4647 	struct ieee80211_channel *c;
   4648 	uint8_t *buf, *frm;
   4649 	uint16_t rxchain, dwell_active, dwell_passive;
   4650 	uint8_t txant;
   4651 	int buflen, error, is_active;
   4652 
   4653 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4654 	if (buf == NULL) {
   4655 		aprint_error_dev(sc->sc_dev,
   4656 		    "could not allocate buffer for scan command\n");
   4657 		return ENOMEM;
   4658 	}
   4659 	hdr = (struct iwn_scan_hdr *)buf;
   4660 	/*
   4661 	 * Move to the next channel if no frames are received within 10ms
   4662 	 * after sending the probe request.
   4663 	 */
   4664 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4665 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4666 
   4667 	/* Select antennas for scanning. */
   4668 	rxchain =
   4669 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4670 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4671 	    IWN_RXCHAIN_DRIVER_FORCE;
   4672 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4673 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4674 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4675 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4676 	} else	/* Use all available RX antennas. */
   4677 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4678 	hdr->rxchain = htole16(rxchain);
   4679 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4680 
   4681 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4682 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4683 	tx->id = sc->broadcast_id;
   4684 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4685 
   4686 	if (flags & IEEE80211_CHAN_5GHZ) {
   4687 		hdr->crc_threshold = 0xffff;
   4688 		/* Send probe requests at 6Mbps. */
   4689 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4690 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4691 	} else {
   4692 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4693 		/* Send probe requests at 1Mbps. */
   4694 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4695 		tx->rflags = IWN_RFLAG_CCK;
   4696 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4697 	}
   4698 	/* Use the first valid TX antenna. */
   4699 	txant = IWN_LSB(sc->txchainmask);
   4700 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4701 
   4702 	/*
   4703 	 * Only do active scanning if we're announcing a probe request
   4704 	 * for a given SSID (or more, if we ever add it to the driver.)
   4705 	 */
   4706 	is_active = 0;
   4707 
   4708 	essid = (struct iwn_scan_essid *)(tx + 1);
   4709 	if (ic->ic_des_esslen != 0) {
   4710 		essid[0].id = IEEE80211_ELEMID_SSID;
   4711 		essid[0].len = ic->ic_des_esslen;
   4712 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4713 
   4714 		is_active = 1;
   4715 	}
   4716 	/*
   4717 	 * Build a probe request frame.  Most of the following code is a
   4718 	 * copy & paste of what is done in net80211.
   4719 	 */
   4720 	wh = (struct ieee80211_frame *)(essid + 20);
   4721 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4722 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4723 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4724 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4725 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4726 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4727 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4728 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4729 
   4730 	frm = (uint8_t *)(wh + 1);
   4731 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4732 	frm = ieee80211_add_rates(frm, rs);
   4733 #ifndef IEEE80211_NO_HT
   4734 	if (ic->ic_flags & IEEE80211_F_HTON)
   4735 		frm = ieee80211_add_htcaps(frm, ic);
   4736 #endif
   4737 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4738 		frm = ieee80211_add_xrates(frm, rs);
   4739 
   4740 	/* Set length of probe request. */
   4741 	tx->len = htole16(frm - (uint8_t *)wh);
   4742 
   4743 
   4744 	/*
   4745 	 * If active scanning is requested but a certain channel is
   4746 	 * marked passive, we can do active scanning if we detect
   4747 	 * transmissions.
   4748 	 *
   4749 	 * There is an issue with some firmware versions that triggers
   4750 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4751 	 * on a radar channel even though this means that we should NOT
   4752 	 * send probes.
   4753 	 *
   4754 	 * The "good CRC threshold" is the number of frames that we
   4755 	 * need to receive during our dwell time on a channel before
   4756 	 * sending out probes -- setting this to a huge value will
   4757 	 * mean we never reach it, but at the same time work around
   4758 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4759 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4760 	 *
   4761 	 * This was fixed in later versions along with some other
   4762 	 * scan changes, and the threshold behaves as a flag in those
   4763 	 * versions.
   4764 	 */
   4765 
   4766 	/*
   4767 	 * If we're doing active scanning, set the crc_threshold
   4768 	 * to a suitable value.  This is different to active veruss
   4769 	 * passive scanning depending upon the channel flags; the
   4770 	 * firmware will obey that particular check for us.
   4771 	 */
   4772 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4773 		hdr->crc_threshold = is_active ?
   4774 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4775 	else
   4776 		hdr->crc_threshold = is_active ?
   4777 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4778 
   4779 	chan = (struct iwn_scan_chan *)frm;
   4780 	for (c  = &ic->ic_channels[1];
   4781 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4782 		if ((c->ic_flags & flags) != flags)
   4783 			continue;
   4784 
   4785 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4786 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4787 		chan->flags = 0;
   4788 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4789 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4790 		if (ic->ic_des_esslen != 0)
   4791 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4792 
   4793 		/*
   4794 		 * Calculate the active/passive dwell times.
   4795 		 */
   4796 
   4797 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4798 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4799 
   4800 		/* Make sure they're valid */
   4801 		if (dwell_passive <= dwell_active)
   4802 			dwell_passive = dwell_active + 1;
   4803 
   4804 		chan->active = htole16(dwell_active);
   4805 		chan->passive = htole16(dwell_passive);
   4806 
   4807 		chan->dsp_gain = 0x6e;
   4808 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4809 			chan->rf_gain = 0x3b;
   4810 		} else {
   4811 			chan->rf_gain = 0x28;
   4812 		}
   4813 		hdr->nchan++;
   4814 		chan++;
   4815 	}
   4816 
   4817 	buflen = (uint8_t *)chan - buf;
   4818 	hdr->len = htole16(buflen);
   4819 
   4820 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4821 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4822 	free(buf, M_DEVBUF);
   4823 	return error;
   4824 }
   4825 
   4826 static int
   4827 iwn_auth(struct iwn_softc *sc)
   4828 {
   4829 	struct iwn_ops *ops = &sc->ops;
   4830 	struct ieee80211com *ic = &sc->sc_ic;
   4831 	struct ieee80211_node *ni = ic->ic_bss;
   4832 	int error;
   4833 
   4834 	/* Update adapter configuration. */
   4835 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4836 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4837 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4838 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4839 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4840 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4841 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4842 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4843 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4844 	switch (ic->ic_curmode) {
   4845 	case IEEE80211_MODE_11A:
   4846 		sc->rxon.cck_mask  = 0;
   4847 		sc->rxon.ofdm_mask = 0x15;
   4848 		break;
   4849 	case IEEE80211_MODE_11B:
   4850 		sc->rxon.cck_mask  = 0x03;
   4851 		sc->rxon.ofdm_mask = 0;
   4852 		break;
   4853 	default:	/* Assume 802.11b/g. */
   4854 		sc->rxon.cck_mask  = 0x0f;
   4855 		sc->rxon.ofdm_mask = 0x15;
   4856 	}
   4857 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4858 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4859 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4860 	if (error != 0) {
   4861 		aprint_error_dev(sc->sc_dev,
   4862 		    "RXON command failed\n");
   4863 		return error;
   4864 	}
   4865 
   4866 	/* Configuration has changed, set TX power accordingly. */
   4867 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4868 		aprint_error_dev(sc->sc_dev,
   4869 		    "could not set TX power\n");
   4870 		return error;
   4871 	}
   4872 	/*
   4873 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4874 	 * add the broadcast node again.
   4875 	 */
   4876 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4877 		aprint_error_dev(sc->sc_dev,
   4878 		    "could not add broadcast node\n");
   4879 		return error;
   4880 	}
   4881 	return 0;
   4882 }
   4883 
   4884 static int
   4885 iwn_run(struct iwn_softc *sc)
   4886 {
   4887 	struct iwn_ops *ops = &sc->ops;
   4888 	struct ieee80211com *ic = &sc->sc_ic;
   4889 	struct ieee80211_node *ni = ic->ic_bss;
   4890 	struct iwn_node_info node;
   4891 	int error;
   4892 
   4893 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4894 		/* Link LED blinks while monitoring. */
   4895 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4896 		return 0;
   4897 	}
   4898 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4899 		aprint_error_dev(sc->sc_dev,
   4900 		    "could not set timing\n");
   4901 		return error;
   4902 	}
   4903 
   4904 	/* Update adapter configuration. */
   4905 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4906 	/* Short preamble and slot time are negotiated when associating. */
   4907 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4908 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4909 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4910 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4911 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4912 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4913 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4914 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4915 	if (error != 0) {
   4916 		aprint_error_dev(sc->sc_dev,
   4917 		    "could not update configuration\n");
   4918 		return error;
   4919 	}
   4920 
   4921 	/* Configuration has changed, set TX power accordingly. */
   4922 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4923 		aprint_error_dev(sc->sc_dev,
   4924 		    "could not set TX power\n");
   4925 		return error;
   4926 	}
   4927 
   4928 	/* Fake a join to initialize the TX rate. */
   4929 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4930 	iwn_newassoc(ni, 1);
   4931 
   4932 	/* Add BSS node. */
   4933 	memset(&node, 0, sizeof node);
   4934 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4935 	node.id = IWN_ID_BSS;
   4936 #ifdef notyet
   4937 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4938 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4939 #endif
   4940 	DPRINTF(("adding BSS node\n"));
   4941 	error = ops->add_node(sc, &node, 1);
   4942 	if (error != 0) {
   4943 		aprint_error_dev(sc->sc_dev,
   4944 		    "could not add BSS node\n");
   4945 		return error;
   4946 	}
   4947 	DPRINTF(("setting link quality for node %d\n", node.id));
   4948 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4949 		aprint_error_dev(sc->sc_dev,
   4950 		    "could not setup link quality for node %d\n", node.id);
   4951 		return error;
   4952 	}
   4953 
   4954 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4955 		aprint_error_dev(sc->sc_dev,
   4956 		    "could not set sensitivity\n");
   4957 		return error;
   4958 	}
   4959 	/* Start periodic calibration timer. */
   4960 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4961 	sc->calib_cnt = 0;
   4962 	callout_schedule(&sc->calib_to, hz/2);
   4963 
   4964 	/* Link LED always on while associated. */
   4965 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4966 	return 0;
   4967 }
   4968 
   4969 #ifdef IWN_HWCRYPTO
   4970 /*
   4971  * We support CCMP hardware encryption/decryption of unicast frames only.
   4972  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4973  */
   4974 static int
   4975 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4976     struct ieee80211_key *k)
   4977 {
   4978 	struct iwn_softc *sc = ic->ic_softc;
   4979 	struct iwn_ops *ops = &sc->ops;
   4980 	struct iwn_node *wn = (void *)ni;
   4981 	struct iwn_node_info node;
   4982 	uint16_t kflags;
   4983 
   4984 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4985 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4986 		return ieee80211_set_key(ic, ni, k);
   4987 
   4988 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4989 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4990 		kflags |= IWN_KFLAG_GROUP;
   4991 
   4992 	memset(&node, 0, sizeof node);
   4993 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4994 	    sc->broadcast_id : wn->id;
   4995 	node.control = IWN_NODE_UPDATE;
   4996 	node.flags = IWN_FLAG_SET_KEY;
   4997 	node.kflags = htole16(kflags);
   4998 	node.kid = k->k_id;
   4999 	memcpy(node.key, k->k_key, k->k_len);
   5000 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   5001 	return ops->add_node(sc, &node, 1);
   5002 }
   5003 
   5004 static void
   5005 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   5006     struct ieee80211_key *k)
   5007 {
   5008 	struct iwn_softc *sc = ic->ic_softc;
   5009 	struct iwn_ops *ops = &sc->ops;
   5010 	struct iwn_node *wn = (void *)ni;
   5011 	struct iwn_node_info node;
   5012 
   5013 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5014 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   5015 		/* See comment about other ciphers above. */
   5016 		ieee80211_delete_key(ic, ni, k);
   5017 		return;
   5018 	}
   5019 	if (ic->ic_state != IEEE80211_S_RUN)
   5020 		return;	/* Nothing to do. */
   5021 	memset(&node, 0, sizeof node);
   5022 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5023 	    sc->broadcast_id : wn->id;
   5024 	node.control = IWN_NODE_UPDATE;
   5025 	node.flags = IWN_FLAG_SET_KEY;
   5026 	node.kflags = htole16(IWN_KFLAG_INVALID);
   5027 	node.kid = 0xff;
   5028 	DPRINTF(("delete keys for node %d\n", node.id));
   5029 	(void)ops->add_node(sc, &node, 1);
   5030 }
   5031 #endif
   5032 
   5033 /* XXX Added for NetBSD (copied from rev 1.39). */
   5034 
   5035 static int
   5036 iwn_wme_update(struct ieee80211com *ic)
   5037 {
   5038 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   5039 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   5040 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   5041 	const struct wmeParams *wmep;
   5042 	struct iwn_edca_params cmd;
   5043 	int ac;
   5044 
   5045 	/* don't override default WME values if WME is not actually enabled */
   5046 	if (!(ic->ic_flags & IEEE80211_F_WME))
   5047 		return 0;
   5048 	cmd.flags = 0;
   5049 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   5050 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   5051 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   5052 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   5053 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   5054 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   5055 
   5056 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   5057 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   5058 					cmd.ac[ac].cwmin,
   5059 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   5060 	}
   5061 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   5062 #undef IWN_USEC
   5063 #undef IWN_EXP2
   5064 }
   5065 
   5066 #ifndef IEEE80211_NO_HT
   5067 /*
   5068  * This function is called by upper layer when an ADDBA request is received
   5069  * from another STA and before the ADDBA response is sent.
   5070  */
   5071 static int
   5072 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5073     uint8_t tid)
   5074 {
   5075 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5076 	struct iwn_softc *sc = ic->ic_softc;
   5077 	struct iwn_ops *ops = &sc->ops;
   5078 	struct iwn_node *wn = (void *)ni;
   5079 	struct iwn_node_info node;
   5080 
   5081 	memset(&node, 0, sizeof node);
   5082 	node.id = wn->id;
   5083 	node.control = IWN_NODE_UPDATE;
   5084 	node.flags = IWN_FLAG_SET_ADDBA;
   5085 	node.addba_tid = tid;
   5086 	node.addba_ssn = htole16(ba->ba_winstart);
   5087 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5088 	    ba->ba_winstart));
   5089 	return ops->add_node(sc, &node, 1);
   5090 }
   5091 
   5092 /*
   5093  * This function is called by upper layer on teardown of an HT-immediate
   5094  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5095  */
   5096 static void
   5097 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5098     uint8_t tid)
   5099 {
   5100 	struct iwn_softc *sc = ic->ic_softc;
   5101 	struct iwn_ops *ops = &sc->ops;
   5102 	struct iwn_node *wn = (void *)ni;
   5103 	struct iwn_node_info node;
   5104 
   5105 	memset(&node, 0, sizeof node);
   5106 	node.id = wn->id;
   5107 	node.control = IWN_NODE_UPDATE;
   5108 	node.flags = IWN_FLAG_SET_DELBA;
   5109 	node.delba_tid = tid;
   5110 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5111 	(void)ops->add_node(sc, &node, 1);
   5112 }
   5113 
   5114 /*
   5115  * This function is called by upper layer when an ADDBA response is received
   5116  * from another STA.
   5117  */
   5118 static int
   5119 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5120     uint8_t tid)
   5121 {
   5122 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5123 	struct iwn_softc *sc = ic->ic_softc;
   5124 	struct iwn_ops *ops = &sc->ops;
   5125 	struct iwn_node *wn = (void *)ni;
   5126 	struct iwn_node_info node;
   5127 	int error;
   5128 
   5129 	/* Enable TX for the specified RA/TID. */
   5130 	wn->disable_tid &= ~(1 << tid);
   5131 	memset(&node, 0, sizeof node);
   5132 	node.id = wn->id;
   5133 	node.control = IWN_NODE_UPDATE;
   5134 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5135 	node.disable_tid = htole16(wn->disable_tid);
   5136 	error = ops->add_node(sc, &node, 1);
   5137 	if (error != 0)
   5138 		return error;
   5139 
   5140 	if ((error = iwn_nic_lock(sc)) != 0)
   5141 		return error;
   5142 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5143 	iwn_nic_unlock(sc);
   5144 	return 0;
   5145 }
   5146 
   5147 static void
   5148 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5149     uint8_t tid)
   5150 {
   5151 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5152 	struct iwn_softc *sc = ic->ic_softc;
   5153 	struct iwn_ops *ops = &sc->ops;
   5154 
   5155 	if (iwn_nic_lock(sc) != 0)
   5156 		return;
   5157 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5158 	iwn_nic_unlock(sc);
   5159 }
   5160 
   5161 static void
   5162 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5163     uint8_t tid, uint16_t ssn)
   5164 {
   5165 	struct iwn_node *wn = (void *)ni;
   5166 	int qid = 7 + tid;
   5167 
   5168 	/* Stop TX scheduler while we're changing its configuration. */
   5169 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5170 	    IWN4965_TXQ_STATUS_CHGACT);
   5171 
   5172 	/* Assign RA/TID translation to the queue. */
   5173 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5174 	    wn->id << 4 | tid);
   5175 
   5176 	/* Enable chain-building mode for the queue. */
   5177 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5178 
   5179 	/* Set starting sequence number from the ADDBA request. */
   5180 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5181 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5182 
   5183 	/* Set scheduler window size. */
   5184 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5185 	    IWN_SCHED_WINSZ);
   5186 	/* Set scheduler frame limit. */
   5187 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5188 	    IWN_SCHED_LIMIT << 16);
   5189 
   5190 	/* Enable interrupts for the queue. */
   5191 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5192 
   5193 	/* Mark the queue as active. */
   5194 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5195 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5196 	    iwn_tid2fifo[tid] << 1);
   5197 }
   5198 
   5199 static void
   5200 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5201 {
   5202 	int qid = 7 + tid;
   5203 
   5204 	/* Stop TX scheduler while we're changing its configuration. */
   5205 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5206 	    IWN4965_TXQ_STATUS_CHGACT);
   5207 
   5208 	/* Set starting sequence number from the ADDBA request. */
   5209 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5210 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5211 
   5212 	/* Disable interrupts for the queue. */
   5213 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5214 
   5215 	/* Mark the queue as inactive. */
   5216 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5217 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5218 }
   5219 
   5220 static void
   5221 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5222     uint8_t tid, uint16_t ssn)
   5223 {
   5224 	struct iwn_node *wn = (void *)ni;
   5225 	int qid = 10 + tid;
   5226 
   5227 	/* Stop TX scheduler while we're changing its configuration. */
   5228 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5229 	    IWN5000_TXQ_STATUS_CHGACT);
   5230 
   5231 	/* Assign RA/TID translation to the queue. */
   5232 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5233 	    wn->id << 4 | tid);
   5234 
   5235 	/* Enable chain-building mode for the queue. */
   5236 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5237 
   5238 	/* Enable aggregation for the queue. */
   5239 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5240 
   5241 	/* Set starting sequence number from the ADDBA request. */
   5242 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5243 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5244 
   5245 	/* Set scheduler window size and frame limit. */
   5246 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5247 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5248 
   5249 	/* Enable interrupts for the queue. */
   5250 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5251 
   5252 	/* Mark the queue as active. */
   5253 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5254 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5255 }
   5256 
   5257 static void
   5258 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5259 {
   5260 	int qid = 10 + tid;
   5261 
   5262 	/* Stop TX scheduler while we're changing its configuration. */
   5263 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5264 	    IWN5000_TXQ_STATUS_CHGACT);
   5265 
   5266 	/* Disable aggregation for the queue. */
   5267 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5268 
   5269 	/* Set starting sequence number from the ADDBA request. */
   5270 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5271 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5272 
   5273 	/* Disable interrupts for the queue. */
   5274 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5275 
   5276 	/* Mark the queue as inactive. */
   5277 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5278 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5279 }
   5280 #endif	/* !IEEE80211_NO_HT */
   5281 
   5282 /*
   5283  * Query calibration tables from the initialization firmware.  We do this
   5284  * only once at first boot.  Called from a process context.
   5285  */
   5286 static int
   5287 iwn5000_query_calibration(struct iwn_softc *sc)
   5288 {
   5289 	struct iwn5000_calib_config cmd;
   5290 	int error;
   5291 
   5292 	memset(&cmd, 0, sizeof cmd);
   5293 	cmd.ucode.once.enable = 0xffffffff;
   5294 	cmd.ucode.once.start  = 0xffffffff;
   5295 	cmd.ucode.once.send   = 0xffffffff;
   5296 	cmd.ucode.flags       = 0xffffffff;
   5297 	DPRINTF(("sending calibration query\n"));
   5298 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5299 	if (error != 0)
   5300 		return error;
   5301 
   5302 	/* Wait at most two seconds for calibration to complete. */
   5303 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5304 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5305 	return error;
   5306 }
   5307 
   5308 /*
   5309  * Send calibration results to the runtime firmware.  These results were
   5310  * obtained on first boot from the initialization firmware.
   5311  */
   5312 static int
   5313 iwn5000_send_calibration(struct iwn_softc *sc)
   5314 {
   5315 	int idx, error;
   5316 
   5317 	for (idx = 0; idx < 5; idx++) {
   5318 		if (sc->calibcmd[idx].buf == NULL)
   5319 			continue;	/* No results available. */
   5320 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5321 		    idx, sc->calibcmd[idx].len));
   5322 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5323 		    sc->calibcmd[idx].len, 0);
   5324 		if (error != 0) {
   5325 			aprint_error_dev(sc->sc_dev,
   5326 			    "could not send calibration result\n");
   5327 			return error;
   5328 		}
   5329 	}
   5330 	return 0;
   5331 }
   5332 
   5333 static int
   5334 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5335 {
   5336 	struct iwn5000_wimax_coex wimax;
   5337 
   5338 #ifdef notyet
   5339 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5340 		/* Enable WiMAX coexistence for combo adapters. */
   5341 		wimax.flags =
   5342 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5343 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5344 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5345 		    IWN_WIMAX_COEX_ENABLE;
   5346 		memcpy(wimax.events, iwn6050_wimax_events,
   5347 		    sizeof iwn6050_wimax_events);
   5348 	} else
   5349 #endif
   5350 	{
   5351 		/* Disable WiMAX coexistence. */
   5352 		wimax.flags = 0;
   5353 		memset(wimax.events, 0, sizeof wimax.events);
   5354 	}
   5355 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5356 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5357 }
   5358 
   5359 static int
   5360 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5361 {
   5362 	struct iwn6000_phy_calib_temp_offset cmd;
   5363 
   5364 	memset(&cmd, 0, sizeof cmd);
   5365 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5366 	cmd.ngroups = 1;
   5367 	cmd.isvalid = 1;
   5368 	if (sc->eeprom_temp != 0)
   5369 		cmd.offset = htole16(sc->eeprom_temp);
   5370 	else
   5371 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5372 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5373 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5374 }
   5375 
   5376 static int
   5377 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5378 {
   5379 	struct iwn2000_phy_calib_temp_offset cmd;
   5380 
   5381 	memset(&cmd, 0, sizeof cmd);
   5382 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5383 	cmd.ngroups = 1;
   5384 	cmd.isvalid = 1;
   5385 	if (sc->eeprom_rawtemp != 0) {
   5386 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5387 		cmd.offset_high = htole16(sc->eeprom_temp);
   5388 	} else {
   5389 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5390 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5391 	}
   5392 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5393 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5394 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5395 	    le16toh(cmd.burnt_voltage_ref)));
   5396 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5397 }
   5398 
   5399 /*
   5400  * This function is called after the runtime firmware notifies us of its
   5401  * readiness (called in a process context).
   5402  */
   5403 static int
   5404 iwn4965_post_alive(struct iwn_softc *sc)
   5405 {
   5406 	int error, qid;
   5407 
   5408 	if ((error = iwn_nic_lock(sc)) != 0)
   5409 		return error;
   5410 
   5411 	/* Clear TX scheduler state in SRAM. */
   5412 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5413 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5414 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5415 
   5416 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5417 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5418 
   5419 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5420 
   5421 	/* Disable chain mode for all our 16 queues. */
   5422 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5423 
   5424 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5425 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5426 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5427 
   5428 		/* Set scheduler window size. */
   5429 		iwn_mem_write(sc, sc->sched_base +
   5430 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5431 		/* Set scheduler frame limit. */
   5432 		iwn_mem_write(sc, sc->sched_base +
   5433 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5434 		    IWN_SCHED_LIMIT << 16);
   5435 	}
   5436 
   5437 	/* Enable interrupts for all our 16 queues. */
   5438 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5439 	/* Identify TX FIFO rings (0-7). */
   5440 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5441 
   5442 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5443 	for (qid = 0; qid < 7; qid++) {
   5444 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5445 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5446 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5447 	}
   5448 	iwn_nic_unlock(sc);
   5449 	return 0;
   5450 }
   5451 
   5452 /*
   5453  * This function is called after the initialization or runtime firmware
   5454  * notifies us of its readiness (called in a process context).
   5455  */
   5456 static int
   5457 iwn5000_post_alive(struct iwn_softc *sc)
   5458 {
   5459 	int error, qid;
   5460 
   5461 	/* Switch to using ICT interrupt mode. */
   5462 	iwn5000_ict_reset(sc);
   5463 
   5464 	if ((error = iwn_nic_lock(sc)) != 0)
   5465 		return error;
   5466 
   5467 	/* Clear TX scheduler state in SRAM. */
   5468 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5469 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5470 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5471 
   5472 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5473 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5474 
   5475 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5476 
   5477 	/* Enable chain mode for all queues, except command queue. */
   5478 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5479 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5480 
   5481 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5482 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5483 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5484 
   5485 		iwn_mem_write(sc, sc->sched_base +
   5486 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5487 		/* Set scheduler window size and frame limit. */
   5488 		iwn_mem_write(sc, sc->sched_base +
   5489 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5490 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5491 	}
   5492 
   5493 	/* Enable interrupts for all our 20 queues. */
   5494 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5495 	/* Identify TX FIFO rings (0-7). */
   5496 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5497 
   5498 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5499 	for (qid = 0; qid < 7; qid++) {
   5500 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5501 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5502 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5503 	}
   5504 	iwn_nic_unlock(sc);
   5505 
   5506 	/* Configure WiMAX coexistence for combo adapters. */
   5507 	error = iwn5000_send_wimax_coex(sc);
   5508 	if (error != 0) {
   5509 		aprint_error_dev(sc->sc_dev,
   5510 		    "could not configure WiMAX coexistence\n");
   5511 		return error;
   5512 	}
   5513 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5514 		struct iwn5000_phy_calib_crystal cmd;
   5515 
   5516 		/* Perform crystal calibration. */
   5517 		memset(&cmd, 0, sizeof cmd);
   5518 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5519 		cmd.ngroups = 1;
   5520 		cmd.isvalid = 1;
   5521 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5522 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5523 		DPRINTF(("sending crystal calibration %d, %d\n",
   5524 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5525 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5526 		if (error != 0) {
   5527 			aprint_error_dev(sc->sc_dev,
   5528 			    "crystal calibration failed\n");
   5529 			return error;
   5530 		}
   5531 	}
   5532 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5533 		/* Query calibration from the initialization firmware. */
   5534 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5535 			aprint_error_dev(sc->sc_dev,
   5536 			    "could not query calibration\n");
   5537 			return error;
   5538 		}
   5539 		/*
   5540 		 * We have the calibration results now, reboot with the
   5541 		 * runtime firmware (call ourselves recursively!)
   5542 		 */
   5543 		iwn_hw_stop(sc);
   5544 		error = iwn_hw_init(sc);
   5545 	} else {
   5546 		/* Send calibration results to runtime firmware. */
   5547 		error = iwn5000_send_calibration(sc);
   5548 	}
   5549 	return error;
   5550 }
   5551 
   5552 /*
   5553  * The firmware boot code is small and is intended to be copied directly into
   5554  * the NIC internal memory (no DMA transfer).
   5555  */
   5556 static int
   5557 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5558 {
   5559 	int error, ntries;
   5560 
   5561 	size /= sizeof (uint32_t);
   5562 
   5563 	if ((error = iwn_nic_lock(sc)) != 0)
   5564 		return error;
   5565 
   5566 	/* Copy microcode image into NIC memory. */
   5567 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5568 	    (const uint32_t *)ucode, size);
   5569 
   5570 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5571 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5572 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5573 
   5574 	/* Start boot load now. */
   5575 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5576 
   5577 	/* Wait for transfer to complete. */
   5578 	for (ntries = 0; ntries < 1000; ntries++) {
   5579 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5580 		    IWN_BSM_WR_CTRL_START))
   5581 			break;
   5582 		DELAY(10);
   5583 	}
   5584 	if (ntries == 1000) {
   5585 		aprint_error_dev(sc->sc_dev,
   5586 		    "could not load boot firmware\n");
   5587 		iwn_nic_unlock(sc);
   5588 		return ETIMEDOUT;
   5589 	}
   5590 
   5591 	/* Enable boot after power up. */
   5592 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5593 
   5594 	iwn_nic_unlock(sc);
   5595 	return 0;
   5596 }
   5597 
   5598 static int
   5599 iwn4965_load_firmware(struct iwn_softc *sc)
   5600 {
   5601 	struct iwn_fw_info *fw = &sc->fw;
   5602 	struct iwn_dma_info *dma = &sc->fw_dma;
   5603 	int error;
   5604 
   5605 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5606 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5607 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5608 	    BUS_DMASYNC_PREWRITE);
   5609 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5610 	    fw->init.text, fw->init.textsz);
   5611 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5612 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5613 
   5614 	/* Tell adapter where to find initialization sections. */
   5615 	if ((error = iwn_nic_lock(sc)) != 0)
   5616 		return error;
   5617 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5618 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5619 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5620 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5621 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5622 	iwn_nic_unlock(sc);
   5623 
   5624 	/* Load firmware boot code. */
   5625 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5626 	if (error != 0) {
   5627 		aprint_error_dev(sc->sc_dev,
   5628 		    "could not load boot firmware\n");
   5629 		return error;
   5630 	}
   5631 	/* Now press "execute". */
   5632 	IWN_WRITE(sc, IWN_RESET, 0);
   5633 
   5634 	/* Wait at most one second for first alive notification. */
   5635 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5636 		aprint_error_dev(sc->sc_dev,
   5637 		    "timeout waiting for adapter to initialize\n");
   5638 		return error;
   5639 	}
   5640 
   5641 	/* Retrieve current temperature for initial TX power calibration. */
   5642 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5643 	sc->temp = iwn4965_get_temperature(sc);
   5644 
   5645 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5646 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5647 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5648 	    BUS_DMASYNC_PREWRITE);
   5649 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5650 	    fw->main.text, fw->main.textsz);
   5651 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5652 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5653 
   5654 	/* Tell adapter where to find runtime sections. */
   5655 	if ((error = iwn_nic_lock(sc)) != 0)
   5656 		return error;
   5657 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5658 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5659 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5660 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5661 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5662 	    IWN_FW_UPDATED | fw->main.textsz);
   5663 	iwn_nic_unlock(sc);
   5664 
   5665 	return 0;
   5666 }
   5667 
   5668 static int
   5669 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5670     const uint8_t *section, int size)
   5671 {
   5672 	struct iwn_dma_info *dma = &sc->fw_dma;
   5673 	int error;
   5674 
   5675 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5676 	memcpy(dma->vaddr, section, size);
   5677 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5678 
   5679 	if ((error = iwn_nic_lock(sc)) != 0)
   5680 		return error;
   5681 
   5682 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5683 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5684 
   5685 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5686 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5687 	    IWN_LOADDR(dma->paddr));
   5688 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5689 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5690 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5691 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5692 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5693 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5694 
   5695 	/* Kick Flow Handler to start DMA transfer. */
   5696 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5697 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5698 
   5699 	iwn_nic_unlock(sc);
   5700 
   5701 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5702 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5703 }
   5704 
   5705 static int
   5706 iwn5000_load_firmware(struct iwn_softc *sc)
   5707 {
   5708 	struct iwn_fw_part *fw;
   5709 	int error;
   5710 
   5711 	/* Load the initialization firmware on first boot only. */
   5712 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5713 	    &sc->fw.main : &sc->fw.init;
   5714 
   5715 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5716 	    fw->text, fw->textsz);
   5717 	if (error != 0) {
   5718 		aprint_error_dev(sc->sc_dev,
   5719 		    "could not load firmware %s section\n", ".text");
   5720 		return error;
   5721 	}
   5722 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5723 	    fw->data, fw->datasz);
   5724 	if (error != 0) {
   5725 		aprint_error_dev(sc->sc_dev,
   5726 		    "could not load firmware %s section\n", ".data");
   5727 		return error;
   5728 	}
   5729 
   5730 	/* Now press "execute". */
   5731 	IWN_WRITE(sc, IWN_RESET, 0);
   5732 	return 0;
   5733 }
   5734 
   5735 /*
   5736  * Extract text and data sections from a legacy firmware image.
   5737  */
   5738 static int
   5739 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5740 {
   5741 	const uint32_t *ptr;
   5742 	size_t hdrlen = 24;
   5743 	uint32_t rev;
   5744 
   5745 	ptr = (const uint32_t *)fw->data;
   5746 	rev = le32toh(*ptr++);
   5747 
   5748 	sc->ucode_rev = rev;
   5749 
   5750 	/* Check firmware API version. */
   5751 	if (IWN_FW_API(rev) <= 1) {
   5752 		aprint_error_dev(sc->sc_dev,
   5753 		    "bad firmware, need API version >=2\n");
   5754 		return EINVAL;
   5755 	}
   5756 	if (IWN_FW_API(rev) >= 3) {
   5757 		/* Skip build number (version 2 header). */
   5758 		hdrlen += 4;
   5759 		ptr++;
   5760 	}
   5761 	if (fw->size < hdrlen) {
   5762 		aprint_error_dev(sc->sc_dev,
   5763 		    "firmware too short: %zd bytes\n", fw->size);
   5764 		return EINVAL;
   5765 	}
   5766 	fw->main.textsz = le32toh(*ptr++);
   5767 	fw->main.datasz = le32toh(*ptr++);
   5768 	fw->init.textsz = le32toh(*ptr++);
   5769 	fw->init.datasz = le32toh(*ptr++);
   5770 	fw->boot.textsz = le32toh(*ptr++);
   5771 
   5772 	/* Check that all firmware sections fit. */
   5773 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5774 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5775 		aprint_error_dev(sc->sc_dev,
   5776 		    "firmware too short: %zd bytes\n", fw->size);
   5777 		return EINVAL;
   5778 	}
   5779 
   5780 	/* Get pointers to firmware sections. */
   5781 	fw->main.text = (const uint8_t *)ptr;
   5782 	fw->main.data = fw->main.text + fw->main.textsz;
   5783 	fw->init.text = fw->main.data + fw->main.datasz;
   5784 	fw->init.data = fw->init.text + fw->init.textsz;
   5785 	fw->boot.text = fw->init.data + fw->init.datasz;
   5786 	return 0;
   5787 }
   5788 
   5789 /*
   5790  * Extract text and data sections from a TLV firmware image.
   5791  */
   5792 static int
   5793 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5794     uint16_t alt)
   5795 {
   5796 	const struct iwn_fw_tlv_hdr *hdr;
   5797 	const struct iwn_fw_tlv *tlv;
   5798 	const uint8_t *ptr, *end;
   5799 	uint64_t altmask;
   5800 	uint32_t len;
   5801 
   5802 	if (fw->size < sizeof (*hdr)) {
   5803 		aprint_error_dev(sc->sc_dev,
   5804 		    "firmware too short: %zd bytes\n", fw->size);
   5805 		return EINVAL;
   5806 	}
   5807 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5808 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5809 		aprint_error_dev(sc->sc_dev,
   5810 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5811 		return EINVAL;
   5812 	}
   5813 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5814 	    le32toh(hdr->build)));
   5815 	sc->ucode_rev = le32toh(hdr->rev);
   5816 
   5817 	/*
   5818 	 * Select the closest supported alternative that is less than
   5819 	 * or equal to the specified one.
   5820 	 */
   5821 	altmask = le64toh(hdr->altmask);
   5822 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5823 		alt--;	/* Downgrade. */
   5824 	DPRINTF(("using alternative %d\n", alt));
   5825 
   5826 	ptr = (const uint8_t *)(hdr + 1);
   5827 	end = (const uint8_t *)(fw->data + fw->size);
   5828 
   5829 	/* Parse type-length-value fields. */
   5830 	while (ptr + sizeof (*tlv) <= end) {
   5831 		tlv = (const struct iwn_fw_tlv *)ptr;
   5832 		len = le32toh(tlv->len);
   5833 
   5834 		ptr += sizeof (*tlv);
   5835 		if (ptr + len > end) {
   5836 			aprint_error_dev(sc->sc_dev,
   5837 			    "firmware too short: %zd bytes\n", fw->size);
   5838 			return EINVAL;
   5839 		}
   5840 		/* Skip other alternatives. */
   5841 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5842 			goto next;
   5843 
   5844 		switch (le16toh(tlv->type)) {
   5845 		case IWN_FW_TLV_MAIN_TEXT:
   5846 			fw->main.text = ptr;
   5847 			fw->main.textsz = len;
   5848 			break;
   5849 		case IWN_FW_TLV_MAIN_DATA:
   5850 			fw->main.data = ptr;
   5851 			fw->main.datasz = len;
   5852 			break;
   5853 		case IWN_FW_TLV_INIT_TEXT:
   5854 			fw->init.text = ptr;
   5855 			fw->init.textsz = len;
   5856 			break;
   5857 		case IWN_FW_TLV_INIT_DATA:
   5858 			fw->init.data = ptr;
   5859 			fw->init.datasz = len;
   5860 			break;
   5861 		case IWN_FW_TLV_BOOT_TEXT:
   5862 			fw->boot.text = ptr;
   5863 			fw->boot.textsz = len;
   5864 			break;
   5865 		case IWN_FW_TLV_ENH_SENS:
   5866 			if (len != 0) {
   5867 				aprint_error_dev(sc->sc_dev,
   5868 				    "TLV type %d has invalid size %u\n",
   5869 				    le16toh(tlv->type), len);
   5870 				goto next;
   5871 			}
   5872 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5873 			break;
   5874 		case IWN_FW_TLV_PHY_CALIB:
   5875 			if (len != sizeof(uint32_t)) {
   5876 				aprint_error_dev(sc->sc_dev,
   5877 				    "TLV type %d has invalid size %u\n",
   5878 				    le16toh(tlv->type), len);
   5879 				goto next;
   5880 			}
   5881 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5882 				sc->reset_noise_gain = le32toh(*ptr);
   5883 				sc->noise_gain = le32toh(*ptr) + 1;
   5884 			}
   5885 			break;
   5886 		case IWN_FW_TLV_FLAGS:
   5887 			if (len < sizeof(uint32_t))
   5888 				break;
   5889 			if (len % sizeof(uint32_t))
   5890 				break;
   5891 			sc->tlv_feature_flags = le32toh(*ptr);
   5892 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5893 			break;
   5894 		default:
   5895 			DPRINTF(("TLV type %d not handled\n",
   5896 			    le16toh(tlv->type)));
   5897 			break;
   5898 		}
   5899  next:		/* TLV fields are 32-bit aligned. */
   5900 		ptr += (len + 3) & ~3;
   5901 	}
   5902 	return 0;
   5903 }
   5904 
   5905 static int
   5906 iwn_read_firmware(struct iwn_softc *sc)
   5907 {
   5908 	struct iwn_fw_info *fw = &sc->fw;
   5909 	firmware_handle_t fwh;
   5910 	int error;
   5911 
   5912 	/*
   5913 	 * Some PHY calibration commands are firmware-dependent; these
   5914 	 * are the default values that will be overridden if
   5915 	 * necessary.
   5916 	 */
   5917 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5918 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5919 
   5920 	/* Initialize for error returns */
   5921 	fw->data = NULL;
   5922 	fw->size = 0;
   5923 
   5924 	/* Open firmware image. */
   5925 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5926 		aprint_error_dev(sc->sc_dev,
   5927 		    "could not get firmware handle %s\n", sc->fwname);
   5928 		return error;
   5929 	}
   5930 	fw->size = firmware_get_size(fwh);
   5931 	if (fw->size < sizeof (uint32_t)) {
   5932 		aprint_error_dev(sc->sc_dev,
   5933 		    "firmware too short: %zd bytes\n", fw->size);
   5934 		firmware_close(fwh);
   5935 		return EINVAL;
   5936 	}
   5937 
   5938 	/* Read the firmware. */
   5939 	fw->data = firmware_malloc(fw->size);
   5940 	if (fw->data == NULL) {
   5941 		aprint_error_dev(sc->sc_dev,
   5942 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5943 		firmware_close(fwh);
   5944 		return ENOMEM;
   5945 	}
   5946 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5947 	firmware_close(fwh);
   5948 	if (error != 0) {
   5949 		aprint_error_dev(sc->sc_dev,
   5950 		    "could not read firmware %s\n", sc->fwname);
   5951 		goto out;
   5952 	}
   5953 
   5954 	/* Retrieve text and data sections. */
   5955 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5956 		error = iwn_read_firmware_leg(sc, fw);
   5957 	else
   5958 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5959 	if (error != 0) {
   5960 		aprint_error_dev(sc->sc_dev,
   5961 		    "could not read firmware sections\n");
   5962 		goto out;
   5963 	}
   5964 
   5965 	/* Make sure text and data sections fit in hardware memory. */
   5966 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5967 	    fw->main.datasz > sc->fw_data_maxsz ||
   5968 	    fw->init.textsz > sc->fw_text_maxsz ||
   5969 	    fw->init.datasz > sc->fw_data_maxsz ||
   5970 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5971 	    (fw->boot.textsz & 3) != 0) {
   5972 		aprint_error_dev(sc->sc_dev,
   5973 		    "firmware sections too large\n");
   5974 		goto out;
   5975 	}
   5976 
   5977 	/* We can proceed with loading the firmware. */
   5978 	return 0;
   5979 out:
   5980 	firmware_free(fw->data, fw->size);
   5981 	fw->data = NULL;
   5982 	fw->size = 0;
   5983 	return error ? error : EINVAL;
   5984 }
   5985 
   5986 static int
   5987 iwn_clock_wait(struct iwn_softc *sc)
   5988 {
   5989 	int ntries;
   5990 
   5991 	/* Set "initialization complete" bit. */
   5992 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5993 
   5994 	/* Wait for clock stabilization. */
   5995 	for (ntries = 0; ntries < 2500; ntries++) {
   5996 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5997 			return 0;
   5998 		DELAY(10);
   5999 	}
   6000 	aprint_error_dev(sc->sc_dev,
   6001 	    "timeout waiting for clock stabilization\n");
   6002 	return ETIMEDOUT;
   6003 }
   6004 
   6005 static int
   6006 iwn_apm_init(struct iwn_softc *sc)
   6007 {
   6008 	pcireg_t reg;
   6009 	int error;
   6010 
   6011 	/* Disable L0s exit timer (NMI bug workaround). */
   6012 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   6013 	/* Don't wait for ICH L0s (ICH bug workaround). */
   6014 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   6015 
   6016 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   6017 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   6018 
   6019 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   6020 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   6021 
   6022 	/* Retrieve PCIe Active State Power Management (ASPM). */
   6023 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   6024 	    sc->sc_cap_off + PCIE_LCSR);
   6025 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   6026 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   6027 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6028 	else
   6029 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6030 
   6031 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   6032 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   6033 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   6034 
   6035 	/* Wait for clock stabilization before accessing prph. */
   6036 	if ((error = iwn_clock_wait(sc)) != 0)
   6037 		return error;
   6038 
   6039 	if ((error = iwn_nic_lock(sc)) != 0)
   6040 		return error;
   6041 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   6042 		/* Enable DMA and BSM (Bootstrap State Machine). */
   6043 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6044 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   6045 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   6046 	} else {
   6047 		/* Enable DMA. */
   6048 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6049 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6050 	}
   6051 	DELAY(20);
   6052 	/* Disable L1-Active. */
   6053 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   6054 	iwn_nic_unlock(sc);
   6055 
   6056 	return 0;
   6057 }
   6058 
   6059 static void
   6060 iwn_apm_stop_master(struct iwn_softc *sc)
   6061 {
   6062 	int ntries;
   6063 
   6064 	/* Stop busmaster DMA activity. */
   6065 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   6066 	for (ntries = 0; ntries < 100; ntries++) {
   6067 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   6068 			return;
   6069 		DELAY(10);
   6070 	}
   6071 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6072 }
   6073 
   6074 static void
   6075 iwn_apm_stop(struct iwn_softc *sc)
   6076 {
   6077 	iwn_apm_stop_master(sc);
   6078 
   6079 	/* Reset the entire device. */
   6080 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6081 	DELAY(10);
   6082 	/* Clear "initialization complete" bit. */
   6083 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6084 }
   6085 
   6086 static int
   6087 iwn4965_nic_config(struct iwn_softc *sc)
   6088 {
   6089 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6090 		/*
   6091 		 * I don't believe this to be correct but this is what the
   6092 		 * vendor driver is doing. Probably the bits should not be
   6093 		 * shifted in IWN_RFCFG_*.
   6094 		 */
   6095 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6096 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6097 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6098 		    IWN_RFCFG_DASH(sc->rfcfg));
   6099 	}
   6100 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6101 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6102 	return 0;
   6103 }
   6104 
   6105 static int
   6106 iwn5000_nic_config(struct iwn_softc *sc)
   6107 {
   6108 	uint32_t tmp;
   6109 	int error;
   6110 
   6111 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6112 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6113 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6114 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6115 		    IWN_RFCFG_DASH(sc->rfcfg));
   6116 	}
   6117 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6118 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6119 
   6120 	if ((error = iwn_nic_lock(sc)) != 0)
   6121 		return error;
   6122 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6123 
   6124 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6125 		/*
   6126 		 * Select first Switching Voltage Regulator (1.32V) to
   6127 		 * solve a stability issue related to noisy DC2DC line
   6128 		 * in the silicon of 1000 Series.
   6129 		 */
   6130 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6131 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6132 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6133 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6134 	}
   6135 	iwn_nic_unlock(sc);
   6136 
   6137 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6138 		/* Use internal power amplifier only. */
   6139 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6140 	}
   6141 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6142 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6143 		/* Indicate that ROM calibration version is >=6. */
   6144 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6145 	}
   6146 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6147 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6148 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6149 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6150 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6151 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6152 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6153 	return 0;
   6154 }
   6155 
   6156 /*
   6157  * Take NIC ownership over Intel Active Management Technology (AMT).
   6158  */
   6159 static int
   6160 iwn_hw_prepare(struct iwn_softc *sc)
   6161 {
   6162 	int ntries;
   6163 
   6164 	/* Check if hardware is ready. */
   6165 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6166 	for (ntries = 0; ntries < 5; ntries++) {
   6167 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6168 		    IWN_HW_IF_CONFIG_NIC_READY)
   6169 			return 0;
   6170 		DELAY(10);
   6171 	}
   6172 
   6173 	/* Hardware not ready, force into ready state. */
   6174 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6175 	for (ntries = 0; ntries < 15000; ntries++) {
   6176 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6177 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6178 			break;
   6179 		DELAY(10);
   6180 	}
   6181 	if (ntries == 15000)
   6182 		return ETIMEDOUT;
   6183 
   6184 	/* Hardware should be ready now. */
   6185 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6186 	for (ntries = 0; ntries < 5; ntries++) {
   6187 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6188 		    IWN_HW_IF_CONFIG_NIC_READY)
   6189 			return 0;
   6190 		DELAY(10);
   6191 	}
   6192 	return ETIMEDOUT;
   6193 }
   6194 
   6195 static int
   6196 iwn_hw_init(struct iwn_softc *sc)
   6197 {
   6198 	struct iwn_ops *ops = &sc->ops;
   6199 	int error, chnl, qid;
   6200 
   6201 	/* Clear pending interrupts. */
   6202 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6203 
   6204 	if ((error = iwn_apm_init(sc)) != 0) {
   6205 		aprint_error_dev(sc->sc_dev,
   6206 		    "could not power ON adapter\n");
   6207 		return error;
   6208 	}
   6209 
   6210 	/* Select VMAIN power source. */
   6211 	if ((error = iwn_nic_lock(sc)) != 0)
   6212 		return error;
   6213 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6214 	iwn_nic_unlock(sc);
   6215 
   6216 	/* Perform adapter-specific initialization. */
   6217 	if ((error = ops->nic_config(sc)) != 0)
   6218 		return error;
   6219 
   6220 	/* Initialize RX ring. */
   6221 	if ((error = iwn_nic_lock(sc)) != 0)
   6222 		return error;
   6223 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6224 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6225 	/* Set physical address of RX ring (256-byte aligned). */
   6226 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6227 	/* Set physical address of RX status (16-byte aligned). */
   6228 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6229 	/* Enable RX. */
   6230 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6231 	    IWN_FH_RX_CONFIG_ENA           |
   6232 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6233 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6234 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6235 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6236 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6237 	iwn_nic_unlock(sc);
   6238 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6239 
   6240 	if ((error = iwn_nic_lock(sc)) != 0)
   6241 		return error;
   6242 
   6243 	/* Initialize TX scheduler. */
   6244 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6245 
   6246 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6247 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6248 
   6249 	/* Initialize TX rings. */
   6250 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6251 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6252 
   6253 		/* Set physical address of TX ring (256-byte aligned). */
   6254 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6255 		    txq->desc_dma.paddr >> 8);
   6256 	}
   6257 	iwn_nic_unlock(sc);
   6258 
   6259 	/* Enable DMA channels. */
   6260 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6261 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6262 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6263 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6264 	}
   6265 
   6266 	/* Clear "radio off" and "commands blocked" bits. */
   6267 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6268 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6269 
   6270 	/* Clear pending interrupts. */
   6271 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6272 	/* Enable interrupt coalescing. */
   6273 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6274 	/* Enable interrupts. */
   6275 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6276 
   6277 	/* _Really_ make sure "radio off" bit is cleared! */
   6278 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6279 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6280 
   6281 	/* Enable shadow registers. */
   6282 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6283 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6284 
   6285 	if ((error = ops->load_firmware(sc)) != 0) {
   6286 		aprint_error_dev(sc->sc_dev,
   6287 		    "could not load firmware\n");
   6288 		return error;
   6289 	}
   6290 	/* Wait at most one second for firmware alive notification. */
   6291 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6292 		aprint_error_dev(sc->sc_dev,
   6293 		    "timeout waiting for adapter to initialize\n");
   6294 		return error;
   6295 	}
   6296 	/* Do post-firmware initialization. */
   6297 	return ops->post_alive(sc);
   6298 }
   6299 
   6300 static void
   6301 iwn_hw_stop(struct iwn_softc *sc)
   6302 {
   6303 	int chnl, qid, ntries;
   6304 
   6305 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6306 
   6307 	/* Disable interrupts. */
   6308 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6309 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6310 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6311 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6312 
   6313 	/* Make sure we no longer hold the NIC lock. */
   6314 	iwn_nic_unlock(sc);
   6315 
   6316 	/* Stop TX scheduler. */
   6317 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6318 
   6319 	/* Stop all DMA channels. */
   6320 	if (iwn_nic_lock(sc) == 0) {
   6321 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6322 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6323 			for (ntries = 0; ntries < 200; ntries++) {
   6324 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6325 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6326 					break;
   6327 				DELAY(10);
   6328 			}
   6329 		}
   6330 		iwn_nic_unlock(sc);
   6331 	}
   6332 
   6333 	/* Stop RX ring. */
   6334 	iwn_reset_rx_ring(sc, &sc->rxq);
   6335 
   6336 	/* Reset all TX rings. */
   6337 	for (qid = 0; qid < sc->ntxqs; qid++)
   6338 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6339 
   6340 	if (iwn_nic_lock(sc) == 0) {
   6341 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6342 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6343 		iwn_nic_unlock(sc);
   6344 	}
   6345 	DELAY(5);
   6346 	/* Power OFF adapter. */
   6347 	iwn_apm_stop(sc);
   6348 }
   6349 
   6350 static int
   6351 iwn_init(struct ifnet *ifp)
   6352 {
   6353 	struct iwn_softc *sc = ifp->if_softc;
   6354 	struct ieee80211com *ic = &sc->sc_ic;
   6355 	int error;
   6356 
   6357 	mutex_enter(&sc->sc_mtx);
   6358 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6359 		goto out;
   6360 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6361 		aprint_error_dev(sc->sc_dev,
   6362 		    "hardware not ready\n");
   6363 		goto fail;
   6364 	}
   6365 
   6366 	/* Check that the radio is not disabled by hardware switch. */
   6367 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6368 		aprint_error_dev(sc->sc_dev,
   6369 		    "radio is disabled by hardware switch\n");
   6370 		error = EPERM;	/* :-) */
   6371 		goto fail;
   6372 	}
   6373 
   6374 	/* Read firmware images from the filesystem. */
   6375 	if ((error = iwn_read_firmware(sc)) != 0) {
   6376 		aprint_error_dev(sc->sc_dev,
   6377 		    "could not read firmware\n");
   6378 		goto fail;
   6379 	}
   6380 
   6381 	/* Initialize interrupt mask to default value. */
   6382 	sc->int_mask = IWN_INT_MASK_DEF;
   6383 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6384 
   6385 	/* Initialize hardware and upload firmware. */
   6386 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6387 	error = iwn_hw_init(sc);
   6388 	firmware_free(sc->fw.data, sc->fw.size);
   6389 	sc->fw.data = NULL;
   6390 	sc->fw.size = 0;
   6391 	if (error != 0) {
   6392 		aprint_error_dev(sc->sc_dev,
   6393 		    "could not initialize hardware\n");
   6394 		goto fail;
   6395 	}
   6396 
   6397 	/* Configure adapter now that it is ready. */
   6398 	if ((error = iwn_config(sc)) != 0) {
   6399 		aprint_error_dev(sc->sc_dev,
   6400 		    "could not configure device\n");
   6401 		goto fail;
   6402 	}
   6403 
   6404 	sc->sc_beacon_wait = 0;
   6405 
   6406 	ifp->if_flags &= ~IFF_OACTIVE;
   6407 	ifp->if_flags |= IFF_RUNNING;
   6408 
   6409 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6410 		ieee80211_begin_scan(ic, 0);
   6411 	else
   6412 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6413 
   6414 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6415 out:
   6416 	mutex_exit(&sc->sc_mtx);
   6417 	return 0;
   6418 
   6419 fail:	mutex_exit(&sc->sc_mtx);
   6420 	iwn_stop(ifp, 1);
   6421 	return error;
   6422 }
   6423 
   6424 static void
   6425 iwn_stop(struct ifnet *ifp, int disable)
   6426 {
   6427 	struct iwn_softc *sc = ifp->if_softc;
   6428 	struct ieee80211com *ic = &sc->sc_ic;
   6429 
   6430 	if (!disable)
   6431 		mutex_enter(&sc->sc_mtx);
   6432 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6433 	ifp->if_timer = sc->sc_tx_timer = 0;
   6434 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6435 
   6436 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6437 
   6438 	/* Power OFF hardware. */
   6439 	iwn_hw_stop(sc);
   6440 
   6441 	if (!disable)
   6442 		mutex_exit(&sc->sc_mtx);
   6443 }
   6444 
   6445 /*
   6446  * XXX MCLGETI alternative
   6447  *
   6448  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6449  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6450  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6451  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6452  */
   6453 
   6454 static struct mbuf *
   6455 MCLGETIalt(struct iwn_softc *sc, int how,
   6456     struct ifnet *ifp __unused, u_int size)
   6457 {
   6458 	struct mbuf *m;
   6459 #ifdef IWN_USE_RBUF
   6460 	struct iwn_rbuf *rbuf;
   6461 #endif
   6462 
   6463 	MGETHDR(m, how, MT_DATA);
   6464 	if (m == NULL)
   6465 		return NULL;
   6466 
   6467 #ifdef IWN_USE_RBUF
   6468 	if (sc->rxq.nb_free_entries > 0 &&
   6469 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6470 		/* Attach buffer to mbuf header. */
   6471 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6472 		m->m_flags |= M_EXT_RW;
   6473 	}
   6474 	else {
   6475 		MEXTMALLOC(m, size, how);
   6476 		if ((m->m_flags & M_EXT) == 0) {
   6477 			m_freem(m);
   6478 			return NULL;
   6479 		}
   6480 	}
   6481 
   6482 #else
   6483 #ifdef MCLGET4K
   6484 	if (size == 4096)
   6485 		MCLGET4K(m, how);
   6486 	else
   6487 		panic("size must be 4k");
   6488 #else
   6489 	MEXTMALLOC(m, size, how);
   6490 #endif
   6491 	if ((m->m_flags & M_EXT) == 0) {
   6492 		m_freem(m);
   6493 		return NULL;
   6494 	}
   6495 #endif
   6496 
   6497 	return m;
   6498 }
   6499 
   6500 #ifdef IWN_USE_RBUF
   6501 static struct iwn_rbuf *
   6502 iwn_alloc_rbuf(struct iwn_softc *sc)
   6503 {
   6504 	struct iwn_rbuf *rbuf;
   6505 	mutex_enter(&sc->rxq.freelist_mtx);
   6506 
   6507 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6508 	if (rbuf != NULL) {
   6509 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6510 		sc->rxq.nb_free_entries --;
   6511 	}
   6512 	mutex_exit(&sc->rxq.freelist_mtx);
   6513 	return rbuf;
   6514 }
   6515 
   6516 /*
   6517  * This is called automatically by the network stack when the mbuf to which
   6518  * our RX buffer is attached is freed.
   6519  */
   6520 static void
   6521 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6522 {
   6523 	struct iwn_rbuf *rbuf = arg;
   6524 	struct iwn_softc *sc = rbuf->sc;
   6525 
   6526 	/* Put the RX buffer back in the free list. */
   6527 	mutex_enter(&sc->rxq.freelist_mtx);
   6528 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6529 	mutex_exit(&sc->rxq.freelist_mtx);
   6530 
   6531 	sc->rxq.nb_free_entries ++;
   6532 	if (__predict_true(m != NULL))
   6533 		pool_cache_put(mb_cache, m);
   6534 }
   6535 
   6536 static int
   6537 iwn_alloc_rpool(struct iwn_softc *sc)
   6538 {
   6539 	struct iwn_rx_ring *ring = &sc->rxq;
   6540 	struct iwn_rbuf *rbuf;
   6541 	int i, error;
   6542 
   6543 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6544 
   6545 	/* Allocate a big chunk of DMA'able memory... */
   6546 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6547 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6548 	if (error != 0) {
   6549 		aprint_error_dev(sc->sc_dev,
   6550 		    "could not allocate RX buffers DMA memory\n");
   6551 		return error;
   6552 	}
   6553 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6554 	SLIST_INIT(&ring->freelist);
   6555 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6556 		rbuf = &ring->rbuf[i];
   6557 
   6558 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6559 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6560 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6561 
   6562 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6563 	}
   6564 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6565 	return 0;
   6566 }
   6567 
   6568 static void
   6569 iwn_free_rpool(struct iwn_softc *sc)
   6570 {
   6571 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6572 }
   6573 #endif
   6574 
   6575 /*
   6576  * XXX: Hack to set the current channel to the value advertised in beacons or
   6577  * probe responses. Only used during AP detection.
   6578  * XXX: Duplicated from if_iwi.c
   6579  */
   6580 static void
   6581 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6582     struct iwn_rx_stat *stat)
   6583 {
   6584 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6585 	struct ieee80211_frame *wh;
   6586 	uint8_t subtype;
   6587 	uint8_t *frm, *efrm;
   6588 
   6589 	wh = mtod(m, struct ieee80211_frame *);
   6590 
   6591 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6592 		return;
   6593 
   6594 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6595 
   6596 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6597 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6598 		return;
   6599 
   6600 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6601 		int chan = le16toh(stat->chan);
   6602 		if (chan < __arraycount(ic->ic_channels))
   6603 			ic->ic_curchan = &ic->ic_channels[chan];
   6604 		return;
   6605 	}
   6606 
   6607 	frm = (uint8_t *)(wh + 1);
   6608 	efrm = mtod(m, uint8_t *) + m->m_len;
   6609 
   6610 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6611 	while (frm + 2 < efrm) {
   6612 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
   6613 #if IEEE80211_CHAN_MAX < 255
   6614 			if (frm[2] <= IEEE80211_CHAN_MAX)
   6615 #endif
   6616 				ic->ic_curchan = &ic->ic_channels[frm[2]];
   6617 		}
   6618 
   6619 		frm += frm[1] + 2;
   6620 	}
   6621 }
   6622 
   6623 #ifdef notyetMODULE
   6624 
   6625 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6626 
   6627 #ifdef _MODULE
   6628 #include "ioconf.c"
   6629 #endif
   6630 
   6631 static int
   6632 if_iwn_modcmd(modcmd_t cmd, void *data)
   6633 {
   6634 	int error = 0;
   6635 
   6636 	switch (cmd) {
   6637 	case MODULE_CMD_INIT:
   6638 #ifdef _MODULE
   6639 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6640 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6641 #endif
   6642 		return error;
   6643 	case MODULE_CMD_FINI:
   6644 #ifdef _MODULE
   6645 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6646 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6647 #endif
   6648 		return error;
   6649 	case MODULE_CMD_AUTOUNLOAD:
   6650 #ifdef _MODULE
   6651 		/* XXX This is not optional! */
   6652 #endif
   6653 		return error;
   6654 	default:
   6655 		return ENOTTY;
   6656 	}
   6657 }
   6658 #endif
   6659