Home | History | Annotate | Line # | Download | only in pci
if_iwn.c revision 1.94
      1 /*	$NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $	*/
      2 /*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
     22  * adapters.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.94 2020/03/20 16:35:41 sevan Exp $");
     26 
     27 #define IWN_USE_RBUF	/* Use local storage for RX */
     28 #undef IWN_HWCRYPTO	/* XXX does not even compile yet */
     29 
     30 #include <sys/param.h>
     31 #include <sys/sockio.h>
     32 #include <sys/proc.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/kernel.h>
     35 #include <sys/socket.h>
     36 #include <sys/systm.h>
     37 #include <sys/malloc.h>
     38 #ifdef notyetMODULE
     39 #include <sys/module.h>
     40 #endif
     41 #include <sys/mutex.h>
     42 #include <sys/conf.h>
     43 #include <sys/kauth.h>
     44 #include <sys/callout.h>
     45 
     46 #include <dev/sysmon/sysmonvar.h>
     47 
     48 #include <sys/bus.h>
     49 #include <machine/endian.h>
     50 #include <sys/intr.h>
     51 
     52 #include <dev/pci/pcireg.h>
     53 #include <dev/pci/pcivar.h>
     54 #include <dev/pci/pcidevs.h>
     55 
     56 #include <net/bpf.h>
     57 #include <net/if.h>
     58 #include <net/if_arp.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_types.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <net/if_ether.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_amrr.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #include <dev/firmload.h>
     74 
     75 #include <dev/pci/if_iwnreg.h>
     76 #include <dev/pci/if_iwnvar.h>
     77 
     78 static const pci_product_id_t iwn_devices[] = {
     79 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_1,
     80 	PCI_PRODUCT_INTEL_WIFI_LINK_1030_2,
     81 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
     82 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
     83 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_3,
     84 	PCI_PRODUCT_INTEL_WIFI_LINK_4965_4,
     85 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
     86 	PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
     87 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
     88 	PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
     89 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
     90 	PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
     91 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
     92 	PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
     93 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
     94 	PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
     95 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
     96 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
     97 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
     98 	PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
     99 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
    100 	PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
    101 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
    102 	PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
    103 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_1,
    104 	PCI_PRODUCT_INTEL_WIFI_LINK_6230_2,
    105 	PCI_PRODUCT_INTEL_WIFI_LINK_6235,
    106 	PCI_PRODUCT_INTEL_WIFI_LINK_6235_2,
    107 	PCI_PRODUCT_INTEL_WIFI_LINK_100_1,
    108 	PCI_PRODUCT_INTEL_WIFI_LINK_100_2,
    109 	PCI_PRODUCT_INTEL_WIFI_LINK_130_1,
    110 	PCI_PRODUCT_INTEL_WIFI_LINK_130_2,
    111 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_1,
    112 	PCI_PRODUCT_INTEL_WIFI_LINK_2230_2,
    113 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_1,
    114 	PCI_PRODUCT_INTEL_WIFI_LINK_2200_2,
    115 	PCI_PRODUCT_INTEL_WIFI_LINK_135_1,
    116 	PCI_PRODUCT_INTEL_WIFI_LINK_135_2,
    117 	PCI_PRODUCT_INTEL_WIFI_LINK_105_1,
    118 	PCI_PRODUCT_INTEL_WIFI_LINK_105_2,
    119 };
    120 
    121 static int	iwn_match(device_t , struct cfdata *, void *);
    122 static void	iwn_attach(device_t , device_t , void *);
    123 static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
    124 static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
    125 static void	iwn_radiotap_attach(struct iwn_softc *);
    126 static int	iwn_detach(device_t , int);
    127 #if 0
    128 static void	iwn_power(int, void *);
    129 #endif
    130 static bool	iwn_resume(device_t, const pmf_qual_t *);
    131 static int	iwn_nic_lock(struct iwn_softc *);
    132 static int	iwn_eeprom_lock(struct iwn_softc *);
    133 static int	iwn_init_otprom(struct iwn_softc *);
    134 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
    135 static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
    136 		    void **, bus_size_t, bus_size_t);
    137 static void	iwn_dma_contig_free(struct iwn_dma_info *);
    138 static int	iwn_alloc_sched(struct iwn_softc *);
    139 static void	iwn_free_sched(struct iwn_softc *);
    140 static int	iwn_alloc_kw(struct iwn_softc *);
    141 static void	iwn_free_kw(struct iwn_softc *);
    142 static int	iwn_alloc_ict(struct iwn_softc *);
    143 static void	iwn_free_ict(struct iwn_softc *);
    144 static int	iwn_alloc_fwmem(struct iwn_softc *);
    145 static void	iwn_free_fwmem(struct iwn_softc *);
    146 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    147 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    148 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
    149 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
    150 		    int);
    151 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    152 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
    153 static void	iwn5000_ict_reset(struct iwn_softc *);
    154 static int	iwn_read_eeprom(struct iwn_softc *);
    155 static void	iwn4965_read_eeprom(struct iwn_softc *);
    156 
    157 #ifdef IWN_DEBUG
    158 static void	iwn4965_print_power_group(struct iwn_softc *, int);
    159 #endif
    160 static void	iwn5000_read_eeprom(struct iwn_softc *);
    161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
    162 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
    163 static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
    164 static void	iwn_newassoc(struct ieee80211_node *, int);
    165 static int	iwn_media_change(struct ifnet *);
    166 static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
    167 static void	iwn_iter_func(void *, struct ieee80211_node *);
    168 static void	iwn_calib_timeout(void *);
    169 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
    170 		    struct iwn_rx_data *);
    171 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
    172 		    struct iwn_rx_data *);
    173 #ifndef IEEE80211_NO_HT
    174 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
    175 		    struct iwn_rx_data *);
    176 #endif
    177 static void	iwn5000_rx_calib_results(struct iwn_softc *,
    178 		    struct iwn_rx_desc *, struct iwn_rx_data *);
    179 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
    180 		    struct iwn_rx_data *);
    181 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    182 		    struct iwn_rx_data *);
    183 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
    184 		    struct iwn_rx_data *);
    185 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
    186 		    uint8_t);
    187 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
    188 static void	iwn_notif_intr(struct iwn_softc *);
    189 static void	iwn_wakeup_intr(struct iwn_softc *);
    190 static void	iwn_fatal_intr(struct iwn_softc *);
    191 static int	iwn_intr(void *);
    192 static void	iwn_softintr(void *);
    193 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
    194 		    uint16_t);
    195 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
    196 		    uint16_t);
    197 #ifdef notyet
    198 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
    199 #endif
    200 static int	iwn_tx(struct iwn_softc *, struct mbuf *,
    201 		    struct ieee80211_node *, int);
    202 static void	iwn_start(struct ifnet *);
    203 static void	iwn_watchdog(struct ifnet *);
    204 static int	iwn_ioctl(struct ifnet *, u_long, void *);
    205 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
    206 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
    207 		    int);
    208 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
    209 		    int);
    210 static int	iwn_set_link_quality(struct iwn_softc *,
    211 		    struct ieee80211_node *);
    212 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
    213 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
    214 static int	iwn_set_critical_temp(struct iwn_softc *);
    215 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
    216 static void	iwn4965_power_calibration(struct iwn_softc *, int);
    217 static int	iwn4965_set_txpower(struct iwn_softc *, int);
    218 static int	iwn5000_set_txpower(struct iwn_softc *, int);
    219 static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
    220 static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
    221 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
    222 static int	iwn4965_get_temperature(struct iwn_softc *);
    223 static int	iwn5000_get_temperature(struct iwn_softc *);
    224 static int	iwn_init_sensitivity(struct iwn_softc *);
    225 static void	iwn_collect_noise(struct iwn_softc *,
    226 		    const struct iwn_rx_general_stats *);
    227 static int	iwn4965_init_gains(struct iwn_softc *);
    228 static int	iwn5000_init_gains(struct iwn_softc *);
    229 static int	iwn4965_set_gains(struct iwn_softc *);
    230 static int	iwn5000_set_gains(struct iwn_softc *);
    231 static void	iwn_tune_sensitivity(struct iwn_softc *,
    232 		    const struct iwn_rx_stats *);
    233 static int	iwn_send_sensitivity(struct iwn_softc *);
    234 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
    235 static int	iwn5000_runtime_calib(struct iwn_softc *);
    236 
    237 static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
    238 static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
    239 static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
    240 static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
    241 
    242 static int	iwn_config(struct iwn_softc *);
    243 static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
    244 		    uint8_t);
    245 static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
    246 static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
    247 static int	iwn_scan(struct iwn_softc *, uint16_t);
    248 static int	iwn_auth(struct iwn_softc *);
    249 static int	iwn_run(struct iwn_softc *);
    250 #ifdef IWN_HWCRYPTO
    251 static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
    252 		    struct ieee80211_key *);
    253 static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
    254 		    struct ieee80211_key *);
    255 #endif
    256 static int	iwn_wme_update(struct ieee80211com *);
    257 #ifndef IEEE80211_NO_HT
    258 static int	iwn_ampdu_rx_start(struct ieee80211com *,
    259 		    struct ieee80211_node *, uint8_t);
    260 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
    261 		    struct ieee80211_node *, uint8_t);
    262 static int	iwn_ampdu_tx_start(struct ieee80211com *,
    263 		    struct ieee80211_node *, uint8_t);
    264 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
    265 		    struct ieee80211_node *, uint8_t);
    266 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
    267 		    struct ieee80211_node *, uint8_t, uint16_t);
    268 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
    269 		    uint8_t, uint16_t);
    270 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
    271 		    struct ieee80211_node *, uint8_t, uint16_t);
    272 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
    273 		    uint8_t, uint16_t);
    274 #endif
    275 static int	iwn5000_query_calibration(struct iwn_softc *);
    276 static int	iwn5000_send_calibration(struct iwn_softc *);
    277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
    278 static int	iwn6000_temp_offset_calib(struct iwn_softc *);
    279 static int	iwn2000_temp_offset_calib(struct iwn_softc *);
    280 static int	iwn4965_post_alive(struct iwn_softc *);
    281 static int	iwn5000_post_alive(struct iwn_softc *);
    282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
    283 		    int);
    284 static int	iwn4965_load_firmware(struct iwn_softc *);
    285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
    286 		    const uint8_t *, int);
    287 static int	iwn5000_load_firmware(struct iwn_softc *);
    288 static int	iwn_read_firmware_leg(struct iwn_softc *,
    289 		    struct iwn_fw_info *);
    290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
    291 		    struct iwn_fw_info *, uint16_t);
    292 static int	iwn_read_firmware(struct iwn_softc *);
    293 static int	iwn_clock_wait(struct iwn_softc *);
    294 static int	iwn_apm_init(struct iwn_softc *);
    295 static void	iwn_apm_stop_master(struct iwn_softc *);
    296 static void	iwn_apm_stop(struct iwn_softc *);
    297 static int	iwn4965_nic_config(struct iwn_softc *);
    298 static int	iwn5000_nic_config(struct iwn_softc *);
    299 static int	iwn_hw_prepare(struct iwn_softc *);
    300 static int	iwn_hw_init(struct iwn_softc *);
    301 static void	iwn_hw_stop(struct iwn_softc *);
    302 static int	iwn_init(struct ifnet *);
    303 static void	iwn_stop(struct ifnet *, int);
    304 
    305 /* XXX MCLGETI alternative */
    306 static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
    307 		    struct ifnet *, u_int);
    308 #ifdef IWN_USE_RBUF
    309 static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
    310 static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
    311 static int	iwn_alloc_rpool(struct iwn_softc *);
    312 static void	iwn_free_rpool(struct iwn_softc *);
    313 #endif
    314 
    315 static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
    316 		    struct iwn_rx_stat *);
    317 
    318 #ifdef IWN_DEBUG
    319 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
    320 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
    321 int iwn_debug = 0;
    322 #else
    323 #define DPRINTF(x)
    324 #define DPRINTFN(n, x)
    325 #endif
    326 
    327 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
    328 	iwn_detach, NULL);
    329 
    330 static int
    331 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
    332 {
    333 	struct pci_attach_args *pa = aux;
    334 	size_t i;
    335 
    336 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    337 		return 0;
    338 
    339 	for (i = 0; i < __arraycount(iwn_devices); i++)
    340 		if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
    341 			return 1;
    342 
    343 	return 0;
    344 }
    345 
    346 static void
    347 iwn_attach(device_t parent __unused, device_t self, void *aux)
    348 {
    349 	struct iwn_softc *sc = device_private(self);
    350 	struct ieee80211com *ic = &sc->sc_ic;
    351 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    352 	struct pci_attach_args *pa = aux;
    353 	const char *intrstr;
    354 	pcireg_t memtype, reg;
    355 	int i, error;
    356 	char intrbuf[PCI_INTRSTR_LEN];
    357 
    358 	sc->sc_dev = self;
    359 	sc->sc_pct = pa->pa_pc;
    360 	sc->sc_pcitag = pa->pa_tag;
    361 	sc->sc_dmat = pa->pa_dmat;
    362 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
    363 
    364 	callout_init(&sc->calib_to, 0);
    365 	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
    366 
    367 	pci_aprint_devinfo(pa, NULL);
    368 
    369 	/*
    370 	 * Get the offset of the PCI Express Capability Structure in PCI
    371 	 * Configuration Space.
    372 	 */
    373 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
    374 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
    375 	if (error == 0) {
    376 		aprint_error_dev(self,
    377 		    "PCIe capability structure not found!\n");
    378 		return;
    379 	}
    380 
    381 	/* Clear device-specific "PCI retry timeout" register (41h). */
    382 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    383 	if (reg & 0xff00)
    384 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    385 
    386 	/* Enable bus-mastering. */
    387 	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
    388 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    389 	reg |= PCI_COMMAND_MASTER_ENABLE;
    390 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    391 
    392 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
    393 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
    394 	    &sc->sc_sh, NULL, &sc->sc_sz);
    395 	if (error != 0) {
    396 		aprint_error_dev(self, "can't map mem space\n");
    397 		return;
    398 	}
    399 
    400 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
    401 	if (sc->sc_soft_ih == NULL) {
    402 		aprint_error_dev(self, "can't establish soft interrupt\n");
    403 		goto unmap;
    404 	}
    405 
    406 	/* Install interrupt handler. */
    407 	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
    408 	if (error) {
    409 		aprint_error_dev(self, "can't allocate interrupt\n");
    410 		goto failsi;
    411 	}
    412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    413 	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
    414 		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    415 	else
    416 		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
    417 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
    418 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    419 	    sizeof(intrbuf));
    420 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    421 	    IPL_NET, iwn_intr, sc, device_xname(self));
    422 	if (sc->sc_ih == NULL) {
    423 		aprint_error_dev(self, "can't establish interrupt");
    424 		if (intrstr != NULL)
    425 			aprint_error(" at %s", intrstr);
    426 		aprint_error("\n");
    427 		goto failia;
    428 	}
    429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    430 
    431 	/* Read hardware revision and attach. */
    432 	sc->hw_type =
    433 	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
    434 	      >> IWN_HW_REV_TYPE_SHIFT;
    435 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
    436 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
    437 	else
    438 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
    439 	if (error != 0) {
    440 		aprint_error_dev(self, "could not attach device\n");
    441 		goto failih;
    442 	}
    443 
    444 	if ((error = iwn_hw_prepare(sc)) != 0) {
    445 		aprint_error_dev(self, "hardware not ready\n");
    446 		goto failih;
    447 	}
    448 
    449 	/* Read MAC address, channels, etc from EEPROM. */
    450 	if ((error = iwn_read_eeprom(sc)) != 0) {
    451 		aprint_error_dev(self, "could not read EEPROM\n");
    452 		goto failih;
    453 	}
    454 
    455 	/* Allocate DMA memory for firmware transfers. */
    456 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
    457 		aprint_error_dev(self,
    458 		    "could not allocate memory for firmware\n");
    459 		goto failih;
    460 	}
    461 
    462 	/* Allocate "Keep Warm" page. */
    463 	if ((error = iwn_alloc_kw(sc)) != 0) {
    464 		aprint_error_dev(self, "could not allocate keep warm page\n");
    465 		goto fail1;
    466 	}
    467 
    468 	/* Allocate ICT table for 5000 Series. */
    469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
    470 	    (error = iwn_alloc_ict(sc)) != 0) {
    471 		aprint_error_dev(self, "could not allocate ICT table\n");
    472 		goto fail2;
    473 	}
    474 
    475 	/* Allocate TX scheduler "rings". */
    476 	if ((error = iwn_alloc_sched(sc)) != 0) {
    477 		aprint_error_dev(self,
    478 		    "could not allocate TX scheduler rings\n");
    479 		goto fail3;
    480 	}
    481 
    482 #ifdef IWN_USE_RBUF
    483 	/* Allocate RX buffers. */
    484 	if ((error = iwn_alloc_rpool(sc)) != 0) {
    485 		aprint_error_dev(self, "could not allocate RX buffers\n");
    486 		goto fail3;
    487 	}
    488 #endif
    489 
    490 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
    491 	for (i = 0; i < sc->ntxqs; i++) {
    492 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
    493 			aprint_error_dev(self,
    494 			    "could not allocate TX ring %d\n", i);
    495 			goto fail4;
    496 		}
    497 	}
    498 
    499 	/* Allocate RX ring. */
    500 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
    501 		aprint_error_dev(self, "could not allocate RX ring\n");
    502 		goto fail4;
    503 	}
    504 
    505 	/* Clear pending interrupts. */
    506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
    507 
    508 	/* Count the number of available chains. */
    509 	sc->ntxchains =
    510 	    ((sc->txchainmask >> 2) & 1) +
    511 	    ((sc->txchainmask >> 1) & 1) +
    512 	    ((sc->txchainmask >> 0) & 1);
    513 	sc->nrxchains =
    514 	    ((sc->rxchainmask >> 2) & 1) +
    515 	    ((sc->rxchainmask >> 1) & 1) +
    516 	    ((sc->rxchainmask >> 0) & 1);
    517 	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
    518 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
    519 	    ether_sprintf(ic->ic_myaddr));
    520 
    521 	ic->ic_ifp = ifp;
    522 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    523 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    524 	ic->ic_state = IEEE80211_S_INIT;
    525 
    526 	/*
    527 	 * Set device capabilities.
    528 	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
    529 	 * IEEE80211_C_PMGT too.
    530 	 */
    531 	ic->ic_caps =
    532 	    IEEE80211_C_IBSS |		/* IBSS mode support */
    533 	    IEEE80211_C_WPA |		/* 802.11i */
    534 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    535 	    IEEE80211_C_TXPMGT |	/* tx power management */
    536 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    537 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    538 	    IEEE80211_C_WME;		/* 802.11e */
    539 
    540 #ifndef IEEE80211_NO_HT
    541 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    542 		/* Set HT capabilities. */
    543 		ic->ic_htcaps =
    544 #if IWN_RBUF_SIZE == 8192
    545 		    IEEE80211_HTCAP_AMSDU7935 |
    546 #endif
    547 		    IEEE80211_HTCAP_CBW20_40 |
    548 		    IEEE80211_HTCAP_SGI20 |
    549 		    IEEE80211_HTCAP_SGI40;
    550 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
    551 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
    552 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
    553 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
    554 		else
    555 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
    556 	}
    557 #endif	/* !IEEE80211_NO_HT */
    558 
    559 	/* Set supported legacy rates. */
    560 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    561 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    562 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
    563 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    564 	}
    565 #ifndef IEEE80211_NO_HT
    566 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
    567 		/* Set supported HT rates. */
    568 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
    569 		if (sc->nrxchains > 1)
    570 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
    571 		if (sc->nrxchains > 2)
    572 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
    573 	}
    574 #endif
    575 
    576 	/* IBSS channel undefined for now. */
    577 	ic->ic_ibss_chan = &ic->ic_channels[0];
    578 
    579 	ifp->if_softc = sc;
    580 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    581 	ifp->if_init = iwn_init;
    582 	ifp->if_ioctl = iwn_ioctl;
    583 	ifp->if_start = iwn_start;
    584 	ifp->if_stop = iwn_stop;
    585 	ifp->if_watchdog = iwn_watchdog;
    586 	IFQ_SET_READY(&ifp->if_snd);
    587 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    588 
    589 	error = if_initialize(ifp);
    590 	if (error != 0) {
    591 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    592 		    error);
    593 		goto fail5;
    594 	}
    595 	ieee80211_ifattach(ic);
    596 	/* Use common softint-based if_input */
    597 	ifp->if_percpuq = if_percpuq_create(ifp);
    598 	if_register(ifp);
    599 
    600 	ic->ic_node_alloc = iwn_node_alloc;
    601 	ic->ic_newassoc = iwn_newassoc;
    602 #ifdef IWN_HWCRYPTO
    603 	ic->ic_crypto.cs_key_set = iwn_set_key;
    604 	ic->ic_crypto.cs_key_delete = iwn_delete_key;
    605 #endif
    606 	ic->ic_wme.wme_update = iwn_wme_update;
    607 #ifndef IEEE80211_NO_HT
    608 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
    609 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
    610 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
    611 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
    612 #endif
    613 
    614 	/* Override 802.11 state transition machine. */
    615 	sc->sc_newstate = ic->ic_newstate;
    616 	ic->ic_newstate = iwn_newstate;
    617 
    618 	/* XXX media locking needs revisiting */
    619 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
    620 	ieee80211_media_init_with_lock(ic,
    621 	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
    622 
    623 	sc->amrr.amrr_min_success_threshold =  1;
    624 	sc->amrr.amrr_max_success_threshold = 15;
    625 
    626 	iwn_radiotap_attach(sc);
    627 
    628 	/*
    629 	 * XXX for NetBSD, OpenBSD timeout_set replaced by
    630 	 * callout_init and callout_setfunc, above.
    631 	 */
    632 
    633 	if (pmf_device_register(self, NULL, iwn_resume))
    634 		pmf_class_network_register(self, ifp);
    635 	else
    636 		aprint_error_dev(self, "couldn't establish power handler\n");
    637 
    638 	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
    639 	ieee80211_announce(ic);
    640 
    641 	sc->sc_flags |= IWN_FLAG_ATTACHED;
    642 	return;
    643 
    644 	/* Free allocated memory if something failed during attachment. */
    645 fail5:	iwn_free_rx_ring(sc, &sc->rxq);
    646 fail4:	while (--i >= 0)
    647 		iwn_free_tx_ring(sc, &sc->txq[i]);
    648 #ifdef IWN_USE_RBUF
    649 	iwn_free_rpool(sc);
    650 #endif
    651 	iwn_free_sched(sc);
    652 fail3:	if (sc->ict != NULL)
    653 		iwn_free_ict(sc);
    654 fail2:	iwn_free_kw(sc);
    655 fail1:	iwn_free_fwmem(sc);
    656 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    657 	sc->sc_ih = NULL;
    658 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    659 	sc->sc_pihp = NULL;
    660 failsi:	softint_disestablish(sc->sc_soft_ih);
    661 	sc->sc_soft_ih = NULL;
    662 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    663 }
    664 
    665 int
    666 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
    667 {
    668 	struct iwn_ops *ops = &sc->ops;
    669 
    670 	ops->load_firmware = iwn4965_load_firmware;
    671 	ops->read_eeprom = iwn4965_read_eeprom;
    672 	ops->post_alive = iwn4965_post_alive;
    673 	ops->nic_config = iwn4965_nic_config;
    674 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    675 	ops->update_sched = iwn4965_update_sched;
    676 	ops->get_temperature = iwn4965_get_temperature;
    677 	ops->get_rssi = iwn4965_get_rssi;
    678 	ops->set_txpower = iwn4965_set_txpower;
    679 	ops->init_gains = iwn4965_init_gains;
    680 	ops->set_gains = iwn4965_set_gains;
    681 	ops->add_node = iwn4965_add_node;
    682 	ops->tx_done = iwn4965_tx_done;
    683 #ifndef IEEE80211_NO_HT
    684 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
    685 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
    686 #endif
    687 	sc->ntxqs = IWN4965_NTXQUEUES;
    688 	sc->ndmachnls = IWN4965_NDMACHNLS;
    689 	sc->broadcast_id = IWN4965_ID_BROADCAST;
    690 	sc->rxonsz = IWN4965_RXONSZ;
    691 	sc->schedsz = IWN4965_SCHEDSZ;
    692 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
    693 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
    694 	sc->fwsz = IWN4965_FWSZ;
    695 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
    696 	sc->limits = &iwn4965_sensitivity_limits;
    697 	sc->fwname = "iwlwifi-4965-2.ucode";
    698 	/* Override chains masks, ROM is known to be broken. */
    699 	sc->txchainmask = IWN_ANT_AB;
    700 	sc->rxchainmask = IWN_ANT_ABC;
    701 
    702 	return 0;
    703 }
    704 
    705 int
    706 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
    707 {
    708 	struct iwn_ops *ops = &sc->ops;
    709 
    710 	ops->load_firmware = iwn5000_load_firmware;
    711 	ops->read_eeprom = iwn5000_read_eeprom;
    712 	ops->post_alive = iwn5000_post_alive;
    713 	ops->nic_config = iwn5000_nic_config;
    714 	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
    715 	ops->update_sched = iwn5000_update_sched;
    716 	ops->get_temperature = iwn5000_get_temperature;
    717 	ops->get_rssi = iwn5000_get_rssi;
    718 	ops->set_txpower = iwn5000_set_txpower;
    719 	ops->init_gains = iwn5000_init_gains;
    720 	ops->set_gains = iwn5000_set_gains;
    721 	ops->add_node = iwn5000_add_node;
    722 	ops->tx_done = iwn5000_tx_done;
    723 #ifndef IEEE80211_NO_HT
    724 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
    725 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
    726 #endif
    727 	sc->ntxqs = IWN5000_NTXQUEUES;
    728 	sc->ndmachnls = IWN5000_NDMACHNLS;
    729 	sc->broadcast_id = IWN5000_ID_BROADCAST;
    730 	sc->rxonsz = IWN5000_RXONSZ;
    731 	sc->schedsz = IWN5000_SCHEDSZ;
    732 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
    733 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
    734 	sc->fwsz = IWN5000_FWSZ;
    735 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
    736 
    737 	switch (sc->hw_type) {
    738 	case IWN_HW_REV_TYPE_5100:
    739 		sc->limits = &iwn5000_sensitivity_limits;
    740 		sc->fwname = "iwlwifi-5000-2.ucode";
    741 		/* Override chains masks, ROM is known to be broken. */
    742 		sc->txchainmask = IWN_ANT_B;
    743 		sc->rxchainmask = IWN_ANT_AB;
    744 		break;
    745 	case IWN_HW_REV_TYPE_5150:
    746 		sc->limits = &iwn5150_sensitivity_limits;
    747 		sc->fwname = "iwlwifi-5150-2.ucode";
    748 		break;
    749 	case IWN_HW_REV_TYPE_5300:
    750 	case IWN_HW_REV_TYPE_5350:
    751 		sc->limits = &iwn5000_sensitivity_limits;
    752 		sc->fwname = "iwlwifi-5000-2.ucode";
    753 		break;
    754 	case IWN_HW_REV_TYPE_1000:
    755 		sc->limits = &iwn1000_sensitivity_limits;
    756 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
    757 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
    758 			sc->fwname = "iwlwifi-100-5.ucode";
    759 		else
    760 			sc->fwname = "iwlwifi-1000-3.ucode";
    761 		break;
    762 	case IWN_HW_REV_TYPE_6000:
    763 		sc->limits = &iwn6000_sensitivity_limits;
    764 		sc->fwname = "iwlwifi-6000-4.ucode";
    765 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
    766 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
    767 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
    768 			/* Override chains masks, ROM is known to be broken. */
    769 			sc->txchainmask = IWN_ANT_BC;
    770 			sc->rxchainmask = IWN_ANT_BC;
    771 		}
    772 		break;
    773 	case IWN_HW_REV_TYPE_6050:
    774 		sc->limits = &iwn6000_sensitivity_limits;
    775 		sc->fwname = "iwlwifi-6050-5.ucode";
    776 		break;
    777 	case IWN_HW_REV_TYPE_6005:
    778 		sc->limits = &iwn6000_sensitivity_limits;
    779 		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
    780 		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
    781 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
    782 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
    783 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
    784 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
    785 		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
    786 			sc->fwname = "iwlwifi-6000g2b-6.ucode";
    787 			ops->config_bt_coex = iwn_config_bt_coex_adv1;
    788 		}
    789 		/*
    790 		 * This covers:
    791 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
    792 		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
    793 		 */
    794 		else
    795 			sc->fwname = "iwlwifi-6000g2a-5.ucode";
    796 		break;
    797 	case IWN_HW_REV_TYPE_2030:
    798 		sc->limits = &iwn2030_sensitivity_limits;
    799 		sc->fwname = "iwlwifi-2030-6.ucode";
    800 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    801 		break;
    802 	case IWN_HW_REV_TYPE_2000:
    803 		sc->limits = &iwn2000_sensitivity_limits;
    804 		sc->fwname = "iwlwifi-2000-6.ucode";
    805 		break;
    806 	case IWN_HW_REV_TYPE_135:
    807 		sc->limits = &iwn2000_sensitivity_limits;
    808 		sc->fwname = "iwlwifi-135-6.ucode";
    809 		ops->config_bt_coex = iwn_config_bt_coex_adv2;
    810 		break;
    811 	case IWN_HW_REV_TYPE_105:
    812 		sc->limits = &iwn2000_sensitivity_limits;
    813 		sc->fwname = "iwlwifi-105-6.ucode";
    814 		break;
    815 	default:
    816 		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
    817 		return ENOTSUP;
    818 	}
    819 	return 0;
    820 }
    821 
    822 /*
    823  * Attach the interface to 802.11 radiotap.
    824  */
    825 static void
    826 iwn_radiotap_attach(struct iwn_softc *sc)
    827 {
    828 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    829 
    830 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    831 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    832 	    &sc->sc_drvbpf);
    833 
    834 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    835 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    836 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
    837 
    838 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    839 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    840 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
    841 }
    842 
    843 static int
    844 iwn_detach(device_t self, int flags __unused)
    845 {
    846 	struct iwn_softc *sc = device_private(self);
    847 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    848 	int qid;
    849 
    850 	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
    851 		return 0;
    852 
    853 	callout_stop(&sc->calib_to);
    854 
    855 	/* Uninstall interrupt handler. */
    856 	if (sc->sc_ih != NULL)
    857 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    858 	if (sc->sc_pihp != NULL)
    859 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    860 	if (sc->sc_soft_ih != NULL)
    861 		softint_disestablish(sc->sc_soft_ih);
    862 
    863 	/* Free DMA resources. */
    864 	iwn_free_rx_ring(sc, &sc->rxq);
    865 	for (qid = 0; qid < sc->ntxqs; qid++)
    866 		iwn_free_tx_ring(sc, &sc->txq[qid]);
    867 #ifdef IWN_USE_RBUF
    868 	iwn_free_rpool(sc);
    869 #endif
    870 	iwn_free_sched(sc);
    871 	iwn_free_kw(sc);
    872 	if (sc->ict != NULL)
    873 		iwn_free_ict(sc);
    874 	iwn_free_fwmem(sc);
    875 
    876 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    877 
    878 	ieee80211_ifdetach(&sc->sc_ic);
    879 	if_detach(ifp);
    880 
    881 	return 0;
    882 }
    883 
    884 #if 0
    885 /*
    886  * XXX Investigate if clearing the PCI retry timeout could eliminate
    887  * the repeated scan calls.  Also the calls to if_init and if_start
    888  * are similar to the effect of adding the call to ifioctl_common .
    889  */
    890 static void
    891 iwn_power(int why, void *arg)
    892 {
    893 	struct iwn_softc *sc = arg;
    894 	struct ifnet *ifp;
    895 	pcireg_t reg;
    896 	int s;
    897 
    898 	if (why != PWR_RESUME)
    899 		return;
    900 
    901 	/* Clear device-specific "PCI retry timeout" register (41h). */
    902 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    903 	if (reg & 0xff00)
    904 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
    905 
    906 	s = splnet();
    907 	ifp = &sc->sc_ic.ic_if;
    908 	if (ifp->if_flags & IFF_UP) {
    909 		ifp->if_init(ifp);
    910 		if (ifp->if_flags & IFF_RUNNING)
    911 			ifp->if_start(ifp);
    912 	}
    913 	splx(s);
    914 }
    915 #endif
    916 
    917 static bool
    918 iwn_resume(device_t dv, const pmf_qual_t *qual)
    919 {
    920 	return true;
    921 }
    922 
    923 static int
    924 iwn_nic_lock(struct iwn_softc *sc)
    925 {
    926 	int ntries;
    927 
    928 	/* Request exclusive access to NIC. */
    929 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    930 
    931 	/* Spin until we actually get the lock. */
    932 	for (ntries = 0; ntries < 1000; ntries++) {
    933 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
    934 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
    935 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
    936 			return 0;
    937 		DELAY(10);
    938 	}
    939 	return ETIMEDOUT;
    940 }
    941 
    942 static __inline void
    943 iwn_nic_unlock(struct iwn_softc *sc)
    944 {
    945 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
    946 }
    947 
    948 static __inline uint32_t
    949 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
    950 {
    951 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
    952 	IWN_BARRIER_READ_WRITE(sc);
    953 	return IWN_READ(sc, IWN_PRPH_RDATA);
    954 }
    955 
    956 static __inline void
    957 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    958 {
    959 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
    960 	IWN_BARRIER_WRITE(sc);
    961 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
    962 }
    963 
    964 static __inline void
    965 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    966 {
    967 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
    968 }
    969 
    970 static __inline void
    971 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
    972 {
    973 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
    974 }
    975 
    976 static __inline void
    977 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
    978     const uint32_t *data, int count)
    979 {
    980 	for (; count > 0; count--, data++, addr += 4)
    981 		iwn_prph_write(sc, addr, *data);
    982 }
    983 
    984 static __inline uint32_t
    985 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
    986 {
    987 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
    988 	IWN_BARRIER_READ_WRITE(sc);
    989 	return IWN_READ(sc, IWN_MEM_RDATA);
    990 }
    991 
    992 static __inline void
    993 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
    994 {
    995 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
    996 	IWN_BARRIER_WRITE(sc);
    997 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
    998 }
    999 
   1000 #ifndef IEEE80211_NO_HT
   1001 static __inline void
   1002 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
   1003 {
   1004 	uint32_t tmp;
   1005 
   1006 	tmp = iwn_mem_read(sc, addr & ~3);
   1007 	if (addr & 3)
   1008 		tmp = (tmp & 0x0000ffff) | data << 16;
   1009 	else
   1010 		tmp = (tmp & 0xffff0000) | data;
   1011 	iwn_mem_write(sc, addr & ~3, tmp);
   1012 }
   1013 #endif
   1014 
   1015 static __inline void
   1016 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
   1017     int count)
   1018 {
   1019 	for (; count > 0; count--, addr += 4)
   1020 		*data++ = iwn_mem_read(sc, addr);
   1021 }
   1022 
   1023 static __inline void
   1024 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
   1025     int count)
   1026 {
   1027 	for (; count > 0; count--, addr += 4)
   1028 		iwn_mem_write(sc, addr, val);
   1029 }
   1030 
   1031 static int
   1032 iwn_eeprom_lock(struct iwn_softc *sc)
   1033 {
   1034 	int i, ntries;
   1035 
   1036 	for (i = 0; i < 100; i++) {
   1037 		/* Request exclusive access to EEPROM. */
   1038 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   1039 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1040 
   1041 		/* Spin until we actually get the lock. */
   1042 		for (ntries = 0; ntries < 100; ntries++) {
   1043 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   1044 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
   1045 				return 0;
   1046 			DELAY(10);
   1047 		}
   1048 	}
   1049 	return ETIMEDOUT;
   1050 }
   1051 
   1052 static __inline void
   1053 iwn_eeprom_unlock(struct iwn_softc *sc)
   1054 {
   1055 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
   1056 }
   1057 
   1058 /*
   1059  * Initialize access by host to One Time Programmable ROM.
   1060  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
   1061  */
   1062 static int
   1063 iwn_init_otprom(struct iwn_softc *sc)
   1064 {
   1065 	uint16_t prev = 0, base, next;
   1066 	int count, error;
   1067 
   1068 	/* Wait for clock stabilization before accessing prph. */
   1069 	if ((error = iwn_clock_wait(sc)) != 0)
   1070 		return error;
   1071 
   1072 	if ((error = iwn_nic_lock(sc)) != 0)
   1073 		return error;
   1074 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1075 	DELAY(5);
   1076 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
   1077 	iwn_nic_unlock(sc);
   1078 
   1079 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
   1080 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
   1081 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
   1082 		    IWN_RESET_LINK_PWR_MGMT_DIS);
   1083 	}
   1084 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
   1085 	/* Clear ECC status. */
   1086 	IWN_SETBITS(sc, IWN_OTP_GP,
   1087 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
   1088 
   1089 	/*
   1090 	 * Find the block before last block (contains the EEPROM image)
   1091 	 * for HW without OTP shadow RAM.
   1092 	 */
   1093 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   1094 		/* Switch to absolute addressing mode. */
   1095 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
   1096 		base = 0;
   1097 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
   1098 			error = iwn_read_prom_data(sc, base, &next, 2);
   1099 			if (error != 0)
   1100 				return error;
   1101 			if (next == 0)	/* End of linked-list. */
   1102 				break;
   1103 			prev = base;
   1104 			base = le16toh(next);
   1105 		}
   1106 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
   1107 			return EIO;
   1108 		/* Skip "next" word. */
   1109 		sc->prom_base = prev + 1;
   1110 	}
   1111 	return 0;
   1112 }
   1113 
   1114 static int
   1115 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
   1116 {
   1117 	uint8_t *out = data;
   1118 	uint32_t val, tmp;
   1119 	int ntries;
   1120 
   1121 	addr += sc->prom_base;
   1122 	for (; count > 0; count -= 2, addr++) {
   1123 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
   1124 		for (ntries = 0; ntries < 10; ntries++) {
   1125 			val = IWN_READ(sc, IWN_EEPROM);
   1126 			if (val & IWN_EEPROM_READ_VALID)
   1127 				break;
   1128 			DELAY(5);
   1129 		}
   1130 		if (ntries == 10) {
   1131 			aprint_error_dev(sc->sc_dev,
   1132 			    "timeout reading ROM at 0x%x\n", addr);
   1133 			return ETIMEDOUT;
   1134 		}
   1135 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1136 			/* OTPROM, check for ECC errors. */
   1137 			tmp = IWN_READ(sc, IWN_OTP_GP);
   1138 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
   1139 				aprint_error_dev(sc->sc_dev,
   1140 				    "OTPROM ECC error at 0x%x\n", addr);
   1141 				return EIO;
   1142 			}
   1143 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
   1144 				/* Correctable ECC error, clear bit. */
   1145 				IWN_SETBITS(sc, IWN_OTP_GP,
   1146 				    IWN_OTP_GP_ECC_CORR_STTS);
   1147 			}
   1148 		}
   1149 		*out++ = val >> 16;
   1150 		if (count > 1)
   1151 			*out++ = val >> 24;
   1152 	}
   1153 	return 0;
   1154 }
   1155 
   1156 static int
   1157 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
   1158     bus_size_t size, bus_size_t alignment)
   1159 {
   1160 	int nsegs, error;
   1161 
   1162 	dma->tag = tag;
   1163 	dma->size = size;
   1164 
   1165 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
   1166 	    &dma->map);
   1167 	if (error != 0)
   1168 		goto fail;
   1169 
   1170 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
   1171 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
   1172 	if (error != 0)
   1173 		goto fail;
   1174 
   1175 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
   1176 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1177 	if (error != 0)
   1178 		goto fail;
   1179 
   1180 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
   1181 	    BUS_DMA_NOWAIT);
   1182 	if (error != 0)
   1183 		goto fail;
   1184 
   1185 	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
   1186 	memset(dma->vaddr, 0, size);
   1187 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   1188 
   1189 	dma->paddr = dma->map->dm_segs[0].ds_addr;
   1190 	if (kvap != NULL)
   1191 		*kvap = dma->vaddr;
   1192 
   1193 	return 0;
   1194 
   1195 fail:	iwn_dma_contig_free(dma);
   1196 	return error;
   1197 }
   1198 
   1199 static void
   1200 iwn_dma_contig_free(struct iwn_dma_info *dma)
   1201 {
   1202 	if (dma->map != NULL) {
   1203 		if (dma->vaddr != NULL) {
   1204 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
   1205 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1206 			bus_dmamap_unload(dma->tag, dma->map);
   1207 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
   1208 			bus_dmamem_free(dma->tag, &dma->seg, 1);
   1209 			dma->vaddr = NULL;
   1210 		}
   1211 		bus_dmamap_destroy(dma->tag, dma->map);
   1212 		dma->map = NULL;
   1213 	}
   1214 }
   1215 
   1216 static int
   1217 iwn_alloc_sched(struct iwn_softc *sc)
   1218 {
   1219 	/* TX scheduler rings must be aligned on a 1KB boundary. */
   1220 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
   1221 	    (void **)&sc->sched, sc->schedsz, 1024);
   1222 }
   1223 
   1224 static void
   1225 iwn_free_sched(struct iwn_softc *sc)
   1226 {
   1227 	iwn_dma_contig_free(&sc->sched_dma);
   1228 }
   1229 
   1230 static int
   1231 iwn_alloc_kw(struct iwn_softc *sc)
   1232 {
   1233 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
   1234 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
   1235 	    4096);
   1236 }
   1237 
   1238 static void
   1239 iwn_free_kw(struct iwn_softc *sc)
   1240 {
   1241 	iwn_dma_contig_free(&sc->kw_dma);
   1242 }
   1243 
   1244 static int
   1245 iwn_alloc_ict(struct iwn_softc *sc)
   1246 {
   1247 	/* ICT table must be aligned on a 4KB boundary. */
   1248 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
   1249 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
   1250 }
   1251 
   1252 static void
   1253 iwn_free_ict(struct iwn_softc *sc)
   1254 {
   1255 	iwn_dma_contig_free(&sc->ict_dma);
   1256 }
   1257 
   1258 static int
   1259 iwn_alloc_fwmem(struct iwn_softc *sc)
   1260 {
   1261 	/* Must be aligned on a 16-byte boundary. */
   1262 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
   1263 	    sc->fwsz, 16);
   1264 }
   1265 
   1266 static void
   1267 iwn_free_fwmem(struct iwn_softc *sc)
   1268 {
   1269 	iwn_dma_contig_free(&sc->fw_dma);
   1270 }
   1271 
   1272 static int
   1273 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1274 {
   1275 	bus_size_t size;
   1276 	int i, error;
   1277 
   1278 	ring->cur = 0;
   1279 
   1280 	/* Allocate RX descriptors (256-byte aligned). */
   1281 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
   1282 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1283 	    (void **)&ring->desc, size, 256);
   1284 	if (error != 0) {
   1285 		aprint_error_dev(sc->sc_dev,
   1286 		    "could not allocate RX ring DMA memory\n");
   1287 		goto fail;
   1288 	}
   1289 
   1290 	/* Allocate RX status area (16-byte aligned). */
   1291 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
   1292 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
   1293 	if (error != 0) {
   1294 		aprint_error_dev(sc->sc_dev,
   1295 		    "could not allocate RX status DMA memory\n");
   1296 		goto fail;
   1297 	}
   1298 
   1299 	/*
   1300 	 * Allocate and map RX buffers.
   1301 	 */
   1302 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1303 		struct iwn_rx_data *data = &ring->data[i];
   1304 
   1305 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
   1306 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1307 		    &data->map);
   1308 		if (error != 0) {
   1309 			aprint_error_dev(sc->sc_dev,
   1310 			    "could not create RX buf DMA map\n");
   1311 			goto fail;
   1312 		}
   1313 
   1314 		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   1315 		if (data->m == NULL) {
   1316 			aprint_error_dev(sc->sc_dev,
   1317 			    "could not allocate RX mbuf\n");
   1318 			error = ENOBUFS;
   1319 			goto fail;
   1320 		}
   1321 
   1322 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1323 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   1324 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1325 		if (error != 0) {
   1326 			aprint_error_dev(sc->sc_dev,
   1327 			    "can't not map mbuf (error %d)\n", error);
   1328 			goto fail;
   1329 		}
   1330 
   1331 		/* Set physical address of RX buffer (256-byte aligned). */
   1332 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   1333 	}
   1334 
   1335 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
   1336 	    BUS_DMASYNC_PREWRITE);
   1337 
   1338 	return 0;
   1339 
   1340 fail:	iwn_free_rx_ring(sc, ring);
   1341 	return error;
   1342 }
   1343 
   1344 static void
   1345 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1346 {
   1347 	int ntries;
   1348 
   1349 	if (iwn_nic_lock(sc) == 0) {
   1350 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   1351 		for (ntries = 0; ntries < 1000; ntries++) {
   1352 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
   1353 			    IWN_FH_RX_STATUS_IDLE)
   1354 				break;
   1355 			DELAY(10);
   1356 		}
   1357 		iwn_nic_unlock(sc);
   1358 	}
   1359 	ring->cur = 0;
   1360 	sc->last_rx_valid = 0;
   1361 }
   1362 
   1363 static void
   1364 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
   1365 {
   1366 	int i;
   1367 
   1368 	iwn_dma_contig_free(&ring->desc_dma);
   1369 	iwn_dma_contig_free(&ring->stat_dma);
   1370 
   1371 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
   1372 		struct iwn_rx_data *data = &ring->data[i];
   1373 
   1374 		if (data->m != NULL) {
   1375 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1376 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1377 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1378 			m_freem(data->m);
   1379 		}
   1380 		if (data->map != NULL)
   1381 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1382 	}
   1383 }
   1384 
   1385 static int
   1386 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
   1387 {
   1388 	bus_addr_t paddr;
   1389 	bus_size_t size;
   1390 	int i, error;
   1391 
   1392 	ring->qid = qid;
   1393 	ring->queued = 0;
   1394 	ring->cur = 0;
   1395 
   1396 	/* Allocate TX descriptors (256-byte aligned). */
   1397 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
   1398 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
   1399 	    (void **)&ring->desc, size, 256);
   1400 	if (error != 0) {
   1401 		aprint_error_dev(sc->sc_dev,
   1402 		    "could not allocate TX ring DMA memory\n");
   1403 		goto fail;
   1404 	}
   1405 	/*
   1406 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
   1407 	 * to allocate commands space for other rings.
   1408 	 * XXX Do we really need to allocate descriptors for other rings?
   1409 	 */
   1410 	if (qid > 4)
   1411 		return 0;
   1412 
   1413 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
   1414 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
   1415 	    (void **)&ring->cmd, size, 4);
   1416 	if (error != 0) {
   1417 		aprint_error_dev(sc->sc_dev,
   1418 		    "could not allocate TX cmd DMA memory\n");
   1419 		goto fail;
   1420 	}
   1421 
   1422 	paddr = ring->cmd_dma.paddr;
   1423 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1424 		struct iwn_tx_data *data = &ring->data[i];
   1425 
   1426 		data->cmd_paddr = paddr;
   1427 		data->scratch_paddr = paddr + 12;
   1428 		paddr += sizeof (struct iwn_tx_cmd);
   1429 
   1430 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1431 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
   1432 		    &data->map);
   1433 		if (error != 0) {
   1434 			aprint_error_dev(sc->sc_dev,
   1435 			    "could not create TX buf DMA map\n");
   1436 			goto fail;
   1437 		}
   1438 	}
   1439 	return 0;
   1440 
   1441 fail:	iwn_free_tx_ring(sc, ring);
   1442 	return error;
   1443 }
   1444 
   1445 static void
   1446 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1447 {
   1448 	int i;
   1449 
   1450 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1451 		struct iwn_tx_data *data = &ring->data[i];
   1452 
   1453 		if (data->m != NULL) {
   1454 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1455 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1456 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1457 			m_freem(data->m);
   1458 			data->m = NULL;
   1459 		}
   1460 	}
   1461 	/* Clear TX descriptors. */
   1462 	memset(ring->desc, 0, ring->desc_dma.size);
   1463 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1464 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
   1465 	sc->qfullmsk &= ~(1 << ring->qid);
   1466 	ring->queued = 0;
   1467 	ring->cur = 0;
   1468 }
   1469 
   1470 static void
   1471 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
   1472 {
   1473 	int i;
   1474 
   1475 	iwn_dma_contig_free(&ring->desc_dma);
   1476 	iwn_dma_contig_free(&ring->cmd_dma);
   1477 
   1478 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
   1479 		struct iwn_tx_data *data = &ring->data[i];
   1480 
   1481 		if (data->m != NULL) {
   1482 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1483 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1484 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1485 			m_freem(data->m);
   1486 		}
   1487 		if (data->map != NULL)
   1488 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1489 	}
   1490 }
   1491 
   1492 static void
   1493 iwn5000_ict_reset(struct iwn_softc *sc)
   1494 {
   1495 	/* Disable interrupts. */
   1496 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   1497 
   1498 	/* Reset ICT table. */
   1499 	memset(sc->ict, 0, IWN_ICT_SIZE);
   1500 	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
   1501 	    BUS_DMASYNC_PREWRITE);
   1502 	sc->ict_cur = 0;
   1503 
   1504 	/* Set physical address of ICT table (4KB aligned). */
   1505 	DPRINTF(("enabling ICT\n"));
   1506 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
   1507 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
   1508 
   1509 	/* Enable periodic RX interrupt. */
   1510 	sc->int_mask |= IWN_INT_RX_PERIODIC;
   1511 	/* Switch to ICT interrupt mode in driver. */
   1512 	sc->sc_flags |= IWN_FLAG_USE_ICT;
   1513 
   1514 	/* Re-enable interrupts. */
   1515 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   1516 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   1517 }
   1518 
   1519 static int
   1520 iwn_read_eeprom(struct iwn_softc *sc)
   1521 {
   1522 	struct iwn_ops *ops = &sc->ops;
   1523 	struct ieee80211com *ic = &sc->sc_ic;
   1524 	uint16_t val;
   1525 	int error;
   1526 
   1527 	/* Check whether adapter has an EEPROM or an OTPROM. */
   1528 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
   1529 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
   1530 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
   1531 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
   1532 	    "OTPROM" : "EEPROM"));
   1533 
   1534 	/* Adapter has to be powered on for EEPROM access to work. */
   1535 	if ((error = iwn_apm_init(sc)) != 0) {
   1536 		aprint_error_dev(sc->sc_dev,
   1537 		    "could not power ON adapter\n");
   1538 		return error;
   1539 	}
   1540 
   1541 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
   1542 		aprint_error_dev(sc->sc_dev,
   1543 		    "bad ROM signature\n");
   1544 		return EIO;
   1545 	}
   1546 	if ((error = iwn_eeprom_lock(sc)) != 0) {
   1547 		aprint_error_dev(sc->sc_dev,
   1548 		    "could not lock ROM (error=%d)\n", error);
   1549 		return error;
   1550 	}
   1551 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
   1552 		if ((error = iwn_init_otprom(sc)) != 0) {
   1553 			aprint_error_dev(sc->sc_dev,
   1554 			    "could not initialize OTPROM\n");
   1555 			return error;
   1556 		}
   1557 	}
   1558 
   1559 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
   1560 	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
   1561 	/* Check if HT support is bonded out. */
   1562 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
   1563 		sc->sc_flags |= IWN_FLAG_HAS_11N;
   1564 
   1565 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
   1566 	sc->rfcfg = le16toh(val);
   1567 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
   1568 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
   1569 	if (sc->txchainmask == 0)
   1570 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
   1571 	if (sc->rxchainmask == 0)
   1572 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
   1573 
   1574 	/* Read MAC address. */
   1575 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
   1576 
   1577 	/* Read adapter-specific information from EEPROM. */
   1578 	ops->read_eeprom(sc);
   1579 
   1580 	iwn_apm_stop(sc);	/* Power OFF adapter. */
   1581 
   1582 	iwn_eeprom_unlock(sc);
   1583 	return 0;
   1584 }
   1585 
   1586 static void
   1587 iwn4965_read_eeprom(struct iwn_softc *sc)
   1588 {
   1589 	uint32_t addr;
   1590 	uint16_t val;
   1591 	int i;
   1592 
   1593 	/* Read regulatory domain (4 ASCII characters). */
   1594 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
   1595 
   1596 	/* Read the list of authorized channels (20MHz ones only). */
   1597 	for (i = 0; i < 5; i++) {
   1598 		addr = iwn4965_regulatory_bands[i];
   1599 		iwn_read_eeprom_channels(sc, i, addr);
   1600 	}
   1601 
   1602 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
   1603 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
   1604 	sc->maxpwr2GHz = val & 0xff;
   1605 	sc->maxpwr5GHz = val >> 8;
   1606 	/* Check that EEPROM values are within valid range. */
   1607 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
   1608 		sc->maxpwr5GHz = 38;
   1609 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
   1610 		sc->maxpwr2GHz = 38;
   1611 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
   1612 
   1613 	/* Read samples for each TX power group. */
   1614 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
   1615 	    sizeof sc->bands);
   1616 
   1617 	/* Read voltage at which samples were taken. */
   1618 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
   1619 	sc->eeprom_voltage = (int16_t)le16toh(val);
   1620 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
   1621 
   1622 #ifdef IWN_DEBUG
   1623 	/* Print samples. */
   1624 	if (iwn_debug > 0) {
   1625 		for (i = 0; i < IWN_NBANDS; i++)
   1626 			iwn4965_print_power_group(sc, i);
   1627 	}
   1628 #endif
   1629 }
   1630 
   1631 #ifdef IWN_DEBUG
   1632 static void
   1633 iwn4965_print_power_group(struct iwn_softc *sc, int i)
   1634 {
   1635 	struct iwn4965_eeprom_band *band = &sc->bands[i];
   1636 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
   1637 	int j, c;
   1638 
   1639 	aprint_normal("===band %d===\n", i);
   1640 	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
   1641 	aprint_normal("chan1 num=%d\n", chans[0].num);
   1642 	for (c = 0; c < 2; c++) {
   1643 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1644 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1645 			    "power=%d pa_det=%d\n", c, j,
   1646 			    chans[0].samples[c][j].temp,
   1647 			    chans[0].samples[c][j].gain,
   1648 			    chans[0].samples[c][j].power,
   1649 			    chans[0].samples[c][j].pa_det);
   1650 		}
   1651 	}
   1652 	aprint_normal("chan2 num=%d\n", chans[1].num);
   1653 	for (c = 0; c < 2; c++) {
   1654 		for (j = 0; j < IWN_NSAMPLES; j++) {
   1655 			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
   1656 			    "power=%d pa_det=%d\n", c, j,
   1657 			    chans[1].samples[c][j].temp,
   1658 			    chans[1].samples[c][j].gain,
   1659 			    chans[1].samples[c][j].power,
   1660 			    chans[1].samples[c][j].pa_det);
   1661 		}
   1662 	}
   1663 }
   1664 #endif
   1665 
   1666 static void
   1667 iwn5000_read_eeprom(struct iwn_softc *sc)
   1668 {
   1669 	struct iwn5000_eeprom_calib_hdr hdr;
   1670 	int32_t volt;
   1671 	uint32_t base, addr;
   1672 	uint16_t val;
   1673 	int i;
   1674 
   1675 	/* Read regulatory domain (4 ASCII characters). */
   1676 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1677 	base = le16toh(val);
   1678 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
   1679 	    sc->eeprom_domain, 4);
   1680 
   1681 	/* Read the list of authorized channels (20MHz ones only). */
   1682 	for (i = 0; i < 5; i++) {
   1683 		addr = base + iwn5000_regulatory_bands[i];
   1684 		iwn_read_eeprom_channels(sc, i, addr);
   1685 	}
   1686 
   1687 	/* Read enhanced TX power information for 6000 Series. */
   1688 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   1689 		iwn_read_eeprom_enhinfo(sc);
   1690 
   1691 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
   1692 	base = le16toh(val);
   1693 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
   1694 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
   1695 	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
   1696 	sc->calib_ver = hdr.version;
   1697 
   1698 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   1699 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   1700 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   1701 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   1702 		sc->eeprom_voltage = le16toh(hdr.volt);
   1703 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1704 		sc->eeprom_temp = le16toh(val);
   1705 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
   1706 		sc->eeprom_rawtemp = le16toh(val);
   1707 	}
   1708 
   1709 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   1710 		/* Compute temperature offset. */
   1711 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
   1712 		sc->eeprom_temp = le16toh(val);
   1713 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
   1714 		volt = le16toh(val);
   1715 		sc->temp_off = sc->eeprom_temp - (volt / -5);
   1716 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
   1717 		    sc->eeprom_temp, volt, sc->temp_off));
   1718 	} else {
   1719 		/* Read crystal calibration. */
   1720 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
   1721 		    &sc->eeprom_crystal, sizeof (uint32_t));
   1722 		DPRINTF(("crystal calibration 0x%08x\n",
   1723 		    le32toh(sc->eeprom_crystal)));
   1724 	}
   1725 }
   1726 
   1727 static void
   1728 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
   1729 {
   1730 	struct ieee80211com *ic = &sc->sc_ic;
   1731 	const struct iwn_chan_band *band = &iwn_bands[n];
   1732 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
   1733 	uint8_t chan;
   1734 	int i;
   1735 
   1736 	iwn_read_prom_data(sc, addr, channels,
   1737 	    band->nchan * sizeof (struct iwn_eeprom_chan));
   1738 
   1739 	for (i = 0; i < band->nchan; i++) {
   1740 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
   1741 			continue;
   1742 
   1743 		chan = band->chan[i];
   1744 
   1745 		if (n == 0) {	/* 2GHz band */
   1746 			ic->ic_channels[chan].ic_freq =
   1747 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   1748 			ic->ic_channels[chan].ic_flags =
   1749 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   1750 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   1751 
   1752 		} else {	/* 5GHz band */
   1753 			/*
   1754 			 * Some adapters support channels 7, 8, 11 and 12
   1755 			 * both in the 2GHz and 4.9GHz bands.
   1756 			 * Because of limitations in our net80211 layer,
   1757 			 * we don't support them in the 4.9GHz band.
   1758 			 */
   1759 			if (chan <= 14)
   1760 				continue;
   1761 
   1762 			ic->ic_channels[chan].ic_freq =
   1763 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   1764 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   1765 			/* We have at least one valid 5GHz channel. */
   1766 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
   1767 		}
   1768 
   1769 		/* Is active scan allowed on this channel? */
   1770 		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
   1771 			ic->ic_channels[chan].ic_flags |=
   1772 			    IEEE80211_CHAN_PASSIVE;
   1773 		}
   1774 
   1775 		/* Save maximum allowed TX power for this channel. */
   1776 		sc->maxpwr[chan] = channels[i].maxpwr;
   1777 
   1778 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   1779 		    chan, channels[i].flags, sc->maxpwr[chan]));
   1780 	}
   1781 }
   1782 
   1783 static void
   1784 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
   1785 {
   1786 	struct iwn_eeprom_enhinfo enhinfo[35];
   1787 	uint16_t val, base;
   1788 	int8_t maxpwr;
   1789 	uint8_t flags;
   1790 	int i;
   1791 
   1792 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
   1793 	base = le16toh(val);
   1794 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
   1795 	    enhinfo, sizeof enhinfo);
   1796 
   1797 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
   1798 	for (i = 0; i < __arraycount(enhinfo); i++) {
   1799 		flags = enhinfo[i].flags;
   1800 		if (!(flags & IWN_ENHINFO_VALID))
   1801 			continue;	/* Skip invalid entries. */
   1802 
   1803 		maxpwr = 0;
   1804 		if (sc->txchainmask & IWN_ANT_A)
   1805 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
   1806 		if (sc->txchainmask & IWN_ANT_B)
   1807 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
   1808 		if (sc->txchainmask & IWN_ANT_C)
   1809 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
   1810 		if (sc->ntxchains == 2)
   1811 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
   1812 		else if (sc->ntxchains == 3)
   1813 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
   1814 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
   1815 
   1816 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
   1817 		sc->enh_maxpwr[i] = maxpwr;
   1818 	}
   1819 }
   1820 
   1821 static struct ieee80211_node *
   1822 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
   1823 {
   1824 	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
   1825 }
   1826 
   1827 static void
   1828 iwn_newassoc(struct ieee80211_node *ni, int isnew)
   1829 {
   1830 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
   1831 	struct iwn_node *wn = (void *)ni;
   1832 	uint8_t rate;
   1833 	int ridx, i;
   1834 
   1835 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
   1836 	/* Start at lowest available bit-rate, AMRR will raise. */
   1837 	ni->ni_txrate = 0;
   1838 
   1839 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
   1840 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
   1841 		/* Map 802.11 rate to HW rate index. */
   1842 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1843 			if (iwn_rates[ridx].rate == rate)
   1844 				break;
   1845 		wn->ridx[i] = ridx;
   1846 	}
   1847 }
   1848 
   1849 static int
   1850 iwn_media_change(struct ifnet *ifp)
   1851 {
   1852 	struct iwn_softc *sc = ifp->if_softc;
   1853 	struct ieee80211com *ic = &sc->sc_ic;
   1854 	uint8_t rate, ridx;
   1855 	int error;
   1856 
   1857 	error = ieee80211_media_change(ifp);
   1858 	if (error != ENETRESET)
   1859 		return error;
   1860 
   1861 	if (ic->ic_fixed_rate != -1) {
   1862 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1863 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
   1864 		/* Map 802.11 rate to HW rate index. */
   1865 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
   1866 			if (iwn_rates[ridx].rate == rate)
   1867 				break;
   1868 		sc->fixed_ridx = ridx;
   1869 	}
   1870 
   1871 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1872 	    (IFF_UP | IFF_RUNNING)) {
   1873 		iwn_stop(ifp, 0);
   1874 		error = iwn_init(ifp);
   1875 	}
   1876 	return error;
   1877 }
   1878 
   1879 static int
   1880 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1881 {
   1882 	struct ifnet *ifp = ic->ic_ifp;
   1883 	struct iwn_softc *sc = ifp->if_softc;
   1884 	int error;
   1885 
   1886 	callout_stop(&sc->calib_to);
   1887 
   1888 	switch (nstate) {
   1889 	case IEEE80211_S_SCAN:
   1890 		/* XXX Do not abort a running scan. */
   1891 		if (sc->sc_flags & IWN_FLAG_SCANNING) {
   1892 			if (ic->ic_state != nstate)
   1893 				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
   1894 				    "while scanning(%d) ignored\n", nstate,
   1895 				    ic->ic_state);
   1896 			break;
   1897 		}
   1898 
   1899 		/* XXX Not sure if call and flags are needed. */
   1900 		ieee80211_node_table_reset(&ic->ic_scan);
   1901 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
   1902 		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
   1903 
   1904 		/* Make the link LED blink while we're scanning. */
   1905 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
   1906 
   1907 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
   1908 			aprint_error_dev(sc->sc_dev,
   1909 			    "could not initiate scan\n");
   1910 			return error;
   1911 		}
   1912 		ic->ic_state = nstate;
   1913 		return 0;
   1914 
   1915 	case IEEE80211_S_ASSOC:
   1916 		if (ic->ic_state != IEEE80211_S_RUN)
   1917 			break;
   1918 		/* FALLTHROUGH */
   1919 	case IEEE80211_S_AUTH:
   1920 		/* Reset state to handle reassociations correctly. */
   1921 		sc->rxon.associd = 0;
   1922 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
   1923 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1924 
   1925 		/* Wait until we hear a beacon before we transmit */
   1926 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1927 			sc->sc_beacon_wait = 1;
   1928 
   1929 		if ((error = iwn_auth(sc)) != 0) {
   1930 			aprint_error_dev(sc->sc_dev,
   1931 			    "could not move to auth state\n");
   1932 			return error;
   1933 		}
   1934 		break;
   1935 
   1936 	case IEEE80211_S_RUN:
   1937 		/*
   1938 		 * RUN -> RUN transition; Just restart timers.
   1939 		 */
   1940 		if (ic->ic_state == IEEE80211_S_RUN) {
   1941 			sc->calib_cnt = 0;
   1942 			break;
   1943 		}
   1944 
   1945 		/* Wait until we hear a beacon before we transmit */
   1946 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
   1947 			sc->sc_beacon_wait = 1;
   1948 
   1949 		if ((error = iwn_run(sc)) != 0) {
   1950 			aprint_error_dev(sc->sc_dev,
   1951 			    "could not move to run state\n");
   1952 			return error;
   1953 		}
   1954 		break;
   1955 
   1956 	case IEEE80211_S_INIT:
   1957 		sc->sc_flags &= ~IWN_FLAG_SCANNING;
   1958 		sc->calib.state = IWN_CALIB_STATE_INIT;
   1959 		/*
   1960 		 * Purge the xmit queue so we don't have old frames
   1961 		 * during a new association attempt.
   1962 		 */
   1963 		sc->sc_beacon_wait = 0;
   1964 		ifp->if_flags &= ~IFF_OACTIVE;
   1965 		iwn_start(ifp);
   1966 		break;
   1967 	}
   1968 
   1969 	return sc->sc_newstate(ic, nstate, arg);
   1970 }
   1971 
   1972 static void
   1973 iwn_iter_func(void *arg, struct ieee80211_node *ni)
   1974 {
   1975 	struct iwn_softc *sc = arg;
   1976 	struct iwn_node *wn = (struct iwn_node *)ni;
   1977 
   1978 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1979 }
   1980 
   1981 static void
   1982 iwn_calib_timeout(void *arg)
   1983 {
   1984 	struct iwn_softc *sc = arg;
   1985 	struct ieee80211com *ic = &sc->sc_ic;
   1986 	int s;
   1987 
   1988 	s = splnet();
   1989 	if (ic->ic_fixed_rate == -1) {
   1990 		if (ic->ic_opmode == IEEE80211_M_STA)
   1991 			iwn_iter_func(sc, ic->ic_bss);
   1992 		else
   1993 			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
   1994 	}
   1995 	/* Force automatic TX power calibration every 60 secs. */
   1996 	if (++sc->calib_cnt >= 120) {
   1997 		uint32_t flags = 0;
   1998 
   1999 		DPRINTF(("sending request for statistics\n"));
   2000 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
   2001 		    sizeof flags, 1);
   2002 		sc->calib_cnt = 0;
   2003 	}
   2004 	splx(s);
   2005 
   2006 	/* Automatic rate control triggered every 500ms. */
   2007 	callout_schedule(&sc->calib_to, mstohz(500));
   2008 }
   2009 
   2010 /*
   2011  * Process an RX_PHY firmware notification.  This is usually immediately
   2012  * followed by an MPDU_RX_DONE notification.
   2013  */
   2014 static void
   2015 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2016     struct iwn_rx_data *data)
   2017 {
   2018 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
   2019 
   2020 	DPRINTFN(2, ("received PHY stats\n"));
   2021 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2022 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2023 
   2024 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
   2025 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
   2026 	sc->last_rx_valid = 1;
   2027 }
   2028 
   2029 /*
   2030  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
   2031  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
   2032  */
   2033 static void
   2034 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2035     struct iwn_rx_data *data)
   2036 {
   2037 	struct iwn_ops *ops = &sc->ops;
   2038 	struct ieee80211com *ic = &sc->sc_ic;
   2039 	struct ifnet *ifp = ic->ic_ifp;
   2040 	struct iwn_rx_ring *ring = &sc->rxq;
   2041 	struct ieee80211_frame *wh;
   2042 	struct ieee80211_node *ni;
   2043 	struct mbuf *m, *m1;
   2044 	struct iwn_rx_stat *stat;
   2045 	char	*head;
   2046 	uint32_t flags;
   2047 	int error, len, rssi, s;
   2048 
   2049 	if (desc->type == IWN_MPDU_RX_DONE) {
   2050 		/* Check for prior RX_PHY notification. */
   2051 		if (!sc->last_rx_valid) {
   2052 			DPRINTF(("missing RX_PHY\n"));
   2053 			return;
   2054 		}
   2055 		sc->last_rx_valid = 0;
   2056 		stat = &sc->last_rx_stat;
   2057 	} else
   2058 		stat = (struct iwn_rx_stat *)(desc + 1);
   2059 
   2060 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
   2061 	    BUS_DMASYNC_POSTREAD);
   2062 
   2063 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
   2064 		aprint_error_dev(sc->sc_dev,
   2065 		    "invalid RX statistic header\n");
   2066 		return;
   2067 	}
   2068 	if (desc->type == IWN_MPDU_RX_DONE) {
   2069 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
   2070 		head = (char *)(mpdu + 1);
   2071 		len = le16toh(mpdu->len);
   2072 	} else {
   2073 		head = (char *)(stat + 1) + stat->cfg_phy_len;
   2074 		len = le16toh(stat->len);
   2075 	}
   2076 
   2077 	flags = le32toh(*(uint32_t *)(head + len));
   2078 
   2079 	/* Discard frames with a bad FCS early. */
   2080 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
   2081 		DPRINTFN(2, ("RX flags error %x\n", flags));
   2082 		if_statinc(ifp, if_ierrors);
   2083 		return;
   2084 	}
   2085 	/* Discard frames that are too short. */
   2086 	if (len < sizeof (*wh)) {
   2087 		DPRINTF(("frame too short: %d\n", len));
   2088 		ic->ic_stats.is_rx_tooshort++;
   2089 		if_statinc(ifp, if_ierrors);
   2090 		return;
   2091 	}
   2092 
   2093 	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
   2094 	if (m1 == NULL) {
   2095 		ic->ic_stats.is_rx_nobuf++;
   2096 		if_statinc(ifp, if_ierrors);
   2097 		return;
   2098 	}
   2099 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2100 
   2101 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
   2102 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   2103 	if (error != 0) {
   2104 		m_freem(m1);
   2105 
   2106 		/* Try to reload the old mbuf. */
   2107 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   2108 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
   2109 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   2110 		if (error != 0) {
   2111 			panic("%s: could not load old RX mbuf",
   2112 			    device_xname(sc->sc_dev));
   2113 		}
   2114 		/* Physical address may have changed. */
   2115 		ring->desc[ring->cur] =
   2116 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
   2117 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2118 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2119 		    BUS_DMASYNC_PREWRITE);
   2120 		if_statinc(ifp, if_ierrors);
   2121 		return;
   2122 	}
   2123 
   2124 	m = data->m;
   2125 	data->m = m1;
   2126 	/* Update RX descriptor. */
   2127 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
   2128 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   2129 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
   2130 	    BUS_DMASYNC_PREWRITE);
   2131 
   2132 	/* Finalize mbuf. */
   2133 	m_set_rcvif(m, ifp);
   2134 	m->m_data = head;
   2135 	m->m_pkthdr.len = m->m_len = len;
   2136 
   2137 	s = splnet();
   2138 
   2139 	/* Grab a reference to the source node. */
   2140 	wh = mtod(m, struct ieee80211_frame *);
   2141 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   2142 
   2143 	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
   2144 	/* NetBSD does decryption in ieee80211_input. */
   2145 
   2146 	rssi = ops->get_rssi(stat);
   2147 
   2148 	/* XXX Added for NetBSD: scans never stop without it */
   2149 	if (ic->ic_state == IEEE80211_S_SCAN)
   2150 		iwn_fix_channel(ic, m, stat);
   2151 
   2152 	if (sc->sc_drvbpf != NULL) {
   2153 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
   2154 
   2155 		tap->wr_flags = 0;
   2156 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
   2157 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2158 		tap->wr_chan_freq =
   2159 		    htole16(ic->ic_channels[stat->chan].ic_freq);
   2160 		tap->wr_chan_flags =
   2161 		    htole16(ic->ic_channels[stat->chan].ic_flags);
   2162 		tap->wr_dbm_antsignal = (int8_t)rssi;
   2163 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
   2164 		tap->wr_tsft = stat->tstamp;
   2165 		switch (stat->rate) {
   2166 		/* CCK rates. */
   2167 		case  10: tap->wr_rate =   2; break;
   2168 		case  20: tap->wr_rate =   4; break;
   2169 		case  55: tap->wr_rate =  11; break;
   2170 		case 110: tap->wr_rate =  22; break;
   2171 		/* OFDM rates. */
   2172 		case 0xd: tap->wr_rate =  12; break;
   2173 		case 0xf: tap->wr_rate =  18; break;
   2174 		case 0x5: tap->wr_rate =  24; break;
   2175 		case 0x7: tap->wr_rate =  36; break;
   2176 		case 0x9: tap->wr_rate =  48; break;
   2177 		case 0xb: tap->wr_rate =  72; break;
   2178 		case 0x1: tap->wr_rate =  96; break;
   2179 		case 0x3: tap->wr_rate = 108; break;
   2180 		/* Unknown rate: should not happen. */
   2181 		default:  tap->wr_rate =   0;
   2182 		}
   2183 
   2184 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   2185 	}
   2186 
   2187 	/*
   2188 	 * If it's a beacon and we're waiting, then do the wakeup.
   2189 	 */
   2190 	if (sc->sc_beacon_wait) {
   2191 		uint8_t type, subtype;
   2192 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2193 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2194 		/*
   2195 		 * This assumes at this point we've received our own
   2196 		 * beacon.
   2197 		 */
   2198 		if (type == IEEE80211_FC0_TYPE_MGT &&
   2199 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
   2200 			sc->sc_beacon_wait = 0;
   2201 			ifp->if_flags &= ~IFF_OACTIVE;
   2202 			iwn_start(ifp);
   2203 		}
   2204 	}
   2205 
   2206 	/* Send the frame to the 802.11 layer. */
   2207 	ieee80211_input(ic, m, ni, rssi, 0);
   2208 
   2209 	/* Node is no longer needed. */
   2210 	ieee80211_free_node(ni);
   2211 
   2212 	splx(s);
   2213 }
   2214 
   2215 #ifndef IEEE80211_NO_HT
   2216 /* Process an incoming Compressed BlockAck. */
   2217 static void
   2218 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2219     struct iwn_rx_data *data)
   2220 {
   2221 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
   2222 	struct iwn_tx_ring *txq;
   2223 
   2224 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
   2225 	    BUS_DMASYNC_POSTREAD);
   2226 
   2227 	txq = &sc->txq[le16toh(ba->qid)];
   2228 	/* XXX TBD */
   2229 }
   2230 #endif
   2231 
   2232 /*
   2233  * Process a CALIBRATION_RESULT notification sent by the initialization
   2234  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
   2235  */
   2236 static void
   2237 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2238     struct iwn_rx_data *data)
   2239 {
   2240 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
   2241 	int len, idx = -1;
   2242 
   2243 	/* Runtime firmware should not send such a notification. */
   2244 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
   2245 		return;
   2246 
   2247 	len = (le32toh(desc->len) & 0x3fff) - 4;
   2248 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
   2249 	    BUS_DMASYNC_POSTREAD);
   2250 
   2251 	switch (calib->code) {
   2252 	case IWN5000_PHY_CALIB_DC:
   2253 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
   2254 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   2255 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   2256 		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   2257 		    sc->hw_type == IWN_HW_REV_TYPE_105)
   2258 			idx = 0;
   2259 		break;
   2260 	case IWN5000_PHY_CALIB_LO:
   2261 		idx = 1;
   2262 		break;
   2263 	case IWN5000_PHY_CALIB_TX_IQ:
   2264 		idx = 2;
   2265 		break;
   2266 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
   2267 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
   2268 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
   2269 			idx = 3;
   2270 		break;
   2271 	case IWN5000_PHY_CALIB_BASE_BAND:
   2272 		idx = 4;
   2273 		break;
   2274 	}
   2275 	if (idx == -1)	/* Ignore other results. */
   2276 		return;
   2277 
   2278 	/* Save calibration result. */
   2279 	if (sc->calibcmd[idx].buf != NULL)
   2280 		free(sc->calibcmd[idx].buf, M_DEVBUF);
   2281 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
   2282 	if (sc->calibcmd[idx].buf == NULL) {
   2283 		DPRINTF(("not enough memory for calibration result %d\n",
   2284 		    calib->code));
   2285 		return;
   2286 	}
   2287 	DPRINTF(("saving calibration result code=%d len=%d\n",
   2288 	    calib->code, len));
   2289 	sc->calibcmd[idx].len = len;
   2290 	memcpy(sc->calibcmd[idx].buf, calib, len);
   2291 }
   2292 
   2293 /*
   2294  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
   2295  * The latter is sent by the firmware after each received beacon.
   2296  */
   2297 static void
   2298 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2299     struct iwn_rx_data *data)
   2300 {
   2301 	struct iwn_ops *ops = &sc->ops;
   2302 	struct ieee80211com *ic = &sc->sc_ic;
   2303 	struct iwn_calib_state *calib = &sc->calib;
   2304 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
   2305 	int temp;
   2306 
   2307 	/* Ignore statistics received during a scan. */
   2308 	if (ic->ic_state != IEEE80211_S_RUN)
   2309 		return;
   2310 
   2311 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2312 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
   2313 
   2314 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
   2315 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
   2316 
   2317 	/* Test if temperature has changed. */
   2318 	if (stats->general.temp != sc->rawtemp) {
   2319 		/* Convert "raw" temperature to degC. */
   2320 		sc->rawtemp = stats->general.temp;
   2321 		temp = ops->get_temperature(sc);
   2322 		DPRINTFN(2, ("temperature=%dC\n", temp));
   2323 
   2324 		/* Update TX power if need be (4965AGN only). */
   2325 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   2326 			iwn4965_power_calibration(sc, temp);
   2327 	}
   2328 
   2329 	if (desc->type != IWN_BEACON_STATISTICS)
   2330 		return;	/* Reply to a statistics request. */
   2331 
   2332 	sc->noise = iwn_get_noise(&stats->rx.general);
   2333 
   2334 	/* Test that RSSI and noise are present in stats report. */
   2335 	if (le32toh(stats->rx.general.flags) != 1) {
   2336 		DPRINTF(("received statistics without RSSI\n"));
   2337 		return;
   2338 	}
   2339 
   2340 	/*
   2341 	 * XXX Differential gain calibration makes the 6005 firmware
   2342 	 * crap out, so skip it for now.  This effectively disables
   2343 	 * sensitivity tuning as well.
   2344 	 */
   2345 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   2346 		return;
   2347 
   2348 	if (calib->state == IWN_CALIB_STATE_ASSOC)
   2349 		iwn_collect_noise(sc, &stats->rx.general);
   2350 	else if (calib->state == IWN_CALIB_STATE_RUN)
   2351 		iwn_tune_sensitivity(sc, &stats->rx);
   2352 }
   2353 
   2354 /*
   2355  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
   2356  * and 5000 adapters have different incompatible TX status formats.
   2357  */
   2358 static void
   2359 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2360     struct iwn_rx_data *data)
   2361 {
   2362 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
   2363 
   2364 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2365 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2366 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
   2367 }
   2368 
   2369 static void
   2370 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
   2371     struct iwn_rx_data *data)
   2372 {
   2373 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
   2374 
   2375 #ifdef notyet
   2376 	/* Reset TX scheduler slot. */
   2377 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
   2378 #endif
   2379 
   2380 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2381 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
   2382 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
   2383 }
   2384 
   2385 /*
   2386  * Adapter-independent backend for TX_DONE firmware notifications.
   2387  */
   2388 static void
   2389 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
   2390     uint8_t status)
   2391 {
   2392 	struct ieee80211com *ic = &sc->sc_ic;
   2393 	struct ifnet *ifp = ic->ic_ifp;
   2394 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
   2395 	struct iwn_tx_data *data = &ring->data[desc->idx];
   2396 	struct iwn_node *wn = (struct iwn_node *)data->ni;
   2397 	int s;
   2398 
   2399 	s = splnet();
   2400 
   2401 	/* Update rate control statistics. */
   2402 	wn->amn.amn_txcnt++;
   2403 	if (ackfailcnt > 0)
   2404 		wn->amn.amn_retrycnt++;
   2405 
   2406 	if (status != 1 && status != 2)
   2407 		if_statinc(ifp, if_oerrors);
   2408 	else
   2409 		if_statinc(ifp, if_opackets);
   2410 
   2411 	/* Unmap and free mbuf. */
   2412 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2413 	    BUS_DMASYNC_POSTWRITE);
   2414 	bus_dmamap_unload(sc->sc_dmat, data->map);
   2415 	m_freem(data->m);
   2416 	data->m = NULL;
   2417 	ieee80211_free_node(data->ni);
   2418 	data->ni = NULL;
   2419 
   2420 	sc->sc_tx_timer = 0;
   2421 	if (--ring->queued < IWN_TX_RING_LOMARK) {
   2422 		sc->qfullmsk &= ~(1 << ring->qid);
   2423 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
   2424 			ifp->if_flags &= ~IFF_OACTIVE;
   2425 			iwn_start(ifp);
   2426 		}
   2427 	}
   2428 
   2429 	splx(s);
   2430 }
   2431 
   2432 /*
   2433  * Process a "command done" firmware notification.  This is where we wakeup
   2434  * processes waiting for a synchronous command completion.
   2435  */
   2436 static void
   2437 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
   2438 {
   2439 	struct iwn_tx_ring *ring = &sc->txq[4];
   2440 	struct iwn_tx_data *data;
   2441 
   2442 	if ((desc->qid & 0xf) != 4)
   2443 		return;	/* Not a command ack. */
   2444 
   2445 	data = &ring->data[desc->idx];
   2446 
   2447 	/* If the command was mapped in an mbuf, free it. */
   2448 	if (data->m != NULL) {
   2449 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2450 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2451 		bus_dmamap_unload(sc->sc_dmat, data->map);
   2452 		m_freem(data->m);
   2453 		data->m = NULL;
   2454 	}
   2455 	wakeup(&ring->desc[desc->idx]);
   2456 }
   2457 
   2458 /*
   2459  * Process an INT_FH_RX or INT_SW_RX interrupt.
   2460  */
   2461 static void
   2462 iwn_notif_intr(struct iwn_softc *sc)
   2463 {
   2464 	struct iwn_ops *ops = &sc->ops;
   2465 	struct ieee80211com *ic = &sc->sc_ic;
   2466 	struct ifnet *ifp = ic->ic_ifp;
   2467 	uint16_t hw;
   2468 	int s;
   2469 
   2470 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
   2471 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
   2472 
   2473 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
   2474 	while (sc->rxq.cur != hw) {
   2475 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   2476 		struct iwn_rx_desc *desc;
   2477 
   2478 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
   2479 		    BUS_DMASYNC_POSTREAD);
   2480 		desc = mtod(data->m, struct iwn_rx_desc *);
   2481 
   2482 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
   2483 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
   2484 
   2485 		if (!(desc->qid & 0x80))	/* Reply to a command. */
   2486 			iwn_cmd_done(sc, desc);
   2487 
   2488 		switch (desc->type) {
   2489 		case IWN_RX_PHY:
   2490 			iwn_rx_phy(sc, desc, data);
   2491 			break;
   2492 
   2493 		case IWN_RX_DONE:		/* 4965AGN only. */
   2494 		case IWN_MPDU_RX_DONE:
   2495 			/* An 802.11 frame has been received. */
   2496 			iwn_rx_done(sc, desc, data);
   2497 			break;
   2498 #ifndef IEEE80211_NO_HT
   2499 		case IWN_RX_COMPRESSED_BA:
   2500 			/* A Compressed BlockAck has been received. */
   2501 			iwn_rx_compressed_ba(sc, desc, data);
   2502 			break;
   2503 #endif
   2504 		case IWN_TX_DONE:
   2505 			/* An 802.11 frame has been transmitted. */
   2506 			ops->tx_done(sc, desc, data);
   2507 			break;
   2508 
   2509 		case IWN_RX_STATISTICS:
   2510 		case IWN_BEACON_STATISTICS:
   2511 			iwn_rx_statistics(sc, desc, data);
   2512 			break;
   2513 
   2514 		case IWN_BEACON_MISSED:
   2515 		{
   2516 			struct iwn_beacon_missed *miss =
   2517 			    (struct iwn_beacon_missed *)(desc + 1);
   2518 
   2519 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2520 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
   2521 			/*
   2522 			 * If more than 5 consecutive beacons are missed,
   2523 			 * reinitialize the sensitivity state machine.
   2524 			 */
   2525 			DPRINTF(("beacons missed %d/%d\n",
   2526 			    le32toh(miss->consecutive), le32toh(miss->total)));
   2527 			if (ic->ic_state == IEEE80211_S_RUN &&
   2528 			    le32toh(miss->consecutive) > 5)
   2529 				(void)iwn_init_sensitivity(sc);
   2530 			break;
   2531 		}
   2532 		case IWN_UC_READY:
   2533 		{
   2534 			struct iwn_ucode_info *uc =
   2535 			    (struct iwn_ucode_info *)(desc + 1);
   2536 
   2537 			/* The microcontroller is ready. */
   2538 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2539 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
   2540 			DPRINTF(("microcode alive notification version=%d.%d "
   2541 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
   2542 			    uc->subtype, le32toh(uc->valid)));
   2543 
   2544 			if (le32toh(uc->valid) != 1) {
   2545 				aprint_error_dev(sc->sc_dev,
   2546 				    "microcontroller initialization "
   2547 				    "failed\n");
   2548 				break;
   2549 			}
   2550 			if (uc->subtype == IWN_UCODE_INIT) {
   2551 				/* Save microcontroller report. */
   2552 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
   2553 			}
   2554 			/* Save the address of the error log in SRAM. */
   2555 			sc->errptr = le32toh(uc->errptr);
   2556 			break;
   2557 		}
   2558 		case IWN_STATE_CHANGED:
   2559 		{
   2560 			uint32_t *status = (uint32_t *)(desc + 1);
   2561 
   2562 			/* Enabled/disabled notification. */
   2563 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2564 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
   2565 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   2566 
   2567 			if (le32toh(*status) & 1) {
   2568 				/* The radio button has to be pushed. */
   2569 				aprint_error_dev(sc->sc_dev,
   2570 				    "Radio transmitter is off\n");
   2571 				/* Turn the interface down. */
   2572 				s = splnet();
   2573 				ifp->if_flags &= ~IFF_UP;
   2574 				iwn_stop(ifp, 1);
   2575 				splx(s);
   2576 				return;	/* No further processing. */
   2577 			}
   2578 			break;
   2579 		}
   2580 		case IWN_START_SCAN:
   2581 		{
   2582 			struct iwn_start_scan *scan =
   2583 			    (struct iwn_start_scan *)(desc + 1);
   2584 
   2585 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2586 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2587 			DPRINTFN(2, ("scanning channel %d status %x\n",
   2588 			    scan->chan, le32toh(scan->status)));
   2589 
   2590 			/* Fix current channel. */
   2591 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   2592 			break;
   2593 		}
   2594 		case IWN_STOP_SCAN:
   2595 		{
   2596 			struct iwn_stop_scan *scan =
   2597 			    (struct iwn_stop_scan *)(desc + 1);
   2598 
   2599 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
   2600 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
   2601 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   2602 			    scan->nchan, scan->status, scan->chan));
   2603 
   2604 			if (scan->status == 1 && scan->chan <= 14 &&
   2605 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
   2606 				/*
   2607 				 * We just finished scanning 2GHz channels,
   2608 				 * start scanning 5GHz ones.
   2609 				 */
   2610 				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
   2611 				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
   2612 				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
   2613 					break;
   2614 			}
   2615 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
   2616 			ieee80211_end_scan(ic);
   2617 			break;
   2618 		}
   2619 		case IWN5000_CALIBRATION_RESULT:
   2620 			iwn5000_rx_calib_results(sc, desc, data);
   2621 			break;
   2622 
   2623 		case IWN5000_CALIBRATION_DONE:
   2624 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
   2625 			wakeup(sc);
   2626 			break;
   2627 		}
   2628 
   2629 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
   2630 	}
   2631 
   2632 	/* Tell the firmware what we have processed. */
   2633 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
   2634 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
   2635 }
   2636 
   2637 /*
   2638  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
   2639  * from power-down sleep mode.
   2640  */
   2641 static void
   2642 iwn_wakeup_intr(struct iwn_softc *sc)
   2643 {
   2644 	int qid;
   2645 
   2646 	DPRINTF(("ucode wakeup from power-down sleep\n"));
   2647 
   2648 	/* Wakeup RX and TX rings. */
   2649 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
   2650 	for (qid = 0; qid < sc->ntxqs; qid++) {
   2651 		struct iwn_tx_ring *ring = &sc->txq[qid];
   2652 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
   2653 	}
   2654 }
   2655 
   2656 /*
   2657  * Dump the error log of the firmware when a firmware panic occurs.  Although
   2658  * we can't debug the firmware because it is neither open source nor free, it
   2659  * can help us to identify certain classes of problems.
   2660  */
   2661 static void
   2662 iwn_fatal_intr(struct iwn_softc *sc)
   2663 {
   2664 	struct iwn_fw_dump dump;
   2665 	int i;
   2666 
   2667 	/* Force a complete recalibration on next init. */
   2668 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
   2669 
   2670 	/* Check that the error log address is valid. */
   2671 	if (sc->errptr < IWN_FW_DATA_BASE ||
   2672 	    sc->errptr + sizeof (dump) >
   2673 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
   2674 		aprint_error_dev(sc->sc_dev,
   2675 		    "bad firmware error log address 0x%08x\n", sc->errptr);
   2676 		return;
   2677 	}
   2678 	if (iwn_nic_lock(sc) != 0) {
   2679 		aprint_error_dev(sc->sc_dev,
   2680 		    "could not read firmware error log\n");
   2681 		return;
   2682 	}
   2683 	/* Read firmware error log from SRAM. */
   2684 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
   2685 	    sizeof (dump) / sizeof (uint32_t));
   2686 	iwn_nic_unlock(sc);
   2687 
   2688 	if (dump.valid == 0) {
   2689 		aprint_error_dev(sc->sc_dev,
   2690 		    "firmware error log is empty\n");
   2691 		return;
   2692 	}
   2693 	aprint_error("firmware error log:\n");
   2694 	aprint_error("  error type      = \"%s\" (0x%08X)\n",
   2695 	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
   2696 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
   2697 	    dump.id);
   2698 	aprint_error("  program counter = 0x%08X\n", dump.pc);
   2699 	aprint_error("  source line     = 0x%08X\n", dump.src_line);
   2700 	aprint_error("  error data      = 0x%08X%08X\n",
   2701 	    dump.error_data[0], dump.error_data[1]);
   2702 	aprint_error("  branch link     = 0x%08X%08X\n",
   2703 	    dump.branch_link[0], dump.branch_link[1]);
   2704 	aprint_error("  interrupt link  = 0x%08X%08X\n",
   2705 	    dump.interrupt_link[0], dump.interrupt_link[1]);
   2706 	aprint_error("  time            = %u\n", dump.time[0]);
   2707 
   2708 	/* Dump driver status (TX and RX rings) while we're here. */
   2709 	aprint_error("driver status:\n");
   2710 	for (i = 0; i < sc->ntxqs; i++) {
   2711 		struct iwn_tx_ring *ring = &sc->txq[i];
   2712 		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
   2713 		    i, ring->qid, ring->cur, ring->queued);
   2714 	}
   2715 	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
   2716 	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
   2717 }
   2718 
   2719 static int
   2720 iwn_intr(void *arg)
   2721 {
   2722 	struct iwn_softc *sc = arg;
   2723 
   2724 	/* Disable interrupts. */
   2725 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   2726 
   2727 	softint_schedule(sc->sc_soft_ih);
   2728 	return 1;
   2729 }
   2730 
   2731 static void
   2732 iwn_softintr(void *arg)
   2733 {
   2734 	struct iwn_softc *sc = arg;
   2735 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2736 	uint32_t r1, r2, tmp;
   2737 	int s;
   2738 
   2739 	/* Read interrupts from ICT (fast) or from registers (slow). */
   2740 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2741 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2742 		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
   2743 		tmp = 0;
   2744 		while (sc->ict[sc->ict_cur] != 0) {
   2745 			tmp |= sc->ict[sc->ict_cur];
   2746 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
   2747 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
   2748 		}
   2749 		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
   2750 		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
   2751 		tmp = le32toh(tmp);
   2752 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
   2753 			tmp = 0;
   2754 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
   2755 			tmp |= 0x8000;
   2756 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
   2757 		r2 = 0;	/* Unused. */
   2758 	} else {
   2759 		r1 = IWN_READ(sc, IWN_INT);
   2760 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
   2761 			return;	/* Hardware gone! */
   2762 		r2 = IWN_READ(sc, IWN_FH_INT);
   2763 	}
   2764 	if (r1 == 0 && r2 == 0) {
   2765 		goto out;	/* Interrupt not for us. */
   2766 	}
   2767 
   2768 	/* Acknowledge interrupts. */
   2769 	IWN_WRITE(sc, IWN_INT, r1);
   2770 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
   2771 		IWN_WRITE(sc, IWN_FH_INT, r2);
   2772 
   2773 	if (r1 & IWN_INT_RF_TOGGLED) {
   2774 		tmp = IWN_READ(sc, IWN_GP_CNTRL);
   2775 		aprint_error_dev(sc->sc_dev,
   2776 		    "RF switch: radio %s\n",
   2777 		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
   2778 	}
   2779 	if (r1 & IWN_INT_CT_REACHED) {
   2780 		aprint_error_dev(sc->sc_dev,
   2781 		    "critical temperature reached!\n");
   2782 	}
   2783 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
   2784 		aprint_error_dev(sc->sc_dev,
   2785 		    "fatal firmware error\n");
   2786 		/* Dump firmware error log and stop. */
   2787 		iwn_fatal_intr(sc);
   2788 		s = splnet();
   2789 		ifp->if_flags &= ~IFF_UP;
   2790 		iwn_stop(ifp, 1);
   2791 		splx(s);
   2792 		return;
   2793 	}
   2794 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
   2795 	    (r2 & IWN_FH_INT_RX)) {
   2796 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
   2797 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
   2798 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
   2799 			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
   2800 			iwn_notif_intr(sc);
   2801 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
   2802 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
   2803 				    IWN_INT_PERIODIC_ENA);
   2804 			}
   2805 		} else
   2806 			iwn_notif_intr(sc);
   2807 	}
   2808 
   2809 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
   2810 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
   2811 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
   2812 		wakeup(sc);	/* FH DMA transfer completed. */
   2813 	}
   2814 
   2815 	if (r1 & IWN_INT_ALIVE)
   2816 		wakeup(sc);	/* Firmware is alive. */
   2817 
   2818 	if (r1 & IWN_INT_WAKEUP)
   2819 		iwn_wakeup_intr(sc);
   2820 
   2821 out:
   2822 	/* Re-enable interrupts. */
   2823 	if (ifp->if_flags & IFF_UP)
   2824 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   2825 }
   2826 
   2827 /*
   2828  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
   2829  * 5000 adapters use a slightly different format).
   2830  */
   2831 static void
   2832 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2833     uint16_t len)
   2834 {
   2835 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
   2836 
   2837 	*w = htole16(len + 8);
   2838 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2839 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2840 	    sizeof (uint16_t),
   2841 	    BUS_DMASYNC_PREWRITE);
   2842 	if (idx < IWN_SCHED_WINSZ) {
   2843 		*(w + IWN_TX_RING_COUNT) = *w;
   2844 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2845 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2846 		    (char *)(void *)sc->sched_dma.vaddr,
   2847 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2848 	}
   2849 }
   2850 
   2851 static void
   2852 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
   2853     uint16_t len)
   2854 {
   2855 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2856 
   2857 	*w = htole16(id << 12 | (len + 8));
   2858 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2859 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2860 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2861 	if (idx < IWN_SCHED_WINSZ) {
   2862 		*(w + IWN_TX_RING_COUNT) = *w;
   2863 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2864 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2865 		    (char *)(void *)sc->sched_dma.vaddr,
   2866 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2867 	}
   2868 }
   2869 
   2870 #ifdef notyet
   2871 static void
   2872 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
   2873 {
   2874 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
   2875 
   2876 	*w = (*w & htole16(0xf000)) | htole16(1);
   2877 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2878 	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
   2879 	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2880 	if (idx < IWN_SCHED_WINSZ) {
   2881 		*(w + IWN_TX_RING_COUNT) = *w;
   2882 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
   2883 		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
   2884 		    (char *)(void *)sc->sched_dma.vaddr,
   2885 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
   2886 	}
   2887 }
   2888 #endif
   2889 
   2890 static int
   2891 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
   2892 {
   2893 	struct ieee80211com *ic = &sc->sc_ic;
   2894 	struct iwn_node *wn = (void *)ni;
   2895 	struct iwn_tx_ring *ring;
   2896 	struct iwn_tx_desc *desc;
   2897 	struct iwn_tx_data *data;
   2898 	struct iwn_tx_cmd *cmd;
   2899 	struct iwn_cmd_data *tx;
   2900 	const struct iwn_rate *rinfo;
   2901 	struct ieee80211_frame *wh;
   2902 	struct ieee80211_key *k = NULL;
   2903 	struct mbuf *m1;
   2904 	uint32_t flags;
   2905 	u_int hdrlen;
   2906 	bus_dma_segment_t *seg;
   2907 	uint8_t tid, ridx, txant, type;
   2908 	int i, totlen, error, pad;
   2909 
   2910 	const struct chanAccParams *cap;
   2911 	int noack;
   2912 	int hdrlen2;
   2913 
   2914 	wh = mtod(m, struct ieee80211_frame *);
   2915 	hdrlen = ieee80211_anyhdrsize(wh);
   2916 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
   2917 
   2918 	hdrlen2 = (ieee80211_has_qos(wh)) ?
   2919 	    sizeof (struct ieee80211_qosframe) :
   2920 	    sizeof (struct ieee80211_frame);
   2921 
   2922 	if (hdrlen != hdrlen2)
   2923 	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
   2924 		hdrlen, hdrlen2);
   2925 
   2926 	/* XXX OpenBSD sets a different tid when using QOS */
   2927 	tid = 0;
   2928 	if (ieee80211_has_qos(wh)) {
   2929 		cap = &ic->ic_wme.wme_chanParams;
   2930 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   2931 	}
   2932 	else
   2933 		noack = 0;
   2934 
   2935 	ring = &sc->txq[ac];
   2936 	desc = &ring->desc[ring->cur];
   2937 	data = &ring->data[ring->cur];
   2938 
   2939 	/* Choose a TX rate index. */
   2940 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   2941 	    type != IEEE80211_FC0_TYPE_DATA) {
   2942 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2943 		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
   2944 	} else if (ic->ic_fixed_rate != -1) {
   2945 		ridx = sc->fixed_ridx;
   2946 	} else
   2947 		ridx = wn->ridx[ni->ni_txrate];
   2948 	rinfo = &iwn_rates[ridx];
   2949 
   2950 	/* Encrypt the frame if need be. */
   2951 	/*
   2952 	 * XXX For now, NetBSD swaps the encryption and bpf sections
   2953 	 * in order to match old code and other drivers. Tests with
   2954 	 * tcpdump indicates that the order is irrelevant, however,
   2955 	 * as bpf produces unencrypted data for both ordering choices.
   2956 	 */
   2957 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2958 		k = ieee80211_crypto_encap(ic, ni, m);
   2959 		if (k == NULL) {
   2960 			m_freem(m);
   2961 			return ENOBUFS;
   2962 		}
   2963 		/* Packet header may have moved, reset our local pointer. */
   2964 		wh = mtod(m, struct ieee80211_frame *);
   2965 	}
   2966 	totlen = m->m_pkthdr.len;
   2967 
   2968 	if (sc->sc_drvbpf != NULL) {
   2969 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
   2970 
   2971 		tap->wt_flags = 0;
   2972 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   2973 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   2974 		tap->wt_rate = rinfo->rate;
   2975 		tap->wt_hwqueue = ac;
   2976 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   2977 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2978 
   2979 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
   2980 	}
   2981 
   2982 	/* Prepare TX firmware command. */
   2983 	cmd = &ring->cmd[ring->cur];
   2984 	cmd->code = IWN_CMD_TX_DATA;
   2985 	cmd->flags = 0;
   2986 	cmd->qid = ring->qid;
   2987 	cmd->idx = ring->cur;
   2988 
   2989 	tx = (struct iwn_cmd_data *)cmd->data;
   2990 	/* NB: No need to clear tx, all fields are reinitialized here. */
   2991 	tx->scratch = 0;	/* clear "scratch" area */
   2992 
   2993 	flags = 0;
   2994 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2995 		/* Unicast frame, check if an ACK is expected. */
   2996 		if (!noack)
   2997 			flags |= IWN_TX_NEED_ACK;
   2998 	}
   2999 
   3000 #ifdef notyet
   3001 	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
   3002 	if ((wh->i_fc[0] &
   3003 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   3004 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
   3005 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
   3006 #endif
   3007 
   3008 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
   3009 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
   3010 
   3011 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   3012 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   3013 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   3014 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
   3015 			flags |= IWN_TX_NEED_RTS;
   3016 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3017 		    ridx >= IWN_RIDX_OFDM6) {
   3018 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3019 				flags |= IWN_TX_NEED_CTS;
   3020 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3021 				flags |= IWN_TX_NEED_RTS;
   3022 		}
   3023 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
   3024 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   3025 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
   3026 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
   3027 				flags |= IWN_TX_NEED_PROTECTION;
   3028 			} else
   3029 				flags |= IWN_TX_FULL_TXOP;
   3030 		}
   3031 	}
   3032 
   3033 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   3034 	    type != IEEE80211_FC0_TYPE_DATA)
   3035 		tx->id = sc->broadcast_id;
   3036 	else
   3037 		tx->id = wn->id;
   3038 
   3039 	if (type == IEEE80211_FC0_TYPE_MGT) {
   3040 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3041 
   3042 #ifndef IEEE80211_STA_ONLY
   3043 		/* Tell HW to set timestamp in probe responses. */
   3044 		/* XXX NetBSD rev 1.11 added probe requests here but */
   3045 		/* probe requests do not take timestamps (from Bergamini). */
   3046 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3047 			flags |= IWN_TX_INSERT_TSTAMP;
   3048 #endif
   3049 		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
   3050 		/* changes here. These are not needed (from Bergamini). */
   3051 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
   3052 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
   3053 			tx->timeout = htole16(3);
   3054 		else
   3055 			tx->timeout = htole16(2);
   3056 	} else
   3057 		tx->timeout = htole16(0);
   3058 
   3059 	if (hdrlen & 3) {
   3060 		/* First segment length must be a multiple of 4. */
   3061 		flags |= IWN_TX_NEED_PADDING;
   3062 		pad = 4 - (hdrlen & 3);
   3063 	} else
   3064 		pad = 0;
   3065 
   3066 	tx->len = htole16(totlen);
   3067 	tx->tid = tid;
   3068 	tx->rts_ntries = 60;
   3069 	tx->data_ntries = 15;
   3070 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   3071 	tx->plcp = rinfo->plcp;
   3072 	tx->rflags = rinfo->flags;
   3073 	if (tx->id == sc->broadcast_id) {
   3074 		/* Group or management frame. */
   3075 		tx->linkq = 0;
   3076 		/* XXX Alternate between antenna A and B? */
   3077 		txant = IWN_LSB(sc->txchainmask);
   3078 		tx->rflags |= IWN_RFLAG_ANT(txant);
   3079 	} else {
   3080 		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
   3081 		flags |= IWN_TX_LINKQ;	/* enable MRR */
   3082 	}
   3083 	/* Set physical address of "scratch area". */
   3084 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
   3085 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
   3086 
   3087 	/* Copy 802.11 header in TX command. */
   3088 	/* XXX NetBSD changed this in rev 1.20 */
   3089 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
   3090 
   3091 	/* Trim 802.11 header. */
   3092 	m_adj(m, hdrlen);
   3093 	tx->security = 0;
   3094 	tx->flags = htole32(flags);
   3095 
   3096 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3097 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3098 	if (error != 0) {
   3099 		if (error != EFBIG) {
   3100 			aprint_error_dev(sc->sc_dev,
   3101 			    "can't map mbuf (error %d)\n", error);
   3102 			m_freem(m);
   3103 			return error;
   3104 		}
   3105 		/* Too many DMA segments, linearize mbuf. */
   3106 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   3107 		if (m1 == NULL) {
   3108 			m_freem(m);
   3109 			return ENOBUFS;
   3110 		}
   3111 		if (m->m_pkthdr.len > MHLEN) {
   3112 			MCLGET(m1, M_DONTWAIT);
   3113 			if (!(m1->m_flags & M_EXT)) {
   3114 				m_freem(m);
   3115 				m_freem(m1);
   3116 				return ENOBUFS;
   3117 			}
   3118 		}
   3119 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   3120 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   3121 		m_freem(m);
   3122 		m = m1;
   3123 
   3124 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   3125 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3126 		if (error != 0) {
   3127 			aprint_error_dev(sc->sc_dev,
   3128 			    "can't map mbuf (error %d)\n", error);
   3129 			m_freem(m);
   3130 			return error;
   3131 		}
   3132 	}
   3133 
   3134 	data->m = m;
   3135 	data->ni = ni;
   3136 
   3137 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   3138 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
   3139 
   3140 	/* Fill TX descriptor. */
   3141 	desc->nsegs = 1 + data->map->dm_nsegs;
   3142 	/* First DMA segment is used by the TX command. */
   3143 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
   3144 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
   3145 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
   3146 	/* Other DMA segments are for data payload. */
   3147 	seg = data->map->dm_segs;
   3148 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   3149 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
   3150 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
   3151 		    seg->ds_len << 4);
   3152 		seg++;
   3153 	}
   3154 
   3155 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   3156 	    BUS_DMASYNC_PREWRITE);
   3157 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3158 	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3159 	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
   3160 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3161 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3162 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3163 
   3164 #ifdef notyet
   3165 	/* Update TX scheduler. */
   3166 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
   3167 #endif
   3168 
   3169 	/* Kick TX ring. */
   3170 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3171 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3172 
   3173 	/* Mark TX ring as full if we reach a certain threshold. */
   3174 	if (++ring->queued > IWN_TX_RING_HIMARK)
   3175 		sc->qfullmsk |= 1 << ring->qid;
   3176 
   3177 	return 0;
   3178 }
   3179 
   3180 static void
   3181 iwn_start(struct ifnet *ifp)
   3182 {
   3183 	struct iwn_softc *sc = ifp->if_softc;
   3184 	struct ieee80211com *ic = &sc->sc_ic;
   3185 	struct ieee80211_node *ni;
   3186 	struct ether_header *eh;
   3187 	struct mbuf *m;
   3188 	int ac;
   3189 
   3190 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   3191 		return;
   3192 
   3193 	for (;;) {
   3194 		if (sc->sc_beacon_wait == 1) {
   3195 			ifp->if_flags |= IFF_OACTIVE;
   3196 			break;
   3197 		}
   3198 
   3199 		if (sc->qfullmsk != 0) {
   3200 			ifp->if_flags |= IFF_OACTIVE;
   3201 			break;
   3202 		}
   3203 		/* Send pending management frames first. */
   3204 		IF_DEQUEUE(&ic->ic_mgtq, m);
   3205 		if (m != NULL) {
   3206 			ni = M_GETCTX(m, struct ieee80211_node *);
   3207 			ac = 0;
   3208 			goto sendit;
   3209 		}
   3210 		if (ic->ic_state != IEEE80211_S_RUN)
   3211 			break;
   3212 
   3213 		/* Encapsulate and send data frames. */
   3214 		IFQ_DEQUEUE(&ifp->if_snd, m);
   3215 		if (m == NULL)
   3216 			break;
   3217 		if (m->m_len < sizeof (*eh) &&
   3218 		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
   3219 			if_statinc(ifp, if_oerrors);
   3220 			continue;
   3221 		}
   3222 		eh = mtod(m, struct ether_header *);
   3223 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   3224 		if (ni == NULL) {
   3225 			m_freem(m);
   3226 			if_statinc(ifp, if_oerrors);
   3227 			continue;
   3228 		}
   3229 		/* classify mbuf so we can find which tx ring to use */
   3230 		if (ieee80211_classify(ic, m, ni) != 0) {
   3231 			m_freem(m);
   3232 			ieee80211_free_node(ni);
   3233 			if_statinc(ifp, if_oerrors);
   3234 			continue;
   3235 		}
   3236 
   3237 		/* No QoS encapsulation for EAPOL frames. */
   3238 		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   3239 		    M_WME_GETAC(m) : WME_AC_BE;
   3240 
   3241 		if (sc->sc_beacon_wait == 0)
   3242 			bpf_mtap(ifp, m, BPF_D_OUT);
   3243 
   3244 		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
   3245 			ieee80211_free_node(ni);
   3246 			if_statinc(ifp, if_oerrors);
   3247 			continue;
   3248 		}
   3249 sendit:
   3250 		if (sc->sc_beacon_wait)
   3251 			continue;
   3252 
   3253 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   3254 
   3255 		if (iwn_tx(sc, m, ni, ac) != 0) {
   3256 			ieee80211_free_node(ni);
   3257 			if_statinc(ifp, if_oerrors);
   3258 			continue;
   3259 		}
   3260 
   3261 		sc->sc_tx_timer = 5;
   3262 		ifp->if_timer = 1;
   3263 	}
   3264 
   3265 	if (sc->sc_beacon_wait > 1)
   3266 		sc->sc_beacon_wait = 0;
   3267 }
   3268 
   3269 static void
   3270 iwn_watchdog(struct ifnet *ifp)
   3271 {
   3272 	struct iwn_softc *sc = ifp->if_softc;
   3273 
   3274 	ifp->if_timer = 0;
   3275 
   3276 	if (sc->sc_tx_timer > 0) {
   3277 		if (--sc->sc_tx_timer == 0) {
   3278 			aprint_error_dev(sc->sc_dev,
   3279 			    "device timeout\n");
   3280 			ifp->if_flags &= ~IFF_UP;
   3281 			iwn_stop(ifp, 1);
   3282 			if_statinc(ifp, if_oerrors);
   3283 			return;
   3284 		}
   3285 		ifp->if_timer = 1;
   3286 	}
   3287 
   3288 	ieee80211_watchdog(&sc->sc_ic);
   3289 }
   3290 
   3291 static int
   3292 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   3293 {
   3294 	struct iwn_softc *sc = ifp->if_softc;
   3295 	struct ieee80211com *ic = &sc->sc_ic;
   3296 	const struct sockaddr *sa;
   3297 	int s, error = 0;
   3298 
   3299 	s = splnet();
   3300 
   3301 	switch (cmd) {
   3302 	case SIOCSIFADDR:
   3303 		ifp->if_flags |= IFF_UP;
   3304 		/* FALLTHROUGH */
   3305 	case SIOCSIFFLAGS:
   3306 		/* XXX Added as it is in every NetBSD driver */
   3307 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   3308 			break;
   3309 		if (ifp->if_flags & IFF_UP) {
   3310 			if (!(ifp->if_flags & IFF_RUNNING))
   3311 				error = iwn_init(ifp);
   3312 		} else {
   3313 			if (ifp->if_flags & IFF_RUNNING)
   3314 				iwn_stop(ifp, 1);
   3315 		}
   3316 		break;
   3317 
   3318 	case SIOCADDMULTI:
   3319 	case SIOCDELMULTI:
   3320 		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
   3321 		error = (cmd == SIOCADDMULTI) ?
   3322 		    ether_addmulti(sa, &sc->sc_ec) :
   3323 		    ether_delmulti(sa, &sc->sc_ec);
   3324 
   3325 		if (error == ENETRESET)
   3326 			error = 0;
   3327 		break;
   3328 
   3329 	default:
   3330 		error = ieee80211_ioctl(ic, cmd, data);
   3331 	}
   3332 
   3333 	if (error == ENETRESET) {
   3334 		error = 0;
   3335 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   3336 		    (IFF_UP | IFF_RUNNING)) {
   3337 			iwn_stop(ifp, 0);
   3338 			error = iwn_init(ifp);
   3339 		}
   3340 	}
   3341 
   3342 	splx(s);
   3343 	return error;
   3344 }
   3345 
   3346 /*
   3347  * Send a command to the firmware.
   3348  */
   3349 static int
   3350 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
   3351 {
   3352 	struct iwn_tx_ring *ring = &sc->txq[4];
   3353 	struct iwn_tx_desc *desc;
   3354 	struct iwn_tx_data *data;
   3355 	struct iwn_tx_cmd *cmd;
   3356 	struct mbuf *m;
   3357 	bus_addr_t paddr;
   3358 	int totlen, error;
   3359 
   3360 	desc = &ring->desc[ring->cur];
   3361 	data = &ring->data[ring->cur];
   3362 	totlen = 4 + size;
   3363 
   3364 	if (size > sizeof cmd->data) {
   3365 		/* Command is too large to fit in a descriptor. */
   3366 		if (totlen > MCLBYTES)
   3367 			return EINVAL;
   3368 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3369 		if (m == NULL)
   3370 			return ENOMEM;
   3371 		if (totlen > MHLEN) {
   3372 			MCLGET(m, M_DONTWAIT);
   3373 			if (!(m->m_flags & M_EXT)) {
   3374 				m_freem(m);
   3375 				return ENOMEM;
   3376 			}
   3377 		}
   3378 		cmd = mtod(m, struct iwn_tx_cmd *);
   3379 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
   3380 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   3381 		if (error != 0) {
   3382 			m_freem(m);
   3383 			return error;
   3384 		}
   3385 		data->m = m;
   3386 		paddr = data->map->dm_segs[0].ds_addr;
   3387 	} else {
   3388 		cmd = &ring->cmd[ring->cur];
   3389 		paddr = data->cmd_paddr;
   3390 	}
   3391 
   3392 	cmd->code = code;
   3393 	cmd->flags = 0;
   3394 	cmd->qid = ring->qid;
   3395 	cmd->idx = ring->cur;
   3396 	/*
   3397 	 * Coverity:[OUT_OF_BOUNDS]
   3398 	 * false positive since, allocated in mbuf if it does not fit
   3399 	 */
   3400 	memcpy(cmd->data, buf, size);
   3401 
   3402 	desc->nsegs = 1;
   3403 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
   3404 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
   3405 
   3406 	if (size > sizeof cmd->data) {
   3407 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
   3408 		    BUS_DMASYNC_PREWRITE);
   3409 	} else {
   3410 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
   3411 		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
   3412 		    totlen, BUS_DMASYNC_PREWRITE);
   3413 	}
   3414 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
   3415 	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
   3416 	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
   3417 
   3418 #ifdef notyet
   3419 	/* Update TX scheduler. */
   3420 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
   3421 #endif
   3422 	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
   3423 
   3424 	/* Kick command ring. */
   3425 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
   3426 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
   3427 
   3428 	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
   3429 }
   3430 
   3431 static int
   3432 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3433 {
   3434 	struct iwn4965_node_info hnode;
   3435 	char *src, *dst;
   3436 
   3437 	/*
   3438 	 * We use the node structure for 5000 Series internally (it is
   3439 	 * a superset of the one for 4965AGN). We thus copy the common
   3440 	 * fields before sending the command.
   3441 	 */
   3442 	src = (char *)node;
   3443 	dst = (char *)&hnode;
   3444 	memcpy(dst, src, 48);
   3445 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
   3446 	memcpy(dst + 48, src + 72, 20);
   3447 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
   3448 }
   3449 
   3450 static int
   3451 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
   3452 {
   3453 	/* Direct mapping. */
   3454 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
   3455 }
   3456 
   3457 static int
   3458 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
   3459 {
   3460 	struct iwn_node *wn = (void *)ni;
   3461 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3462 	struct iwn_cmd_link_quality linkq;
   3463 	const struct iwn_rate *rinfo;
   3464 	uint8_t txant;
   3465 	int i, txrate;
   3466 
   3467 	/* Use the first valid TX antenna. */
   3468 	txant = IWN_LSB(sc->txchainmask);
   3469 
   3470 	memset(&linkq, 0, sizeof linkq);
   3471 	linkq.id = wn->id;
   3472 	linkq.antmsk_1stream = txant;
   3473 	linkq.antmsk_2stream = IWN_ANT_AB;
   3474 	linkq.ampdu_max = 31;
   3475 	linkq.ampdu_threshold = 3;
   3476 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3477 
   3478 	/* Start at highest available bit-rate. */
   3479 	txrate = rs->rs_nrates - 1;
   3480 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
   3481 		rinfo = &iwn_rates[wn->ridx[txrate]];
   3482 		linkq.retry[i].plcp = rinfo->plcp;
   3483 		linkq.retry[i].rflags = rinfo->flags;
   3484 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
   3485 		/* Next retry at immediate lower bit-rate. */
   3486 		if (txrate > 0)
   3487 			txrate--;
   3488 	}
   3489 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
   3490 }
   3491 
   3492 /*
   3493  * Broadcast node is used to send group-addressed and management frames.
   3494  */
   3495 static int
   3496 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
   3497 {
   3498 	struct iwn_ops *ops = &sc->ops;
   3499 	struct iwn_node_info node;
   3500 	struct iwn_cmd_link_quality linkq;
   3501 	const struct iwn_rate *rinfo;
   3502 	uint8_t txant;
   3503 	int i, error;
   3504 
   3505 	memset(&node, 0, sizeof node);
   3506 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
   3507 	node.id = sc->broadcast_id;
   3508 	DPRINTF(("adding broadcast node\n"));
   3509 	if ((error = ops->add_node(sc, &node, async)) != 0)
   3510 		return error;
   3511 
   3512 	/* Use the first valid TX antenna. */
   3513 	txant = IWN_LSB(sc->txchainmask);
   3514 
   3515 	memset(&linkq, 0, sizeof linkq);
   3516 	linkq.id = sc->broadcast_id;
   3517 	linkq.antmsk_1stream = txant;
   3518 	linkq.antmsk_2stream = IWN_ANT_AB;
   3519 	linkq.ampdu_max = 64;
   3520 	linkq.ampdu_threshold = 3;
   3521 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
   3522 
   3523 	/* Use lowest mandatory bit-rate. */
   3524 	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
   3525 	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
   3526 	linkq.retry[0].plcp = rinfo->plcp;
   3527 	linkq.retry[0].rflags = rinfo->flags;
   3528 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
   3529 	/* Use same bit-rate for all TX retries. */
   3530 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
   3531 		linkq.retry[i].plcp = linkq.retry[0].plcp;
   3532 		linkq.retry[i].rflags = linkq.retry[0].rflags;
   3533 	}
   3534 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
   3535 }
   3536 
   3537 static void
   3538 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   3539 {
   3540 	struct iwn_cmd_led led;
   3541 
   3542 	/* Clear microcode LED ownership. */
   3543 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
   3544 
   3545 	led.which = which;
   3546 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
   3547 	led.off = off;
   3548 	led.on = on;
   3549 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
   3550 }
   3551 
   3552 /*
   3553  * Set the critical temperature at which the firmware will stop the radio
   3554  * and notify us.
   3555  */
   3556 static int
   3557 iwn_set_critical_temp(struct iwn_softc *sc)
   3558 {
   3559 	struct iwn_critical_temp crit;
   3560 	int32_t temp;
   3561 
   3562 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
   3563 
   3564 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
   3565 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
   3566 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
   3567 		temp = IWN_CTOK(110);
   3568 	else
   3569 		temp = 110;
   3570 	memset(&crit, 0, sizeof crit);
   3571 	crit.tempR = htole32(temp);
   3572 	DPRINTF(("setting critical temperature to %d\n", temp));
   3573 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
   3574 }
   3575 
   3576 static int
   3577 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
   3578 {
   3579 	struct iwn_cmd_timing cmd;
   3580 	uint64_t val, mod;
   3581 
   3582 	memset(&cmd, 0, sizeof cmd);
   3583 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   3584 	cmd.bintval = htole16(ni->ni_intval);
   3585 	cmd.lintval = htole16(10);
   3586 
   3587 	/* Compute remaining time until next beacon. */
   3588 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   3589 	mod = le64toh(cmd.tstamp) % val;
   3590 	cmd.binitval = htole32((uint32_t)(val - mod));
   3591 
   3592 	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
   3593 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
   3594 
   3595 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
   3596 }
   3597 
   3598 static void
   3599 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
   3600 {
   3601 	/* Adjust TX power if need be (delta >= 3 degC). */
   3602 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   3603 	if (abs(temp - sc->temp) >= 3) {
   3604 		/* Record temperature of last calibration. */
   3605 		sc->temp = temp;
   3606 		(void)iwn4965_set_txpower(sc, 1);
   3607 	}
   3608 }
   3609 
   3610 /*
   3611  * Set TX power for current channel (each rate has its own power settings).
   3612  * This function takes into account the regulatory information from EEPROM,
   3613  * the current temperature and the current voltage.
   3614  */
   3615 static int
   3616 iwn4965_set_txpower(struct iwn_softc *sc, int async)
   3617 {
   3618 /* Fixed-point arithmetic division using a n-bit fractional part. */
   3619 #define fdivround(a, b, n)	\
   3620 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   3621 /* Linear interpolation. */
   3622 #define interpolate(x, x1, y1, x2, y2, n)	\
   3623 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   3624 
   3625 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
   3626 	struct ieee80211com *ic = &sc->sc_ic;
   3627 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3628 	struct ieee80211_channel *ch;
   3629 	struct iwn4965_cmd_txpower cmd;
   3630 	struct iwn4965_eeprom_chan_samples *chans;
   3631 	const uint8_t *rf_gain, *dsp_gain;
   3632 	int32_t vdiff, tdiff;
   3633 	int i, c, grp, maxpwr;
   3634 	uint8_t chan;
   3635 
   3636 	/* Retrieve current channel from last RXON. */
   3637 	chan = sc->rxon.chan;
   3638 	DPRINTF(("setting TX power for channel %d\n", chan));
   3639 	ch = &ic->ic_channels[chan];
   3640 
   3641 	memset(&cmd, 0, sizeof cmd);
   3642 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
   3643 	cmd.chan = chan;
   3644 
   3645 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
   3646 		maxpwr   = sc->maxpwr5GHz;
   3647 		rf_gain  = iwn4965_rf_gain_5ghz;
   3648 		dsp_gain = iwn4965_dsp_gain_5ghz;
   3649 	} else {
   3650 		maxpwr   = sc->maxpwr2GHz;
   3651 		rf_gain  = iwn4965_rf_gain_2ghz;
   3652 		dsp_gain = iwn4965_dsp_gain_2ghz;
   3653 	}
   3654 
   3655 	/* Compute voltage compensation. */
   3656 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
   3657 	if (vdiff > 0)
   3658 		vdiff *= 2;
   3659 	if (abs(vdiff) > 2)
   3660 		vdiff = 0;
   3661 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
   3662 	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
   3663 
   3664 	/* Get channel attenuation group. */
   3665 	if (chan <= 20)		/* 1-20 */
   3666 		grp = 4;
   3667 	else if (chan <= 43)	/* 34-43 */
   3668 		grp = 0;
   3669 	else if (chan <= 70)	/* 44-70 */
   3670 		grp = 1;
   3671 	else if (chan <= 124)	/* 71-124 */
   3672 		grp = 2;
   3673 	else			/* 125-200 */
   3674 		grp = 3;
   3675 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
   3676 
   3677 	/* Get channel sub-band. */
   3678 	for (i = 0; i < IWN_NBANDS; i++)
   3679 		if (sc->bands[i].lo != 0 &&
   3680 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
   3681 			break;
   3682 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
   3683 		return EINVAL;
   3684 	chans = sc->bands[i].chans;
   3685 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
   3686 
   3687 	for (c = 0; c < 2; c++) {
   3688 		uint8_t power, gain, temp;
   3689 		int maxchpwr, pwr, ridx, idx;
   3690 
   3691 		power = interpolate(chan,
   3692 		    chans[0].num, chans[0].samples[c][1].power,
   3693 		    chans[1].num, chans[1].samples[c][1].power, 1);
   3694 		gain  = interpolate(chan,
   3695 		    chans[0].num, chans[0].samples[c][1].gain,
   3696 		    chans[1].num, chans[1].samples[c][1].gain, 1);
   3697 		temp  = interpolate(chan,
   3698 		    chans[0].num, chans[0].samples[c][1].temp,
   3699 		    chans[1].num, chans[1].samples[c][1].temp, 1);
   3700 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
   3701 		    c, power, gain, temp));
   3702 
   3703 		/* Compute temperature compensation. */
   3704 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
   3705 		DPRINTF(("temperature compensation=%d (current=%d, "
   3706 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
   3707 
   3708 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
   3709 			/* Convert dBm to half-dBm. */
   3710 			maxchpwr = sc->maxpwr[chan] * 2;
   3711 			if ((ridx / 8) & 1)
   3712 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
   3713 
   3714 			pwr = maxpwr;
   3715 
   3716 			/* Adjust TX power based on rate. */
   3717 			if ((ridx % 8) == 5)
   3718 				pwr -= 15;	/* OFDM48: -7.5dB */
   3719 			else if ((ridx % 8) == 6)
   3720 				pwr -= 17;	/* OFDM54: -8.5dB */
   3721 			else if ((ridx % 8) == 7)
   3722 				pwr -= 20;	/* OFDM60: -10dB */
   3723 			else
   3724 				pwr -= 10;	/* Others: -5dB */
   3725 
   3726 			/* Do not exceed channel max TX power. */
   3727 			if (pwr > maxchpwr)
   3728 				pwr = maxchpwr;
   3729 
   3730 			idx = gain - (pwr - power) - tdiff - vdiff;
   3731 			if ((ridx / 8) & 1)	/* MIMO */
   3732 				idx += (int32_t)le32toh(uc->atten[grp][c]);
   3733 
   3734 			if (cmd.band == 0)
   3735 				idx += 9;	/* 5GHz */
   3736 			if (ridx == IWN_RIDX_MAX)
   3737 				idx += 5;	/* CCK */
   3738 
   3739 			/* Make sure idx stays in a valid range. */
   3740 			if (idx < 0)
   3741 				idx = 0;
   3742 			else if (idx > IWN4965_MAX_PWR_INDEX)
   3743 				idx = IWN4965_MAX_PWR_INDEX;
   3744 
   3745 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
   3746 			    c, ridx, idx));
   3747 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
   3748 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
   3749 		}
   3750 	}
   3751 
   3752 	DPRINTF(("setting TX power for chan %d\n", chan));
   3753 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
   3754 
   3755 #undef interpolate
   3756 #undef fdivround
   3757 }
   3758 
   3759 static int
   3760 iwn5000_set_txpower(struct iwn_softc *sc, int async)
   3761 {
   3762 	struct iwn5000_cmd_txpower cmd;
   3763 	int cmdid;
   3764 
   3765 	/*
   3766 	 * TX power calibration is handled automatically by the firmware
   3767 	 * for 5000 Series.
   3768 	 */
   3769 	memset(&cmd, 0, sizeof cmd);
   3770 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
   3771 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
   3772 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
   3773 	DPRINTF(("setting TX power\n"));
   3774 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
   3775 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
   3776 	else
   3777 		cmdid = IWN_CMD_TXPOWER_DBM;
   3778 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
   3779 }
   3780 
   3781 /*
   3782  * Retrieve the maximum RSSI (in dBm) among receivers.
   3783  */
   3784 static int
   3785 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
   3786 {
   3787 	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
   3788 	uint8_t mask, agc;
   3789 	int rssi;
   3790 
   3791 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
   3792 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
   3793 
   3794 	rssi = 0;
   3795 	if (mask & IWN_ANT_A)
   3796 		rssi = MAX(rssi, phy->rssi[0]);
   3797 	if (mask & IWN_ANT_B)
   3798 		rssi = MAX(rssi, phy->rssi[2]);
   3799 	if (mask & IWN_ANT_C)
   3800 		rssi = MAX(rssi, phy->rssi[4]);
   3801 
   3802 	return rssi - agc - IWN_RSSI_TO_DBM;
   3803 }
   3804 
   3805 static int
   3806 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
   3807 {
   3808 	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
   3809 	uint8_t agc;
   3810 	int rssi;
   3811 
   3812 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
   3813 
   3814 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
   3815 		   le16toh(phy->rssi[1]) & 0xff);
   3816 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
   3817 
   3818 	return rssi - agc - IWN_RSSI_TO_DBM;
   3819 }
   3820 
   3821 /*
   3822  * Retrieve the average noise (in dBm) among receivers.
   3823  */
   3824 static int
   3825 iwn_get_noise(const struct iwn_rx_general_stats *stats)
   3826 {
   3827 	int i, total, nbant, noise;
   3828 
   3829 	total = nbant = 0;
   3830 	for (i = 0; i < 3; i++) {
   3831 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
   3832 			continue;
   3833 		total += noise;
   3834 		nbant++;
   3835 	}
   3836 	/* There should be at least one antenna but check anyway. */
   3837 	return (nbant == 0) ? -127 : (total / nbant) - 107;
   3838 }
   3839 
   3840 /*
   3841  * Compute temperature (in degC) from last received statistics.
   3842  */
   3843 static int
   3844 iwn4965_get_temperature(struct iwn_softc *sc)
   3845 {
   3846 	struct iwn_ucode_info *uc = &sc->ucode_info;
   3847 	int32_t r1, r2, r3, r4, temp;
   3848 
   3849 	r1 = le32toh(uc->temp[0].chan20MHz);
   3850 	r2 = le32toh(uc->temp[1].chan20MHz);
   3851 	r3 = le32toh(uc->temp[2].chan20MHz);
   3852 	r4 = le32toh(sc->rawtemp);
   3853 
   3854 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
   3855 		return 0;
   3856 
   3857 	/* Sign-extend 23-bit R4 value to 32-bit. */
   3858 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
   3859 	/* Compute temperature in Kelvin. */
   3860 	temp = (259 * (r4 - r2)) / (r3 - r1);
   3861 	temp = (temp * 97) / 100 + 8;
   3862 
   3863 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
   3864 	return IWN_KTOC(temp);
   3865 }
   3866 
   3867 static int
   3868 iwn5000_get_temperature(struct iwn_softc *sc)
   3869 {
   3870 	int32_t temp;
   3871 
   3872 	/*
   3873 	 * Temperature is not used by the driver for 5000 Series because
   3874 	 * TX power calibration is handled by firmware.  We export it to
   3875 	 * users through the sensor framework though.
   3876 	 */
   3877 	temp = le32toh(sc->rawtemp);
   3878 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
   3879 		temp = (temp / -5) + sc->temp_off;
   3880 		temp = IWN_KTOC(temp);
   3881 	}
   3882 	return temp;
   3883 }
   3884 
   3885 /*
   3886  * Initialize sensitivity calibration state machine.
   3887  */
   3888 static int
   3889 iwn_init_sensitivity(struct iwn_softc *sc)
   3890 {
   3891 	struct iwn_ops *ops = &sc->ops;
   3892 	struct iwn_calib_state *calib = &sc->calib;
   3893 	uint32_t flags;
   3894 	int error;
   3895 
   3896 	/* Reset calibration state machine. */
   3897 	memset(calib, 0, sizeof (*calib));
   3898 	calib->state = IWN_CALIB_STATE_INIT;
   3899 	calib->cck_state = IWN_CCK_STATE_HIFA;
   3900 	/* Set initial correlation values. */
   3901 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
   3902 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
   3903 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
   3904 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
   3905 	calib->cck_x4      = 125;
   3906 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
   3907 	calib->energy_cck  = sc->limits->energy_cck;
   3908 
   3909 	/* Write initial sensitivity. */
   3910 	if ((error = iwn_send_sensitivity(sc)) != 0)
   3911 		return error;
   3912 
   3913 	/* Write initial gains. */
   3914 	if ((error = ops->init_gains(sc)) != 0)
   3915 		return error;
   3916 
   3917 	/* Request statistics at each beacon interval. */
   3918 	flags = 0;
   3919 	DPRINTF(("sending request for statistics\n"));
   3920 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
   3921 }
   3922 
   3923 /*
   3924  * Collect noise and RSSI statistics for the first 20 beacons received
   3925  * after association and use them to determine connected antennas and
   3926  * to set differential gains.
   3927  */
   3928 static void
   3929 iwn_collect_noise(struct iwn_softc *sc,
   3930     const struct iwn_rx_general_stats *stats)
   3931 {
   3932 	struct iwn_ops *ops = &sc->ops;
   3933 	struct iwn_calib_state *calib = &sc->calib;
   3934 	uint32_t val;
   3935 	int i;
   3936 
   3937 	/* Accumulate RSSI and noise for all 3 antennas. */
   3938 	for (i = 0; i < 3; i++) {
   3939 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
   3940 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
   3941 	}
   3942 	/* NB: We update differential gains only once after 20 beacons. */
   3943 	if (++calib->nbeacons < 20)
   3944 		return;
   3945 
   3946 	/* Determine highest average RSSI. */
   3947 	val = MAX(calib->rssi[0], calib->rssi[1]);
   3948 	val = MAX(calib->rssi[2], val);
   3949 
   3950 	/* Determine which antennas are connected. */
   3951 	sc->chainmask = sc->rxchainmask;
   3952 	for (i = 0; i < 3; i++)
   3953 		if (val - calib->rssi[i] > 15 * 20)
   3954 			sc->chainmask &= ~(1 << i);
   3955 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
   3956 	    sc->rxchainmask, sc->chainmask));
   3957 
   3958 	/* If none of the TX antennas are connected, keep at least one. */
   3959 	if ((sc->chainmask & sc->txchainmask) == 0)
   3960 		sc->chainmask |= IWN_LSB(sc->txchainmask);
   3961 
   3962 	(void)ops->set_gains(sc);
   3963 	calib->state = IWN_CALIB_STATE_RUN;
   3964 
   3965 #ifdef notyet
   3966 	/* XXX Disable RX chains with no antennas connected. */
   3967 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
   3968 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   3969 #endif
   3970 
   3971 	/* Enable power-saving mode if requested by user. */
   3972 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
   3973 		(void)iwn_set_pslevel(sc, 0, 3, 1);
   3974 }
   3975 
   3976 static int
   3977 iwn4965_init_gains(struct iwn_softc *sc)
   3978 {
   3979 	struct iwn_phy_calib_gain cmd;
   3980 
   3981 	memset(&cmd, 0, sizeof cmd);
   3982 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   3983 	/* Differential gains initially set to 0 for all 3 antennas. */
   3984 	DPRINTF(("setting initial differential gains\n"));
   3985 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3986 }
   3987 
   3988 static int
   3989 iwn5000_init_gains(struct iwn_softc *sc)
   3990 {
   3991 	struct iwn_phy_calib cmd;
   3992 
   3993 	memset(&cmd, 0, sizeof cmd);
   3994 	cmd.code = sc->reset_noise_gain;
   3995 	cmd.ngroups = 1;
   3996 	cmd.isvalid = 1;
   3997 	DPRINTF(("setting initial differential gains\n"));
   3998 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   3999 }
   4000 
   4001 static int
   4002 iwn4965_set_gains(struct iwn_softc *sc)
   4003 {
   4004 	struct iwn_calib_state *calib = &sc->calib;
   4005 	struct iwn_phy_calib_gain cmd;
   4006 	int i, delta, noise;
   4007 
   4008 	/* Get minimal noise among connected antennas. */
   4009 	noise = INT_MAX;	/* NB: There's at least one antenna. */
   4010 	for (i = 0; i < 3; i++)
   4011 		if (sc->chainmask & (1 << i))
   4012 			noise = MIN(calib->noise[i], noise);
   4013 
   4014 	memset(&cmd, 0, sizeof cmd);
   4015 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
   4016 	/* Set differential gains for connected antennas. */
   4017 	for (i = 0; i < 3; i++) {
   4018 		if (sc->chainmask & (1 << i)) {
   4019 			/* Compute attenuation (in unit of 1.5dB). */
   4020 			delta = (noise - (int32_t)calib->noise[i]) / 30;
   4021 			/* NB: delta <= 0 */
   4022 			/* Limit to [-4.5dB,0]. */
   4023 			cmd.gain[i] = MIN(abs(delta), 3);
   4024 			if (delta < 0)
   4025 				cmd.gain[i] |= 1 << 2;	/* sign bit */
   4026 		}
   4027 	}
   4028 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
   4029 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
   4030 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4031 }
   4032 
   4033 static int
   4034 iwn5000_set_gains(struct iwn_softc *sc)
   4035 {
   4036 	struct iwn_calib_state *calib = &sc->calib;
   4037 	struct iwn_phy_calib_gain cmd;
   4038 	int i, ant, div, delta;
   4039 
   4040 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
   4041 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
   4042 
   4043 	memset(&cmd, 0, sizeof cmd);
   4044 	cmd.code = sc->noise_gain;
   4045 	cmd.ngroups = 1;
   4046 	cmd.isvalid = 1;
   4047 	/* Get first available RX antenna as referential. */
   4048 	ant = IWN_LSB(sc->rxchainmask);
   4049 	/* Set differential gains for other antennas. */
   4050 	for (i = ant + 1; i < 3; i++) {
   4051 		if (sc->chainmask & (1 << i)) {
   4052 			/* The delta is relative to antenna "ant". */
   4053 			delta = ((int32_t)calib->noise[ant] -
   4054 			    (int32_t)calib->noise[i]) / div;
   4055 			/* Limit to [-4.5dB,+4.5dB]. */
   4056 			cmd.gain[i - 1] = MIN(abs(delta), 3);
   4057 			if (delta < 0)
   4058 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
   4059 		}
   4060 	}
   4061 	DPRINTF(("setting differential gains: %x/%x (%x)\n",
   4062 	    cmd.gain[0], cmd.gain[1], sc->chainmask));
   4063 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
   4064 }
   4065 
   4066 /*
   4067  * Tune RF RX sensitivity based on the number of false alarms detected
   4068  * during the last beacon period.
   4069  */
   4070 static void
   4071 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
   4072 {
   4073 #define inc(val, inc, max)			\
   4074 	if ((val) < (max)) {			\
   4075 		if ((val) < (max) - (inc))	\
   4076 			(val) += (inc);		\
   4077 		else				\
   4078 			(val) = (max);		\
   4079 		needs_update = 1;		\
   4080 	}
   4081 #define dec(val, dec, min)			\
   4082 	if ((val) > (min)) {			\
   4083 		if ((val) > (min) + (dec))	\
   4084 			(val) -= (dec);		\
   4085 		else				\
   4086 			(val) = (min);		\
   4087 		needs_update = 1;		\
   4088 	}
   4089 
   4090 	const struct iwn_sensitivity_limits *limits = sc->limits;
   4091 	struct iwn_calib_state *calib = &sc->calib;
   4092 	uint32_t val, rxena, fa;
   4093 	uint32_t energy[3], energy_min;
   4094 	uint8_t noise[3], noise_ref;
   4095 	int i, needs_update = 0;
   4096 
   4097 	/* Check that we've been enabled long enough. */
   4098 	if ((rxena = le32toh(stats->general.load)) == 0)
   4099 		return;
   4100 
   4101 	/* Compute number of false alarms since last call for OFDM. */
   4102 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
   4103 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
   4104 	fa *= 200 * 1024;	/* 200TU */
   4105 
   4106 	/* Save counters values for next call. */
   4107 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
   4108 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
   4109 
   4110 	if (fa > 50 * rxena) {
   4111 		/* High false alarm count, decrease sensitivity. */
   4112 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
   4113 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
   4114 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
   4115 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
   4116 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
   4117 
   4118 	} else if (fa < 5 * rxena) {
   4119 		/* Low false alarm count, increase sensitivity. */
   4120 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
   4121 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
   4122 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
   4123 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
   4124 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
   4125 	}
   4126 
   4127 	/* Compute maximum noise among 3 receivers. */
   4128 	for (i = 0; i < 3; i++)
   4129 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
   4130 	val = MAX(noise[0], noise[1]);
   4131 	val = MAX(noise[2], val);
   4132 	/* Insert it into our samples table. */
   4133 	calib->noise_samples[calib->cur_noise_sample] = val;
   4134 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
   4135 
   4136 	/* Compute maximum noise among last 20 samples. */
   4137 	noise_ref = calib->noise_samples[0];
   4138 	for (i = 1; i < 20; i++)
   4139 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
   4140 
   4141 	/* Compute maximum energy among 3 receivers. */
   4142 	for (i = 0; i < 3; i++)
   4143 		energy[i] = le32toh(stats->general.energy[i]);
   4144 	val = MIN(energy[0], energy[1]);
   4145 	val = MIN(energy[2], val);
   4146 	/* Insert it into our samples table. */
   4147 	calib->energy_samples[calib->cur_energy_sample] = val;
   4148 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
   4149 
   4150 	/* Compute minimum energy among last 10 samples. */
   4151 	energy_min = calib->energy_samples[0];
   4152 	for (i = 1; i < 10; i++)
   4153 		energy_min = MAX(energy_min, calib->energy_samples[i]);
   4154 	energy_min += 6;
   4155 
   4156 	/* Compute number of false alarms since last call for CCK. */
   4157 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
   4158 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
   4159 	fa *= 200 * 1024;	/* 200TU */
   4160 
   4161 	/* Save counters values for next call. */
   4162 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
   4163 	calib->fa_cck = le32toh(stats->cck.fa);
   4164 
   4165 	if (fa > 50 * rxena) {
   4166 		/* High false alarm count, decrease sensitivity. */
   4167 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
   4168 		calib->cck_state = IWN_CCK_STATE_HIFA;
   4169 		calib->low_fa = 0;
   4170 
   4171 		if (calib->cck_x4 > 160) {
   4172 			calib->noise_ref = noise_ref;
   4173 			if (calib->energy_cck > 2)
   4174 				dec(calib->energy_cck, 2, energy_min);
   4175 		}
   4176 		if (calib->cck_x4 < 160) {
   4177 			calib->cck_x4 = 161;
   4178 			needs_update = 1;
   4179 		} else
   4180 			inc(calib->cck_x4, 3, limits->max_cck_x4);
   4181 
   4182 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
   4183 
   4184 	} else if (fa < 5 * rxena) {
   4185 		/* Low false alarm count, increase sensitivity. */
   4186 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
   4187 		calib->cck_state = IWN_CCK_STATE_LOFA;
   4188 		calib->low_fa++;
   4189 
   4190 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
   4191 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
   4192 		     calib->low_fa > 100)) {
   4193 			inc(calib->energy_cck, 2, limits->min_energy_cck);
   4194 			dec(calib->cck_x4,     3, limits->min_cck_x4);
   4195 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
   4196 		}
   4197 	} else {
   4198 		/* Not worth to increase or decrease sensitivity. */
   4199 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
   4200 		calib->low_fa = 0;
   4201 		calib->noise_ref = noise_ref;
   4202 
   4203 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
   4204 			/* Previous interval had many false alarms. */
   4205 			dec(calib->energy_cck, 8, energy_min);
   4206 		}
   4207 		calib->cck_state = IWN_CCK_STATE_INIT;
   4208 	}
   4209 
   4210 	if (needs_update)
   4211 		(void)iwn_send_sensitivity(sc);
   4212 #undef dec
   4213 #undef inc
   4214 }
   4215 
   4216 static int
   4217 iwn_send_sensitivity(struct iwn_softc *sc)
   4218 {
   4219 	struct iwn_calib_state *calib = &sc->calib;
   4220 	struct iwn_enhanced_sensitivity_cmd cmd;
   4221 	int len;
   4222 
   4223 	memset(&cmd, 0, sizeof cmd);
   4224 	len = sizeof (struct iwn_sensitivity_cmd);
   4225 	cmd.which = IWN_SENSITIVITY_WORKTBL;
   4226 	/* OFDM modulation. */
   4227 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
   4228 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
   4229 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
   4230 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
   4231 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
   4232 	cmd.energy_ofdm_th   = htole16(62);
   4233 	/* CCK modulation. */
   4234 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
   4235 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
   4236 	cmd.energy_cck       = htole16(calib->energy_cck);
   4237 	/* Barker modulation: use default values. */
   4238 	cmd.corr_barker      = htole16(190);
   4239 	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
   4240 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
   4241 		goto send;
   4242 	/* Enhanced sensitivity settings. */
   4243 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
   4244 	cmd.ofdm_det_slope_mrc = htole16(668);
   4245 	cmd.ofdm_det_icept_mrc = htole16(4);
   4246 	cmd.ofdm_det_slope     = htole16(486);
   4247 	cmd.ofdm_det_icept     = htole16(37);
   4248 	cmd.cck_det_slope_mrc  = htole16(853);
   4249 	cmd.cck_det_icept_mrc  = htole16(4);
   4250 	cmd.cck_det_slope      = htole16(476);
   4251 	cmd.cck_det_icept      = htole16(99);
   4252 send:
   4253 	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
   4254 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
   4255 	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
   4256 	    calib->energy_cck));
   4257 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
   4258 }
   4259 
   4260 /*
   4261  * Set STA mode power saving level (between 0 and 5).
   4262  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
   4263  */
   4264 static int
   4265 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
   4266 {
   4267 	struct iwn_pmgt_cmd cmd;
   4268 	const struct iwn_pmgt *pmgt;
   4269 	uint32_t maxp, skip_dtim;
   4270 	pcireg_t reg;
   4271 	int i;
   4272 
   4273 	/* Select which PS parameters to use. */
   4274 	if (dtim <= 2)
   4275 		pmgt = &iwn_pmgt[0][level];
   4276 	else if (dtim <= 10)
   4277 		pmgt = &iwn_pmgt[1][level];
   4278 	else
   4279 		pmgt = &iwn_pmgt[2][level];
   4280 
   4281 	memset(&cmd, 0, sizeof cmd);
   4282 	if (level != 0)	/* not CAM */
   4283 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
   4284 	if (level == 5)
   4285 		cmd.flags |= htole16(IWN_PS_FAST_PD);
   4286 	/* Retrieve PCIe Active State Power Management (ASPM). */
   4287 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   4288 	    sc->sc_cap_off + PCIE_LCSR);
   4289 	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
   4290 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
   4291 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
   4292 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
   4293 
   4294 	if (dtim == 0) {
   4295 		dtim = 1;
   4296 		skip_dtim = 0;
   4297 	} else
   4298 		skip_dtim = pmgt->skip_dtim;
   4299 	if (skip_dtim != 0) {
   4300 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
   4301 		maxp = pmgt->intval[4];
   4302 		if (maxp == (uint32_t)-1)
   4303 			maxp = dtim * (skip_dtim + 1);
   4304 		else if (maxp > dtim)
   4305 			maxp = (maxp / dtim) * dtim;
   4306 	} else
   4307 		maxp = dtim;
   4308 	for (i = 0; i < 5; i++)
   4309 		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
   4310 
   4311 	DPRINTF(("setting power saving level to %d\n", level));
   4312 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
   4313 }
   4314 
   4315 int
   4316 iwn5000_runtime_calib(struct iwn_softc *sc)
   4317 {
   4318 	struct iwn5000_calib_config cmd;
   4319 
   4320 	memset(&cmd, 0, sizeof cmd);
   4321 	cmd.ucode.once.enable = 0xffffffff;
   4322 	cmd.ucode.once.start = IWN5000_CALIB_DC;
   4323 	DPRINTF(("configuring runtime calibration\n"));
   4324 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
   4325 }
   4326 
   4327 static int
   4328 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
   4329 {
   4330 	struct iwn_bluetooth bluetooth;
   4331 
   4332 	memset(&bluetooth, 0, sizeof bluetooth);
   4333 	bluetooth.flags = IWN_BT_COEX_ENABLE;
   4334 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
   4335 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
   4336 
   4337 	DPRINTF(("configuring bluetooth coexistence\n"));
   4338 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
   4339 }
   4340 
   4341 static int
   4342 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
   4343 {
   4344 	uint8_t prio_table[16];
   4345 
   4346 	memset(&prio_table, 0, sizeof prio_table);
   4347 	prio_table[ 0] =  6;	/* init calibration 1		*/
   4348 	prio_table[ 1] =  7;	/* init calibration 2		*/
   4349 	prio_table[ 2] =  2;	/* periodic calib low 1		*/
   4350 	prio_table[ 3] =  3;	/* periodic calib low 2		*/
   4351 	prio_table[ 4] =  4;	/* periodic calib high 1	*/
   4352 	prio_table[ 5] =  5;	/* periodic calib high 2	*/
   4353 	prio_table[ 6] =  6;	/* dtim				*/
   4354 	prio_table[ 7] =  8;	/* scan52			*/
   4355 	prio_table[ 8] = 10;	/* scan24			*/
   4356 
   4357 	DPRINTF(("sending priority lookup table\n"));
   4358 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
   4359 	               &prio_table, sizeof prio_table, 0);
   4360 }
   4361 
   4362 static int
   4363 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
   4364     size_t len)
   4365 {
   4366 	struct iwn_btcoex_prot btprot;
   4367 	int error;
   4368 
   4369 	basic->bt.flags = IWN_BT_COEX_ENABLE;
   4370 	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
   4371 	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
   4372 	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
   4373 	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
   4374 	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
   4375 	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
   4376 	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
   4377 	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
   4378 	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
   4379 	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
   4380 	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
   4381 	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
   4382 	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
   4383 	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
   4384 	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
   4385 	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
   4386 	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
   4387 	basic->bt3_lookup_table[10] = htole32(0xf0005000);
   4388 	basic->bt3_lookup_table[11] = htole32(0xf0005000);
   4389 	basic->reduce_txpower = 0; /* as not implemented */
   4390 	basic->valid = IWN_BT_ALL_VALID_MASK;
   4391 
   4392 	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
   4393 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
   4394 	if (error != 0) {
   4395 		aprint_error_dev(sc->sc_dev,
   4396 			"could not configure advanced bluetooth coexistence\n");
   4397 		return error;
   4398 	}
   4399 
   4400 	error = iwn_config_bt_coex_prio_table(sc);
   4401 	if (error != 0) {
   4402 		aprint_error_dev(sc->sc_dev,
   4403 			"could not configure send BT priority table\n");
   4404 		return error;
   4405 	}
   4406 
   4407 	/* Force BT state machine change */
   4408 	memset(&btprot, 0, sizeof btprot);
   4409 	btprot.open = 1;
   4410 	btprot.type = 1;
   4411 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4412 	if (error != 0) {
   4413 		aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
   4414 		return error;
   4415 	}
   4416 
   4417 	btprot.open = 0;
   4418 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
   4419 	if (error != 0) {
   4420 		aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
   4421 		return error;
   4422 	}
   4423 	return 0;
   4424 }
   4425 
   4426 static int
   4427 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
   4428 {
   4429 	struct iwn_bt_adv1 d;
   4430 
   4431 	memset(&d, 0, sizeof d);
   4432 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4433 	d.tx_prio_boost = 0;
   4434 	d.rx_prio_boost = 0;
   4435 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4436 }
   4437 
   4438 static int
   4439 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
   4440 {
   4441 	struct iwn_bt_adv2 d;
   4442 
   4443 	memset(&d, 0, sizeof d);
   4444 	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
   4445 	d.tx_prio_boost = 0;
   4446 	d.rx_prio_boost = 0;
   4447 	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
   4448 }
   4449 
   4450 static int
   4451 iwn_config(struct iwn_softc *sc)
   4452 {
   4453 	struct iwn_ops *ops = &sc->ops;
   4454 	struct ieee80211com *ic = &sc->sc_ic;
   4455 	struct ifnet *ifp = ic->ic_ifp;
   4456 	uint32_t txmask;
   4457 	uint16_t rxchain;
   4458 	int error;
   4459 
   4460 	error = ops->config_bt_coex(sc);
   4461 	if (error != 0) {
   4462 		aprint_error_dev(sc->sc_dev,
   4463 			"could not configure bluetooth coexistence\n");
   4464 		return error;
   4465 	}
   4466 
   4467 	/* Set radio temperature sensor offset. */
   4468 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4469 		error = iwn6000_temp_offset_calib(sc);
   4470 		if (error != 0) {
   4471 			aprint_error_dev(sc->sc_dev,
   4472 			    "could not set temperature offset\n");
   4473 			return error;
   4474 		}
   4475 	}
   4476 
   4477 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   4478 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   4479 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   4480 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
   4481 		error = iwn2000_temp_offset_calib(sc);
   4482 		if (error != 0) {
   4483 			aprint_error_dev(sc->sc_dev,
   4484 			    "could not set temperature offset\n");
   4485 			return error;
   4486 		}
   4487 	}
   4488 
   4489 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   4490 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
   4491 		/* Configure runtime DC calibration. */
   4492 		error = iwn5000_runtime_calib(sc);
   4493 		if (error != 0) {
   4494 			aprint_error_dev(sc->sc_dev,
   4495 			    "could not configure runtime calibration\n");
   4496 			return error;
   4497 		}
   4498 	}
   4499 
   4500 	/* Configure valid TX chains for 5000 Series. */
   4501 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
   4502 		txmask = htole32(sc->txchainmask);
   4503 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
   4504 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
   4505 		    sizeof txmask, 0);
   4506 		if (error != 0) {
   4507 			aprint_error_dev(sc->sc_dev,
   4508 			    "could not configure valid TX chains\n");
   4509 			return error;
   4510 		}
   4511 	}
   4512 
   4513 	/* Set mode, channel, RX filter and enable RX. */
   4514 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
   4515 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   4516 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
   4517 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
   4518 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   4519 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4520 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
   4521 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4522 	switch (ic->ic_opmode) {
   4523 	case IEEE80211_M_STA:
   4524 		sc->rxon.mode = IWN_MODE_STA;
   4525 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
   4526 		break;
   4527 	case IEEE80211_M_MONITOR:
   4528 		sc->rxon.mode = IWN_MODE_MONITOR;
   4529 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
   4530 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
   4531 		break;
   4532 	default:
   4533 		/* Should not get there. */
   4534 		break;
   4535 	}
   4536 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
   4537 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
   4538 	sc->rxon.ht_single_mask = 0xff;
   4539 	sc->rxon.ht_dual_mask = 0xff;
   4540 	sc->rxon.ht_triple_mask = 0xff;
   4541 	rxchain =
   4542 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4543 	    IWN_RXCHAIN_MIMO_COUNT(2) |
   4544 	    IWN_RXCHAIN_IDLE_COUNT(2);
   4545 	sc->rxon.rxchain = htole16(rxchain);
   4546 	DPRINTF(("setting configuration\n"));
   4547 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
   4548 	if (error != 0) {
   4549 		aprint_error_dev(sc->sc_dev,
   4550 		    "RXON command failed\n");
   4551 		return error;
   4552 	}
   4553 
   4554 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
   4555 		aprint_error_dev(sc->sc_dev,
   4556 		    "could not add broadcast node\n");
   4557 		return error;
   4558 	}
   4559 
   4560 	/* Configuration has changed, set TX power accordingly. */
   4561 	if ((error = ops->set_txpower(sc, 0)) != 0) {
   4562 		aprint_error_dev(sc->sc_dev,
   4563 		    "could not set TX power\n");
   4564 		return error;
   4565 	}
   4566 
   4567 	if ((error = iwn_set_critical_temp(sc)) != 0) {
   4568 		aprint_error_dev(sc->sc_dev,
   4569 		    "could not set critical temperature\n");
   4570 		return error;
   4571 	}
   4572 
   4573 	/* Set power saving level to CAM during initialization. */
   4574 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
   4575 		aprint_error_dev(sc->sc_dev,
   4576 		    "could not set power saving level\n");
   4577 		return error;
   4578 	}
   4579 	return 0;
   4580 }
   4581 
   4582 static uint16_t
   4583 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
   4584     uint8_t n_probes)
   4585 {
   4586 	/* No channel? Default to 2GHz settings */
   4587 	if (flags & IEEE80211_CHAN_2GHZ)
   4588 		return IWN_ACTIVE_DWELL_TIME_2GHZ +
   4589 		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
   4590 
   4591 	/* 5GHz dwell time */
   4592 	return IWN_ACTIVE_DWELL_TIME_5GHZ +
   4593 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
   4594 }
   4595 
   4596 /*
   4597  * Limit the total dwell time to 85% of the beacon interval.
   4598  *
   4599  * Returns the dwell time in milliseconds.
   4600  */
   4601 static uint16_t
   4602 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
   4603 {
   4604 	struct ieee80211com *ic = &sc->sc_ic;
   4605 	struct ieee80211_node *ni = ic->ic_bss;
   4606 	int bintval = 0;
   4607 
   4608 	/* bintval is in TU (1.024mS) */
   4609 	if (ni != NULL)
   4610 		bintval = ni->ni_intval;
   4611 
   4612 	/*
   4613 	 * If it's non-zero, we should calculate the minimum of
   4614 	 * it and the DWELL_BASE.
   4615 	 *
   4616 	 * XXX Yes, the math should take into account that bintval
   4617 	 * is 1.024mS, not 1mS..
   4618 	 */
   4619 	if (bintval > 0)
   4620 		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
   4621 
   4622 	/* No association context? Default */
   4623 	return IWN_PASSIVE_DWELL_BASE;
   4624 }
   4625 
   4626 static uint16_t
   4627 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
   4628 {
   4629 	uint16_t passive;
   4630 	if (flags & IEEE80211_CHAN_2GHZ)
   4631 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
   4632 	else
   4633 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
   4634 
   4635 	/* Clamp to the beacon interval if we're associated */
   4636 	return iwn_limit_dwell(sc, passive);
   4637 }
   4638 
   4639 static int
   4640 iwn_scan(struct iwn_softc *sc, uint16_t flags)
   4641 {
   4642 	struct ieee80211com *ic = &sc->sc_ic;
   4643 	struct iwn_scan_hdr *hdr;
   4644 	struct iwn_cmd_data *tx;
   4645 	struct iwn_scan_essid *essid;
   4646 	struct iwn_scan_chan *chan;
   4647 	struct ieee80211_frame *wh;
   4648 	struct ieee80211_rateset *rs;
   4649 	struct ieee80211_channel *c;
   4650 	uint8_t *buf, *frm;
   4651 	uint16_t rxchain, dwell_active, dwell_passive;
   4652 	uint8_t txant;
   4653 	int buflen, error, is_active;
   4654 
   4655 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
   4656 	if (buf == NULL) {
   4657 		aprint_error_dev(sc->sc_dev,
   4658 		    "could not allocate buffer for scan command\n");
   4659 		return ENOMEM;
   4660 	}
   4661 	hdr = (struct iwn_scan_hdr *)buf;
   4662 	/*
   4663 	 * Move to the next channel if no frames are received within 10ms
   4664 	 * after sending the probe request.
   4665 	 */
   4666 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
   4667 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
   4668 
   4669 	/* Select antennas for scanning. */
   4670 	rxchain =
   4671 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
   4672 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
   4673 	    IWN_RXCHAIN_DRIVER_FORCE;
   4674 	if ((flags & IEEE80211_CHAN_5GHZ) &&
   4675 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
   4676 		/* Ant A must be avoided in 5GHz because of an HW bug. */
   4677 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
   4678 	} else	/* Use all available RX antennas. */
   4679 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
   4680 	hdr->rxchain = htole16(rxchain);
   4681 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
   4682 
   4683 	tx = (struct iwn_cmd_data *)(hdr + 1);
   4684 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
   4685 	tx->id = sc->broadcast_id;
   4686 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
   4687 
   4688 	if (flags & IEEE80211_CHAN_5GHZ) {
   4689 		hdr->crc_threshold = 0xffff;
   4690 		/* Send probe requests at 6Mbps. */
   4691 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
   4692 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   4693 	} else {
   4694 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
   4695 		/* Send probe requests at 1Mbps. */
   4696 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
   4697 		tx->rflags = IWN_RFLAG_CCK;
   4698 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   4699 	}
   4700 	/* Use the first valid TX antenna. */
   4701 	txant = IWN_LSB(sc->txchainmask);
   4702 	tx->rflags |= IWN_RFLAG_ANT(txant);
   4703 
   4704 	/*
   4705 	 * Only do active scanning if we're announcing a probe request
   4706 	 * for a given SSID (or more, if we ever add it to the driver.)
   4707 	 */
   4708 	is_active = 0;
   4709 
   4710 	essid = (struct iwn_scan_essid *)(tx + 1);
   4711 	if (ic->ic_des_esslen != 0) {
   4712 		essid[0].id = IEEE80211_ELEMID_SSID;
   4713 		essid[0].len = ic->ic_des_esslen;
   4714 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   4715 
   4716 		is_active = 1;
   4717 	}
   4718 	/*
   4719 	 * Build a probe request frame.  Most of the following code is a
   4720 	 * copy & paste of what is done in net80211.
   4721 	 */
   4722 	wh = (struct ieee80211_frame *)(essid + 20);
   4723 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   4724 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   4725 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   4726 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   4727 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   4728 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   4729 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
   4730 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
   4731 
   4732 	frm = (uint8_t *)(wh + 1);
   4733 	frm = ieee80211_add_ssid(frm, NULL, 0);
   4734 	frm = ieee80211_add_rates(frm, rs);
   4735 #ifndef IEEE80211_NO_HT
   4736 	if (ic->ic_flags & IEEE80211_F_HTON)
   4737 		frm = ieee80211_add_htcaps(frm, ic);
   4738 #endif
   4739 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   4740 		frm = ieee80211_add_xrates(frm, rs);
   4741 
   4742 	/* Set length of probe request. */
   4743 	tx->len = htole16(frm - (uint8_t *)wh);
   4744 
   4745 
   4746 	/*
   4747 	 * If active scanning is requested but a certain channel is
   4748 	 * marked passive, we can do active scanning if we detect
   4749 	 * transmissions.
   4750 	 *
   4751 	 * There is an issue with some firmware versions that triggers
   4752 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
   4753 	 * on a radar channel even though this means that we should NOT
   4754 	 * send probes.
   4755 	 *
   4756 	 * The "good CRC threshold" is the number of frames that we
   4757 	 * need to receive during our dwell time on a channel before
   4758 	 * sending out probes -- setting this to a huge value will
   4759 	 * mean we never reach it, but at the same time work around
   4760 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
   4761 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
   4762 	 *
   4763 	 * This was fixed in later versions along with some other
   4764 	 * scan changes, and the threshold behaves as a flag in those
   4765 	 * versions.
   4766 	 */
   4767 
   4768 	/*
   4769 	 * If we're doing active scanning, set the crc_threshold
   4770 	 * to a suitable value.  This is different to active veruss
   4771 	 * passive scanning depending upon the channel flags; the
   4772 	 * firmware will obey that particular check for us.
   4773 	 */
   4774 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
   4775 		hdr->crc_threshold = is_active ?
   4776 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
   4777 	else
   4778 		hdr->crc_threshold = is_active ?
   4779 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
   4780 
   4781 	chan = (struct iwn_scan_chan *)frm;
   4782 	for (c  = &ic->ic_channels[1];
   4783 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   4784 		if ((c->ic_flags & flags) != flags)
   4785 			continue;
   4786 
   4787 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
   4788 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
   4789 		chan->flags = 0;
   4790 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
   4791 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
   4792 		if (ic->ic_des_esslen != 0)
   4793 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
   4794 
   4795 		/*
   4796 		 * Calculate the active/passive dwell times.
   4797 		 */
   4798 
   4799 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
   4800 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
   4801 
   4802 		/* Make sure they're valid */
   4803 		if (dwell_passive <= dwell_active)
   4804 			dwell_passive = dwell_active + 1;
   4805 
   4806 		chan->active = htole16(dwell_active);
   4807 		chan->passive = htole16(dwell_passive);
   4808 
   4809 		chan->dsp_gain = 0x6e;
   4810 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   4811 			chan->rf_gain = 0x3b;
   4812 		} else {
   4813 			chan->rf_gain = 0x28;
   4814 		}
   4815 		hdr->nchan++;
   4816 		chan++;
   4817 	}
   4818 
   4819 	buflen = (uint8_t *)chan - buf;
   4820 	hdr->len = htole16(buflen);
   4821 
   4822 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
   4823 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
   4824 	free(buf, M_DEVBUF);
   4825 	return error;
   4826 }
   4827 
   4828 static int
   4829 iwn_auth(struct iwn_softc *sc)
   4830 {
   4831 	struct iwn_ops *ops = &sc->ops;
   4832 	struct ieee80211com *ic = &sc->sc_ic;
   4833 	struct ieee80211_node *ni = ic->ic_bss;
   4834 	int error;
   4835 
   4836 	/* Update adapter configuration. */
   4837 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
   4838 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   4839 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
   4840 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   4841 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
   4842 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4843 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4844 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4845 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4846 	switch (ic->ic_curmode) {
   4847 	case IEEE80211_MODE_11A:
   4848 		sc->rxon.cck_mask  = 0;
   4849 		sc->rxon.ofdm_mask = 0x15;
   4850 		break;
   4851 	case IEEE80211_MODE_11B:
   4852 		sc->rxon.cck_mask  = 0x03;
   4853 		sc->rxon.ofdm_mask = 0;
   4854 		break;
   4855 	default:	/* Assume 802.11b/g. */
   4856 		sc->rxon.cck_mask  = 0x0f;
   4857 		sc->rxon.ofdm_mask = 0x15;
   4858 	}
   4859 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
   4860 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
   4861 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4862 	if (error != 0) {
   4863 		aprint_error_dev(sc->sc_dev,
   4864 		    "RXON command failed\n");
   4865 		return error;
   4866 	}
   4867 
   4868 	/* Configuration has changed, set TX power accordingly. */
   4869 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4870 		aprint_error_dev(sc->sc_dev,
   4871 		    "could not set TX power\n");
   4872 		return error;
   4873 	}
   4874 	/*
   4875 	 * Reconfiguring RXON clears the firmware nodes table so we must
   4876 	 * add the broadcast node again.
   4877 	 */
   4878 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
   4879 		aprint_error_dev(sc->sc_dev,
   4880 		    "could not add broadcast node\n");
   4881 		return error;
   4882 	}
   4883 	return 0;
   4884 }
   4885 
   4886 static int
   4887 iwn_run(struct iwn_softc *sc)
   4888 {
   4889 	struct iwn_ops *ops = &sc->ops;
   4890 	struct ieee80211com *ic = &sc->sc_ic;
   4891 	struct ieee80211_node *ni = ic->ic_bss;
   4892 	struct iwn_node_info node;
   4893 	int error;
   4894 
   4895 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4896 		/* Link LED blinks while monitoring. */
   4897 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
   4898 		return 0;
   4899 	}
   4900 	if ((error = iwn_set_timing(sc, ni)) != 0) {
   4901 		aprint_error_dev(sc->sc_dev,
   4902 		    "could not set timing\n");
   4903 		return error;
   4904 	}
   4905 
   4906 	/* Update adapter configuration. */
   4907 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
   4908 	/* Short preamble and slot time are negotiated when associating. */
   4909 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
   4910 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   4911 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
   4912 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   4913 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
   4914 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
   4915 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
   4916 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
   4917 	if (error != 0) {
   4918 		aprint_error_dev(sc->sc_dev,
   4919 		    "could not update configuration\n");
   4920 		return error;
   4921 	}
   4922 
   4923 	/* Configuration has changed, set TX power accordingly. */
   4924 	if ((error = ops->set_txpower(sc, 1)) != 0) {
   4925 		aprint_error_dev(sc->sc_dev,
   4926 		    "could not set TX power\n");
   4927 		return error;
   4928 	}
   4929 
   4930 	/* Fake a join to initialize the TX rate. */
   4931 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
   4932 	iwn_newassoc(ni, 1);
   4933 
   4934 	/* Add BSS node. */
   4935 	memset(&node, 0, sizeof node);
   4936 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
   4937 	node.id = IWN_ID_BSS;
   4938 #ifdef notyet
   4939 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
   4940 	    IWN_AMDPU_DENSITY(5));	/* 2us */
   4941 #endif
   4942 	DPRINTF(("adding BSS node\n"));
   4943 	error = ops->add_node(sc, &node, 1);
   4944 	if (error != 0) {
   4945 		aprint_error_dev(sc->sc_dev,
   4946 		    "could not add BSS node\n");
   4947 		return error;
   4948 	}
   4949 	DPRINTF(("setting link quality for node %d\n", node.id));
   4950 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
   4951 		aprint_error_dev(sc->sc_dev,
   4952 		    "could not setup link quality for node %d\n", node.id);
   4953 		return error;
   4954 	}
   4955 
   4956 	if ((error = iwn_init_sensitivity(sc)) != 0) {
   4957 		aprint_error_dev(sc->sc_dev,
   4958 		    "could not set sensitivity\n");
   4959 		return error;
   4960 	}
   4961 	/* Start periodic calibration timer. */
   4962 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
   4963 	sc->calib_cnt = 0;
   4964 	callout_schedule(&sc->calib_to, hz/2);
   4965 
   4966 	/* Link LED always on while associated. */
   4967 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
   4968 	return 0;
   4969 }
   4970 
   4971 #ifdef IWN_HWCRYPTO
   4972 /*
   4973  * We support CCMP hardware encryption/decryption of unicast frames only.
   4974  * HW support for TKIP really sucks.  We should let TKIP die anyway.
   4975  */
   4976 static int
   4977 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   4978     struct ieee80211_key *k)
   4979 {
   4980 	struct iwn_softc *sc = ic->ic_softc;
   4981 	struct iwn_ops *ops = &sc->ops;
   4982 	struct iwn_node *wn = (void *)ni;
   4983 	struct iwn_node_info node;
   4984 	uint16_t kflags;
   4985 
   4986 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   4987 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
   4988 		return ieee80211_set_key(ic, ni, k);
   4989 
   4990 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
   4991 	if (k->k_flags & IEEE80211_KEY_GROUP)
   4992 		kflags |= IWN_KFLAG_GROUP;
   4993 
   4994 	memset(&node, 0, sizeof node);
   4995 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   4996 	    sc->broadcast_id : wn->id;
   4997 	node.control = IWN_NODE_UPDATE;
   4998 	node.flags = IWN_FLAG_SET_KEY;
   4999 	node.kflags = htole16(kflags);
   5000 	node.kid = k->k_id;
   5001 	memcpy(node.key, k->k_key, k->k_len);
   5002 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
   5003 	return ops->add_node(sc, &node, 1);
   5004 }
   5005 
   5006 static void
   5007 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
   5008     struct ieee80211_key *k)
   5009 {
   5010 	struct iwn_softc *sc = ic->ic_softc;
   5011 	struct iwn_ops *ops = &sc->ops;
   5012 	struct iwn_node *wn = (void *)ni;
   5013 	struct iwn_node_info node;
   5014 
   5015 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
   5016 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
   5017 		/* See comment about other ciphers above. */
   5018 		ieee80211_delete_key(ic, ni, k);
   5019 		return;
   5020 	}
   5021 	if (ic->ic_state != IEEE80211_S_RUN)
   5022 		return;	/* Nothing to do. */
   5023 	memset(&node, 0, sizeof node);
   5024 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
   5025 	    sc->broadcast_id : wn->id;
   5026 	node.control = IWN_NODE_UPDATE;
   5027 	node.flags = IWN_FLAG_SET_KEY;
   5028 	node.kflags = htole16(IWN_KFLAG_INVALID);
   5029 	node.kid = 0xff;
   5030 	DPRINTF(("delete keys for node %d\n", node.id));
   5031 	(void)ops->add_node(sc, &node, 1);
   5032 }
   5033 #endif
   5034 
   5035 /* XXX Added for NetBSD (copied from rev 1.39). */
   5036 
   5037 static int
   5038 iwn_wme_update(struct ieee80211com *ic)
   5039 {
   5040 #define IWN_EXP2(v)    htole16((1 << (v)) - 1)
   5041 #define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
   5042 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   5043 	const struct wmeParams *wmep;
   5044 	struct iwn_edca_params cmd;
   5045 	int ac;
   5046 
   5047 	/* don't override default WME values if WME is not actually enabled */
   5048 	if (!(ic->ic_flags & IEEE80211_F_WME))
   5049 		return 0;
   5050 	cmd.flags = 0;
   5051 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   5052 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   5053 		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
   5054 		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
   5055 		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
   5056 		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
   5057 
   5058 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   5059 					"txop=%d\n", ac, cmd.ac[ac].aifsn,
   5060 					cmd.ac[ac].cwmin,
   5061 					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
   5062 	}
   5063 	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
   5064 #undef IWN_USEC
   5065 #undef IWN_EXP2
   5066 }
   5067 
   5068 #ifndef IEEE80211_NO_HT
   5069 /*
   5070  * This function is called by upper layer when an ADDBA request is received
   5071  * from another STA and before the ADDBA response is sent.
   5072  */
   5073 static int
   5074 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5075     uint8_t tid)
   5076 {
   5077 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
   5078 	struct iwn_softc *sc = ic->ic_softc;
   5079 	struct iwn_ops *ops = &sc->ops;
   5080 	struct iwn_node *wn = (void *)ni;
   5081 	struct iwn_node_info node;
   5082 
   5083 	memset(&node, 0, sizeof node);
   5084 	node.id = wn->id;
   5085 	node.control = IWN_NODE_UPDATE;
   5086 	node.flags = IWN_FLAG_SET_ADDBA;
   5087 	node.addba_tid = tid;
   5088 	node.addba_ssn = htole16(ba->ba_winstart);
   5089 	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
   5090 	    ba->ba_winstart));
   5091 	return ops->add_node(sc, &node, 1);
   5092 }
   5093 
   5094 /*
   5095  * This function is called by upper layer on teardown of an HT-immediate
   5096  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
   5097  */
   5098 static void
   5099 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5100     uint8_t tid)
   5101 {
   5102 	struct iwn_softc *sc = ic->ic_softc;
   5103 	struct iwn_ops *ops = &sc->ops;
   5104 	struct iwn_node *wn = (void *)ni;
   5105 	struct iwn_node_info node;
   5106 
   5107 	memset(&node, 0, sizeof node);
   5108 	node.id = wn->id;
   5109 	node.control = IWN_NODE_UPDATE;
   5110 	node.flags = IWN_FLAG_SET_DELBA;
   5111 	node.delba_tid = tid;
   5112 	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
   5113 	(void)ops->add_node(sc, &node, 1);
   5114 }
   5115 
   5116 /*
   5117  * This function is called by upper layer when an ADDBA response is received
   5118  * from another STA.
   5119  */
   5120 static int
   5121 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
   5122     uint8_t tid)
   5123 {
   5124 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5125 	struct iwn_softc *sc = ic->ic_softc;
   5126 	struct iwn_ops *ops = &sc->ops;
   5127 	struct iwn_node *wn = (void *)ni;
   5128 	struct iwn_node_info node;
   5129 	int error;
   5130 
   5131 	/* Enable TX for the specified RA/TID. */
   5132 	wn->disable_tid &= ~(1 << tid);
   5133 	memset(&node, 0, sizeof node);
   5134 	node.id = wn->id;
   5135 	node.control = IWN_NODE_UPDATE;
   5136 	node.flags = IWN_FLAG_SET_DISABLE_TID;
   5137 	node.disable_tid = htole16(wn->disable_tid);
   5138 	error = ops->add_node(sc, &node, 1);
   5139 	if (error != 0)
   5140 		return error;
   5141 
   5142 	if ((error = iwn_nic_lock(sc)) != 0)
   5143 		return error;
   5144 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
   5145 	iwn_nic_unlock(sc);
   5146 	return 0;
   5147 }
   5148 
   5149 static void
   5150 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
   5151     uint8_t tid)
   5152 {
   5153 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
   5154 	struct iwn_softc *sc = ic->ic_softc;
   5155 	struct iwn_ops *ops = &sc->ops;
   5156 
   5157 	if (iwn_nic_lock(sc) != 0)
   5158 		return;
   5159 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
   5160 	iwn_nic_unlock(sc);
   5161 }
   5162 
   5163 static void
   5164 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5165     uint8_t tid, uint16_t ssn)
   5166 {
   5167 	struct iwn_node *wn = (void *)ni;
   5168 	int qid = 7 + tid;
   5169 
   5170 	/* Stop TX scheduler while we're changing its configuration. */
   5171 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5172 	    IWN4965_TXQ_STATUS_CHGACT);
   5173 
   5174 	/* Assign RA/TID translation to the queue. */
   5175 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
   5176 	    wn->id << 4 | tid);
   5177 
   5178 	/* Enable chain-building mode for the queue. */
   5179 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
   5180 
   5181 	/* Set starting sequence number from the ADDBA request. */
   5182 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5183 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5184 
   5185 	/* Set scheduler window size. */
   5186 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
   5187 	    IWN_SCHED_WINSZ);
   5188 	/* Set scheduler frame limit. */
   5189 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5190 	    IWN_SCHED_LIMIT << 16);
   5191 
   5192 	/* Enable interrupts for the queue. */
   5193 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5194 
   5195 	/* Mark the queue as active. */
   5196 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5197 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
   5198 	    iwn_tid2fifo[tid] << 1);
   5199 }
   5200 
   5201 static void
   5202 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5203 {
   5204 	int qid = 7 + tid;
   5205 
   5206 	/* Stop TX scheduler while we're changing its configuration. */
   5207 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5208 	    IWN4965_TXQ_STATUS_CHGACT);
   5209 
   5210 	/* Set starting sequence number from the ADDBA request. */
   5211 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5212 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
   5213 
   5214 	/* Disable interrupts for the queue. */
   5215 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
   5216 
   5217 	/* Mark the queue as inactive. */
   5218 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5219 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
   5220 }
   5221 
   5222 static void
   5223 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
   5224     uint8_t tid, uint16_t ssn)
   5225 {
   5226 	struct iwn_node *wn = (void *)ni;
   5227 	int qid = 10 + tid;
   5228 
   5229 	/* Stop TX scheduler while we're changing its configuration. */
   5230 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5231 	    IWN5000_TXQ_STATUS_CHGACT);
   5232 
   5233 	/* Assign RA/TID translation to the queue. */
   5234 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
   5235 	    wn->id << 4 | tid);
   5236 
   5237 	/* Enable chain-building mode for the queue. */
   5238 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
   5239 
   5240 	/* Enable aggregation for the queue. */
   5241 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5242 
   5243 	/* Set starting sequence number from the ADDBA request. */
   5244 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5245 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5246 
   5247 	/* Set scheduler window size and frame limit. */
   5248 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5249 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5250 
   5251 	/* Enable interrupts for the queue. */
   5252 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5253 
   5254 	/* Mark the queue as active. */
   5255 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5256 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
   5257 }
   5258 
   5259 static void
   5260 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
   5261 {
   5262 	int qid = 10 + tid;
   5263 
   5264 	/* Stop TX scheduler while we're changing its configuration. */
   5265 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5266 	    IWN5000_TXQ_STATUS_CHGACT);
   5267 
   5268 	/* Disable aggregation for the queue. */
   5269 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
   5270 
   5271 	/* Set starting sequence number from the ADDBA request. */
   5272 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
   5273 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
   5274 
   5275 	/* Disable interrupts for the queue. */
   5276 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
   5277 
   5278 	/* Mark the queue as inactive. */
   5279 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5280 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
   5281 }
   5282 #endif	/* !IEEE80211_NO_HT */
   5283 
   5284 /*
   5285  * Query calibration tables from the initialization firmware.  We do this
   5286  * only once at first boot.  Called from a process context.
   5287  */
   5288 static int
   5289 iwn5000_query_calibration(struct iwn_softc *sc)
   5290 {
   5291 	struct iwn5000_calib_config cmd;
   5292 	int error;
   5293 
   5294 	memset(&cmd, 0, sizeof cmd);
   5295 	cmd.ucode.once.enable = 0xffffffff;
   5296 	cmd.ucode.once.start  = 0xffffffff;
   5297 	cmd.ucode.once.send   = 0xffffffff;
   5298 	cmd.ucode.flags       = 0xffffffff;
   5299 	DPRINTF(("sending calibration query\n"));
   5300 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
   5301 	if (error != 0)
   5302 		return error;
   5303 
   5304 	/* Wait at most two seconds for calibration to complete. */
   5305 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
   5306 		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
   5307 	return error;
   5308 }
   5309 
   5310 /*
   5311  * Send calibration results to the runtime firmware.  These results were
   5312  * obtained on first boot from the initialization firmware.
   5313  */
   5314 static int
   5315 iwn5000_send_calibration(struct iwn_softc *sc)
   5316 {
   5317 	int idx, error;
   5318 
   5319 	for (idx = 0; idx < 5; idx++) {
   5320 		if (sc->calibcmd[idx].buf == NULL)
   5321 			continue;	/* No results available. */
   5322 		DPRINTF(("send calibration result idx=%d len=%d\n",
   5323 		    idx, sc->calibcmd[idx].len));
   5324 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
   5325 		    sc->calibcmd[idx].len, 0);
   5326 		if (error != 0) {
   5327 			aprint_error_dev(sc->sc_dev,
   5328 			    "could not send calibration result\n");
   5329 			return error;
   5330 		}
   5331 	}
   5332 	return 0;
   5333 }
   5334 
   5335 static int
   5336 iwn5000_send_wimax_coex(struct iwn_softc *sc)
   5337 {
   5338 	struct iwn5000_wimax_coex wimax;
   5339 
   5340 #ifdef notyet
   5341 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
   5342 		/* Enable WiMAX coexistence for combo adapters. */
   5343 		wimax.flags =
   5344 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
   5345 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
   5346 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
   5347 		    IWN_WIMAX_COEX_ENABLE;
   5348 		memcpy(wimax.events, iwn6050_wimax_events,
   5349 		    sizeof iwn6050_wimax_events);
   5350 	} else
   5351 #endif
   5352 	{
   5353 		/* Disable WiMAX coexistence. */
   5354 		wimax.flags = 0;
   5355 		memset(wimax.events, 0, sizeof wimax.events);
   5356 	}
   5357 	DPRINTF(("Configuring WiMAX coexistence\n"));
   5358 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
   5359 }
   5360 
   5361 static int
   5362 iwn6000_temp_offset_calib(struct iwn_softc *sc)
   5363 {
   5364 	struct iwn6000_phy_calib_temp_offset cmd;
   5365 
   5366 	memset(&cmd, 0, sizeof cmd);
   5367 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
   5368 	cmd.ngroups = 1;
   5369 	cmd.isvalid = 1;
   5370 	if (sc->eeprom_temp != 0)
   5371 		cmd.offset = htole16(sc->eeprom_temp);
   5372 	else
   5373 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5374 	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
   5375 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5376 }
   5377 
   5378 static int
   5379 iwn2000_temp_offset_calib(struct iwn_softc *sc)
   5380 {
   5381 	struct iwn2000_phy_calib_temp_offset cmd;
   5382 
   5383 	memset(&cmd, 0, sizeof cmd);
   5384 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
   5385 	cmd.ngroups = 1;
   5386 	cmd.isvalid = 1;
   5387 	if (sc->eeprom_rawtemp != 0) {
   5388 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
   5389 		cmd.offset_high = htole16(sc->eeprom_temp);
   5390 	} else {
   5391 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5392 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
   5393 	}
   5394 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
   5395 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
   5396 	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
   5397 	    le16toh(cmd.burnt_voltage_ref)));
   5398 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5399 }
   5400 
   5401 /*
   5402  * This function is called after the runtime firmware notifies us of its
   5403  * readiness (called in a process context).
   5404  */
   5405 static int
   5406 iwn4965_post_alive(struct iwn_softc *sc)
   5407 {
   5408 	int error, qid;
   5409 
   5410 	if ((error = iwn_nic_lock(sc)) != 0)
   5411 		return error;
   5412 
   5413 	/* Clear TX scheduler state in SRAM. */
   5414 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5415 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
   5416 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
   5417 
   5418 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5419 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5420 
   5421 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5422 
   5423 	/* Disable chain mode for all our 16 queues. */
   5424 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
   5425 
   5426 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
   5427 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
   5428 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5429 
   5430 		/* Set scheduler window size. */
   5431 		iwn_mem_write(sc, sc->sched_base +
   5432 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
   5433 		/* Set scheduler frame limit. */
   5434 		iwn_mem_write(sc, sc->sched_base +
   5435 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
   5436 		    IWN_SCHED_LIMIT << 16);
   5437 	}
   5438 
   5439 	/* Enable interrupts for all our 16 queues. */
   5440 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
   5441 	/* Identify TX FIFO rings (0-7). */
   5442 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
   5443 
   5444 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5445 	for (qid = 0; qid < 7; qid++) {
   5446 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
   5447 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
   5448 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
   5449 	}
   5450 	iwn_nic_unlock(sc);
   5451 	return 0;
   5452 }
   5453 
   5454 /*
   5455  * This function is called after the initialization or runtime firmware
   5456  * notifies us of its readiness (called in a process context).
   5457  */
   5458 static int
   5459 iwn5000_post_alive(struct iwn_softc *sc)
   5460 {
   5461 	int error, qid;
   5462 
   5463 	/* Switch to using ICT interrupt mode. */
   5464 	iwn5000_ict_reset(sc);
   5465 
   5466 	if ((error = iwn_nic_lock(sc)) != 0)
   5467 		return error;
   5468 
   5469 	/* Clear TX scheduler state in SRAM. */
   5470 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
   5471 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
   5472 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
   5473 
   5474 	/* Set physical address of TX scheduler rings (1KB aligned). */
   5475 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
   5476 
   5477 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
   5478 
   5479 	/* Enable chain mode for all queues, except command queue. */
   5480 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
   5481 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
   5482 
   5483 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
   5484 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
   5485 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
   5486 
   5487 		iwn_mem_write(sc, sc->sched_base +
   5488 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
   5489 		/* Set scheduler window size and frame limit. */
   5490 		iwn_mem_write(sc, sc->sched_base +
   5491 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
   5492 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
   5493 	}
   5494 
   5495 	/* Enable interrupts for all our 20 queues. */
   5496 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
   5497 	/* Identify TX FIFO rings (0-7). */
   5498 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
   5499 
   5500 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
   5501 	for (qid = 0; qid < 7; qid++) {
   5502 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
   5503 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
   5504 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
   5505 	}
   5506 	iwn_nic_unlock(sc);
   5507 
   5508 	/* Configure WiMAX coexistence for combo adapters. */
   5509 	error = iwn5000_send_wimax_coex(sc);
   5510 	if (error != 0) {
   5511 		aprint_error_dev(sc->sc_dev,
   5512 		    "could not configure WiMAX coexistence\n");
   5513 		return error;
   5514 	}
   5515 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
   5516 		struct iwn5000_phy_calib_crystal cmd;
   5517 
   5518 		/* Perform crystal calibration. */
   5519 		memset(&cmd, 0, sizeof cmd);
   5520 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
   5521 		cmd.ngroups = 1;
   5522 		cmd.isvalid = 1;
   5523 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
   5524 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
   5525 		DPRINTF(("sending crystal calibration %d, %d\n",
   5526 		    cmd.cap_pin[0], cmd.cap_pin[1]));
   5527 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
   5528 		if (error != 0) {
   5529 			aprint_error_dev(sc->sc_dev,
   5530 			    "crystal calibration failed\n");
   5531 			return error;
   5532 		}
   5533 	}
   5534 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
   5535 		/* Query calibration from the initialization firmware. */
   5536 		if ((error = iwn5000_query_calibration(sc)) != 0) {
   5537 			aprint_error_dev(sc->sc_dev,
   5538 			    "could not query calibration\n");
   5539 			return error;
   5540 		}
   5541 		/*
   5542 		 * We have the calibration results now, reboot with the
   5543 		 * runtime firmware (call ourselves recursively!)
   5544 		 */
   5545 		iwn_hw_stop(sc);
   5546 		error = iwn_hw_init(sc);
   5547 	} else {
   5548 		/* Send calibration results to runtime firmware. */
   5549 		error = iwn5000_send_calibration(sc);
   5550 	}
   5551 	return error;
   5552 }
   5553 
   5554 /*
   5555  * The firmware boot code is small and is intended to be copied directly into
   5556  * the NIC internal memory (no DMA transfer).
   5557  */
   5558 static int
   5559 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
   5560 {
   5561 	int error, ntries;
   5562 
   5563 	size /= sizeof (uint32_t);
   5564 
   5565 	if ((error = iwn_nic_lock(sc)) != 0)
   5566 		return error;
   5567 
   5568 	/* Copy microcode image into NIC memory. */
   5569 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
   5570 	    (const uint32_t *)ucode, size);
   5571 
   5572 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
   5573 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
   5574 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
   5575 
   5576 	/* Start boot load now. */
   5577 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
   5578 
   5579 	/* Wait for transfer to complete. */
   5580 	for (ntries = 0; ntries < 1000; ntries++) {
   5581 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
   5582 		    IWN_BSM_WR_CTRL_START))
   5583 			break;
   5584 		DELAY(10);
   5585 	}
   5586 	if (ntries == 1000) {
   5587 		aprint_error_dev(sc->sc_dev,
   5588 		    "could not load boot firmware\n");
   5589 		iwn_nic_unlock(sc);
   5590 		return ETIMEDOUT;
   5591 	}
   5592 
   5593 	/* Enable boot after power up. */
   5594 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
   5595 
   5596 	iwn_nic_unlock(sc);
   5597 	return 0;
   5598 }
   5599 
   5600 static int
   5601 iwn4965_load_firmware(struct iwn_softc *sc)
   5602 {
   5603 	struct iwn_fw_info *fw = &sc->fw;
   5604 	struct iwn_dma_info *dma = &sc->fw_dma;
   5605 	int error;
   5606 
   5607 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
   5608 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
   5609 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
   5610 	    BUS_DMASYNC_PREWRITE);
   5611 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5612 	    fw->init.text, fw->init.textsz);
   5613 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5614 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
   5615 
   5616 	/* Tell adapter where to find initialization sections. */
   5617 	if ((error = iwn_nic_lock(sc)) != 0)
   5618 		return error;
   5619 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5620 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
   5621 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5622 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5623 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
   5624 	iwn_nic_unlock(sc);
   5625 
   5626 	/* Load firmware boot code. */
   5627 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
   5628 	if (error != 0) {
   5629 		aprint_error_dev(sc->sc_dev,
   5630 		    "could not load boot firmware\n");
   5631 		return error;
   5632 	}
   5633 	/* Now press "execute". */
   5634 	IWN_WRITE(sc, IWN_RESET, 0);
   5635 
   5636 	/* Wait at most one second for first alive notification. */
   5637 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   5638 		aprint_error_dev(sc->sc_dev,
   5639 		    "timeout waiting for adapter to initialize\n");
   5640 		return error;
   5641 	}
   5642 
   5643 	/* Retrieve current temperature for initial TX power calibration. */
   5644 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
   5645 	sc->temp = iwn4965_get_temperature(sc);
   5646 
   5647 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
   5648 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
   5649 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
   5650 	    BUS_DMASYNC_PREWRITE);
   5651 	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
   5652 	    fw->main.text, fw->main.textsz);
   5653 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
   5654 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
   5655 
   5656 	/* Tell adapter where to find runtime sections. */
   5657 	if ((error = iwn_nic_lock(sc)) != 0)
   5658 		return error;
   5659 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
   5660 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
   5661 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
   5662 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
   5663 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
   5664 	    IWN_FW_UPDATED | fw->main.textsz);
   5665 	iwn_nic_unlock(sc);
   5666 
   5667 	return 0;
   5668 }
   5669 
   5670 static int
   5671 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
   5672     const uint8_t *section, int size)
   5673 {
   5674 	struct iwn_dma_info *dma = &sc->fw_dma;
   5675 	int error;
   5676 
   5677 	/* Copy firmware section into pre-allocated DMA-safe memory. */
   5678 	memcpy(dma->vaddr, section, size);
   5679 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
   5680 
   5681 	if ((error = iwn_nic_lock(sc)) != 0)
   5682 		return error;
   5683 
   5684 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5685 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
   5686 
   5687 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
   5688 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
   5689 	    IWN_LOADDR(dma->paddr));
   5690 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
   5691 	    IWN_HIADDR(dma->paddr) << 28 | size);
   5692 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
   5693 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
   5694 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
   5695 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
   5696 
   5697 	/* Kick Flow Handler to start DMA transfer. */
   5698 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
   5699 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
   5700 
   5701 	iwn_nic_unlock(sc);
   5702 
   5703 	/* Wait at most five seconds for FH DMA transfer to complete. */
   5704 	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
   5705 }
   5706 
   5707 static int
   5708 iwn5000_load_firmware(struct iwn_softc *sc)
   5709 {
   5710 	struct iwn_fw_part *fw;
   5711 	int error;
   5712 
   5713 	/* Load the initialization firmware on first boot only. */
   5714 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
   5715 	    &sc->fw.main : &sc->fw.init;
   5716 
   5717 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
   5718 	    fw->text, fw->textsz);
   5719 	if (error != 0) {
   5720 		aprint_error_dev(sc->sc_dev,
   5721 		    "could not load firmware %s section\n", ".text");
   5722 		return error;
   5723 	}
   5724 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
   5725 	    fw->data, fw->datasz);
   5726 	if (error != 0) {
   5727 		aprint_error_dev(sc->sc_dev,
   5728 		    "could not load firmware %s section\n", ".data");
   5729 		return error;
   5730 	}
   5731 
   5732 	/* Now press "execute". */
   5733 	IWN_WRITE(sc, IWN_RESET, 0);
   5734 	return 0;
   5735 }
   5736 
   5737 /*
   5738  * Extract text and data sections from a legacy firmware image.
   5739  */
   5740 static int
   5741 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
   5742 {
   5743 	const uint32_t *ptr;
   5744 	size_t hdrlen = 24;
   5745 	uint32_t rev;
   5746 
   5747 	ptr = (const uint32_t *)fw->data;
   5748 	rev = le32toh(*ptr++);
   5749 
   5750 	sc->ucode_rev = rev;
   5751 
   5752 	/* Check firmware API version. */
   5753 	if (IWN_FW_API(rev) <= 1) {
   5754 		aprint_error_dev(sc->sc_dev,
   5755 		    "bad firmware, need API version >=2\n");
   5756 		return EINVAL;
   5757 	}
   5758 	if (IWN_FW_API(rev) >= 3) {
   5759 		/* Skip build number (version 2 header). */
   5760 		hdrlen += 4;
   5761 		ptr++;
   5762 	}
   5763 	if (fw->size < hdrlen) {
   5764 		aprint_error_dev(sc->sc_dev,
   5765 		    "firmware too short: %zd bytes\n", fw->size);
   5766 		return EINVAL;
   5767 	}
   5768 	fw->main.textsz = le32toh(*ptr++);
   5769 	fw->main.datasz = le32toh(*ptr++);
   5770 	fw->init.textsz = le32toh(*ptr++);
   5771 	fw->init.datasz = le32toh(*ptr++);
   5772 	fw->boot.textsz = le32toh(*ptr++);
   5773 
   5774 	/* Check that all firmware sections fit. */
   5775 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
   5776 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
   5777 		aprint_error_dev(sc->sc_dev,
   5778 		    "firmware too short: %zd bytes\n", fw->size);
   5779 		return EINVAL;
   5780 	}
   5781 
   5782 	/* Get pointers to firmware sections. */
   5783 	fw->main.text = (const uint8_t *)ptr;
   5784 	fw->main.data = fw->main.text + fw->main.textsz;
   5785 	fw->init.text = fw->main.data + fw->main.datasz;
   5786 	fw->init.data = fw->init.text + fw->init.textsz;
   5787 	fw->boot.text = fw->init.data + fw->init.datasz;
   5788 	return 0;
   5789 }
   5790 
   5791 /*
   5792  * Extract text and data sections from a TLV firmware image.
   5793  */
   5794 static int
   5795 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
   5796     uint16_t alt)
   5797 {
   5798 	const struct iwn_fw_tlv_hdr *hdr;
   5799 	const struct iwn_fw_tlv *tlv;
   5800 	const uint8_t *ptr, *end;
   5801 	uint64_t altmask;
   5802 	uint32_t len;
   5803 
   5804 	if (fw->size < sizeof (*hdr)) {
   5805 		aprint_error_dev(sc->sc_dev,
   5806 		    "firmware too short: %zd bytes\n", fw->size);
   5807 		return EINVAL;
   5808 	}
   5809 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
   5810 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
   5811 		aprint_error_dev(sc->sc_dev,
   5812 		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
   5813 		return EINVAL;
   5814 	}
   5815 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
   5816 	    le32toh(hdr->build)));
   5817 	sc->ucode_rev = le32toh(hdr->rev);
   5818 
   5819 	/*
   5820 	 * Select the closest supported alternative that is less than
   5821 	 * or equal to the specified one.
   5822 	 */
   5823 	altmask = le64toh(hdr->altmask);
   5824 	while (alt > 0 && !(altmask & (1ULL << alt)))
   5825 		alt--;	/* Downgrade. */
   5826 	DPRINTF(("using alternative %d\n", alt));
   5827 
   5828 	ptr = (const uint8_t *)(hdr + 1);
   5829 	end = (const uint8_t *)(fw->data + fw->size);
   5830 
   5831 	/* Parse type-length-value fields. */
   5832 	while (ptr + sizeof (*tlv) <= end) {
   5833 		tlv = (const struct iwn_fw_tlv *)ptr;
   5834 		len = le32toh(tlv->len);
   5835 
   5836 		ptr += sizeof (*tlv);
   5837 		if (ptr + len > end) {
   5838 			aprint_error_dev(sc->sc_dev,
   5839 			    "firmware too short: %zd bytes\n", fw->size);
   5840 			return EINVAL;
   5841 		}
   5842 		/* Skip other alternatives. */
   5843 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
   5844 			goto next;
   5845 
   5846 		switch (le16toh(tlv->type)) {
   5847 		case IWN_FW_TLV_MAIN_TEXT:
   5848 			fw->main.text = ptr;
   5849 			fw->main.textsz = len;
   5850 			break;
   5851 		case IWN_FW_TLV_MAIN_DATA:
   5852 			fw->main.data = ptr;
   5853 			fw->main.datasz = len;
   5854 			break;
   5855 		case IWN_FW_TLV_INIT_TEXT:
   5856 			fw->init.text = ptr;
   5857 			fw->init.textsz = len;
   5858 			break;
   5859 		case IWN_FW_TLV_INIT_DATA:
   5860 			fw->init.data = ptr;
   5861 			fw->init.datasz = len;
   5862 			break;
   5863 		case IWN_FW_TLV_BOOT_TEXT:
   5864 			fw->boot.text = ptr;
   5865 			fw->boot.textsz = len;
   5866 			break;
   5867 		case IWN_FW_TLV_ENH_SENS:
   5868 			if (len != 0) {
   5869 				aprint_error_dev(sc->sc_dev,
   5870 				    "TLV type %d has invalid size %u\n",
   5871 				    le16toh(tlv->type), len);
   5872 				goto next;
   5873 			}
   5874 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
   5875 			break;
   5876 		case IWN_FW_TLV_PHY_CALIB:
   5877 			if (len != sizeof(uint32_t)) {
   5878 				aprint_error_dev(sc->sc_dev,
   5879 				    "TLV type %d has invalid size %u\n",
   5880 				    le16toh(tlv->type), len);
   5881 				goto next;
   5882 			}
   5883 			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
   5884 				sc->reset_noise_gain = le32toh(*ptr);
   5885 				sc->noise_gain = le32toh(*ptr) + 1;
   5886 			}
   5887 			break;
   5888 		case IWN_FW_TLV_FLAGS:
   5889 			if (len < sizeof(uint32_t))
   5890 				break;
   5891 			if (len % sizeof(uint32_t))
   5892 				break;
   5893 			sc->tlv_feature_flags = le32toh(*ptr);
   5894 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
   5895 			break;
   5896 		default:
   5897 			DPRINTF(("TLV type %d not handled\n",
   5898 			    le16toh(tlv->type)));
   5899 			break;
   5900 		}
   5901  next:		/* TLV fields are 32-bit aligned. */
   5902 		ptr += (len + 3) & ~3;
   5903 	}
   5904 	return 0;
   5905 }
   5906 
   5907 static int
   5908 iwn_read_firmware(struct iwn_softc *sc)
   5909 {
   5910 	struct iwn_fw_info *fw = &sc->fw;
   5911 	firmware_handle_t fwh;
   5912 	int error;
   5913 
   5914 	/*
   5915 	 * Some PHY calibration commands are firmware-dependent; these
   5916 	 * are the default values that will be overridden if
   5917 	 * necessary.
   5918 	 */
   5919 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
   5920 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
   5921 
   5922 	/* Initialize for error returns */
   5923 	fw->data = NULL;
   5924 	fw->size = 0;
   5925 
   5926 	/* Open firmware image. */
   5927 	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
   5928 		aprint_error_dev(sc->sc_dev,
   5929 		    "could not get firmware handle %s\n", sc->fwname);
   5930 		return error;
   5931 	}
   5932 	fw->size = firmware_get_size(fwh);
   5933 	if (fw->size < sizeof (uint32_t)) {
   5934 		aprint_error_dev(sc->sc_dev,
   5935 		    "firmware too short: %zd bytes\n", fw->size);
   5936 		firmware_close(fwh);
   5937 		return EINVAL;
   5938 	}
   5939 
   5940 	/* Read the firmware. */
   5941 	fw->data = firmware_malloc(fw->size);
   5942 	if (fw->data == NULL) {
   5943 		aprint_error_dev(sc->sc_dev,
   5944 		    "not enough memory to stock firmware %s\n", sc->fwname);
   5945 		firmware_close(fwh);
   5946 		return ENOMEM;
   5947 	}
   5948 	error = firmware_read(fwh, 0, fw->data, fw->size);
   5949 	firmware_close(fwh);
   5950 	if (error != 0) {
   5951 		aprint_error_dev(sc->sc_dev,
   5952 		    "could not read firmware %s\n", sc->fwname);
   5953 		goto out;
   5954 	}
   5955 
   5956 	/* Retrieve text and data sections. */
   5957 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
   5958 		error = iwn_read_firmware_leg(sc, fw);
   5959 	else
   5960 		error = iwn_read_firmware_tlv(sc, fw, 1);
   5961 	if (error != 0) {
   5962 		aprint_error_dev(sc->sc_dev,
   5963 		    "could not read firmware sections\n");
   5964 		goto out;
   5965 	}
   5966 
   5967 	/* Make sure text and data sections fit in hardware memory. */
   5968 	if (fw->main.textsz > sc->fw_text_maxsz ||
   5969 	    fw->main.datasz > sc->fw_data_maxsz ||
   5970 	    fw->init.textsz > sc->fw_text_maxsz ||
   5971 	    fw->init.datasz > sc->fw_data_maxsz ||
   5972 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
   5973 	    (fw->boot.textsz & 3) != 0) {
   5974 		aprint_error_dev(sc->sc_dev,
   5975 		    "firmware sections too large\n");
   5976 		goto out;
   5977 	}
   5978 
   5979 	/* We can proceed with loading the firmware. */
   5980 	return 0;
   5981 out:
   5982 	firmware_free(fw->data, fw->size);
   5983 	fw->data = NULL;
   5984 	fw->size = 0;
   5985 	return error ? error : EINVAL;
   5986 }
   5987 
   5988 static int
   5989 iwn_clock_wait(struct iwn_softc *sc)
   5990 {
   5991 	int ntries;
   5992 
   5993 	/* Set "initialization complete" bit. */
   5994 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   5995 
   5996 	/* Wait for clock stabilization. */
   5997 	for (ntries = 0; ntries < 2500; ntries++) {
   5998 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
   5999 			return 0;
   6000 		DELAY(10);
   6001 	}
   6002 	aprint_error_dev(sc->sc_dev,
   6003 	    "timeout waiting for clock stabilization\n");
   6004 	return ETIMEDOUT;
   6005 }
   6006 
   6007 static int
   6008 iwn_apm_init(struct iwn_softc *sc)
   6009 {
   6010 	pcireg_t reg;
   6011 	int error;
   6012 
   6013 	/* Disable L0s exit timer (NMI bug workaround). */
   6014 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
   6015 	/* Don't wait for ICH L0s (ICH bug workaround). */
   6016 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
   6017 
   6018 	/* Set FH wait threshold to max (HW bug under stress workaround). */
   6019 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
   6020 
   6021 	/* Enable HAP INTA to move adapter from L1a to L0s. */
   6022 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
   6023 
   6024 	/* Retrieve PCIe Active State Power Management (ASPM). */
   6025 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
   6026 	    sc->sc_cap_off + PCIE_LCSR);
   6027 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
   6028 	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
   6029 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6030 	else
   6031 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
   6032 
   6033 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
   6034 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
   6035 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
   6036 
   6037 	/* Wait for clock stabilization before accessing prph. */
   6038 	if ((error = iwn_clock_wait(sc)) != 0)
   6039 		return error;
   6040 
   6041 	if ((error = iwn_nic_lock(sc)) != 0)
   6042 		return error;
   6043 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
   6044 		/* Enable DMA and BSM (Bootstrap State Machine). */
   6045 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6046 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
   6047 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
   6048 	} else {
   6049 		/* Enable DMA. */
   6050 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
   6051 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6052 	}
   6053 	DELAY(20);
   6054 	/* Disable L1-Active. */
   6055 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
   6056 	iwn_nic_unlock(sc);
   6057 
   6058 	return 0;
   6059 }
   6060 
   6061 static void
   6062 iwn_apm_stop_master(struct iwn_softc *sc)
   6063 {
   6064 	int ntries;
   6065 
   6066 	/* Stop busmaster DMA activity. */
   6067 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
   6068 	for (ntries = 0; ntries < 100; ntries++) {
   6069 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
   6070 			return;
   6071 		DELAY(10);
   6072 	}
   6073 	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   6074 }
   6075 
   6076 static void
   6077 iwn_apm_stop(struct iwn_softc *sc)
   6078 {
   6079 	iwn_apm_stop_master(sc);
   6080 
   6081 	/* Reset the entire device. */
   6082 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
   6083 	DELAY(10);
   6084 	/* Clear "initialization complete" bit. */
   6085 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
   6086 }
   6087 
   6088 static int
   6089 iwn4965_nic_config(struct iwn_softc *sc)
   6090 {
   6091 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
   6092 		/*
   6093 		 * I don't believe this to be correct but this is what the
   6094 		 * vendor driver is doing. Probably the bits should not be
   6095 		 * shifted in IWN_RFCFG_*.
   6096 		 */
   6097 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6098 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6099 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6100 		    IWN_RFCFG_DASH(sc->rfcfg));
   6101 	}
   6102 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6103 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6104 	return 0;
   6105 }
   6106 
   6107 static int
   6108 iwn5000_nic_config(struct iwn_softc *sc)
   6109 {
   6110 	uint32_t tmp;
   6111 	int error;
   6112 
   6113 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
   6114 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6115 		    IWN_RFCFG_TYPE(sc->rfcfg) |
   6116 		    IWN_RFCFG_STEP(sc->rfcfg) |
   6117 		    IWN_RFCFG_DASH(sc->rfcfg));
   6118 	}
   6119 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
   6120 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
   6121 
   6122 	if ((error = iwn_nic_lock(sc)) != 0)
   6123 		return error;
   6124 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
   6125 
   6126 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
   6127 		/*
   6128 		 * Select first Switching Voltage Regulator (1.32V) to
   6129 		 * solve a stability issue related to noisy DC2DC line
   6130 		 * in the silicon of 1000 Series.
   6131 		 */
   6132 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
   6133 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
   6134 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
   6135 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
   6136 	}
   6137 	iwn_nic_unlock(sc);
   6138 
   6139 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
   6140 		/* Use internal power amplifier only. */
   6141 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
   6142 	}
   6143 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
   6144 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
   6145 		/* Indicate that ROM calibration version is >=6. */
   6146 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
   6147 	}
   6148 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
   6149 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
   6150 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
   6151 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
   6152 	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
   6153 	    sc->hw_type == IWN_HW_REV_TYPE_105)
   6154 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
   6155 	return 0;
   6156 }
   6157 
   6158 /*
   6159  * Take NIC ownership over Intel Active Management Technology (AMT).
   6160  */
   6161 static int
   6162 iwn_hw_prepare(struct iwn_softc *sc)
   6163 {
   6164 	int ntries;
   6165 
   6166 	/* Check if hardware is ready. */
   6167 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6168 	for (ntries = 0; ntries < 5; ntries++) {
   6169 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6170 		    IWN_HW_IF_CONFIG_NIC_READY)
   6171 			return 0;
   6172 		DELAY(10);
   6173 	}
   6174 
   6175 	/* Hardware not ready, force into ready state. */
   6176 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
   6177 	for (ntries = 0; ntries < 15000; ntries++) {
   6178 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6179 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
   6180 			break;
   6181 		DELAY(10);
   6182 	}
   6183 	if (ntries == 15000)
   6184 		return ETIMEDOUT;
   6185 
   6186 	/* Hardware should be ready now. */
   6187 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
   6188 	for (ntries = 0; ntries < 5; ntries++) {
   6189 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
   6190 		    IWN_HW_IF_CONFIG_NIC_READY)
   6191 			return 0;
   6192 		DELAY(10);
   6193 	}
   6194 	return ETIMEDOUT;
   6195 }
   6196 
   6197 static int
   6198 iwn_hw_init(struct iwn_softc *sc)
   6199 {
   6200 	struct iwn_ops *ops = &sc->ops;
   6201 	int error, chnl, qid;
   6202 
   6203 	/* Clear pending interrupts. */
   6204 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6205 
   6206 	if ((error = iwn_apm_init(sc)) != 0) {
   6207 		aprint_error_dev(sc->sc_dev,
   6208 		    "could not power ON adapter\n");
   6209 		return error;
   6210 	}
   6211 
   6212 	/* Select VMAIN power source. */
   6213 	if ((error = iwn_nic_lock(sc)) != 0)
   6214 		return error;
   6215 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
   6216 	iwn_nic_unlock(sc);
   6217 
   6218 	/* Perform adapter-specific initialization. */
   6219 	if ((error = ops->nic_config(sc)) != 0)
   6220 		return error;
   6221 
   6222 	/* Initialize RX ring. */
   6223 	if ((error = iwn_nic_lock(sc)) != 0)
   6224 		return error;
   6225 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
   6226 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
   6227 	/* Set physical address of RX ring (256-byte aligned). */
   6228 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
   6229 	/* Set physical address of RX status (16-byte aligned). */
   6230 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
   6231 	/* Enable RX. */
   6232 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
   6233 	    IWN_FH_RX_CONFIG_ENA           |
   6234 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
   6235 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
   6236 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
   6237 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
   6238 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
   6239 	iwn_nic_unlock(sc);
   6240 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
   6241 
   6242 	if ((error = iwn_nic_lock(sc)) != 0)
   6243 		return error;
   6244 
   6245 	/* Initialize TX scheduler. */
   6246 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6247 
   6248 	/* Set physical address of "keep warm" page (16-byte aligned). */
   6249 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
   6250 
   6251 	/* Initialize TX rings. */
   6252 	for (qid = 0; qid < sc->ntxqs; qid++) {
   6253 		struct iwn_tx_ring *txq = &sc->txq[qid];
   6254 
   6255 		/* Set physical address of TX ring (256-byte aligned). */
   6256 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
   6257 		    txq->desc_dma.paddr >> 8);
   6258 	}
   6259 	iwn_nic_unlock(sc);
   6260 
   6261 	/* Enable DMA channels. */
   6262 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6263 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
   6264 		    IWN_FH_TX_CONFIG_DMA_ENA |
   6265 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
   6266 	}
   6267 
   6268 	/* Clear "radio off" and "commands blocked" bits. */
   6269 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6270 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
   6271 
   6272 	/* Clear pending interrupts. */
   6273 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6274 	/* Enable interrupt coalescing. */
   6275 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
   6276 	/* Enable interrupts. */
   6277 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
   6278 
   6279 	/* _Really_ make sure "radio off" bit is cleared! */
   6280 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6281 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
   6282 
   6283 	/* Enable shadow registers. */
   6284 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
   6285 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
   6286 
   6287 	if ((error = ops->load_firmware(sc)) != 0) {
   6288 		aprint_error_dev(sc->sc_dev,
   6289 		    "could not load firmware\n");
   6290 		return error;
   6291 	}
   6292 	/* Wait at most one second for firmware alive notification. */
   6293 	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
   6294 		aprint_error_dev(sc->sc_dev,
   6295 		    "timeout waiting for adapter to initialize\n");
   6296 		return error;
   6297 	}
   6298 	/* Do post-firmware initialization. */
   6299 	return ops->post_alive(sc);
   6300 }
   6301 
   6302 static void
   6303 iwn_hw_stop(struct iwn_softc *sc)
   6304 {
   6305 	int chnl, qid, ntries;
   6306 
   6307 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
   6308 
   6309 	/* Disable interrupts. */
   6310 	IWN_WRITE(sc, IWN_INT_MASK, 0);
   6311 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
   6312 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
   6313 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6314 
   6315 	/* Make sure we no longer hold the NIC lock. */
   6316 	iwn_nic_unlock(sc);
   6317 
   6318 	/* Stop TX scheduler. */
   6319 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
   6320 
   6321 	/* Stop all DMA channels. */
   6322 	if (iwn_nic_lock(sc) == 0) {
   6323 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
   6324 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
   6325 			for (ntries = 0; ntries < 200; ntries++) {
   6326 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
   6327 				    IWN_FH_TX_STATUS_IDLE(chnl))
   6328 					break;
   6329 				DELAY(10);
   6330 			}
   6331 		}
   6332 		iwn_nic_unlock(sc);
   6333 	}
   6334 
   6335 	/* Stop RX ring. */
   6336 	iwn_reset_rx_ring(sc, &sc->rxq);
   6337 
   6338 	/* Reset all TX rings. */
   6339 	for (qid = 0; qid < sc->ntxqs; qid++)
   6340 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
   6341 
   6342 	if (iwn_nic_lock(sc) == 0) {
   6343 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
   6344 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
   6345 		iwn_nic_unlock(sc);
   6346 	}
   6347 	DELAY(5);
   6348 	/* Power OFF adapter. */
   6349 	iwn_apm_stop(sc);
   6350 }
   6351 
   6352 static int
   6353 iwn_init(struct ifnet *ifp)
   6354 {
   6355 	struct iwn_softc *sc = ifp->if_softc;
   6356 	struct ieee80211com *ic = &sc->sc_ic;
   6357 	int error;
   6358 
   6359 	mutex_enter(&sc->sc_mtx);
   6360 	if (sc->sc_flags & IWN_FLAG_HW_INITED)
   6361 		goto out;
   6362 	if ((error = iwn_hw_prepare(sc)) != 0) {
   6363 		aprint_error_dev(sc->sc_dev,
   6364 		    "hardware not ready\n");
   6365 		goto fail;
   6366 	}
   6367 
   6368 	/* Check that the radio is not disabled by hardware switch. */
   6369 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
   6370 		aprint_error_dev(sc->sc_dev,
   6371 		    "radio is disabled by hardware switch\n");
   6372 		error = EPERM;	/* :-) */
   6373 		goto fail;
   6374 	}
   6375 
   6376 	/* Read firmware images from the filesystem. */
   6377 	if ((error = iwn_read_firmware(sc)) != 0) {
   6378 		aprint_error_dev(sc->sc_dev,
   6379 		    "could not read firmware\n");
   6380 		goto fail;
   6381 	}
   6382 
   6383 	/* Initialize interrupt mask to default value. */
   6384 	sc->int_mask = IWN_INT_MASK_DEF;
   6385 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
   6386 
   6387 	/* Initialize hardware and upload firmware. */
   6388 	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
   6389 	error = iwn_hw_init(sc);
   6390 	firmware_free(sc->fw.data, sc->fw.size);
   6391 	sc->fw.data = NULL;
   6392 	sc->fw.size = 0;
   6393 	if (error != 0) {
   6394 		aprint_error_dev(sc->sc_dev,
   6395 		    "could not initialize hardware\n");
   6396 		goto fail;
   6397 	}
   6398 
   6399 	/* Configure adapter now that it is ready. */
   6400 	if ((error = iwn_config(sc)) != 0) {
   6401 		aprint_error_dev(sc->sc_dev,
   6402 		    "could not configure device\n");
   6403 		goto fail;
   6404 	}
   6405 
   6406 	sc->sc_beacon_wait = 0;
   6407 
   6408 	ifp->if_flags &= ~IFF_OACTIVE;
   6409 	ifp->if_flags |= IFF_RUNNING;
   6410 
   6411 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   6412 		ieee80211_begin_scan(ic, 0);
   6413 	else
   6414 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   6415 
   6416 	sc->sc_flags |= IWN_FLAG_HW_INITED;
   6417 out:
   6418 	mutex_exit(&sc->sc_mtx);
   6419 	return 0;
   6420 
   6421 fail:	mutex_exit(&sc->sc_mtx);
   6422 	iwn_stop(ifp, 1);
   6423 	return error;
   6424 }
   6425 
   6426 static void
   6427 iwn_stop(struct ifnet *ifp, int disable)
   6428 {
   6429 	struct iwn_softc *sc = ifp->if_softc;
   6430 	struct ieee80211com *ic = &sc->sc_ic;
   6431 
   6432 	if (!disable)
   6433 		mutex_enter(&sc->sc_mtx);
   6434 	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
   6435 	ifp->if_timer = sc->sc_tx_timer = 0;
   6436 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6437 
   6438 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   6439 
   6440 	/* Power OFF hardware. */
   6441 	iwn_hw_stop(sc);
   6442 
   6443 	if (!disable)
   6444 		mutex_exit(&sc->sc_mtx);
   6445 }
   6446 
   6447 /*
   6448  * XXX MCLGETI alternative
   6449  *
   6450  * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
   6451  * as long as there are available free buffers then it uses MEXTMALLOC.,
   6452  * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
   6453  * The MCLGET4K code is used for testing an alternative mbuf cache.
   6454  */
   6455 
   6456 static struct mbuf *
   6457 MCLGETIalt(struct iwn_softc *sc, int how,
   6458     struct ifnet *ifp __unused, u_int size)
   6459 {
   6460 	struct mbuf *m;
   6461 #ifdef IWN_USE_RBUF
   6462 	struct iwn_rbuf *rbuf;
   6463 #endif
   6464 
   6465 	MGETHDR(m, how, MT_DATA);
   6466 	if (m == NULL)
   6467 		return NULL;
   6468 
   6469 #ifdef IWN_USE_RBUF
   6470 	if (sc->rxq.nb_free_entries > 0 &&
   6471 	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
   6472 		/* Attach buffer to mbuf header. */
   6473 		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
   6474 		m->m_flags |= M_EXT_RW;
   6475 	}
   6476 	else {
   6477 		MEXTMALLOC(m, size, how);
   6478 		if ((m->m_flags & M_EXT) == 0) {
   6479 			m_freem(m);
   6480 			return NULL;
   6481 		}
   6482 	}
   6483 
   6484 #else
   6485 #ifdef MCLGET4K
   6486 	if (size == 4096)
   6487 		MCLGET4K(m, how);
   6488 	else
   6489 		panic("size must be 4k");
   6490 #else
   6491 	MEXTMALLOC(m, size, how);
   6492 #endif
   6493 	if ((m->m_flags & M_EXT) == 0) {
   6494 		m_freem(m);
   6495 		return NULL;
   6496 	}
   6497 #endif
   6498 
   6499 	return m;
   6500 }
   6501 
   6502 #ifdef IWN_USE_RBUF
   6503 static struct iwn_rbuf *
   6504 iwn_alloc_rbuf(struct iwn_softc *sc)
   6505 {
   6506 	struct iwn_rbuf *rbuf;
   6507 	mutex_enter(&sc->rxq.freelist_mtx);
   6508 
   6509 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
   6510 	if (rbuf != NULL) {
   6511 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
   6512 		sc->rxq.nb_free_entries --;
   6513 	}
   6514 	mutex_exit(&sc->rxq.freelist_mtx);
   6515 	return rbuf;
   6516 }
   6517 
   6518 /*
   6519  * This is called automatically by the network stack when the mbuf to which
   6520  * our RX buffer is attached is freed.
   6521  */
   6522 static void
   6523 iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
   6524 {
   6525 	struct iwn_rbuf *rbuf = arg;
   6526 	struct iwn_softc *sc = rbuf->sc;
   6527 
   6528 	/* Put the RX buffer back in the free list. */
   6529 	mutex_enter(&sc->rxq.freelist_mtx);
   6530 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
   6531 	mutex_exit(&sc->rxq.freelist_mtx);
   6532 
   6533 	sc->rxq.nb_free_entries ++;
   6534 	if (__predict_true(m != NULL))
   6535 		pool_cache_put(mb_cache, m);
   6536 }
   6537 
   6538 static int
   6539 iwn_alloc_rpool(struct iwn_softc *sc)
   6540 {
   6541 	struct iwn_rx_ring *ring = &sc->rxq;
   6542 	struct iwn_rbuf *rbuf;
   6543 	int i, error;
   6544 
   6545 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
   6546 
   6547 	/* Allocate a big chunk of DMA'able memory... */
   6548 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
   6549 	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
   6550 	if (error != 0) {
   6551 		aprint_error_dev(sc->sc_dev,
   6552 		    "could not allocate RX buffers DMA memory\n");
   6553 		return error;
   6554 	}
   6555 	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
   6556 	SLIST_INIT(&ring->freelist);
   6557 	for (i = 0; i < IWN_RBUF_COUNT; i++) {
   6558 		rbuf = &ring->rbuf[i];
   6559 
   6560 		rbuf->sc = sc;	/* Backpointer for callbacks. */
   6561 		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
   6562 		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
   6563 
   6564 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
   6565 	}
   6566 	ring->nb_free_entries = IWN_RBUF_COUNT;
   6567 	return 0;
   6568 }
   6569 
   6570 static void
   6571 iwn_free_rpool(struct iwn_softc *sc)
   6572 {
   6573 	iwn_dma_contig_free(&sc->rxq.buf_dma);
   6574 }
   6575 #endif
   6576 
   6577 /*
   6578  * XXX: Hack to set the current channel to the value advertised in beacons or
   6579  * probe responses. Only used during AP detection.
   6580  * XXX: Duplicated from if_iwi.c
   6581  */
   6582 static void
   6583 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
   6584     struct iwn_rx_stat *stat)
   6585 {
   6586 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
   6587 	struct ieee80211_frame *wh;
   6588 	uint8_t subtype;
   6589 	uint8_t *frm, *efrm;
   6590 
   6591 	wh = mtod(m, struct ieee80211_frame *);
   6592 
   6593 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
   6594 		return;
   6595 
   6596 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   6597 
   6598 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
   6599 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   6600 		return;
   6601 
   6602 	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
   6603 		int chan = le16toh(stat->chan);
   6604 		if (chan < __arraycount(ic->ic_channels))
   6605 			ic->ic_curchan = &ic->ic_channels[chan];
   6606 		return;
   6607 	}
   6608 
   6609 	frm = (uint8_t *)(wh + 1);
   6610 	efrm = mtod(m, uint8_t *) + m->m_len;
   6611 
   6612 	frm += 12;      /* skip tstamp, bintval and capinfo fields */
   6613 	while (frm + 2 < efrm) {
   6614 		if (*frm == IEEE80211_ELEMID_DSPARMS) {
   6615 #if IEEE80211_CHAN_MAX < 255
   6616 			if (frm[2] <= IEEE80211_CHAN_MAX)
   6617 #endif
   6618 				ic->ic_curchan = &ic->ic_channels[frm[2]];
   6619 		}
   6620 
   6621 		frm += frm[1] + 2;
   6622 	}
   6623 }
   6624 
   6625 #ifdef notyetMODULE
   6626 
   6627 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
   6628 
   6629 #ifdef _MODULE
   6630 #include "ioconf.c"
   6631 #endif
   6632 
   6633 static int
   6634 if_iwn_modcmd(modcmd_t cmd, void *data)
   6635 {
   6636 	int error = 0;
   6637 
   6638 	switch (cmd) {
   6639 	case MODULE_CMD_INIT:
   6640 #ifdef _MODULE
   6641 		error = config_init_component(cfdriver_ioconf_if_iwn,
   6642 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6643 #endif
   6644 		return error;
   6645 	case MODULE_CMD_FINI:
   6646 #ifdef _MODULE
   6647 		error = config_fini_component(cfdriver_ioconf_if_iwn,
   6648 			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
   6649 #endif
   6650 		return error;
   6651 	case MODULE_CMD_AUTOUNLOAD:
   6652 #ifdef _MODULE
   6653 		/* XXX This is not optional! */
   6654 #endif
   6655 		return error;
   6656 	default:
   6657 		return ENOTTY;
   6658 	}
   6659 }
   6660 #endif
   6661