if_iwn.c revision 1.95 1 /* $NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.95 2021/05/08 00:27:02 thorpej Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const struct device_compatible_entry compat_data[] = {
79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81
82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84
85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87
88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90
91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93
94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96
97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99
100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102
103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105
106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108
109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111
112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114
115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117
118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120
121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123
124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126
127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129
130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132
133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135
136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138
139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141
142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144
145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147
148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150
151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153
154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156
157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159
160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162
163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165
166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168
169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171
172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174
175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177
178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180
181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183
184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186
187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189
190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192
193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195
196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198
199 PCI_COMPAT_EOL
200 };
201
202 static int iwn_match(device_t , struct cfdata *, void *);
203 static void iwn_attach(device_t , device_t , void *);
204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void iwn_radiotap_attach(struct iwn_softc *);
207 static int iwn_detach(device_t , int);
208 #if 0
209 static void iwn_power(int, void *);
210 #endif
211 static bool iwn_resume(device_t, const pmf_qual_t *);
212 static int iwn_nic_lock(struct iwn_softc *);
213 static int iwn_eeprom_lock(struct iwn_softc *);
214 static int iwn_init_otprom(struct iwn_softc *);
215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 void **, bus_size_t, bus_size_t);
218 static void iwn_dma_contig_free(struct iwn_dma_info *);
219 static int iwn_alloc_sched(struct iwn_softc *);
220 static void iwn_free_sched(struct iwn_softc *);
221 static int iwn_alloc_kw(struct iwn_softc *);
222 static void iwn_free_kw(struct iwn_softc *);
223 static int iwn_alloc_ict(struct iwn_softc *);
224 static void iwn_free_ict(struct iwn_softc *);
225 static int iwn_alloc_fwmem(struct iwn_softc *);
226 static void iwn_free_fwmem(struct iwn_softc *);
227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231 int);
232 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void iwn5000_ict_reset(struct iwn_softc *);
235 static int iwn_read_eeprom(struct iwn_softc *);
236 static void iwn4965_read_eeprom(struct iwn_softc *);
237
238 #ifdef IWN_DEBUG
239 static void iwn4965_print_power_group(struct iwn_softc *, int);
240 #endif
241 static void iwn5000_read_eeprom(struct iwn_softc *);
242 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
244 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245 static void iwn_newassoc(struct ieee80211_node *, int);
246 static int iwn_media_change(struct ifnet *);
247 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248 static void iwn_iter_func(void *, struct ieee80211_node *);
249 static void iwn_calib_timeout(void *);
250 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251 struct iwn_rx_data *);
252 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253 struct iwn_rx_data *);
254 #ifndef IEEE80211_NO_HT
255 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256 struct iwn_rx_data *);
257 #endif
258 static void iwn5000_rx_calib_results(struct iwn_softc *,
259 struct iwn_rx_desc *, struct iwn_rx_data *);
260 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261 struct iwn_rx_data *);
262 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263 struct iwn_rx_data *);
264 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265 struct iwn_rx_data *);
266 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267 uint8_t);
268 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269 static void iwn_notif_intr(struct iwn_softc *);
270 static void iwn_wakeup_intr(struct iwn_softc *);
271 static void iwn_fatal_intr(struct iwn_softc *);
272 static int iwn_intr(void *);
273 static void iwn_softintr(void *);
274 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275 uint16_t);
276 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277 uint16_t);
278 #ifdef notyet
279 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
280 #endif
281 static int iwn_tx(struct iwn_softc *, struct mbuf *,
282 struct ieee80211_node *, int);
283 static void iwn_start(struct ifnet *);
284 static void iwn_watchdog(struct ifnet *);
285 static int iwn_ioctl(struct ifnet *, u_long, void *);
286 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288 int);
289 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290 int);
291 static int iwn_set_link_quality(struct iwn_softc *,
292 struct ieee80211_node *);
293 static int iwn_add_broadcast_node(struct iwn_softc *, int);
294 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295 static int iwn_set_critical_temp(struct iwn_softc *);
296 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297 static void iwn4965_power_calibration(struct iwn_softc *, int);
298 static int iwn4965_set_txpower(struct iwn_softc *, int);
299 static int iwn5000_set_txpower(struct iwn_softc *, int);
300 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
301 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
302 static int iwn_get_noise(const struct iwn_rx_general_stats *);
303 static int iwn4965_get_temperature(struct iwn_softc *);
304 static int iwn5000_get_temperature(struct iwn_softc *);
305 static int iwn_init_sensitivity(struct iwn_softc *);
306 static void iwn_collect_noise(struct iwn_softc *,
307 const struct iwn_rx_general_stats *);
308 static int iwn4965_init_gains(struct iwn_softc *);
309 static int iwn5000_init_gains(struct iwn_softc *);
310 static int iwn4965_set_gains(struct iwn_softc *);
311 static int iwn5000_set_gains(struct iwn_softc *);
312 static void iwn_tune_sensitivity(struct iwn_softc *,
313 const struct iwn_rx_stats *);
314 static int iwn_send_sensitivity(struct iwn_softc *);
315 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
316 static int iwn5000_runtime_calib(struct iwn_softc *);
317
318 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
320 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
321 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
322
323 static int iwn_config(struct iwn_softc *);
324 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325 uint8_t);
326 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
327 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328 static int iwn_scan(struct iwn_softc *, uint16_t);
329 static int iwn_auth(struct iwn_softc *);
330 static int iwn_run(struct iwn_softc *);
331 #ifdef IWN_HWCRYPTO
332 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333 struct ieee80211_key *);
334 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335 struct ieee80211_key *);
336 #endif
337 static int iwn_wme_update(struct ieee80211com *);
338 #ifndef IEEE80211_NO_HT
339 static int iwn_ampdu_rx_start(struct ieee80211com *,
340 struct ieee80211_node *, uint8_t);
341 static void iwn_ampdu_rx_stop(struct ieee80211com *,
342 struct ieee80211_node *, uint8_t);
343 static int iwn_ampdu_tx_start(struct ieee80211com *,
344 struct ieee80211_node *, uint8_t);
345 static void iwn_ampdu_tx_stop(struct ieee80211com *,
346 struct ieee80211_node *, uint8_t);
347 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
348 struct ieee80211_node *, uint8_t, uint16_t);
349 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
350 uint8_t, uint16_t);
351 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
352 struct ieee80211_node *, uint8_t, uint16_t);
353 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
354 uint8_t, uint16_t);
355 #endif
356 static int iwn5000_query_calibration(struct iwn_softc *);
357 static int iwn5000_send_calibration(struct iwn_softc *);
358 static int iwn5000_send_wimax_coex(struct iwn_softc *);
359 static int iwn6000_temp_offset_calib(struct iwn_softc *);
360 static int iwn2000_temp_offset_calib(struct iwn_softc *);
361 static int iwn4965_post_alive(struct iwn_softc *);
362 static int iwn5000_post_alive(struct iwn_softc *);
363 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364 int);
365 static int iwn4965_load_firmware(struct iwn_softc *);
366 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367 const uint8_t *, int);
368 static int iwn5000_load_firmware(struct iwn_softc *);
369 static int iwn_read_firmware_leg(struct iwn_softc *,
370 struct iwn_fw_info *);
371 static int iwn_read_firmware_tlv(struct iwn_softc *,
372 struct iwn_fw_info *, uint16_t);
373 static int iwn_read_firmware(struct iwn_softc *);
374 static int iwn_clock_wait(struct iwn_softc *);
375 static int iwn_apm_init(struct iwn_softc *);
376 static void iwn_apm_stop_master(struct iwn_softc *);
377 static void iwn_apm_stop(struct iwn_softc *);
378 static int iwn4965_nic_config(struct iwn_softc *);
379 static int iwn5000_nic_config(struct iwn_softc *);
380 static int iwn_hw_prepare(struct iwn_softc *);
381 static int iwn_hw_init(struct iwn_softc *);
382 static void iwn_hw_stop(struct iwn_softc *);
383 static int iwn_init(struct ifnet *);
384 static void iwn_stop(struct ifnet *, int);
385
386 /* XXX MCLGETI alternative */
387 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
388 struct ifnet *, u_int);
389 #ifdef IWN_USE_RBUF
390 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392 static int iwn_alloc_rpool(struct iwn_softc *);
393 static void iwn_free_rpool(struct iwn_softc *);
394 #endif
395
396 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397 struct iwn_rx_stat *);
398
399 #ifdef IWN_DEBUG
400 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
401 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
402 int iwn_debug = 0;
403 #else
404 #define DPRINTF(x)
405 #define DPRINTFN(n, x)
406 #endif
407
408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409 iwn_detach, NULL);
410
411 static int
412 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413 {
414 struct pci_attach_args *pa = aux;
415
416 return pci_compatible_match(pa, compat_data);
417 }
418
419 static void
420 iwn_attach(device_t parent __unused, device_t self, void *aux)
421 {
422 struct iwn_softc *sc = device_private(self);
423 struct ieee80211com *ic = &sc->sc_ic;
424 struct ifnet *ifp = &sc->sc_ec.ec_if;
425 struct pci_attach_args *pa = aux;
426 const char *intrstr;
427 pcireg_t memtype, reg;
428 int i, error;
429 char intrbuf[PCI_INTRSTR_LEN];
430
431 sc->sc_dev = self;
432 sc->sc_pct = pa->pa_pc;
433 sc->sc_pcitag = pa->pa_tag;
434 sc->sc_dmat = pa->pa_dmat;
435 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436
437 callout_init(&sc->calib_to, 0);
438 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439
440 pci_aprint_devinfo(pa, NULL);
441
442 /*
443 * Get the offset of the PCI Express Capability Structure in PCI
444 * Configuration Space.
445 */
446 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448 if (error == 0) {
449 aprint_error_dev(self,
450 "PCIe capability structure not found!\n");
451 return;
452 }
453
454 /* Clear device-specific "PCI retry timeout" register (41h). */
455 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456 if (reg & 0xff00)
457 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458
459 /* Enable bus-mastering. */
460 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462 reg |= PCI_COMMAND_MASTER_ENABLE;
463 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464
465 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467 &sc->sc_sh, NULL, &sc->sc_sz);
468 if (error != 0) {
469 aprint_error_dev(self, "can't map mem space\n");
470 return;
471 }
472
473 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474 if (sc->sc_soft_ih == NULL) {
475 aprint_error_dev(self, "can't establish soft interrupt\n");
476 goto unmap;
477 }
478
479 /* Install interrupt handler. */
480 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481 if (error) {
482 aprint_error_dev(self, "can't allocate interrupt\n");
483 goto failsi;
484 }
485 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488 else
489 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492 sizeof(intrbuf));
493 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494 IPL_NET, iwn_intr, sc, device_xname(self));
495 if (sc->sc_ih == NULL) {
496 aprint_error_dev(self, "can't establish interrupt");
497 if (intrstr != NULL)
498 aprint_error(" at %s", intrstr);
499 aprint_error("\n");
500 goto failia;
501 }
502 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503
504 /* Read hardware revision and attach. */
505 sc->hw_type =
506 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507 >> IWN_HW_REV_TYPE_SHIFT;
508 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510 else
511 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512 if (error != 0) {
513 aprint_error_dev(self, "could not attach device\n");
514 goto failih;
515 }
516
517 if ((error = iwn_hw_prepare(sc)) != 0) {
518 aprint_error_dev(self, "hardware not ready\n");
519 goto failih;
520 }
521
522 /* Read MAC address, channels, etc from EEPROM. */
523 if ((error = iwn_read_eeprom(sc)) != 0) {
524 aprint_error_dev(self, "could not read EEPROM\n");
525 goto failih;
526 }
527
528 /* Allocate DMA memory for firmware transfers. */
529 if ((error = iwn_alloc_fwmem(sc)) != 0) {
530 aprint_error_dev(self,
531 "could not allocate memory for firmware\n");
532 goto failih;
533 }
534
535 /* Allocate "Keep Warm" page. */
536 if ((error = iwn_alloc_kw(sc)) != 0) {
537 aprint_error_dev(self, "could not allocate keep warm page\n");
538 goto fail1;
539 }
540
541 /* Allocate ICT table for 5000 Series. */
542 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 (error = iwn_alloc_ict(sc)) != 0) {
544 aprint_error_dev(self, "could not allocate ICT table\n");
545 goto fail2;
546 }
547
548 /* Allocate TX scheduler "rings". */
549 if ((error = iwn_alloc_sched(sc)) != 0) {
550 aprint_error_dev(self,
551 "could not allocate TX scheduler rings\n");
552 goto fail3;
553 }
554
555 #ifdef IWN_USE_RBUF
556 /* Allocate RX buffers. */
557 if ((error = iwn_alloc_rpool(sc)) != 0) {
558 aprint_error_dev(self, "could not allocate RX buffers\n");
559 goto fail3;
560 }
561 #endif
562
563 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 for (i = 0; i < sc->ntxqs; i++) {
565 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 aprint_error_dev(self,
567 "could not allocate TX ring %d\n", i);
568 goto fail4;
569 }
570 }
571
572 /* Allocate RX ring. */
573 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574 aprint_error_dev(self, "could not allocate RX ring\n");
575 goto fail4;
576 }
577
578 /* Clear pending interrupts. */
579 IWN_WRITE(sc, IWN_INT, 0xffffffff);
580
581 /* Count the number of available chains. */
582 sc->ntxchains =
583 ((sc->txchainmask >> 2) & 1) +
584 ((sc->txchainmask >> 1) & 1) +
585 ((sc->txchainmask >> 0) & 1);
586 sc->nrxchains =
587 ((sc->rxchainmask >> 2) & 1) +
588 ((sc->rxchainmask >> 1) & 1) +
589 ((sc->rxchainmask >> 0) & 1);
590 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592 ether_sprintf(ic->ic_myaddr));
593
594 ic->ic_ifp = ifp;
595 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
596 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
597 ic->ic_state = IEEE80211_S_INIT;
598
599 /*
600 * Set device capabilities.
601 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602 * IEEE80211_C_PMGT too.
603 */
604 ic->ic_caps =
605 IEEE80211_C_IBSS | /* IBSS mode support */
606 IEEE80211_C_WPA | /* 802.11i */
607 IEEE80211_C_MONITOR | /* monitor mode supported */
608 IEEE80211_C_TXPMGT | /* tx power management */
609 IEEE80211_C_SHSLOT | /* short slot time supported */
610 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
611 IEEE80211_C_WME; /* 802.11e */
612
613 #ifndef IEEE80211_NO_HT
614 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615 /* Set HT capabilities. */
616 ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 IEEE80211_HTCAP_CBW20_40 |
621 IEEE80211_HTCAP_SGI20 |
622 IEEE80211_HTCAP_SGI40;
623 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 else
628 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 }
630 #endif /* !IEEE80211_NO_HT */
631
632 /* Set supported legacy rates. */
633 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637 }
638 #ifndef IEEE80211_NO_HT
639 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640 /* Set supported HT rates. */
641 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
642 if (sc->nrxchains > 1)
643 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
644 if (sc->nrxchains > 2)
645 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
646 }
647 #endif
648
649 /* IBSS channel undefined for now. */
650 ic->ic_ibss_chan = &ic->ic_channels[0];
651
652 ifp->if_softc = sc;
653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 ifp->if_init = iwn_init;
655 ifp->if_ioctl = iwn_ioctl;
656 ifp->if_start = iwn_start;
657 ifp->if_stop = iwn_stop;
658 ifp->if_watchdog = iwn_watchdog;
659 IFQ_SET_READY(&ifp->if_snd);
660 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661
662 error = if_initialize(ifp);
663 if (error != 0) {
664 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
665 error);
666 goto fail5;
667 }
668 ieee80211_ifattach(ic);
669 /* Use common softint-based if_input */
670 ifp->if_percpuq = if_percpuq_create(ifp);
671 if_register(ifp);
672
673 ic->ic_node_alloc = iwn_node_alloc;
674 ic->ic_newassoc = iwn_newassoc;
675 #ifdef IWN_HWCRYPTO
676 ic->ic_crypto.cs_key_set = iwn_set_key;
677 ic->ic_crypto.cs_key_delete = iwn_delete_key;
678 #endif
679 ic->ic_wme.wme_update = iwn_wme_update;
680 #ifndef IEEE80211_NO_HT
681 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
682 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
684 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
685 #endif
686
687 /* Override 802.11 state transition machine. */
688 sc->sc_newstate = ic->ic_newstate;
689 ic->ic_newstate = iwn_newstate;
690
691 /* XXX media locking needs revisiting */
692 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
693 ieee80211_media_init_with_lock(ic,
694 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
695
696 sc->amrr.amrr_min_success_threshold = 1;
697 sc->amrr.amrr_max_success_threshold = 15;
698
699 iwn_radiotap_attach(sc);
700
701 /*
702 * XXX for NetBSD, OpenBSD timeout_set replaced by
703 * callout_init and callout_setfunc, above.
704 */
705
706 if (pmf_device_register(self, NULL, iwn_resume))
707 pmf_class_network_register(self, ifp);
708 else
709 aprint_error_dev(self, "couldn't establish power handler\n");
710
711 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
712 ieee80211_announce(ic);
713
714 sc->sc_flags |= IWN_FLAG_ATTACHED;
715 return;
716
717 /* Free allocated memory if something failed during attachment. */
718 fail5: iwn_free_rx_ring(sc, &sc->rxq);
719 fail4: while (--i >= 0)
720 iwn_free_tx_ring(sc, &sc->txq[i]);
721 #ifdef IWN_USE_RBUF
722 iwn_free_rpool(sc);
723 #endif
724 iwn_free_sched(sc);
725 fail3: if (sc->ict != NULL)
726 iwn_free_ict(sc);
727 fail2: iwn_free_kw(sc);
728 fail1: iwn_free_fwmem(sc);
729 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
730 sc->sc_ih = NULL;
731 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
732 sc->sc_pihp = NULL;
733 failsi: softint_disestablish(sc->sc_soft_ih);
734 sc->sc_soft_ih = NULL;
735 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
736 }
737
738 int
739 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
740 {
741 struct iwn_ops *ops = &sc->ops;
742
743 ops->load_firmware = iwn4965_load_firmware;
744 ops->read_eeprom = iwn4965_read_eeprom;
745 ops->post_alive = iwn4965_post_alive;
746 ops->nic_config = iwn4965_nic_config;
747 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
748 ops->update_sched = iwn4965_update_sched;
749 ops->get_temperature = iwn4965_get_temperature;
750 ops->get_rssi = iwn4965_get_rssi;
751 ops->set_txpower = iwn4965_set_txpower;
752 ops->init_gains = iwn4965_init_gains;
753 ops->set_gains = iwn4965_set_gains;
754 ops->add_node = iwn4965_add_node;
755 ops->tx_done = iwn4965_tx_done;
756 #ifndef IEEE80211_NO_HT
757 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
758 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
759 #endif
760 sc->ntxqs = IWN4965_NTXQUEUES;
761 sc->ndmachnls = IWN4965_NDMACHNLS;
762 sc->broadcast_id = IWN4965_ID_BROADCAST;
763 sc->rxonsz = IWN4965_RXONSZ;
764 sc->schedsz = IWN4965_SCHEDSZ;
765 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
766 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
767 sc->fwsz = IWN4965_FWSZ;
768 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
769 sc->limits = &iwn4965_sensitivity_limits;
770 sc->fwname = "iwlwifi-4965-2.ucode";
771 /* Override chains masks, ROM is known to be broken. */
772 sc->txchainmask = IWN_ANT_AB;
773 sc->rxchainmask = IWN_ANT_ABC;
774
775 return 0;
776 }
777
778 int
779 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
780 {
781 struct iwn_ops *ops = &sc->ops;
782
783 ops->load_firmware = iwn5000_load_firmware;
784 ops->read_eeprom = iwn5000_read_eeprom;
785 ops->post_alive = iwn5000_post_alive;
786 ops->nic_config = iwn5000_nic_config;
787 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
788 ops->update_sched = iwn5000_update_sched;
789 ops->get_temperature = iwn5000_get_temperature;
790 ops->get_rssi = iwn5000_get_rssi;
791 ops->set_txpower = iwn5000_set_txpower;
792 ops->init_gains = iwn5000_init_gains;
793 ops->set_gains = iwn5000_set_gains;
794 ops->add_node = iwn5000_add_node;
795 ops->tx_done = iwn5000_tx_done;
796 #ifndef IEEE80211_NO_HT
797 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
798 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
799 #endif
800 sc->ntxqs = IWN5000_NTXQUEUES;
801 sc->ndmachnls = IWN5000_NDMACHNLS;
802 sc->broadcast_id = IWN5000_ID_BROADCAST;
803 sc->rxonsz = IWN5000_RXONSZ;
804 sc->schedsz = IWN5000_SCHEDSZ;
805 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
806 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
807 sc->fwsz = IWN5000_FWSZ;
808 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
809
810 switch (sc->hw_type) {
811 case IWN_HW_REV_TYPE_5100:
812 sc->limits = &iwn5000_sensitivity_limits;
813 sc->fwname = "iwlwifi-5000-2.ucode";
814 /* Override chains masks, ROM is known to be broken. */
815 sc->txchainmask = IWN_ANT_B;
816 sc->rxchainmask = IWN_ANT_AB;
817 break;
818 case IWN_HW_REV_TYPE_5150:
819 sc->limits = &iwn5150_sensitivity_limits;
820 sc->fwname = "iwlwifi-5150-2.ucode";
821 break;
822 case IWN_HW_REV_TYPE_5300:
823 case IWN_HW_REV_TYPE_5350:
824 sc->limits = &iwn5000_sensitivity_limits;
825 sc->fwname = "iwlwifi-5000-2.ucode";
826 break;
827 case IWN_HW_REV_TYPE_1000:
828 sc->limits = &iwn1000_sensitivity_limits;
829 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
830 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
831 sc->fwname = "iwlwifi-100-5.ucode";
832 else
833 sc->fwname = "iwlwifi-1000-3.ucode";
834 break;
835 case IWN_HW_REV_TYPE_6000:
836 sc->limits = &iwn6000_sensitivity_limits;
837 sc->fwname = "iwlwifi-6000-4.ucode";
838 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
839 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
840 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
841 /* Override chains masks, ROM is known to be broken. */
842 sc->txchainmask = IWN_ANT_BC;
843 sc->rxchainmask = IWN_ANT_BC;
844 }
845 break;
846 case IWN_HW_REV_TYPE_6050:
847 sc->limits = &iwn6000_sensitivity_limits;
848 sc->fwname = "iwlwifi-6050-5.ucode";
849 break;
850 case IWN_HW_REV_TYPE_6005:
851 sc->limits = &iwn6000_sensitivity_limits;
852 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
853 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
854 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
855 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
856 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
857 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
858 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
859 sc->fwname = "iwlwifi-6000g2b-6.ucode";
860 ops->config_bt_coex = iwn_config_bt_coex_adv1;
861 }
862 /*
863 * This covers:
864 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
865 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
866 */
867 else
868 sc->fwname = "iwlwifi-6000g2a-5.ucode";
869 break;
870 case IWN_HW_REV_TYPE_2030:
871 sc->limits = &iwn2030_sensitivity_limits;
872 sc->fwname = "iwlwifi-2030-6.ucode";
873 ops->config_bt_coex = iwn_config_bt_coex_adv2;
874 break;
875 case IWN_HW_REV_TYPE_2000:
876 sc->limits = &iwn2000_sensitivity_limits;
877 sc->fwname = "iwlwifi-2000-6.ucode";
878 break;
879 case IWN_HW_REV_TYPE_135:
880 sc->limits = &iwn2000_sensitivity_limits;
881 sc->fwname = "iwlwifi-135-6.ucode";
882 ops->config_bt_coex = iwn_config_bt_coex_adv2;
883 break;
884 case IWN_HW_REV_TYPE_105:
885 sc->limits = &iwn2000_sensitivity_limits;
886 sc->fwname = "iwlwifi-105-6.ucode";
887 break;
888 default:
889 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
890 return ENOTSUP;
891 }
892 return 0;
893 }
894
895 /*
896 * Attach the interface to 802.11 radiotap.
897 */
898 static void
899 iwn_radiotap_attach(struct iwn_softc *sc)
900 {
901 struct ifnet *ifp = sc->sc_ic.ic_ifp;
902
903 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
904 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
905 &sc->sc_drvbpf);
906
907 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
908 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
909 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
910
911 sc->sc_txtap_len = sizeof sc->sc_txtapu;
912 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
913 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
914 }
915
916 static int
917 iwn_detach(device_t self, int flags __unused)
918 {
919 struct iwn_softc *sc = device_private(self);
920 struct ifnet *ifp = sc->sc_ic.ic_ifp;
921 int qid;
922
923 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
924 return 0;
925
926 callout_stop(&sc->calib_to);
927
928 /* Uninstall interrupt handler. */
929 if (sc->sc_ih != NULL)
930 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
931 if (sc->sc_pihp != NULL)
932 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
933 if (sc->sc_soft_ih != NULL)
934 softint_disestablish(sc->sc_soft_ih);
935
936 /* Free DMA resources. */
937 iwn_free_rx_ring(sc, &sc->rxq);
938 for (qid = 0; qid < sc->ntxqs; qid++)
939 iwn_free_tx_ring(sc, &sc->txq[qid]);
940 #ifdef IWN_USE_RBUF
941 iwn_free_rpool(sc);
942 #endif
943 iwn_free_sched(sc);
944 iwn_free_kw(sc);
945 if (sc->ict != NULL)
946 iwn_free_ict(sc);
947 iwn_free_fwmem(sc);
948
949 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
950
951 ieee80211_ifdetach(&sc->sc_ic);
952 if_detach(ifp);
953
954 return 0;
955 }
956
957 #if 0
958 /*
959 * XXX Investigate if clearing the PCI retry timeout could eliminate
960 * the repeated scan calls. Also the calls to if_init and if_start
961 * are similar to the effect of adding the call to ifioctl_common .
962 */
963 static void
964 iwn_power(int why, void *arg)
965 {
966 struct iwn_softc *sc = arg;
967 struct ifnet *ifp;
968 pcireg_t reg;
969 int s;
970
971 if (why != PWR_RESUME)
972 return;
973
974 /* Clear device-specific "PCI retry timeout" register (41h). */
975 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
976 if (reg & 0xff00)
977 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
978
979 s = splnet();
980 ifp = &sc->sc_ic.ic_if;
981 if (ifp->if_flags & IFF_UP) {
982 ifp->if_init(ifp);
983 if (ifp->if_flags & IFF_RUNNING)
984 ifp->if_start(ifp);
985 }
986 splx(s);
987 }
988 #endif
989
990 static bool
991 iwn_resume(device_t dv, const pmf_qual_t *qual)
992 {
993 return true;
994 }
995
996 static int
997 iwn_nic_lock(struct iwn_softc *sc)
998 {
999 int ntries;
1000
1001 /* Request exclusive access to NIC. */
1002 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1003
1004 /* Spin until we actually get the lock. */
1005 for (ntries = 0; ntries < 1000; ntries++) {
1006 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1007 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1008 IWN_GP_CNTRL_MAC_ACCESS_ENA)
1009 return 0;
1010 DELAY(10);
1011 }
1012 return ETIMEDOUT;
1013 }
1014
1015 static __inline void
1016 iwn_nic_unlock(struct iwn_softc *sc)
1017 {
1018 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1019 }
1020
1021 static __inline uint32_t
1022 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1023 {
1024 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1025 IWN_BARRIER_READ_WRITE(sc);
1026 return IWN_READ(sc, IWN_PRPH_RDATA);
1027 }
1028
1029 static __inline void
1030 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1031 {
1032 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1033 IWN_BARRIER_WRITE(sc);
1034 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1035 }
1036
1037 static __inline void
1038 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1039 {
1040 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1041 }
1042
1043 static __inline void
1044 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1045 {
1046 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1047 }
1048
1049 static __inline void
1050 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1051 const uint32_t *data, int count)
1052 {
1053 for (; count > 0; count--, data++, addr += 4)
1054 iwn_prph_write(sc, addr, *data);
1055 }
1056
1057 static __inline uint32_t
1058 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1059 {
1060 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1061 IWN_BARRIER_READ_WRITE(sc);
1062 return IWN_READ(sc, IWN_MEM_RDATA);
1063 }
1064
1065 static __inline void
1066 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1067 {
1068 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1069 IWN_BARRIER_WRITE(sc);
1070 IWN_WRITE(sc, IWN_MEM_WDATA, data);
1071 }
1072
1073 #ifndef IEEE80211_NO_HT
1074 static __inline void
1075 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1076 {
1077 uint32_t tmp;
1078
1079 tmp = iwn_mem_read(sc, addr & ~3);
1080 if (addr & 3)
1081 tmp = (tmp & 0x0000ffff) | data << 16;
1082 else
1083 tmp = (tmp & 0xffff0000) | data;
1084 iwn_mem_write(sc, addr & ~3, tmp);
1085 }
1086 #endif
1087
1088 static __inline void
1089 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1090 int count)
1091 {
1092 for (; count > 0; count--, addr += 4)
1093 *data++ = iwn_mem_read(sc, addr);
1094 }
1095
1096 static __inline void
1097 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1098 int count)
1099 {
1100 for (; count > 0; count--, addr += 4)
1101 iwn_mem_write(sc, addr, val);
1102 }
1103
1104 static int
1105 iwn_eeprom_lock(struct iwn_softc *sc)
1106 {
1107 int i, ntries;
1108
1109 for (i = 0; i < 100; i++) {
1110 /* Request exclusive access to EEPROM. */
1111 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1112 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1113
1114 /* Spin until we actually get the lock. */
1115 for (ntries = 0; ntries < 100; ntries++) {
1116 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1117 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1118 return 0;
1119 DELAY(10);
1120 }
1121 }
1122 return ETIMEDOUT;
1123 }
1124
1125 static __inline void
1126 iwn_eeprom_unlock(struct iwn_softc *sc)
1127 {
1128 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1129 }
1130
1131 /*
1132 * Initialize access by host to One Time Programmable ROM.
1133 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1134 */
1135 static int
1136 iwn_init_otprom(struct iwn_softc *sc)
1137 {
1138 uint16_t prev = 0, base, next;
1139 int count, error;
1140
1141 /* Wait for clock stabilization before accessing prph. */
1142 if ((error = iwn_clock_wait(sc)) != 0)
1143 return error;
1144
1145 if ((error = iwn_nic_lock(sc)) != 0)
1146 return error;
1147 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1148 DELAY(5);
1149 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1150 iwn_nic_unlock(sc);
1151
1152 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1153 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1154 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1155 IWN_RESET_LINK_PWR_MGMT_DIS);
1156 }
1157 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1158 /* Clear ECC status. */
1159 IWN_SETBITS(sc, IWN_OTP_GP,
1160 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1161
1162 /*
1163 * Find the block before last block (contains the EEPROM image)
1164 * for HW without OTP shadow RAM.
1165 */
1166 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1167 /* Switch to absolute addressing mode. */
1168 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1169 base = 0;
1170 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1171 error = iwn_read_prom_data(sc, base, &next, 2);
1172 if (error != 0)
1173 return error;
1174 if (next == 0) /* End of linked-list. */
1175 break;
1176 prev = base;
1177 base = le16toh(next);
1178 }
1179 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1180 return EIO;
1181 /* Skip "next" word. */
1182 sc->prom_base = prev + 1;
1183 }
1184 return 0;
1185 }
1186
1187 static int
1188 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1189 {
1190 uint8_t *out = data;
1191 uint32_t val, tmp;
1192 int ntries;
1193
1194 addr += sc->prom_base;
1195 for (; count > 0; count -= 2, addr++) {
1196 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1197 for (ntries = 0; ntries < 10; ntries++) {
1198 val = IWN_READ(sc, IWN_EEPROM);
1199 if (val & IWN_EEPROM_READ_VALID)
1200 break;
1201 DELAY(5);
1202 }
1203 if (ntries == 10) {
1204 aprint_error_dev(sc->sc_dev,
1205 "timeout reading ROM at 0x%x\n", addr);
1206 return ETIMEDOUT;
1207 }
1208 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1209 /* OTPROM, check for ECC errors. */
1210 tmp = IWN_READ(sc, IWN_OTP_GP);
1211 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1212 aprint_error_dev(sc->sc_dev,
1213 "OTPROM ECC error at 0x%x\n", addr);
1214 return EIO;
1215 }
1216 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1217 /* Correctable ECC error, clear bit. */
1218 IWN_SETBITS(sc, IWN_OTP_GP,
1219 IWN_OTP_GP_ECC_CORR_STTS);
1220 }
1221 }
1222 *out++ = val >> 16;
1223 if (count > 1)
1224 *out++ = val >> 24;
1225 }
1226 return 0;
1227 }
1228
1229 static int
1230 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1231 bus_size_t size, bus_size_t alignment)
1232 {
1233 int nsegs, error;
1234
1235 dma->tag = tag;
1236 dma->size = size;
1237
1238 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1239 &dma->map);
1240 if (error != 0)
1241 goto fail;
1242
1243 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1244 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1245 if (error != 0)
1246 goto fail;
1247
1248 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1249 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1250 if (error != 0)
1251 goto fail;
1252
1253 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1254 BUS_DMA_NOWAIT);
1255 if (error != 0)
1256 goto fail;
1257
1258 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1259 memset(dma->vaddr, 0, size);
1260 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1261
1262 dma->paddr = dma->map->dm_segs[0].ds_addr;
1263 if (kvap != NULL)
1264 *kvap = dma->vaddr;
1265
1266 return 0;
1267
1268 fail: iwn_dma_contig_free(dma);
1269 return error;
1270 }
1271
1272 static void
1273 iwn_dma_contig_free(struct iwn_dma_info *dma)
1274 {
1275 if (dma->map != NULL) {
1276 if (dma->vaddr != NULL) {
1277 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1278 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1279 bus_dmamap_unload(dma->tag, dma->map);
1280 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1281 bus_dmamem_free(dma->tag, &dma->seg, 1);
1282 dma->vaddr = NULL;
1283 }
1284 bus_dmamap_destroy(dma->tag, dma->map);
1285 dma->map = NULL;
1286 }
1287 }
1288
1289 static int
1290 iwn_alloc_sched(struct iwn_softc *sc)
1291 {
1292 /* TX scheduler rings must be aligned on a 1KB boundary. */
1293 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1294 (void **)&sc->sched, sc->schedsz, 1024);
1295 }
1296
1297 static void
1298 iwn_free_sched(struct iwn_softc *sc)
1299 {
1300 iwn_dma_contig_free(&sc->sched_dma);
1301 }
1302
1303 static int
1304 iwn_alloc_kw(struct iwn_softc *sc)
1305 {
1306 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1307 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1308 4096);
1309 }
1310
1311 static void
1312 iwn_free_kw(struct iwn_softc *sc)
1313 {
1314 iwn_dma_contig_free(&sc->kw_dma);
1315 }
1316
1317 static int
1318 iwn_alloc_ict(struct iwn_softc *sc)
1319 {
1320 /* ICT table must be aligned on a 4KB boundary. */
1321 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1322 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1323 }
1324
1325 static void
1326 iwn_free_ict(struct iwn_softc *sc)
1327 {
1328 iwn_dma_contig_free(&sc->ict_dma);
1329 }
1330
1331 static int
1332 iwn_alloc_fwmem(struct iwn_softc *sc)
1333 {
1334 /* Must be aligned on a 16-byte boundary. */
1335 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1336 sc->fwsz, 16);
1337 }
1338
1339 static void
1340 iwn_free_fwmem(struct iwn_softc *sc)
1341 {
1342 iwn_dma_contig_free(&sc->fw_dma);
1343 }
1344
1345 static int
1346 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1347 {
1348 bus_size_t size;
1349 int i, error;
1350
1351 ring->cur = 0;
1352
1353 /* Allocate RX descriptors (256-byte aligned). */
1354 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1355 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1356 (void **)&ring->desc, size, 256);
1357 if (error != 0) {
1358 aprint_error_dev(sc->sc_dev,
1359 "could not allocate RX ring DMA memory\n");
1360 goto fail;
1361 }
1362
1363 /* Allocate RX status area (16-byte aligned). */
1364 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1365 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1366 if (error != 0) {
1367 aprint_error_dev(sc->sc_dev,
1368 "could not allocate RX status DMA memory\n");
1369 goto fail;
1370 }
1371
1372 /*
1373 * Allocate and map RX buffers.
1374 */
1375 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1376 struct iwn_rx_data *data = &ring->data[i];
1377
1378 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1379 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1380 &data->map);
1381 if (error != 0) {
1382 aprint_error_dev(sc->sc_dev,
1383 "could not create RX buf DMA map\n");
1384 goto fail;
1385 }
1386
1387 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1388 if (data->m == NULL) {
1389 aprint_error_dev(sc->sc_dev,
1390 "could not allocate RX mbuf\n");
1391 error = ENOBUFS;
1392 goto fail;
1393 }
1394
1395 error = bus_dmamap_load(sc->sc_dmat, data->map,
1396 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1397 BUS_DMA_NOWAIT | BUS_DMA_READ);
1398 if (error != 0) {
1399 aprint_error_dev(sc->sc_dev,
1400 "can't not map mbuf (error %d)\n", error);
1401 goto fail;
1402 }
1403
1404 /* Set physical address of RX buffer (256-byte aligned). */
1405 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1406 }
1407
1408 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1409 BUS_DMASYNC_PREWRITE);
1410
1411 return 0;
1412
1413 fail: iwn_free_rx_ring(sc, ring);
1414 return error;
1415 }
1416
1417 static void
1418 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1419 {
1420 int ntries;
1421
1422 if (iwn_nic_lock(sc) == 0) {
1423 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1424 for (ntries = 0; ntries < 1000; ntries++) {
1425 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1426 IWN_FH_RX_STATUS_IDLE)
1427 break;
1428 DELAY(10);
1429 }
1430 iwn_nic_unlock(sc);
1431 }
1432 ring->cur = 0;
1433 sc->last_rx_valid = 0;
1434 }
1435
1436 static void
1437 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1438 {
1439 int i;
1440
1441 iwn_dma_contig_free(&ring->desc_dma);
1442 iwn_dma_contig_free(&ring->stat_dma);
1443
1444 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1445 struct iwn_rx_data *data = &ring->data[i];
1446
1447 if (data->m != NULL) {
1448 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1449 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1450 bus_dmamap_unload(sc->sc_dmat, data->map);
1451 m_freem(data->m);
1452 }
1453 if (data->map != NULL)
1454 bus_dmamap_destroy(sc->sc_dmat, data->map);
1455 }
1456 }
1457
1458 static int
1459 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1460 {
1461 bus_addr_t paddr;
1462 bus_size_t size;
1463 int i, error;
1464
1465 ring->qid = qid;
1466 ring->queued = 0;
1467 ring->cur = 0;
1468
1469 /* Allocate TX descriptors (256-byte aligned). */
1470 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1471 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1472 (void **)&ring->desc, size, 256);
1473 if (error != 0) {
1474 aprint_error_dev(sc->sc_dev,
1475 "could not allocate TX ring DMA memory\n");
1476 goto fail;
1477 }
1478 /*
1479 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1480 * to allocate commands space for other rings.
1481 * XXX Do we really need to allocate descriptors for other rings?
1482 */
1483 if (qid > 4)
1484 return 0;
1485
1486 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1487 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1488 (void **)&ring->cmd, size, 4);
1489 if (error != 0) {
1490 aprint_error_dev(sc->sc_dev,
1491 "could not allocate TX cmd DMA memory\n");
1492 goto fail;
1493 }
1494
1495 paddr = ring->cmd_dma.paddr;
1496 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1497 struct iwn_tx_data *data = &ring->data[i];
1498
1499 data->cmd_paddr = paddr;
1500 data->scratch_paddr = paddr + 12;
1501 paddr += sizeof (struct iwn_tx_cmd);
1502
1503 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1504 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1505 &data->map);
1506 if (error != 0) {
1507 aprint_error_dev(sc->sc_dev,
1508 "could not create TX buf DMA map\n");
1509 goto fail;
1510 }
1511 }
1512 return 0;
1513
1514 fail: iwn_free_tx_ring(sc, ring);
1515 return error;
1516 }
1517
1518 static void
1519 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1520 {
1521 int i;
1522
1523 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1524 struct iwn_tx_data *data = &ring->data[i];
1525
1526 if (data->m != NULL) {
1527 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1528 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1529 bus_dmamap_unload(sc->sc_dmat, data->map);
1530 m_freem(data->m);
1531 data->m = NULL;
1532 }
1533 }
1534 /* Clear TX descriptors. */
1535 memset(ring->desc, 0, ring->desc_dma.size);
1536 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1537 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1538 sc->qfullmsk &= ~(1 << ring->qid);
1539 ring->queued = 0;
1540 ring->cur = 0;
1541 }
1542
1543 static void
1544 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1545 {
1546 int i;
1547
1548 iwn_dma_contig_free(&ring->desc_dma);
1549 iwn_dma_contig_free(&ring->cmd_dma);
1550
1551 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1552 struct iwn_tx_data *data = &ring->data[i];
1553
1554 if (data->m != NULL) {
1555 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1556 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1557 bus_dmamap_unload(sc->sc_dmat, data->map);
1558 m_freem(data->m);
1559 }
1560 if (data->map != NULL)
1561 bus_dmamap_destroy(sc->sc_dmat, data->map);
1562 }
1563 }
1564
1565 static void
1566 iwn5000_ict_reset(struct iwn_softc *sc)
1567 {
1568 /* Disable interrupts. */
1569 IWN_WRITE(sc, IWN_INT_MASK, 0);
1570
1571 /* Reset ICT table. */
1572 memset(sc->ict, 0, IWN_ICT_SIZE);
1573 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1574 BUS_DMASYNC_PREWRITE);
1575 sc->ict_cur = 0;
1576
1577 /* Set physical address of ICT table (4KB aligned). */
1578 DPRINTF(("enabling ICT\n"));
1579 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1580 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1581
1582 /* Enable periodic RX interrupt. */
1583 sc->int_mask |= IWN_INT_RX_PERIODIC;
1584 /* Switch to ICT interrupt mode in driver. */
1585 sc->sc_flags |= IWN_FLAG_USE_ICT;
1586
1587 /* Re-enable interrupts. */
1588 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1589 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1590 }
1591
1592 static int
1593 iwn_read_eeprom(struct iwn_softc *sc)
1594 {
1595 struct iwn_ops *ops = &sc->ops;
1596 struct ieee80211com *ic = &sc->sc_ic;
1597 uint16_t val;
1598 int error;
1599
1600 /* Check whether adapter has an EEPROM or an OTPROM. */
1601 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1602 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1603 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1604 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1605 "OTPROM" : "EEPROM"));
1606
1607 /* Adapter has to be powered on for EEPROM access to work. */
1608 if ((error = iwn_apm_init(sc)) != 0) {
1609 aprint_error_dev(sc->sc_dev,
1610 "could not power ON adapter\n");
1611 return error;
1612 }
1613
1614 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1615 aprint_error_dev(sc->sc_dev,
1616 "bad ROM signature\n");
1617 return EIO;
1618 }
1619 if ((error = iwn_eeprom_lock(sc)) != 0) {
1620 aprint_error_dev(sc->sc_dev,
1621 "could not lock ROM (error=%d)\n", error);
1622 return error;
1623 }
1624 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1625 if ((error = iwn_init_otprom(sc)) != 0) {
1626 aprint_error_dev(sc->sc_dev,
1627 "could not initialize OTPROM\n");
1628 return error;
1629 }
1630 }
1631
1632 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1633 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1634 /* Check if HT support is bonded out. */
1635 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1636 sc->sc_flags |= IWN_FLAG_HAS_11N;
1637
1638 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1639 sc->rfcfg = le16toh(val);
1640 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1641 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1642 if (sc->txchainmask == 0)
1643 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1644 if (sc->rxchainmask == 0)
1645 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1646
1647 /* Read MAC address. */
1648 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1649
1650 /* Read adapter-specific information from EEPROM. */
1651 ops->read_eeprom(sc);
1652
1653 iwn_apm_stop(sc); /* Power OFF adapter. */
1654
1655 iwn_eeprom_unlock(sc);
1656 return 0;
1657 }
1658
1659 static void
1660 iwn4965_read_eeprom(struct iwn_softc *sc)
1661 {
1662 uint32_t addr;
1663 uint16_t val;
1664 int i;
1665
1666 /* Read regulatory domain (4 ASCII characters). */
1667 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1668
1669 /* Read the list of authorized channels (20MHz ones only). */
1670 for (i = 0; i < 5; i++) {
1671 addr = iwn4965_regulatory_bands[i];
1672 iwn_read_eeprom_channels(sc, i, addr);
1673 }
1674
1675 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1676 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1677 sc->maxpwr2GHz = val & 0xff;
1678 sc->maxpwr5GHz = val >> 8;
1679 /* Check that EEPROM values are within valid range. */
1680 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1681 sc->maxpwr5GHz = 38;
1682 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1683 sc->maxpwr2GHz = 38;
1684 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1685
1686 /* Read samples for each TX power group. */
1687 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1688 sizeof sc->bands);
1689
1690 /* Read voltage at which samples were taken. */
1691 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1692 sc->eeprom_voltage = (int16_t)le16toh(val);
1693 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1694
1695 #ifdef IWN_DEBUG
1696 /* Print samples. */
1697 if (iwn_debug > 0) {
1698 for (i = 0; i < IWN_NBANDS; i++)
1699 iwn4965_print_power_group(sc, i);
1700 }
1701 #endif
1702 }
1703
1704 #ifdef IWN_DEBUG
1705 static void
1706 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1707 {
1708 struct iwn4965_eeprom_band *band = &sc->bands[i];
1709 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1710 int j, c;
1711
1712 aprint_normal("===band %d===\n", i);
1713 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1714 aprint_normal("chan1 num=%d\n", chans[0].num);
1715 for (c = 0; c < 2; c++) {
1716 for (j = 0; j < IWN_NSAMPLES; j++) {
1717 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1718 "power=%d pa_det=%d\n", c, j,
1719 chans[0].samples[c][j].temp,
1720 chans[0].samples[c][j].gain,
1721 chans[0].samples[c][j].power,
1722 chans[0].samples[c][j].pa_det);
1723 }
1724 }
1725 aprint_normal("chan2 num=%d\n", chans[1].num);
1726 for (c = 0; c < 2; c++) {
1727 for (j = 0; j < IWN_NSAMPLES; j++) {
1728 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1729 "power=%d pa_det=%d\n", c, j,
1730 chans[1].samples[c][j].temp,
1731 chans[1].samples[c][j].gain,
1732 chans[1].samples[c][j].power,
1733 chans[1].samples[c][j].pa_det);
1734 }
1735 }
1736 }
1737 #endif
1738
1739 static void
1740 iwn5000_read_eeprom(struct iwn_softc *sc)
1741 {
1742 struct iwn5000_eeprom_calib_hdr hdr;
1743 int32_t volt;
1744 uint32_t base, addr;
1745 uint16_t val;
1746 int i;
1747
1748 /* Read regulatory domain (4 ASCII characters). */
1749 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1750 base = le16toh(val);
1751 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1752 sc->eeprom_domain, 4);
1753
1754 /* Read the list of authorized channels (20MHz ones only). */
1755 for (i = 0; i < 5; i++) {
1756 addr = base + iwn5000_regulatory_bands[i];
1757 iwn_read_eeprom_channels(sc, i, addr);
1758 }
1759
1760 /* Read enhanced TX power information for 6000 Series. */
1761 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1762 iwn_read_eeprom_enhinfo(sc);
1763
1764 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1765 base = le16toh(val);
1766 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1767 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1768 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1769 sc->calib_ver = hdr.version;
1770
1771 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1772 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1773 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1774 sc->hw_type == IWN_HW_REV_TYPE_105) {
1775 sc->eeprom_voltage = le16toh(hdr.volt);
1776 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1777 sc->eeprom_temp = le16toh(val);
1778 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1779 sc->eeprom_rawtemp = le16toh(val);
1780 }
1781
1782 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1783 /* Compute temperature offset. */
1784 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1785 sc->eeprom_temp = le16toh(val);
1786 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1787 volt = le16toh(val);
1788 sc->temp_off = sc->eeprom_temp - (volt / -5);
1789 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1790 sc->eeprom_temp, volt, sc->temp_off));
1791 } else {
1792 /* Read crystal calibration. */
1793 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1794 &sc->eeprom_crystal, sizeof (uint32_t));
1795 DPRINTF(("crystal calibration 0x%08x\n",
1796 le32toh(sc->eeprom_crystal)));
1797 }
1798 }
1799
1800 static void
1801 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1802 {
1803 struct ieee80211com *ic = &sc->sc_ic;
1804 const struct iwn_chan_band *band = &iwn_bands[n];
1805 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1806 uint8_t chan;
1807 int i;
1808
1809 iwn_read_prom_data(sc, addr, channels,
1810 band->nchan * sizeof (struct iwn_eeprom_chan));
1811
1812 for (i = 0; i < band->nchan; i++) {
1813 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1814 continue;
1815
1816 chan = band->chan[i];
1817
1818 if (n == 0) { /* 2GHz band */
1819 ic->ic_channels[chan].ic_freq =
1820 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1821 ic->ic_channels[chan].ic_flags =
1822 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1823 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1824
1825 } else { /* 5GHz band */
1826 /*
1827 * Some adapters support channels 7, 8, 11 and 12
1828 * both in the 2GHz and 4.9GHz bands.
1829 * Because of limitations in our net80211 layer,
1830 * we don't support them in the 4.9GHz band.
1831 */
1832 if (chan <= 14)
1833 continue;
1834
1835 ic->ic_channels[chan].ic_freq =
1836 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1837 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1838 /* We have at least one valid 5GHz channel. */
1839 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1840 }
1841
1842 /* Is active scan allowed on this channel? */
1843 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1844 ic->ic_channels[chan].ic_flags |=
1845 IEEE80211_CHAN_PASSIVE;
1846 }
1847
1848 /* Save maximum allowed TX power for this channel. */
1849 sc->maxpwr[chan] = channels[i].maxpwr;
1850
1851 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1852 chan, channels[i].flags, sc->maxpwr[chan]));
1853 }
1854 }
1855
1856 static void
1857 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1858 {
1859 struct iwn_eeprom_enhinfo enhinfo[35];
1860 uint16_t val, base;
1861 int8_t maxpwr;
1862 uint8_t flags;
1863 int i;
1864
1865 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1866 base = le16toh(val);
1867 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1868 enhinfo, sizeof enhinfo);
1869
1870 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1871 for (i = 0; i < __arraycount(enhinfo); i++) {
1872 flags = enhinfo[i].flags;
1873 if (!(flags & IWN_ENHINFO_VALID))
1874 continue; /* Skip invalid entries. */
1875
1876 maxpwr = 0;
1877 if (sc->txchainmask & IWN_ANT_A)
1878 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1879 if (sc->txchainmask & IWN_ANT_B)
1880 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1881 if (sc->txchainmask & IWN_ANT_C)
1882 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1883 if (sc->ntxchains == 2)
1884 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1885 else if (sc->ntxchains == 3)
1886 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1887 maxpwr /= 2; /* Convert half-dBm to dBm. */
1888
1889 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1890 sc->enh_maxpwr[i] = maxpwr;
1891 }
1892 }
1893
1894 static struct ieee80211_node *
1895 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1896 {
1897 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1898 }
1899
1900 static void
1901 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1902 {
1903 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1904 struct iwn_node *wn = (void *)ni;
1905 uint8_t rate;
1906 int ridx, i;
1907
1908 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1909 /* Start at lowest available bit-rate, AMRR will raise. */
1910 ni->ni_txrate = 0;
1911
1912 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1913 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1914 /* Map 802.11 rate to HW rate index. */
1915 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1916 if (iwn_rates[ridx].rate == rate)
1917 break;
1918 wn->ridx[i] = ridx;
1919 }
1920 }
1921
1922 static int
1923 iwn_media_change(struct ifnet *ifp)
1924 {
1925 struct iwn_softc *sc = ifp->if_softc;
1926 struct ieee80211com *ic = &sc->sc_ic;
1927 uint8_t rate, ridx;
1928 int error;
1929
1930 error = ieee80211_media_change(ifp);
1931 if (error != ENETRESET)
1932 return error;
1933
1934 if (ic->ic_fixed_rate != -1) {
1935 rate = ic->ic_sup_rates[ic->ic_curmode].
1936 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1937 /* Map 802.11 rate to HW rate index. */
1938 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1939 if (iwn_rates[ridx].rate == rate)
1940 break;
1941 sc->fixed_ridx = ridx;
1942 }
1943
1944 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1945 (IFF_UP | IFF_RUNNING)) {
1946 iwn_stop(ifp, 0);
1947 error = iwn_init(ifp);
1948 }
1949 return error;
1950 }
1951
1952 static int
1953 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1954 {
1955 struct ifnet *ifp = ic->ic_ifp;
1956 struct iwn_softc *sc = ifp->if_softc;
1957 int error;
1958
1959 callout_stop(&sc->calib_to);
1960
1961 switch (nstate) {
1962 case IEEE80211_S_SCAN:
1963 /* XXX Do not abort a running scan. */
1964 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1965 if (ic->ic_state != nstate)
1966 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1967 "while scanning(%d) ignored\n", nstate,
1968 ic->ic_state);
1969 break;
1970 }
1971
1972 /* XXX Not sure if call and flags are needed. */
1973 ieee80211_node_table_reset(&ic->ic_scan);
1974 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1975 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1976
1977 /* Make the link LED blink while we're scanning. */
1978 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1979
1980 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1981 aprint_error_dev(sc->sc_dev,
1982 "could not initiate scan\n");
1983 return error;
1984 }
1985 ic->ic_state = nstate;
1986 return 0;
1987
1988 case IEEE80211_S_ASSOC:
1989 if (ic->ic_state != IEEE80211_S_RUN)
1990 break;
1991 /* FALLTHROUGH */
1992 case IEEE80211_S_AUTH:
1993 /* Reset state to handle reassociations correctly. */
1994 sc->rxon.associd = 0;
1995 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1996 sc->calib.state = IWN_CALIB_STATE_INIT;
1997
1998 /* Wait until we hear a beacon before we transmit */
1999 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2000 sc->sc_beacon_wait = 1;
2001
2002 if ((error = iwn_auth(sc)) != 0) {
2003 aprint_error_dev(sc->sc_dev,
2004 "could not move to auth state\n");
2005 return error;
2006 }
2007 break;
2008
2009 case IEEE80211_S_RUN:
2010 /*
2011 * RUN -> RUN transition; Just restart timers.
2012 */
2013 if (ic->ic_state == IEEE80211_S_RUN) {
2014 sc->calib_cnt = 0;
2015 break;
2016 }
2017
2018 /* Wait until we hear a beacon before we transmit */
2019 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2020 sc->sc_beacon_wait = 1;
2021
2022 if ((error = iwn_run(sc)) != 0) {
2023 aprint_error_dev(sc->sc_dev,
2024 "could not move to run state\n");
2025 return error;
2026 }
2027 break;
2028
2029 case IEEE80211_S_INIT:
2030 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2031 sc->calib.state = IWN_CALIB_STATE_INIT;
2032 /*
2033 * Purge the xmit queue so we don't have old frames
2034 * during a new association attempt.
2035 */
2036 sc->sc_beacon_wait = 0;
2037 ifp->if_flags &= ~IFF_OACTIVE;
2038 iwn_start(ifp);
2039 break;
2040 }
2041
2042 return sc->sc_newstate(ic, nstate, arg);
2043 }
2044
2045 static void
2046 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2047 {
2048 struct iwn_softc *sc = arg;
2049 struct iwn_node *wn = (struct iwn_node *)ni;
2050
2051 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2052 }
2053
2054 static void
2055 iwn_calib_timeout(void *arg)
2056 {
2057 struct iwn_softc *sc = arg;
2058 struct ieee80211com *ic = &sc->sc_ic;
2059 int s;
2060
2061 s = splnet();
2062 if (ic->ic_fixed_rate == -1) {
2063 if (ic->ic_opmode == IEEE80211_M_STA)
2064 iwn_iter_func(sc, ic->ic_bss);
2065 else
2066 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2067 }
2068 /* Force automatic TX power calibration every 60 secs. */
2069 if (++sc->calib_cnt >= 120) {
2070 uint32_t flags = 0;
2071
2072 DPRINTF(("sending request for statistics\n"));
2073 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2074 sizeof flags, 1);
2075 sc->calib_cnt = 0;
2076 }
2077 splx(s);
2078
2079 /* Automatic rate control triggered every 500ms. */
2080 callout_schedule(&sc->calib_to, mstohz(500));
2081 }
2082
2083 /*
2084 * Process an RX_PHY firmware notification. This is usually immediately
2085 * followed by an MPDU_RX_DONE notification.
2086 */
2087 static void
2088 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2089 struct iwn_rx_data *data)
2090 {
2091 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2092
2093 DPRINTFN(2, ("received PHY stats\n"));
2094 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2095 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2096
2097 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2098 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2099 sc->last_rx_valid = 1;
2100 }
2101
2102 /*
2103 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2104 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2105 */
2106 static void
2107 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2108 struct iwn_rx_data *data)
2109 {
2110 struct iwn_ops *ops = &sc->ops;
2111 struct ieee80211com *ic = &sc->sc_ic;
2112 struct ifnet *ifp = ic->ic_ifp;
2113 struct iwn_rx_ring *ring = &sc->rxq;
2114 struct ieee80211_frame *wh;
2115 struct ieee80211_node *ni;
2116 struct mbuf *m, *m1;
2117 struct iwn_rx_stat *stat;
2118 char *head;
2119 uint32_t flags;
2120 int error, len, rssi, s;
2121
2122 if (desc->type == IWN_MPDU_RX_DONE) {
2123 /* Check for prior RX_PHY notification. */
2124 if (!sc->last_rx_valid) {
2125 DPRINTF(("missing RX_PHY\n"));
2126 return;
2127 }
2128 sc->last_rx_valid = 0;
2129 stat = &sc->last_rx_stat;
2130 } else
2131 stat = (struct iwn_rx_stat *)(desc + 1);
2132
2133 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2134 BUS_DMASYNC_POSTREAD);
2135
2136 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2137 aprint_error_dev(sc->sc_dev,
2138 "invalid RX statistic header\n");
2139 return;
2140 }
2141 if (desc->type == IWN_MPDU_RX_DONE) {
2142 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2143 head = (char *)(mpdu + 1);
2144 len = le16toh(mpdu->len);
2145 } else {
2146 head = (char *)(stat + 1) + stat->cfg_phy_len;
2147 len = le16toh(stat->len);
2148 }
2149
2150 flags = le32toh(*(uint32_t *)(head + len));
2151
2152 /* Discard frames with a bad FCS early. */
2153 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2154 DPRINTFN(2, ("RX flags error %x\n", flags));
2155 if_statinc(ifp, if_ierrors);
2156 return;
2157 }
2158 /* Discard frames that are too short. */
2159 if (len < sizeof (*wh)) {
2160 DPRINTF(("frame too short: %d\n", len));
2161 ic->ic_stats.is_rx_tooshort++;
2162 if_statinc(ifp, if_ierrors);
2163 return;
2164 }
2165
2166 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2167 if (m1 == NULL) {
2168 ic->ic_stats.is_rx_nobuf++;
2169 if_statinc(ifp, if_ierrors);
2170 return;
2171 }
2172 bus_dmamap_unload(sc->sc_dmat, data->map);
2173
2174 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2175 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2176 if (error != 0) {
2177 m_freem(m1);
2178
2179 /* Try to reload the old mbuf. */
2180 error = bus_dmamap_load(sc->sc_dmat, data->map,
2181 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2182 BUS_DMA_NOWAIT | BUS_DMA_READ);
2183 if (error != 0) {
2184 panic("%s: could not load old RX mbuf",
2185 device_xname(sc->sc_dev));
2186 }
2187 /* Physical address may have changed. */
2188 ring->desc[ring->cur] =
2189 htole32(data->map->dm_segs[0].ds_addr >> 8);
2190 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2191 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2192 BUS_DMASYNC_PREWRITE);
2193 if_statinc(ifp, if_ierrors);
2194 return;
2195 }
2196
2197 m = data->m;
2198 data->m = m1;
2199 /* Update RX descriptor. */
2200 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2201 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2202 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2203 BUS_DMASYNC_PREWRITE);
2204
2205 /* Finalize mbuf. */
2206 m_set_rcvif(m, ifp);
2207 m->m_data = head;
2208 m->m_pkthdr.len = m->m_len = len;
2209
2210 s = splnet();
2211
2212 /* Grab a reference to the source node. */
2213 wh = mtod(m, struct ieee80211_frame *);
2214 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2215
2216 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2217 /* NetBSD does decryption in ieee80211_input. */
2218
2219 rssi = ops->get_rssi(stat);
2220
2221 /* XXX Added for NetBSD: scans never stop without it */
2222 if (ic->ic_state == IEEE80211_S_SCAN)
2223 iwn_fix_channel(ic, m, stat);
2224
2225 if (sc->sc_drvbpf != NULL) {
2226 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2227
2228 tap->wr_flags = 0;
2229 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2230 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2231 tap->wr_chan_freq =
2232 htole16(ic->ic_channels[stat->chan].ic_freq);
2233 tap->wr_chan_flags =
2234 htole16(ic->ic_channels[stat->chan].ic_flags);
2235 tap->wr_dbm_antsignal = (int8_t)rssi;
2236 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2237 tap->wr_tsft = stat->tstamp;
2238 switch (stat->rate) {
2239 /* CCK rates. */
2240 case 10: tap->wr_rate = 2; break;
2241 case 20: tap->wr_rate = 4; break;
2242 case 55: tap->wr_rate = 11; break;
2243 case 110: tap->wr_rate = 22; break;
2244 /* OFDM rates. */
2245 case 0xd: tap->wr_rate = 12; break;
2246 case 0xf: tap->wr_rate = 18; break;
2247 case 0x5: tap->wr_rate = 24; break;
2248 case 0x7: tap->wr_rate = 36; break;
2249 case 0x9: tap->wr_rate = 48; break;
2250 case 0xb: tap->wr_rate = 72; break;
2251 case 0x1: tap->wr_rate = 96; break;
2252 case 0x3: tap->wr_rate = 108; break;
2253 /* Unknown rate: should not happen. */
2254 default: tap->wr_rate = 0;
2255 }
2256
2257 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2258 }
2259
2260 /*
2261 * If it's a beacon and we're waiting, then do the wakeup.
2262 */
2263 if (sc->sc_beacon_wait) {
2264 uint8_t type, subtype;
2265 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2266 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2267 /*
2268 * This assumes at this point we've received our own
2269 * beacon.
2270 */
2271 if (type == IEEE80211_FC0_TYPE_MGT &&
2272 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2273 sc->sc_beacon_wait = 0;
2274 ifp->if_flags &= ~IFF_OACTIVE;
2275 iwn_start(ifp);
2276 }
2277 }
2278
2279 /* Send the frame to the 802.11 layer. */
2280 ieee80211_input(ic, m, ni, rssi, 0);
2281
2282 /* Node is no longer needed. */
2283 ieee80211_free_node(ni);
2284
2285 splx(s);
2286 }
2287
2288 #ifndef IEEE80211_NO_HT
2289 /* Process an incoming Compressed BlockAck. */
2290 static void
2291 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2292 struct iwn_rx_data *data)
2293 {
2294 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2295 struct iwn_tx_ring *txq;
2296
2297 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2298 BUS_DMASYNC_POSTREAD);
2299
2300 txq = &sc->txq[le16toh(ba->qid)];
2301 /* XXX TBD */
2302 }
2303 #endif
2304
2305 /*
2306 * Process a CALIBRATION_RESULT notification sent by the initialization
2307 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2308 */
2309 static void
2310 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2311 struct iwn_rx_data *data)
2312 {
2313 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2314 int len, idx = -1;
2315
2316 /* Runtime firmware should not send such a notification. */
2317 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2318 return;
2319
2320 len = (le32toh(desc->len) & 0x3fff) - 4;
2321 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2322 BUS_DMASYNC_POSTREAD);
2323
2324 switch (calib->code) {
2325 case IWN5000_PHY_CALIB_DC:
2326 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2327 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2328 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2329 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2330 sc->hw_type == IWN_HW_REV_TYPE_105)
2331 idx = 0;
2332 break;
2333 case IWN5000_PHY_CALIB_LO:
2334 idx = 1;
2335 break;
2336 case IWN5000_PHY_CALIB_TX_IQ:
2337 idx = 2;
2338 break;
2339 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2340 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2341 sc->hw_type != IWN_HW_REV_TYPE_5150)
2342 idx = 3;
2343 break;
2344 case IWN5000_PHY_CALIB_BASE_BAND:
2345 idx = 4;
2346 break;
2347 }
2348 if (idx == -1) /* Ignore other results. */
2349 return;
2350
2351 /* Save calibration result. */
2352 if (sc->calibcmd[idx].buf != NULL)
2353 free(sc->calibcmd[idx].buf, M_DEVBUF);
2354 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2355 if (sc->calibcmd[idx].buf == NULL) {
2356 DPRINTF(("not enough memory for calibration result %d\n",
2357 calib->code));
2358 return;
2359 }
2360 DPRINTF(("saving calibration result code=%d len=%d\n",
2361 calib->code, len));
2362 sc->calibcmd[idx].len = len;
2363 memcpy(sc->calibcmd[idx].buf, calib, len);
2364 }
2365
2366 /*
2367 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2368 * The latter is sent by the firmware after each received beacon.
2369 */
2370 static void
2371 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2372 struct iwn_rx_data *data)
2373 {
2374 struct iwn_ops *ops = &sc->ops;
2375 struct ieee80211com *ic = &sc->sc_ic;
2376 struct iwn_calib_state *calib = &sc->calib;
2377 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2378 int temp;
2379
2380 /* Ignore statistics received during a scan. */
2381 if (ic->ic_state != IEEE80211_S_RUN)
2382 return;
2383
2384 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2385 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2386
2387 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2388 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2389
2390 /* Test if temperature has changed. */
2391 if (stats->general.temp != sc->rawtemp) {
2392 /* Convert "raw" temperature to degC. */
2393 sc->rawtemp = stats->general.temp;
2394 temp = ops->get_temperature(sc);
2395 DPRINTFN(2, ("temperature=%dC\n", temp));
2396
2397 /* Update TX power if need be (4965AGN only). */
2398 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2399 iwn4965_power_calibration(sc, temp);
2400 }
2401
2402 if (desc->type != IWN_BEACON_STATISTICS)
2403 return; /* Reply to a statistics request. */
2404
2405 sc->noise = iwn_get_noise(&stats->rx.general);
2406
2407 /* Test that RSSI and noise are present in stats report. */
2408 if (le32toh(stats->rx.general.flags) != 1) {
2409 DPRINTF(("received statistics without RSSI\n"));
2410 return;
2411 }
2412
2413 /*
2414 * XXX Differential gain calibration makes the 6005 firmware
2415 * crap out, so skip it for now. This effectively disables
2416 * sensitivity tuning as well.
2417 */
2418 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2419 return;
2420
2421 if (calib->state == IWN_CALIB_STATE_ASSOC)
2422 iwn_collect_noise(sc, &stats->rx.general);
2423 else if (calib->state == IWN_CALIB_STATE_RUN)
2424 iwn_tune_sensitivity(sc, &stats->rx);
2425 }
2426
2427 /*
2428 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2429 * and 5000 adapters have different incompatible TX status formats.
2430 */
2431 static void
2432 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2433 struct iwn_rx_data *data)
2434 {
2435 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2436
2437 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2438 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2439 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2440 }
2441
2442 static void
2443 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2444 struct iwn_rx_data *data)
2445 {
2446 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2447
2448 #ifdef notyet
2449 /* Reset TX scheduler slot. */
2450 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2451 #endif
2452
2453 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2454 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2455 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2456 }
2457
2458 /*
2459 * Adapter-independent backend for TX_DONE firmware notifications.
2460 */
2461 static void
2462 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2463 uint8_t status)
2464 {
2465 struct ieee80211com *ic = &sc->sc_ic;
2466 struct ifnet *ifp = ic->ic_ifp;
2467 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2468 struct iwn_tx_data *data = &ring->data[desc->idx];
2469 struct iwn_node *wn = (struct iwn_node *)data->ni;
2470 int s;
2471
2472 s = splnet();
2473
2474 /* Update rate control statistics. */
2475 wn->amn.amn_txcnt++;
2476 if (ackfailcnt > 0)
2477 wn->amn.amn_retrycnt++;
2478
2479 if (status != 1 && status != 2)
2480 if_statinc(ifp, if_oerrors);
2481 else
2482 if_statinc(ifp, if_opackets);
2483
2484 /* Unmap and free mbuf. */
2485 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2486 BUS_DMASYNC_POSTWRITE);
2487 bus_dmamap_unload(sc->sc_dmat, data->map);
2488 m_freem(data->m);
2489 data->m = NULL;
2490 ieee80211_free_node(data->ni);
2491 data->ni = NULL;
2492
2493 sc->sc_tx_timer = 0;
2494 if (--ring->queued < IWN_TX_RING_LOMARK) {
2495 sc->qfullmsk &= ~(1 << ring->qid);
2496 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2497 ifp->if_flags &= ~IFF_OACTIVE;
2498 iwn_start(ifp);
2499 }
2500 }
2501
2502 splx(s);
2503 }
2504
2505 /*
2506 * Process a "command done" firmware notification. This is where we wakeup
2507 * processes waiting for a synchronous command completion.
2508 */
2509 static void
2510 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2511 {
2512 struct iwn_tx_ring *ring = &sc->txq[4];
2513 struct iwn_tx_data *data;
2514
2515 if ((desc->qid & 0xf) != 4)
2516 return; /* Not a command ack. */
2517
2518 data = &ring->data[desc->idx];
2519
2520 /* If the command was mapped in an mbuf, free it. */
2521 if (data->m != NULL) {
2522 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2523 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2524 bus_dmamap_unload(sc->sc_dmat, data->map);
2525 m_freem(data->m);
2526 data->m = NULL;
2527 }
2528 wakeup(&ring->desc[desc->idx]);
2529 }
2530
2531 /*
2532 * Process an INT_FH_RX or INT_SW_RX interrupt.
2533 */
2534 static void
2535 iwn_notif_intr(struct iwn_softc *sc)
2536 {
2537 struct iwn_ops *ops = &sc->ops;
2538 struct ieee80211com *ic = &sc->sc_ic;
2539 struct ifnet *ifp = ic->ic_ifp;
2540 uint16_t hw;
2541 int s;
2542
2543 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2544 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2545
2546 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2547 while (sc->rxq.cur != hw) {
2548 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2549 struct iwn_rx_desc *desc;
2550
2551 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2552 BUS_DMASYNC_POSTREAD);
2553 desc = mtod(data->m, struct iwn_rx_desc *);
2554
2555 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2556 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2557
2558 if (!(desc->qid & 0x80)) /* Reply to a command. */
2559 iwn_cmd_done(sc, desc);
2560
2561 switch (desc->type) {
2562 case IWN_RX_PHY:
2563 iwn_rx_phy(sc, desc, data);
2564 break;
2565
2566 case IWN_RX_DONE: /* 4965AGN only. */
2567 case IWN_MPDU_RX_DONE:
2568 /* An 802.11 frame has been received. */
2569 iwn_rx_done(sc, desc, data);
2570 break;
2571 #ifndef IEEE80211_NO_HT
2572 case IWN_RX_COMPRESSED_BA:
2573 /* A Compressed BlockAck has been received. */
2574 iwn_rx_compressed_ba(sc, desc, data);
2575 break;
2576 #endif
2577 case IWN_TX_DONE:
2578 /* An 802.11 frame has been transmitted. */
2579 ops->tx_done(sc, desc, data);
2580 break;
2581
2582 case IWN_RX_STATISTICS:
2583 case IWN_BEACON_STATISTICS:
2584 iwn_rx_statistics(sc, desc, data);
2585 break;
2586
2587 case IWN_BEACON_MISSED:
2588 {
2589 struct iwn_beacon_missed *miss =
2590 (struct iwn_beacon_missed *)(desc + 1);
2591
2592 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2593 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2594 /*
2595 * If more than 5 consecutive beacons are missed,
2596 * reinitialize the sensitivity state machine.
2597 */
2598 DPRINTF(("beacons missed %d/%d\n",
2599 le32toh(miss->consecutive), le32toh(miss->total)));
2600 if (ic->ic_state == IEEE80211_S_RUN &&
2601 le32toh(miss->consecutive) > 5)
2602 (void)iwn_init_sensitivity(sc);
2603 break;
2604 }
2605 case IWN_UC_READY:
2606 {
2607 struct iwn_ucode_info *uc =
2608 (struct iwn_ucode_info *)(desc + 1);
2609
2610 /* The microcontroller is ready. */
2611 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2612 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2613 DPRINTF(("microcode alive notification version=%d.%d "
2614 "subtype=%x alive=%x\n", uc->major, uc->minor,
2615 uc->subtype, le32toh(uc->valid)));
2616
2617 if (le32toh(uc->valid) != 1) {
2618 aprint_error_dev(sc->sc_dev,
2619 "microcontroller initialization "
2620 "failed\n");
2621 break;
2622 }
2623 if (uc->subtype == IWN_UCODE_INIT) {
2624 /* Save microcontroller report. */
2625 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2626 }
2627 /* Save the address of the error log in SRAM. */
2628 sc->errptr = le32toh(uc->errptr);
2629 break;
2630 }
2631 case IWN_STATE_CHANGED:
2632 {
2633 uint32_t *status = (uint32_t *)(desc + 1);
2634
2635 /* Enabled/disabled notification. */
2636 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2637 sizeof (*status), BUS_DMASYNC_POSTREAD);
2638 DPRINTF(("state changed to %x\n", le32toh(*status)));
2639
2640 if (le32toh(*status) & 1) {
2641 /* The radio button has to be pushed. */
2642 aprint_error_dev(sc->sc_dev,
2643 "Radio transmitter is off\n");
2644 /* Turn the interface down. */
2645 s = splnet();
2646 ifp->if_flags &= ~IFF_UP;
2647 iwn_stop(ifp, 1);
2648 splx(s);
2649 return; /* No further processing. */
2650 }
2651 break;
2652 }
2653 case IWN_START_SCAN:
2654 {
2655 struct iwn_start_scan *scan =
2656 (struct iwn_start_scan *)(desc + 1);
2657
2658 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2659 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2660 DPRINTFN(2, ("scanning channel %d status %x\n",
2661 scan->chan, le32toh(scan->status)));
2662
2663 /* Fix current channel. */
2664 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2665 break;
2666 }
2667 case IWN_STOP_SCAN:
2668 {
2669 struct iwn_stop_scan *scan =
2670 (struct iwn_stop_scan *)(desc + 1);
2671
2672 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2673 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2674 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2675 scan->nchan, scan->status, scan->chan));
2676
2677 if (scan->status == 1 && scan->chan <= 14 &&
2678 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2679 /*
2680 * We just finished scanning 2GHz channels,
2681 * start scanning 5GHz ones.
2682 */
2683 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2684 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2685 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2686 break;
2687 }
2688 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2689 ieee80211_end_scan(ic);
2690 break;
2691 }
2692 case IWN5000_CALIBRATION_RESULT:
2693 iwn5000_rx_calib_results(sc, desc, data);
2694 break;
2695
2696 case IWN5000_CALIBRATION_DONE:
2697 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2698 wakeup(sc);
2699 break;
2700 }
2701
2702 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2703 }
2704
2705 /* Tell the firmware what we have processed. */
2706 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2707 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2708 }
2709
2710 /*
2711 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2712 * from power-down sleep mode.
2713 */
2714 static void
2715 iwn_wakeup_intr(struct iwn_softc *sc)
2716 {
2717 int qid;
2718
2719 DPRINTF(("ucode wakeup from power-down sleep\n"));
2720
2721 /* Wakeup RX and TX rings. */
2722 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2723 for (qid = 0; qid < sc->ntxqs; qid++) {
2724 struct iwn_tx_ring *ring = &sc->txq[qid];
2725 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2726 }
2727 }
2728
2729 /*
2730 * Dump the error log of the firmware when a firmware panic occurs. Although
2731 * we can't debug the firmware because it is neither open source nor free, it
2732 * can help us to identify certain classes of problems.
2733 */
2734 static void
2735 iwn_fatal_intr(struct iwn_softc *sc)
2736 {
2737 struct iwn_fw_dump dump;
2738 int i;
2739
2740 /* Force a complete recalibration on next init. */
2741 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2742
2743 /* Check that the error log address is valid. */
2744 if (sc->errptr < IWN_FW_DATA_BASE ||
2745 sc->errptr + sizeof (dump) >
2746 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2747 aprint_error_dev(sc->sc_dev,
2748 "bad firmware error log address 0x%08x\n", sc->errptr);
2749 return;
2750 }
2751 if (iwn_nic_lock(sc) != 0) {
2752 aprint_error_dev(sc->sc_dev,
2753 "could not read firmware error log\n");
2754 return;
2755 }
2756 /* Read firmware error log from SRAM. */
2757 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2758 sizeof (dump) / sizeof (uint32_t));
2759 iwn_nic_unlock(sc);
2760
2761 if (dump.valid == 0) {
2762 aprint_error_dev(sc->sc_dev,
2763 "firmware error log is empty\n");
2764 return;
2765 }
2766 aprint_error("firmware error log:\n");
2767 aprint_error(" error type = \"%s\" (0x%08X)\n",
2768 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2769 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2770 dump.id);
2771 aprint_error(" program counter = 0x%08X\n", dump.pc);
2772 aprint_error(" source line = 0x%08X\n", dump.src_line);
2773 aprint_error(" error data = 0x%08X%08X\n",
2774 dump.error_data[0], dump.error_data[1]);
2775 aprint_error(" branch link = 0x%08X%08X\n",
2776 dump.branch_link[0], dump.branch_link[1]);
2777 aprint_error(" interrupt link = 0x%08X%08X\n",
2778 dump.interrupt_link[0], dump.interrupt_link[1]);
2779 aprint_error(" time = %u\n", dump.time[0]);
2780
2781 /* Dump driver status (TX and RX rings) while we're here. */
2782 aprint_error("driver status:\n");
2783 for (i = 0; i < sc->ntxqs; i++) {
2784 struct iwn_tx_ring *ring = &sc->txq[i];
2785 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2786 i, ring->qid, ring->cur, ring->queued);
2787 }
2788 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2789 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2790 }
2791
2792 static int
2793 iwn_intr(void *arg)
2794 {
2795 struct iwn_softc *sc = arg;
2796
2797 /* Disable interrupts. */
2798 IWN_WRITE(sc, IWN_INT_MASK, 0);
2799
2800 softint_schedule(sc->sc_soft_ih);
2801 return 1;
2802 }
2803
2804 static void
2805 iwn_softintr(void *arg)
2806 {
2807 struct iwn_softc *sc = arg;
2808 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2809 uint32_t r1, r2, tmp;
2810 int s;
2811
2812 /* Read interrupts from ICT (fast) or from registers (slow). */
2813 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2814 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2815 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2816 tmp = 0;
2817 while (sc->ict[sc->ict_cur] != 0) {
2818 tmp |= sc->ict[sc->ict_cur];
2819 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2820 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2821 }
2822 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2823 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2824 tmp = le32toh(tmp);
2825 if (tmp == 0xffffffff) /* Shouldn't happen. */
2826 tmp = 0;
2827 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2828 tmp |= 0x8000;
2829 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2830 r2 = 0; /* Unused. */
2831 } else {
2832 r1 = IWN_READ(sc, IWN_INT);
2833 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2834 return; /* Hardware gone! */
2835 r2 = IWN_READ(sc, IWN_FH_INT);
2836 }
2837 if (r1 == 0 && r2 == 0) {
2838 goto out; /* Interrupt not for us. */
2839 }
2840
2841 /* Acknowledge interrupts. */
2842 IWN_WRITE(sc, IWN_INT, r1);
2843 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2844 IWN_WRITE(sc, IWN_FH_INT, r2);
2845
2846 if (r1 & IWN_INT_RF_TOGGLED) {
2847 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2848 aprint_error_dev(sc->sc_dev,
2849 "RF switch: radio %s\n",
2850 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2851 }
2852 if (r1 & IWN_INT_CT_REACHED) {
2853 aprint_error_dev(sc->sc_dev,
2854 "critical temperature reached!\n");
2855 }
2856 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2857 aprint_error_dev(sc->sc_dev,
2858 "fatal firmware error\n");
2859 /* Dump firmware error log and stop. */
2860 iwn_fatal_intr(sc);
2861 s = splnet();
2862 ifp->if_flags &= ~IFF_UP;
2863 iwn_stop(ifp, 1);
2864 splx(s);
2865 return;
2866 }
2867 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2868 (r2 & IWN_FH_INT_RX)) {
2869 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2870 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2871 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2872 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2873 iwn_notif_intr(sc);
2874 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2875 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2876 IWN_INT_PERIODIC_ENA);
2877 }
2878 } else
2879 iwn_notif_intr(sc);
2880 }
2881
2882 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2883 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2884 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2885 wakeup(sc); /* FH DMA transfer completed. */
2886 }
2887
2888 if (r1 & IWN_INT_ALIVE)
2889 wakeup(sc); /* Firmware is alive. */
2890
2891 if (r1 & IWN_INT_WAKEUP)
2892 iwn_wakeup_intr(sc);
2893
2894 out:
2895 /* Re-enable interrupts. */
2896 if (ifp->if_flags & IFF_UP)
2897 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2898 }
2899
2900 /*
2901 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2902 * 5000 adapters use a slightly different format).
2903 */
2904 static void
2905 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2906 uint16_t len)
2907 {
2908 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2909
2910 *w = htole16(len + 8);
2911 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2912 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2913 sizeof (uint16_t),
2914 BUS_DMASYNC_PREWRITE);
2915 if (idx < IWN_SCHED_WINSZ) {
2916 *(w + IWN_TX_RING_COUNT) = *w;
2917 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2918 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2919 (char *)(void *)sc->sched_dma.vaddr,
2920 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2921 }
2922 }
2923
2924 static void
2925 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2926 uint16_t len)
2927 {
2928 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2929
2930 *w = htole16(id << 12 | (len + 8));
2931 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2932 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2933 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2934 if (idx < IWN_SCHED_WINSZ) {
2935 *(w + IWN_TX_RING_COUNT) = *w;
2936 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2937 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2938 (char *)(void *)sc->sched_dma.vaddr,
2939 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2940 }
2941 }
2942
2943 #ifdef notyet
2944 static void
2945 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2946 {
2947 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2948
2949 *w = (*w & htole16(0xf000)) | htole16(1);
2950 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2951 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2952 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2953 if (idx < IWN_SCHED_WINSZ) {
2954 *(w + IWN_TX_RING_COUNT) = *w;
2955 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2956 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2957 (char *)(void *)sc->sched_dma.vaddr,
2958 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2959 }
2960 }
2961 #endif
2962
2963 static int
2964 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2965 {
2966 struct ieee80211com *ic = &sc->sc_ic;
2967 struct iwn_node *wn = (void *)ni;
2968 struct iwn_tx_ring *ring;
2969 struct iwn_tx_desc *desc;
2970 struct iwn_tx_data *data;
2971 struct iwn_tx_cmd *cmd;
2972 struct iwn_cmd_data *tx;
2973 const struct iwn_rate *rinfo;
2974 struct ieee80211_frame *wh;
2975 struct ieee80211_key *k = NULL;
2976 struct mbuf *m1;
2977 uint32_t flags;
2978 u_int hdrlen;
2979 bus_dma_segment_t *seg;
2980 uint8_t tid, ridx, txant, type;
2981 int i, totlen, error, pad;
2982
2983 const struct chanAccParams *cap;
2984 int noack;
2985 int hdrlen2;
2986
2987 wh = mtod(m, struct ieee80211_frame *);
2988 hdrlen = ieee80211_anyhdrsize(wh);
2989 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2990
2991 hdrlen2 = (ieee80211_has_qos(wh)) ?
2992 sizeof (struct ieee80211_qosframe) :
2993 sizeof (struct ieee80211_frame);
2994
2995 if (hdrlen != hdrlen2)
2996 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2997 hdrlen, hdrlen2);
2998
2999 /* XXX OpenBSD sets a different tid when using QOS */
3000 tid = 0;
3001 if (ieee80211_has_qos(wh)) {
3002 cap = &ic->ic_wme.wme_chanParams;
3003 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3004 }
3005 else
3006 noack = 0;
3007
3008 ring = &sc->txq[ac];
3009 desc = &ring->desc[ring->cur];
3010 data = &ring->data[ring->cur];
3011
3012 /* Choose a TX rate index. */
3013 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3014 type != IEEE80211_FC0_TYPE_DATA) {
3015 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3016 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3017 } else if (ic->ic_fixed_rate != -1) {
3018 ridx = sc->fixed_ridx;
3019 } else
3020 ridx = wn->ridx[ni->ni_txrate];
3021 rinfo = &iwn_rates[ridx];
3022
3023 /* Encrypt the frame if need be. */
3024 /*
3025 * XXX For now, NetBSD swaps the encryption and bpf sections
3026 * in order to match old code and other drivers. Tests with
3027 * tcpdump indicates that the order is irrelevant, however,
3028 * as bpf produces unencrypted data for both ordering choices.
3029 */
3030 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3031 k = ieee80211_crypto_encap(ic, ni, m);
3032 if (k == NULL) {
3033 m_freem(m);
3034 return ENOBUFS;
3035 }
3036 /* Packet header may have moved, reset our local pointer. */
3037 wh = mtod(m, struct ieee80211_frame *);
3038 }
3039 totlen = m->m_pkthdr.len;
3040
3041 if (sc->sc_drvbpf != NULL) {
3042 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3043
3044 tap->wt_flags = 0;
3045 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3046 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3047 tap->wt_rate = rinfo->rate;
3048 tap->wt_hwqueue = ac;
3049 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3050 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3051
3052 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3053 }
3054
3055 /* Prepare TX firmware command. */
3056 cmd = &ring->cmd[ring->cur];
3057 cmd->code = IWN_CMD_TX_DATA;
3058 cmd->flags = 0;
3059 cmd->qid = ring->qid;
3060 cmd->idx = ring->cur;
3061
3062 tx = (struct iwn_cmd_data *)cmd->data;
3063 /* NB: No need to clear tx, all fields are reinitialized here. */
3064 tx->scratch = 0; /* clear "scratch" area */
3065
3066 flags = 0;
3067 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3068 /* Unicast frame, check if an ACK is expected. */
3069 if (!noack)
3070 flags |= IWN_TX_NEED_ACK;
3071 }
3072
3073 #ifdef notyet
3074 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3075 if ((wh->i_fc[0] &
3076 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3077 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3078 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3079 #endif
3080
3081 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3082 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3083
3084 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3085 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3086 /* NB: Group frames are sent using CCK in 802.11b/g. */
3087 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3088 flags |= IWN_TX_NEED_RTS;
3089 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3090 ridx >= IWN_RIDX_OFDM6) {
3091 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3092 flags |= IWN_TX_NEED_CTS;
3093 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3094 flags |= IWN_TX_NEED_RTS;
3095 }
3096 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3097 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3098 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3099 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3100 flags |= IWN_TX_NEED_PROTECTION;
3101 } else
3102 flags |= IWN_TX_FULL_TXOP;
3103 }
3104 }
3105
3106 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3107 type != IEEE80211_FC0_TYPE_DATA)
3108 tx->id = sc->broadcast_id;
3109 else
3110 tx->id = wn->id;
3111
3112 if (type == IEEE80211_FC0_TYPE_MGT) {
3113 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3114
3115 #ifndef IEEE80211_STA_ONLY
3116 /* Tell HW to set timestamp in probe responses. */
3117 /* XXX NetBSD rev 1.11 added probe requests here but */
3118 /* probe requests do not take timestamps (from Bergamini). */
3119 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3120 flags |= IWN_TX_INSERT_TSTAMP;
3121 #endif
3122 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3123 /* changes here. These are not needed (from Bergamini). */
3124 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3125 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3126 tx->timeout = htole16(3);
3127 else
3128 tx->timeout = htole16(2);
3129 } else
3130 tx->timeout = htole16(0);
3131
3132 if (hdrlen & 3) {
3133 /* First segment length must be a multiple of 4. */
3134 flags |= IWN_TX_NEED_PADDING;
3135 pad = 4 - (hdrlen & 3);
3136 } else
3137 pad = 0;
3138
3139 tx->len = htole16(totlen);
3140 tx->tid = tid;
3141 tx->rts_ntries = 60;
3142 tx->data_ntries = 15;
3143 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3144 tx->plcp = rinfo->plcp;
3145 tx->rflags = rinfo->flags;
3146 if (tx->id == sc->broadcast_id) {
3147 /* Group or management frame. */
3148 tx->linkq = 0;
3149 /* XXX Alternate between antenna A and B? */
3150 txant = IWN_LSB(sc->txchainmask);
3151 tx->rflags |= IWN_RFLAG_ANT(txant);
3152 } else {
3153 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3154 flags |= IWN_TX_LINKQ; /* enable MRR */
3155 }
3156 /* Set physical address of "scratch area". */
3157 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3158 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3159
3160 /* Copy 802.11 header in TX command. */
3161 /* XXX NetBSD changed this in rev 1.20 */
3162 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3163
3164 /* Trim 802.11 header. */
3165 m_adj(m, hdrlen);
3166 tx->security = 0;
3167 tx->flags = htole32(flags);
3168
3169 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3170 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3171 if (error != 0) {
3172 if (error != EFBIG) {
3173 aprint_error_dev(sc->sc_dev,
3174 "can't map mbuf (error %d)\n", error);
3175 m_freem(m);
3176 return error;
3177 }
3178 /* Too many DMA segments, linearize mbuf. */
3179 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3180 if (m1 == NULL) {
3181 m_freem(m);
3182 return ENOBUFS;
3183 }
3184 if (m->m_pkthdr.len > MHLEN) {
3185 MCLGET(m1, M_DONTWAIT);
3186 if (!(m1->m_flags & M_EXT)) {
3187 m_freem(m);
3188 m_freem(m1);
3189 return ENOBUFS;
3190 }
3191 }
3192 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3193 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3194 m_freem(m);
3195 m = m1;
3196
3197 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3198 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3199 if (error != 0) {
3200 aprint_error_dev(sc->sc_dev,
3201 "can't map mbuf (error %d)\n", error);
3202 m_freem(m);
3203 return error;
3204 }
3205 }
3206
3207 data->m = m;
3208 data->ni = ni;
3209
3210 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3211 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3212
3213 /* Fill TX descriptor. */
3214 desc->nsegs = 1 + data->map->dm_nsegs;
3215 /* First DMA segment is used by the TX command. */
3216 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3217 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3218 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3219 /* Other DMA segments are for data payload. */
3220 seg = data->map->dm_segs;
3221 for (i = 1; i <= data->map->dm_nsegs; i++) {
3222 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3223 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3224 seg->ds_len << 4);
3225 seg++;
3226 }
3227
3228 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3229 BUS_DMASYNC_PREWRITE);
3230 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3231 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3232 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3233 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3234 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3235 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3236
3237 #ifdef notyet
3238 /* Update TX scheduler. */
3239 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3240 #endif
3241
3242 /* Kick TX ring. */
3243 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3244 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3245
3246 /* Mark TX ring as full if we reach a certain threshold. */
3247 if (++ring->queued > IWN_TX_RING_HIMARK)
3248 sc->qfullmsk |= 1 << ring->qid;
3249
3250 return 0;
3251 }
3252
3253 static void
3254 iwn_start(struct ifnet *ifp)
3255 {
3256 struct iwn_softc *sc = ifp->if_softc;
3257 struct ieee80211com *ic = &sc->sc_ic;
3258 struct ieee80211_node *ni;
3259 struct ether_header *eh;
3260 struct mbuf *m;
3261 int ac;
3262
3263 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3264 return;
3265
3266 for (;;) {
3267 if (sc->sc_beacon_wait == 1) {
3268 ifp->if_flags |= IFF_OACTIVE;
3269 break;
3270 }
3271
3272 if (sc->qfullmsk != 0) {
3273 ifp->if_flags |= IFF_OACTIVE;
3274 break;
3275 }
3276 /* Send pending management frames first. */
3277 IF_DEQUEUE(&ic->ic_mgtq, m);
3278 if (m != NULL) {
3279 ni = M_GETCTX(m, struct ieee80211_node *);
3280 ac = 0;
3281 goto sendit;
3282 }
3283 if (ic->ic_state != IEEE80211_S_RUN)
3284 break;
3285
3286 /* Encapsulate and send data frames. */
3287 IFQ_DEQUEUE(&ifp->if_snd, m);
3288 if (m == NULL)
3289 break;
3290 if (m->m_len < sizeof (*eh) &&
3291 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3292 if_statinc(ifp, if_oerrors);
3293 continue;
3294 }
3295 eh = mtod(m, struct ether_header *);
3296 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3297 if (ni == NULL) {
3298 m_freem(m);
3299 if_statinc(ifp, if_oerrors);
3300 continue;
3301 }
3302 /* classify mbuf so we can find which tx ring to use */
3303 if (ieee80211_classify(ic, m, ni) != 0) {
3304 m_freem(m);
3305 ieee80211_free_node(ni);
3306 if_statinc(ifp, if_oerrors);
3307 continue;
3308 }
3309
3310 /* No QoS encapsulation for EAPOL frames. */
3311 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3312 M_WME_GETAC(m) : WME_AC_BE;
3313
3314 if (sc->sc_beacon_wait == 0)
3315 bpf_mtap(ifp, m, BPF_D_OUT);
3316
3317 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3318 ieee80211_free_node(ni);
3319 if_statinc(ifp, if_oerrors);
3320 continue;
3321 }
3322 sendit:
3323 if (sc->sc_beacon_wait)
3324 continue;
3325
3326 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3327
3328 if (iwn_tx(sc, m, ni, ac) != 0) {
3329 ieee80211_free_node(ni);
3330 if_statinc(ifp, if_oerrors);
3331 continue;
3332 }
3333
3334 sc->sc_tx_timer = 5;
3335 ifp->if_timer = 1;
3336 }
3337
3338 if (sc->sc_beacon_wait > 1)
3339 sc->sc_beacon_wait = 0;
3340 }
3341
3342 static void
3343 iwn_watchdog(struct ifnet *ifp)
3344 {
3345 struct iwn_softc *sc = ifp->if_softc;
3346
3347 ifp->if_timer = 0;
3348
3349 if (sc->sc_tx_timer > 0) {
3350 if (--sc->sc_tx_timer == 0) {
3351 aprint_error_dev(sc->sc_dev,
3352 "device timeout\n");
3353 ifp->if_flags &= ~IFF_UP;
3354 iwn_stop(ifp, 1);
3355 if_statinc(ifp, if_oerrors);
3356 return;
3357 }
3358 ifp->if_timer = 1;
3359 }
3360
3361 ieee80211_watchdog(&sc->sc_ic);
3362 }
3363
3364 static int
3365 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3366 {
3367 struct iwn_softc *sc = ifp->if_softc;
3368 struct ieee80211com *ic = &sc->sc_ic;
3369 const struct sockaddr *sa;
3370 int s, error = 0;
3371
3372 s = splnet();
3373
3374 switch (cmd) {
3375 case SIOCSIFADDR:
3376 ifp->if_flags |= IFF_UP;
3377 /* FALLTHROUGH */
3378 case SIOCSIFFLAGS:
3379 /* XXX Added as it is in every NetBSD driver */
3380 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3381 break;
3382 if (ifp->if_flags & IFF_UP) {
3383 if (!(ifp->if_flags & IFF_RUNNING))
3384 error = iwn_init(ifp);
3385 } else {
3386 if (ifp->if_flags & IFF_RUNNING)
3387 iwn_stop(ifp, 1);
3388 }
3389 break;
3390
3391 case SIOCADDMULTI:
3392 case SIOCDELMULTI:
3393 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3394 error = (cmd == SIOCADDMULTI) ?
3395 ether_addmulti(sa, &sc->sc_ec) :
3396 ether_delmulti(sa, &sc->sc_ec);
3397
3398 if (error == ENETRESET)
3399 error = 0;
3400 break;
3401
3402 default:
3403 error = ieee80211_ioctl(ic, cmd, data);
3404 }
3405
3406 if (error == ENETRESET) {
3407 error = 0;
3408 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3409 (IFF_UP | IFF_RUNNING)) {
3410 iwn_stop(ifp, 0);
3411 error = iwn_init(ifp);
3412 }
3413 }
3414
3415 splx(s);
3416 return error;
3417 }
3418
3419 /*
3420 * Send a command to the firmware.
3421 */
3422 static int
3423 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3424 {
3425 struct iwn_tx_ring *ring = &sc->txq[4];
3426 struct iwn_tx_desc *desc;
3427 struct iwn_tx_data *data;
3428 struct iwn_tx_cmd *cmd;
3429 struct mbuf *m;
3430 bus_addr_t paddr;
3431 int totlen, error;
3432
3433 desc = &ring->desc[ring->cur];
3434 data = &ring->data[ring->cur];
3435 totlen = 4 + size;
3436
3437 if (size > sizeof cmd->data) {
3438 /* Command is too large to fit in a descriptor. */
3439 if (totlen > MCLBYTES)
3440 return EINVAL;
3441 MGETHDR(m, M_DONTWAIT, MT_DATA);
3442 if (m == NULL)
3443 return ENOMEM;
3444 if (totlen > MHLEN) {
3445 MCLGET(m, M_DONTWAIT);
3446 if (!(m->m_flags & M_EXT)) {
3447 m_freem(m);
3448 return ENOMEM;
3449 }
3450 }
3451 cmd = mtod(m, struct iwn_tx_cmd *);
3452 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3453 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3454 if (error != 0) {
3455 m_freem(m);
3456 return error;
3457 }
3458 data->m = m;
3459 paddr = data->map->dm_segs[0].ds_addr;
3460 } else {
3461 cmd = &ring->cmd[ring->cur];
3462 paddr = data->cmd_paddr;
3463 }
3464
3465 cmd->code = code;
3466 cmd->flags = 0;
3467 cmd->qid = ring->qid;
3468 cmd->idx = ring->cur;
3469 /*
3470 * Coverity:[OUT_OF_BOUNDS]
3471 * false positive since, allocated in mbuf if it does not fit
3472 */
3473 memcpy(cmd->data, buf, size);
3474
3475 desc->nsegs = 1;
3476 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3477 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3478
3479 if (size > sizeof cmd->data) {
3480 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3481 BUS_DMASYNC_PREWRITE);
3482 } else {
3483 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3484 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3485 totlen, BUS_DMASYNC_PREWRITE);
3486 }
3487 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3488 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3489 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3490
3491 #ifdef notyet
3492 /* Update TX scheduler. */
3493 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3494 #endif
3495 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3496
3497 /* Kick command ring. */
3498 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3499 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3500
3501 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3502 }
3503
3504 static int
3505 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3506 {
3507 struct iwn4965_node_info hnode;
3508 char *src, *dst;
3509
3510 /*
3511 * We use the node structure for 5000 Series internally (it is
3512 * a superset of the one for 4965AGN). We thus copy the common
3513 * fields before sending the command.
3514 */
3515 src = (char *)node;
3516 dst = (char *)&hnode;
3517 memcpy(dst, src, 48);
3518 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3519 memcpy(dst + 48, src + 72, 20);
3520 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3521 }
3522
3523 static int
3524 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3525 {
3526 /* Direct mapping. */
3527 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3528 }
3529
3530 static int
3531 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3532 {
3533 struct iwn_node *wn = (void *)ni;
3534 struct ieee80211_rateset *rs = &ni->ni_rates;
3535 struct iwn_cmd_link_quality linkq;
3536 const struct iwn_rate *rinfo;
3537 uint8_t txant;
3538 int i, txrate;
3539
3540 /* Use the first valid TX antenna. */
3541 txant = IWN_LSB(sc->txchainmask);
3542
3543 memset(&linkq, 0, sizeof linkq);
3544 linkq.id = wn->id;
3545 linkq.antmsk_1stream = txant;
3546 linkq.antmsk_2stream = IWN_ANT_AB;
3547 linkq.ampdu_max = 31;
3548 linkq.ampdu_threshold = 3;
3549 linkq.ampdu_limit = htole16(4000); /* 4ms */
3550
3551 /* Start at highest available bit-rate. */
3552 txrate = rs->rs_nrates - 1;
3553 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3554 rinfo = &iwn_rates[wn->ridx[txrate]];
3555 linkq.retry[i].plcp = rinfo->plcp;
3556 linkq.retry[i].rflags = rinfo->flags;
3557 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3558 /* Next retry at immediate lower bit-rate. */
3559 if (txrate > 0)
3560 txrate--;
3561 }
3562 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3563 }
3564
3565 /*
3566 * Broadcast node is used to send group-addressed and management frames.
3567 */
3568 static int
3569 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3570 {
3571 struct iwn_ops *ops = &sc->ops;
3572 struct iwn_node_info node;
3573 struct iwn_cmd_link_quality linkq;
3574 const struct iwn_rate *rinfo;
3575 uint8_t txant;
3576 int i, error;
3577
3578 memset(&node, 0, sizeof node);
3579 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3580 node.id = sc->broadcast_id;
3581 DPRINTF(("adding broadcast node\n"));
3582 if ((error = ops->add_node(sc, &node, async)) != 0)
3583 return error;
3584
3585 /* Use the first valid TX antenna. */
3586 txant = IWN_LSB(sc->txchainmask);
3587
3588 memset(&linkq, 0, sizeof linkq);
3589 linkq.id = sc->broadcast_id;
3590 linkq.antmsk_1stream = txant;
3591 linkq.antmsk_2stream = IWN_ANT_AB;
3592 linkq.ampdu_max = 64;
3593 linkq.ampdu_threshold = 3;
3594 linkq.ampdu_limit = htole16(4000); /* 4ms */
3595
3596 /* Use lowest mandatory bit-rate. */
3597 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3598 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3599 linkq.retry[0].plcp = rinfo->plcp;
3600 linkq.retry[0].rflags = rinfo->flags;
3601 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3602 /* Use same bit-rate for all TX retries. */
3603 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3604 linkq.retry[i].plcp = linkq.retry[0].plcp;
3605 linkq.retry[i].rflags = linkq.retry[0].rflags;
3606 }
3607 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3608 }
3609
3610 static void
3611 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3612 {
3613 struct iwn_cmd_led led;
3614
3615 /* Clear microcode LED ownership. */
3616 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3617
3618 led.which = which;
3619 led.unit = htole32(10000); /* on/off in unit of 100ms */
3620 led.off = off;
3621 led.on = on;
3622 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3623 }
3624
3625 /*
3626 * Set the critical temperature at which the firmware will stop the radio
3627 * and notify us.
3628 */
3629 static int
3630 iwn_set_critical_temp(struct iwn_softc *sc)
3631 {
3632 struct iwn_critical_temp crit;
3633 int32_t temp;
3634
3635 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3636
3637 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3638 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3639 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3640 temp = IWN_CTOK(110);
3641 else
3642 temp = 110;
3643 memset(&crit, 0, sizeof crit);
3644 crit.tempR = htole32(temp);
3645 DPRINTF(("setting critical temperature to %d\n", temp));
3646 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3647 }
3648
3649 static int
3650 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3651 {
3652 struct iwn_cmd_timing cmd;
3653 uint64_t val, mod;
3654
3655 memset(&cmd, 0, sizeof cmd);
3656 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3657 cmd.bintval = htole16(ni->ni_intval);
3658 cmd.lintval = htole16(10);
3659
3660 /* Compute remaining time until next beacon. */
3661 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3662 mod = le64toh(cmd.tstamp) % val;
3663 cmd.binitval = htole32((uint32_t)(val - mod));
3664
3665 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3666 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3667
3668 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3669 }
3670
3671 static void
3672 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3673 {
3674 /* Adjust TX power if need be (delta >= 3 degC). */
3675 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3676 if (abs(temp - sc->temp) >= 3) {
3677 /* Record temperature of last calibration. */
3678 sc->temp = temp;
3679 (void)iwn4965_set_txpower(sc, 1);
3680 }
3681 }
3682
3683 /*
3684 * Set TX power for current channel (each rate has its own power settings).
3685 * This function takes into account the regulatory information from EEPROM,
3686 * the current temperature and the current voltage.
3687 */
3688 static int
3689 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3690 {
3691 /* Fixed-point arithmetic division using a n-bit fractional part. */
3692 #define fdivround(a, b, n) \
3693 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3694 /* Linear interpolation. */
3695 #define interpolate(x, x1, y1, x2, y2, n) \
3696 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3697
3698 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3699 struct ieee80211com *ic = &sc->sc_ic;
3700 struct iwn_ucode_info *uc = &sc->ucode_info;
3701 struct ieee80211_channel *ch;
3702 struct iwn4965_cmd_txpower cmd;
3703 struct iwn4965_eeprom_chan_samples *chans;
3704 const uint8_t *rf_gain, *dsp_gain;
3705 int32_t vdiff, tdiff;
3706 int i, c, grp, maxpwr;
3707 uint8_t chan;
3708
3709 /* Retrieve current channel from last RXON. */
3710 chan = sc->rxon.chan;
3711 DPRINTF(("setting TX power for channel %d\n", chan));
3712 ch = &ic->ic_channels[chan];
3713
3714 memset(&cmd, 0, sizeof cmd);
3715 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3716 cmd.chan = chan;
3717
3718 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3719 maxpwr = sc->maxpwr5GHz;
3720 rf_gain = iwn4965_rf_gain_5ghz;
3721 dsp_gain = iwn4965_dsp_gain_5ghz;
3722 } else {
3723 maxpwr = sc->maxpwr2GHz;
3724 rf_gain = iwn4965_rf_gain_2ghz;
3725 dsp_gain = iwn4965_dsp_gain_2ghz;
3726 }
3727
3728 /* Compute voltage compensation. */
3729 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3730 if (vdiff > 0)
3731 vdiff *= 2;
3732 if (abs(vdiff) > 2)
3733 vdiff = 0;
3734 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3735 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3736
3737 /* Get channel attenuation group. */
3738 if (chan <= 20) /* 1-20 */
3739 grp = 4;
3740 else if (chan <= 43) /* 34-43 */
3741 grp = 0;
3742 else if (chan <= 70) /* 44-70 */
3743 grp = 1;
3744 else if (chan <= 124) /* 71-124 */
3745 grp = 2;
3746 else /* 125-200 */
3747 grp = 3;
3748 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3749
3750 /* Get channel sub-band. */
3751 for (i = 0; i < IWN_NBANDS; i++)
3752 if (sc->bands[i].lo != 0 &&
3753 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3754 break;
3755 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3756 return EINVAL;
3757 chans = sc->bands[i].chans;
3758 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3759
3760 for (c = 0; c < 2; c++) {
3761 uint8_t power, gain, temp;
3762 int maxchpwr, pwr, ridx, idx;
3763
3764 power = interpolate(chan,
3765 chans[0].num, chans[0].samples[c][1].power,
3766 chans[1].num, chans[1].samples[c][1].power, 1);
3767 gain = interpolate(chan,
3768 chans[0].num, chans[0].samples[c][1].gain,
3769 chans[1].num, chans[1].samples[c][1].gain, 1);
3770 temp = interpolate(chan,
3771 chans[0].num, chans[0].samples[c][1].temp,
3772 chans[1].num, chans[1].samples[c][1].temp, 1);
3773 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3774 c, power, gain, temp));
3775
3776 /* Compute temperature compensation. */
3777 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3778 DPRINTF(("temperature compensation=%d (current=%d, "
3779 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3780
3781 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3782 /* Convert dBm to half-dBm. */
3783 maxchpwr = sc->maxpwr[chan] * 2;
3784 if ((ridx / 8) & 1)
3785 maxchpwr -= 6; /* MIMO 2T: -3dB */
3786
3787 pwr = maxpwr;
3788
3789 /* Adjust TX power based on rate. */
3790 if ((ridx % 8) == 5)
3791 pwr -= 15; /* OFDM48: -7.5dB */
3792 else if ((ridx % 8) == 6)
3793 pwr -= 17; /* OFDM54: -8.5dB */
3794 else if ((ridx % 8) == 7)
3795 pwr -= 20; /* OFDM60: -10dB */
3796 else
3797 pwr -= 10; /* Others: -5dB */
3798
3799 /* Do not exceed channel max TX power. */
3800 if (pwr > maxchpwr)
3801 pwr = maxchpwr;
3802
3803 idx = gain - (pwr - power) - tdiff - vdiff;
3804 if ((ridx / 8) & 1) /* MIMO */
3805 idx += (int32_t)le32toh(uc->atten[grp][c]);
3806
3807 if (cmd.band == 0)
3808 idx += 9; /* 5GHz */
3809 if (ridx == IWN_RIDX_MAX)
3810 idx += 5; /* CCK */
3811
3812 /* Make sure idx stays in a valid range. */
3813 if (idx < 0)
3814 idx = 0;
3815 else if (idx > IWN4965_MAX_PWR_INDEX)
3816 idx = IWN4965_MAX_PWR_INDEX;
3817
3818 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3819 c, ridx, idx));
3820 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3821 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3822 }
3823 }
3824
3825 DPRINTF(("setting TX power for chan %d\n", chan));
3826 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3827
3828 #undef interpolate
3829 #undef fdivround
3830 }
3831
3832 static int
3833 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3834 {
3835 struct iwn5000_cmd_txpower cmd;
3836 int cmdid;
3837
3838 /*
3839 * TX power calibration is handled automatically by the firmware
3840 * for 5000 Series.
3841 */
3842 memset(&cmd, 0, sizeof cmd);
3843 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3844 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3845 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3846 DPRINTF(("setting TX power\n"));
3847 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3848 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3849 else
3850 cmdid = IWN_CMD_TXPOWER_DBM;
3851 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3852 }
3853
3854 /*
3855 * Retrieve the maximum RSSI (in dBm) among receivers.
3856 */
3857 static int
3858 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3859 {
3860 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3861 uint8_t mask, agc;
3862 int rssi;
3863
3864 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3865 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3866
3867 rssi = 0;
3868 if (mask & IWN_ANT_A)
3869 rssi = MAX(rssi, phy->rssi[0]);
3870 if (mask & IWN_ANT_B)
3871 rssi = MAX(rssi, phy->rssi[2]);
3872 if (mask & IWN_ANT_C)
3873 rssi = MAX(rssi, phy->rssi[4]);
3874
3875 return rssi - agc - IWN_RSSI_TO_DBM;
3876 }
3877
3878 static int
3879 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3880 {
3881 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3882 uint8_t agc;
3883 int rssi;
3884
3885 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3886
3887 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3888 le16toh(phy->rssi[1]) & 0xff);
3889 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3890
3891 return rssi - agc - IWN_RSSI_TO_DBM;
3892 }
3893
3894 /*
3895 * Retrieve the average noise (in dBm) among receivers.
3896 */
3897 static int
3898 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3899 {
3900 int i, total, nbant, noise;
3901
3902 total = nbant = 0;
3903 for (i = 0; i < 3; i++) {
3904 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3905 continue;
3906 total += noise;
3907 nbant++;
3908 }
3909 /* There should be at least one antenna but check anyway. */
3910 return (nbant == 0) ? -127 : (total / nbant) - 107;
3911 }
3912
3913 /*
3914 * Compute temperature (in degC) from last received statistics.
3915 */
3916 static int
3917 iwn4965_get_temperature(struct iwn_softc *sc)
3918 {
3919 struct iwn_ucode_info *uc = &sc->ucode_info;
3920 int32_t r1, r2, r3, r4, temp;
3921
3922 r1 = le32toh(uc->temp[0].chan20MHz);
3923 r2 = le32toh(uc->temp[1].chan20MHz);
3924 r3 = le32toh(uc->temp[2].chan20MHz);
3925 r4 = le32toh(sc->rawtemp);
3926
3927 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3928 return 0;
3929
3930 /* Sign-extend 23-bit R4 value to 32-bit. */
3931 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3932 /* Compute temperature in Kelvin. */
3933 temp = (259 * (r4 - r2)) / (r3 - r1);
3934 temp = (temp * 97) / 100 + 8;
3935
3936 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3937 return IWN_KTOC(temp);
3938 }
3939
3940 static int
3941 iwn5000_get_temperature(struct iwn_softc *sc)
3942 {
3943 int32_t temp;
3944
3945 /*
3946 * Temperature is not used by the driver for 5000 Series because
3947 * TX power calibration is handled by firmware. We export it to
3948 * users through the sensor framework though.
3949 */
3950 temp = le32toh(sc->rawtemp);
3951 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3952 temp = (temp / -5) + sc->temp_off;
3953 temp = IWN_KTOC(temp);
3954 }
3955 return temp;
3956 }
3957
3958 /*
3959 * Initialize sensitivity calibration state machine.
3960 */
3961 static int
3962 iwn_init_sensitivity(struct iwn_softc *sc)
3963 {
3964 struct iwn_ops *ops = &sc->ops;
3965 struct iwn_calib_state *calib = &sc->calib;
3966 uint32_t flags;
3967 int error;
3968
3969 /* Reset calibration state machine. */
3970 memset(calib, 0, sizeof (*calib));
3971 calib->state = IWN_CALIB_STATE_INIT;
3972 calib->cck_state = IWN_CCK_STATE_HIFA;
3973 /* Set initial correlation values. */
3974 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3975 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3976 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3977 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3978 calib->cck_x4 = 125;
3979 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3980 calib->energy_cck = sc->limits->energy_cck;
3981
3982 /* Write initial sensitivity. */
3983 if ((error = iwn_send_sensitivity(sc)) != 0)
3984 return error;
3985
3986 /* Write initial gains. */
3987 if ((error = ops->init_gains(sc)) != 0)
3988 return error;
3989
3990 /* Request statistics at each beacon interval. */
3991 flags = 0;
3992 DPRINTF(("sending request for statistics\n"));
3993 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3994 }
3995
3996 /*
3997 * Collect noise and RSSI statistics for the first 20 beacons received
3998 * after association and use them to determine connected antennas and
3999 * to set differential gains.
4000 */
4001 static void
4002 iwn_collect_noise(struct iwn_softc *sc,
4003 const struct iwn_rx_general_stats *stats)
4004 {
4005 struct iwn_ops *ops = &sc->ops;
4006 struct iwn_calib_state *calib = &sc->calib;
4007 uint32_t val;
4008 int i;
4009
4010 /* Accumulate RSSI and noise for all 3 antennas. */
4011 for (i = 0; i < 3; i++) {
4012 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4013 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4014 }
4015 /* NB: We update differential gains only once after 20 beacons. */
4016 if (++calib->nbeacons < 20)
4017 return;
4018
4019 /* Determine highest average RSSI. */
4020 val = MAX(calib->rssi[0], calib->rssi[1]);
4021 val = MAX(calib->rssi[2], val);
4022
4023 /* Determine which antennas are connected. */
4024 sc->chainmask = sc->rxchainmask;
4025 for (i = 0; i < 3; i++)
4026 if (val - calib->rssi[i] > 15 * 20)
4027 sc->chainmask &= ~(1 << i);
4028 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4029 sc->rxchainmask, sc->chainmask));
4030
4031 /* If none of the TX antennas are connected, keep at least one. */
4032 if ((sc->chainmask & sc->txchainmask) == 0)
4033 sc->chainmask |= IWN_LSB(sc->txchainmask);
4034
4035 (void)ops->set_gains(sc);
4036 calib->state = IWN_CALIB_STATE_RUN;
4037
4038 #ifdef notyet
4039 /* XXX Disable RX chains with no antennas connected. */
4040 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4041 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4042 #endif
4043
4044 /* Enable power-saving mode if requested by user. */
4045 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4046 (void)iwn_set_pslevel(sc, 0, 3, 1);
4047 }
4048
4049 static int
4050 iwn4965_init_gains(struct iwn_softc *sc)
4051 {
4052 struct iwn_phy_calib_gain cmd;
4053
4054 memset(&cmd, 0, sizeof cmd);
4055 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4056 /* Differential gains initially set to 0 for all 3 antennas. */
4057 DPRINTF(("setting initial differential gains\n"));
4058 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4059 }
4060
4061 static int
4062 iwn5000_init_gains(struct iwn_softc *sc)
4063 {
4064 struct iwn_phy_calib cmd;
4065
4066 memset(&cmd, 0, sizeof cmd);
4067 cmd.code = sc->reset_noise_gain;
4068 cmd.ngroups = 1;
4069 cmd.isvalid = 1;
4070 DPRINTF(("setting initial differential gains\n"));
4071 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4072 }
4073
4074 static int
4075 iwn4965_set_gains(struct iwn_softc *sc)
4076 {
4077 struct iwn_calib_state *calib = &sc->calib;
4078 struct iwn_phy_calib_gain cmd;
4079 int i, delta, noise;
4080
4081 /* Get minimal noise among connected antennas. */
4082 noise = INT_MAX; /* NB: There's at least one antenna. */
4083 for (i = 0; i < 3; i++)
4084 if (sc->chainmask & (1 << i))
4085 noise = MIN(calib->noise[i], noise);
4086
4087 memset(&cmd, 0, sizeof cmd);
4088 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4089 /* Set differential gains for connected antennas. */
4090 for (i = 0; i < 3; i++) {
4091 if (sc->chainmask & (1 << i)) {
4092 /* Compute attenuation (in unit of 1.5dB). */
4093 delta = (noise - (int32_t)calib->noise[i]) / 30;
4094 /* NB: delta <= 0 */
4095 /* Limit to [-4.5dB,0]. */
4096 cmd.gain[i] = MIN(abs(delta), 3);
4097 if (delta < 0)
4098 cmd.gain[i] |= 1 << 2; /* sign bit */
4099 }
4100 }
4101 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4102 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4103 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4104 }
4105
4106 static int
4107 iwn5000_set_gains(struct iwn_softc *sc)
4108 {
4109 struct iwn_calib_state *calib = &sc->calib;
4110 struct iwn_phy_calib_gain cmd;
4111 int i, ant, div, delta;
4112
4113 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4114 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4115
4116 memset(&cmd, 0, sizeof cmd);
4117 cmd.code = sc->noise_gain;
4118 cmd.ngroups = 1;
4119 cmd.isvalid = 1;
4120 /* Get first available RX antenna as referential. */
4121 ant = IWN_LSB(sc->rxchainmask);
4122 /* Set differential gains for other antennas. */
4123 for (i = ant + 1; i < 3; i++) {
4124 if (sc->chainmask & (1 << i)) {
4125 /* The delta is relative to antenna "ant". */
4126 delta = ((int32_t)calib->noise[ant] -
4127 (int32_t)calib->noise[i]) / div;
4128 /* Limit to [-4.5dB,+4.5dB]. */
4129 cmd.gain[i - 1] = MIN(abs(delta), 3);
4130 if (delta < 0)
4131 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4132 }
4133 }
4134 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4135 cmd.gain[0], cmd.gain[1], sc->chainmask));
4136 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4137 }
4138
4139 /*
4140 * Tune RF RX sensitivity based on the number of false alarms detected
4141 * during the last beacon period.
4142 */
4143 static void
4144 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4145 {
4146 #define inc(val, inc, max) \
4147 if ((val) < (max)) { \
4148 if ((val) < (max) - (inc)) \
4149 (val) += (inc); \
4150 else \
4151 (val) = (max); \
4152 needs_update = 1; \
4153 }
4154 #define dec(val, dec, min) \
4155 if ((val) > (min)) { \
4156 if ((val) > (min) + (dec)) \
4157 (val) -= (dec); \
4158 else \
4159 (val) = (min); \
4160 needs_update = 1; \
4161 }
4162
4163 const struct iwn_sensitivity_limits *limits = sc->limits;
4164 struct iwn_calib_state *calib = &sc->calib;
4165 uint32_t val, rxena, fa;
4166 uint32_t energy[3], energy_min;
4167 uint8_t noise[3], noise_ref;
4168 int i, needs_update = 0;
4169
4170 /* Check that we've been enabled long enough. */
4171 if ((rxena = le32toh(stats->general.load)) == 0)
4172 return;
4173
4174 /* Compute number of false alarms since last call for OFDM. */
4175 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4176 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4177 fa *= 200 * 1024; /* 200TU */
4178
4179 /* Save counters values for next call. */
4180 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4181 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4182
4183 if (fa > 50 * rxena) {
4184 /* High false alarm count, decrease sensitivity. */
4185 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4186 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4187 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4188 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4189 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4190
4191 } else if (fa < 5 * rxena) {
4192 /* Low false alarm count, increase sensitivity. */
4193 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4194 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4195 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4196 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4197 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4198 }
4199
4200 /* Compute maximum noise among 3 receivers. */
4201 for (i = 0; i < 3; i++)
4202 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4203 val = MAX(noise[0], noise[1]);
4204 val = MAX(noise[2], val);
4205 /* Insert it into our samples table. */
4206 calib->noise_samples[calib->cur_noise_sample] = val;
4207 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4208
4209 /* Compute maximum noise among last 20 samples. */
4210 noise_ref = calib->noise_samples[0];
4211 for (i = 1; i < 20; i++)
4212 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4213
4214 /* Compute maximum energy among 3 receivers. */
4215 for (i = 0; i < 3; i++)
4216 energy[i] = le32toh(stats->general.energy[i]);
4217 val = MIN(energy[0], energy[1]);
4218 val = MIN(energy[2], val);
4219 /* Insert it into our samples table. */
4220 calib->energy_samples[calib->cur_energy_sample] = val;
4221 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4222
4223 /* Compute minimum energy among last 10 samples. */
4224 energy_min = calib->energy_samples[0];
4225 for (i = 1; i < 10; i++)
4226 energy_min = MAX(energy_min, calib->energy_samples[i]);
4227 energy_min += 6;
4228
4229 /* Compute number of false alarms since last call for CCK. */
4230 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4231 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4232 fa *= 200 * 1024; /* 200TU */
4233
4234 /* Save counters values for next call. */
4235 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4236 calib->fa_cck = le32toh(stats->cck.fa);
4237
4238 if (fa > 50 * rxena) {
4239 /* High false alarm count, decrease sensitivity. */
4240 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4241 calib->cck_state = IWN_CCK_STATE_HIFA;
4242 calib->low_fa = 0;
4243
4244 if (calib->cck_x4 > 160) {
4245 calib->noise_ref = noise_ref;
4246 if (calib->energy_cck > 2)
4247 dec(calib->energy_cck, 2, energy_min);
4248 }
4249 if (calib->cck_x4 < 160) {
4250 calib->cck_x4 = 161;
4251 needs_update = 1;
4252 } else
4253 inc(calib->cck_x4, 3, limits->max_cck_x4);
4254
4255 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4256
4257 } else if (fa < 5 * rxena) {
4258 /* Low false alarm count, increase sensitivity. */
4259 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4260 calib->cck_state = IWN_CCK_STATE_LOFA;
4261 calib->low_fa++;
4262
4263 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4264 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4265 calib->low_fa > 100)) {
4266 inc(calib->energy_cck, 2, limits->min_energy_cck);
4267 dec(calib->cck_x4, 3, limits->min_cck_x4);
4268 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4269 }
4270 } else {
4271 /* Not worth to increase or decrease sensitivity. */
4272 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4273 calib->low_fa = 0;
4274 calib->noise_ref = noise_ref;
4275
4276 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4277 /* Previous interval had many false alarms. */
4278 dec(calib->energy_cck, 8, energy_min);
4279 }
4280 calib->cck_state = IWN_CCK_STATE_INIT;
4281 }
4282
4283 if (needs_update)
4284 (void)iwn_send_sensitivity(sc);
4285 #undef dec
4286 #undef inc
4287 }
4288
4289 static int
4290 iwn_send_sensitivity(struct iwn_softc *sc)
4291 {
4292 struct iwn_calib_state *calib = &sc->calib;
4293 struct iwn_enhanced_sensitivity_cmd cmd;
4294 int len;
4295
4296 memset(&cmd, 0, sizeof cmd);
4297 len = sizeof (struct iwn_sensitivity_cmd);
4298 cmd.which = IWN_SENSITIVITY_WORKTBL;
4299 /* OFDM modulation. */
4300 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4301 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4302 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4303 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4304 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4305 cmd.energy_ofdm_th = htole16(62);
4306 /* CCK modulation. */
4307 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4308 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4309 cmd.energy_cck = htole16(calib->energy_cck);
4310 /* Barker modulation: use default values. */
4311 cmd.corr_barker = htole16(190);
4312 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4313 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4314 goto send;
4315 /* Enhanced sensitivity settings. */
4316 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4317 cmd.ofdm_det_slope_mrc = htole16(668);
4318 cmd.ofdm_det_icept_mrc = htole16(4);
4319 cmd.ofdm_det_slope = htole16(486);
4320 cmd.ofdm_det_icept = htole16(37);
4321 cmd.cck_det_slope_mrc = htole16(853);
4322 cmd.cck_det_icept_mrc = htole16(4);
4323 cmd.cck_det_slope = htole16(476);
4324 cmd.cck_det_icept = htole16(99);
4325 send:
4326 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4327 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4328 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4329 calib->energy_cck));
4330 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4331 }
4332
4333 /*
4334 * Set STA mode power saving level (between 0 and 5).
4335 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4336 */
4337 static int
4338 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4339 {
4340 struct iwn_pmgt_cmd cmd;
4341 const struct iwn_pmgt *pmgt;
4342 uint32_t maxp, skip_dtim;
4343 pcireg_t reg;
4344 int i;
4345
4346 /* Select which PS parameters to use. */
4347 if (dtim <= 2)
4348 pmgt = &iwn_pmgt[0][level];
4349 else if (dtim <= 10)
4350 pmgt = &iwn_pmgt[1][level];
4351 else
4352 pmgt = &iwn_pmgt[2][level];
4353
4354 memset(&cmd, 0, sizeof cmd);
4355 if (level != 0) /* not CAM */
4356 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4357 if (level == 5)
4358 cmd.flags |= htole16(IWN_PS_FAST_PD);
4359 /* Retrieve PCIe Active State Power Management (ASPM). */
4360 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4361 sc->sc_cap_off + PCIE_LCSR);
4362 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4363 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4364 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4365 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4366
4367 if (dtim == 0) {
4368 dtim = 1;
4369 skip_dtim = 0;
4370 } else
4371 skip_dtim = pmgt->skip_dtim;
4372 if (skip_dtim != 0) {
4373 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4374 maxp = pmgt->intval[4];
4375 if (maxp == (uint32_t)-1)
4376 maxp = dtim * (skip_dtim + 1);
4377 else if (maxp > dtim)
4378 maxp = (maxp / dtim) * dtim;
4379 } else
4380 maxp = dtim;
4381 for (i = 0; i < 5; i++)
4382 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4383
4384 DPRINTF(("setting power saving level to %d\n", level));
4385 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4386 }
4387
4388 int
4389 iwn5000_runtime_calib(struct iwn_softc *sc)
4390 {
4391 struct iwn5000_calib_config cmd;
4392
4393 memset(&cmd, 0, sizeof cmd);
4394 cmd.ucode.once.enable = 0xffffffff;
4395 cmd.ucode.once.start = IWN5000_CALIB_DC;
4396 DPRINTF(("configuring runtime calibration\n"));
4397 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4398 }
4399
4400 static int
4401 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4402 {
4403 struct iwn_bluetooth bluetooth;
4404
4405 memset(&bluetooth, 0, sizeof bluetooth);
4406 bluetooth.flags = IWN_BT_COEX_ENABLE;
4407 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4408 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4409
4410 DPRINTF(("configuring bluetooth coexistence\n"));
4411 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4412 }
4413
4414 static int
4415 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4416 {
4417 uint8_t prio_table[16];
4418
4419 memset(&prio_table, 0, sizeof prio_table);
4420 prio_table[ 0] = 6; /* init calibration 1 */
4421 prio_table[ 1] = 7; /* init calibration 2 */
4422 prio_table[ 2] = 2; /* periodic calib low 1 */
4423 prio_table[ 3] = 3; /* periodic calib low 2 */
4424 prio_table[ 4] = 4; /* periodic calib high 1 */
4425 prio_table[ 5] = 5; /* periodic calib high 2 */
4426 prio_table[ 6] = 6; /* dtim */
4427 prio_table[ 7] = 8; /* scan52 */
4428 prio_table[ 8] = 10; /* scan24 */
4429
4430 DPRINTF(("sending priority lookup table\n"));
4431 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4432 &prio_table, sizeof prio_table, 0);
4433 }
4434
4435 static int
4436 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4437 size_t len)
4438 {
4439 struct iwn_btcoex_prot btprot;
4440 int error;
4441
4442 basic->bt.flags = IWN_BT_COEX_ENABLE;
4443 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4444 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4445 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4446 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4447 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4448 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4449 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4450 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4451 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4452 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4453 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4454 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4455 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4456 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4457 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4458 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4459 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4460 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4461 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4462 basic->reduce_txpower = 0; /* as not implemented */
4463 basic->valid = IWN_BT_ALL_VALID_MASK;
4464
4465 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4466 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4467 if (error != 0) {
4468 aprint_error_dev(sc->sc_dev,
4469 "could not configure advanced bluetooth coexistence\n");
4470 return error;
4471 }
4472
4473 error = iwn_config_bt_coex_prio_table(sc);
4474 if (error != 0) {
4475 aprint_error_dev(sc->sc_dev,
4476 "could not configure send BT priority table\n");
4477 return error;
4478 }
4479
4480 /* Force BT state machine change */
4481 memset(&btprot, 0, sizeof btprot);
4482 btprot.open = 1;
4483 btprot.type = 1;
4484 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4485 if (error != 0) {
4486 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4487 return error;
4488 }
4489
4490 btprot.open = 0;
4491 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4492 if (error != 0) {
4493 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4494 return error;
4495 }
4496 return 0;
4497 }
4498
4499 static int
4500 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4501 {
4502 struct iwn_bt_adv1 d;
4503
4504 memset(&d, 0, sizeof d);
4505 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4506 d.tx_prio_boost = 0;
4507 d.rx_prio_boost = 0;
4508 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4509 }
4510
4511 static int
4512 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4513 {
4514 struct iwn_bt_adv2 d;
4515
4516 memset(&d, 0, sizeof d);
4517 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4518 d.tx_prio_boost = 0;
4519 d.rx_prio_boost = 0;
4520 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4521 }
4522
4523 static int
4524 iwn_config(struct iwn_softc *sc)
4525 {
4526 struct iwn_ops *ops = &sc->ops;
4527 struct ieee80211com *ic = &sc->sc_ic;
4528 struct ifnet *ifp = ic->ic_ifp;
4529 uint32_t txmask;
4530 uint16_t rxchain;
4531 int error;
4532
4533 error = ops->config_bt_coex(sc);
4534 if (error != 0) {
4535 aprint_error_dev(sc->sc_dev,
4536 "could not configure bluetooth coexistence\n");
4537 return error;
4538 }
4539
4540 /* Set radio temperature sensor offset. */
4541 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4542 error = iwn6000_temp_offset_calib(sc);
4543 if (error != 0) {
4544 aprint_error_dev(sc->sc_dev,
4545 "could not set temperature offset\n");
4546 return error;
4547 }
4548 }
4549
4550 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4551 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4552 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4553 sc->hw_type == IWN_HW_REV_TYPE_105) {
4554 error = iwn2000_temp_offset_calib(sc);
4555 if (error != 0) {
4556 aprint_error_dev(sc->sc_dev,
4557 "could not set temperature offset\n");
4558 return error;
4559 }
4560 }
4561
4562 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4563 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4564 /* Configure runtime DC calibration. */
4565 error = iwn5000_runtime_calib(sc);
4566 if (error != 0) {
4567 aprint_error_dev(sc->sc_dev,
4568 "could not configure runtime calibration\n");
4569 return error;
4570 }
4571 }
4572
4573 /* Configure valid TX chains for 5000 Series. */
4574 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4575 txmask = htole32(sc->txchainmask);
4576 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4577 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4578 sizeof txmask, 0);
4579 if (error != 0) {
4580 aprint_error_dev(sc->sc_dev,
4581 "could not configure valid TX chains\n");
4582 return error;
4583 }
4584 }
4585
4586 /* Set mode, channel, RX filter and enable RX. */
4587 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4588 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4589 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4590 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4591 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4592 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4593 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4594 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4595 switch (ic->ic_opmode) {
4596 case IEEE80211_M_STA:
4597 sc->rxon.mode = IWN_MODE_STA;
4598 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4599 break;
4600 case IEEE80211_M_MONITOR:
4601 sc->rxon.mode = IWN_MODE_MONITOR;
4602 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4603 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4604 break;
4605 default:
4606 /* Should not get there. */
4607 break;
4608 }
4609 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4610 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4611 sc->rxon.ht_single_mask = 0xff;
4612 sc->rxon.ht_dual_mask = 0xff;
4613 sc->rxon.ht_triple_mask = 0xff;
4614 rxchain =
4615 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4616 IWN_RXCHAIN_MIMO_COUNT(2) |
4617 IWN_RXCHAIN_IDLE_COUNT(2);
4618 sc->rxon.rxchain = htole16(rxchain);
4619 DPRINTF(("setting configuration\n"));
4620 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4621 if (error != 0) {
4622 aprint_error_dev(sc->sc_dev,
4623 "RXON command failed\n");
4624 return error;
4625 }
4626
4627 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4628 aprint_error_dev(sc->sc_dev,
4629 "could not add broadcast node\n");
4630 return error;
4631 }
4632
4633 /* Configuration has changed, set TX power accordingly. */
4634 if ((error = ops->set_txpower(sc, 0)) != 0) {
4635 aprint_error_dev(sc->sc_dev,
4636 "could not set TX power\n");
4637 return error;
4638 }
4639
4640 if ((error = iwn_set_critical_temp(sc)) != 0) {
4641 aprint_error_dev(sc->sc_dev,
4642 "could not set critical temperature\n");
4643 return error;
4644 }
4645
4646 /* Set power saving level to CAM during initialization. */
4647 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4648 aprint_error_dev(sc->sc_dev,
4649 "could not set power saving level\n");
4650 return error;
4651 }
4652 return 0;
4653 }
4654
4655 static uint16_t
4656 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4657 uint8_t n_probes)
4658 {
4659 /* No channel? Default to 2GHz settings */
4660 if (flags & IEEE80211_CHAN_2GHZ)
4661 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4662 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4663
4664 /* 5GHz dwell time */
4665 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4666 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4667 }
4668
4669 /*
4670 * Limit the total dwell time to 85% of the beacon interval.
4671 *
4672 * Returns the dwell time in milliseconds.
4673 */
4674 static uint16_t
4675 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4676 {
4677 struct ieee80211com *ic = &sc->sc_ic;
4678 struct ieee80211_node *ni = ic->ic_bss;
4679 int bintval = 0;
4680
4681 /* bintval is in TU (1.024mS) */
4682 if (ni != NULL)
4683 bintval = ni->ni_intval;
4684
4685 /*
4686 * If it's non-zero, we should calculate the minimum of
4687 * it and the DWELL_BASE.
4688 *
4689 * XXX Yes, the math should take into account that bintval
4690 * is 1.024mS, not 1mS..
4691 */
4692 if (bintval > 0)
4693 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4694
4695 /* No association context? Default */
4696 return IWN_PASSIVE_DWELL_BASE;
4697 }
4698
4699 static uint16_t
4700 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4701 {
4702 uint16_t passive;
4703 if (flags & IEEE80211_CHAN_2GHZ)
4704 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4705 else
4706 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4707
4708 /* Clamp to the beacon interval if we're associated */
4709 return iwn_limit_dwell(sc, passive);
4710 }
4711
4712 static int
4713 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4714 {
4715 struct ieee80211com *ic = &sc->sc_ic;
4716 struct iwn_scan_hdr *hdr;
4717 struct iwn_cmd_data *tx;
4718 struct iwn_scan_essid *essid;
4719 struct iwn_scan_chan *chan;
4720 struct ieee80211_frame *wh;
4721 struct ieee80211_rateset *rs;
4722 struct ieee80211_channel *c;
4723 uint8_t *buf, *frm;
4724 uint16_t rxchain, dwell_active, dwell_passive;
4725 uint8_t txant;
4726 int buflen, error, is_active;
4727
4728 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4729 if (buf == NULL) {
4730 aprint_error_dev(sc->sc_dev,
4731 "could not allocate buffer for scan command\n");
4732 return ENOMEM;
4733 }
4734 hdr = (struct iwn_scan_hdr *)buf;
4735 /*
4736 * Move to the next channel if no frames are received within 10ms
4737 * after sending the probe request.
4738 */
4739 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4740 hdr->quiet_threshold = htole16(1); /* min # of packets */
4741
4742 /* Select antennas for scanning. */
4743 rxchain =
4744 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4745 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4746 IWN_RXCHAIN_DRIVER_FORCE;
4747 if ((flags & IEEE80211_CHAN_5GHZ) &&
4748 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4749 /* Ant A must be avoided in 5GHz because of an HW bug. */
4750 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4751 } else /* Use all available RX antennas. */
4752 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4753 hdr->rxchain = htole16(rxchain);
4754 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4755
4756 tx = (struct iwn_cmd_data *)(hdr + 1);
4757 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4758 tx->id = sc->broadcast_id;
4759 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4760
4761 if (flags & IEEE80211_CHAN_5GHZ) {
4762 hdr->crc_threshold = 0xffff;
4763 /* Send probe requests at 6Mbps. */
4764 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4765 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4766 } else {
4767 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4768 /* Send probe requests at 1Mbps. */
4769 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4770 tx->rflags = IWN_RFLAG_CCK;
4771 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4772 }
4773 /* Use the first valid TX antenna. */
4774 txant = IWN_LSB(sc->txchainmask);
4775 tx->rflags |= IWN_RFLAG_ANT(txant);
4776
4777 /*
4778 * Only do active scanning if we're announcing a probe request
4779 * for a given SSID (or more, if we ever add it to the driver.)
4780 */
4781 is_active = 0;
4782
4783 essid = (struct iwn_scan_essid *)(tx + 1);
4784 if (ic->ic_des_esslen != 0) {
4785 essid[0].id = IEEE80211_ELEMID_SSID;
4786 essid[0].len = ic->ic_des_esslen;
4787 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4788
4789 is_active = 1;
4790 }
4791 /*
4792 * Build a probe request frame. Most of the following code is a
4793 * copy & paste of what is done in net80211.
4794 */
4795 wh = (struct ieee80211_frame *)(essid + 20);
4796 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4797 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4798 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4799 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4800 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4801 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4802 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4803 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4804
4805 frm = (uint8_t *)(wh + 1);
4806 frm = ieee80211_add_ssid(frm, NULL, 0);
4807 frm = ieee80211_add_rates(frm, rs);
4808 #ifndef IEEE80211_NO_HT
4809 if (ic->ic_flags & IEEE80211_F_HTON)
4810 frm = ieee80211_add_htcaps(frm, ic);
4811 #endif
4812 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4813 frm = ieee80211_add_xrates(frm, rs);
4814
4815 /* Set length of probe request. */
4816 tx->len = htole16(frm - (uint8_t *)wh);
4817
4818
4819 /*
4820 * If active scanning is requested but a certain channel is
4821 * marked passive, we can do active scanning if we detect
4822 * transmissions.
4823 *
4824 * There is an issue with some firmware versions that triggers
4825 * a sysassert on a "good CRC threshold" of zero (== disabled),
4826 * on a radar channel even though this means that we should NOT
4827 * send probes.
4828 *
4829 * The "good CRC threshold" is the number of frames that we
4830 * need to receive during our dwell time on a channel before
4831 * sending out probes -- setting this to a huge value will
4832 * mean we never reach it, but at the same time work around
4833 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4834 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4835 *
4836 * This was fixed in later versions along with some other
4837 * scan changes, and the threshold behaves as a flag in those
4838 * versions.
4839 */
4840
4841 /*
4842 * If we're doing active scanning, set the crc_threshold
4843 * to a suitable value. This is different to active veruss
4844 * passive scanning depending upon the channel flags; the
4845 * firmware will obey that particular check for us.
4846 */
4847 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4848 hdr->crc_threshold = is_active ?
4849 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4850 else
4851 hdr->crc_threshold = is_active ?
4852 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4853
4854 chan = (struct iwn_scan_chan *)frm;
4855 for (c = &ic->ic_channels[1];
4856 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4857 if ((c->ic_flags & flags) != flags)
4858 continue;
4859
4860 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4861 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4862 chan->flags = 0;
4863 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4864 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4865 if (ic->ic_des_esslen != 0)
4866 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4867
4868 /*
4869 * Calculate the active/passive dwell times.
4870 */
4871
4872 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4873 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4874
4875 /* Make sure they're valid */
4876 if (dwell_passive <= dwell_active)
4877 dwell_passive = dwell_active + 1;
4878
4879 chan->active = htole16(dwell_active);
4880 chan->passive = htole16(dwell_passive);
4881
4882 chan->dsp_gain = 0x6e;
4883 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4884 chan->rf_gain = 0x3b;
4885 } else {
4886 chan->rf_gain = 0x28;
4887 }
4888 hdr->nchan++;
4889 chan++;
4890 }
4891
4892 buflen = (uint8_t *)chan - buf;
4893 hdr->len = htole16(buflen);
4894
4895 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4896 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4897 free(buf, M_DEVBUF);
4898 return error;
4899 }
4900
4901 static int
4902 iwn_auth(struct iwn_softc *sc)
4903 {
4904 struct iwn_ops *ops = &sc->ops;
4905 struct ieee80211com *ic = &sc->sc_ic;
4906 struct ieee80211_node *ni = ic->ic_bss;
4907 int error;
4908
4909 /* Update adapter configuration. */
4910 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4911 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4912 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4913 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4914 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4915 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4916 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4917 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4918 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4919 switch (ic->ic_curmode) {
4920 case IEEE80211_MODE_11A:
4921 sc->rxon.cck_mask = 0;
4922 sc->rxon.ofdm_mask = 0x15;
4923 break;
4924 case IEEE80211_MODE_11B:
4925 sc->rxon.cck_mask = 0x03;
4926 sc->rxon.ofdm_mask = 0;
4927 break;
4928 default: /* Assume 802.11b/g. */
4929 sc->rxon.cck_mask = 0x0f;
4930 sc->rxon.ofdm_mask = 0x15;
4931 }
4932 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4933 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4934 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4935 if (error != 0) {
4936 aprint_error_dev(sc->sc_dev,
4937 "RXON command failed\n");
4938 return error;
4939 }
4940
4941 /* Configuration has changed, set TX power accordingly. */
4942 if ((error = ops->set_txpower(sc, 1)) != 0) {
4943 aprint_error_dev(sc->sc_dev,
4944 "could not set TX power\n");
4945 return error;
4946 }
4947 /*
4948 * Reconfiguring RXON clears the firmware nodes table so we must
4949 * add the broadcast node again.
4950 */
4951 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4952 aprint_error_dev(sc->sc_dev,
4953 "could not add broadcast node\n");
4954 return error;
4955 }
4956 return 0;
4957 }
4958
4959 static int
4960 iwn_run(struct iwn_softc *sc)
4961 {
4962 struct iwn_ops *ops = &sc->ops;
4963 struct ieee80211com *ic = &sc->sc_ic;
4964 struct ieee80211_node *ni = ic->ic_bss;
4965 struct iwn_node_info node;
4966 int error;
4967
4968 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4969 /* Link LED blinks while monitoring. */
4970 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4971 return 0;
4972 }
4973 if ((error = iwn_set_timing(sc, ni)) != 0) {
4974 aprint_error_dev(sc->sc_dev,
4975 "could not set timing\n");
4976 return error;
4977 }
4978
4979 /* Update adapter configuration. */
4980 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4981 /* Short preamble and slot time are negotiated when associating. */
4982 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4983 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4984 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4985 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4986 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4987 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4988 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4989 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4990 if (error != 0) {
4991 aprint_error_dev(sc->sc_dev,
4992 "could not update configuration\n");
4993 return error;
4994 }
4995
4996 /* Configuration has changed, set TX power accordingly. */
4997 if ((error = ops->set_txpower(sc, 1)) != 0) {
4998 aprint_error_dev(sc->sc_dev,
4999 "could not set TX power\n");
5000 return error;
5001 }
5002
5003 /* Fake a join to initialize the TX rate. */
5004 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
5005 iwn_newassoc(ni, 1);
5006
5007 /* Add BSS node. */
5008 memset(&node, 0, sizeof node);
5009 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5010 node.id = IWN_ID_BSS;
5011 #ifdef notyet
5012 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5013 IWN_AMDPU_DENSITY(5)); /* 2us */
5014 #endif
5015 DPRINTF(("adding BSS node\n"));
5016 error = ops->add_node(sc, &node, 1);
5017 if (error != 0) {
5018 aprint_error_dev(sc->sc_dev,
5019 "could not add BSS node\n");
5020 return error;
5021 }
5022 DPRINTF(("setting link quality for node %d\n", node.id));
5023 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5024 aprint_error_dev(sc->sc_dev,
5025 "could not setup link quality for node %d\n", node.id);
5026 return error;
5027 }
5028
5029 if ((error = iwn_init_sensitivity(sc)) != 0) {
5030 aprint_error_dev(sc->sc_dev,
5031 "could not set sensitivity\n");
5032 return error;
5033 }
5034 /* Start periodic calibration timer. */
5035 sc->calib.state = IWN_CALIB_STATE_ASSOC;
5036 sc->calib_cnt = 0;
5037 callout_schedule(&sc->calib_to, hz/2);
5038
5039 /* Link LED always on while associated. */
5040 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5041 return 0;
5042 }
5043
5044 #ifdef IWN_HWCRYPTO
5045 /*
5046 * We support CCMP hardware encryption/decryption of unicast frames only.
5047 * HW support for TKIP really sucks. We should let TKIP die anyway.
5048 */
5049 static int
5050 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5051 struct ieee80211_key *k)
5052 {
5053 struct iwn_softc *sc = ic->ic_softc;
5054 struct iwn_ops *ops = &sc->ops;
5055 struct iwn_node *wn = (void *)ni;
5056 struct iwn_node_info node;
5057 uint16_t kflags;
5058
5059 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5060 k->k_cipher != IEEE80211_CIPHER_CCMP)
5061 return ieee80211_set_key(ic, ni, k);
5062
5063 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5064 if (k->k_flags & IEEE80211_KEY_GROUP)
5065 kflags |= IWN_KFLAG_GROUP;
5066
5067 memset(&node, 0, sizeof node);
5068 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5069 sc->broadcast_id : wn->id;
5070 node.control = IWN_NODE_UPDATE;
5071 node.flags = IWN_FLAG_SET_KEY;
5072 node.kflags = htole16(kflags);
5073 node.kid = k->k_id;
5074 memcpy(node.key, k->k_key, k->k_len);
5075 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5076 return ops->add_node(sc, &node, 1);
5077 }
5078
5079 static void
5080 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5081 struct ieee80211_key *k)
5082 {
5083 struct iwn_softc *sc = ic->ic_softc;
5084 struct iwn_ops *ops = &sc->ops;
5085 struct iwn_node *wn = (void *)ni;
5086 struct iwn_node_info node;
5087
5088 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5089 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5090 /* See comment about other ciphers above. */
5091 ieee80211_delete_key(ic, ni, k);
5092 return;
5093 }
5094 if (ic->ic_state != IEEE80211_S_RUN)
5095 return; /* Nothing to do. */
5096 memset(&node, 0, sizeof node);
5097 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5098 sc->broadcast_id : wn->id;
5099 node.control = IWN_NODE_UPDATE;
5100 node.flags = IWN_FLAG_SET_KEY;
5101 node.kflags = htole16(IWN_KFLAG_INVALID);
5102 node.kid = 0xff;
5103 DPRINTF(("delete keys for node %d\n", node.id));
5104 (void)ops->add_node(sc, &node, 1);
5105 }
5106 #endif
5107
5108 /* XXX Added for NetBSD (copied from rev 1.39). */
5109
5110 static int
5111 iwn_wme_update(struct ieee80211com *ic)
5112 {
5113 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5114 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5115 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5116 const struct wmeParams *wmep;
5117 struct iwn_edca_params cmd;
5118 int ac;
5119
5120 /* don't override default WME values if WME is not actually enabled */
5121 if (!(ic->ic_flags & IEEE80211_F_WME))
5122 return 0;
5123 cmd.flags = 0;
5124 for (ac = 0; ac < WME_NUM_AC; ac++) {
5125 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5126 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5127 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5128 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5129 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5130
5131 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5132 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5133 cmd.ac[ac].cwmin,
5134 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5135 }
5136 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5137 #undef IWN_USEC
5138 #undef IWN_EXP2
5139 }
5140
5141 #ifndef IEEE80211_NO_HT
5142 /*
5143 * This function is called by upper layer when an ADDBA request is received
5144 * from another STA and before the ADDBA response is sent.
5145 */
5146 static int
5147 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5148 uint8_t tid)
5149 {
5150 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5151 struct iwn_softc *sc = ic->ic_softc;
5152 struct iwn_ops *ops = &sc->ops;
5153 struct iwn_node *wn = (void *)ni;
5154 struct iwn_node_info node;
5155
5156 memset(&node, 0, sizeof node);
5157 node.id = wn->id;
5158 node.control = IWN_NODE_UPDATE;
5159 node.flags = IWN_FLAG_SET_ADDBA;
5160 node.addba_tid = tid;
5161 node.addba_ssn = htole16(ba->ba_winstart);
5162 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5163 ba->ba_winstart));
5164 return ops->add_node(sc, &node, 1);
5165 }
5166
5167 /*
5168 * This function is called by upper layer on teardown of an HT-immediate
5169 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5170 */
5171 static void
5172 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5173 uint8_t tid)
5174 {
5175 struct iwn_softc *sc = ic->ic_softc;
5176 struct iwn_ops *ops = &sc->ops;
5177 struct iwn_node *wn = (void *)ni;
5178 struct iwn_node_info node;
5179
5180 memset(&node, 0, sizeof node);
5181 node.id = wn->id;
5182 node.control = IWN_NODE_UPDATE;
5183 node.flags = IWN_FLAG_SET_DELBA;
5184 node.delba_tid = tid;
5185 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5186 (void)ops->add_node(sc, &node, 1);
5187 }
5188
5189 /*
5190 * This function is called by upper layer when an ADDBA response is received
5191 * from another STA.
5192 */
5193 static int
5194 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5195 uint8_t tid)
5196 {
5197 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5198 struct iwn_softc *sc = ic->ic_softc;
5199 struct iwn_ops *ops = &sc->ops;
5200 struct iwn_node *wn = (void *)ni;
5201 struct iwn_node_info node;
5202 int error;
5203
5204 /* Enable TX for the specified RA/TID. */
5205 wn->disable_tid &= ~(1 << tid);
5206 memset(&node, 0, sizeof node);
5207 node.id = wn->id;
5208 node.control = IWN_NODE_UPDATE;
5209 node.flags = IWN_FLAG_SET_DISABLE_TID;
5210 node.disable_tid = htole16(wn->disable_tid);
5211 error = ops->add_node(sc, &node, 1);
5212 if (error != 0)
5213 return error;
5214
5215 if ((error = iwn_nic_lock(sc)) != 0)
5216 return error;
5217 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5218 iwn_nic_unlock(sc);
5219 return 0;
5220 }
5221
5222 static void
5223 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5224 uint8_t tid)
5225 {
5226 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5227 struct iwn_softc *sc = ic->ic_softc;
5228 struct iwn_ops *ops = &sc->ops;
5229
5230 if (iwn_nic_lock(sc) != 0)
5231 return;
5232 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5233 iwn_nic_unlock(sc);
5234 }
5235
5236 static void
5237 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5238 uint8_t tid, uint16_t ssn)
5239 {
5240 struct iwn_node *wn = (void *)ni;
5241 int qid = 7 + tid;
5242
5243 /* Stop TX scheduler while we're changing its configuration. */
5244 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5245 IWN4965_TXQ_STATUS_CHGACT);
5246
5247 /* Assign RA/TID translation to the queue. */
5248 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5249 wn->id << 4 | tid);
5250
5251 /* Enable chain-building mode for the queue. */
5252 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5253
5254 /* Set starting sequence number from the ADDBA request. */
5255 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5256 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5257
5258 /* Set scheduler window size. */
5259 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5260 IWN_SCHED_WINSZ);
5261 /* Set scheduler frame limit. */
5262 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5263 IWN_SCHED_LIMIT << 16);
5264
5265 /* Enable interrupts for the queue. */
5266 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5267
5268 /* Mark the queue as active. */
5269 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5270 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5271 iwn_tid2fifo[tid] << 1);
5272 }
5273
5274 static void
5275 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5276 {
5277 int qid = 7 + tid;
5278
5279 /* Stop TX scheduler while we're changing its configuration. */
5280 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5281 IWN4965_TXQ_STATUS_CHGACT);
5282
5283 /* Set starting sequence number from the ADDBA request. */
5284 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5285 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5286
5287 /* Disable interrupts for the queue. */
5288 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5289
5290 /* Mark the queue as inactive. */
5291 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5292 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5293 }
5294
5295 static void
5296 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5297 uint8_t tid, uint16_t ssn)
5298 {
5299 struct iwn_node *wn = (void *)ni;
5300 int qid = 10 + tid;
5301
5302 /* Stop TX scheduler while we're changing its configuration. */
5303 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5304 IWN5000_TXQ_STATUS_CHGACT);
5305
5306 /* Assign RA/TID translation to the queue. */
5307 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5308 wn->id << 4 | tid);
5309
5310 /* Enable chain-building mode for the queue. */
5311 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5312
5313 /* Enable aggregation for the queue. */
5314 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5315
5316 /* Set starting sequence number from the ADDBA request. */
5317 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5318 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5319
5320 /* Set scheduler window size and frame limit. */
5321 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5322 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5323
5324 /* Enable interrupts for the queue. */
5325 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5326
5327 /* Mark the queue as active. */
5328 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5329 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5330 }
5331
5332 static void
5333 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5334 {
5335 int qid = 10 + tid;
5336
5337 /* Stop TX scheduler while we're changing its configuration. */
5338 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5339 IWN5000_TXQ_STATUS_CHGACT);
5340
5341 /* Disable aggregation for the queue. */
5342 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5343
5344 /* Set starting sequence number from the ADDBA request. */
5345 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5347
5348 /* Disable interrupts for the queue. */
5349 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5350
5351 /* Mark the queue as inactive. */
5352 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5353 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5354 }
5355 #endif /* !IEEE80211_NO_HT */
5356
5357 /*
5358 * Query calibration tables from the initialization firmware. We do this
5359 * only once at first boot. Called from a process context.
5360 */
5361 static int
5362 iwn5000_query_calibration(struct iwn_softc *sc)
5363 {
5364 struct iwn5000_calib_config cmd;
5365 int error;
5366
5367 memset(&cmd, 0, sizeof cmd);
5368 cmd.ucode.once.enable = 0xffffffff;
5369 cmd.ucode.once.start = 0xffffffff;
5370 cmd.ucode.once.send = 0xffffffff;
5371 cmd.ucode.flags = 0xffffffff;
5372 DPRINTF(("sending calibration query\n"));
5373 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5374 if (error != 0)
5375 return error;
5376
5377 /* Wait at most two seconds for calibration to complete. */
5378 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5379 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5380 return error;
5381 }
5382
5383 /*
5384 * Send calibration results to the runtime firmware. These results were
5385 * obtained on first boot from the initialization firmware.
5386 */
5387 static int
5388 iwn5000_send_calibration(struct iwn_softc *sc)
5389 {
5390 int idx, error;
5391
5392 for (idx = 0; idx < 5; idx++) {
5393 if (sc->calibcmd[idx].buf == NULL)
5394 continue; /* No results available. */
5395 DPRINTF(("send calibration result idx=%d len=%d\n",
5396 idx, sc->calibcmd[idx].len));
5397 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5398 sc->calibcmd[idx].len, 0);
5399 if (error != 0) {
5400 aprint_error_dev(sc->sc_dev,
5401 "could not send calibration result\n");
5402 return error;
5403 }
5404 }
5405 return 0;
5406 }
5407
5408 static int
5409 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5410 {
5411 struct iwn5000_wimax_coex wimax;
5412
5413 #ifdef notyet
5414 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5415 /* Enable WiMAX coexistence for combo adapters. */
5416 wimax.flags =
5417 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5418 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5419 IWN_WIMAX_COEX_STA_TABLE_VALID |
5420 IWN_WIMAX_COEX_ENABLE;
5421 memcpy(wimax.events, iwn6050_wimax_events,
5422 sizeof iwn6050_wimax_events);
5423 } else
5424 #endif
5425 {
5426 /* Disable WiMAX coexistence. */
5427 wimax.flags = 0;
5428 memset(wimax.events, 0, sizeof wimax.events);
5429 }
5430 DPRINTF(("Configuring WiMAX coexistence\n"));
5431 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5432 }
5433
5434 static int
5435 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5436 {
5437 struct iwn6000_phy_calib_temp_offset cmd;
5438
5439 memset(&cmd, 0, sizeof cmd);
5440 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5441 cmd.ngroups = 1;
5442 cmd.isvalid = 1;
5443 if (sc->eeprom_temp != 0)
5444 cmd.offset = htole16(sc->eeprom_temp);
5445 else
5446 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5447 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5448 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5449 }
5450
5451 static int
5452 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5453 {
5454 struct iwn2000_phy_calib_temp_offset cmd;
5455
5456 memset(&cmd, 0, sizeof cmd);
5457 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5458 cmd.ngroups = 1;
5459 cmd.isvalid = 1;
5460 if (sc->eeprom_rawtemp != 0) {
5461 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5462 cmd.offset_high = htole16(sc->eeprom_temp);
5463 } else {
5464 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5465 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5466 }
5467 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5468 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5469 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5470 le16toh(cmd.burnt_voltage_ref)));
5471 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5472 }
5473
5474 /*
5475 * This function is called after the runtime firmware notifies us of its
5476 * readiness (called in a process context).
5477 */
5478 static int
5479 iwn4965_post_alive(struct iwn_softc *sc)
5480 {
5481 int error, qid;
5482
5483 if ((error = iwn_nic_lock(sc)) != 0)
5484 return error;
5485
5486 /* Clear TX scheduler state in SRAM. */
5487 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5488 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5489 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5490
5491 /* Set physical address of TX scheduler rings (1KB aligned). */
5492 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5493
5494 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5495
5496 /* Disable chain mode for all our 16 queues. */
5497 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5498
5499 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5500 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5501 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5502
5503 /* Set scheduler window size. */
5504 iwn_mem_write(sc, sc->sched_base +
5505 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5506 /* Set scheduler frame limit. */
5507 iwn_mem_write(sc, sc->sched_base +
5508 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5509 IWN_SCHED_LIMIT << 16);
5510 }
5511
5512 /* Enable interrupts for all our 16 queues. */
5513 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5514 /* Identify TX FIFO rings (0-7). */
5515 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5516
5517 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5518 for (qid = 0; qid < 7; qid++) {
5519 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5520 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5521 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5522 }
5523 iwn_nic_unlock(sc);
5524 return 0;
5525 }
5526
5527 /*
5528 * This function is called after the initialization or runtime firmware
5529 * notifies us of its readiness (called in a process context).
5530 */
5531 static int
5532 iwn5000_post_alive(struct iwn_softc *sc)
5533 {
5534 int error, qid;
5535
5536 /* Switch to using ICT interrupt mode. */
5537 iwn5000_ict_reset(sc);
5538
5539 if ((error = iwn_nic_lock(sc)) != 0)
5540 return error;
5541
5542 /* Clear TX scheduler state in SRAM. */
5543 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5544 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5545 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5546
5547 /* Set physical address of TX scheduler rings (1KB aligned). */
5548 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5549
5550 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5551
5552 /* Enable chain mode for all queues, except command queue. */
5553 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5554 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5555
5556 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5557 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5558 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5559
5560 iwn_mem_write(sc, sc->sched_base +
5561 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5562 /* Set scheduler window size and frame limit. */
5563 iwn_mem_write(sc, sc->sched_base +
5564 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5565 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5566 }
5567
5568 /* Enable interrupts for all our 20 queues. */
5569 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5570 /* Identify TX FIFO rings (0-7). */
5571 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5572
5573 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5574 for (qid = 0; qid < 7; qid++) {
5575 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5576 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5577 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5578 }
5579 iwn_nic_unlock(sc);
5580
5581 /* Configure WiMAX coexistence for combo adapters. */
5582 error = iwn5000_send_wimax_coex(sc);
5583 if (error != 0) {
5584 aprint_error_dev(sc->sc_dev,
5585 "could not configure WiMAX coexistence\n");
5586 return error;
5587 }
5588 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5589 struct iwn5000_phy_calib_crystal cmd;
5590
5591 /* Perform crystal calibration. */
5592 memset(&cmd, 0, sizeof cmd);
5593 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5594 cmd.ngroups = 1;
5595 cmd.isvalid = 1;
5596 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5597 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5598 DPRINTF(("sending crystal calibration %d, %d\n",
5599 cmd.cap_pin[0], cmd.cap_pin[1]));
5600 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5601 if (error != 0) {
5602 aprint_error_dev(sc->sc_dev,
5603 "crystal calibration failed\n");
5604 return error;
5605 }
5606 }
5607 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5608 /* Query calibration from the initialization firmware. */
5609 if ((error = iwn5000_query_calibration(sc)) != 0) {
5610 aprint_error_dev(sc->sc_dev,
5611 "could not query calibration\n");
5612 return error;
5613 }
5614 /*
5615 * We have the calibration results now, reboot with the
5616 * runtime firmware (call ourselves recursively!)
5617 */
5618 iwn_hw_stop(sc);
5619 error = iwn_hw_init(sc);
5620 } else {
5621 /* Send calibration results to runtime firmware. */
5622 error = iwn5000_send_calibration(sc);
5623 }
5624 return error;
5625 }
5626
5627 /*
5628 * The firmware boot code is small and is intended to be copied directly into
5629 * the NIC internal memory (no DMA transfer).
5630 */
5631 static int
5632 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5633 {
5634 int error, ntries;
5635
5636 size /= sizeof (uint32_t);
5637
5638 if ((error = iwn_nic_lock(sc)) != 0)
5639 return error;
5640
5641 /* Copy microcode image into NIC memory. */
5642 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5643 (const uint32_t *)ucode, size);
5644
5645 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5646 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5647 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5648
5649 /* Start boot load now. */
5650 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5651
5652 /* Wait for transfer to complete. */
5653 for (ntries = 0; ntries < 1000; ntries++) {
5654 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5655 IWN_BSM_WR_CTRL_START))
5656 break;
5657 DELAY(10);
5658 }
5659 if (ntries == 1000) {
5660 aprint_error_dev(sc->sc_dev,
5661 "could not load boot firmware\n");
5662 iwn_nic_unlock(sc);
5663 return ETIMEDOUT;
5664 }
5665
5666 /* Enable boot after power up. */
5667 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5668
5669 iwn_nic_unlock(sc);
5670 return 0;
5671 }
5672
5673 static int
5674 iwn4965_load_firmware(struct iwn_softc *sc)
5675 {
5676 struct iwn_fw_info *fw = &sc->fw;
5677 struct iwn_dma_info *dma = &sc->fw_dma;
5678 int error;
5679
5680 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5681 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5682 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5683 BUS_DMASYNC_PREWRITE);
5684 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5685 fw->init.text, fw->init.textsz);
5686 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5687 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5688
5689 /* Tell adapter where to find initialization sections. */
5690 if ((error = iwn_nic_lock(sc)) != 0)
5691 return error;
5692 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5693 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5694 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5695 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5696 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5697 iwn_nic_unlock(sc);
5698
5699 /* Load firmware boot code. */
5700 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5701 if (error != 0) {
5702 aprint_error_dev(sc->sc_dev,
5703 "could not load boot firmware\n");
5704 return error;
5705 }
5706 /* Now press "execute". */
5707 IWN_WRITE(sc, IWN_RESET, 0);
5708
5709 /* Wait at most one second for first alive notification. */
5710 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5711 aprint_error_dev(sc->sc_dev,
5712 "timeout waiting for adapter to initialize\n");
5713 return error;
5714 }
5715
5716 /* Retrieve current temperature for initial TX power calibration. */
5717 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5718 sc->temp = iwn4965_get_temperature(sc);
5719
5720 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5721 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5722 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5723 BUS_DMASYNC_PREWRITE);
5724 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5725 fw->main.text, fw->main.textsz);
5726 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5727 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5728
5729 /* Tell adapter where to find runtime sections. */
5730 if ((error = iwn_nic_lock(sc)) != 0)
5731 return error;
5732 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5733 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5734 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5735 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5736 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5737 IWN_FW_UPDATED | fw->main.textsz);
5738 iwn_nic_unlock(sc);
5739
5740 return 0;
5741 }
5742
5743 static int
5744 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5745 const uint8_t *section, int size)
5746 {
5747 struct iwn_dma_info *dma = &sc->fw_dma;
5748 int error;
5749
5750 /* Copy firmware section into pre-allocated DMA-safe memory. */
5751 memcpy(dma->vaddr, section, size);
5752 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5753
5754 if ((error = iwn_nic_lock(sc)) != 0)
5755 return error;
5756
5757 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5758 IWN_FH_TX_CONFIG_DMA_PAUSE);
5759
5760 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5761 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5762 IWN_LOADDR(dma->paddr));
5763 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5764 IWN_HIADDR(dma->paddr) << 28 | size);
5765 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5766 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5767 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5768 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5769
5770 /* Kick Flow Handler to start DMA transfer. */
5771 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5772 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5773
5774 iwn_nic_unlock(sc);
5775
5776 /* Wait at most five seconds for FH DMA transfer to complete. */
5777 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5778 }
5779
5780 static int
5781 iwn5000_load_firmware(struct iwn_softc *sc)
5782 {
5783 struct iwn_fw_part *fw;
5784 int error;
5785
5786 /* Load the initialization firmware on first boot only. */
5787 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5788 &sc->fw.main : &sc->fw.init;
5789
5790 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5791 fw->text, fw->textsz);
5792 if (error != 0) {
5793 aprint_error_dev(sc->sc_dev,
5794 "could not load firmware %s section\n", ".text");
5795 return error;
5796 }
5797 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5798 fw->data, fw->datasz);
5799 if (error != 0) {
5800 aprint_error_dev(sc->sc_dev,
5801 "could not load firmware %s section\n", ".data");
5802 return error;
5803 }
5804
5805 /* Now press "execute". */
5806 IWN_WRITE(sc, IWN_RESET, 0);
5807 return 0;
5808 }
5809
5810 /*
5811 * Extract text and data sections from a legacy firmware image.
5812 */
5813 static int
5814 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5815 {
5816 const uint32_t *ptr;
5817 size_t hdrlen = 24;
5818 uint32_t rev;
5819
5820 ptr = (const uint32_t *)fw->data;
5821 rev = le32toh(*ptr++);
5822
5823 sc->ucode_rev = rev;
5824
5825 /* Check firmware API version. */
5826 if (IWN_FW_API(rev) <= 1) {
5827 aprint_error_dev(sc->sc_dev,
5828 "bad firmware, need API version >=2\n");
5829 return EINVAL;
5830 }
5831 if (IWN_FW_API(rev) >= 3) {
5832 /* Skip build number (version 2 header). */
5833 hdrlen += 4;
5834 ptr++;
5835 }
5836 if (fw->size < hdrlen) {
5837 aprint_error_dev(sc->sc_dev,
5838 "firmware too short: %zd bytes\n", fw->size);
5839 return EINVAL;
5840 }
5841 fw->main.textsz = le32toh(*ptr++);
5842 fw->main.datasz = le32toh(*ptr++);
5843 fw->init.textsz = le32toh(*ptr++);
5844 fw->init.datasz = le32toh(*ptr++);
5845 fw->boot.textsz = le32toh(*ptr++);
5846
5847 /* Check that all firmware sections fit. */
5848 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5849 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5850 aprint_error_dev(sc->sc_dev,
5851 "firmware too short: %zd bytes\n", fw->size);
5852 return EINVAL;
5853 }
5854
5855 /* Get pointers to firmware sections. */
5856 fw->main.text = (const uint8_t *)ptr;
5857 fw->main.data = fw->main.text + fw->main.textsz;
5858 fw->init.text = fw->main.data + fw->main.datasz;
5859 fw->init.data = fw->init.text + fw->init.textsz;
5860 fw->boot.text = fw->init.data + fw->init.datasz;
5861 return 0;
5862 }
5863
5864 /*
5865 * Extract text and data sections from a TLV firmware image.
5866 */
5867 static int
5868 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5869 uint16_t alt)
5870 {
5871 const struct iwn_fw_tlv_hdr *hdr;
5872 const struct iwn_fw_tlv *tlv;
5873 const uint8_t *ptr, *end;
5874 uint64_t altmask;
5875 uint32_t len;
5876
5877 if (fw->size < sizeof (*hdr)) {
5878 aprint_error_dev(sc->sc_dev,
5879 "firmware too short: %zd bytes\n", fw->size);
5880 return EINVAL;
5881 }
5882 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5883 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5884 aprint_error_dev(sc->sc_dev,
5885 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5886 return EINVAL;
5887 }
5888 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5889 le32toh(hdr->build)));
5890 sc->ucode_rev = le32toh(hdr->rev);
5891
5892 /*
5893 * Select the closest supported alternative that is less than
5894 * or equal to the specified one.
5895 */
5896 altmask = le64toh(hdr->altmask);
5897 while (alt > 0 && !(altmask & (1ULL << alt)))
5898 alt--; /* Downgrade. */
5899 DPRINTF(("using alternative %d\n", alt));
5900
5901 ptr = (const uint8_t *)(hdr + 1);
5902 end = (const uint8_t *)(fw->data + fw->size);
5903
5904 /* Parse type-length-value fields. */
5905 while (ptr + sizeof (*tlv) <= end) {
5906 tlv = (const struct iwn_fw_tlv *)ptr;
5907 len = le32toh(tlv->len);
5908
5909 ptr += sizeof (*tlv);
5910 if (ptr + len > end) {
5911 aprint_error_dev(sc->sc_dev,
5912 "firmware too short: %zd bytes\n", fw->size);
5913 return EINVAL;
5914 }
5915 /* Skip other alternatives. */
5916 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5917 goto next;
5918
5919 switch (le16toh(tlv->type)) {
5920 case IWN_FW_TLV_MAIN_TEXT:
5921 fw->main.text = ptr;
5922 fw->main.textsz = len;
5923 break;
5924 case IWN_FW_TLV_MAIN_DATA:
5925 fw->main.data = ptr;
5926 fw->main.datasz = len;
5927 break;
5928 case IWN_FW_TLV_INIT_TEXT:
5929 fw->init.text = ptr;
5930 fw->init.textsz = len;
5931 break;
5932 case IWN_FW_TLV_INIT_DATA:
5933 fw->init.data = ptr;
5934 fw->init.datasz = len;
5935 break;
5936 case IWN_FW_TLV_BOOT_TEXT:
5937 fw->boot.text = ptr;
5938 fw->boot.textsz = len;
5939 break;
5940 case IWN_FW_TLV_ENH_SENS:
5941 if (len != 0) {
5942 aprint_error_dev(sc->sc_dev,
5943 "TLV type %d has invalid size %u\n",
5944 le16toh(tlv->type), len);
5945 goto next;
5946 }
5947 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5948 break;
5949 case IWN_FW_TLV_PHY_CALIB:
5950 if (len != sizeof(uint32_t)) {
5951 aprint_error_dev(sc->sc_dev,
5952 "TLV type %d has invalid size %u\n",
5953 le16toh(tlv->type), len);
5954 goto next;
5955 }
5956 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5957 sc->reset_noise_gain = le32toh(*ptr);
5958 sc->noise_gain = le32toh(*ptr) + 1;
5959 }
5960 break;
5961 case IWN_FW_TLV_FLAGS:
5962 if (len < sizeof(uint32_t))
5963 break;
5964 if (len % sizeof(uint32_t))
5965 break;
5966 sc->tlv_feature_flags = le32toh(*ptr);
5967 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5968 break;
5969 default:
5970 DPRINTF(("TLV type %d not handled\n",
5971 le16toh(tlv->type)));
5972 break;
5973 }
5974 next: /* TLV fields are 32-bit aligned. */
5975 ptr += (len + 3) & ~3;
5976 }
5977 return 0;
5978 }
5979
5980 static int
5981 iwn_read_firmware(struct iwn_softc *sc)
5982 {
5983 struct iwn_fw_info *fw = &sc->fw;
5984 firmware_handle_t fwh;
5985 int error;
5986
5987 /*
5988 * Some PHY calibration commands are firmware-dependent; these
5989 * are the default values that will be overridden if
5990 * necessary.
5991 */
5992 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5993 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5994
5995 /* Initialize for error returns */
5996 fw->data = NULL;
5997 fw->size = 0;
5998
5999 /* Open firmware image. */
6000 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
6001 aprint_error_dev(sc->sc_dev,
6002 "could not get firmware handle %s\n", sc->fwname);
6003 return error;
6004 }
6005 fw->size = firmware_get_size(fwh);
6006 if (fw->size < sizeof (uint32_t)) {
6007 aprint_error_dev(sc->sc_dev,
6008 "firmware too short: %zd bytes\n", fw->size);
6009 firmware_close(fwh);
6010 return EINVAL;
6011 }
6012
6013 /* Read the firmware. */
6014 fw->data = firmware_malloc(fw->size);
6015 if (fw->data == NULL) {
6016 aprint_error_dev(sc->sc_dev,
6017 "not enough memory to stock firmware %s\n", sc->fwname);
6018 firmware_close(fwh);
6019 return ENOMEM;
6020 }
6021 error = firmware_read(fwh, 0, fw->data, fw->size);
6022 firmware_close(fwh);
6023 if (error != 0) {
6024 aprint_error_dev(sc->sc_dev,
6025 "could not read firmware %s\n", sc->fwname);
6026 goto out;
6027 }
6028
6029 /* Retrieve text and data sections. */
6030 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
6031 error = iwn_read_firmware_leg(sc, fw);
6032 else
6033 error = iwn_read_firmware_tlv(sc, fw, 1);
6034 if (error != 0) {
6035 aprint_error_dev(sc->sc_dev,
6036 "could not read firmware sections\n");
6037 goto out;
6038 }
6039
6040 /* Make sure text and data sections fit in hardware memory. */
6041 if (fw->main.textsz > sc->fw_text_maxsz ||
6042 fw->main.datasz > sc->fw_data_maxsz ||
6043 fw->init.textsz > sc->fw_text_maxsz ||
6044 fw->init.datasz > sc->fw_data_maxsz ||
6045 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6046 (fw->boot.textsz & 3) != 0) {
6047 aprint_error_dev(sc->sc_dev,
6048 "firmware sections too large\n");
6049 goto out;
6050 }
6051
6052 /* We can proceed with loading the firmware. */
6053 return 0;
6054 out:
6055 firmware_free(fw->data, fw->size);
6056 fw->data = NULL;
6057 fw->size = 0;
6058 return error ? error : EINVAL;
6059 }
6060
6061 static int
6062 iwn_clock_wait(struct iwn_softc *sc)
6063 {
6064 int ntries;
6065
6066 /* Set "initialization complete" bit. */
6067 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6068
6069 /* Wait for clock stabilization. */
6070 for (ntries = 0; ntries < 2500; ntries++) {
6071 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6072 return 0;
6073 DELAY(10);
6074 }
6075 aprint_error_dev(sc->sc_dev,
6076 "timeout waiting for clock stabilization\n");
6077 return ETIMEDOUT;
6078 }
6079
6080 static int
6081 iwn_apm_init(struct iwn_softc *sc)
6082 {
6083 pcireg_t reg;
6084 int error;
6085
6086 /* Disable L0s exit timer (NMI bug workaround). */
6087 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6088 /* Don't wait for ICH L0s (ICH bug workaround). */
6089 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6090
6091 /* Set FH wait threshold to max (HW bug under stress workaround). */
6092 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6093
6094 /* Enable HAP INTA to move adapter from L1a to L0s. */
6095 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6096
6097 /* Retrieve PCIe Active State Power Management (ASPM). */
6098 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6099 sc->sc_cap_off + PCIE_LCSR);
6100 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6101 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6102 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6103 else
6104 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6105
6106 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6107 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6108 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6109
6110 /* Wait for clock stabilization before accessing prph. */
6111 if ((error = iwn_clock_wait(sc)) != 0)
6112 return error;
6113
6114 if ((error = iwn_nic_lock(sc)) != 0)
6115 return error;
6116 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6117 /* Enable DMA and BSM (Bootstrap State Machine). */
6118 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6119 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6120 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6121 } else {
6122 /* Enable DMA. */
6123 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6124 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6125 }
6126 DELAY(20);
6127 /* Disable L1-Active. */
6128 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6129 iwn_nic_unlock(sc);
6130
6131 return 0;
6132 }
6133
6134 static void
6135 iwn_apm_stop_master(struct iwn_softc *sc)
6136 {
6137 int ntries;
6138
6139 /* Stop busmaster DMA activity. */
6140 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6141 for (ntries = 0; ntries < 100; ntries++) {
6142 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6143 return;
6144 DELAY(10);
6145 }
6146 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6147 }
6148
6149 static void
6150 iwn_apm_stop(struct iwn_softc *sc)
6151 {
6152 iwn_apm_stop_master(sc);
6153
6154 /* Reset the entire device. */
6155 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6156 DELAY(10);
6157 /* Clear "initialization complete" bit. */
6158 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6159 }
6160
6161 static int
6162 iwn4965_nic_config(struct iwn_softc *sc)
6163 {
6164 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6165 /*
6166 * I don't believe this to be correct but this is what the
6167 * vendor driver is doing. Probably the bits should not be
6168 * shifted in IWN_RFCFG_*.
6169 */
6170 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6171 IWN_RFCFG_TYPE(sc->rfcfg) |
6172 IWN_RFCFG_STEP(sc->rfcfg) |
6173 IWN_RFCFG_DASH(sc->rfcfg));
6174 }
6175 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6176 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6177 return 0;
6178 }
6179
6180 static int
6181 iwn5000_nic_config(struct iwn_softc *sc)
6182 {
6183 uint32_t tmp;
6184 int error;
6185
6186 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6187 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6188 IWN_RFCFG_TYPE(sc->rfcfg) |
6189 IWN_RFCFG_STEP(sc->rfcfg) |
6190 IWN_RFCFG_DASH(sc->rfcfg));
6191 }
6192 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6193 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6194
6195 if ((error = iwn_nic_lock(sc)) != 0)
6196 return error;
6197 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6198
6199 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6200 /*
6201 * Select first Switching Voltage Regulator (1.32V) to
6202 * solve a stability issue related to noisy DC2DC line
6203 * in the silicon of 1000 Series.
6204 */
6205 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6206 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6207 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6208 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6209 }
6210 iwn_nic_unlock(sc);
6211
6212 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6213 /* Use internal power amplifier only. */
6214 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6215 }
6216 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6217 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6218 /* Indicate that ROM calibration version is >=6. */
6219 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6220 }
6221 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6222 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6223 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6224 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6225 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6226 sc->hw_type == IWN_HW_REV_TYPE_105)
6227 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6228 return 0;
6229 }
6230
6231 /*
6232 * Take NIC ownership over Intel Active Management Technology (AMT).
6233 */
6234 static int
6235 iwn_hw_prepare(struct iwn_softc *sc)
6236 {
6237 int ntries;
6238
6239 /* Check if hardware is ready. */
6240 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6241 for (ntries = 0; ntries < 5; ntries++) {
6242 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6243 IWN_HW_IF_CONFIG_NIC_READY)
6244 return 0;
6245 DELAY(10);
6246 }
6247
6248 /* Hardware not ready, force into ready state. */
6249 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6250 for (ntries = 0; ntries < 15000; ntries++) {
6251 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6252 IWN_HW_IF_CONFIG_PREPARE_DONE))
6253 break;
6254 DELAY(10);
6255 }
6256 if (ntries == 15000)
6257 return ETIMEDOUT;
6258
6259 /* Hardware should be ready now. */
6260 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6261 for (ntries = 0; ntries < 5; ntries++) {
6262 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6263 IWN_HW_IF_CONFIG_NIC_READY)
6264 return 0;
6265 DELAY(10);
6266 }
6267 return ETIMEDOUT;
6268 }
6269
6270 static int
6271 iwn_hw_init(struct iwn_softc *sc)
6272 {
6273 struct iwn_ops *ops = &sc->ops;
6274 int error, chnl, qid;
6275
6276 /* Clear pending interrupts. */
6277 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6278
6279 if ((error = iwn_apm_init(sc)) != 0) {
6280 aprint_error_dev(sc->sc_dev,
6281 "could not power ON adapter\n");
6282 return error;
6283 }
6284
6285 /* Select VMAIN power source. */
6286 if ((error = iwn_nic_lock(sc)) != 0)
6287 return error;
6288 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6289 iwn_nic_unlock(sc);
6290
6291 /* Perform adapter-specific initialization. */
6292 if ((error = ops->nic_config(sc)) != 0)
6293 return error;
6294
6295 /* Initialize RX ring. */
6296 if ((error = iwn_nic_lock(sc)) != 0)
6297 return error;
6298 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6299 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6300 /* Set physical address of RX ring (256-byte aligned). */
6301 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6302 /* Set physical address of RX status (16-byte aligned). */
6303 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6304 /* Enable RX. */
6305 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6306 IWN_FH_RX_CONFIG_ENA |
6307 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6308 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6309 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6310 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6311 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6312 iwn_nic_unlock(sc);
6313 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6314
6315 if ((error = iwn_nic_lock(sc)) != 0)
6316 return error;
6317
6318 /* Initialize TX scheduler. */
6319 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6320
6321 /* Set physical address of "keep warm" page (16-byte aligned). */
6322 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6323
6324 /* Initialize TX rings. */
6325 for (qid = 0; qid < sc->ntxqs; qid++) {
6326 struct iwn_tx_ring *txq = &sc->txq[qid];
6327
6328 /* Set physical address of TX ring (256-byte aligned). */
6329 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6330 txq->desc_dma.paddr >> 8);
6331 }
6332 iwn_nic_unlock(sc);
6333
6334 /* Enable DMA channels. */
6335 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6336 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6337 IWN_FH_TX_CONFIG_DMA_ENA |
6338 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6339 }
6340
6341 /* Clear "radio off" and "commands blocked" bits. */
6342 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6343 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6344
6345 /* Clear pending interrupts. */
6346 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6347 /* Enable interrupt coalescing. */
6348 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6349 /* Enable interrupts. */
6350 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6351
6352 /* _Really_ make sure "radio off" bit is cleared! */
6353 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6354 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6355
6356 /* Enable shadow registers. */
6357 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6358 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6359
6360 if ((error = ops->load_firmware(sc)) != 0) {
6361 aprint_error_dev(sc->sc_dev,
6362 "could not load firmware\n");
6363 return error;
6364 }
6365 /* Wait at most one second for firmware alive notification. */
6366 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6367 aprint_error_dev(sc->sc_dev,
6368 "timeout waiting for adapter to initialize\n");
6369 return error;
6370 }
6371 /* Do post-firmware initialization. */
6372 return ops->post_alive(sc);
6373 }
6374
6375 static void
6376 iwn_hw_stop(struct iwn_softc *sc)
6377 {
6378 int chnl, qid, ntries;
6379
6380 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6381
6382 /* Disable interrupts. */
6383 IWN_WRITE(sc, IWN_INT_MASK, 0);
6384 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6385 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6386 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6387
6388 /* Make sure we no longer hold the NIC lock. */
6389 iwn_nic_unlock(sc);
6390
6391 /* Stop TX scheduler. */
6392 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6393
6394 /* Stop all DMA channels. */
6395 if (iwn_nic_lock(sc) == 0) {
6396 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6397 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6398 for (ntries = 0; ntries < 200; ntries++) {
6399 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6400 IWN_FH_TX_STATUS_IDLE(chnl))
6401 break;
6402 DELAY(10);
6403 }
6404 }
6405 iwn_nic_unlock(sc);
6406 }
6407
6408 /* Stop RX ring. */
6409 iwn_reset_rx_ring(sc, &sc->rxq);
6410
6411 /* Reset all TX rings. */
6412 for (qid = 0; qid < sc->ntxqs; qid++)
6413 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6414
6415 if (iwn_nic_lock(sc) == 0) {
6416 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6417 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6418 iwn_nic_unlock(sc);
6419 }
6420 DELAY(5);
6421 /* Power OFF adapter. */
6422 iwn_apm_stop(sc);
6423 }
6424
6425 static int
6426 iwn_init(struct ifnet *ifp)
6427 {
6428 struct iwn_softc *sc = ifp->if_softc;
6429 struct ieee80211com *ic = &sc->sc_ic;
6430 int error;
6431
6432 mutex_enter(&sc->sc_mtx);
6433 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6434 goto out;
6435 if ((error = iwn_hw_prepare(sc)) != 0) {
6436 aprint_error_dev(sc->sc_dev,
6437 "hardware not ready\n");
6438 goto fail;
6439 }
6440
6441 /* Check that the radio is not disabled by hardware switch. */
6442 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6443 aprint_error_dev(sc->sc_dev,
6444 "radio is disabled by hardware switch\n");
6445 error = EPERM; /* :-) */
6446 goto fail;
6447 }
6448
6449 /* Read firmware images from the filesystem. */
6450 if ((error = iwn_read_firmware(sc)) != 0) {
6451 aprint_error_dev(sc->sc_dev,
6452 "could not read firmware\n");
6453 goto fail;
6454 }
6455
6456 /* Initialize interrupt mask to default value. */
6457 sc->int_mask = IWN_INT_MASK_DEF;
6458 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6459
6460 /* Initialize hardware and upload firmware. */
6461 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6462 error = iwn_hw_init(sc);
6463 firmware_free(sc->fw.data, sc->fw.size);
6464 sc->fw.data = NULL;
6465 sc->fw.size = 0;
6466 if (error != 0) {
6467 aprint_error_dev(sc->sc_dev,
6468 "could not initialize hardware\n");
6469 goto fail;
6470 }
6471
6472 /* Configure adapter now that it is ready. */
6473 if ((error = iwn_config(sc)) != 0) {
6474 aprint_error_dev(sc->sc_dev,
6475 "could not configure device\n");
6476 goto fail;
6477 }
6478
6479 sc->sc_beacon_wait = 0;
6480
6481 ifp->if_flags &= ~IFF_OACTIVE;
6482 ifp->if_flags |= IFF_RUNNING;
6483
6484 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6485 ieee80211_begin_scan(ic, 0);
6486 else
6487 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6488
6489 sc->sc_flags |= IWN_FLAG_HW_INITED;
6490 out:
6491 mutex_exit(&sc->sc_mtx);
6492 return 0;
6493
6494 fail: mutex_exit(&sc->sc_mtx);
6495 iwn_stop(ifp, 1);
6496 return error;
6497 }
6498
6499 static void
6500 iwn_stop(struct ifnet *ifp, int disable)
6501 {
6502 struct iwn_softc *sc = ifp->if_softc;
6503 struct ieee80211com *ic = &sc->sc_ic;
6504
6505 if (!disable)
6506 mutex_enter(&sc->sc_mtx);
6507 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6508 ifp->if_timer = sc->sc_tx_timer = 0;
6509 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6510
6511 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6512
6513 /* Power OFF hardware. */
6514 iwn_hw_stop(sc);
6515
6516 if (!disable)
6517 mutex_exit(&sc->sc_mtx);
6518 }
6519
6520 /*
6521 * XXX MCLGETI alternative
6522 *
6523 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6524 * as long as there are available free buffers then it uses MEXTMALLOC.,
6525 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6526 * The MCLGET4K code is used for testing an alternative mbuf cache.
6527 */
6528
6529 static struct mbuf *
6530 MCLGETIalt(struct iwn_softc *sc, int how,
6531 struct ifnet *ifp __unused, u_int size)
6532 {
6533 struct mbuf *m;
6534 #ifdef IWN_USE_RBUF
6535 struct iwn_rbuf *rbuf;
6536 #endif
6537
6538 MGETHDR(m, how, MT_DATA);
6539 if (m == NULL)
6540 return NULL;
6541
6542 #ifdef IWN_USE_RBUF
6543 if (sc->rxq.nb_free_entries > 0 &&
6544 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6545 /* Attach buffer to mbuf header. */
6546 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6547 m->m_flags |= M_EXT_RW;
6548 }
6549 else {
6550 MEXTMALLOC(m, size, how);
6551 if ((m->m_flags & M_EXT) == 0) {
6552 m_freem(m);
6553 return NULL;
6554 }
6555 }
6556
6557 #else
6558 #ifdef MCLGET4K
6559 if (size == 4096)
6560 MCLGET4K(m, how);
6561 else
6562 panic("size must be 4k");
6563 #else
6564 MEXTMALLOC(m, size, how);
6565 #endif
6566 if ((m->m_flags & M_EXT) == 0) {
6567 m_freem(m);
6568 return NULL;
6569 }
6570 #endif
6571
6572 return m;
6573 }
6574
6575 #ifdef IWN_USE_RBUF
6576 static struct iwn_rbuf *
6577 iwn_alloc_rbuf(struct iwn_softc *sc)
6578 {
6579 struct iwn_rbuf *rbuf;
6580 mutex_enter(&sc->rxq.freelist_mtx);
6581
6582 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6583 if (rbuf != NULL) {
6584 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6585 sc->rxq.nb_free_entries --;
6586 }
6587 mutex_exit(&sc->rxq.freelist_mtx);
6588 return rbuf;
6589 }
6590
6591 /*
6592 * This is called automatically by the network stack when the mbuf to which
6593 * our RX buffer is attached is freed.
6594 */
6595 static void
6596 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6597 {
6598 struct iwn_rbuf *rbuf = arg;
6599 struct iwn_softc *sc = rbuf->sc;
6600
6601 /* Put the RX buffer back in the free list. */
6602 mutex_enter(&sc->rxq.freelist_mtx);
6603 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6604 mutex_exit(&sc->rxq.freelist_mtx);
6605
6606 sc->rxq.nb_free_entries ++;
6607 if (__predict_true(m != NULL))
6608 pool_cache_put(mb_cache, m);
6609 }
6610
6611 static int
6612 iwn_alloc_rpool(struct iwn_softc *sc)
6613 {
6614 struct iwn_rx_ring *ring = &sc->rxq;
6615 struct iwn_rbuf *rbuf;
6616 int i, error;
6617
6618 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6619
6620 /* Allocate a big chunk of DMA'able memory... */
6621 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6622 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6623 if (error != 0) {
6624 aprint_error_dev(sc->sc_dev,
6625 "could not allocate RX buffers DMA memory\n");
6626 return error;
6627 }
6628 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6629 SLIST_INIT(&ring->freelist);
6630 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6631 rbuf = &ring->rbuf[i];
6632
6633 rbuf->sc = sc; /* Backpointer for callbacks. */
6634 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6635 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6636
6637 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6638 }
6639 ring->nb_free_entries = IWN_RBUF_COUNT;
6640 return 0;
6641 }
6642
6643 static void
6644 iwn_free_rpool(struct iwn_softc *sc)
6645 {
6646 iwn_dma_contig_free(&sc->rxq.buf_dma);
6647 }
6648 #endif
6649
6650 /*
6651 * XXX: Hack to set the current channel to the value advertised in beacons or
6652 * probe responses. Only used during AP detection.
6653 * XXX: Duplicated from if_iwi.c
6654 */
6655 static void
6656 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6657 struct iwn_rx_stat *stat)
6658 {
6659 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6660 struct ieee80211_frame *wh;
6661 uint8_t subtype;
6662 uint8_t *frm, *efrm;
6663
6664 wh = mtod(m, struct ieee80211_frame *);
6665
6666 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6667 return;
6668
6669 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6670
6671 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6672 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6673 return;
6674
6675 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6676 int chan = le16toh(stat->chan);
6677 if (chan < __arraycount(ic->ic_channels))
6678 ic->ic_curchan = &ic->ic_channels[chan];
6679 return;
6680 }
6681
6682 frm = (uint8_t *)(wh + 1);
6683 efrm = mtod(m, uint8_t *) + m->m_len;
6684
6685 frm += 12; /* skip tstamp, bintval and capinfo fields */
6686 while (frm + 2 < efrm) {
6687 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6688 #if IEEE80211_CHAN_MAX < 255
6689 if (frm[2] <= IEEE80211_CHAN_MAX)
6690 #endif
6691 ic->ic_curchan = &ic->ic_channels[frm[2]];
6692 }
6693
6694 frm += frm[1] + 2;
6695 }
6696 }
6697
6698 #ifdef notyetMODULE
6699
6700 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6701
6702 #ifdef _MODULE
6703 #include "ioconf.c"
6704 #endif
6705
6706 static int
6707 if_iwn_modcmd(modcmd_t cmd, void *data)
6708 {
6709 int error = 0;
6710
6711 switch (cmd) {
6712 case MODULE_CMD_INIT:
6713 #ifdef _MODULE
6714 error = config_init_component(cfdriver_ioconf_if_iwn,
6715 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6716 #endif
6717 return error;
6718 case MODULE_CMD_FINI:
6719 #ifdef _MODULE
6720 error = config_fini_component(cfdriver_ioconf_if_iwn,
6721 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6722 #endif
6723 return error;
6724 case MODULE_CMD_AUTOUNLOAD:
6725 #ifdef _MODULE
6726 /* XXX This is not optional! */
6727 #endif
6728 return error;
6729 default:
6730 return ENOTTY;
6731 }
6732 }
6733 #endif
6734