if_iwn.c revision 1.94 1 /* $NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const pci_product_id_t iwn_devices[] = {
79 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
81 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
82 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
83 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
84 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
85 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
86 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
87 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
88 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
89 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
90 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
91 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
92 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
93 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
94 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
95 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
96 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
97 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
98 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
99 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
100 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
101 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
102 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
103 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
104 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
105 PCI_PRODUCT_INTEL_WIFI_LINK_6235,
106 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
107 PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
108 PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
109 PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
110 PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
111 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
112 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
113 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
114 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
115 PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
116 PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
117 PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
118 PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
119 };
120
121 static int iwn_match(device_t , struct cfdata *, void *);
122 static void iwn_attach(device_t , device_t , void *);
123 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
124 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
125 static void iwn_radiotap_attach(struct iwn_softc *);
126 static int iwn_detach(device_t , int);
127 #if 0
128 static void iwn_power(int, void *);
129 #endif
130 static bool iwn_resume(device_t, const pmf_qual_t *);
131 static int iwn_nic_lock(struct iwn_softc *);
132 static int iwn_eeprom_lock(struct iwn_softc *);
133 static int iwn_init_otprom(struct iwn_softc *);
134 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
135 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
136 void **, bus_size_t, bus_size_t);
137 static void iwn_dma_contig_free(struct iwn_dma_info *);
138 static int iwn_alloc_sched(struct iwn_softc *);
139 static void iwn_free_sched(struct iwn_softc *);
140 static int iwn_alloc_kw(struct iwn_softc *);
141 static void iwn_free_kw(struct iwn_softc *);
142 static int iwn_alloc_ict(struct iwn_softc *);
143 static void iwn_free_ict(struct iwn_softc *);
144 static int iwn_alloc_fwmem(struct iwn_softc *);
145 static void iwn_free_fwmem(struct iwn_softc *);
146 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
150 int);
151 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
153 static void iwn5000_ict_reset(struct iwn_softc *);
154 static int iwn_read_eeprom(struct iwn_softc *);
155 static void iwn4965_read_eeprom(struct iwn_softc *);
156
157 #ifdef IWN_DEBUG
158 static void iwn4965_print_power_group(struct iwn_softc *, int);
159 #endif
160 static void iwn5000_read_eeprom(struct iwn_softc *);
161 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
163 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
164 static void iwn_newassoc(struct ieee80211_node *, int);
165 static int iwn_media_change(struct ifnet *);
166 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
167 static void iwn_iter_func(void *, struct ieee80211_node *);
168 static void iwn_calib_timeout(void *);
169 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
170 struct iwn_rx_data *);
171 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
172 struct iwn_rx_data *);
173 #ifndef IEEE80211_NO_HT
174 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
175 struct iwn_rx_data *);
176 #endif
177 static void iwn5000_rx_calib_results(struct iwn_softc *,
178 struct iwn_rx_desc *, struct iwn_rx_data *);
179 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
180 struct iwn_rx_data *);
181 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 struct iwn_rx_data *);
183 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 struct iwn_rx_data *);
185 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
186 uint8_t);
187 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
188 static void iwn_notif_intr(struct iwn_softc *);
189 static void iwn_wakeup_intr(struct iwn_softc *);
190 static void iwn_fatal_intr(struct iwn_softc *);
191 static int iwn_intr(void *);
192 static void iwn_softintr(void *);
193 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
194 uint16_t);
195 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
196 uint16_t);
197 #ifdef notyet
198 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
199 #endif
200 static int iwn_tx(struct iwn_softc *, struct mbuf *,
201 struct ieee80211_node *, int);
202 static void iwn_start(struct ifnet *);
203 static void iwn_watchdog(struct ifnet *);
204 static int iwn_ioctl(struct ifnet *, u_long, void *);
205 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
206 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
207 int);
208 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
209 int);
210 static int iwn_set_link_quality(struct iwn_softc *,
211 struct ieee80211_node *);
212 static int iwn_add_broadcast_node(struct iwn_softc *, int);
213 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
214 static int iwn_set_critical_temp(struct iwn_softc *);
215 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
216 static void iwn4965_power_calibration(struct iwn_softc *, int);
217 static int iwn4965_set_txpower(struct iwn_softc *, int);
218 static int iwn5000_set_txpower(struct iwn_softc *, int);
219 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
220 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
221 static int iwn_get_noise(const struct iwn_rx_general_stats *);
222 static int iwn4965_get_temperature(struct iwn_softc *);
223 static int iwn5000_get_temperature(struct iwn_softc *);
224 static int iwn_init_sensitivity(struct iwn_softc *);
225 static void iwn_collect_noise(struct iwn_softc *,
226 const struct iwn_rx_general_stats *);
227 static int iwn4965_init_gains(struct iwn_softc *);
228 static int iwn5000_init_gains(struct iwn_softc *);
229 static int iwn4965_set_gains(struct iwn_softc *);
230 static int iwn5000_set_gains(struct iwn_softc *);
231 static void iwn_tune_sensitivity(struct iwn_softc *,
232 const struct iwn_rx_stats *);
233 static int iwn_send_sensitivity(struct iwn_softc *);
234 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
235 static int iwn5000_runtime_calib(struct iwn_softc *);
236
237 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
238 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
239 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
240 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
241
242 static int iwn_config(struct iwn_softc *);
243 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
244 uint8_t);
245 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
246 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
247 static int iwn_scan(struct iwn_softc *, uint16_t);
248 static int iwn_auth(struct iwn_softc *);
249 static int iwn_run(struct iwn_softc *);
250 #ifdef IWN_HWCRYPTO
251 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
252 struct ieee80211_key *);
253 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
254 struct ieee80211_key *);
255 #endif
256 static int iwn_wme_update(struct ieee80211com *);
257 #ifndef IEEE80211_NO_HT
258 static int iwn_ampdu_rx_start(struct ieee80211com *,
259 struct ieee80211_node *, uint8_t);
260 static void iwn_ampdu_rx_stop(struct ieee80211com *,
261 struct ieee80211_node *, uint8_t);
262 static int iwn_ampdu_tx_start(struct ieee80211com *,
263 struct ieee80211_node *, uint8_t);
264 static void iwn_ampdu_tx_stop(struct ieee80211com *,
265 struct ieee80211_node *, uint8_t);
266 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
267 struct ieee80211_node *, uint8_t, uint16_t);
268 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
269 uint8_t, uint16_t);
270 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
271 struct ieee80211_node *, uint8_t, uint16_t);
272 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
273 uint8_t, uint16_t);
274 #endif
275 static int iwn5000_query_calibration(struct iwn_softc *);
276 static int iwn5000_send_calibration(struct iwn_softc *);
277 static int iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int iwn6000_temp_offset_calib(struct iwn_softc *);
279 static int iwn2000_temp_offset_calib(struct iwn_softc *);
280 static int iwn4965_post_alive(struct iwn_softc *);
281 static int iwn5000_post_alive(struct iwn_softc *);
282 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 int);
284 static int iwn4965_load_firmware(struct iwn_softc *);
285 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 const uint8_t *, int);
287 static int iwn5000_load_firmware(struct iwn_softc *);
288 static int iwn_read_firmware_leg(struct iwn_softc *,
289 struct iwn_fw_info *);
290 static int iwn_read_firmware_tlv(struct iwn_softc *,
291 struct iwn_fw_info *, uint16_t);
292 static int iwn_read_firmware(struct iwn_softc *);
293 static int iwn_clock_wait(struct iwn_softc *);
294 static int iwn_apm_init(struct iwn_softc *);
295 static void iwn_apm_stop_master(struct iwn_softc *);
296 static void iwn_apm_stop(struct iwn_softc *);
297 static int iwn4965_nic_config(struct iwn_softc *);
298 static int iwn5000_nic_config(struct iwn_softc *);
299 static int iwn_hw_prepare(struct iwn_softc *);
300 static int iwn_hw_init(struct iwn_softc *);
301 static void iwn_hw_stop(struct iwn_softc *);
302 static int iwn_init(struct ifnet *);
303 static void iwn_stop(struct ifnet *, int);
304
305 /* XXX MCLGETI alternative */
306 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
307 struct ifnet *, u_int);
308 #ifdef IWN_USE_RBUF
309 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
310 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
311 static int iwn_alloc_rpool(struct iwn_softc *);
312 static void iwn_free_rpool(struct iwn_softc *);
313 #endif
314
315 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
316 struct iwn_rx_stat *);
317
318 #ifdef IWN_DEBUG
319 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
320 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
321 int iwn_debug = 0;
322 #else
323 #define DPRINTF(x)
324 #define DPRINTFN(n, x)
325 #endif
326
327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
328 iwn_detach, NULL);
329
330 static int
331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
332 {
333 struct pci_attach_args *pa = aux;
334 size_t i;
335
336 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
337 return 0;
338
339 for (i = 0; i < __arraycount(iwn_devices); i++)
340 if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
341 return 1;
342
343 return 0;
344 }
345
346 static void
347 iwn_attach(device_t parent __unused, device_t self, void *aux)
348 {
349 struct iwn_softc *sc = device_private(self);
350 struct ieee80211com *ic = &sc->sc_ic;
351 struct ifnet *ifp = &sc->sc_ec.ec_if;
352 struct pci_attach_args *pa = aux;
353 const char *intrstr;
354 pcireg_t memtype, reg;
355 int i, error;
356 char intrbuf[PCI_INTRSTR_LEN];
357
358 sc->sc_dev = self;
359 sc->sc_pct = pa->pa_pc;
360 sc->sc_pcitag = pa->pa_tag;
361 sc->sc_dmat = pa->pa_dmat;
362 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
363
364 callout_init(&sc->calib_to, 0);
365 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
366
367 pci_aprint_devinfo(pa, NULL);
368
369 /*
370 * Get the offset of the PCI Express Capability Structure in PCI
371 * Configuration Space.
372 */
373 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
374 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
375 if (error == 0) {
376 aprint_error_dev(self,
377 "PCIe capability structure not found!\n");
378 return;
379 }
380
381 /* Clear device-specific "PCI retry timeout" register (41h). */
382 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
383 if (reg & 0xff00)
384 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
385
386 /* Enable bus-mastering. */
387 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
388 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
389 reg |= PCI_COMMAND_MASTER_ENABLE;
390 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
391
392 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
393 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
394 &sc->sc_sh, NULL, &sc->sc_sz);
395 if (error != 0) {
396 aprint_error_dev(self, "can't map mem space\n");
397 return;
398 }
399
400 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
401 if (sc->sc_soft_ih == NULL) {
402 aprint_error_dev(self, "can't establish soft interrupt\n");
403 goto unmap;
404 }
405
406 /* Install interrupt handler. */
407 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
408 if (error) {
409 aprint_error_dev(self, "can't allocate interrupt\n");
410 goto failsi;
411 }
412 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
413 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
414 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
415 else
416 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
417 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
418 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
419 sizeof(intrbuf));
420 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
421 IPL_NET, iwn_intr, sc, device_xname(self));
422 if (sc->sc_ih == NULL) {
423 aprint_error_dev(self, "can't establish interrupt");
424 if (intrstr != NULL)
425 aprint_error(" at %s", intrstr);
426 aprint_error("\n");
427 goto failia;
428 }
429 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430
431 /* Read hardware revision and attach. */
432 sc->hw_type =
433 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
434 >> IWN_HW_REV_TYPE_SHIFT;
435 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
436 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
437 else
438 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
439 if (error != 0) {
440 aprint_error_dev(self, "could not attach device\n");
441 goto failih;
442 }
443
444 if ((error = iwn_hw_prepare(sc)) != 0) {
445 aprint_error_dev(self, "hardware not ready\n");
446 goto failih;
447 }
448
449 /* Read MAC address, channels, etc from EEPROM. */
450 if ((error = iwn_read_eeprom(sc)) != 0) {
451 aprint_error_dev(self, "could not read EEPROM\n");
452 goto failih;
453 }
454
455 /* Allocate DMA memory for firmware transfers. */
456 if ((error = iwn_alloc_fwmem(sc)) != 0) {
457 aprint_error_dev(self,
458 "could not allocate memory for firmware\n");
459 goto failih;
460 }
461
462 /* Allocate "Keep Warm" page. */
463 if ((error = iwn_alloc_kw(sc)) != 0) {
464 aprint_error_dev(self, "could not allocate keep warm page\n");
465 goto fail1;
466 }
467
468 /* Allocate ICT table for 5000 Series. */
469 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 (error = iwn_alloc_ict(sc)) != 0) {
471 aprint_error_dev(self, "could not allocate ICT table\n");
472 goto fail2;
473 }
474
475 /* Allocate TX scheduler "rings". */
476 if ((error = iwn_alloc_sched(sc)) != 0) {
477 aprint_error_dev(self,
478 "could not allocate TX scheduler rings\n");
479 goto fail3;
480 }
481
482 #ifdef IWN_USE_RBUF
483 /* Allocate RX buffers. */
484 if ((error = iwn_alloc_rpool(sc)) != 0) {
485 aprint_error_dev(self, "could not allocate RX buffers\n");
486 goto fail3;
487 }
488 #endif
489
490 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
491 for (i = 0; i < sc->ntxqs; i++) {
492 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
493 aprint_error_dev(self,
494 "could not allocate TX ring %d\n", i);
495 goto fail4;
496 }
497 }
498
499 /* Allocate RX ring. */
500 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
501 aprint_error_dev(self, "could not allocate RX ring\n");
502 goto fail4;
503 }
504
505 /* Clear pending interrupts. */
506 IWN_WRITE(sc, IWN_INT, 0xffffffff);
507
508 /* Count the number of available chains. */
509 sc->ntxchains =
510 ((sc->txchainmask >> 2) & 1) +
511 ((sc->txchainmask >> 1) & 1) +
512 ((sc->txchainmask >> 0) & 1);
513 sc->nrxchains =
514 ((sc->rxchainmask >> 2) & 1) +
515 ((sc->rxchainmask >> 1) & 1) +
516 ((sc->rxchainmask >> 0) & 1);
517 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
518 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
519 ether_sprintf(ic->ic_myaddr));
520
521 ic->ic_ifp = ifp;
522 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
523 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
524 ic->ic_state = IEEE80211_S_INIT;
525
526 /*
527 * Set device capabilities.
528 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
529 * IEEE80211_C_PMGT too.
530 */
531 ic->ic_caps =
532 IEEE80211_C_IBSS | /* IBSS mode support */
533 IEEE80211_C_WPA | /* 802.11i */
534 IEEE80211_C_MONITOR | /* monitor mode supported */
535 IEEE80211_C_TXPMGT | /* tx power management */
536 IEEE80211_C_SHSLOT | /* short slot time supported */
537 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
538 IEEE80211_C_WME; /* 802.11e */
539
540 #ifndef IEEE80211_NO_HT
541 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
542 /* Set HT capabilities. */
543 ic->ic_htcaps =
544 #if IWN_RBUF_SIZE == 8192
545 IEEE80211_HTCAP_AMSDU7935 |
546 #endif
547 IEEE80211_HTCAP_CBW20_40 |
548 IEEE80211_HTCAP_SGI20 |
549 IEEE80211_HTCAP_SGI40;
550 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
551 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
552 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
553 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
554 else
555 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
556 }
557 #endif /* !IEEE80211_NO_HT */
558
559 /* Set supported legacy rates. */
560 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
561 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
562 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
563 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
564 }
565 #ifndef IEEE80211_NO_HT
566 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
567 /* Set supported HT rates. */
568 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
569 if (sc->nrxchains > 1)
570 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
571 if (sc->nrxchains > 2)
572 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
573 }
574 #endif
575
576 /* IBSS channel undefined for now. */
577 ic->ic_ibss_chan = &ic->ic_channels[0];
578
579 ifp->if_softc = sc;
580 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
581 ifp->if_init = iwn_init;
582 ifp->if_ioctl = iwn_ioctl;
583 ifp->if_start = iwn_start;
584 ifp->if_stop = iwn_stop;
585 ifp->if_watchdog = iwn_watchdog;
586 IFQ_SET_READY(&ifp->if_snd);
587 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
588
589 error = if_initialize(ifp);
590 if (error != 0) {
591 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
592 error);
593 goto fail5;
594 }
595 ieee80211_ifattach(ic);
596 /* Use common softint-based if_input */
597 ifp->if_percpuq = if_percpuq_create(ifp);
598 if_register(ifp);
599
600 ic->ic_node_alloc = iwn_node_alloc;
601 ic->ic_newassoc = iwn_newassoc;
602 #ifdef IWN_HWCRYPTO
603 ic->ic_crypto.cs_key_set = iwn_set_key;
604 ic->ic_crypto.cs_key_delete = iwn_delete_key;
605 #endif
606 ic->ic_wme.wme_update = iwn_wme_update;
607 #ifndef IEEE80211_NO_HT
608 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
609 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
610 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
611 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
612 #endif
613
614 /* Override 802.11 state transition machine. */
615 sc->sc_newstate = ic->ic_newstate;
616 ic->ic_newstate = iwn_newstate;
617
618 /* XXX media locking needs revisiting */
619 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
620 ieee80211_media_init_with_lock(ic,
621 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
622
623 sc->amrr.amrr_min_success_threshold = 1;
624 sc->amrr.amrr_max_success_threshold = 15;
625
626 iwn_radiotap_attach(sc);
627
628 /*
629 * XXX for NetBSD, OpenBSD timeout_set replaced by
630 * callout_init and callout_setfunc, above.
631 */
632
633 if (pmf_device_register(self, NULL, iwn_resume))
634 pmf_class_network_register(self, ifp);
635 else
636 aprint_error_dev(self, "couldn't establish power handler\n");
637
638 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
639 ieee80211_announce(ic);
640
641 sc->sc_flags |= IWN_FLAG_ATTACHED;
642 return;
643
644 /* Free allocated memory if something failed during attachment. */
645 fail5: iwn_free_rx_ring(sc, &sc->rxq);
646 fail4: while (--i >= 0)
647 iwn_free_tx_ring(sc, &sc->txq[i]);
648 #ifdef IWN_USE_RBUF
649 iwn_free_rpool(sc);
650 #endif
651 iwn_free_sched(sc);
652 fail3: if (sc->ict != NULL)
653 iwn_free_ict(sc);
654 fail2: iwn_free_kw(sc);
655 fail1: iwn_free_fwmem(sc);
656 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
657 sc->sc_ih = NULL;
658 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
659 sc->sc_pihp = NULL;
660 failsi: softint_disestablish(sc->sc_soft_ih);
661 sc->sc_soft_ih = NULL;
662 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
663 }
664
665 int
666 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
667 {
668 struct iwn_ops *ops = &sc->ops;
669
670 ops->load_firmware = iwn4965_load_firmware;
671 ops->read_eeprom = iwn4965_read_eeprom;
672 ops->post_alive = iwn4965_post_alive;
673 ops->nic_config = iwn4965_nic_config;
674 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
675 ops->update_sched = iwn4965_update_sched;
676 ops->get_temperature = iwn4965_get_temperature;
677 ops->get_rssi = iwn4965_get_rssi;
678 ops->set_txpower = iwn4965_set_txpower;
679 ops->init_gains = iwn4965_init_gains;
680 ops->set_gains = iwn4965_set_gains;
681 ops->add_node = iwn4965_add_node;
682 ops->tx_done = iwn4965_tx_done;
683 #ifndef IEEE80211_NO_HT
684 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
685 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
686 #endif
687 sc->ntxqs = IWN4965_NTXQUEUES;
688 sc->ndmachnls = IWN4965_NDMACHNLS;
689 sc->broadcast_id = IWN4965_ID_BROADCAST;
690 sc->rxonsz = IWN4965_RXONSZ;
691 sc->schedsz = IWN4965_SCHEDSZ;
692 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
693 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
694 sc->fwsz = IWN4965_FWSZ;
695 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
696 sc->limits = &iwn4965_sensitivity_limits;
697 sc->fwname = "iwlwifi-4965-2.ucode";
698 /* Override chains masks, ROM is known to be broken. */
699 sc->txchainmask = IWN_ANT_AB;
700 sc->rxchainmask = IWN_ANT_ABC;
701
702 return 0;
703 }
704
705 int
706 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
707 {
708 struct iwn_ops *ops = &sc->ops;
709
710 ops->load_firmware = iwn5000_load_firmware;
711 ops->read_eeprom = iwn5000_read_eeprom;
712 ops->post_alive = iwn5000_post_alive;
713 ops->nic_config = iwn5000_nic_config;
714 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
715 ops->update_sched = iwn5000_update_sched;
716 ops->get_temperature = iwn5000_get_temperature;
717 ops->get_rssi = iwn5000_get_rssi;
718 ops->set_txpower = iwn5000_set_txpower;
719 ops->init_gains = iwn5000_init_gains;
720 ops->set_gains = iwn5000_set_gains;
721 ops->add_node = iwn5000_add_node;
722 ops->tx_done = iwn5000_tx_done;
723 #ifndef IEEE80211_NO_HT
724 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
725 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
726 #endif
727 sc->ntxqs = IWN5000_NTXQUEUES;
728 sc->ndmachnls = IWN5000_NDMACHNLS;
729 sc->broadcast_id = IWN5000_ID_BROADCAST;
730 sc->rxonsz = IWN5000_RXONSZ;
731 sc->schedsz = IWN5000_SCHEDSZ;
732 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
733 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
734 sc->fwsz = IWN5000_FWSZ;
735 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
736
737 switch (sc->hw_type) {
738 case IWN_HW_REV_TYPE_5100:
739 sc->limits = &iwn5000_sensitivity_limits;
740 sc->fwname = "iwlwifi-5000-2.ucode";
741 /* Override chains masks, ROM is known to be broken. */
742 sc->txchainmask = IWN_ANT_B;
743 sc->rxchainmask = IWN_ANT_AB;
744 break;
745 case IWN_HW_REV_TYPE_5150:
746 sc->limits = &iwn5150_sensitivity_limits;
747 sc->fwname = "iwlwifi-5150-2.ucode";
748 break;
749 case IWN_HW_REV_TYPE_5300:
750 case IWN_HW_REV_TYPE_5350:
751 sc->limits = &iwn5000_sensitivity_limits;
752 sc->fwname = "iwlwifi-5000-2.ucode";
753 break;
754 case IWN_HW_REV_TYPE_1000:
755 sc->limits = &iwn1000_sensitivity_limits;
756 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
757 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
758 sc->fwname = "iwlwifi-100-5.ucode";
759 else
760 sc->fwname = "iwlwifi-1000-3.ucode";
761 break;
762 case IWN_HW_REV_TYPE_6000:
763 sc->limits = &iwn6000_sensitivity_limits;
764 sc->fwname = "iwlwifi-6000-4.ucode";
765 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
766 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
767 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
768 /* Override chains masks, ROM is known to be broken. */
769 sc->txchainmask = IWN_ANT_BC;
770 sc->rxchainmask = IWN_ANT_BC;
771 }
772 break;
773 case IWN_HW_REV_TYPE_6050:
774 sc->limits = &iwn6000_sensitivity_limits;
775 sc->fwname = "iwlwifi-6050-5.ucode";
776 break;
777 case IWN_HW_REV_TYPE_6005:
778 sc->limits = &iwn6000_sensitivity_limits;
779 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
780 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
781 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
782 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
783 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
784 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
785 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
786 sc->fwname = "iwlwifi-6000g2b-6.ucode";
787 ops->config_bt_coex = iwn_config_bt_coex_adv1;
788 }
789 /*
790 * This covers:
791 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
792 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
793 */
794 else
795 sc->fwname = "iwlwifi-6000g2a-5.ucode";
796 break;
797 case IWN_HW_REV_TYPE_2030:
798 sc->limits = &iwn2030_sensitivity_limits;
799 sc->fwname = "iwlwifi-2030-6.ucode";
800 ops->config_bt_coex = iwn_config_bt_coex_adv2;
801 break;
802 case IWN_HW_REV_TYPE_2000:
803 sc->limits = &iwn2000_sensitivity_limits;
804 sc->fwname = "iwlwifi-2000-6.ucode";
805 break;
806 case IWN_HW_REV_TYPE_135:
807 sc->limits = &iwn2000_sensitivity_limits;
808 sc->fwname = "iwlwifi-135-6.ucode";
809 ops->config_bt_coex = iwn_config_bt_coex_adv2;
810 break;
811 case IWN_HW_REV_TYPE_105:
812 sc->limits = &iwn2000_sensitivity_limits;
813 sc->fwname = "iwlwifi-105-6.ucode";
814 break;
815 default:
816 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
817 return ENOTSUP;
818 }
819 return 0;
820 }
821
822 /*
823 * Attach the interface to 802.11 radiotap.
824 */
825 static void
826 iwn_radiotap_attach(struct iwn_softc *sc)
827 {
828 struct ifnet *ifp = sc->sc_ic.ic_ifp;
829
830 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
831 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
832 &sc->sc_drvbpf);
833
834 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
835 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
836 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
837
838 sc->sc_txtap_len = sizeof sc->sc_txtapu;
839 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
840 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
841 }
842
843 static int
844 iwn_detach(device_t self, int flags __unused)
845 {
846 struct iwn_softc *sc = device_private(self);
847 struct ifnet *ifp = sc->sc_ic.ic_ifp;
848 int qid;
849
850 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
851 return 0;
852
853 callout_stop(&sc->calib_to);
854
855 /* Uninstall interrupt handler. */
856 if (sc->sc_ih != NULL)
857 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
858 if (sc->sc_pihp != NULL)
859 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
860 if (sc->sc_soft_ih != NULL)
861 softint_disestablish(sc->sc_soft_ih);
862
863 /* Free DMA resources. */
864 iwn_free_rx_ring(sc, &sc->rxq);
865 for (qid = 0; qid < sc->ntxqs; qid++)
866 iwn_free_tx_ring(sc, &sc->txq[qid]);
867 #ifdef IWN_USE_RBUF
868 iwn_free_rpool(sc);
869 #endif
870 iwn_free_sched(sc);
871 iwn_free_kw(sc);
872 if (sc->ict != NULL)
873 iwn_free_ict(sc);
874 iwn_free_fwmem(sc);
875
876 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
877
878 ieee80211_ifdetach(&sc->sc_ic);
879 if_detach(ifp);
880
881 return 0;
882 }
883
884 #if 0
885 /*
886 * XXX Investigate if clearing the PCI retry timeout could eliminate
887 * the repeated scan calls. Also the calls to if_init and if_start
888 * are similar to the effect of adding the call to ifioctl_common .
889 */
890 static void
891 iwn_power(int why, void *arg)
892 {
893 struct iwn_softc *sc = arg;
894 struct ifnet *ifp;
895 pcireg_t reg;
896 int s;
897
898 if (why != PWR_RESUME)
899 return;
900
901 /* Clear device-specific "PCI retry timeout" register (41h). */
902 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
903 if (reg & 0xff00)
904 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
905
906 s = splnet();
907 ifp = &sc->sc_ic.ic_if;
908 if (ifp->if_flags & IFF_UP) {
909 ifp->if_init(ifp);
910 if (ifp->if_flags & IFF_RUNNING)
911 ifp->if_start(ifp);
912 }
913 splx(s);
914 }
915 #endif
916
917 static bool
918 iwn_resume(device_t dv, const pmf_qual_t *qual)
919 {
920 return true;
921 }
922
923 static int
924 iwn_nic_lock(struct iwn_softc *sc)
925 {
926 int ntries;
927
928 /* Request exclusive access to NIC. */
929 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
930
931 /* Spin until we actually get the lock. */
932 for (ntries = 0; ntries < 1000; ntries++) {
933 if ((IWN_READ(sc, IWN_GP_CNTRL) &
934 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
935 IWN_GP_CNTRL_MAC_ACCESS_ENA)
936 return 0;
937 DELAY(10);
938 }
939 return ETIMEDOUT;
940 }
941
942 static __inline void
943 iwn_nic_unlock(struct iwn_softc *sc)
944 {
945 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
946 }
947
948 static __inline uint32_t
949 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
950 {
951 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
952 IWN_BARRIER_READ_WRITE(sc);
953 return IWN_READ(sc, IWN_PRPH_RDATA);
954 }
955
956 static __inline void
957 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
958 {
959 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
960 IWN_BARRIER_WRITE(sc);
961 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
962 }
963
964 static __inline void
965 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
966 {
967 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
968 }
969
970 static __inline void
971 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
972 {
973 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
974 }
975
976 static __inline void
977 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
978 const uint32_t *data, int count)
979 {
980 for (; count > 0; count--, data++, addr += 4)
981 iwn_prph_write(sc, addr, *data);
982 }
983
984 static __inline uint32_t
985 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
986 {
987 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
988 IWN_BARRIER_READ_WRITE(sc);
989 return IWN_READ(sc, IWN_MEM_RDATA);
990 }
991
992 static __inline void
993 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
994 {
995 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
996 IWN_BARRIER_WRITE(sc);
997 IWN_WRITE(sc, IWN_MEM_WDATA, data);
998 }
999
1000 #ifndef IEEE80211_NO_HT
1001 static __inline void
1002 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1003 {
1004 uint32_t tmp;
1005
1006 tmp = iwn_mem_read(sc, addr & ~3);
1007 if (addr & 3)
1008 tmp = (tmp & 0x0000ffff) | data << 16;
1009 else
1010 tmp = (tmp & 0xffff0000) | data;
1011 iwn_mem_write(sc, addr & ~3, tmp);
1012 }
1013 #endif
1014
1015 static __inline void
1016 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1017 int count)
1018 {
1019 for (; count > 0; count--, addr += 4)
1020 *data++ = iwn_mem_read(sc, addr);
1021 }
1022
1023 static __inline void
1024 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1025 int count)
1026 {
1027 for (; count > 0; count--, addr += 4)
1028 iwn_mem_write(sc, addr, val);
1029 }
1030
1031 static int
1032 iwn_eeprom_lock(struct iwn_softc *sc)
1033 {
1034 int i, ntries;
1035
1036 for (i = 0; i < 100; i++) {
1037 /* Request exclusive access to EEPROM. */
1038 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1039 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1040
1041 /* Spin until we actually get the lock. */
1042 for (ntries = 0; ntries < 100; ntries++) {
1043 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1044 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1045 return 0;
1046 DELAY(10);
1047 }
1048 }
1049 return ETIMEDOUT;
1050 }
1051
1052 static __inline void
1053 iwn_eeprom_unlock(struct iwn_softc *sc)
1054 {
1055 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1056 }
1057
1058 /*
1059 * Initialize access by host to One Time Programmable ROM.
1060 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1061 */
1062 static int
1063 iwn_init_otprom(struct iwn_softc *sc)
1064 {
1065 uint16_t prev = 0, base, next;
1066 int count, error;
1067
1068 /* Wait for clock stabilization before accessing prph. */
1069 if ((error = iwn_clock_wait(sc)) != 0)
1070 return error;
1071
1072 if ((error = iwn_nic_lock(sc)) != 0)
1073 return error;
1074 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1075 DELAY(5);
1076 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1077 iwn_nic_unlock(sc);
1078
1079 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1080 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1081 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1082 IWN_RESET_LINK_PWR_MGMT_DIS);
1083 }
1084 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1085 /* Clear ECC status. */
1086 IWN_SETBITS(sc, IWN_OTP_GP,
1087 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1088
1089 /*
1090 * Find the block before last block (contains the EEPROM image)
1091 * for HW without OTP shadow RAM.
1092 */
1093 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1094 /* Switch to absolute addressing mode. */
1095 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1096 base = 0;
1097 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1098 error = iwn_read_prom_data(sc, base, &next, 2);
1099 if (error != 0)
1100 return error;
1101 if (next == 0) /* End of linked-list. */
1102 break;
1103 prev = base;
1104 base = le16toh(next);
1105 }
1106 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1107 return EIO;
1108 /* Skip "next" word. */
1109 sc->prom_base = prev + 1;
1110 }
1111 return 0;
1112 }
1113
1114 static int
1115 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1116 {
1117 uint8_t *out = data;
1118 uint32_t val, tmp;
1119 int ntries;
1120
1121 addr += sc->prom_base;
1122 for (; count > 0; count -= 2, addr++) {
1123 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1124 for (ntries = 0; ntries < 10; ntries++) {
1125 val = IWN_READ(sc, IWN_EEPROM);
1126 if (val & IWN_EEPROM_READ_VALID)
1127 break;
1128 DELAY(5);
1129 }
1130 if (ntries == 10) {
1131 aprint_error_dev(sc->sc_dev,
1132 "timeout reading ROM at 0x%x\n", addr);
1133 return ETIMEDOUT;
1134 }
1135 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1136 /* OTPROM, check for ECC errors. */
1137 tmp = IWN_READ(sc, IWN_OTP_GP);
1138 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1139 aprint_error_dev(sc->sc_dev,
1140 "OTPROM ECC error at 0x%x\n", addr);
1141 return EIO;
1142 }
1143 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1144 /* Correctable ECC error, clear bit. */
1145 IWN_SETBITS(sc, IWN_OTP_GP,
1146 IWN_OTP_GP_ECC_CORR_STTS);
1147 }
1148 }
1149 *out++ = val >> 16;
1150 if (count > 1)
1151 *out++ = val >> 24;
1152 }
1153 return 0;
1154 }
1155
1156 static int
1157 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1158 bus_size_t size, bus_size_t alignment)
1159 {
1160 int nsegs, error;
1161
1162 dma->tag = tag;
1163 dma->size = size;
1164
1165 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1166 &dma->map);
1167 if (error != 0)
1168 goto fail;
1169
1170 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1171 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1172 if (error != 0)
1173 goto fail;
1174
1175 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1176 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1177 if (error != 0)
1178 goto fail;
1179
1180 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1181 BUS_DMA_NOWAIT);
1182 if (error != 0)
1183 goto fail;
1184
1185 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1186 memset(dma->vaddr, 0, size);
1187 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1188
1189 dma->paddr = dma->map->dm_segs[0].ds_addr;
1190 if (kvap != NULL)
1191 *kvap = dma->vaddr;
1192
1193 return 0;
1194
1195 fail: iwn_dma_contig_free(dma);
1196 return error;
1197 }
1198
1199 static void
1200 iwn_dma_contig_free(struct iwn_dma_info *dma)
1201 {
1202 if (dma->map != NULL) {
1203 if (dma->vaddr != NULL) {
1204 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1205 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1206 bus_dmamap_unload(dma->tag, dma->map);
1207 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1208 bus_dmamem_free(dma->tag, &dma->seg, 1);
1209 dma->vaddr = NULL;
1210 }
1211 bus_dmamap_destroy(dma->tag, dma->map);
1212 dma->map = NULL;
1213 }
1214 }
1215
1216 static int
1217 iwn_alloc_sched(struct iwn_softc *sc)
1218 {
1219 /* TX scheduler rings must be aligned on a 1KB boundary. */
1220 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1221 (void **)&sc->sched, sc->schedsz, 1024);
1222 }
1223
1224 static void
1225 iwn_free_sched(struct iwn_softc *sc)
1226 {
1227 iwn_dma_contig_free(&sc->sched_dma);
1228 }
1229
1230 static int
1231 iwn_alloc_kw(struct iwn_softc *sc)
1232 {
1233 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1234 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1235 4096);
1236 }
1237
1238 static void
1239 iwn_free_kw(struct iwn_softc *sc)
1240 {
1241 iwn_dma_contig_free(&sc->kw_dma);
1242 }
1243
1244 static int
1245 iwn_alloc_ict(struct iwn_softc *sc)
1246 {
1247 /* ICT table must be aligned on a 4KB boundary. */
1248 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1249 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1250 }
1251
1252 static void
1253 iwn_free_ict(struct iwn_softc *sc)
1254 {
1255 iwn_dma_contig_free(&sc->ict_dma);
1256 }
1257
1258 static int
1259 iwn_alloc_fwmem(struct iwn_softc *sc)
1260 {
1261 /* Must be aligned on a 16-byte boundary. */
1262 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1263 sc->fwsz, 16);
1264 }
1265
1266 static void
1267 iwn_free_fwmem(struct iwn_softc *sc)
1268 {
1269 iwn_dma_contig_free(&sc->fw_dma);
1270 }
1271
1272 static int
1273 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1274 {
1275 bus_size_t size;
1276 int i, error;
1277
1278 ring->cur = 0;
1279
1280 /* Allocate RX descriptors (256-byte aligned). */
1281 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1282 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1283 (void **)&ring->desc, size, 256);
1284 if (error != 0) {
1285 aprint_error_dev(sc->sc_dev,
1286 "could not allocate RX ring DMA memory\n");
1287 goto fail;
1288 }
1289
1290 /* Allocate RX status area (16-byte aligned). */
1291 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1292 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1293 if (error != 0) {
1294 aprint_error_dev(sc->sc_dev,
1295 "could not allocate RX status DMA memory\n");
1296 goto fail;
1297 }
1298
1299 /*
1300 * Allocate and map RX buffers.
1301 */
1302 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1303 struct iwn_rx_data *data = &ring->data[i];
1304
1305 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1306 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1307 &data->map);
1308 if (error != 0) {
1309 aprint_error_dev(sc->sc_dev,
1310 "could not create RX buf DMA map\n");
1311 goto fail;
1312 }
1313
1314 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1315 if (data->m == NULL) {
1316 aprint_error_dev(sc->sc_dev,
1317 "could not allocate RX mbuf\n");
1318 error = ENOBUFS;
1319 goto fail;
1320 }
1321
1322 error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1324 BUS_DMA_NOWAIT | BUS_DMA_READ);
1325 if (error != 0) {
1326 aprint_error_dev(sc->sc_dev,
1327 "can't not map mbuf (error %d)\n", error);
1328 goto fail;
1329 }
1330
1331 /* Set physical address of RX buffer (256-byte aligned). */
1332 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1333 }
1334
1335 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1336 BUS_DMASYNC_PREWRITE);
1337
1338 return 0;
1339
1340 fail: iwn_free_rx_ring(sc, ring);
1341 return error;
1342 }
1343
1344 static void
1345 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1346 {
1347 int ntries;
1348
1349 if (iwn_nic_lock(sc) == 0) {
1350 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1351 for (ntries = 0; ntries < 1000; ntries++) {
1352 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1353 IWN_FH_RX_STATUS_IDLE)
1354 break;
1355 DELAY(10);
1356 }
1357 iwn_nic_unlock(sc);
1358 }
1359 ring->cur = 0;
1360 sc->last_rx_valid = 0;
1361 }
1362
1363 static void
1364 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1365 {
1366 int i;
1367
1368 iwn_dma_contig_free(&ring->desc_dma);
1369 iwn_dma_contig_free(&ring->stat_dma);
1370
1371 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1372 struct iwn_rx_data *data = &ring->data[i];
1373
1374 if (data->m != NULL) {
1375 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1376 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1377 bus_dmamap_unload(sc->sc_dmat, data->map);
1378 m_freem(data->m);
1379 }
1380 if (data->map != NULL)
1381 bus_dmamap_destroy(sc->sc_dmat, data->map);
1382 }
1383 }
1384
1385 static int
1386 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1387 {
1388 bus_addr_t paddr;
1389 bus_size_t size;
1390 int i, error;
1391
1392 ring->qid = qid;
1393 ring->queued = 0;
1394 ring->cur = 0;
1395
1396 /* Allocate TX descriptors (256-byte aligned). */
1397 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1398 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1399 (void **)&ring->desc, size, 256);
1400 if (error != 0) {
1401 aprint_error_dev(sc->sc_dev,
1402 "could not allocate TX ring DMA memory\n");
1403 goto fail;
1404 }
1405 /*
1406 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1407 * to allocate commands space for other rings.
1408 * XXX Do we really need to allocate descriptors for other rings?
1409 */
1410 if (qid > 4)
1411 return 0;
1412
1413 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1414 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1415 (void **)&ring->cmd, size, 4);
1416 if (error != 0) {
1417 aprint_error_dev(sc->sc_dev,
1418 "could not allocate TX cmd DMA memory\n");
1419 goto fail;
1420 }
1421
1422 paddr = ring->cmd_dma.paddr;
1423 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1424 struct iwn_tx_data *data = &ring->data[i];
1425
1426 data->cmd_paddr = paddr;
1427 data->scratch_paddr = paddr + 12;
1428 paddr += sizeof (struct iwn_tx_cmd);
1429
1430 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1431 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1432 &data->map);
1433 if (error != 0) {
1434 aprint_error_dev(sc->sc_dev,
1435 "could not create TX buf DMA map\n");
1436 goto fail;
1437 }
1438 }
1439 return 0;
1440
1441 fail: iwn_free_tx_ring(sc, ring);
1442 return error;
1443 }
1444
1445 static void
1446 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1447 {
1448 int i;
1449
1450 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1451 struct iwn_tx_data *data = &ring->data[i];
1452
1453 if (data->m != NULL) {
1454 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1455 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1456 bus_dmamap_unload(sc->sc_dmat, data->map);
1457 m_freem(data->m);
1458 data->m = NULL;
1459 }
1460 }
1461 /* Clear TX descriptors. */
1462 memset(ring->desc, 0, ring->desc_dma.size);
1463 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1464 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1465 sc->qfullmsk &= ~(1 << ring->qid);
1466 ring->queued = 0;
1467 ring->cur = 0;
1468 }
1469
1470 static void
1471 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1472 {
1473 int i;
1474
1475 iwn_dma_contig_free(&ring->desc_dma);
1476 iwn_dma_contig_free(&ring->cmd_dma);
1477
1478 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1479 struct iwn_tx_data *data = &ring->data[i];
1480
1481 if (data->m != NULL) {
1482 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1483 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1484 bus_dmamap_unload(sc->sc_dmat, data->map);
1485 m_freem(data->m);
1486 }
1487 if (data->map != NULL)
1488 bus_dmamap_destroy(sc->sc_dmat, data->map);
1489 }
1490 }
1491
1492 static void
1493 iwn5000_ict_reset(struct iwn_softc *sc)
1494 {
1495 /* Disable interrupts. */
1496 IWN_WRITE(sc, IWN_INT_MASK, 0);
1497
1498 /* Reset ICT table. */
1499 memset(sc->ict, 0, IWN_ICT_SIZE);
1500 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1501 BUS_DMASYNC_PREWRITE);
1502 sc->ict_cur = 0;
1503
1504 /* Set physical address of ICT table (4KB aligned). */
1505 DPRINTF(("enabling ICT\n"));
1506 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1507 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1508
1509 /* Enable periodic RX interrupt. */
1510 sc->int_mask |= IWN_INT_RX_PERIODIC;
1511 /* Switch to ICT interrupt mode in driver. */
1512 sc->sc_flags |= IWN_FLAG_USE_ICT;
1513
1514 /* Re-enable interrupts. */
1515 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1516 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1517 }
1518
1519 static int
1520 iwn_read_eeprom(struct iwn_softc *sc)
1521 {
1522 struct iwn_ops *ops = &sc->ops;
1523 struct ieee80211com *ic = &sc->sc_ic;
1524 uint16_t val;
1525 int error;
1526
1527 /* Check whether adapter has an EEPROM or an OTPROM. */
1528 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1529 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1530 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1531 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1532 "OTPROM" : "EEPROM"));
1533
1534 /* Adapter has to be powered on for EEPROM access to work. */
1535 if ((error = iwn_apm_init(sc)) != 0) {
1536 aprint_error_dev(sc->sc_dev,
1537 "could not power ON adapter\n");
1538 return error;
1539 }
1540
1541 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1542 aprint_error_dev(sc->sc_dev,
1543 "bad ROM signature\n");
1544 return EIO;
1545 }
1546 if ((error = iwn_eeprom_lock(sc)) != 0) {
1547 aprint_error_dev(sc->sc_dev,
1548 "could not lock ROM (error=%d)\n", error);
1549 return error;
1550 }
1551 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1552 if ((error = iwn_init_otprom(sc)) != 0) {
1553 aprint_error_dev(sc->sc_dev,
1554 "could not initialize OTPROM\n");
1555 return error;
1556 }
1557 }
1558
1559 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1560 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1561 /* Check if HT support is bonded out. */
1562 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1563 sc->sc_flags |= IWN_FLAG_HAS_11N;
1564
1565 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1566 sc->rfcfg = le16toh(val);
1567 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1568 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1569 if (sc->txchainmask == 0)
1570 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1571 if (sc->rxchainmask == 0)
1572 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1573
1574 /* Read MAC address. */
1575 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1576
1577 /* Read adapter-specific information from EEPROM. */
1578 ops->read_eeprom(sc);
1579
1580 iwn_apm_stop(sc); /* Power OFF adapter. */
1581
1582 iwn_eeprom_unlock(sc);
1583 return 0;
1584 }
1585
1586 static void
1587 iwn4965_read_eeprom(struct iwn_softc *sc)
1588 {
1589 uint32_t addr;
1590 uint16_t val;
1591 int i;
1592
1593 /* Read regulatory domain (4 ASCII characters). */
1594 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1595
1596 /* Read the list of authorized channels (20MHz ones only). */
1597 for (i = 0; i < 5; i++) {
1598 addr = iwn4965_regulatory_bands[i];
1599 iwn_read_eeprom_channels(sc, i, addr);
1600 }
1601
1602 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1603 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1604 sc->maxpwr2GHz = val & 0xff;
1605 sc->maxpwr5GHz = val >> 8;
1606 /* Check that EEPROM values are within valid range. */
1607 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1608 sc->maxpwr5GHz = 38;
1609 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1610 sc->maxpwr2GHz = 38;
1611 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1612
1613 /* Read samples for each TX power group. */
1614 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1615 sizeof sc->bands);
1616
1617 /* Read voltage at which samples were taken. */
1618 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1619 sc->eeprom_voltage = (int16_t)le16toh(val);
1620 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1621
1622 #ifdef IWN_DEBUG
1623 /* Print samples. */
1624 if (iwn_debug > 0) {
1625 for (i = 0; i < IWN_NBANDS; i++)
1626 iwn4965_print_power_group(sc, i);
1627 }
1628 #endif
1629 }
1630
1631 #ifdef IWN_DEBUG
1632 static void
1633 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1634 {
1635 struct iwn4965_eeprom_band *band = &sc->bands[i];
1636 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1637 int j, c;
1638
1639 aprint_normal("===band %d===\n", i);
1640 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1641 aprint_normal("chan1 num=%d\n", chans[0].num);
1642 for (c = 0; c < 2; c++) {
1643 for (j = 0; j < IWN_NSAMPLES; j++) {
1644 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1645 "power=%d pa_det=%d\n", c, j,
1646 chans[0].samples[c][j].temp,
1647 chans[0].samples[c][j].gain,
1648 chans[0].samples[c][j].power,
1649 chans[0].samples[c][j].pa_det);
1650 }
1651 }
1652 aprint_normal("chan2 num=%d\n", chans[1].num);
1653 for (c = 0; c < 2; c++) {
1654 for (j = 0; j < IWN_NSAMPLES; j++) {
1655 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1656 "power=%d pa_det=%d\n", c, j,
1657 chans[1].samples[c][j].temp,
1658 chans[1].samples[c][j].gain,
1659 chans[1].samples[c][j].power,
1660 chans[1].samples[c][j].pa_det);
1661 }
1662 }
1663 }
1664 #endif
1665
1666 static void
1667 iwn5000_read_eeprom(struct iwn_softc *sc)
1668 {
1669 struct iwn5000_eeprom_calib_hdr hdr;
1670 int32_t volt;
1671 uint32_t base, addr;
1672 uint16_t val;
1673 int i;
1674
1675 /* Read regulatory domain (4 ASCII characters). */
1676 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1677 base = le16toh(val);
1678 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1679 sc->eeprom_domain, 4);
1680
1681 /* Read the list of authorized channels (20MHz ones only). */
1682 for (i = 0; i < 5; i++) {
1683 addr = base + iwn5000_regulatory_bands[i];
1684 iwn_read_eeprom_channels(sc, i, addr);
1685 }
1686
1687 /* Read enhanced TX power information for 6000 Series. */
1688 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1689 iwn_read_eeprom_enhinfo(sc);
1690
1691 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1692 base = le16toh(val);
1693 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1694 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1695 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1696 sc->calib_ver = hdr.version;
1697
1698 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1699 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1700 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1701 sc->hw_type == IWN_HW_REV_TYPE_105) {
1702 sc->eeprom_voltage = le16toh(hdr.volt);
1703 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1704 sc->eeprom_temp = le16toh(val);
1705 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1706 sc->eeprom_rawtemp = le16toh(val);
1707 }
1708
1709 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1710 /* Compute temperature offset. */
1711 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1712 sc->eeprom_temp = le16toh(val);
1713 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1714 volt = le16toh(val);
1715 sc->temp_off = sc->eeprom_temp - (volt / -5);
1716 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1717 sc->eeprom_temp, volt, sc->temp_off));
1718 } else {
1719 /* Read crystal calibration. */
1720 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1721 &sc->eeprom_crystal, sizeof (uint32_t));
1722 DPRINTF(("crystal calibration 0x%08x\n",
1723 le32toh(sc->eeprom_crystal)));
1724 }
1725 }
1726
1727 static void
1728 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1729 {
1730 struct ieee80211com *ic = &sc->sc_ic;
1731 const struct iwn_chan_band *band = &iwn_bands[n];
1732 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1733 uint8_t chan;
1734 int i;
1735
1736 iwn_read_prom_data(sc, addr, channels,
1737 band->nchan * sizeof (struct iwn_eeprom_chan));
1738
1739 for (i = 0; i < band->nchan; i++) {
1740 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1741 continue;
1742
1743 chan = band->chan[i];
1744
1745 if (n == 0) { /* 2GHz band */
1746 ic->ic_channels[chan].ic_freq =
1747 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1748 ic->ic_channels[chan].ic_flags =
1749 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1750 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1751
1752 } else { /* 5GHz band */
1753 /*
1754 * Some adapters support channels 7, 8, 11 and 12
1755 * both in the 2GHz and 4.9GHz bands.
1756 * Because of limitations in our net80211 layer,
1757 * we don't support them in the 4.9GHz band.
1758 */
1759 if (chan <= 14)
1760 continue;
1761
1762 ic->ic_channels[chan].ic_freq =
1763 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1764 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1765 /* We have at least one valid 5GHz channel. */
1766 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1767 }
1768
1769 /* Is active scan allowed on this channel? */
1770 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1771 ic->ic_channels[chan].ic_flags |=
1772 IEEE80211_CHAN_PASSIVE;
1773 }
1774
1775 /* Save maximum allowed TX power for this channel. */
1776 sc->maxpwr[chan] = channels[i].maxpwr;
1777
1778 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1779 chan, channels[i].flags, sc->maxpwr[chan]));
1780 }
1781 }
1782
1783 static void
1784 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1785 {
1786 struct iwn_eeprom_enhinfo enhinfo[35];
1787 uint16_t val, base;
1788 int8_t maxpwr;
1789 uint8_t flags;
1790 int i;
1791
1792 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1793 base = le16toh(val);
1794 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1795 enhinfo, sizeof enhinfo);
1796
1797 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1798 for (i = 0; i < __arraycount(enhinfo); i++) {
1799 flags = enhinfo[i].flags;
1800 if (!(flags & IWN_ENHINFO_VALID))
1801 continue; /* Skip invalid entries. */
1802
1803 maxpwr = 0;
1804 if (sc->txchainmask & IWN_ANT_A)
1805 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1806 if (sc->txchainmask & IWN_ANT_B)
1807 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1808 if (sc->txchainmask & IWN_ANT_C)
1809 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1810 if (sc->ntxchains == 2)
1811 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1812 else if (sc->ntxchains == 3)
1813 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1814 maxpwr /= 2; /* Convert half-dBm to dBm. */
1815
1816 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1817 sc->enh_maxpwr[i] = maxpwr;
1818 }
1819 }
1820
1821 static struct ieee80211_node *
1822 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1823 {
1824 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1825 }
1826
1827 static void
1828 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1829 {
1830 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1831 struct iwn_node *wn = (void *)ni;
1832 uint8_t rate;
1833 int ridx, i;
1834
1835 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1836 /* Start at lowest available bit-rate, AMRR will raise. */
1837 ni->ni_txrate = 0;
1838
1839 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1840 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1841 /* Map 802.11 rate to HW rate index. */
1842 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1843 if (iwn_rates[ridx].rate == rate)
1844 break;
1845 wn->ridx[i] = ridx;
1846 }
1847 }
1848
1849 static int
1850 iwn_media_change(struct ifnet *ifp)
1851 {
1852 struct iwn_softc *sc = ifp->if_softc;
1853 struct ieee80211com *ic = &sc->sc_ic;
1854 uint8_t rate, ridx;
1855 int error;
1856
1857 error = ieee80211_media_change(ifp);
1858 if (error != ENETRESET)
1859 return error;
1860
1861 if (ic->ic_fixed_rate != -1) {
1862 rate = ic->ic_sup_rates[ic->ic_curmode].
1863 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1864 /* Map 802.11 rate to HW rate index. */
1865 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1866 if (iwn_rates[ridx].rate == rate)
1867 break;
1868 sc->fixed_ridx = ridx;
1869 }
1870
1871 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1872 (IFF_UP | IFF_RUNNING)) {
1873 iwn_stop(ifp, 0);
1874 error = iwn_init(ifp);
1875 }
1876 return error;
1877 }
1878
1879 static int
1880 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1881 {
1882 struct ifnet *ifp = ic->ic_ifp;
1883 struct iwn_softc *sc = ifp->if_softc;
1884 int error;
1885
1886 callout_stop(&sc->calib_to);
1887
1888 switch (nstate) {
1889 case IEEE80211_S_SCAN:
1890 /* XXX Do not abort a running scan. */
1891 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1892 if (ic->ic_state != nstate)
1893 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1894 "while scanning(%d) ignored\n", nstate,
1895 ic->ic_state);
1896 break;
1897 }
1898
1899 /* XXX Not sure if call and flags are needed. */
1900 ieee80211_node_table_reset(&ic->ic_scan);
1901 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1902 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1903
1904 /* Make the link LED blink while we're scanning. */
1905 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1906
1907 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1908 aprint_error_dev(sc->sc_dev,
1909 "could not initiate scan\n");
1910 return error;
1911 }
1912 ic->ic_state = nstate;
1913 return 0;
1914
1915 case IEEE80211_S_ASSOC:
1916 if (ic->ic_state != IEEE80211_S_RUN)
1917 break;
1918 /* FALLTHROUGH */
1919 case IEEE80211_S_AUTH:
1920 /* Reset state to handle reassociations correctly. */
1921 sc->rxon.associd = 0;
1922 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1923 sc->calib.state = IWN_CALIB_STATE_INIT;
1924
1925 /* Wait until we hear a beacon before we transmit */
1926 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1927 sc->sc_beacon_wait = 1;
1928
1929 if ((error = iwn_auth(sc)) != 0) {
1930 aprint_error_dev(sc->sc_dev,
1931 "could not move to auth state\n");
1932 return error;
1933 }
1934 break;
1935
1936 case IEEE80211_S_RUN:
1937 /*
1938 * RUN -> RUN transition; Just restart timers.
1939 */
1940 if (ic->ic_state == IEEE80211_S_RUN) {
1941 sc->calib_cnt = 0;
1942 break;
1943 }
1944
1945 /* Wait until we hear a beacon before we transmit */
1946 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1947 sc->sc_beacon_wait = 1;
1948
1949 if ((error = iwn_run(sc)) != 0) {
1950 aprint_error_dev(sc->sc_dev,
1951 "could not move to run state\n");
1952 return error;
1953 }
1954 break;
1955
1956 case IEEE80211_S_INIT:
1957 sc->sc_flags &= ~IWN_FLAG_SCANNING;
1958 sc->calib.state = IWN_CALIB_STATE_INIT;
1959 /*
1960 * Purge the xmit queue so we don't have old frames
1961 * during a new association attempt.
1962 */
1963 sc->sc_beacon_wait = 0;
1964 ifp->if_flags &= ~IFF_OACTIVE;
1965 iwn_start(ifp);
1966 break;
1967 }
1968
1969 return sc->sc_newstate(ic, nstate, arg);
1970 }
1971
1972 static void
1973 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1974 {
1975 struct iwn_softc *sc = arg;
1976 struct iwn_node *wn = (struct iwn_node *)ni;
1977
1978 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1979 }
1980
1981 static void
1982 iwn_calib_timeout(void *arg)
1983 {
1984 struct iwn_softc *sc = arg;
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 int s;
1987
1988 s = splnet();
1989 if (ic->ic_fixed_rate == -1) {
1990 if (ic->ic_opmode == IEEE80211_M_STA)
1991 iwn_iter_func(sc, ic->ic_bss);
1992 else
1993 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
1994 }
1995 /* Force automatic TX power calibration every 60 secs. */
1996 if (++sc->calib_cnt >= 120) {
1997 uint32_t flags = 0;
1998
1999 DPRINTF(("sending request for statistics\n"));
2000 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2001 sizeof flags, 1);
2002 sc->calib_cnt = 0;
2003 }
2004 splx(s);
2005
2006 /* Automatic rate control triggered every 500ms. */
2007 callout_schedule(&sc->calib_to, mstohz(500));
2008 }
2009
2010 /*
2011 * Process an RX_PHY firmware notification. This is usually immediately
2012 * followed by an MPDU_RX_DONE notification.
2013 */
2014 static void
2015 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2016 struct iwn_rx_data *data)
2017 {
2018 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2019
2020 DPRINTFN(2, ("received PHY stats\n"));
2021 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2022 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2023
2024 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2025 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2026 sc->last_rx_valid = 1;
2027 }
2028
2029 /*
2030 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2031 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2032 */
2033 static void
2034 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2035 struct iwn_rx_data *data)
2036 {
2037 struct iwn_ops *ops = &sc->ops;
2038 struct ieee80211com *ic = &sc->sc_ic;
2039 struct ifnet *ifp = ic->ic_ifp;
2040 struct iwn_rx_ring *ring = &sc->rxq;
2041 struct ieee80211_frame *wh;
2042 struct ieee80211_node *ni;
2043 struct mbuf *m, *m1;
2044 struct iwn_rx_stat *stat;
2045 char *head;
2046 uint32_t flags;
2047 int error, len, rssi, s;
2048
2049 if (desc->type == IWN_MPDU_RX_DONE) {
2050 /* Check for prior RX_PHY notification. */
2051 if (!sc->last_rx_valid) {
2052 DPRINTF(("missing RX_PHY\n"));
2053 return;
2054 }
2055 sc->last_rx_valid = 0;
2056 stat = &sc->last_rx_stat;
2057 } else
2058 stat = (struct iwn_rx_stat *)(desc + 1);
2059
2060 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2061 BUS_DMASYNC_POSTREAD);
2062
2063 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2064 aprint_error_dev(sc->sc_dev,
2065 "invalid RX statistic header\n");
2066 return;
2067 }
2068 if (desc->type == IWN_MPDU_RX_DONE) {
2069 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2070 head = (char *)(mpdu + 1);
2071 len = le16toh(mpdu->len);
2072 } else {
2073 head = (char *)(stat + 1) + stat->cfg_phy_len;
2074 len = le16toh(stat->len);
2075 }
2076
2077 flags = le32toh(*(uint32_t *)(head + len));
2078
2079 /* Discard frames with a bad FCS early. */
2080 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2081 DPRINTFN(2, ("RX flags error %x\n", flags));
2082 if_statinc(ifp, if_ierrors);
2083 return;
2084 }
2085 /* Discard frames that are too short. */
2086 if (len < sizeof (*wh)) {
2087 DPRINTF(("frame too short: %d\n", len));
2088 ic->ic_stats.is_rx_tooshort++;
2089 if_statinc(ifp, if_ierrors);
2090 return;
2091 }
2092
2093 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2094 if (m1 == NULL) {
2095 ic->ic_stats.is_rx_nobuf++;
2096 if_statinc(ifp, if_ierrors);
2097 return;
2098 }
2099 bus_dmamap_unload(sc->sc_dmat, data->map);
2100
2101 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2102 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2103 if (error != 0) {
2104 m_freem(m1);
2105
2106 /* Try to reload the old mbuf. */
2107 error = bus_dmamap_load(sc->sc_dmat, data->map,
2108 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2109 BUS_DMA_NOWAIT | BUS_DMA_READ);
2110 if (error != 0) {
2111 panic("%s: could not load old RX mbuf",
2112 device_xname(sc->sc_dev));
2113 }
2114 /* Physical address may have changed. */
2115 ring->desc[ring->cur] =
2116 htole32(data->map->dm_segs[0].ds_addr >> 8);
2117 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2118 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2119 BUS_DMASYNC_PREWRITE);
2120 if_statinc(ifp, if_ierrors);
2121 return;
2122 }
2123
2124 m = data->m;
2125 data->m = m1;
2126 /* Update RX descriptor. */
2127 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2128 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2129 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2130 BUS_DMASYNC_PREWRITE);
2131
2132 /* Finalize mbuf. */
2133 m_set_rcvif(m, ifp);
2134 m->m_data = head;
2135 m->m_pkthdr.len = m->m_len = len;
2136
2137 s = splnet();
2138
2139 /* Grab a reference to the source node. */
2140 wh = mtod(m, struct ieee80211_frame *);
2141 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2142
2143 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2144 /* NetBSD does decryption in ieee80211_input. */
2145
2146 rssi = ops->get_rssi(stat);
2147
2148 /* XXX Added for NetBSD: scans never stop without it */
2149 if (ic->ic_state == IEEE80211_S_SCAN)
2150 iwn_fix_channel(ic, m, stat);
2151
2152 if (sc->sc_drvbpf != NULL) {
2153 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2154
2155 tap->wr_flags = 0;
2156 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2157 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2158 tap->wr_chan_freq =
2159 htole16(ic->ic_channels[stat->chan].ic_freq);
2160 tap->wr_chan_flags =
2161 htole16(ic->ic_channels[stat->chan].ic_flags);
2162 tap->wr_dbm_antsignal = (int8_t)rssi;
2163 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2164 tap->wr_tsft = stat->tstamp;
2165 switch (stat->rate) {
2166 /* CCK rates. */
2167 case 10: tap->wr_rate = 2; break;
2168 case 20: tap->wr_rate = 4; break;
2169 case 55: tap->wr_rate = 11; break;
2170 case 110: tap->wr_rate = 22; break;
2171 /* OFDM rates. */
2172 case 0xd: tap->wr_rate = 12; break;
2173 case 0xf: tap->wr_rate = 18; break;
2174 case 0x5: tap->wr_rate = 24; break;
2175 case 0x7: tap->wr_rate = 36; break;
2176 case 0x9: tap->wr_rate = 48; break;
2177 case 0xb: tap->wr_rate = 72; break;
2178 case 0x1: tap->wr_rate = 96; break;
2179 case 0x3: tap->wr_rate = 108; break;
2180 /* Unknown rate: should not happen. */
2181 default: tap->wr_rate = 0;
2182 }
2183
2184 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2185 }
2186
2187 /*
2188 * If it's a beacon and we're waiting, then do the wakeup.
2189 */
2190 if (sc->sc_beacon_wait) {
2191 uint8_t type, subtype;
2192 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2193 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2194 /*
2195 * This assumes at this point we've received our own
2196 * beacon.
2197 */
2198 if (type == IEEE80211_FC0_TYPE_MGT &&
2199 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2200 sc->sc_beacon_wait = 0;
2201 ifp->if_flags &= ~IFF_OACTIVE;
2202 iwn_start(ifp);
2203 }
2204 }
2205
2206 /* Send the frame to the 802.11 layer. */
2207 ieee80211_input(ic, m, ni, rssi, 0);
2208
2209 /* Node is no longer needed. */
2210 ieee80211_free_node(ni);
2211
2212 splx(s);
2213 }
2214
2215 #ifndef IEEE80211_NO_HT
2216 /* Process an incoming Compressed BlockAck. */
2217 static void
2218 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2219 struct iwn_rx_data *data)
2220 {
2221 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2222 struct iwn_tx_ring *txq;
2223
2224 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2225 BUS_DMASYNC_POSTREAD);
2226
2227 txq = &sc->txq[le16toh(ba->qid)];
2228 /* XXX TBD */
2229 }
2230 #endif
2231
2232 /*
2233 * Process a CALIBRATION_RESULT notification sent by the initialization
2234 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2235 */
2236 static void
2237 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2238 struct iwn_rx_data *data)
2239 {
2240 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2241 int len, idx = -1;
2242
2243 /* Runtime firmware should not send such a notification. */
2244 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2245 return;
2246
2247 len = (le32toh(desc->len) & 0x3fff) - 4;
2248 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2249 BUS_DMASYNC_POSTREAD);
2250
2251 switch (calib->code) {
2252 case IWN5000_PHY_CALIB_DC:
2253 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2254 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2255 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2256 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2257 sc->hw_type == IWN_HW_REV_TYPE_105)
2258 idx = 0;
2259 break;
2260 case IWN5000_PHY_CALIB_LO:
2261 idx = 1;
2262 break;
2263 case IWN5000_PHY_CALIB_TX_IQ:
2264 idx = 2;
2265 break;
2266 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2267 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2268 sc->hw_type != IWN_HW_REV_TYPE_5150)
2269 idx = 3;
2270 break;
2271 case IWN5000_PHY_CALIB_BASE_BAND:
2272 idx = 4;
2273 break;
2274 }
2275 if (idx == -1) /* Ignore other results. */
2276 return;
2277
2278 /* Save calibration result. */
2279 if (sc->calibcmd[idx].buf != NULL)
2280 free(sc->calibcmd[idx].buf, M_DEVBUF);
2281 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2282 if (sc->calibcmd[idx].buf == NULL) {
2283 DPRINTF(("not enough memory for calibration result %d\n",
2284 calib->code));
2285 return;
2286 }
2287 DPRINTF(("saving calibration result code=%d len=%d\n",
2288 calib->code, len));
2289 sc->calibcmd[idx].len = len;
2290 memcpy(sc->calibcmd[idx].buf, calib, len);
2291 }
2292
2293 /*
2294 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2295 * The latter is sent by the firmware after each received beacon.
2296 */
2297 static void
2298 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2299 struct iwn_rx_data *data)
2300 {
2301 struct iwn_ops *ops = &sc->ops;
2302 struct ieee80211com *ic = &sc->sc_ic;
2303 struct iwn_calib_state *calib = &sc->calib;
2304 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2305 int temp;
2306
2307 /* Ignore statistics received during a scan. */
2308 if (ic->ic_state != IEEE80211_S_RUN)
2309 return;
2310
2311 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2312 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2313
2314 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2315 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2316
2317 /* Test if temperature has changed. */
2318 if (stats->general.temp != sc->rawtemp) {
2319 /* Convert "raw" temperature to degC. */
2320 sc->rawtemp = stats->general.temp;
2321 temp = ops->get_temperature(sc);
2322 DPRINTFN(2, ("temperature=%dC\n", temp));
2323
2324 /* Update TX power if need be (4965AGN only). */
2325 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2326 iwn4965_power_calibration(sc, temp);
2327 }
2328
2329 if (desc->type != IWN_BEACON_STATISTICS)
2330 return; /* Reply to a statistics request. */
2331
2332 sc->noise = iwn_get_noise(&stats->rx.general);
2333
2334 /* Test that RSSI and noise are present in stats report. */
2335 if (le32toh(stats->rx.general.flags) != 1) {
2336 DPRINTF(("received statistics without RSSI\n"));
2337 return;
2338 }
2339
2340 /*
2341 * XXX Differential gain calibration makes the 6005 firmware
2342 * crap out, so skip it for now. This effectively disables
2343 * sensitivity tuning as well.
2344 */
2345 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2346 return;
2347
2348 if (calib->state == IWN_CALIB_STATE_ASSOC)
2349 iwn_collect_noise(sc, &stats->rx.general);
2350 else if (calib->state == IWN_CALIB_STATE_RUN)
2351 iwn_tune_sensitivity(sc, &stats->rx);
2352 }
2353
2354 /*
2355 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2356 * and 5000 adapters have different incompatible TX status formats.
2357 */
2358 static void
2359 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2360 struct iwn_rx_data *data)
2361 {
2362 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2363
2364 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2365 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2366 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2367 }
2368
2369 static void
2370 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2371 struct iwn_rx_data *data)
2372 {
2373 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2374
2375 #ifdef notyet
2376 /* Reset TX scheduler slot. */
2377 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2378 #endif
2379
2380 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2381 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2382 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2383 }
2384
2385 /*
2386 * Adapter-independent backend for TX_DONE firmware notifications.
2387 */
2388 static void
2389 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2390 uint8_t status)
2391 {
2392 struct ieee80211com *ic = &sc->sc_ic;
2393 struct ifnet *ifp = ic->ic_ifp;
2394 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2395 struct iwn_tx_data *data = &ring->data[desc->idx];
2396 struct iwn_node *wn = (struct iwn_node *)data->ni;
2397 int s;
2398
2399 s = splnet();
2400
2401 /* Update rate control statistics. */
2402 wn->amn.amn_txcnt++;
2403 if (ackfailcnt > 0)
2404 wn->amn.amn_retrycnt++;
2405
2406 if (status != 1 && status != 2)
2407 if_statinc(ifp, if_oerrors);
2408 else
2409 if_statinc(ifp, if_opackets);
2410
2411 /* Unmap and free mbuf. */
2412 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2413 BUS_DMASYNC_POSTWRITE);
2414 bus_dmamap_unload(sc->sc_dmat, data->map);
2415 m_freem(data->m);
2416 data->m = NULL;
2417 ieee80211_free_node(data->ni);
2418 data->ni = NULL;
2419
2420 sc->sc_tx_timer = 0;
2421 if (--ring->queued < IWN_TX_RING_LOMARK) {
2422 sc->qfullmsk &= ~(1 << ring->qid);
2423 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2424 ifp->if_flags &= ~IFF_OACTIVE;
2425 iwn_start(ifp);
2426 }
2427 }
2428
2429 splx(s);
2430 }
2431
2432 /*
2433 * Process a "command done" firmware notification. This is where we wakeup
2434 * processes waiting for a synchronous command completion.
2435 */
2436 static void
2437 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2438 {
2439 struct iwn_tx_ring *ring = &sc->txq[4];
2440 struct iwn_tx_data *data;
2441
2442 if ((desc->qid & 0xf) != 4)
2443 return; /* Not a command ack. */
2444
2445 data = &ring->data[desc->idx];
2446
2447 /* If the command was mapped in an mbuf, free it. */
2448 if (data->m != NULL) {
2449 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2450 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2451 bus_dmamap_unload(sc->sc_dmat, data->map);
2452 m_freem(data->m);
2453 data->m = NULL;
2454 }
2455 wakeup(&ring->desc[desc->idx]);
2456 }
2457
2458 /*
2459 * Process an INT_FH_RX or INT_SW_RX interrupt.
2460 */
2461 static void
2462 iwn_notif_intr(struct iwn_softc *sc)
2463 {
2464 struct iwn_ops *ops = &sc->ops;
2465 struct ieee80211com *ic = &sc->sc_ic;
2466 struct ifnet *ifp = ic->ic_ifp;
2467 uint16_t hw;
2468 int s;
2469
2470 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2471 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2472
2473 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2474 while (sc->rxq.cur != hw) {
2475 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2476 struct iwn_rx_desc *desc;
2477
2478 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2479 BUS_DMASYNC_POSTREAD);
2480 desc = mtod(data->m, struct iwn_rx_desc *);
2481
2482 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2483 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2484
2485 if (!(desc->qid & 0x80)) /* Reply to a command. */
2486 iwn_cmd_done(sc, desc);
2487
2488 switch (desc->type) {
2489 case IWN_RX_PHY:
2490 iwn_rx_phy(sc, desc, data);
2491 break;
2492
2493 case IWN_RX_DONE: /* 4965AGN only. */
2494 case IWN_MPDU_RX_DONE:
2495 /* An 802.11 frame has been received. */
2496 iwn_rx_done(sc, desc, data);
2497 break;
2498 #ifndef IEEE80211_NO_HT
2499 case IWN_RX_COMPRESSED_BA:
2500 /* A Compressed BlockAck has been received. */
2501 iwn_rx_compressed_ba(sc, desc, data);
2502 break;
2503 #endif
2504 case IWN_TX_DONE:
2505 /* An 802.11 frame has been transmitted. */
2506 ops->tx_done(sc, desc, data);
2507 break;
2508
2509 case IWN_RX_STATISTICS:
2510 case IWN_BEACON_STATISTICS:
2511 iwn_rx_statistics(sc, desc, data);
2512 break;
2513
2514 case IWN_BEACON_MISSED:
2515 {
2516 struct iwn_beacon_missed *miss =
2517 (struct iwn_beacon_missed *)(desc + 1);
2518
2519 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2520 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2521 /*
2522 * If more than 5 consecutive beacons are missed,
2523 * reinitialize the sensitivity state machine.
2524 */
2525 DPRINTF(("beacons missed %d/%d\n",
2526 le32toh(miss->consecutive), le32toh(miss->total)));
2527 if (ic->ic_state == IEEE80211_S_RUN &&
2528 le32toh(miss->consecutive) > 5)
2529 (void)iwn_init_sensitivity(sc);
2530 break;
2531 }
2532 case IWN_UC_READY:
2533 {
2534 struct iwn_ucode_info *uc =
2535 (struct iwn_ucode_info *)(desc + 1);
2536
2537 /* The microcontroller is ready. */
2538 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2539 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2540 DPRINTF(("microcode alive notification version=%d.%d "
2541 "subtype=%x alive=%x\n", uc->major, uc->minor,
2542 uc->subtype, le32toh(uc->valid)));
2543
2544 if (le32toh(uc->valid) != 1) {
2545 aprint_error_dev(sc->sc_dev,
2546 "microcontroller initialization "
2547 "failed\n");
2548 break;
2549 }
2550 if (uc->subtype == IWN_UCODE_INIT) {
2551 /* Save microcontroller report. */
2552 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2553 }
2554 /* Save the address of the error log in SRAM. */
2555 sc->errptr = le32toh(uc->errptr);
2556 break;
2557 }
2558 case IWN_STATE_CHANGED:
2559 {
2560 uint32_t *status = (uint32_t *)(desc + 1);
2561
2562 /* Enabled/disabled notification. */
2563 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2564 sizeof (*status), BUS_DMASYNC_POSTREAD);
2565 DPRINTF(("state changed to %x\n", le32toh(*status)));
2566
2567 if (le32toh(*status) & 1) {
2568 /* The radio button has to be pushed. */
2569 aprint_error_dev(sc->sc_dev,
2570 "Radio transmitter is off\n");
2571 /* Turn the interface down. */
2572 s = splnet();
2573 ifp->if_flags &= ~IFF_UP;
2574 iwn_stop(ifp, 1);
2575 splx(s);
2576 return; /* No further processing. */
2577 }
2578 break;
2579 }
2580 case IWN_START_SCAN:
2581 {
2582 struct iwn_start_scan *scan =
2583 (struct iwn_start_scan *)(desc + 1);
2584
2585 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2586 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2587 DPRINTFN(2, ("scanning channel %d status %x\n",
2588 scan->chan, le32toh(scan->status)));
2589
2590 /* Fix current channel. */
2591 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2592 break;
2593 }
2594 case IWN_STOP_SCAN:
2595 {
2596 struct iwn_stop_scan *scan =
2597 (struct iwn_stop_scan *)(desc + 1);
2598
2599 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2600 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2601 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2602 scan->nchan, scan->status, scan->chan));
2603
2604 if (scan->status == 1 && scan->chan <= 14 &&
2605 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2606 /*
2607 * We just finished scanning 2GHz channels,
2608 * start scanning 5GHz ones.
2609 */
2610 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2611 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2612 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2613 break;
2614 }
2615 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2616 ieee80211_end_scan(ic);
2617 break;
2618 }
2619 case IWN5000_CALIBRATION_RESULT:
2620 iwn5000_rx_calib_results(sc, desc, data);
2621 break;
2622
2623 case IWN5000_CALIBRATION_DONE:
2624 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2625 wakeup(sc);
2626 break;
2627 }
2628
2629 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2630 }
2631
2632 /* Tell the firmware what we have processed. */
2633 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2634 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2635 }
2636
2637 /*
2638 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2639 * from power-down sleep mode.
2640 */
2641 static void
2642 iwn_wakeup_intr(struct iwn_softc *sc)
2643 {
2644 int qid;
2645
2646 DPRINTF(("ucode wakeup from power-down sleep\n"));
2647
2648 /* Wakeup RX and TX rings. */
2649 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2650 for (qid = 0; qid < sc->ntxqs; qid++) {
2651 struct iwn_tx_ring *ring = &sc->txq[qid];
2652 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2653 }
2654 }
2655
2656 /*
2657 * Dump the error log of the firmware when a firmware panic occurs. Although
2658 * we can't debug the firmware because it is neither open source nor free, it
2659 * can help us to identify certain classes of problems.
2660 */
2661 static void
2662 iwn_fatal_intr(struct iwn_softc *sc)
2663 {
2664 struct iwn_fw_dump dump;
2665 int i;
2666
2667 /* Force a complete recalibration on next init. */
2668 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2669
2670 /* Check that the error log address is valid. */
2671 if (sc->errptr < IWN_FW_DATA_BASE ||
2672 sc->errptr + sizeof (dump) >
2673 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2674 aprint_error_dev(sc->sc_dev,
2675 "bad firmware error log address 0x%08x\n", sc->errptr);
2676 return;
2677 }
2678 if (iwn_nic_lock(sc) != 0) {
2679 aprint_error_dev(sc->sc_dev,
2680 "could not read firmware error log\n");
2681 return;
2682 }
2683 /* Read firmware error log from SRAM. */
2684 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2685 sizeof (dump) / sizeof (uint32_t));
2686 iwn_nic_unlock(sc);
2687
2688 if (dump.valid == 0) {
2689 aprint_error_dev(sc->sc_dev,
2690 "firmware error log is empty\n");
2691 return;
2692 }
2693 aprint_error("firmware error log:\n");
2694 aprint_error(" error type = \"%s\" (0x%08X)\n",
2695 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2696 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2697 dump.id);
2698 aprint_error(" program counter = 0x%08X\n", dump.pc);
2699 aprint_error(" source line = 0x%08X\n", dump.src_line);
2700 aprint_error(" error data = 0x%08X%08X\n",
2701 dump.error_data[0], dump.error_data[1]);
2702 aprint_error(" branch link = 0x%08X%08X\n",
2703 dump.branch_link[0], dump.branch_link[1]);
2704 aprint_error(" interrupt link = 0x%08X%08X\n",
2705 dump.interrupt_link[0], dump.interrupt_link[1]);
2706 aprint_error(" time = %u\n", dump.time[0]);
2707
2708 /* Dump driver status (TX and RX rings) while we're here. */
2709 aprint_error("driver status:\n");
2710 for (i = 0; i < sc->ntxqs; i++) {
2711 struct iwn_tx_ring *ring = &sc->txq[i];
2712 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2713 i, ring->qid, ring->cur, ring->queued);
2714 }
2715 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2716 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2717 }
2718
2719 static int
2720 iwn_intr(void *arg)
2721 {
2722 struct iwn_softc *sc = arg;
2723
2724 /* Disable interrupts. */
2725 IWN_WRITE(sc, IWN_INT_MASK, 0);
2726
2727 softint_schedule(sc->sc_soft_ih);
2728 return 1;
2729 }
2730
2731 static void
2732 iwn_softintr(void *arg)
2733 {
2734 struct iwn_softc *sc = arg;
2735 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2736 uint32_t r1, r2, tmp;
2737 int s;
2738
2739 /* Read interrupts from ICT (fast) or from registers (slow). */
2740 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2741 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2742 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2743 tmp = 0;
2744 while (sc->ict[sc->ict_cur] != 0) {
2745 tmp |= sc->ict[sc->ict_cur];
2746 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2747 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2748 }
2749 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2750 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2751 tmp = le32toh(tmp);
2752 if (tmp == 0xffffffff) /* Shouldn't happen. */
2753 tmp = 0;
2754 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2755 tmp |= 0x8000;
2756 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2757 r2 = 0; /* Unused. */
2758 } else {
2759 r1 = IWN_READ(sc, IWN_INT);
2760 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2761 return; /* Hardware gone! */
2762 r2 = IWN_READ(sc, IWN_FH_INT);
2763 }
2764 if (r1 == 0 && r2 == 0) {
2765 goto out; /* Interrupt not for us. */
2766 }
2767
2768 /* Acknowledge interrupts. */
2769 IWN_WRITE(sc, IWN_INT, r1);
2770 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2771 IWN_WRITE(sc, IWN_FH_INT, r2);
2772
2773 if (r1 & IWN_INT_RF_TOGGLED) {
2774 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2775 aprint_error_dev(sc->sc_dev,
2776 "RF switch: radio %s\n",
2777 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2778 }
2779 if (r1 & IWN_INT_CT_REACHED) {
2780 aprint_error_dev(sc->sc_dev,
2781 "critical temperature reached!\n");
2782 }
2783 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2784 aprint_error_dev(sc->sc_dev,
2785 "fatal firmware error\n");
2786 /* Dump firmware error log and stop. */
2787 iwn_fatal_intr(sc);
2788 s = splnet();
2789 ifp->if_flags &= ~IFF_UP;
2790 iwn_stop(ifp, 1);
2791 splx(s);
2792 return;
2793 }
2794 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2795 (r2 & IWN_FH_INT_RX)) {
2796 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2797 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2798 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2799 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2800 iwn_notif_intr(sc);
2801 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2802 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2803 IWN_INT_PERIODIC_ENA);
2804 }
2805 } else
2806 iwn_notif_intr(sc);
2807 }
2808
2809 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2810 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2811 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2812 wakeup(sc); /* FH DMA transfer completed. */
2813 }
2814
2815 if (r1 & IWN_INT_ALIVE)
2816 wakeup(sc); /* Firmware is alive. */
2817
2818 if (r1 & IWN_INT_WAKEUP)
2819 iwn_wakeup_intr(sc);
2820
2821 out:
2822 /* Re-enable interrupts. */
2823 if (ifp->if_flags & IFF_UP)
2824 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2825 }
2826
2827 /*
2828 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2829 * 5000 adapters use a slightly different format).
2830 */
2831 static void
2832 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2833 uint16_t len)
2834 {
2835 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2836
2837 *w = htole16(len + 8);
2838 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2839 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2840 sizeof (uint16_t),
2841 BUS_DMASYNC_PREWRITE);
2842 if (idx < IWN_SCHED_WINSZ) {
2843 *(w + IWN_TX_RING_COUNT) = *w;
2844 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2845 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2846 (char *)(void *)sc->sched_dma.vaddr,
2847 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2848 }
2849 }
2850
2851 static void
2852 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2853 uint16_t len)
2854 {
2855 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2856
2857 *w = htole16(id << 12 | (len + 8));
2858 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2859 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2860 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2861 if (idx < IWN_SCHED_WINSZ) {
2862 *(w + IWN_TX_RING_COUNT) = *w;
2863 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2864 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2865 (char *)(void *)sc->sched_dma.vaddr,
2866 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2867 }
2868 }
2869
2870 #ifdef notyet
2871 static void
2872 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2873 {
2874 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2875
2876 *w = (*w & htole16(0xf000)) | htole16(1);
2877 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2878 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2879 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2880 if (idx < IWN_SCHED_WINSZ) {
2881 *(w + IWN_TX_RING_COUNT) = *w;
2882 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2883 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2884 (char *)(void *)sc->sched_dma.vaddr,
2885 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2886 }
2887 }
2888 #endif
2889
2890 static int
2891 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2892 {
2893 struct ieee80211com *ic = &sc->sc_ic;
2894 struct iwn_node *wn = (void *)ni;
2895 struct iwn_tx_ring *ring;
2896 struct iwn_tx_desc *desc;
2897 struct iwn_tx_data *data;
2898 struct iwn_tx_cmd *cmd;
2899 struct iwn_cmd_data *tx;
2900 const struct iwn_rate *rinfo;
2901 struct ieee80211_frame *wh;
2902 struct ieee80211_key *k = NULL;
2903 struct mbuf *m1;
2904 uint32_t flags;
2905 u_int hdrlen;
2906 bus_dma_segment_t *seg;
2907 uint8_t tid, ridx, txant, type;
2908 int i, totlen, error, pad;
2909
2910 const struct chanAccParams *cap;
2911 int noack;
2912 int hdrlen2;
2913
2914 wh = mtod(m, struct ieee80211_frame *);
2915 hdrlen = ieee80211_anyhdrsize(wh);
2916 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2917
2918 hdrlen2 = (ieee80211_has_qos(wh)) ?
2919 sizeof (struct ieee80211_qosframe) :
2920 sizeof (struct ieee80211_frame);
2921
2922 if (hdrlen != hdrlen2)
2923 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2924 hdrlen, hdrlen2);
2925
2926 /* XXX OpenBSD sets a different tid when using QOS */
2927 tid = 0;
2928 if (ieee80211_has_qos(wh)) {
2929 cap = &ic->ic_wme.wme_chanParams;
2930 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2931 }
2932 else
2933 noack = 0;
2934
2935 ring = &sc->txq[ac];
2936 desc = &ring->desc[ring->cur];
2937 data = &ring->data[ring->cur];
2938
2939 /* Choose a TX rate index. */
2940 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2941 type != IEEE80211_FC0_TYPE_DATA) {
2942 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2943 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
2944 } else if (ic->ic_fixed_rate != -1) {
2945 ridx = sc->fixed_ridx;
2946 } else
2947 ridx = wn->ridx[ni->ni_txrate];
2948 rinfo = &iwn_rates[ridx];
2949
2950 /* Encrypt the frame if need be. */
2951 /*
2952 * XXX For now, NetBSD swaps the encryption and bpf sections
2953 * in order to match old code and other drivers. Tests with
2954 * tcpdump indicates that the order is irrelevant, however,
2955 * as bpf produces unencrypted data for both ordering choices.
2956 */
2957 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2958 k = ieee80211_crypto_encap(ic, ni, m);
2959 if (k == NULL) {
2960 m_freem(m);
2961 return ENOBUFS;
2962 }
2963 /* Packet header may have moved, reset our local pointer. */
2964 wh = mtod(m, struct ieee80211_frame *);
2965 }
2966 totlen = m->m_pkthdr.len;
2967
2968 if (sc->sc_drvbpf != NULL) {
2969 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2970
2971 tap->wt_flags = 0;
2972 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2973 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2974 tap->wt_rate = rinfo->rate;
2975 tap->wt_hwqueue = ac;
2976 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2977 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2978
2979 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
2980 }
2981
2982 /* Prepare TX firmware command. */
2983 cmd = &ring->cmd[ring->cur];
2984 cmd->code = IWN_CMD_TX_DATA;
2985 cmd->flags = 0;
2986 cmd->qid = ring->qid;
2987 cmd->idx = ring->cur;
2988
2989 tx = (struct iwn_cmd_data *)cmd->data;
2990 /* NB: No need to clear tx, all fields are reinitialized here. */
2991 tx->scratch = 0; /* clear "scratch" area */
2992
2993 flags = 0;
2994 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2995 /* Unicast frame, check if an ACK is expected. */
2996 if (!noack)
2997 flags |= IWN_TX_NEED_ACK;
2998 }
2999
3000 #ifdef notyet
3001 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3002 if ((wh->i_fc[0] &
3003 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3004 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3005 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3006 #endif
3007
3008 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3009 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3010
3011 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3012 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3013 /* NB: Group frames are sent using CCK in 802.11b/g. */
3014 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3015 flags |= IWN_TX_NEED_RTS;
3016 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3017 ridx >= IWN_RIDX_OFDM6) {
3018 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3019 flags |= IWN_TX_NEED_CTS;
3020 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3021 flags |= IWN_TX_NEED_RTS;
3022 }
3023 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3024 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3025 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3026 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3027 flags |= IWN_TX_NEED_PROTECTION;
3028 } else
3029 flags |= IWN_TX_FULL_TXOP;
3030 }
3031 }
3032
3033 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3034 type != IEEE80211_FC0_TYPE_DATA)
3035 tx->id = sc->broadcast_id;
3036 else
3037 tx->id = wn->id;
3038
3039 if (type == IEEE80211_FC0_TYPE_MGT) {
3040 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3041
3042 #ifndef IEEE80211_STA_ONLY
3043 /* Tell HW to set timestamp in probe responses. */
3044 /* XXX NetBSD rev 1.11 added probe requests here but */
3045 /* probe requests do not take timestamps (from Bergamini). */
3046 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3047 flags |= IWN_TX_INSERT_TSTAMP;
3048 #endif
3049 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3050 /* changes here. These are not needed (from Bergamini). */
3051 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3052 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3053 tx->timeout = htole16(3);
3054 else
3055 tx->timeout = htole16(2);
3056 } else
3057 tx->timeout = htole16(0);
3058
3059 if (hdrlen & 3) {
3060 /* First segment length must be a multiple of 4. */
3061 flags |= IWN_TX_NEED_PADDING;
3062 pad = 4 - (hdrlen & 3);
3063 } else
3064 pad = 0;
3065
3066 tx->len = htole16(totlen);
3067 tx->tid = tid;
3068 tx->rts_ntries = 60;
3069 tx->data_ntries = 15;
3070 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3071 tx->plcp = rinfo->plcp;
3072 tx->rflags = rinfo->flags;
3073 if (tx->id == sc->broadcast_id) {
3074 /* Group or management frame. */
3075 tx->linkq = 0;
3076 /* XXX Alternate between antenna A and B? */
3077 txant = IWN_LSB(sc->txchainmask);
3078 tx->rflags |= IWN_RFLAG_ANT(txant);
3079 } else {
3080 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3081 flags |= IWN_TX_LINKQ; /* enable MRR */
3082 }
3083 /* Set physical address of "scratch area". */
3084 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3085 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3086
3087 /* Copy 802.11 header in TX command. */
3088 /* XXX NetBSD changed this in rev 1.20 */
3089 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3090
3091 /* Trim 802.11 header. */
3092 m_adj(m, hdrlen);
3093 tx->security = 0;
3094 tx->flags = htole32(flags);
3095
3096 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3097 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3098 if (error != 0) {
3099 if (error != EFBIG) {
3100 aprint_error_dev(sc->sc_dev,
3101 "can't map mbuf (error %d)\n", error);
3102 m_freem(m);
3103 return error;
3104 }
3105 /* Too many DMA segments, linearize mbuf. */
3106 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3107 if (m1 == NULL) {
3108 m_freem(m);
3109 return ENOBUFS;
3110 }
3111 if (m->m_pkthdr.len > MHLEN) {
3112 MCLGET(m1, M_DONTWAIT);
3113 if (!(m1->m_flags & M_EXT)) {
3114 m_freem(m);
3115 m_freem(m1);
3116 return ENOBUFS;
3117 }
3118 }
3119 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3120 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3121 m_freem(m);
3122 m = m1;
3123
3124 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3125 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3126 if (error != 0) {
3127 aprint_error_dev(sc->sc_dev,
3128 "can't map mbuf (error %d)\n", error);
3129 m_freem(m);
3130 return error;
3131 }
3132 }
3133
3134 data->m = m;
3135 data->ni = ni;
3136
3137 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3138 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3139
3140 /* Fill TX descriptor. */
3141 desc->nsegs = 1 + data->map->dm_nsegs;
3142 /* First DMA segment is used by the TX command. */
3143 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3144 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3145 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3146 /* Other DMA segments are for data payload. */
3147 seg = data->map->dm_segs;
3148 for (i = 1; i <= data->map->dm_nsegs; i++) {
3149 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3150 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3151 seg->ds_len << 4);
3152 seg++;
3153 }
3154
3155 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3156 BUS_DMASYNC_PREWRITE);
3157 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3158 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3159 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3160 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3161 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3162 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3163
3164 #ifdef notyet
3165 /* Update TX scheduler. */
3166 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3167 #endif
3168
3169 /* Kick TX ring. */
3170 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3171 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3172
3173 /* Mark TX ring as full if we reach a certain threshold. */
3174 if (++ring->queued > IWN_TX_RING_HIMARK)
3175 sc->qfullmsk |= 1 << ring->qid;
3176
3177 return 0;
3178 }
3179
3180 static void
3181 iwn_start(struct ifnet *ifp)
3182 {
3183 struct iwn_softc *sc = ifp->if_softc;
3184 struct ieee80211com *ic = &sc->sc_ic;
3185 struct ieee80211_node *ni;
3186 struct ether_header *eh;
3187 struct mbuf *m;
3188 int ac;
3189
3190 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3191 return;
3192
3193 for (;;) {
3194 if (sc->sc_beacon_wait == 1) {
3195 ifp->if_flags |= IFF_OACTIVE;
3196 break;
3197 }
3198
3199 if (sc->qfullmsk != 0) {
3200 ifp->if_flags |= IFF_OACTIVE;
3201 break;
3202 }
3203 /* Send pending management frames first. */
3204 IF_DEQUEUE(&ic->ic_mgtq, m);
3205 if (m != NULL) {
3206 ni = M_GETCTX(m, struct ieee80211_node *);
3207 ac = 0;
3208 goto sendit;
3209 }
3210 if (ic->ic_state != IEEE80211_S_RUN)
3211 break;
3212
3213 /* Encapsulate and send data frames. */
3214 IFQ_DEQUEUE(&ifp->if_snd, m);
3215 if (m == NULL)
3216 break;
3217 if (m->m_len < sizeof (*eh) &&
3218 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3219 if_statinc(ifp, if_oerrors);
3220 continue;
3221 }
3222 eh = mtod(m, struct ether_header *);
3223 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3224 if (ni == NULL) {
3225 m_freem(m);
3226 if_statinc(ifp, if_oerrors);
3227 continue;
3228 }
3229 /* classify mbuf so we can find which tx ring to use */
3230 if (ieee80211_classify(ic, m, ni) != 0) {
3231 m_freem(m);
3232 ieee80211_free_node(ni);
3233 if_statinc(ifp, if_oerrors);
3234 continue;
3235 }
3236
3237 /* No QoS encapsulation for EAPOL frames. */
3238 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3239 M_WME_GETAC(m) : WME_AC_BE;
3240
3241 if (sc->sc_beacon_wait == 0)
3242 bpf_mtap(ifp, m, BPF_D_OUT);
3243
3244 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3245 ieee80211_free_node(ni);
3246 if_statinc(ifp, if_oerrors);
3247 continue;
3248 }
3249 sendit:
3250 if (sc->sc_beacon_wait)
3251 continue;
3252
3253 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3254
3255 if (iwn_tx(sc, m, ni, ac) != 0) {
3256 ieee80211_free_node(ni);
3257 if_statinc(ifp, if_oerrors);
3258 continue;
3259 }
3260
3261 sc->sc_tx_timer = 5;
3262 ifp->if_timer = 1;
3263 }
3264
3265 if (sc->sc_beacon_wait > 1)
3266 sc->sc_beacon_wait = 0;
3267 }
3268
3269 static void
3270 iwn_watchdog(struct ifnet *ifp)
3271 {
3272 struct iwn_softc *sc = ifp->if_softc;
3273
3274 ifp->if_timer = 0;
3275
3276 if (sc->sc_tx_timer > 0) {
3277 if (--sc->sc_tx_timer == 0) {
3278 aprint_error_dev(sc->sc_dev,
3279 "device timeout\n");
3280 ifp->if_flags &= ~IFF_UP;
3281 iwn_stop(ifp, 1);
3282 if_statinc(ifp, if_oerrors);
3283 return;
3284 }
3285 ifp->if_timer = 1;
3286 }
3287
3288 ieee80211_watchdog(&sc->sc_ic);
3289 }
3290
3291 static int
3292 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3293 {
3294 struct iwn_softc *sc = ifp->if_softc;
3295 struct ieee80211com *ic = &sc->sc_ic;
3296 const struct sockaddr *sa;
3297 int s, error = 0;
3298
3299 s = splnet();
3300
3301 switch (cmd) {
3302 case SIOCSIFADDR:
3303 ifp->if_flags |= IFF_UP;
3304 /* FALLTHROUGH */
3305 case SIOCSIFFLAGS:
3306 /* XXX Added as it is in every NetBSD driver */
3307 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3308 break;
3309 if (ifp->if_flags & IFF_UP) {
3310 if (!(ifp->if_flags & IFF_RUNNING))
3311 error = iwn_init(ifp);
3312 } else {
3313 if (ifp->if_flags & IFF_RUNNING)
3314 iwn_stop(ifp, 1);
3315 }
3316 break;
3317
3318 case SIOCADDMULTI:
3319 case SIOCDELMULTI:
3320 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3321 error = (cmd == SIOCADDMULTI) ?
3322 ether_addmulti(sa, &sc->sc_ec) :
3323 ether_delmulti(sa, &sc->sc_ec);
3324
3325 if (error == ENETRESET)
3326 error = 0;
3327 break;
3328
3329 default:
3330 error = ieee80211_ioctl(ic, cmd, data);
3331 }
3332
3333 if (error == ENETRESET) {
3334 error = 0;
3335 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3336 (IFF_UP | IFF_RUNNING)) {
3337 iwn_stop(ifp, 0);
3338 error = iwn_init(ifp);
3339 }
3340 }
3341
3342 splx(s);
3343 return error;
3344 }
3345
3346 /*
3347 * Send a command to the firmware.
3348 */
3349 static int
3350 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3351 {
3352 struct iwn_tx_ring *ring = &sc->txq[4];
3353 struct iwn_tx_desc *desc;
3354 struct iwn_tx_data *data;
3355 struct iwn_tx_cmd *cmd;
3356 struct mbuf *m;
3357 bus_addr_t paddr;
3358 int totlen, error;
3359
3360 desc = &ring->desc[ring->cur];
3361 data = &ring->data[ring->cur];
3362 totlen = 4 + size;
3363
3364 if (size > sizeof cmd->data) {
3365 /* Command is too large to fit in a descriptor. */
3366 if (totlen > MCLBYTES)
3367 return EINVAL;
3368 MGETHDR(m, M_DONTWAIT, MT_DATA);
3369 if (m == NULL)
3370 return ENOMEM;
3371 if (totlen > MHLEN) {
3372 MCLGET(m, M_DONTWAIT);
3373 if (!(m->m_flags & M_EXT)) {
3374 m_freem(m);
3375 return ENOMEM;
3376 }
3377 }
3378 cmd = mtod(m, struct iwn_tx_cmd *);
3379 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3380 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3381 if (error != 0) {
3382 m_freem(m);
3383 return error;
3384 }
3385 data->m = m;
3386 paddr = data->map->dm_segs[0].ds_addr;
3387 } else {
3388 cmd = &ring->cmd[ring->cur];
3389 paddr = data->cmd_paddr;
3390 }
3391
3392 cmd->code = code;
3393 cmd->flags = 0;
3394 cmd->qid = ring->qid;
3395 cmd->idx = ring->cur;
3396 /*
3397 * Coverity:[OUT_OF_BOUNDS]
3398 * false positive since, allocated in mbuf if it does not fit
3399 */
3400 memcpy(cmd->data, buf, size);
3401
3402 desc->nsegs = 1;
3403 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3404 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3405
3406 if (size > sizeof cmd->data) {
3407 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3408 BUS_DMASYNC_PREWRITE);
3409 } else {
3410 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3411 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3412 totlen, BUS_DMASYNC_PREWRITE);
3413 }
3414 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3415 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3416 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3417
3418 #ifdef notyet
3419 /* Update TX scheduler. */
3420 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3421 #endif
3422 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3423
3424 /* Kick command ring. */
3425 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3426 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3427
3428 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3429 }
3430
3431 static int
3432 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3433 {
3434 struct iwn4965_node_info hnode;
3435 char *src, *dst;
3436
3437 /*
3438 * We use the node structure for 5000 Series internally (it is
3439 * a superset of the one for 4965AGN). We thus copy the common
3440 * fields before sending the command.
3441 */
3442 src = (char *)node;
3443 dst = (char *)&hnode;
3444 memcpy(dst, src, 48);
3445 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3446 memcpy(dst + 48, src + 72, 20);
3447 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3448 }
3449
3450 static int
3451 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3452 {
3453 /* Direct mapping. */
3454 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3455 }
3456
3457 static int
3458 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3459 {
3460 struct iwn_node *wn = (void *)ni;
3461 struct ieee80211_rateset *rs = &ni->ni_rates;
3462 struct iwn_cmd_link_quality linkq;
3463 const struct iwn_rate *rinfo;
3464 uint8_t txant;
3465 int i, txrate;
3466
3467 /* Use the first valid TX antenna. */
3468 txant = IWN_LSB(sc->txchainmask);
3469
3470 memset(&linkq, 0, sizeof linkq);
3471 linkq.id = wn->id;
3472 linkq.antmsk_1stream = txant;
3473 linkq.antmsk_2stream = IWN_ANT_AB;
3474 linkq.ampdu_max = 31;
3475 linkq.ampdu_threshold = 3;
3476 linkq.ampdu_limit = htole16(4000); /* 4ms */
3477
3478 /* Start at highest available bit-rate. */
3479 txrate = rs->rs_nrates - 1;
3480 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3481 rinfo = &iwn_rates[wn->ridx[txrate]];
3482 linkq.retry[i].plcp = rinfo->plcp;
3483 linkq.retry[i].rflags = rinfo->flags;
3484 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3485 /* Next retry at immediate lower bit-rate. */
3486 if (txrate > 0)
3487 txrate--;
3488 }
3489 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3490 }
3491
3492 /*
3493 * Broadcast node is used to send group-addressed and management frames.
3494 */
3495 static int
3496 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3497 {
3498 struct iwn_ops *ops = &sc->ops;
3499 struct iwn_node_info node;
3500 struct iwn_cmd_link_quality linkq;
3501 const struct iwn_rate *rinfo;
3502 uint8_t txant;
3503 int i, error;
3504
3505 memset(&node, 0, sizeof node);
3506 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3507 node.id = sc->broadcast_id;
3508 DPRINTF(("adding broadcast node\n"));
3509 if ((error = ops->add_node(sc, &node, async)) != 0)
3510 return error;
3511
3512 /* Use the first valid TX antenna. */
3513 txant = IWN_LSB(sc->txchainmask);
3514
3515 memset(&linkq, 0, sizeof linkq);
3516 linkq.id = sc->broadcast_id;
3517 linkq.antmsk_1stream = txant;
3518 linkq.antmsk_2stream = IWN_ANT_AB;
3519 linkq.ampdu_max = 64;
3520 linkq.ampdu_threshold = 3;
3521 linkq.ampdu_limit = htole16(4000); /* 4ms */
3522
3523 /* Use lowest mandatory bit-rate. */
3524 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3525 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3526 linkq.retry[0].plcp = rinfo->plcp;
3527 linkq.retry[0].rflags = rinfo->flags;
3528 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3529 /* Use same bit-rate for all TX retries. */
3530 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3531 linkq.retry[i].plcp = linkq.retry[0].plcp;
3532 linkq.retry[i].rflags = linkq.retry[0].rflags;
3533 }
3534 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3535 }
3536
3537 static void
3538 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3539 {
3540 struct iwn_cmd_led led;
3541
3542 /* Clear microcode LED ownership. */
3543 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3544
3545 led.which = which;
3546 led.unit = htole32(10000); /* on/off in unit of 100ms */
3547 led.off = off;
3548 led.on = on;
3549 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3550 }
3551
3552 /*
3553 * Set the critical temperature at which the firmware will stop the radio
3554 * and notify us.
3555 */
3556 static int
3557 iwn_set_critical_temp(struct iwn_softc *sc)
3558 {
3559 struct iwn_critical_temp crit;
3560 int32_t temp;
3561
3562 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3563
3564 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3565 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3566 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3567 temp = IWN_CTOK(110);
3568 else
3569 temp = 110;
3570 memset(&crit, 0, sizeof crit);
3571 crit.tempR = htole32(temp);
3572 DPRINTF(("setting critical temperature to %d\n", temp));
3573 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3574 }
3575
3576 static int
3577 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3578 {
3579 struct iwn_cmd_timing cmd;
3580 uint64_t val, mod;
3581
3582 memset(&cmd, 0, sizeof cmd);
3583 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3584 cmd.bintval = htole16(ni->ni_intval);
3585 cmd.lintval = htole16(10);
3586
3587 /* Compute remaining time until next beacon. */
3588 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3589 mod = le64toh(cmd.tstamp) % val;
3590 cmd.binitval = htole32((uint32_t)(val - mod));
3591
3592 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3593 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3594
3595 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3596 }
3597
3598 static void
3599 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3600 {
3601 /* Adjust TX power if need be (delta >= 3 degC). */
3602 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3603 if (abs(temp - sc->temp) >= 3) {
3604 /* Record temperature of last calibration. */
3605 sc->temp = temp;
3606 (void)iwn4965_set_txpower(sc, 1);
3607 }
3608 }
3609
3610 /*
3611 * Set TX power for current channel (each rate has its own power settings).
3612 * This function takes into account the regulatory information from EEPROM,
3613 * the current temperature and the current voltage.
3614 */
3615 static int
3616 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3617 {
3618 /* Fixed-point arithmetic division using a n-bit fractional part. */
3619 #define fdivround(a, b, n) \
3620 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3621 /* Linear interpolation. */
3622 #define interpolate(x, x1, y1, x2, y2, n) \
3623 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3624
3625 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3626 struct ieee80211com *ic = &sc->sc_ic;
3627 struct iwn_ucode_info *uc = &sc->ucode_info;
3628 struct ieee80211_channel *ch;
3629 struct iwn4965_cmd_txpower cmd;
3630 struct iwn4965_eeprom_chan_samples *chans;
3631 const uint8_t *rf_gain, *dsp_gain;
3632 int32_t vdiff, tdiff;
3633 int i, c, grp, maxpwr;
3634 uint8_t chan;
3635
3636 /* Retrieve current channel from last RXON. */
3637 chan = sc->rxon.chan;
3638 DPRINTF(("setting TX power for channel %d\n", chan));
3639 ch = &ic->ic_channels[chan];
3640
3641 memset(&cmd, 0, sizeof cmd);
3642 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3643 cmd.chan = chan;
3644
3645 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3646 maxpwr = sc->maxpwr5GHz;
3647 rf_gain = iwn4965_rf_gain_5ghz;
3648 dsp_gain = iwn4965_dsp_gain_5ghz;
3649 } else {
3650 maxpwr = sc->maxpwr2GHz;
3651 rf_gain = iwn4965_rf_gain_2ghz;
3652 dsp_gain = iwn4965_dsp_gain_2ghz;
3653 }
3654
3655 /* Compute voltage compensation. */
3656 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3657 if (vdiff > 0)
3658 vdiff *= 2;
3659 if (abs(vdiff) > 2)
3660 vdiff = 0;
3661 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3662 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3663
3664 /* Get channel attenuation group. */
3665 if (chan <= 20) /* 1-20 */
3666 grp = 4;
3667 else if (chan <= 43) /* 34-43 */
3668 grp = 0;
3669 else if (chan <= 70) /* 44-70 */
3670 grp = 1;
3671 else if (chan <= 124) /* 71-124 */
3672 grp = 2;
3673 else /* 125-200 */
3674 grp = 3;
3675 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3676
3677 /* Get channel sub-band. */
3678 for (i = 0; i < IWN_NBANDS; i++)
3679 if (sc->bands[i].lo != 0 &&
3680 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3681 break;
3682 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3683 return EINVAL;
3684 chans = sc->bands[i].chans;
3685 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3686
3687 for (c = 0; c < 2; c++) {
3688 uint8_t power, gain, temp;
3689 int maxchpwr, pwr, ridx, idx;
3690
3691 power = interpolate(chan,
3692 chans[0].num, chans[0].samples[c][1].power,
3693 chans[1].num, chans[1].samples[c][1].power, 1);
3694 gain = interpolate(chan,
3695 chans[0].num, chans[0].samples[c][1].gain,
3696 chans[1].num, chans[1].samples[c][1].gain, 1);
3697 temp = interpolate(chan,
3698 chans[0].num, chans[0].samples[c][1].temp,
3699 chans[1].num, chans[1].samples[c][1].temp, 1);
3700 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3701 c, power, gain, temp));
3702
3703 /* Compute temperature compensation. */
3704 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3705 DPRINTF(("temperature compensation=%d (current=%d, "
3706 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3707
3708 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3709 /* Convert dBm to half-dBm. */
3710 maxchpwr = sc->maxpwr[chan] * 2;
3711 if ((ridx / 8) & 1)
3712 maxchpwr -= 6; /* MIMO 2T: -3dB */
3713
3714 pwr = maxpwr;
3715
3716 /* Adjust TX power based on rate. */
3717 if ((ridx % 8) == 5)
3718 pwr -= 15; /* OFDM48: -7.5dB */
3719 else if ((ridx % 8) == 6)
3720 pwr -= 17; /* OFDM54: -8.5dB */
3721 else if ((ridx % 8) == 7)
3722 pwr -= 20; /* OFDM60: -10dB */
3723 else
3724 pwr -= 10; /* Others: -5dB */
3725
3726 /* Do not exceed channel max TX power. */
3727 if (pwr > maxchpwr)
3728 pwr = maxchpwr;
3729
3730 idx = gain - (pwr - power) - tdiff - vdiff;
3731 if ((ridx / 8) & 1) /* MIMO */
3732 idx += (int32_t)le32toh(uc->atten[grp][c]);
3733
3734 if (cmd.band == 0)
3735 idx += 9; /* 5GHz */
3736 if (ridx == IWN_RIDX_MAX)
3737 idx += 5; /* CCK */
3738
3739 /* Make sure idx stays in a valid range. */
3740 if (idx < 0)
3741 idx = 0;
3742 else if (idx > IWN4965_MAX_PWR_INDEX)
3743 idx = IWN4965_MAX_PWR_INDEX;
3744
3745 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3746 c, ridx, idx));
3747 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3748 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3749 }
3750 }
3751
3752 DPRINTF(("setting TX power for chan %d\n", chan));
3753 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3754
3755 #undef interpolate
3756 #undef fdivround
3757 }
3758
3759 static int
3760 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3761 {
3762 struct iwn5000_cmd_txpower cmd;
3763 int cmdid;
3764
3765 /*
3766 * TX power calibration is handled automatically by the firmware
3767 * for 5000 Series.
3768 */
3769 memset(&cmd, 0, sizeof cmd);
3770 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3771 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3772 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3773 DPRINTF(("setting TX power\n"));
3774 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3775 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3776 else
3777 cmdid = IWN_CMD_TXPOWER_DBM;
3778 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3779 }
3780
3781 /*
3782 * Retrieve the maximum RSSI (in dBm) among receivers.
3783 */
3784 static int
3785 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3786 {
3787 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3788 uint8_t mask, agc;
3789 int rssi;
3790
3791 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3792 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3793
3794 rssi = 0;
3795 if (mask & IWN_ANT_A)
3796 rssi = MAX(rssi, phy->rssi[0]);
3797 if (mask & IWN_ANT_B)
3798 rssi = MAX(rssi, phy->rssi[2]);
3799 if (mask & IWN_ANT_C)
3800 rssi = MAX(rssi, phy->rssi[4]);
3801
3802 return rssi - agc - IWN_RSSI_TO_DBM;
3803 }
3804
3805 static int
3806 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3807 {
3808 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3809 uint8_t agc;
3810 int rssi;
3811
3812 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3813
3814 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3815 le16toh(phy->rssi[1]) & 0xff);
3816 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3817
3818 return rssi - agc - IWN_RSSI_TO_DBM;
3819 }
3820
3821 /*
3822 * Retrieve the average noise (in dBm) among receivers.
3823 */
3824 static int
3825 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3826 {
3827 int i, total, nbant, noise;
3828
3829 total = nbant = 0;
3830 for (i = 0; i < 3; i++) {
3831 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3832 continue;
3833 total += noise;
3834 nbant++;
3835 }
3836 /* There should be at least one antenna but check anyway. */
3837 return (nbant == 0) ? -127 : (total / nbant) - 107;
3838 }
3839
3840 /*
3841 * Compute temperature (in degC) from last received statistics.
3842 */
3843 static int
3844 iwn4965_get_temperature(struct iwn_softc *sc)
3845 {
3846 struct iwn_ucode_info *uc = &sc->ucode_info;
3847 int32_t r1, r2, r3, r4, temp;
3848
3849 r1 = le32toh(uc->temp[0].chan20MHz);
3850 r2 = le32toh(uc->temp[1].chan20MHz);
3851 r3 = le32toh(uc->temp[2].chan20MHz);
3852 r4 = le32toh(sc->rawtemp);
3853
3854 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3855 return 0;
3856
3857 /* Sign-extend 23-bit R4 value to 32-bit. */
3858 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3859 /* Compute temperature in Kelvin. */
3860 temp = (259 * (r4 - r2)) / (r3 - r1);
3861 temp = (temp * 97) / 100 + 8;
3862
3863 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3864 return IWN_KTOC(temp);
3865 }
3866
3867 static int
3868 iwn5000_get_temperature(struct iwn_softc *sc)
3869 {
3870 int32_t temp;
3871
3872 /*
3873 * Temperature is not used by the driver for 5000 Series because
3874 * TX power calibration is handled by firmware. We export it to
3875 * users through the sensor framework though.
3876 */
3877 temp = le32toh(sc->rawtemp);
3878 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3879 temp = (temp / -5) + sc->temp_off;
3880 temp = IWN_KTOC(temp);
3881 }
3882 return temp;
3883 }
3884
3885 /*
3886 * Initialize sensitivity calibration state machine.
3887 */
3888 static int
3889 iwn_init_sensitivity(struct iwn_softc *sc)
3890 {
3891 struct iwn_ops *ops = &sc->ops;
3892 struct iwn_calib_state *calib = &sc->calib;
3893 uint32_t flags;
3894 int error;
3895
3896 /* Reset calibration state machine. */
3897 memset(calib, 0, sizeof (*calib));
3898 calib->state = IWN_CALIB_STATE_INIT;
3899 calib->cck_state = IWN_CCK_STATE_HIFA;
3900 /* Set initial correlation values. */
3901 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3902 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3903 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3904 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3905 calib->cck_x4 = 125;
3906 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3907 calib->energy_cck = sc->limits->energy_cck;
3908
3909 /* Write initial sensitivity. */
3910 if ((error = iwn_send_sensitivity(sc)) != 0)
3911 return error;
3912
3913 /* Write initial gains. */
3914 if ((error = ops->init_gains(sc)) != 0)
3915 return error;
3916
3917 /* Request statistics at each beacon interval. */
3918 flags = 0;
3919 DPRINTF(("sending request for statistics\n"));
3920 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3921 }
3922
3923 /*
3924 * Collect noise and RSSI statistics for the first 20 beacons received
3925 * after association and use them to determine connected antennas and
3926 * to set differential gains.
3927 */
3928 static void
3929 iwn_collect_noise(struct iwn_softc *sc,
3930 const struct iwn_rx_general_stats *stats)
3931 {
3932 struct iwn_ops *ops = &sc->ops;
3933 struct iwn_calib_state *calib = &sc->calib;
3934 uint32_t val;
3935 int i;
3936
3937 /* Accumulate RSSI and noise for all 3 antennas. */
3938 for (i = 0; i < 3; i++) {
3939 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3940 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3941 }
3942 /* NB: We update differential gains only once after 20 beacons. */
3943 if (++calib->nbeacons < 20)
3944 return;
3945
3946 /* Determine highest average RSSI. */
3947 val = MAX(calib->rssi[0], calib->rssi[1]);
3948 val = MAX(calib->rssi[2], val);
3949
3950 /* Determine which antennas are connected. */
3951 sc->chainmask = sc->rxchainmask;
3952 for (i = 0; i < 3; i++)
3953 if (val - calib->rssi[i] > 15 * 20)
3954 sc->chainmask &= ~(1 << i);
3955 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
3956 sc->rxchainmask, sc->chainmask));
3957
3958 /* If none of the TX antennas are connected, keep at least one. */
3959 if ((sc->chainmask & sc->txchainmask) == 0)
3960 sc->chainmask |= IWN_LSB(sc->txchainmask);
3961
3962 (void)ops->set_gains(sc);
3963 calib->state = IWN_CALIB_STATE_RUN;
3964
3965 #ifdef notyet
3966 /* XXX Disable RX chains with no antennas connected. */
3967 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
3968 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
3969 #endif
3970
3971 /* Enable power-saving mode if requested by user. */
3972 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
3973 (void)iwn_set_pslevel(sc, 0, 3, 1);
3974 }
3975
3976 static int
3977 iwn4965_init_gains(struct iwn_softc *sc)
3978 {
3979 struct iwn_phy_calib_gain cmd;
3980
3981 memset(&cmd, 0, sizeof cmd);
3982 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
3983 /* Differential gains initially set to 0 for all 3 antennas. */
3984 DPRINTF(("setting initial differential gains\n"));
3985 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3986 }
3987
3988 static int
3989 iwn5000_init_gains(struct iwn_softc *sc)
3990 {
3991 struct iwn_phy_calib cmd;
3992
3993 memset(&cmd, 0, sizeof cmd);
3994 cmd.code = sc->reset_noise_gain;
3995 cmd.ngroups = 1;
3996 cmd.isvalid = 1;
3997 DPRINTF(("setting initial differential gains\n"));
3998 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
3999 }
4000
4001 static int
4002 iwn4965_set_gains(struct iwn_softc *sc)
4003 {
4004 struct iwn_calib_state *calib = &sc->calib;
4005 struct iwn_phy_calib_gain cmd;
4006 int i, delta, noise;
4007
4008 /* Get minimal noise among connected antennas. */
4009 noise = INT_MAX; /* NB: There's at least one antenna. */
4010 for (i = 0; i < 3; i++)
4011 if (sc->chainmask & (1 << i))
4012 noise = MIN(calib->noise[i], noise);
4013
4014 memset(&cmd, 0, sizeof cmd);
4015 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4016 /* Set differential gains for connected antennas. */
4017 for (i = 0; i < 3; i++) {
4018 if (sc->chainmask & (1 << i)) {
4019 /* Compute attenuation (in unit of 1.5dB). */
4020 delta = (noise - (int32_t)calib->noise[i]) / 30;
4021 /* NB: delta <= 0 */
4022 /* Limit to [-4.5dB,0]. */
4023 cmd.gain[i] = MIN(abs(delta), 3);
4024 if (delta < 0)
4025 cmd.gain[i] |= 1 << 2; /* sign bit */
4026 }
4027 }
4028 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4029 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4030 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4031 }
4032
4033 static int
4034 iwn5000_set_gains(struct iwn_softc *sc)
4035 {
4036 struct iwn_calib_state *calib = &sc->calib;
4037 struct iwn_phy_calib_gain cmd;
4038 int i, ant, div, delta;
4039
4040 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4041 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4042
4043 memset(&cmd, 0, sizeof cmd);
4044 cmd.code = sc->noise_gain;
4045 cmd.ngroups = 1;
4046 cmd.isvalid = 1;
4047 /* Get first available RX antenna as referential. */
4048 ant = IWN_LSB(sc->rxchainmask);
4049 /* Set differential gains for other antennas. */
4050 for (i = ant + 1; i < 3; i++) {
4051 if (sc->chainmask & (1 << i)) {
4052 /* The delta is relative to antenna "ant". */
4053 delta = ((int32_t)calib->noise[ant] -
4054 (int32_t)calib->noise[i]) / div;
4055 /* Limit to [-4.5dB,+4.5dB]. */
4056 cmd.gain[i - 1] = MIN(abs(delta), 3);
4057 if (delta < 0)
4058 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4059 }
4060 }
4061 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4062 cmd.gain[0], cmd.gain[1], sc->chainmask));
4063 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4064 }
4065
4066 /*
4067 * Tune RF RX sensitivity based on the number of false alarms detected
4068 * during the last beacon period.
4069 */
4070 static void
4071 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4072 {
4073 #define inc(val, inc, max) \
4074 if ((val) < (max)) { \
4075 if ((val) < (max) - (inc)) \
4076 (val) += (inc); \
4077 else \
4078 (val) = (max); \
4079 needs_update = 1; \
4080 }
4081 #define dec(val, dec, min) \
4082 if ((val) > (min)) { \
4083 if ((val) > (min) + (dec)) \
4084 (val) -= (dec); \
4085 else \
4086 (val) = (min); \
4087 needs_update = 1; \
4088 }
4089
4090 const struct iwn_sensitivity_limits *limits = sc->limits;
4091 struct iwn_calib_state *calib = &sc->calib;
4092 uint32_t val, rxena, fa;
4093 uint32_t energy[3], energy_min;
4094 uint8_t noise[3], noise_ref;
4095 int i, needs_update = 0;
4096
4097 /* Check that we've been enabled long enough. */
4098 if ((rxena = le32toh(stats->general.load)) == 0)
4099 return;
4100
4101 /* Compute number of false alarms since last call for OFDM. */
4102 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4103 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4104 fa *= 200 * 1024; /* 200TU */
4105
4106 /* Save counters values for next call. */
4107 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4108 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4109
4110 if (fa > 50 * rxena) {
4111 /* High false alarm count, decrease sensitivity. */
4112 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4113 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4114 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4115 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4116 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4117
4118 } else if (fa < 5 * rxena) {
4119 /* Low false alarm count, increase sensitivity. */
4120 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4121 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4122 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4123 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4124 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4125 }
4126
4127 /* Compute maximum noise among 3 receivers. */
4128 for (i = 0; i < 3; i++)
4129 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4130 val = MAX(noise[0], noise[1]);
4131 val = MAX(noise[2], val);
4132 /* Insert it into our samples table. */
4133 calib->noise_samples[calib->cur_noise_sample] = val;
4134 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4135
4136 /* Compute maximum noise among last 20 samples. */
4137 noise_ref = calib->noise_samples[0];
4138 for (i = 1; i < 20; i++)
4139 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4140
4141 /* Compute maximum energy among 3 receivers. */
4142 for (i = 0; i < 3; i++)
4143 energy[i] = le32toh(stats->general.energy[i]);
4144 val = MIN(energy[0], energy[1]);
4145 val = MIN(energy[2], val);
4146 /* Insert it into our samples table. */
4147 calib->energy_samples[calib->cur_energy_sample] = val;
4148 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4149
4150 /* Compute minimum energy among last 10 samples. */
4151 energy_min = calib->energy_samples[0];
4152 for (i = 1; i < 10; i++)
4153 energy_min = MAX(energy_min, calib->energy_samples[i]);
4154 energy_min += 6;
4155
4156 /* Compute number of false alarms since last call for CCK. */
4157 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4158 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4159 fa *= 200 * 1024; /* 200TU */
4160
4161 /* Save counters values for next call. */
4162 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4163 calib->fa_cck = le32toh(stats->cck.fa);
4164
4165 if (fa > 50 * rxena) {
4166 /* High false alarm count, decrease sensitivity. */
4167 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4168 calib->cck_state = IWN_CCK_STATE_HIFA;
4169 calib->low_fa = 0;
4170
4171 if (calib->cck_x4 > 160) {
4172 calib->noise_ref = noise_ref;
4173 if (calib->energy_cck > 2)
4174 dec(calib->energy_cck, 2, energy_min);
4175 }
4176 if (calib->cck_x4 < 160) {
4177 calib->cck_x4 = 161;
4178 needs_update = 1;
4179 } else
4180 inc(calib->cck_x4, 3, limits->max_cck_x4);
4181
4182 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4183
4184 } else if (fa < 5 * rxena) {
4185 /* Low false alarm count, increase sensitivity. */
4186 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4187 calib->cck_state = IWN_CCK_STATE_LOFA;
4188 calib->low_fa++;
4189
4190 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4191 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4192 calib->low_fa > 100)) {
4193 inc(calib->energy_cck, 2, limits->min_energy_cck);
4194 dec(calib->cck_x4, 3, limits->min_cck_x4);
4195 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4196 }
4197 } else {
4198 /* Not worth to increase or decrease sensitivity. */
4199 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4200 calib->low_fa = 0;
4201 calib->noise_ref = noise_ref;
4202
4203 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4204 /* Previous interval had many false alarms. */
4205 dec(calib->energy_cck, 8, energy_min);
4206 }
4207 calib->cck_state = IWN_CCK_STATE_INIT;
4208 }
4209
4210 if (needs_update)
4211 (void)iwn_send_sensitivity(sc);
4212 #undef dec
4213 #undef inc
4214 }
4215
4216 static int
4217 iwn_send_sensitivity(struct iwn_softc *sc)
4218 {
4219 struct iwn_calib_state *calib = &sc->calib;
4220 struct iwn_enhanced_sensitivity_cmd cmd;
4221 int len;
4222
4223 memset(&cmd, 0, sizeof cmd);
4224 len = sizeof (struct iwn_sensitivity_cmd);
4225 cmd.which = IWN_SENSITIVITY_WORKTBL;
4226 /* OFDM modulation. */
4227 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4228 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4229 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4230 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4231 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4232 cmd.energy_ofdm_th = htole16(62);
4233 /* CCK modulation. */
4234 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4235 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4236 cmd.energy_cck = htole16(calib->energy_cck);
4237 /* Barker modulation: use default values. */
4238 cmd.corr_barker = htole16(190);
4239 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4240 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4241 goto send;
4242 /* Enhanced sensitivity settings. */
4243 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4244 cmd.ofdm_det_slope_mrc = htole16(668);
4245 cmd.ofdm_det_icept_mrc = htole16(4);
4246 cmd.ofdm_det_slope = htole16(486);
4247 cmd.ofdm_det_icept = htole16(37);
4248 cmd.cck_det_slope_mrc = htole16(853);
4249 cmd.cck_det_icept_mrc = htole16(4);
4250 cmd.cck_det_slope = htole16(476);
4251 cmd.cck_det_icept = htole16(99);
4252 send:
4253 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4254 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4255 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4256 calib->energy_cck));
4257 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4258 }
4259
4260 /*
4261 * Set STA mode power saving level (between 0 and 5).
4262 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4263 */
4264 static int
4265 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4266 {
4267 struct iwn_pmgt_cmd cmd;
4268 const struct iwn_pmgt *pmgt;
4269 uint32_t maxp, skip_dtim;
4270 pcireg_t reg;
4271 int i;
4272
4273 /* Select which PS parameters to use. */
4274 if (dtim <= 2)
4275 pmgt = &iwn_pmgt[0][level];
4276 else if (dtim <= 10)
4277 pmgt = &iwn_pmgt[1][level];
4278 else
4279 pmgt = &iwn_pmgt[2][level];
4280
4281 memset(&cmd, 0, sizeof cmd);
4282 if (level != 0) /* not CAM */
4283 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4284 if (level == 5)
4285 cmd.flags |= htole16(IWN_PS_FAST_PD);
4286 /* Retrieve PCIe Active State Power Management (ASPM). */
4287 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4288 sc->sc_cap_off + PCIE_LCSR);
4289 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4290 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4291 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4292 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4293
4294 if (dtim == 0) {
4295 dtim = 1;
4296 skip_dtim = 0;
4297 } else
4298 skip_dtim = pmgt->skip_dtim;
4299 if (skip_dtim != 0) {
4300 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4301 maxp = pmgt->intval[4];
4302 if (maxp == (uint32_t)-1)
4303 maxp = dtim * (skip_dtim + 1);
4304 else if (maxp > dtim)
4305 maxp = (maxp / dtim) * dtim;
4306 } else
4307 maxp = dtim;
4308 for (i = 0; i < 5; i++)
4309 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4310
4311 DPRINTF(("setting power saving level to %d\n", level));
4312 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4313 }
4314
4315 int
4316 iwn5000_runtime_calib(struct iwn_softc *sc)
4317 {
4318 struct iwn5000_calib_config cmd;
4319
4320 memset(&cmd, 0, sizeof cmd);
4321 cmd.ucode.once.enable = 0xffffffff;
4322 cmd.ucode.once.start = IWN5000_CALIB_DC;
4323 DPRINTF(("configuring runtime calibration\n"));
4324 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4325 }
4326
4327 static int
4328 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4329 {
4330 struct iwn_bluetooth bluetooth;
4331
4332 memset(&bluetooth, 0, sizeof bluetooth);
4333 bluetooth.flags = IWN_BT_COEX_ENABLE;
4334 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4335 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4336
4337 DPRINTF(("configuring bluetooth coexistence\n"));
4338 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4339 }
4340
4341 static int
4342 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4343 {
4344 uint8_t prio_table[16];
4345
4346 memset(&prio_table, 0, sizeof prio_table);
4347 prio_table[ 0] = 6; /* init calibration 1 */
4348 prio_table[ 1] = 7; /* init calibration 2 */
4349 prio_table[ 2] = 2; /* periodic calib low 1 */
4350 prio_table[ 3] = 3; /* periodic calib low 2 */
4351 prio_table[ 4] = 4; /* periodic calib high 1 */
4352 prio_table[ 5] = 5; /* periodic calib high 2 */
4353 prio_table[ 6] = 6; /* dtim */
4354 prio_table[ 7] = 8; /* scan52 */
4355 prio_table[ 8] = 10; /* scan24 */
4356
4357 DPRINTF(("sending priority lookup table\n"));
4358 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4359 &prio_table, sizeof prio_table, 0);
4360 }
4361
4362 static int
4363 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4364 size_t len)
4365 {
4366 struct iwn_btcoex_prot btprot;
4367 int error;
4368
4369 basic->bt.flags = IWN_BT_COEX_ENABLE;
4370 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4371 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4372 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4373 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4374 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4375 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4376 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4377 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4378 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4379 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4380 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4381 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4382 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4383 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4384 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4385 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4386 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4387 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4388 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4389 basic->reduce_txpower = 0; /* as not implemented */
4390 basic->valid = IWN_BT_ALL_VALID_MASK;
4391
4392 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4393 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4394 if (error != 0) {
4395 aprint_error_dev(sc->sc_dev,
4396 "could not configure advanced bluetooth coexistence\n");
4397 return error;
4398 }
4399
4400 error = iwn_config_bt_coex_prio_table(sc);
4401 if (error != 0) {
4402 aprint_error_dev(sc->sc_dev,
4403 "could not configure send BT priority table\n");
4404 return error;
4405 }
4406
4407 /* Force BT state machine change */
4408 memset(&btprot, 0, sizeof btprot);
4409 btprot.open = 1;
4410 btprot.type = 1;
4411 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4412 if (error != 0) {
4413 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4414 return error;
4415 }
4416
4417 btprot.open = 0;
4418 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4419 if (error != 0) {
4420 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4421 return error;
4422 }
4423 return 0;
4424 }
4425
4426 static int
4427 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4428 {
4429 struct iwn_bt_adv1 d;
4430
4431 memset(&d, 0, sizeof d);
4432 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4433 d.tx_prio_boost = 0;
4434 d.rx_prio_boost = 0;
4435 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4436 }
4437
4438 static int
4439 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4440 {
4441 struct iwn_bt_adv2 d;
4442
4443 memset(&d, 0, sizeof d);
4444 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4445 d.tx_prio_boost = 0;
4446 d.rx_prio_boost = 0;
4447 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4448 }
4449
4450 static int
4451 iwn_config(struct iwn_softc *sc)
4452 {
4453 struct iwn_ops *ops = &sc->ops;
4454 struct ieee80211com *ic = &sc->sc_ic;
4455 struct ifnet *ifp = ic->ic_ifp;
4456 uint32_t txmask;
4457 uint16_t rxchain;
4458 int error;
4459
4460 error = ops->config_bt_coex(sc);
4461 if (error != 0) {
4462 aprint_error_dev(sc->sc_dev,
4463 "could not configure bluetooth coexistence\n");
4464 return error;
4465 }
4466
4467 /* Set radio temperature sensor offset. */
4468 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4469 error = iwn6000_temp_offset_calib(sc);
4470 if (error != 0) {
4471 aprint_error_dev(sc->sc_dev,
4472 "could not set temperature offset\n");
4473 return error;
4474 }
4475 }
4476
4477 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4478 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4479 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4480 sc->hw_type == IWN_HW_REV_TYPE_105) {
4481 error = iwn2000_temp_offset_calib(sc);
4482 if (error != 0) {
4483 aprint_error_dev(sc->sc_dev,
4484 "could not set temperature offset\n");
4485 return error;
4486 }
4487 }
4488
4489 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4490 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4491 /* Configure runtime DC calibration. */
4492 error = iwn5000_runtime_calib(sc);
4493 if (error != 0) {
4494 aprint_error_dev(sc->sc_dev,
4495 "could not configure runtime calibration\n");
4496 return error;
4497 }
4498 }
4499
4500 /* Configure valid TX chains for 5000 Series. */
4501 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4502 txmask = htole32(sc->txchainmask);
4503 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4504 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4505 sizeof txmask, 0);
4506 if (error != 0) {
4507 aprint_error_dev(sc->sc_dev,
4508 "could not configure valid TX chains\n");
4509 return error;
4510 }
4511 }
4512
4513 /* Set mode, channel, RX filter and enable RX. */
4514 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4515 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4516 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4517 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4518 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4519 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4520 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4521 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4522 switch (ic->ic_opmode) {
4523 case IEEE80211_M_STA:
4524 sc->rxon.mode = IWN_MODE_STA;
4525 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4526 break;
4527 case IEEE80211_M_MONITOR:
4528 sc->rxon.mode = IWN_MODE_MONITOR;
4529 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4530 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4531 break;
4532 default:
4533 /* Should not get there. */
4534 break;
4535 }
4536 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4537 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4538 sc->rxon.ht_single_mask = 0xff;
4539 sc->rxon.ht_dual_mask = 0xff;
4540 sc->rxon.ht_triple_mask = 0xff;
4541 rxchain =
4542 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4543 IWN_RXCHAIN_MIMO_COUNT(2) |
4544 IWN_RXCHAIN_IDLE_COUNT(2);
4545 sc->rxon.rxchain = htole16(rxchain);
4546 DPRINTF(("setting configuration\n"));
4547 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4548 if (error != 0) {
4549 aprint_error_dev(sc->sc_dev,
4550 "RXON command failed\n");
4551 return error;
4552 }
4553
4554 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4555 aprint_error_dev(sc->sc_dev,
4556 "could not add broadcast node\n");
4557 return error;
4558 }
4559
4560 /* Configuration has changed, set TX power accordingly. */
4561 if ((error = ops->set_txpower(sc, 0)) != 0) {
4562 aprint_error_dev(sc->sc_dev,
4563 "could not set TX power\n");
4564 return error;
4565 }
4566
4567 if ((error = iwn_set_critical_temp(sc)) != 0) {
4568 aprint_error_dev(sc->sc_dev,
4569 "could not set critical temperature\n");
4570 return error;
4571 }
4572
4573 /* Set power saving level to CAM during initialization. */
4574 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4575 aprint_error_dev(sc->sc_dev,
4576 "could not set power saving level\n");
4577 return error;
4578 }
4579 return 0;
4580 }
4581
4582 static uint16_t
4583 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4584 uint8_t n_probes)
4585 {
4586 /* No channel? Default to 2GHz settings */
4587 if (flags & IEEE80211_CHAN_2GHZ)
4588 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4589 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4590
4591 /* 5GHz dwell time */
4592 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4593 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4594 }
4595
4596 /*
4597 * Limit the total dwell time to 85% of the beacon interval.
4598 *
4599 * Returns the dwell time in milliseconds.
4600 */
4601 static uint16_t
4602 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4603 {
4604 struct ieee80211com *ic = &sc->sc_ic;
4605 struct ieee80211_node *ni = ic->ic_bss;
4606 int bintval = 0;
4607
4608 /* bintval is in TU (1.024mS) */
4609 if (ni != NULL)
4610 bintval = ni->ni_intval;
4611
4612 /*
4613 * If it's non-zero, we should calculate the minimum of
4614 * it and the DWELL_BASE.
4615 *
4616 * XXX Yes, the math should take into account that bintval
4617 * is 1.024mS, not 1mS..
4618 */
4619 if (bintval > 0)
4620 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4621
4622 /* No association context? Default */
4623 return IWN_PASSIVE_DWELL_BASE;
4624 }
4625
4626 static uint16_t
4627 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4628 {
4629 uint16_t passive;
4630 if (flags & IEEE80211_CHAN_2GHZ)
4631 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4632 else
4633 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4634
4635 /* Clamp to the beacon interval if we're associated */
4636 return iwn_limit_dwell(sc, passive);
4637 }
4638
4639 static int
4640 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4641 {
4642 struct ieee80211com *ic = &sc->sc_ic;
4643 struct iwn_scan_hdr *hdr;
4644 struct iwn_cmd_data *tx;
4645 struct iwn_scan_essid *essid;
4646 struct iwn_scan_chan *chan;
4647 struct ieee80211_frame *wh;
4648 struct ieee80211_rateset *rs;
4649 struct ieee80211_channel *c;
4650 uint8_t *buf, *frm;
4651 uint16_t rxchain, dwell_active, dwell_passive;
4652 uint8_t txant;
4653 int buflen, error, is_active;
4654
4655 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4656 if (buf == NULL) {
4657 aprint_error_dev(sc->sc_dev,
4658 "could not allocate buffer for scan command\n");
4659 return ENOMEM;
4660 }
4661 hdr = (struct iwn_scan_hdr *)buf;
4662 /*
4663 * Move to the next channel if no frames are received within 10ms
4664 * after sending the probe request.
4665 */
4666 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4667 hdr->quiet_threshold = htole16(1); /* min # of packets */
4668
4669 /* Select antennas for scanning. */
4670 rxchain =
4671 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4672 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4673 IWN_RXCHAIN_DRIVER_FORCE;
4674 if ((flags & IEEE80211_CHAN_5GHZ) &&
4675 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4676 /* Ant A must be avoided in 5GHz because of an HW bug. */
4677 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4678 } else /* Use all available RX antennas. */
4679 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4680 hdr->rxchain = htole16(rxchain);
4681 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4682
4683 tx = (struct iwn_cmd_data *)(hdr + 1);
4684 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4685 tx->id = sc->broadcast_id;
4686 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4687
4688 if (flags & IEEE80211_CHAN_5GHZ) {
4689 hdr->crc_threshold = 0xffff;
4690 /* Send probe requests at 6Mbps. */
4691 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4692 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4693 } else {
4694 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4695 /* Send probe requests at 1Mbps. */
4696 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4697 tx->rflags = IWN_RFLAG_CCK;
4698 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4699 }
4700 /* Use the first valid TX antenna. */
4701 txant = IWN_LSB(sc->txchainmask);
4702 tx->rflags |= IWN_RFLAG_ANT(txant);
4703
4704 /*
4705 * Only do active scanning if we're announcing a probe request
4706 * for a given SSID (or more, if we ever add it to the driver.)
4707 */
4708 is_active = 0;
4709
4710 essid = (struct iwn_scan_essid *)(tx + 1);
4711 if (ic->ic_des_esslen != 0) {
4712 essid[0].id = IEEE80211_ELEMID_SSID;
4713 essid[0].len = ic->ic_des_esslen;
4714 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4715
4716 is_active = 1;
4717 }
4718 /*
4719 * Build a probe request frame. Most of the following code is a
4720 * copy & paste of what is done in net80211.
4721 */
4722 wh = (struct ieee80211_frame *)(essid + 20);
4723 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4724 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4725 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4726 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4727 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4728 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4729 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4730 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4731
4732 frm = (uint8_t *)(wh + 1);
4733 frm = ieee80211_add_ssid(frm, NULL, 0);
4734 frm = ieee80211_add_rates(frm, rs);
4735 #ifndef IEEE80211_NO_HT
4736 if (ic->ic_flags & IEEE80211_F_HTON)
4737 frm = ieee80211_add_htcaps(frm, ic);
4738 #endif
4739 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4740 frm = ieee80211_add_xrates(frm, rs);
4741
4742 /* Set length of probe request. */
4743 tx->len = htole16(frm - (uint8_t *)wh);
4744
4745
4746 /*
4747 * If active scanning is requested but a certain channel is
4748 * marked passive, we can do active scanning if we detect
4749 * transmissions.
4750 *
4751 * There is an issue with some firmware versions that triggers
4752 * a sysassert on a "good CRC threshold" of zero (== disabled),
4753 * on a radar channel even though this means that we should NOT
4754 * send probes.
4755 *
4756 * The "good CRC threshold" is the number of frames that we
4757 * need to receive during our dwell time on a channel before
4758 * sending out probes -- setting this to a huge value will
4759 * mean we never reach it, but at the same time work around
4760 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4761 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4762 *
4763 * This was fixed in later versions along with some other
4764 * scan changes, and the threshold behaves as a flag in those
4765 * versions.
4766 */
4767
4768 /*
4769 * If we're doing active scanning, set the crc_threshold
4770 * to a suitable value. This is different to active veruss
4771 * passive scanning depending upon the channel flags; the
4772 * firmware will obey that particular check for us.
4773 */
4774 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4775 hdr->crc_threshold = is_active ?
4776 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4777 else
4778 hdr->crc_threshold = is_active ?
4779 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4780
4781 chan = (struct iwn_scan_chan *)frm;
4782 for (c = &ic->ic_channels[1];
4783 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4784 if ((c->ic_flags & flags) != flags)
4785 continue;
4786
4787 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4788 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4789 chan->flags = 0;
4790 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4791 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4792 if (ic->ic_des_esslen != 0)
4793 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4794
4795 /*
4796 * Calculate the active/passive dwell times.
4797 */
4798
4799 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4800 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4801
4802 /* Make sure they're valid */
4803 if (dwell_passive <= dwell_active)
4804 dwell_passive = dwell_active + 1;
4805
4806 chan->active = htole16(dwell_active);
4807 chan->passive = htole16(dwell_passive);
4808
4809 chan->dsp_gain = 0x6e;
4810 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4811 chan->rf_gain = 0x3b;
4812 } else {
4813 chan->rf_gain = 0x28;
4814 }
4815 hdr->nchan++;
4816 chan++;
4817 }
4818
4819 buflen = (uint8_t *)chan - buf;
4820 hdr->len = htole16(buflen);
4821
4822 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4823 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4824 free(buf, M_DEVBUF);
4825 return error;
4826 }
4827
4828 static int
4829 iwn_auth(struct iwn_softc *sc)
4830 {
4831 struct iwn_ops *ops = &sc->ops;
4832 struct ieee80211com *ic = &sc->sc_ic;
4833 struct ieee80211_node *ni = ic->ic_bss;
4834 int error;
4835
4836 /* Update adapter configuration. */
4837 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4838 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4839 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4840 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4841 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4842 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4843 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4844 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4845 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4846 switch (ic->ic_curmode) {
4847 case IEEE80211_MODE_11A:
4848 sc->rxon.cck_mask = 0;
4849 sc->rxon.ofdm_mask = 0x15;
4850 break;
4851 case IEEE80211_MODE_11B:
4852 sc->rxon.cck_mask = 0x03;
4853 sc->rxon.ofdm_mask = 0;
4854 break;
4855 default: /* Assume 802.11b/g. */
4856 sc->rxon.cck_mask = 0x0f;
4857 sc->rxon.ofdm_mask = 0x15;
4858 }
4859 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4860 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4861 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4862 if (error != 0) {
4863 aprint_error_dev(sc->sc_dev,
4864 "RXON command failed\n");
4865 return error;
4866 }
4867
4868 /* Configuration has changed, set TX power accordingly. */
4869 if ((error = ops->set_txpower(sc, 1)) != 0) {
4870 aprint_error_dev(sc->sc_dev,
4871 "could not set TX power\n");
4872 return error;
4873 }
4874 /*
4875 * Reconfiguring RXON clears the firmware nodes table so we must
4876 * add the broadcast node again.
4877 */
4878 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4879 aprint_error_dev(sc->sc_dev,
4880 "could not add broadcast node\n");
4881 return error;
4882 }
4883 return 0;
4884 }
4885
4886 static int
4887 iwn_run(struct iwn_softc *sc)
4888 {
4889 struct iwn_ops *ops = &sc->ops;
4890 struct ieee80211com *ic = &sc->sc_ic;
4891 struct ieee80211_node *ni = ic->ic_bss;
4892 struct iwn_node_info node;
4893 int error;
4894
4895 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4896 /* Link LED blinks while monitoring. */
4897 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4898 return 0;
4899 }
4900 if ((error = iwn_set_timing(sc, ni)) != 0) {
4901 aprint_error_dev(sc->sc_dev,
4902 "could not set timing\n");
4903 return error;
4904 }
4905
4906 /* Update adapter configuration. */
4907 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4908 /* Short preamble and slot time are negotiated when associating. */
4909 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4910 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4911 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4912 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4913 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4914 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4915 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4916 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4917 if (error != 0) {
4918 aprint_error_dev(sc->sc_dev,
4919 "could not update configuration\n");
4920 return error;
4921 }
4922
4923 /* Configuration has changed, set TX power accordingly. */
4924 if ((error = ops->set_txpower(sc, 1)) != 0) {
4925 aprint_error_dev(sc->sc_dev,
4926 "could not set TX power\n");
4927 return error;
4928 }
4929
4930 /* Fake a join to initialize the TX rate. */
4931 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4932 iwn_newassoc(ni, 1);
4933
4934 /* Add BSS node. */
4935 memset(&node, 0, sizeof node);
4936 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4937 node.id = IWN_ID_BSS;
4938 #ifdef notyet
4939 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4940 IWN_AMDPU_DENSITY(5)); /* 2us */
4941 #endif
4942 DPRINTF(("adding BSS node\n"));
4943 error = ops->add_node(sc, &node, 1);
4944 if (error != 0) {
4945 aprint_error_dev(sc->sc_dev,
4946 "could not add BSS node\n");
4947 return error;
4948 }
4949 DPRINTF(("setting link quality for node %d\n", node.id));
4950 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
4951 aprint_error_dev(sc->sc_dev,
4952 "could not setup link quality for node %d\n", node.id);
4953 return error;
4954 }
4955
4956 if ((error = iwn_init_sensitivity(sc)) != 0) {
4957 aprint_error_dev(sc->sc_dev,
4958 "could not set sensitivity\n");
4959 return error;
4960 }
4961 /* Start periodic calibration timer. */
4962 sc->calib.state = IWN_CALIB_STATE_ASSOC;
4963 sc->calib_cnt = 0;
4964 callout_schedule(&sc->calib_to, hz/2);
4965
4966 /* Link LED always on while associated. */
4967 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4968 return 0;
4969 }
4970
4971 #ifdef IWN_HWCRYPTO
4972 /*
4973 * We support CCMP hardware encryption/decryption of unicast frames only.
4974 * HW support for TKIP really sucks. We should let TKIP die anyway.
4975 */
4976 static int
4977 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
4978 struct ieee80211_key *k)
4979 {
4980 struct iwn_softc *sc = ic->ic_softc;
4981 struct iwn_ops *ops = &sc->ops;
4982 struct iwn_node *wn = (void *)ni;
4983 struct iwn_node_info node;
4984 uint16_t kflags;
4985
4986 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
4987 k->k_cipher != IEEE80211_CIPHER_CCMP)
4988 return ieee80211_set_key(ic, ni, k);
4989
4990 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
4991 if (k->k_flags & IEEE80211_KEY_GROUP)
4992 kflags |= IWN_KFLAG_GROUP;
4993
4994 memset(&node, 0, sizeof node);
4995 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
4996 sc->broadcast_id : wn->id;
4997 node.control = IWN_NODE_UPDATE;
4998 node.flags = IWN_FLAG_SET_KEY;
4999 node.kflags = htole16(kflags);
5000 node.kid = k->k_id;
5001 memcpy(node.key, k->k_key, k->k_len);
5002 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5003 return ops->add_node(sc, &node, 1);
5004 }
5005
5006 static void
5007 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5008 struct ieee80211_key *k)
5009 {
5010 struct iwn_softc *sc = ic->ic_softc;
5011 struct iwn_ops *ops = &sc->ops;
5012 struct iwn_node *wn = (void *)ni;
5013 struct iwn_node_info node;
5014
5015 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5016 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5017 /* See comment about other ciphers above. */
5018 ieee80211_delete_key(ic, ni, k);
5019 return;
5020 }
5021 if (ic->ic_state != IEEE80211_S_RUN)
5022 return; /* Nothing to do. */
5023 memset(&node, 0, sizeof node);
5024 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5025 sc->broadcast_id : wn->id;
5026 node.control = IWN_NODE_UPDATE;
5027 node.flags = IWN_FLAG_SET_KEY;
5028 node.kflags = htole16(IWN_KFLAG_INVALID);
5029 node.kid = 0xff;
5030 DPRINTF(("delete keys for node %d\n", node.id));
5031 (void)ops->add_node(sc, &node, 1);
5032 }
5033 #endif
5034
5035 /* XXX Added for NetBSD (copied from rev 1.39). */
5036
5037 static int
5038 iwn_wme_update(struct ieee80211com *ic)
5039 {
5040 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5041 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5042 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5043 const struct wmeParams *wmep;
5044 struct iwn_edca_params cmd;
5045 int ac;
5046
5047 /* don't override default WME values if WME is not actually enabled */
5048 if (!(ic->ic_flags & IEEE80211_F_WME))
5049 return 0;
5050 cmd.flags = 0;
5051 for (ac = 0; ac < WME_NUM_AC; ac++) {
5052 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5053 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5054 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5055 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5056 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5057
5058 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5059 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5060 cmd.ac[ac].cwmin,
5061 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5062 }
5063 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5064 #undef IWN_USEC
5065 #undef IWN_EXP2
5066 }
5067
5068 #ifndef IEEE80211_NO_HT
5069 /*
5070 * This function is called by upper layer when an ADDBA request is received
5071 * from another STA and before the ADDBA response is sent.
5072 */
5073 static int
5074 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5075 uint8_t tid)
5076 {
5077 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5078 struct iwn_softc *sc = ic->ic_softc;
5079 struct iwn_ops *ops = &sc->ops;
5080 struct iwn_node *wn = (void *)ni;
5081 struct iwn_node_info node;
5082
5083 memset(&node, 0, sizeof node);
5084 node.id = wn->id;
5085 node.control = IWN_NODE_UPDATE;
5086 node.flags = IWN_FLAG_SET_ADDBA;
5087 node.addba_tid = tid;
5088 node.addba_ssn = htole16(ba->ba_winstart);
5089 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5090 ba->ba_winstart));
5091 return ops->add_node(sc, &node, 1);
5092 }
5093
5094 /*
5095 * This function is called by upper layer on teardown of an HT-immediate
5096 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5097 */
5098 static void
5099 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5100 uint8_t tid)
5101 {
5102 struct iwn_softc *sc = ic->ic_softc;
5103 struct iwn_ops *ops = &sc->ops;
5104 struct iwn_node *wn = (void *)ni;
5105 struct iwn_node_info node;
5106
5107 memset(&node, 0, sizeof node);
5108 node.id = wn->id;
5109 node.control = IWN_NODE_UPDATE;
5110 node.flags = IWN_FLAG_SET_DELBA;
5111 node.delba_tid = tid;
5112 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5113 (void)ops->add_node(sc, &node, 1);
5114 }
5115
5116 /*
5117 * This function is called by upper layer when an ADDBA response is received
5118 * from another STA.
5119 */
5120 static int
5121 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5122 uint8_t tid)
5123 {
5124 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5125 struct iwn_softc *sc = ic->ic_softc;
5126 struct iwn_ops *ops = &sc->ops;
5127 struct iwn_node *wn = (void *)ni;
5128 struct iwn_node_info node;
5129 int error;
5130
5131 /* Enable TX for the specified RA/TID. */
5132 wn->disable_tid &= ~(1 << tid);
5133 memset(&node, 0, sizeof node);
5134 node.id = wn->id;
5135 node.control = IWN_NODE_UPDATE;
5136 node.flags = IWN_FLAG_SET_DISABLE_TID;
5137 node.disable_tid = htole16(wn->disable_tid);
5138 error = ops->add_node(sc, &node, 1);
5139 if (error != 0)
5140 return error;
5141
5142 if ((error = iwn_nic_lock(sc)) != 0)
5143 return error;
5144 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5145 iwn_nic_unlock(sc);
5146 return 0;
5147 }
5148
5149 static void
5150 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5151 uint8_t tid)
5152 {
5153 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5154 struct iwn_softc *sc = ic->ic_softc;
5155 struct iwn_ops *ops = &sc->ops;
5156
5157 if (iwn_nic_lock(sc) != 0)
5158 return;
5159 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5160 iwn_nic_unlock(sc);
5161 }
5162
5163 static void
5164 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5165 uint8_t tid, uint16_t ssn)
5166 {
5167 struct iwn_node *wn = (void *)ni;
5168 int qid = 7 + tid;
5169
5170 /* Stop TX scheduler while we're changing its configuration. */
5171 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5172 IWN4965_TXQ_STATUS_CHGACT);
5173
5174 /* Assign RA/TID translation to the queue. */
5175 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5176 wn->id << 4 | tid);
5177
5178 /* Enable chain-building mode for the queue. */
5179 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5180
5181 /* Set starting sequence number from the ADDBA request. */
5182 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5183 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5184
5185 /* Set scheduler window size. */
5186 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5187 IWN_SCHED_WINSZ);
5188 /* Set scheduler frame limit. */
5189 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5190 IWN_SCHED_LIMIT << 16);
5191
5192 /* Enable interrupts for the queue. */
5193 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5194
5195 /* Mark the queue as active. */
5196 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5197 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5198 iwn_tid2fifo[tid] << 1);
5199 }
5200
5201 static void
5202 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5203 {
5204 int qid = 7 + tid;
5205
5206 /* Stop TX scheduler while we're changing its configuration. */
5207 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5208 IWN4965_TXQ_STATUS_CHGACT);
5209
5210 /* Set starting sequence number from the ADDBA request. */
5211 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5212 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5213
5214 /* Disable interrupts for the queue. */
5215 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5216
5217 /* Mark the queue as inactive. */
5218 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5219 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5220 }
5221
5222 static void
5223 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5224 uint8_t tid, uint16_t ssn)
5225 {
5226 struct iwn_node *wn = (void *)ni;
5227 int qid = 10 + tid;
5228
5229 /* Stop TX scheduler while we're changing its configuration. */
5230 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5231 IWN5000_TXQ_STATUS_CHGACT);
5232
5233 /* Assign RA/TID translation to the queue. */
5234 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5235 wn->id << 4 | tid);
5236
5237 /* Enable chain-building mode for the queue. */
5238 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5239
5240 /* Enable aggregation for the queue. */
5241 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5242
5243 /* Set starting sequence number from the ADDBA request. */
5244 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5245 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5246
5247 /* Set scheduler window size and frame limit. */
5248 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5249 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5250
5251 /* Enable interrupts for the queue. */
5252 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5253
5254 /* Mark the queue as active. */
5255 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5256 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5257 }
5258
5259 static void
5260 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5261 {
5262 int qid = 10 + tid;
5263
5264 /* Stop TX scheduler while we're changing its configuration. */
5265 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5266 IWN5000_TXQ_STATUS_CHGACT);
5267
5268 /* Disable aggregation for the queue. */
5269 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5270
5271 /* Set starting sequence number from the ADDBA request. */
5272 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5273 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5274
5275 /* Disable interrupts for the queue. */
5276 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5277
5278 /* Mark the queue as inactive. */
5279 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5280 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5281 }
5282 #endif /* !IEEE80211_NO_HT */
5283
5284 /*
5285 * Query calibration tables from the initialization firmware. We do this
5286 * only once at first boot. Called from a process context.
5287 */
5288 static int
5289 iwn5000_query_calibration(struct iwn_softc *sc)
5290 {
5291 struct iwn5000_calib_config cmd;
5292 int error;
5293
5294 memset(&cmd, 0, sizeof cmd);
5295 cmd.ucode.once.enable = 0xffffffff;
5296 cmd.ucode.once.start = 0xffffffff;
5297 cmd.ucode.once.send = 0xffffffff;
5298 cmd.ucode.flags = 0xffffffff;
5299 DPRINTF(("sending calibration query\n"));
5300 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5301 if (error != 0)
5302 return error;
5303
5304 /* Wait at most two seconds for calibration to complete. */
5305 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5306 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5307 return error;
5308 }
5309
5310 /*
5311 * Send calibration results to the runtime firmware. These results were
5312 * obtained on first boot from the initialization firmware.
5313 */
5314 static int
5315 iwn5000_send_calibration(struct iwn_softc *sc)
5316 {
5317 int idx, error;
5318
5319 for (idx = 0; idx < 5; idx++) {
5320 if (sc->calibcmd[idx].buf == NULL)
5321 continue; /* No results available. */
5322 DPRINTF(("send calibration result idx=%d len=%d\n",
5323 idx, sc->calibcmd[idx].len));
5324 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5325 sc->calibcmd[idx].len, 0);
5326 if (error != 0) {
5327 aprint_error_dev(sc->sc_dev,
5328 "could not send calibration result\n");
5329 return error;
5330 }
5331 }
5332 return 0;
5333 }
5334
5335 static int
5336 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5337 {
5338 struct iwn5000_wimax_coex wimax;
5339
5340 #ifdef notyet
5341 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5342 /* Enable WiMAX coexistence for combo adapters. */
5343 wimax.flags =
5344 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5345 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5346 IWN_WIMAX_COEX_STA_TABLE_VALID |
5347 IWN_WIMAX_COEX_ENABLE;
5348 memcpy(wimax.events, iwn6050_wimax_events,
5349 sizeof iwn6050_wimax_events);
5350 } else
5351 #endif
5352 {
5353 /* Disable WiMAX coexistence. */
5354 wimax.flags = 0;
5355 memset(wimax.events, 0, sizeof wimax.events);
5356 }
5357 DPRINTF(("Configuring WiMAX coexistence\n"));
5358 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5359 }
5360
5361 static int
5362 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5363 {
5364 struct iwn6000_phy_calib_temp_offset cmd;
5365
5366 memset(&cmd, 0, sizeof cmd);
5367 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5368 cmd.ngroups = 1;
5369 cmd.isvalid = 1;
5370 if (sc->eeprom_temp != 0)
5371 cmd.offset = htole16(sc->eeprom_temp);
5372 else
5373 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5374 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5375 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5376 }
5377
5378 static int
5379 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5380 {
5381 struct iwn2000_phy_calib_temp_offset cmd;
5382
5383 memset(&cmd, 0, sizeof cmd);
5384 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5385 cmd.ngroups = 1;
5386 cmd.isvalid = 1;
5387 if (sc->eeprom_rawtemp != 0) {
5388 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5389 cmd.offset_high = htole16(sc->eeprom_temp);
5390 } else {
5391 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5392 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5393 }
5394 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5395 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5396 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5397 le16toh(cmd.burnt_voltage_ref)));
5398 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5399 }
5400
5401 /*
5402 * This function is called after the runtime firmware notifies us of its
5403 * readiness (called in a process context).
5404 */
5405 static int
5406 iwn4965_post_alive(struct iwn_softc *sc)
5407 {
5408 int error, qid;
5409
5410 if ((error = iwn_nic_lock(sc)) != 0)
5411 return error;
5412
5413 /* Clear TX scheduler state in SRAM. */
5414 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5415 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5416 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5417
5418 /* Set physical address of TX scheduler rings (1KB aligned). */
5419 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5420
5421 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5422
5423 /* Disable chain mode for all our 16 queues. */
5424 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5425
5426 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5427 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5428 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5429
5430 /* Set scheduler window size. */
5431 iwn_mem_write(sc, sc->sched_base +
5432 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5433 /* Set scheduler frame limit. */
5434 iwn_mem_write(sc, sc->sched_base +
5435 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5436 IWN_SCHED_LIMIT << 16);
5437 }
5438
5439 /* Enable interrupts for all our 16 queues. */
5440 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5441 /* Identify TX FIFO rings (0-7). */
5442 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5443
5444 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5445 for (qid = 0; qid < 7; qid++) {
5446 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5447 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5448 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5449 }
5450 iwn_nic_unlock(sc);
5451 return 0;
5452 }
5453
5454 /*
5455 * This function is called after the initialization or runtime firmware
5456 * notifies us of its readiness (called in a process context).
5457 */
5458 static int
5459 iwn5000_post_alive(struct iwn_softc *sc)
5460 {
5461 int error, qid;
5462
5463 /* Switch to using ICT interrupt mode. */
5464 iwn5000_ict_reset(sc);
5465
5466 if ((error = iwn_nic_lock(sc)) != 0)
5467 return error;
5468
5469 /* Clear TX scheduler state in SRAM. */
5470 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5471 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5472 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5473
5474 /* Set physical address of TX scheduler rings (1KB aligned). */
5475 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5476
5477 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5478
5479 /* Enable chain mode for all queues, except command queue. */
5480 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5481 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5482
5483 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5484 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5485 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5486
5487 iwn_mem_write(sc, sc->sched_base +
5488 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5489 /* Set scheduler window size and frame limit. */
5490 iwn_mem_write(sc, sc->sched_base +
5491 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5492 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5493 }
5494
5495 /* Enable interrupts for all our 20 queues. */
5496 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5497 /* Identify TX FIFO rings (0-7). */
5498 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5499
5500 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5501 for (qid = 0; qid < 7; qid++) {
5502 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5503 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5504 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5505 }
5506 iwn_nic_unlock(sc);
5507
5508 /* Configure WiMAX coexistence for combo adapters. */
5509 error = iwn5000_send_wimax_coex(sc);
5510 if (error != 0) {
5511 aprint_error_dev(sc->sc_dev,
5512 "could not configure WiMAX coexistence\n");
5513 return error;
5514 }
5515 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5516 struct iwn5000_phy_calib_crystal cmd;
5517
5518 /* Perform crystal calibration. */
5519 memset(&cmd, 0, sizeof cmd);
5520 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5521 cmd.ngroups = 1;
5522 cmd.isvalid = 1;
5523 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5524 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5525 DPRINTF(("sending crystal calibration %d, %d\n",
5526 cmd.cap_pin[0], cmd.cap_pin[1]));
5527 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5528 if (error != 0) {
5529 aprint_error_dev(sc->sc_dev,
5530 "crystal calibration failed\n");
5531 return error;
5532 }
5533 }
5534 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5535 /* Query calibration from the initialization firmware. */
5536 if ((error = iwn5000_query_calibration(sc)) != 0) {
5537 aprint_error_dev(sc->sc_dev,
5538 "could not query calibration\n");
5539 return error;
5540 }
5541 /*
5542 * We have the calibration results now, reboot with the
5543 * runtime firmware (call ourselves recursively!)
5544 */
5545 iwn_hw_stop(sc);
5546 error = iwn_hw_init(sc);
5547 } else {
5548 /* Send calibration results to runtime firmware. */
5549 error = iwn5000_send_calibration(sc);
5550 }
5551 return error;
5552 }
5553
5554 /*
5555 * The firmware boot code is small and is intended to be copied directly into
5556 * the NIC internal memory (no DMA transfer).
5557 */
5558 static int
5559 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5560 {
5561 int error, ntries;
5562
5563 size /= sizeof (uint32_t);
5564
5565 if ((error = iwn_nic_lock(sc)) != 0)
5566 return error;
5567
5568 /* Copy microcode image into NIC memory. */
5569 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5570 (const uint32_t *)ucode, size);
5571
5572 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5573 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5574 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5575
5576 /* Start boot load now. */
5577 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5578
5579 /* Wait for transfer to complete. */
5580 for (ntries = 0; ntries < 1000; ntries++) {
5581 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5582 IWN_BSM_WR_CTRL_START))
5583 break;
5584 DELAY(10);
5585 }
5586 if (ntries == 1000) {
5587 aprint_error_dev(sc->sc_dev,
5588 "could not load boot firmware\n");
5589 iwn_nic_unlock(sc);
5590 return ETIMEDOUT;
5591 }
5592
5593 /* Enable boot after power up. */
5594 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5595
5596 iwn_nic_unlock(sc);
5597 return 0;
5598 }
5599
5600 static int
5601 iwn4965_load_firmware(struct iwn_softc *sc)
5602 {
5603 struct iwn_fw_info *fw = &sc->fw;
5604 struct iwn_dma_info *dma = &sc->fw_dma;
5605 int error;
5606
5607 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5608 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5609 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5610 BUS_DMASYNC_PREWRITE);
5611 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5612 fw->init.text, fw->init.textsz);
5613 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5614 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5615
5616 /* Tell adapter where to find initialization sections. */
5617 if ((error = iwn_nic_lock(sc)) != 0)
5618 return error;
5619 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5620 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5621 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5622 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5623 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5624 iwn_nic_unlock(sc);
5625
5626 /* Load firmware boot code. */
5627 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5628 if (error != 0) {
5629 aprint_error_dev(sc->sc_dev,
5630 "could not load boot firmware\n");
5631 return error;
5632 }
5633 /* Now press "execute". */
5634 IWN_WRITE(sc, IWN_RESET, 0);
5635
5636 /* Wait at most one second for first alive notification. */
5637 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5638 aprint_error_dev(sc->sc_dev,
5639 "timeout waiting for adapter to initialize\n");
5640 return error;
5641 }
5642
5643 /* Retrieve current temperature for initial TX power calibration. */
5644 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5645 sc->temp = iwn4965_get_temperature(sc);
5646
5647 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5648 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5649 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5650 BUS_DMASYNC_PREWRITE);
5651 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5652 fw->main.text, fw->main.textsz);
5653 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5654 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5655
5656 /* Tell adapter where to find runtime sections. */
5657 if ((error = iwn_nic_lock(sc)) != 0)
5658 return error;
5659 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5660 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5661 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5662 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5663 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5664 IWN_FW_UPDATED | fw->main.textsz);
5665 iwn_nic_unlock(sc);
5666
5667 return 0;
5668 }
5669
5670 static int
5671 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5672 const uint8_t *section, int size)
5673 {
5674 struct iwn_dma_info *dma = &sc->fw_dma;
5675 int error;
5676
5677 /* Copy firmware section into pre-allocated DMA-safe memory. */
5678 memcpy(dma->vaddr, section, size);
5679 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5680
5681 if ((error = iwn_nic_lock(sc)) != 0)
5682 return error;
5683
5684 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5685 IWN_FH_TX_CONFIG_DMA_PAUSE);
5686
5687 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5688 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5689 IWN_LOADDR(dma->paddr));
5690 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5691 IWN_HIADDR(dma->paddr) << 28 | size);
5692 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5693 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5694 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5695 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5696
5697 /* Kick Flow Handler to start DMA transfer. */
5698 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5699 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5700
5701 iwn_nic_unlock(sc);
5702
5703 /* Wait at most five seconds for FH DMA transfer to complete. */
5704 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5705 }
5706
5707 static int
5708 iwn5000_load_firmware(struct iwn_softc *sc)
5709 {
5710 struct iwn_fw_part *fw;
5711 int error;
5712
5713 /* Load the initialization firmware on first boot only. */
5714 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5715 &sc->fw.main : &sc->fw.init;
5716
5717 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5718 fw->text, fw->textsz);
5719 if (error != 0) {
5720 aprint_error_dev(sc->sc_dev,
5721 "could not load firmware %s section\n", ".text");
5722 return error;
5723 }
5724 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5725 fw->data, fw->datasz);
5726 if (error != 0) {
5727 aprint_error_dev(sc->sc_dev,
5728 "could not load firmware %s section\n", ".data");
5729 return error;
5730 }
5731
5732 /* Now press "execute". */
5733 IWN_WRITE(sc, IWN_RESET, 0);
5734 return 0;
5735 }
5736
5737 /*
5738 * Extract text and data sections from a legacy firmware image.
5739 */
5740 static int
5741 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5742 {
5743 const uint32_t *ptr;
5744 size_t hdrlen = 24;
5745 uint32_t rev;
5746
5747 ptr = (const uint32_t *)fw->data;
5748 rev = le32toh(*ptr++);
5749
5750 sc->ucode_rev = rev;
5751
5752 /* Check firmware API version. */
5753 if (IWN_FW_API(rev) <= 1) {
5754 aprint_error_dev(sc->sc_dev,
5755 "bad firmware, need API version >=2\n");
5756 return EINVAL;
5757 }
5758 if (IWN_FW_API(rev) >= 3) {
5759 /* Skip build number (version 2 header). */
5760 hdrlen += 4;
5761 ptr++;
5762 }
5763 if (fw->size < hdrlen) {
5764 aprint_error_dev(sc->sc_dev,
5765 "firmware too short: %zd bytes\n", fw->size);
5766 return EINVAL;
5767 }
5768 fw->main.textsz = le32toh(*ptr++);
5769 fw->main.datasz = le32toh(*ptr++);
5770 fw->init.textsz = le32toh(*ptr++);
5771 fw->init.datasz = le32toh(*ptr++);
5772 fw->boot.textsz = le32toh(*ptr++);
5773
5774 /* Check that all firmware sections fit. */
5775 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5776 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5777 aprint_error_dev(sc->sc_dev,
5778 "firmware too short: %zd bytes\n", fw->size);
5779 return EINVAL;
5780 }
5781
5782 /* Get pointers to firmware sections. */
5783 fw->main.text = (const uint8_t *)ptr;
5784 fw->main.data = fw->main.text + fw->main.textsz;
5785 fw->init.text = fw->main.data + fw->main.datasz;
5786 fw->init.data = fw->init.text + fw->init.textsz;
5787 fw->boot.text = fw->init.data + fw->init.datasz;
5788 return 0;
5789 }
5790
5791 /*
5792 * Extract text and data sections from a TLV firmware image.
5793 */
5794 static int
5795 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5796 uint16_t alt)
5797 {
5798 const struct iwn_fw_tlv_hdr *hdr;
5799 const struct iwn_fw_tlv *tlv;
5800 const uint8_t *ptr, *end;
5801 uint64_t altmask;
5802 uint32_t len;
5803
5804 if (fw->size < sizeof (*hdr)) {
5805 aprint_error_dev(sc->sc_dev,
5806 "firmware too short: %zd bytes\n", fw->size);
5807 return EINVAL;
5808 }
5809 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5810 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5811 aprint_error_dev(sc->sc_dev,
5812 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5813 return EINVAL;
5814 }
5815 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5816 le32toh(hdr->build)));
5817 sc->ucode_rev = le32toh(hdr->rev);
5818
5819 /*
5820 * Select the closest supported alternative that is less than
5821 * or equal to the specified one.
5822 */
5823 altmask = le64toh(hdr->altmask);
5824 while (alt > 0 && !(altmask & (1ULL << alt)))
5825 alt--; /* Downgrade. */
5826 DPRINTF(("using alternative %d\n", alt));
5827
5828 ptr = (const uint8_t *)(hdr + 1);
5829 end = (const uint8_t *)(fw->data + fw->size);
5830
5831 /* Parse type-length-value fields. */
5832 while (ptr + sizeof (*tlv) <= end) {
5833 tlv = (const struct iwn_fw_tlv *)ptr;
5834 len = le32toh(tlv->len);
5835
5836 ptr += sizeof (*tlv);
5837 if (ptr + len > end) {
5838 aprint_error_dev(sc->sc_dev,
5839 "firmware too short: %zd bytes\n", fw->size);
5840 return EINVAL;
5841 }
5842 /* Skip other alternatives. */
5843 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5844 goto next;
5845
5846 switch (le16toh(tlv->type)) {
5847 case IWN_FW_TLV_MAIN_TEXT:
5848 fw->main.text = ptr;
5849 fw->main.textsz = len;
5850 break;
5851 case IWN_FW_TLV_MAIN_DATA:
5852 fw->main.data = ptr;
5853 fw->main.datasz = len;
5854 break;
5855 case IWN_FW_TLV_INIT_TEXT:
5856 fw->init.text = ptr;
5857 fw->init.textsz = len;
5858 break;
5859 case IWN_FW_TLV_INIT_DATA:
5860 fw->init.data = ptr;
5861 fw->init.datasz = len;
5862 break;
5863 case IWN_FW_TLV_BOOT_TEXT:
5864 fw->boot.text = ptr;
5865 fw->boot.textsz = len;
5866 break;
5867 case IWN_FW_TLV_ENH_SENS:
5868 if (len != 0) {
5869 aprint_error_dev(sc->sc_dev,
5870 "TLV type %d has invalid size %u\n",
5871 le16toh(tlv->type), len);
5872 goto next;
5873 }
5874 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5875 break;
5876 case IWN_FW_TLV_PHY_CALIB:
5877 if (len != sizeof(uint32_t)) {
5878 aprint_error_dev(sc->sc_dev,
5879 "TLV type %d has invalid size %u\n",
5880 le16toh(tlv->type), len);
5881 goto next;
5882 }
5883 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5884 sc->reset_noise_gain = le32toh(*ptr);
5885 sc->noise_gain = le32toh(*ptr) + 1;
5886 }
5887 break;
5888 case IWN_FW_TLV_FLAGS:
5889 if (len < sizeof(uint32_t))
5890 break;
5891 if (len % sizeof(uint32_t))
5892 break;
5893 sc->tlv_feature_flags = le32toh(*ptr);
5894 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5895 break;
5896 default:
5897 DPRINTF(("TLV type %d not handled\n",
5898 le16toh(tlv->type)));
5899 break;
5900 }
5901 next: /* TLV fields are 32-bit aligned. */
5902 ptr += (len + 3) & ~3;
5903 }
5904 return 0;
5905 }
5906
5907 static int
5908 iwn_read_firmware(struct iwn_softc *sc)
5909 {
5910 struct iwn_fw_info *fw = &sc->fw;
5911 firmware_handle_t fwh;
5912 int error;
5913
5914 /*
5915 * Some PHY calibration commands are firmware-dependent; these
5916 * are the default values that will be overridden if
5917 * necessary.
5918 */
5919 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5920 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5921
5922 /* Initialize for error returns */
5923 fw->data = NULL;
5924 fw->size = 0;
5925
5926 /* Open firmware image. */
5927 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5928 aprint_error_dev(sc->sc_dev,
5929 "could not get firmware handle %s\n", sc->fwname);
5930 return error;
5931 }
5932 fw->size = firmware_get_size(fwh);
5933 if (fw->size < sizeof (uint32_t)) {
5934 aprint_error_dev(sc->sc_dev,
5935 "firmware too short: %zd bytes\n", fw->size);
5936 firmware_close(fwh);
5937 return EINVAL;
5938 }
5939
5940 /* Read the firmware. */
5941 fw->data = firmware_malloc(fw->size);
5942 if (fw->data == NULL) {
5943 aprint_error_dev(sc->sc_dev,
5944 "not enough memory to stock firmware %s\n", sc->fwname);
5945 firmware_close(fwh);
5946 return ENOMEM;
5947 }
5948 error = firmware_read(fwh, 0, fw->data, fw->size);
5949 firmware_close(fwh);
5950 if (error != 0) {
5951 aprint_error_dev(sc->sc_dev,
5952 "could not read firmware %s\n", sc->fwname);
5953 goto out;
5954 }
5955
5956 /* Retrieve text and data sections. */
5957 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
5958 error = iwn_read_firmware_leg(sc, fw);
5959 else
5960 error = iwn_read_firmware_tlv(sc, fw, 1);
5961 if (error != 0) {
5962 aprint_error_dev(sc->sc_dev,
5963 "could not read firmware sections\n");
5964 goto out;
5965 }
5966
5967 /* Make sure text and data sections fit in hardware memory. */
5968 if (fw->main.textsz > sc->fw_text_maxsz ||
5969 fw->main.datasz > sc->fw_data_maxsz ||
5970 fw->init.textsz > sc->fw_text_maxsz ||
5971 fw->init.datasz > sc->fw_data_maxsz ||
5972 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5973 (fw->boot.textsz & 3) != 0) {
5974 aprint_error_dev(sc->sc_dev,
5975 "firmware sections too large\n");
5976 goto out;
5977 }
5978
5979 /* We can proceed with loading the firmware. */
5980 return 0;
5981 out:
5982 firmware_free(fw->data, fw->size);
5983 fw->data = NULL;
5984 fw->size = 0;
5985 return error ? error : EINVAL;
5986 }
5987
5988 static int
5989 iwn_clock_wait(struct iwn_softc *sc)
5990 {
5991 int ntries;
5992
5993 /* Set "initialization complete" bit. */
5994 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5995
5996 /* Wait for clock stabilization. */
5997 for (ntries = 0; ntries < 2500; ntries++) {
5998 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5999 return 0;
6000 DELAY(10);
6001 }
6002 aprint_error_dev(sc->sc_dev,
6003 "timeout waiting for clock stabilization\n");
6004 return ETIMEDOUT;
6005 }
6006
6007 static int
6008 iwn_apm_init(struct iwn_softc *sc)
6009 {
6010 pcireg_t reg;
6011 int error;
6012
6013 /* Disable L0s exit timer (NMI bug workaround). */
6014 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6015 /* Don't wait for ICH L0s (ICH bug workaround). */
6016 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6017
6018 /* Set FH wait threshold to max (HW bug under stress workaround). */
6019 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6020
6021 /* Enable HAP INTA to move adapter from L1a to L0s. */
6022 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6023
6024 /* Retrieve PCIe Active State Power Management (ASPM). */
6025 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6026 sc->sc_cap_off + PCIE_LCSR);
6027 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6028 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6029 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6030 else
6031 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6032
6033 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6034 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6035 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6036
6037 /* Wait for clock stabilization before accessing prph. */
6038 if ((error = iwn_clock_wait(sc)) != 0)
6039 return error;
6040
6041 if ((error = iwn_nic_lock(sc)) != 0)
6042 return error;
6043 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6044 /* Enable DMA and BSM (Bootstrap State Machine). */
6045 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6046 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6047 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6048 } else {
6049 /* Enable DMA. */
6050 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6051 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6052 }
6053 DELAY(20);
6054 /* Disable L1-Active. */
6055 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6056 iwn_nic_unlock(sc);
6057
6058 return 0;
6059 }
6060
6061 static void
6062 iwn_apm_stop_master(struct iwn_softc *sc)
6063 {
6064 int ntries;
6065
6066 /* Stop busmaster DMA activity. */
6067 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6068 for (ntries = 0; ntries < 100; ntries++) {
6069 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6070 return;
6071 DELAY(10);
6072 }
6073 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6074 }
6075
6076 static void
6077 iwn_apm_stop(struct iwn_softc *sc)
6078 {
6079 iwn_apm_stop_master(sc);
6080
6081 /* Reset the entire device. */
6082 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6083 DELAY(10);
6084 /* Clear "initialization complete" bit. */
6085 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6086 }
6087
6088 static int
6089 iwn4965_nic_config(struct iwn_softc *sc)
6090 {
6091 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6092 /*
6093 * I don't believe this to be correct but this is what the
6094 * vendor driver is doing. Probably the bits should not be
6095 * shifted in IWN_RFCFG_*.
6096 */
6097 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6098 IWN_RFCFG_TYPE(sc->rfcfg) |
6099 IWN_RFCFG_STEP(sc->rfcfg) |
6100 IWN_RFCFG_DASH(sc->rfcfg));
6101 }
6102 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6103 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6104 return 0;
6105 }
6106
6107 static int
6108 iwn5000_nic_config(struct iwn_softc *sc)
6109 {
6110 uint32_t tmp;
6111 int error;
6112
6113 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6114 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6115 IWN_RFCFG_TYPE(sc->rfcfg) |
6116 IWN_RFCFG_STEP(sc->rfcfg) |
6117 IWN_RFCFG_DASH(sc->rfcfg));
6118 }
6119 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6120 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6121
6122 if ((error = iwn_nic_lock(sc)) != 0)
6123 return error;
6124 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6125
6126 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6127 /*
6128 * Select first Switching Voltage Regulator (1.32V) to
6129 * solve a stability issue related to noisy DC2DC line
6130 * in the silicon of 1000 Series.
6131 */
6132 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6133 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6134 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6135 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6136 }
6137 iwn_nic_unlock(sc);
6138
6139 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6140 /* Use internal power amplifier only. */
6141 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6142 }
6143 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6144 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6145 /* Indicate that ROM calibration version is >=6. */
6146 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6147 }
6148 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6149 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6150 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6151 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6152 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6153 sc->hw_type == IWN_HW_REV_TYPE_105)
6154 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6155 return 0;
6156 }
6157
6158 /*
6159 * Take NIC ownership over Intel Active Management Technology (AMT).
6160 */
6161 static int
6162 iwn_hw_prepare(struct iwn_softc *sc)
6163 {
6164 int ntries;
6165
6166 /* Check if hardware is ready. */
6167 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6168 for (ntries = 0; ntries < 5; ntries++) {
6169 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6170 IWN_HW_IF_CONFIG_NIC_READY)
6171 return 0;
6172 DELAY(10);
6173 }
6174
6175 /* Hardware not ready, force into ready state. */
6176 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6177 for (ntries = 0; ntries < 15000; ntries++) {
6178 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6179 IWN_HW_IF_CONFIG_PREPARE_DONE))
6180 break;
6181 DELAY(10);
6182 }
6183 if (ntries == 15000)
6184 return ETIMEDOUT;
6185
6186 /* Hardware should be ready now. */
6187 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6188 for (ntries = 0; ntries < 5; ntries++) {
6189 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6190 IWN_HW_IF_CONFIG_NIC_READY)
6191 return 0;
6192 DELAY(10);
6193 }
6194 return ETIMEDOUT;
6195 }
6196
6197 static int
6198 iwn_hw_init(struct iwn_softc *sc)
6199 {
6200 struct iwn_ops *ops = &sc->ops;
6201 int error, chnl, qid;
6202
6203 /* Clear pending interrupts. */
6204 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6205
6206 if ((error = iwn_apm_init(sc)) != 0) {
6207 aprint_error_dev(sc->sc_dev,
6208 "could not power ON adapter\n");
6209 return error;
6210 }
6211
6212 /* Select VMAIN power source. */
6213 if ((error = iwn_nic_lock(sc)) != 0)
6214 return error;
6215 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6216 iwn_nic_unlock(sc);
6217
6218 /* Perform adapter-specific initialization. */
6219 if ((error = ops->nic_config(sc)) != 0)
6220 return error;
6221
6222 /* Initialize RX ring. */
6223 if ((error = iwn_nic_lock(sc)) != 0)
6224 return error;
6225 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6226 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6227 /* Set physical address of RX ring (256-byte aligned). */
6228 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6229 /* Set physical address of RX status (16-byte aligned). */
6230 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6231 /* Enable RX. */
6232 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6233 IWN_FH_RX_CONFIG_ENA |
6234 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6235 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6236 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6237 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6238 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6239 iwn_nic_unlock(sc);
6240 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6241
6242 if ((error = iwn_nic_lock(sc)) != 0)
6243 return error;
6244
6245 /* Initialize TX scheduler. */
6246 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6247
6248 /* Set physical address of "keep warm" page (16-byte aligned). */
6249 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6250
6251 /* Initialize TX rings. */
6252 for (qid = 0; qid < sc->ntxqs; qid++) {
6253 struct iwn_tx_ring *txq = &sc->txq[qid];
6254
6255 /* Set physical address of TX ring (256-byte aligned). */
6256 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6257 txq->desc_dma.paddr >> 8);
6258 }
6259 iwn_nic_unlock(sc);
6260
6261 /* Enable DMA channels. */
6262 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6263 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6264 IWN_FH_TX_CONFIG_DMA_ENA |
6265 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6266 }
6267
6268 /* Clear "radio off" and "commands blocked" bits. */
6269 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6270 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6271
6272 /* Clear pending interrupts. */
6273 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6274 /* Enable interrupt coalescing. */
6275 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6276 /* Enable interrupts. */
6277 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6278
6279 /* _Really_ make sure "radio off" bit is cleared! */
6280 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6281 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6282
6283 /* Enable shadow registers. */
6284 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6285 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6286
6287 if ((error = ops->load_firmware(sc)) != 0) {
6288 aprint_error_dev(sc->sc_dev,
6289 "could not load firmware\n");
6290 return error;
6291 }
6292 /* Wait at most one second for firmware alive notification. */
6293 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6294 aprint_error_dev(sc->sc_dev,
6295 "timeout waiting for adapter to initialize\n");
6296 return error;
6297 }
6298 /* Do post-firmware initialization. */
6299 return ops->post_alive(sc);
6300 }
6301
6302 static void
6303 iwn_hw_stop(struct iwn_softc *sc)
6304 {
6305 int chnl, qid, ntries;
6306
6307 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6308
6309 /* Disable interrupts. */
6310 IWN_WRITE(sc, IWN_INT_MASK, 0);
6311 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6312 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6313 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6314
6315 /* Make sure we no longer hold the NIC lock. */
6316 iwn_nic_unlock(sc);
6317
6318 /* Stop TX scheduler. */
6319 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6320
6321 /* Stop all DMA channels. */
6322 if (iwn_nic_lock(sc) == 0) {
6323 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6324 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6325 for (ntries = 0; ntries < 200; ntries++) {
6326 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6327 IWN_FH_TX_STATUS_IDLE(chnl))
6328 break;
6329 DELAY(10);
6330 }
6331 }
6332 iwn_nic_unlock(sc);
6333 }
6334
6335 /* Stop RX ring. */
6336 iwn_reset_rx_ring(sc, &sc->rxq);
6337
6338 /* Reset all TX rings. */
6339 for (qid = 0; qid < sc->ntxqs; qid++)
6340 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6341
6342 if (iwn_nic_lock(sc) == 0) {
6343 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6344 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6345 iwn_nic_unlock(sc);
6346 }
6347 DELAY(5);
6348 /* Power OFF adapter. */
6349 iwn_apm_stop(sc);
6350 }
6351
6352 static int
6353 iwn_init(struct ifnet *ifp)
6354 {
6355 struct iwn_softc *sc = ifp->if_softc;
6356 struct ieee80211com *ic = &sc->sc_ic;
6357 int error;
6358
6359 mutex_enter(&sc->sc_mtx);
6360 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6361 goto out;
6362 if ((error = iwn_hw_prepare(sc)) != 0) {
6363 aprint_error_dev(sc->sc_dev,
6364 "hardware not ready\n");
6365 goto fail;
6366 }
6367
6368 /* Check that the radio is not disabled by hardware switch. */
6369 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6370 aprint_error_dev(sc->sc_dev,
6371 "radio is disabled by hardware switch\n");
6372 error = EPERM; /* :-) */
6373 goto fail;
6374 }
6375
6376 /* Read firmware images from the filesystem. */
6377 if ((error = iwn_read_firmware(sc)) != 0) {
6378 aprint_error_dev(sc->sc_dev,
6379 "could not read firmware\n");
6380 goto fail;
6381 }
6382
6383 /* Initialize interrupt mask to default value. */
6384 sc->int_mask = IWN_INT_MASK_DEF;
6385 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6386
6387 /* Initialize hardware and upload firmware. */
6388 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6389 error = iwn_hw_init(sc);
6390 firmware_free(sc->fw.data, sc->fw.size);
6391 sc->fw.data = NULL;
6392 sc->fw.size = 0;
6393 if (error != 0) {
6394 aprint_error_dev(sc->sc_dev,
6395 "could not initialize hardware\n");
6396 goto fail;
6397 }
6398
6399 /* Configure adapter now that it is ready. */
6400 if ((error = iwn_config(sc)) != 0) {
6401 aprint_error_dev(sc->sc_dev,
6402 "could not configure device\n");
6403 goto fail;
6404 }
6405
6406 sc->sc_beacon_wait = 0;
6407
6408 ifp->if_flags &= ~IFF_OACTIVE;
6409 ifp->if_flags |= IFF_RUNNING;
6410
6411 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6412 ieee80211_begin_scan(ic, 0);
6413 else
6414 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6415
6416 sc->sc_flags |= IWN_FLAG_HW_INITED;
6417 out:
6418 mutex_exit(&sc->sc_mtx);
6419 return 0;
6420
6421 fail: mutex_exit(&sc->sc_mtx);
6422 iwn_stop(ifp, 1);
6423 return error;
6424 }
6425
6426 static void
6427 iwn_stop(struct ifnet *ifp, int disable)
6428 {
6429 struct iwn_softc *sc = ifp->if_softc;
6430 struct ieee80211com *ic = &sc->sc_ic;
6431
6432 if (!disable)
6433 mutex_enter(&sc->sc_mtx);
6434 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6435 ifp->if_timer = sc->sc_tx_timer = 0;
6436 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6437
6438 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6439
6440 /* Power OFF hardware. */
6441 iwn_hw_stop(sc);
6442
6443 if (!disable)
6444 mutex_exit(&sc->sc_mtx);
6445 }
6446
6447 /*
6448 * XXX MCLGETI alternative
6449 *
6450 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6451 * as long as there are available free buffers then it uses MEXTMALLOC.,
6452 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6453 * The MCLGET4K code is used for testing an alternative mbuf cache.
6454 */
6455
6456 static struct mbuf *
6457 MCLGETIalt(struct iwn_softc *sc, int how,
6458 struct ifnet *ifp __unused, u_int size)
6459 {
6460 struct mbuf *m;
6461 #ifdef IWN_USE_RBUF
6462 struct iwn_rbuf *rbuf;
6463 #endif
6464
6465 MGETHDR(m, how, MT_DATA);
6466 if (m == NULL)
6467 return NULL;
6468
6469 #ifdef IWN_USE_RBUF
6470 if (sc->rxq.nb_free_entries > 0 &&
6471 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6472 /* Attach buffer to mbuf header. */
6473 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6474 m->m_flags |= M_EXT_RW;
6475 }
6476 else {
6477 MEXTMALLOC(m, size, how);
6478 if ((m->m_flags & M_EXT) == 0) {
6479 m_freem(m);
6480 return NULL;
6481 }
6482 }
6483
6484 #else
6485 #ifdef MCLGET4K
6486 if (size == 4096)
6487 MCLGET4K(m, how);
6488 else
6489 panic("size must be 4k");
6490 #else
6491 MEXTMALLOC(m, size, how);
6492 #endif
6493 if ((m->m_flags & M_EXT) == 0) {
6494 m_freem(m);
6495 return NULL;
6496 }
6497 #endif
6498
6499 return m;
6500 }
6501
6502 #ifdef IWN_USE_RBUF
6503 static struct iwn_rbuf *
6504 iwn_alloc_rbuf(struct iwn_softc *sc)
6505 {
6506 struct iwn_rbuf *rbuf;
6507 mutex_enter(&sc->rxq.freelist_mtx);
6508
6509 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6510 if (rbuf != NULL) {
6511 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6512 sc->rxq.nb_free_entries --;
6513 }
6514 mutex_exit(&sc->rxq.freelist_mtx);
6515 return rbuf;
6516 }
6517
6518 /*
6519 * This is called automatically by the network stack when the mbuf to which
6520 * our RX buffer is attached is freed.
6521 */
6522 static void
6523 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6524 {
6525 struct iwn_rbuf *rbuf = arg;
6526 struct iwn_softc *sc = rbuf->sc;
6527
6528 /* Put the RX buffer back in the free list. */
6529 mutex_enter(&sc->rxq.freelist_mtx);
6530 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6531 mutex_exit(&sc->rxq.freelist_mtx);
6532
6533 sc->rxq.nb_free_entries ++;
6534 if (__predict_true(m != NULL))
6535 pool_cache_put(mb_cache, m);
6536 }
6537
6538 static int
6539 iwn_alloc_rpool(struct iwn_softc *sc)
6540 {
6541 struct iwn_rx_ring *ring = &sc->rxq;
6542 struct iwn_rbuf *rbuf;
6543 int i, error;
6544
6545 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6546
6547 /* Allocate a big chunk of DMA'able memory... */
6548 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6549 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6550 if (error != 0) {
6551 aprint_error_dev(sc->sc_dev,
6552 "could not allocate RX buffers DMA memory\n");
6553 return error;
6554 }
6555 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6556 SLIST_INIT(&ring->freelist);
6557 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6558 rbuf = &ring->rbuf[i];
6559
6560 rbuf->sc = sc; /* Backpointer for callbacks. */
6561 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6562 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6563
6564 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6565 }
6566 ring->nb_free_entries = IWN_RBUF_COUNT;
6567 return 0;
6568 }
6569
6570 static void
6571 iwn_free_rpool(struct iwn_softc *sc)
6572 {
6573 iwn_dma_contig_free(&sc->rxq.buf_dma);
6574 }
6575 #endif
6576
6577 /*
6578 * XXX: Hack to set the current channel to the value advertised in beacons or
6579 * probe responses. Only used during AP detection.
6580 * XXX: Duplicated from if_iwi.c
6581 */
6582 static void
6583 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6584 struct iwn_rx_stat *stat)
6585 {
6586 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6587 struct ieee80211_frame *wh;
6588 uint8_t subtype;
6589 uint8_t *frm, *efrm;
6590
6591 wh = mtod(m, struct ieee80211_frame *);
6592
6593 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6594 return;
6595
6596 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6597
6598 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6599 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6600 return;
6601
6602 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6603 int chan = le16toh(stat->chan);
6604 if (chan < __arraycount(ic->ic_channels))
6605 ic->ic_curchan = &ic->ic_channels[chan];
6606 return;
6607 }
6608
6609 frm = (uint8_t *)(wh + 1);
6610 efrm = mtod(m, uint8_t *) + m->m_len;
6611
6612 frm += 12; /* skip tstamp, bintval and capinfo fields */
6613 while (frm + 2 < efrm) {
6614 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6615 #if IEEE80211_CHAN_MAX < 255
6616 if (frm[2] <= IEEE80211_CHAN_MAX)
6617 #endif
6618 ic->ic_curchan = &ic->ic_channels[frm[2]];
6619 }
6620
6621 frm += frm[1] + 2;
6622 }
6623 }
6624
6625 #ifdef notyetMODULE
6626
6627 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6628
6629 #ifdef _MODULE
6630 #include "ioconf.c"
6631 #endif
6632
6633 static int
6634 if_iwn_modcmd(modcmd_t cmd, void *data)
6635 {
6636 int error = 0;
6637
6638 switch (cmd) {
6639 case MODULE_CMD_INIT:
6640 #ifdef _MODULE
6641 error = config_init_component(cfdriver_ioconf_if_iwn,
6642 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6643 #endif
6644 return error;
6645 case MODULE_CMD_FINI:
6646 #ifdef _MODULE
6647 error = config_fini_component(cfdriver_ioconf_if_iwn,
6648 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6649 #endif
6650 return error;
6651 case MODULE_CMD_AUTOUNLOAD:
6652 #ifdef _MODULE
6653 /* XXX This is not optional! */
6654 #endif
6655 return error;
6656 default:
6657 return ENOTTY;
6658 }
6659 }
6660 #endif
6661