if_iwn.c revision 1.96 1 /* $NetBSD: if_iwn.c,v 1.96 2021/06/16 00:21:18 riastradh Exp $ */
2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */
3
4 /*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.96 2021/06/16 00:21:18 riastradh Exp $");
26
27 #define IWN_USE_RBUF /* Use local storage for RX */
28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/proc.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #ifdef notyetMODULE
39 #include <sys/module.h>
40 #endif
41 #include <sys/mutex.h>
42 #include <sys/conf.h>
43 #include <sys/kauth.h>
44 #include <sys/callout.h>
45
46 #include <dev/sysmon/sysmonvar.h>
47
48 #include <sys/bus.h>
49 #include <machine/endian.h>
50 #include <sys/intr.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 #include <dev/pci/pcidevs.h>
55
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <net/if_ether.h>
67 #include <netinet/ip.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_amrr.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #include <dev/firmload.h>
74
75 #include <dev/pci/if_iwnreg.h>
76 #include <dev/pci/if_iwnvar.h>
77
78 static const struct device_compatible_entry compat_data[] = {
79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81
82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84
85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87
88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90
91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93
94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96
97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99
100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102
103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105
106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108
109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111
112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114
115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117
118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120
121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123
124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126
127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129
130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132
133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135
136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138
139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141
142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144
145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147
148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150
151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153
154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156
157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159
160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162
163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165
166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168
169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171
172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174
175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177
178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180
181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183
184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186
187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189
190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192
193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195
196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198
199 PCI_COMPAT_EOL
200 };
201
202 static int iwn_match(device_t , struct cfdata *, void *);
203 static void iwn_attach(device_t , device_t , void *);
204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206 static void iwn_radiotap_attach(struct iwn_softc *);
207 static int iwn_detach(device_t , int);
208 #if 0
209 static void iwn_power(int, void *);
210 #endif
211 static bool iwn_resume(device_t, const pmf_qual_t *);
212 static int iwn_nic_lock(struct iwn_softc *);
213 static int iwn_eeprom_lock(struct iwn_softc *);
214 static int iwn_init_otprom(struct iwn_softc *);
215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217 void **, bus_size_t, bus_size_t);
218 static void iwn_dma_contig_free(struct iwn_dma_info *);
219 static int iwn_alloc_sched(struct iwn_softc *);
220 static void iwn_free_sched(struct iwn_softc *);
221 static int iwn_alloc_kw(struct iwn_softc *);
222 static void iwn_free_kw(struct iwn_softc *);
223 static int iwn_alloc_ict(struct iwn_softc *);
224 static void iwn_free_ict(struct iwn_softc *);
225 static int iwn_alloc_fwmem(struct iwn_softc *);
226 static void iwn_free_fwmem(struct iwn_softc *);
227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231 int);
232 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234 static void iwn5000_ict_reset(struct iwn_softc *);
235 static int iwn_read_eeprom(struct iwn_softc *);
236 static void iwn4965_read_eeprom(struct iwn_softc *);
237
238 #ifdef IWN_DEBUG
239 static void iwn4965_print_power_group(struct iwn_softc *, int);
240 #endif
241 static void iwn5000_read_eeprom(struct iwn_softc *);
242 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
244 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245 static void iwn_newassoc(struct ieee80211_node *, int);
246 static int iwn_media_change(struct ifnet *);
247 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248 static void iwn_iter_func(void *, struct ieee80211_node *);
249 static void iwn_calib_timeout(void *);
250 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251 struct iwn_rx_data *);
252 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253 struct iwn_rx_data *);
254 #ifndef IEEE80211_NO_HT
255 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256 struct iwn_rx_data *);
257 #endif
258 static void iwn5000_rx_calib_results(struct iwn_softc *,
259 struct iwn_rx_desc *, struct iwn_rx_data *);
260 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261 struct iwn_rx_data *);
262 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263 struct iwn_rx_data *);
264 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265 struct iwn_rx_data *);
266 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267 uint8_t);
268 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269 static void iwn_notif_intr(struct iwn_softc *);
270 static void iwn_wakeup_intr(struct iwn_softc *);
271 static void iwn_fatal_intr(struct iwn_softc *);
272 static int iwn_intr(void *);
273 static void iwn_softintr(void *);
274 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275 uint16_t);
276 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277 uint16_t);
278 #ifdef notyet
279 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
280 #endif
281 static int iwn_tx(struct iwn_softc *, struct mbuf *,
282 struct ieee80211_node *, int);
283 static void iwn_start(struct ifnet *);
284 static void iwn_watchdog(struct ifnet *);
285 static int iwn_ioctl(struct ifnet *, u_long, void *);
286 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288 int);
289 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290 int);
291 static int iwn_set_link_quality(struct iwn_softc *,
292 struct ieee80211_node *);
293 static int iwn_add_broadcast_node(struct iwn_softc *, int);
294 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295 static int iwn_set_critical_temp(struct iwn_softc *);
296 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297 static void iwn4965_power_calibration(struct iwn_softc *, int);
298 static int iwn4965_set_txpower(struct iwn_softc *, int);
299 static int iwn5000_set_txpower(struct iwn_softc *, int);
300 static int iwn4965_get_rssi(const struct iwn_rx_stat *);
301 static int iwn5000_get_rssi(const struct iwn_rx_stat *);
302 static int iwn_get_noise(const struct iwn_rx_general_stats *);
303 static int iwn4965_get_temperature(struct iwn_softc *);
304 static int iwn5000_get_temperature(struct iwn_softc *);
305 static int iwn_init_sensitivity(struct iwn_softc *);
306 static void iwn_collect_noise(struct iwn_softc *,
307 const struct iwn_rx_general_stats *);
308 static int iwn4965_init_gains(struct iwn_softc *);
309 static int iwn5000_init_gains(struct iwn_softc *);
310 static int iwn4965_set_gains(struct iwn_softc *);
311 static int iwn5000_set_gains(struct iwn_softc *);
312 static void iwn_tune_sensitivity(struct iwn_softc *,
313 const struct iwn_rx_stats *);
314 static int iwn_send_sensitivity(struct iwn_softc *);
315 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
316 static int iwn5000_runtime_calib(struct iwn_softc *);
317
318 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319 static int iwn_config_bt_coex_prio_table(struct iwn_softc *);
320 static int iwn_config_bt_coex_adv1(struct iwn_softc *);
321 static int iwn_config_bt_coex_adv2(struct iwn_softc *);
322
323 static int iwn_config(struct iwn_softc *);
324 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325 uint8_t);
326 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
327 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328 static int iwn_scan(struct iwn_softc *, uint16_t);
329 static int iwn_auth(struct iwn_softc *);
330 static int iwn_run(struct iwn_softc *);
331 #ifdef IWN_HWCRYPTO
332 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333 struct ieee80211_key *);
334 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335 struct ieee80211_key *);
336 #endif
337 static int iwn_wme_update(struct ieee80211com *);
338 #ifndef IEEE80211_NO_HT
339 static int iwn_ampdu_rx_start(struct ieee80211com *,
340 struct ieee80211_node *, uint8_t);
341 static void iwn_ampdu_rx_stop(struct ieee80211com *,
342 struct ieee80211_node *, uint8_t);
343 static int iwn_ampdu_tx_start(struct ieee80211com *,
344 struct ieee80211_node *, uint8_t);
345 static void iwn_ampdu_tx_stop(struct ieee80211com *,
346 struct ieee80211_node *, uint8_t);
347 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
348 struct ieee80211_node *, uint8_t, uint16_t);
349 static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
350 uint8_t, uint16_t);
351 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
352 struct ieee80211_node *, uint8_t, uint16_t);
353 static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
354 uint8_t, uint16_t);
355 #endif
356 static int iwn5000_query_calibration(struct iwn_softc *);
357 static int iwn5000_send_calibration(struct iwn_softc *);
358 static int iwn5000_send_wimax_coex(struct iwn_softc *);
359 static int iwn6000_temp_offset_calib(struct iwn_softc *);
360 static int iwn2000_temp_offset_calib(struct iwn_softc *);
361 static int iwn4965_post_alive(struct iwn_softc *);
362 static int iwn5000_post_alive(struct iwn_softc *);
363 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364 int);
365 static int iwn4965_load_firmware(struct iwn_softc *);
366 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367 const uint8_t *, int);
368 static int iwn5000_load_firmware(struct iwn_softc *);
369 static int iwn_read_firmware_leg(struct iwn_softc *,
370 struct iwn_fw_info *);
371 static int iwn_read_firmware_tlv(struct iwn_softc *,
372 struct iwn_fw_info *, uint16_t);
373 static int iwn_read_firmware(struct iwn_softc *);
374 static int iwn_clock_wait(struct iwn_softc *);
375 static int iwn_apm_init(struct iwn_softc *);
376 static void iwn_apm_stop_master(struct iwn_softc *);
377 static void iwn_apm_stop(struct iwn_softc *);
378 static int iwn4965_nic_config(struct iwn_softc *);
379 static int iwn5000_nic_config(struct iwn_softc *);
380 static int iwn_hw_prepare(struct iwn_softc *);
381 static int iwn_hw_init(struct iwn_softc *);
382 static void iwn_hw_stop(struct iwn_softc *);
383 static int iwn_init(struct ifnet *);
384 static void iwn_stop(struct ifnet *, int);
385
386 /* XXX MCLGETI alternative */
387 static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
388 struct ifnet *, u_int);
389 #ifdef IWN_USE_RBUF
390 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392 static int iwn_alloc_rpool(struct iwn_softc *);
393 static void iwn_free_rpool(struct iwn_softc *);
394 #endif
395
396 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397 struct iwn_rx_stat *);
398
399 #ifdef IWN_DEBUG
400 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
401 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
402 int iwn_debug = 0;
403 #else
404 #define DPRINTF(x)
405 #define DPRINTFN(n, x)
406 #endif
407
408 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409 iwn_detach, NULL);
410
411 static int
412 iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413 {
414 struct pci_attach_args *pa = aux;
415
416 return pci_compatible_match(pa, compat_data);
417 }
418
419 static void
420 iwn_attach(device_t parent __unused, device_t self, void *aux)
421 {
422 struct iwn_softc *sc = device_private(self);
423 struct ieee80211com *ic = &sc->sc_ic;
424 struct ifnet *ifp = &sc->sc_ec.ec_if;
425 struct pci_attach_args *pa = aux;
426 const char *intrstr;
427 pcireg_t memtype, reg;
428 int i, error;
429 char intrbuf[PCI_INTRSTR_LEN];
430
431 sc->sc_dev = self;
432 sc->sc_pct = pa->pa_pc;
433 sc->sc_pcitag = pa->pa_tag;
434 sc->sc_dmat = pa->pa_dmat;
435 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436
437 callout_init(&sc->calib_to, 0);
438 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439
440 pci_aprint_devinfo(pa, NULL);
441
442 /*
443 * Get the offset of the PCI Express Capability Structure in PCI
444 * Configuration Space.
445 */
446 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448 if (error == 0) {
449 aprint_error_dev(self,
450 "PCIe capability structure not found!\n");
451 return;
452 }
453
454 /* Clear device-specific "PCI retry timeout" register (41h). */
455 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456 if (reg & 0xff00)
457 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458
459 /* Enable bus-mastering. */
460 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462 reg |= PCI_COMMAND_MASTER_ENABLE;
463 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464
465 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467 &sc->sc_sh, NULL, &sc->sc_sz);
468 if (error != 0) {
469 aprint_error_dev(self, "can't map mem space\n");
470 return;
471 }
472
473 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474 if (sc->sc_soft_ih == NULL) {
475 aprint_error_dev(self, "can't establish soft interrupt\n");
476 goto unmap;
477 }
478
479 /* Install interrupt handler. */
480 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481 if (error) {
482 aprint_error_dev(self, "can't allocate interrupt\n");
483 goto failsi;
484 }
485 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488 else
489 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492 sizeof(intrbuf));
493 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494 IPL_NET, iwn_intr, sc, device_xname(self));
495 if (sc->sc_ih == NULL) {
496 aprint_error_dev(self, "can't establish interrupt");
497 if (intrstr != NULL)
498 aprint_error(" at %s", intrstr);
499 aprint_error("\n");
500 goto failia;
501 }
502 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503
504 /* Read hardware revision and attach. */
505 sc->hw_type =
506 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507 >> IWN_HW_REV_TYPE_SHIFT;
508 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510 else
511 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512 if (error != 0) {
513 aprint_error_dev(self, "could not attach device\n");
514 goto failih;
515 }
516
517 if ((error = iwn_hw_prepare(sc)) != 0) {
518 aprint_error_dev(self, "hardware not ready\n");
519 goto failih;
520 }
521
522 /* Read MAC address, channels, etc from EEPROM. */
523 if ((error = iwn_read_eeprom(sc)) != 0) {
524 aprint_error_dev(self, "could not read EEPROM\n");
525 goto failih;
526 }
527
528 /* Allocate DMA memory for firmware transfers. */
529 if ((error = iwn_alloc_fwmem(sc)) != 0) {
530 aprint_error_dev(self,
531 "could not allocate memory for firmware\n");
532 goto failih;
533 }
534
535 /* Allocate "Keep Warm" page. */
536 if ((error = iwn_alloc_kw(sc)) != 0) {
537 aprint_error_dev(self, "could not allocate keep warm page\n");
538 goto fail1;
539 }
540
541 /* Allocate ICT table for 5000 Series. */
542 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 (error = iwn_alloc_ict(sc)) != 0) {
544 aprint_error_dev(self, "could not allocate ICT table\n");
545 goto fail2;
546 }
547
548 /* Allocate TX scheduler "rings". */
549 if ((error = iwn_alloc_sched(sc)) != 0) {
550 aprint_error_dev(self,
551 "could not allocate TX scheduler rings\n");
552 goto fail3;
553 }
554
555 #ifdef IWN_USE_RBUF
556 /* Allocate RX buffers. */
557 if ((error = iwn_alloc_rpool(sc)) != 0) {
558 aprint_error_dev(self, "could not allocate RX buffers\n");
559 goto fail3;
560 }
561 #endif
562
563 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 for (i = 0; i < sc->ntxqs; i++) {
565 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 aprint_error_dev(self,
567 "could not allocate TX ring %d\n", i);
568 goto fail4;
569 }
570 }
571
572 /* Allocate RX ring. */
573 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574 aprint_error_dev(self, "could not allocate RX ring\n");
575 goto fail4;
576 }
577
578 /* Clear pending interrupts. */
579 IWN_WRITE(sc, IWN_INT, 0xffffffff);
580
581 /* Count the number of available chains. */
582 sc->ntxchains =
583 ((sc->txchainmask >> 2) & 1) +
584 ((sc->txchainmask >> 1) & 1) +
585 ((sc->txchainmask >> 0) & 1);
586 sc->nrxchains =
587 ((sc->rxchainmask >> 2) & 1) +
588 ((sc->rxchainmask >> 1) & 1) +
589 ((sc->rxchainmask >> 0) & 1);
590 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592 ether_sprintf(ic->ic_myaddr));
593
594 ic->ic_ifp = ifp;
595 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
596 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
597 ic->ic_state = IEEE80211_S_INIT;
598
599 /*
600 * Set device capabilities.
601 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602 * IEEE80211_C_PMGT too.
603 */
604 ic->ic_caps =
605 IEEE80211_C_IBSS | /* IBSS mode support */
606 IEEE80211_C_WPA | /* 802.11i */
607 IEEE80211_C_MONITOR | /* monitor mode supported */
608 IEEE80211_C_TXPMGT | /* tx power management */
609 IEEE80211_C_SHSLOT | /* short slot time supported */
610 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
611 IEEE80211_C_WME; /* 802.11e */
612
613 #ifndef IEEE80211_NO_HT
614 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615 /* Set HT capabilities. */
616 ic->ic_htcaps =
617 #if IWN_RBUF_SIZE == 8192
618 IEEE80211_HTCAP_AMSDU7935 |
619 #endif
620 IEEE80211_HTCAP_CBW20_40 |
621 IEEE80211_HTCAP_SGI20 |
622 IEEE80211_HTCAP_SGI40;
623 if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624 ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625 if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627 else
628 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629 }
630 #endif /* !IEEE80211_NO_HT */
631
632 /* Set supported legacy rates. */
633 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637 }
638 #ifndef IEEE80211_NO_HT
639 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640 /* Set supported HT rates. */
641 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
642 if (sc->nrxchains > 1)
643 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
644 if (sc->nrxchains > 2)
645 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
646 }
647 #endif
648
649 /* IBSS channel undefined for now. */
650 ic->ic_ibss_chan = &ic->ic_channels[0];
651
652 ifp->if_softc = sc;
653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 ifp->if_init = iwn_init;
655 ifp->if_ioctl = iwn_ioctl;
656 ifp->if_start = iwn_start;
657 ifp->if_stop = iwn_stop;
658 ifp->if_watchdog = iwn_watchdog;
659 IFQ_SET_READY(&ifp->if_snd);
660 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661
662 if_initialize(ifp);
663 ieee80211_ifattach(ic);
664 /* Use common softint-based if_input */
665 ifp->if_percpuq = if_percpuq_create(ifp);
666 if_register(ifp);
667
668 ic->ic_node_alloc = iwn_node_alloc;
669 ic->ic_newassoc = iwn_newassoc;
670 #ifdef IWN_HWCRYPTO
671 ic->ic_crypto.cs_key_set = iwn_set_key;
672 ic->ic_crypto.cs_key_delete = iwn_delete_key;
673 #endif
674 ic->ic_wme.wme_update = iwn_wme_update;
675 #ifndef IEEE80211_NO_HT
676 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
677 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
678 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
679 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
680 #endif
681
682 /* Override 802.11 state transition machine. */
683 sc->sc_newstate = ic->ic_newstate;
684 ic->ic_newstate = iwn_newstate;
685
686 /* XXX media locking needs revisiting */
687 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
688 ieee80211_media_init_with_lock(ic,
689 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
690
691 sc->amrr.amrr_min_success_threshold = 1;
692 sc->amrr.amrr_max_success_threshold = 15;
693
694 iwn_radiotap_attach(sc);
695
696 /*
697 * XXX for NetBSD, OpenBSD timeout_set replaced by
698 * callout_init and callout_setfunc, above.
699 */
700
701 if (pmf_device_register(self, NULL, iwn_resume))
702 pmf_class_network_register(self, ifp);
703 else
704 aprint_error_dev(self, "couldn't establish power handler\n");
705
706 /* XXX NetBSD add call to ieee80211_announce for dmesg. */
707 ieee80211_announce(ic);
708
709 sc->sc_flags |= IWN_FLAG_ATTACHED;
710 return;
711
712 /* Free allocated memory if something failed during attachment. */
713 fail4: while (--i >= 0)
714 iwn_free_tx_ring(sc, &sc->txq[i]);
715 #ifdef IWN_USE_RBUF
716 iwn_free_rpool(sc);
717 #endif
718 iwn_free_sched(sc);
719 fail3: if (sc->ict != NULL)
720 iwn_free_ict(sc);
721 fail2: iwn_free_kw(sc);
722 fail1: iwn_free_fwmem(sc);
723 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
724 sc->sc_ih = NULL;
725 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
726 sc->sc_pihp = NULL;
727 failsi: softint_disestablish(sc->sc_soft_ih);
728 sc->sc_soft_ih = NULL;
729 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
730 }
731
732 int
733 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
734 {
735 struct iwn_ops *ops = &sc->ops;
736
737 ops->load_firmware = iwn4965_load_firmware;
738 ops->read_eeprom = iwn4965_read_eeprom;
739 ops->post_alive = iwn4965_post_alive;
740 ops->nic_config = iwn4965_nic_config;
741 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
742 ops->update_sched = iwn4965_update_sched;
743 ops->get_temperature = iwn4965_get_temperature;
744 ops->get_rssi = iwn4965_get_rssi;
745 ops->set_txpower = iwn4965_set_txpower;
746 ops->init_gains = iwn4965_init_gains;
747 ops->set_gains = iwn4965_set_gains;
748 ops->add_node = iwn4965_add_node;
749 ops->tx_done = iwn4965_tx_done;
750 #ifndef IEEE80211_NO_HT
751 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
752 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
753 #endif
754 sc->ntxqs = IWN4965_NTXQUEUES;
755 sc->ndmachnls = IWN4965_NDMACHNLS;
756 sc->broadcast_id = IWN4965_ID_BROADCAST;
757 sc->rxonsz = IWN4965_RXONSZ;
758 sc->schedsz = IWN4965_SCHEDSZ;
759 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
760 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
761 sc->fwsz = IWN4965_FWSZ;
762 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
763 sc->limits = &iwn4965_sensitivity_limits;
764 sc->fwname = "iwlwifi-4965-2.ucode";
765 /* Override chains masks, ROM is known to be broken. */
766 sc->txchainmask = IWN_ANT_AB;
767 sc->rxchainmask = IWN_ANT_ABC;
768
769 return 0;
770 }
771
772 int
773 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
774 {
775 struct iwn_ops *ops = &sc->ops;
776
777 ops->load_firmware = iwn5000_load_firmware;
778 ops->read_eeprom = iwn5000_read_eeprom;
779 ops->post_alive = iwn5000_post_alive;
780 ops->nic_config = iwn5000_nic_config;
781 ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
782 ops->update_sched = iwn5000_update_sched;
783 ops->get_temperature = iwn5000_get_temperature;
784 ops->get_rssi = iwn5000_get_rssi;
785 ops->set_txpower = iwn5000_set_txpower;
786 ops->init_gains = iwn5000_init_gains;
787 ops->set_gains = iwn5000_set_gains;
788 ops->add_node = iwn5000_add_node;
789 ops->tx_done = iwn5000_tx_done;
790 #ifndef IEEE80211_NO_HT
791 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
792 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
793 #endif
794 sc->ntxqs = IWN5000_NTXQUEUES;
795 sc->ndmachnls = IWN5000_NDMACHNLS;
796 sc->broadcast_id = IWN5000_ID_BROADCAST;
797 sc->rxonsz = IWN5000_RXONSZ;
798 sc->schedsz = IWN5000_SCHEDSZ;
799 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
800 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
801 sc->fwsz = IWN5000_FWSZ;
802 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
803
804 switch (sc->hw_type) {
805 case IWN_HW_REV_TYPE_5100:
806 sc->limits = &iwn5000_sensitivity_limits;
807 sc->fwname = "iwlwifi-5000-2.ucode";
808 /* Override chains masks, ROM is known to be broken. */
809 sc->txchainmask = IWN_ANT_B;
810 sc->rxchainmask = IWN_ANT_AB;
811 break;
812 case IWN_HW_REV_TYPE_5150:
813 sc->limits = &iwn5150_sensitivity_limits;
814 sc->fwname = "iwlwifi-5150-2.ucode";
815 break;
816 case IWN_HW_REV_TYPE_5300:
817 case IWN_HW_REV_TYPE_5350:
818 sc->limits = &iwn5000_sensitivity_limits;
819 sc->fwname = "iwlwifi-5000-2.ucode";
820 break;
821 case IWN_HW_REV_TYPE_1000:
822 sc->limits = &iwn1000_sensitivity_limits;
823 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
824 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
825 sc->fwname = "iwlwifi-100-5.ucode";
826 else
827 sc->fwname = "iwlwifi-1000-3.ucode";
828 break;
829 case IWN_HW_REV_TYPE_6000:
830 sc->limits = &iwn6000_sensitivity_limits;
831 sc->fwname = "iwlwifi-6000-4.ucode";
832 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
833 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
834 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835 /* Override chains masks, ROM is known to be broken. */
836 sc->txchainmask = IWN_ANT_BC;
837 sc->rxchainmask = IWN_ANT_BC;
838 }
839 break;
840 case IWN_HW_REV_TYPE_6050:
841 sc->limits = &iwn6000_sensitivity_limits;
842 sc->fwname = "iwlwifi-6050-5.ucode";
843 break;
844 case IWN_HW_REV_TYPE_6005:
845 sc->limits = &iwn6000_sensitivity_limits;
846 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
847 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
848 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
849 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
850 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
851 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 ||
852 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
853 sc->fwname = "iwlwifi-6000g2b-6.ucode";
854 ops->config_bt_coex = iwn_config_bt_coex_adv1;
855 }
856 /*
857 * This covers:
858 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
859 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
860 */
861 else
862 sc->fwname = "iwlwifi-6000g2a-5.ucode";
863 break;
864 case IWN_HW_REV_TYPE_2030:
865 sc->limits = &iwn2030_sensitivity_limits;
866 sc->fwname = "iwlwifi-2030-6.ucode";
867 ops->config_bt_coex = iwn_config_bt_coex_adv2;
868 break;
869 case IWN_HW_REV_TYPE_2000:
870 sc->limits = &iwn2000_sensitivity_limits;
871 sc->fwname = "iwlwifi-2000-6.ucode";
872 break;
873 case IWN_HW_REV_TYPE_135:
874 sc->limits = &iwn2000_sensitivity_limits;
875 sc->fwname = "iwlwifi-135-6.ucode";
876 ops->config_bt_coex = iwn_config_bt_coex_adv2;
877 break;
878 case IWN_HW_REV_TYPE_105:
879 sc->limits = &iwn2000_sensitivity_limits;
880 sc->fwname = "iwlwifi-105-6.ucode";
881 break;
882 default:
883 aprint_normal(": adapter type %d not supported\n", sc->hw_type);
884 return ENOTSUP;
885 }
886 return 0;
887 }
888
889 /*
890 * Attach the interface to 802.11 radiotap.
891 */
892 static void
893 iwn_radiotap_attach(struct iwn_softc *sc)
894 {
895 struct ifnet *ifp = sc->sc_ic.ic_ifp;
896
897 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
898 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
899 &sc->sc_drvbpf);
900
901 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
902 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
903 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
904
905 sc->sc_txtap_len = sizeof sc->sc_txtapu;
906 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
907 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
908 }
909
910 static int
911 iwn_detach(device_t self, int flags __unused)
912 {
913 struct iwn_softc *sc = device_private(self);
914 struct ifnet *ifp = sc->sc_ic.ic_ifp;
915 int qid;
916
917 if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
918 return 0;
919
920 callout_stop(&sc->calib_to);
921
922 /* Uninstall interrupt handler. */
923 if (sc->sc_ih != NULL)
924 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
925 if (sc->sc_pihp != NULL)
926 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
927 if (sc->sc_soft_ih != NULL)
928 softint_disestablish(sc->sc_soft_ih);
929
930 /* Free DMA resources. */
931 iwn_free_rx_ring(sc, &sc->rxq);
932 for (qid = 0; qid < sc->ntxqs; qid++)
933 iwn_free_tx_ring(sc, &sc->txq[qid]);
934 #ifdef IWN_USE_RBUF
935 iwn_free_rpool(sc);
936 #endif
937 iwn_free_sched(sc);
938 iwn_free_kw(sc);
939 if (sc->ict != NULL)
940 iwn_free_ict(sc);
941 iwn_free_fwmem(sc);
942
943 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
944
945 ieee80211_ifdetach(&sc->sc_ic);
946 if_detach(ifp);
947
948 return 0;
949 }
950
951 #if 0
952 /*
953 * XXX Investigate if clearing the PCI retry timeout could eliminate
954 * the repeated scan calls. Also the calls to if_init and if_start
955 * are similar to the effect of adding the call to ifioctl_common .
956 */
957 static void
958 iwn_power(int why, void *arg)
959 {
960 struct iwn_softc *sc = arg;
961 struct ifnet *ifp;
962 pcireg_t reg;
963 int s;
964
965 if (why != PWR_RESUME)
966 return;
967
968 /* Clear device-specific "PCI retry timeout" register (41h). */
969 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
970 if (reg & 0xff00)
971 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
972
973 s = splnet();
974 ifp = &sc->sc_ic.ic_if;
975 if (ifp->if_flags & IFF_UP) {
976 ifp->if_init(ifp);
977 if (ifp->if_flags & IFF_RUNNING)
978 ifp->if_start(ifp);
979 }
980 splx(s);
981 }
982 #endif
983
984 static bool
985 iwn_resume(device_t dv, const pmf_qual_t *qual)
986 {
987 return true;
988 }
989
990 static int
991 iwn_nic_lock(struct iwn_softc *sc)
992 {
993 int ntries;
994
995 /* Request exclusive access to NIC. */
996 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
997
998 /* Spin until we actually get the lock. */
999 for (ntries = 0; ntries < 1000; ntries++) {
1000 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1001 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1002 IWN_GP_CNTRL_MAC_ACCESS_ENA)
1003 return 0;
1004 DELAY(10);
1005 }
1006 return ETIMEDOUT;
1007 }
1008
1009 static __inline void
1010 iwn_nic_unlock(struct iwn_softc *sc)
1011 {
1012 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1013 }
1014
1015 static __inline uint32_t
1016 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1017 {
1018 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1019 IWN_BARRIER_READ_WRITE(sc);
1020 return IWN_READ(sc, IWN_PRPH_RDATA);
1021 }
1022
1023 static __inline void
1024 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1025 {
1026 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1027 IWN_BARRIER_WRITE(sc);
1028 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1029 }
1030
1031 static __inline void
1032 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1033 {
1034 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1035 }
1036
1037 static __inline void
1038 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1039 {
1040 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1041 }
1042
1043 static __inline void
1044 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1045 const uint32_t *data, int count)
1046 {
1047 for (; count > 0; count--, data++, addr += 4)
1048 iwn_prph_write(sc, addr, *data);
1049 }
1050
1051 static __inline uint32_t
1052 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1053 {
1054 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1055 IWN_BARRIER_READ_WRITE(sc);
1056 return IWN_READ(sc, IWN_MEM_RDATA);
1057 }
1058
1059 static __inline void
1060 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1061 {
1062 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1063 IWN_BARRIER_WRITE(sc);
1064 IWN_WRITE(sc, IWN_MEM_WDATA, data);
1065 }
1066
1067 #ifndef IEEE80211_NO_HT
1068 static __inline void
1069 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1070 {
1071 uint32_t tmp;
1072
1073 tmp = iwn_mem_read(sc, addr & ~3);
1074 if (addr & 3)
1075 tmp = (tmp & 0x0000ffff) | data << 16;
1076 else
1077 tmp = (tmp & 0xffff0000) | data;
1078 iwn_mem_write(sc, addr & ~3, tmp);
1079 }
1080 #endif
1081
1082 static __inline void
1083 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1084 int count)
1085 {
1086 for (; count > 0; count--, addr += 4)
1087 *data++ = iwn_mem_read(sc, addr);
1088 }
1089
1090 static __inline void
1091 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1092 int count)
1093 {
1094 for (; count > 0; count--, addr += 4)
1095 iwn_mem_write(sc, addr, val);
1096 }
1097
1098 static int
1099 iwn_eeprom_lock(struct iwn_softc *sc)
1100 {
1101 int i, ntries;
1102
1103 for (i = 0; i < 100; i++) {
1104 /* Request exclusive access to EEPROM. */
1105 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1106 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1107
1108 /* Spin until we actually get the lock. */
1109 for (ntries = 0; ntries < 100; ntries++) {
1110 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1111 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1112 return 0;
1113 DELAY(10);
1114 }
1115 }
1116 return ETIMEDOUT;
1117 }
1118
1119 static __inline void
1120 iwn_eeprom_unlock(struct iwn_softc *sc)
1121 {
1122 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1123 }
1124
1125 /*
1126 * Initialize access by host to One Time Programmable ROM.
1127 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1128 */
1129 static int
1130 iwn_init_otprom(struct iwn_softc *sc)
1131 {
1132 uint16_t prev = 0, base, next;
1133 int count, error;
1134
1135 /* Wait for clock stabilization before accessing prph. */
1136 if ((error = iwn_clock_wait(sc)) != 0)
1137 return error;
1138
1139 if ((error = iwn_nic_lock(sc)) != 0)
1140 return error;
1141 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1142 DELAY(5);
1143 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1144 iwn_nic_unlock(sc);
1145
1146 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1147 if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1148 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1149 IWN_RESET_LINK_PWR_MGMT_DIS);
1150 }
1151 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1152 /* Clear ECC status. */
1153 IWN_SETBITS(sc, IWN_OTP_GP,
1154 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1155
1156 /*
1157 * Find the block before last block (contains the EEPROM image)
1158 * for HW without OTP shadow RAM.
1159 */
1160 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1161 /* Switch to absolute addressing mode. */
1162 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1163 base = 0;
1164 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1165 error = iwn_read_prom_data(sc, base, &next, 2);
1166 if (error != 0)
1167 return error;
1168 if (next == 0) /* End of linked-list. */
1169 break;
1170 prev = base;
1171 base = le16toh(next);
1172 }
1173 if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1174 return EIO;
1175 /* Skip "next" word. */
1176 sc->prom_base = prev + 1;
1177 }
1178 return 0;
1179 }
1180
1181 static int
1182 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1183 {
1184 uint8_t *out = data;
1185 uint32_t val, tmp;
1186 int ntries;
1187
1188 addr += sc->prom_base;
1189 for (; count > 0; count -= 2, addr++) {
1190 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1191 for (ntries = 0; ntries < 10; ntries++) {
1192 val = IWN_READ(sc, IWN_EEPROM);
1193 if (val & IWN_EEPROM_READ_VALID)
1194 break;
1195 DELAY(5);
1196 }
1197 if (ntries == 10) {
1198 aprint_error_dev(sc->sc_dev,
1199 "timeout reading ROM at 0x%x\n", addr);
1200 return ETIMEDOUT;
1201 }
1202 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1203 /* OTPROM, check for ECC errors. */
1204 tmp = IWN_READ(sc, IWN_OTP_GP);
1205 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1206 aprint_error_dev(sc->sc_dev,
1207 "OTPROM ECC error at 0x%x\n", addr);
1208 return EIO;
1209 }
1210 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1211 /* Correctable ECC error, clear bit. */
1212 IWN_SETBITS(sc, IWN_OTP_GP,
1213 IWN_OTP_GP_ECC_CORR_STTS);
1214 }
1215 }
1216 *out++ = val >> 16;
1217 if (count > 1)
1218 *out++ = val >> 24;
1219 }
1220 return 0;
1221 }
1222
1223 static int
1224 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1225 bus_size_t size, bus_size_t alignment)
1226 {
1227 int nsegs, error;
1228
1229 dma->tag = tag;
1230 dma->size = size;
1231
1232 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1233 &dma->map);
1234 if (error != 0)
1235 goto fail;
1236
1237 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1238 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1239 if (error != 0)
1240 goto fail;
1241
1242 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1243 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1244 if (error != 0)
1245 goto fail;
1246
1247 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1248 BUS_DMA_NOWAIT);
1249 if (error != 0)
1250 goto fail;
1251
1252 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1253 memset(dma->vaddr, 0, size);
1254 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1255
1256 dma->paddr = dma->map->dm_segs[0].ds_addr;
1257 if (kvap != NULL)
1258 *kvap = dma->vaddr;
1259
1260 return 0;
1261
1262 fail: iwn_dma_contig_free(dma);
1263 return error;
1264 }
1265
1266 static void
1267 iwn_dma_contig_free(struct iwn_dma_info *dma)
1268 {
1269 if (dma->map != NULL) {
1270 if (dma->vaddr != NULL) {
1271 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1272 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1273 bus_dmamap_unload(dma->tag, dma->map);
1274 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1275 bus_dmamem_free(dma->tag, &dma->seg, 1);
1276 dma->vaddr = NULL;
1277 }
1278 bus_dmamap_destroy(dma->tag, dma->map);
1279 dma->map = NULL;
1280 }
1281 }
1282
1283 static int
1284 iwn_alloc_sched(struct iwn_softc *sc)
1285 {
1286 /* TX scheduler rings must be aligned on a 1KB boundary. */
1287 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1288 (void **)&sc->sched, sc->schedsz, 1024);
1289 }
1290
1291 static void
1292 iwn_free_sched(struct iwn_softc *sc)
1293 {
1294 iwn_dma_contig_free(&sc->sched_dma);
1295 }
1296
1297 static int
1298 iwn_alloc_kw(struct iwn_softc *sc)
1299 {
1300 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1301 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1302 4096);
1303 }
1304
1305 static void
1306 iwn_free_kw(struct iwn_softc *sc)
1307 {
1308 iwn_dma_contig_free(&sc->kw_dma);
1309 }
1310
1311 static int
1312 iwn_alloc_ict(struct iwn_softc *sc)
1313 {
1314 /* ICT table must be aligned on a 4KB boundary. */
1315 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1316 (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1317 }
1318
1319 static void
1320 iwn_free_ict(struct iwn_softc *sc)
1321 {
1322 iwn_dma_contig_free(&sc->ict_dma);
1323 }
1324
1325 static int
1326 iwn_alloc_fwmem(struct iwn_softc *sc)
1327 {
1328 /* Must be aligned on a 16-byte boundary. */
1329 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1330 sc->fwsz, 16);
1331 }
1332
1333 static void
1334 iwn_free_fwmem(struct iwn_softc *sc)
1335 {
1336 iwn_dma_contig_free(&sc->fw_dma);
1337 }
1338
1339 static int
1340 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1341 {
1342 bus_size_t size;
1343 int i, error;
1344
1345 ring->cur = 0;
1346
1347 /* Allocate RX descriptors (256-byte aligned). */
1348 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1349 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1350 (void **)&ring->desc, size, 256);
1351 if (error != 0) {
1352 aprint_error_dev(sc->sc_dev,
1353 "could not allocate RX ring DMA memory\n");
1354 goto fail;
1355 }
1356
1357 /* Allocate RX status area (16-byte aligned). */
1358 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1359 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1360 if (error != 0) {
1361 aprint_error_dev(sc->sc_dev,
1362 "could not allocate RX status DMA memory\n");
1363 goto fail;
1364 }
1365
1366 /*
1367 * Allocate and map RX buffers.
1368 */
1369 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1370 struct iwn_rx_data *data = &ring->data[i];
1371
1372 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1373 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1374 &data->map);
1375 if (error != 0) {
1376 aprint_error_dev(sc->sc_dev,
1377 "could not create RX buf DMA map\n");
1378 goto fail;
1379 }
1380
1381 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1382 if (data->m == NULL) {
1383 aprint_error_dev(sc->sc_dev,
1384 "could not allocate RX mbuf\n");
1385 error = ENOBUFS;
1386 goto fail;
1387 }
1388
1389 error = bus_dmamap_load(sc->sc_dmat, data->map,
1390 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1391 BUS_DMA_NOWAIT | BUS_DMA_READ);
1392 if (error != 0) {
1393 aprint_error_dev(sc->sc_dev,
1394 "can't not map mbuf (error %d)\n", error);
1395 goto fail;
1396 }
1397
1398 /* Set physical address of RX buffer (256-byte aligned). */
1399 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1400 }
1401
1402 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1403 BUS_DMASYNC_PREWRITE);
1404
1405 return 0;
1406
1407 fail: iwn_free_rx_ring(sc, ring);
1408 return error;
1409 }
1410
1411 static void
1412 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1413 {
1414 int ntries;
1415
1416 if (iwn_nic_lock(sc) == 0) {
1417 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1418 for (ntries = 0; ntries < 1000; ntries++) {
1419 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1420 IWN_FH_RX_STATUS_IDLE)
1421 break;
1422 DELAY(10);
1423 }
1424 iwn_nic_unlock(sc);
1425 }
1426 ring->cur = 0;
1427 sc->last_rx_valid = 0;
1428 }
1429
1430 static void
1431 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1432 {
1433 int i;
1434
1435 iwn_dma_contig_free(&ring->desc_dma);
1436 iwn_dma_contig_free(&ring->stat_dma);
1437
1438 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1439 struct iwn_rx_data *data = &ring->data[i];
1440
1441 if (data->m != NULL) {
1442 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1443 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1444 bus_dmamap_unload(sc->sc_dmat, data->map);
1445 m_freem(data->m);
1446 }
1447 if (data->map != NULL)
1448 bus_dmamap_destroy(sc->sc_dmat, data->map);
1449 }
1450 }
1451
1452 static int
1453 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1454 {
1455 bus_addr_t paddr;
1456 bus_size_t size;
1457 int i, error;
1458
1459 ring->qid = qid;
1460 ring->queued = 0;
1461 ring->cur = 0;
1462
1463 /* Allocate TX descriptors (256-byte aligned). */
1464 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1465 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1466 (void **)&ring->desc, size, 256);
1467 if (error != 0) {
1468 aprint_error_dev(sc->sc_dev,
1469 "could not allocate TX ring DMA memory\n");
1470 goto fail;
1471 }
1472 /*
1473 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1474 * to allocate commands space for other rings.
1475 * XXX Do we really need to allocate descriptors for other rings?
1476 */
1477 if (qid > 4)
1478 return 0;
1479
1480 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1481 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1482 (void **)&ring->cmd, size, 4);
1483 if (error != 0) {
1484 aprint_error_dev(sc->sc_dev,
1485 "could not allocate TX cmd DMA memory\n");
1486 goto fail;
1487 }
1488
1489 paddr = ring->cmd_dma.paddr;
1490 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1491 struct iwn_tx_data *data = &ring->data[i];
1492
1493 data->cmd_paddr = paddr;
1494 data->scratch_paddr = paddr + 12;
1495 paddr += sizeof (struct iwn_tx_cmd);
1496
1497 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1498 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1499 &data->map);
1500 if (error != 0) {
1501 aprint_error_dev(sc->sc_dev,
1502 "could not create TX buf DMA map\n");
1503 goto fail;
1504 }
1505 }
1506 return 0;
1507
1508 fail: iwn_free_tx_ring(sc, ring);
1509 return error;
1510 }
1511
1512 static void
1513 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1514 {
1515 int i;
1516
1517 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1518 struct iwn_tx_data *data = &ring->data[i];
1519
1520 if (data->m != NULL) {
1521 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1522 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1523 bus_dmamap_unload(sc->sc_dmat, data->map);
1524 m_freem(data->m);
1525 data->m = NULL;
1526 }
1527 }
1528 /* Clear TX descriptors. */
1529 memset(ring->desc, 0, ring->desc_dma.size);
1530 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1531 ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1532 sc->qfullmsk &= ~(1 << ring->qid);
1533 ring->queued = 0;
1534 ring->cur = 0;
1535 }
1536
1537 static void
1538 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1539 {
1540 int i;
1541
1542 iwn_dma_contig_free(&ring->desc_dma);
1543 iwn_dma_contig_free(&ring->cmd_dma);
1544
1545 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1546 struct iwn_tx_data *data = &ring->data[i];
1547
1548 if (data->m != NULL) {
1549 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1550 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1551 bus_dmamap_unload(sc->sc_dmat, data->map);
1552 m_freem(data->m);
1553 }
1554 if (data->map != NULL)
1555 bus_dmamap_destroy(sc->sc_dmat, data->map);
1556 }
1557 }
1558
1559 static void
1560 iwn5000_ict_reset(struct iwn_softc *sc)
1561 {
1562 /* Disable interrupts. */
1563 IWN_WRITE(sc, IWN_INT_MASK, 0);
1564
1565 /* Reset ICT table. */
1566 memset(sc->ict, 0, IWN_ICT_SIZE);
1567 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1568 BUS_DMASYNC_PREWRITE);
1569 sc->ict_cur = 0;
1570
1571 /* Set physical address of ICT table (4KB aligned). */
1572 DPRINTF(("enabling ICT\n"));
1573 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1574 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1575
1576 /* Enable periodic RX interrupt. */
1577 sc->int_mask |= IWN_INT_RX_PERIODIC;
1578 /* Switch to ICT interrupt mode in driver. */
1579 sc->sc_flags |= IWN_FLAG_USE_ICT;
1580
1581 /* Re-enable interrupts. */
1582 IWN_WRITE(sc, IWN_INT, 0xffffffff);
1583 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1584 }
1585
1586 static int
1587 iwn_read_eeprom(struct iwn_softc *sc)
1588 {
1589 struct iwn_ops *ops = &sc->ops;
1590 struct ieee80211com *ic = &sc->sc_ic;
1591 uint16_t val;
1592 int error;
1593
1594 /* Check whether adapter has an EEPROM or an OTPROM. */
1595 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1596 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1597 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1598 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1599 "OTPROM" : "EEPROM"));
1600
1601 /* Adapter has to be powered on for EEPROM access to work. */
1602 if ((error = iwn_apm_init(sc)) != 0) {
1603 aprint_error_dev(sc->sc_dev,
1604 "could not power ON adapter\n");
1605 return error;
1606 }
1607
1608 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1609 aprint_error_dev(sc->sc_dev,
1610 "bad ROM signature\n");
1611 return EIO;
1612 }
1613 if ((error = iwn_eeprom_lock(sc)) != 0) {
1614 aprint_error_dev(sc->sc_dev,
1615 "could not lock ROM (error=%d)\n", error);
1616 return error;
1617 }
1618 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1619 if ((error = iwn_init_otprom(sc)) != 0) {
1620 aprint_error_dev(sc->sc_dev,
1621 "could not initialize OTPROM\n");
1622 return error;
1623 }
1624 }
1625
1626 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1627 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1628 /* Check if HT support is bonded out. */
1629 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1630 sc->sc_flags |= IWN_FLAG_HAS_11N;
1631
1632 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1633 sc->rfcfg = le16toh(val);
1634 DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1635 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
1636 if (sc->txchainmask == 0)
1637 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1638 if (sc->rxchainmask == 0)
1639 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1640
1641 /* Read MAC address. */
1642 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1643
1644 /* Read adapter-specific information from EEPROM. */
1645 ops->read_eeprom(sc);
1646
1647 iwn_apm_stop(sc); /* Power OFF adapter. */
1648
1649 iwn_eeprom_unlock(sc);
1650 return 0;
1651 }
1652
1653 static void
1654 iwn4965_read_eeprom(struct iwn_softc *sc)
1655 {
1656 uint32_t addr;
1657 uint16_t val;
1658 int i;
1659
1660 /* Read regulatory domain (4 ASCII characters). */
1661 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1662
1663 /* Read the list of authorized channels (20MHz ones only). */
1664 for (i = 0; i < 5; i++) {
1665 addr = iwn4965_regulatory_bands[i];
1666 iwn_read_eeprom_channels(sc, i, addr);
1667 }
1668
1669 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1670 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1671 sc->maxpwr2GHz = val & 0xff;
1672 sc->maxpwr5GHz = val >> 8;
1673 /* Check that EEPROM values are within valid range. */
1674 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1675 sc->maxpwr5GHz = 38;
1676 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1677 sc->maxpwr2GHz = 38;
1678 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1679
1680 /* Read samples for each TX power group. */
1681 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1682 sizeof sc->bands);
1683
1684 /* Read voltage at which samples were taken. */
1685 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1686 sc->eeprom_voltage = (int16_t)le16toh(val);
1687 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1688
1689 #ifdef IWN_DEBUG
1690 /* Print samples. */
1691 if (iwn_debug > 0) {
1692 for (i = 0; i < IWN_NBANDS; i++)
1693 iwn4965_print_power_group(sc, i);
1694 }
1695 #endif
1696 }
1697
1698 #ifdef IWN_DEBUG
1699 static void
1700 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1701 {
1702 struct iwn4965_eeprom_band *band = &sc->bands[i];
1703 struct iwn4965_eeprom_chan_samples *chans = band->chans;
1704 int j, c;
1705
1706 aprint_normal("===band %d===\n", i);
1707 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1708 aprint_normal("chan1 num=%d\n", chans[0].num);
1709 for (c = 0; c < 2; c++) {
1710 for (j = 0; j < IWN_NSAMPLES; j++) {
1711 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1712 "power=%d pa_det=%d\n", c, j,
1713 chans[0].samples[c][j].temp,
1714 chans[0].samples[c][j].gain,
1715 chans[0].samples[c][j].power,
1716 chans[0].samples[c][j].pa_det);
1717 }
1718 }
1719 aprint_normal("chan2 num=%d\n", chans[1].num);
1720 for (c = 0; c < 2; c++) {
1721 for (j = 0; j < IWN_NSAMPLES; j++) {
1722 aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1723 "power=%d pa_det=%d\n", c, j,
1724 chans[1].samples[c][j].temp,
1725 chans[1].samples[c][j].gain,
1726 chans[1].samples[c][j].power,
1727 chans[1].samples[c][j].pa_det);
1728 }
1729 }
1730 }
1731 #endif
1732
1733 static void
1734 iwn5000_read_eeprom(struct iwn_softc *sc)
1735 {
1736 struct iwn5000_eeprom_calib_hdr hdr;
1737 int32_t volt;
1738 uint32_t base, addr;
1739 uint16_t val;
1740 int i;
1741
1742 /* Read regulatory domain (4 ASCII characters). */
1743 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1744 base = le16toh(val);
1745 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1746 sc->eeprom_domain, 4);
1747
1748 /* Read the list of authorized channels (20MHz ones only). */
1749 for (i = 0; i < 5; i++) {
1750 addr = base + iwn5000_regulatory_bands[i];
1751 iwn_read_eeprom_channels(sc, i, addr);
1752 }
1753
1754 /* Read enhanced TX power information for 6000 Series. */
1755 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1756 iwn_read_eeprom_enhinfo(sc);
1757
1758 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1759 base = le16toh(val);
1760 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1761 DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1762 hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1763 sc->calib_ver = hdr.version;
1764
1765 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1766 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1767 sc->hw_type == IWN_HW_REV_TYPE_135 ||
1768 sc->hw_type == IWN_HW_REV_TYPE_105) {
1769 sc->eeprom_voltage = le16toh(hdr.volt);
1770 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1771 sc->eeprom_temp = le16toh(val);
1772 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1773 sc->eeprom_rawtemp = le16toh(val);
1774 }
1775
1776 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1777 /* Compute temperature offset. */
1778 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1779 sc->eeprom_temp = le16toh(val);
1780 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1781 volt = le16toh(val);
1782 sc->temp_off = sc->eeprom_temp - (volt / -5);
1783 DPRINTF(("temp=%d volt=%d offset=%dK\n",
1784 sc->eeprom_temp, volt, sc->temp_off));
1785 } else {
1786 /* Read crystal calibration. */
1787 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1788 &sc->eeprom_crystal, sizeof (uint32_t));
1789 DPRINTF(("crystal calibration 0x%08x\n",
1790 le32toh(sc->eeprom_crystal)));
1791 }
1792 }
1793
1794 static void
1795 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1796 {
1797 struct ieee80211com *ic = &sc->sc_ic;
1798 const struct iwn_chan_band *band = &iwn_bands[n];
1799 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1800 uint8_t chan;
1801 int i;
1802
1803 iwn_read_prom_data(sc, addr, channels,
1804 band->nchan * sizeof (struct iwn_eeprom_chan));
1805
1806 for (i = 0; i < band->nchan; i++) {
1807 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1808 continue;
1809
1810 chan = band->chan[i];
1811
1812 if (n == 0) { /* 2GHz band */
1813 ic->ic_channels[chan].ic_freq =
1814 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1815 ic->ic_channels[chan].ic_flags =
1816 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1817 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1818
1819 } else { /* 5GHz band */
1820 /*
1821 * Some adapters support channels 7, 8, 11 and 12
1822 * both in the 2GHz and 4.9GHz bands.
1823 * Because of limitations in our net80211 layer,
1824 * we don't support them in the 4.9GHz band.
1825 */
1826 if (chan <= 14)
1827 continue;
1828
1829 ic->ic_channels[chan].ic_freq =
1830 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1831 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1832 /* We have at least one valid 5GHz channel. */
1833 sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1834 }
1835
1836 /* Is active scan allowed on this channel? */
1837 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1838 ic->ic_channels[chan].ic_flags |=
1839 IEEE80211_CHAN_PASSIVE;
1840 }
1841
1842 /* Save maximum allowed TX power for this channel. */
1843 sc->maxpwr[chan] = channels[i].maxpwr;
1844
1845 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1846 chan, channels[i].flags, sc->maxpwr[chan]));
1847 }
1848 }
1849
1850 static void
1851 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1852 {
1853 struct iwn_eeprom_enhinfo enhinfo[35];
1854 uint16_t val, base;
1855 int8_t maxpwr;
1856 uint8_t flags;
1857 int i;
1858
1859 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1860 base = le16toh(val);
1861 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1862 enhinfo, sizeof enhinfo);
1863
1864 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1865 for (i = 0; i < __arraycount(enhinfo); i++) {
1866 flags = enhinfo[i].flags;
1867 if (!(flags & IWN_ENHINFO_VALID))
1868 continue; /* Skip invalid entries. */
1869
1870 maxpwr = 0;
1871 if (sc->txchainmask & IWN_ANT_A)
1872 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1873 if (sc->txchainmask & IWN_ANT_B)
1874 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1875 if (sc->txchainmask & IWN_ANT_C)
1876 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1877 if (sc->ntxchains == 2)
1878 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1879 else if (sc->ntxchains == 3)
1880 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1881 maxpwr /= 2; /* Convert half-dBm to dBm. */
1882
1883 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1884 sc->enh_maxpwr[i] = maxpwr;
1885 }
1886 }
1887
1888 static struct ieee80211_node *
1889 iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1890 {
1891 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1892 }
1893
1894 static void
1895 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1896 {
1897 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1898 struct iwn_node *wn = (void *)ni;
1899 uint8_t rate;
1900 int ridx, i;
1901
1902 ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1903 /* Start at lowest available bit-rate, AMRR will raise. */
1904 ni->ni_txrate = 0;
1905
1906 for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1907 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1908 /* Map 802.11 rate to HW rate index. */
1909 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1910 if (iwn_rates[ridx].rate == rate)
1911 break;
1912 wn->ridx[i] = ridx;
1913 }
1914 }
1915
1916 static int
1917 iwn_media_change(struct ifnet *ifp)
1918 {
1919 struct iwn_softc *sc = ifp->if_softc;
1920 struct ieee80211com *ic = &sc->sc_ic;
1921 uint8_t rate, ridx;
1922 int error;
1923
1924 error = ieee80211_media_change(ifp);
1925 if (error != ENETRESET)
1926 return error;
1927
1928 if (ic->ic_fixed_rate != -1) {
1929 rate = ic->ic_sup_rates[ic->ic_curmode].
1930 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1931 /* Map 802.11 rate to HW rate index. */
1932 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1933 if (iwn_rates[ridx].rate == rate)
1934 break;
1935 sc->fixed_ridx = ridx;
1936 }
1937
1938 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1939 (IFF_UP | IFF_RUNNING)) {
1940 iwn_stop(ifp, 0);
1941 error = iwn_init(ifp);
1942 }
1943 return error;
1944 }
1945
1946 static int
1947 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1948 {
1949 struct ifnet *ifp = ic->ic_ifp;
1950 struct iwn_softc *sc = ifp->if_softc;
1951 int error;
1952
1953 callout_stop(&sc->calib_to);
1954
1955 switch (nstate) {
1956 case IEEE80211_S_SCAN:
1957 /* XXX Do not abort a running scan. */
1958 if (sc->sc_flags & IWN_FLAG_SCANNING) {
1959 if (ic->ic_state != nstate)
1960 aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1961 "while scanning(%d) ignored\n", nstate,
1962 ic->ic_state);
1963 break;
1964 }
1965
1966 /* XXX Not sure if call and flags are needed. */
1967 ieee80211_node_table_reset(&ic->ic_scan);
1968 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1969 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1970
1971 /* Make the link LED blink while we're scanning. */
1972 iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1973
1974 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1975 aprint_error_dev(sc->sc_dev,
1976 "could not initiate scan\n");
1977 return error;
1978 }
1979 ic->ic_state = nstate;
1980 return 0;
1981
1982 case IEEE80211_S_ASSOC:
1983 if (ic->ic_state != IEEE80211_S_RUN)
1984 break;
1985 /* FALLTHROUGH */
1986 case IEEE80211_S_AUTH:
1987 /* Reset state to handle reassociations correctly. */
1988 sc->rxon.associd = 0;
1989 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1990 sc->calib.state = IWN_CALIB_STATE_INIT;
1991
1992 /* Wait until we hear a beacon before we transmit */
1993 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1994 sc->sc_beacon_wait = 1;
1995
1996 if ((error = iwn_auth(sc)) != 0) {
1997 aprint_error_dev(sc->sc_dev,
1998 "could not move to auth state\n");
1999 return error;
2000 }
2001 break;
2002
2003 case IEEE80211_S_RUN:
2004 /*
2005 * RUN -> RUN transition; Just restart timers.
2006 */
2007 if (ic->ic_state == IEEE80211_S_RUN) {
2008 sc->calib_cnt = 0;
2009 break;
2010 }
2011
2012 /* Wait until we hear a beacon before we transmit */
2013 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2014 sc->sc_beacon_wait = 1;
2015
2016 if ((error = iwn_run(sc)) != 0) {
2017 aprint_error_dev(sc->sc_dev,
2018 "could not move to run state\n");
2019 return error;
2020 }
2021 break;
2022
2023 case IEEE80211_S_INIT:
2024 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2025 sc->calib.state = IWN_CALIB_STATE_INIT;
2026 /*
2027 * Purge the xmit queue so we don't have old frames
2028 * during a new association attempt.
2029 */
2030 sc->sc_beacon_wait = 0;
2031 ifp->if_flags &= ~IFF_OACTIVE;
2032 iwn_start(ifp);
2033 break;
2034 }
2035
2036 return sc->sc_newstate(ic, nstate, arg);
2037 }
2038
2039 static void
2040 iwn_iter_func(void *arg, struct ieee80211_node *ni)
2041 {
2042 struct iwn_softc *sc = arg;
2043 struct iwn_node *wn = (struct iwn_node *)ni;
2044
2045 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2046 }
2047
2048 static void
2049 iwn_calib_timeout(void *arg)
2050 {
2051 struct iwn_softc *sc = arg;
2052 struct ieee80211com *ic = &sc->sc_ic;
2053 int s;
2054
2055 s = splnet();
2056 if (ic->ic_fixed_rate == -1) {
2057 if (ic->ic_opmode == IEEE80211_M_STA)
2058 iwn_iter_func(sc, ic->ic_bss);
2059 else
2060 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2061 }
2062 /* Force automatic TX power calibration every 60 secs. */
2063 if (++sc->calib_cnt >= 120) {
2064 uint32_t flags = 0;
2065
2066 DPRINTF(("sending request for statistics\n"));
2067 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2068 sizeof flags, 1);
2069 sc->calib_cnt = 0;
2070 }
2071 splx(s);
2072
2073 /* Automatic rate control triggered every 500ms. */
2074 callout_schedule(&sc->calib_to, mstohz(500));
2075 }
2076
2077 /*
2078 * Process an RX_PHY firmware notification. This is usually immediately
2079 * followed by an MPDU_RX_DONE notification.
2080 */
2081 static void
2082 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2083 struct iwn_rx_data *data)
2084 {
2085 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2086
2087 DPRINTFN(2, ("received PHY stats\n"));
2088 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2089 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2090
2091 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
2092 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2093 sc->last_rx_valid = 1;
2094 }
2095
2096 /*
2097 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2098 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2099 */
2100 static void
2101 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2102 struct iwn_rx_data *data)
2103 {
2104 struct iwn_ops *ops = &sc->ops;
2105 struct ieee80211com *ic = &sc->sc_ic;
2106 struct ifnet *ifp = ic->ic_ifp;
2107 struct iwn_rx_ring *ring = &sc->rxq;
2108 struct ieee80211_frame *wh;
2109 struct ieee80211_node *ni;
2110 struct mbuf *m, *m1;
2111 struct iwn_rx_stat *stat;
2112 char *head;
2113 uint32_t flags;
2114 int error, len, rssi, s;
2115
2116 if (desc->type == IWN_MPDU_RX_DONE) {
2117 /* Check for prior RX_PHY notification. */
2118 if (!sc->last_rx_valid) {
2119 DPRINTF(("missing RX_PHY\n"));
2120 return;
2121 }
2122 sc->last_rx_valid = 0;
2123 stat = &sc->last_rx_stat;
2124 } else
2125 stat = (struct iwn_rx_stat *)(desc + 1);
2126
2127 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2128 BUS_DMASYNC_POSTREAD);
2129
2130 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2131 aprint_error_dev(sc->sc_dev,
2132 "invalid RX statistic header\n");
2133 return;
2134 }
2135 if (desc->type == IWN_MPDU_RX_DONE) {
2136 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2137 head = (char *)(mpdu + 1);
2138 len = le16toh(mpdu->len);
2139 } else {
2140 head = (char *)(stat + 1) + stat->cfg_phy_len;
2141 len = le16toh(stat->len);
2142 }
2143
2144 flags = le32toh(*(uint32_t *)(head + len));
2145
2146 /* Discard frames with a bad FCS early. */
2147 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2148 DPRINTFN(2, ("RX flags error %x\n", flags));
2149 if_statinc(ifp, if_ierrors);
2150 return;
2151 }
2152 /* Discard frames that are too short. */
2153 if (len < sizeof (*wh)) {
2154 DPRINTF(("frame too short: %d\n", len));
2155 ic->ic_stats.is_rx_tooshort++;
2156 if_statinc(ifp, if_ierrors);
2157 return;
2158 }
2159
2160 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2161 if (m1 == NULL) {
2162 ic->ic_stats.is_rx_nobuf++;
2163 if_statinc(ifp, if_ierrors);
2164 return;
2165 }
2166 bus_dmamap_unload(sc->sc_dmat, data->map);
2167
2168 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2169 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2170 if (error != 0) {
2171 m_freem(m1);
2172
2173 /* Try to reload the old mbuf. */
2174 error = bus_dmamap_load(sc->sc_dmat, data->map,
2175 mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2176 BUS_DMA_NOWAIT | BUS_DMA_READ);
2177 if (error != 0) {
2178 panic("%s: could not load old RX mbuf",
2179 device_xname(sc->sc_dev));
2180 }
2181 /* Physical address may have changed. */
2182 ring->desc[ring->cur] =
2183 htole32(data->map->dm_segs[0].ds_addr >> 8);
2184 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2185 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2186 BUS_DMASYNC_PREWRITE);
2187 if_statinc(ifp, if_ierrors);
2188 return;
2189 }
2190
2191 m = data->m;
2192 data->m = m1;
2193 /* Update RX descriptor. */
2194 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2195 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2196 ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2197 BUS_DMASYNC_PREWRITE);
2198
2199 /* Finalize mbuf. */
2200 m_set_rcvif(m, ifp);
2201 m->m_data = head;
2202 m->m_pkthdr.len = m->m_len = len;
2203
2204 s = splnet();
2205
2206 /* Grab a reference to the source node. */
2207 wh = mtod(m, struct ieee80211_frame *);
2208 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2209
2210 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2211 /* NetBSD does decryption in ieee80211_input. */
2212
2213 rssi = ops->get_rssi(stat);
2214
2215 /* XXX Added for NetBSD: scans never stop without it */
2216 if (ic->ic_state == IEEE80211_S_SCAN)
2217 iwn_fix_channel(ic, m, stat);
2218
2219 if (sc->sc_drvbpf != NULL) {
2220 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2221
2222 tap->wr_flags = 0;
2223 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2224 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2225 tap->wr_chan_freq =
2226 htole16(ic->ic_channels[stat->chan].ic_freq);
2227 tap->wr_chan_flags =
2228 htole16(ic->ic_channels[stat->chan].ic_flags);
2229 tap->wr_dbm_antsignal = (int8_t)rssi;
2230 tap->wr_dbm_antnoise = (int8_t)sc->noise;
2231 tap->wr_tsft = stat->tstamp;
2232 switch (stat->rate) {
2233 /* CCK rates. */
2234 case 10: tap->wr_rate = 2; break;
2235 case 20: tap->wr_rate = 4; break;
2236 case 55: tap->wr_rate = 11; break;
2237 case 110: tap->wr_rate = 22; break;
2238 /* OFDM rates. */
2239 case 0xd: tap->wr_rate = 12; break;
2240 case 0xf: tap->wr_rate = 18; break;
2241 case 0x5: tap->wr_rate = 24; break;
2242 case 0x7: tap->wr_rate = 36; break;
2243 case 0x9: tap->wr_rate = 48; break;
2244 case 0xb: tap->wr_rate = 72; break;
2245 case 0x1: tap->wr_rate = 96; break;
2246 case 0x3: tap->wr_rate = 108; break;
2247 /* Unknown rate: should not happen. */
2248 default: tap->wr_rate = 0;
2249 }
2250
2251 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2252 }
2253
2254 /*
2255 * If it's a beacon and we're waiting, then do the wakeup.
2256 */
2257 if (sc->sc_beacon_wait) {
2258 uint8_t type, subtype;
2259 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2260 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2261 /*
2262 * This assumes at this point we've received our own
2263 * beacon.
2264 */
2265 if (type == IEEE80211_FC0_TYPE_MGT &&
2266 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2267 sc->sc_beacon_wait = 0;
2268 ifp->if_flags &= ~IFF_OACTIVE;
2269 iwn_start(ifp);
2270 }
2271 }
2272
2273 /* Send the frame to the 802.11 layer. */
2274 ieee80211_input(ic, m, ni, rssi, 0);
2275
2276 /* Node is no longer needed. */
2277 ieee80211_free_node(ni);
2278
2279 splx(s);
2280 }
2281
2282 #ifndef IEEE80211_NO_HT
2283 /* Process an incoming Compressed BlockAck. */
2284 static void
2285 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2286 struct iwn_rx_data *data)
2287 {
2288 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2289 struct iwn_tx_ring *txq;
2290
2291 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2292 BUS_DMASYNC_POSTREAD);
2293
2294 txq = &sc->txq[le16toh(ba->qid)];
2295 /* XXX TBD */
2296 }
2297 #endif
2298
2299 /*
2300 * Process a CALIBRATION_RESULT notification sent by the initialization
2301 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2302 */
2303 static void
2304 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2305 struct iwn_rx_data *data)
2306 {
2307 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2308 int len, idx = -1;
2309
2310 /* Runtime firmware should not send such a notification. */
2311 if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2312 return;
2313
2314 len = (le32toh(desc->len) & 0x3fff) - 4;
2315 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2316 BUS_DMASYNC_POSTREAD);
2317
2318 switch (calib->code) {
2319 case IWN5000_PHY_CALIB_DC:
2320 if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2321 sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2322 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2323 sc->hw_type == IWN_HW_REV_TYPE_135 ||
2324 sc->hw_type == IWN_HW_REV_TYPE_105)
2325 idx = 0;
2326 break;
2327 case IWN5000_PHY_CALIB_LO:
2328 idx = 1;
2329 break;
2330 case IWN5000_PHY_CALIB_TX_IQ:
2331 idx = 2;
2332 break;
2333 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2334 if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2335 sc->hw_type != IWN_HW_REV_TYPE_5150)
2336 idx = 3;
2337 break;
2338 case IWN5000_PHY_CALIB_BASE_BAND:
2339 idx = 4;
2340 break;
2341 }
2342 if (idx == -1) /* Ignore other results. */
2343 return;
2344
2345 /* Save calibration result. */
2346 if (sc->calibcmd[idx].buf != NULL)
2347 free(sc->calibcmd[idx].buf, M_DEVBUF);
2348 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2349 if (sc->calibcmd[idx].buf == NULL) {
2350 DPRINTF(("not enough memory for calibration result %d\n",
2351 calib->code));
2352 return;
2353 }
2354 DPRINTF(("saving calibration result code=%d len=%d\n",
2355 calib->code, len));
2356 sc->calibcmd[idx].len = len;
2357 memcpy(sc->calibcmd[idx].buf, calib, len);
2358 }
2359
2360 /*
2361 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2362 * The latter is sent by the firmware after each received beacon.
2363 */
2364 static void
2365 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2366 struct iwn_rx_data *data)
2367 {
2368 struct iwn_ops *ops = &sc->ops;
2369 struct ieee80211com *ic = &sc->sc_ic;
2370 struct iwn_calib_state *calib = &sc->calib;
2371 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2372 int temp;
2373
2374 /* Ignore statistics received during a scan. */
2375 if (ic->ic_state != IEEE80211_S_RUN)
2376 return;
2377
2378 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2379 sizeof (*stats), BUS_DMASYNC_POSTREAD);
2380
2381 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2382 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
2383
2384 /* Test if temperature has changed. */
2385 if (stats->general.temp != sc->rawtemp) {
2386 /* Convert "raw" temperature to degC. */
2387 sc->rawtemp = stats->general.temp;
2388 temp = ops->get_temperature(sc);
2389 DPRINTFN(2, ("temperature=%dC\n", temp));
2390
2391 /* Update TX power if need be (4965AGN only). */
2392 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2393 iwn4965_power_calibration(sc, temp);
2394 }
2395
2396 if (desc->type != IWN_BEACON_STATISTICS)
2397 return; /* Reply to a statistics request. */
2398
2399 sc->noise = iwn_get_noise(&stats->rx.general);
2400
2401 /* Test that RSSI and noise are present in stats report. */
2402 if (le32toh(stats->rx.general.flags) != 1) {
2403 DPRINTF(("received statistics without RSSI\n"));
2404 return;
2405 }
2406
2407 /*
2408 * XXX Differential gain calibration makes the 6005 firmware
2409 * crap out, so skip it for now. This effectively disables
2410 * sensitivity tuning as well.
2411 */
2412 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2413 return;
2414
2415 if (calib->state == IWN_CALIB_STATE_ASSOC)
2416 iwn_collect_noise(sc, &stats->rx.general);
2417 else if (calib->state == IWN_CALIB_STATE_RUN)
2418 iwn_tune_sensitivity(sc, &stats->rx);
2419 }
2420
2421 /*
2422 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
2423 * and 5000 adapters have different incompatible TX status formats.
2424 */
2425 static void
2426 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2427 struct iwn_rx_data *data)
2428 {
2429 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2430
2431 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2432 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2433 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2434 }
2435
2436 static void
2437 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2438 struct iwn_rx_data *data)
2439 {
2440 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2441
2442 #ifdef notyet
2443 /* Reset TX scheduler slot. */
2444 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2445 #endif
2446
2447 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2448 sizeof (*stat), BUS_DMASYNC_POSTREAD);
2449 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2450 }
2451
2452 /*
2453 * Adapter-independent backend for TX_DONE firmware notifications.
2454 */
2455 static void
2456 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2457 uint8_t status)
2458 {
2459 struct ieee80211com *ic = &sc->sc_ic;
2460 struct ifnet *ifp = ic->ic_ifp;
2461 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2462 struct iwn_tx_data *data = &ring->data[desc->idx];
2463 struct iwn_node *wn = (struct iwn_node *)data->ni;
2464 int s;
2465
2466 s = splnet();
2467
2468 /* Update rate control statistics. */
2469 wn->amn.amn_txcnt++;
2470 if (ackfailcnt > 0)
2471 wn->amn.amn_retrycnt++;
2472
2473 if (status != 1 && status != 2)
2474 if_statinc(ifp, if_oerrors);
2475 else
2476 if_statinc(ifp, if_opackets);
2477
2478 /* Unmap and free mbuf. */
2479 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2480 BUS_DMASYNC_POSTWRITE);
2481 bus_dmamap_unload(sc->sc_dmat, data->map);
2482 m_freem(data->m);
2483 data->m = NULL;
2484 ieee80211_free_node(data->ni);
2485 data->ni = NULL;
2486
2487 sc->sc_tx_timer = 0;
2488 if (--ring->queued < IWN_TX_RING_LOMARK) {
2489 sc->qfullmsk &= ~(1 << ring->qid);
2490 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2491 ifp->if_flags &= ~IFF_OACTIVE;
2492 iwn_start(ifp);
2493 }
2494 }
2495
2496 splx(s);
2497 }
2498
2499 /*
2500 * Process a "command done" firmware notification. This is where we wakeup
2501 * processes waiting for a synchronous command completion.
2502 */
2503 static void
2504 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2505 {
2506 struct iwn_tx_ring *ring = &sc->txq[4];
2507 struct iwn_tx_data *data;
2508
2509 if ((desc->qid & 0xf) != 4)
2510 return; /* Not a command ack. */
2511
2512 data = &ring->data[desc->idx];
2513
2514 /* If the command was mapped in an mbuf, free it. */
2515 if (data->m != NULL) {
2516 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2517 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2518 bus_dmamap_unload(sc->sc_dmat, data->map);
2519 m_freem(data->m);
2520 data->m = NULL;
2521 }
2522 wakeup(&ring->desc[desc->idx]);
2523 }
2524
2525 /*
2526 * Process an INT_FH_RX or INT_SW_RX interrupt.
2527 */
2528 static void
2529 iwn_notif_intr(struct iwn_softc *sc)
2530 {
2531 struct iwn_ops *ops = &sc->ops;
2532 struct ieee80211com *ic = &sc->sc_ic;
2533 struct ifnet *ifp = ic->ic_ifp;
2534 uint16_t hw;
2535 int s;
2536
2537 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2538 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2539
2540 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2541 while (sc->rxq.cur != hw) {
2542 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2543 struct iwn_rx_desc *desc;
2544
2545 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2546 BUS_DMASYNC_POSTREAD);
2547 desc = mtod(data->m, struct iwn_rx_desc *);
2548
2549 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2550 desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2551
2552 if (!(desc->qid & 0x80)) /* Reply to a command. */
2553 iwn_cmd_done(sc, desc);
2554
2555 switch (desc->type) {
2556 case IWN_RX_PHY:
2557 iwn_rx_phy(sc, desc, data);
2558 break;
2559
2560 case IWN_RX_DONE: /* 4965AGN only. */
2561 case IWN_MPDU_RX_DONE:
2562 /* An 802.11 frame has been received. */
2563 iwn_rx_done(sc, desc, data);
2564 break;
2565 #ifndef IEEE80211_NO_HT
2566 case IWN_RX_COMPRESSED_BA:
2567 /* A Compressed BlockAck has been received. */
2568 iwn_rx_compressed_ba(sc, desc, data);
2569 break;
2570 #endif
2571 case IWN_TX_DONE:
2572 /* An 802.11 frame has been transmitted. */
2573 ops->tx_done(sc, desc, data);
2574 break;
2575
2576 case IWN_RX_STATISTICS:
2577 case IWN_BEACON_STATISTICS:
2578 iwn_rx_statistics(sc, desc, data);
2579 break;
2580
2581 case IWN_BEACON_MISSED:
2582 {
2583 struct iwn_beacon_missed *miss =
2584 (struct iwn_beacon_missed *)(desc + 1);
2585
2586 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2587 sizeof (*miss), BUS_DMASYNC_POSTREAD);
2588 /*
2589 * If more than 5 consecutive beacons are missed,
2590 * reinitialize the sensitivity state machine.
2591 */
2592 DPRINTF(("beacons missed %d/%d\n",
2593 le32toh(miss->consecutive), le32toh(miss->total)));
2594 if (ic->ic_state == IEEE80211_S_RUN &&
2595 le32toh(miss->consecutive) > 5)
2596 (void)iwn_init_sensitivity(sc);
2597 break;
2598 }
2599 case IWN_UC_READY:
2600 {
2601 struct iwn_ucode_info *uc =
2602 (struct iwn_ucode_info *)(desc + 1);
2603
2604 /* The microcontroller is ready. */
2605 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2606 sizeof (*uc), BUS_DMASYNC_POSTREAD);
2607 DPRINTF(("microcode alive notification version=%d.%d "
2608 "subtype=%x alive=%x\n", uc->major, uc->minor,
2609 uc->subtype, le32toh(uc->valid)));
2610
2611 if (le32toh(uc->valid) != 1) {
2612 aprint_error_dev(sc->sc_dev,
2613 "microcontroller initialization "
2614 "failed\n");
2615 break;
2616 }
2617 if (uc->subtype == IWN_UCODE_INIT) {
2618 /* Save microcontroller report. */
2619 memcpy(&sc->ucode_info, uc, sizeof (*uc));
2620 }
2621 /* Save the address of the error log in SRAM. */
2622 sc->errptr = le32toh(uc->errptr);
2623 break;
2624 }
2625 case IWN_STATE_CHANGED:
2626 {
2627 uint32_t *status = (uint32_t *)(desc + 1);
2628
2629 /* Enabled/disabled notification. */
2630 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2631 sizeof (*status), BUS_DMASYNC_POSTREAD);
2632 DPRINTF(("state changed to %x\n", le32toh(*status)));
2633
2634 if (le32toh(*status) & 1) {
2635 /* The radio button has to be pushed. */
2636 aprint_error_dev(sc->sc_dev,
2637 "Radio transmitter is off\n");
2638 /* Turn the interface down. */
2639 s = splnet();
2640 ifp->if_flags &= ~IFF_UP;
2641 iwn_stop(ifp, 1);
2642 splx(s);
2643 return; /* No further processing. */
2644 }
2645 break;
2646 }
2647 case IWN_START_SCAN:
2648 {
2649 struct iwn_start_scan *scan =
2650 (struct iwn_start_scan *)(desc + 1);
2651
2652 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2653 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2654 DPRINTFN(2, ("scanning channel %d status %x\n",
2655 scan->chan, le32toh(scan->status)));
2656
2657 /* Fix current channel. */
2658 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2659 break;
2660 }
2661 case IWN_STOP_SCAN:
2662 {
2663 struct iwn_stop_scan *scan =
2664 (struct iwn_stop_scan *)(desc + 1);
2665
2666 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2667 sizeof (*scan), BUS_DMASYNC_POSTREAD);
2668 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2669 scan->nchan, scan->status, scan->chan));
2670
2671 if (scan->status == 1 && scan->chan <= 14 &&
2672 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2673 /*
2674 * We just finished scanning 2GHz channels,
2675 * start scanning 5GHz ones.
2676 */
2677 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2678 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2679 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2680 break;
2681 }
2682 sc->sc_flags &= ~IWN_FLAG_SCANNING;
2683 ieee80211_end_scan(ic);
2684 break;
2685 }
2686 case IWN5000_CALIBRATION_RESULT:
2687 iwn5000_rx_calib_results(sc, desc, data);
2688 break;
2689
2690 case IWN5000_CALIBRATION_DONE:
2691 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2692 wakeup(sc);
2693 break;
2694 }
2695
2696 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2697 }
2698
2699 /* Tell the firmware what we have processed. */
2700 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2701 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2702 }
2703
2704 /*
2705 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2706 * from power-down sleep mode.
2707 */
2708 static void
2709 iwn_wakeup_intr(struct iwn_softc *sc)
2710 {
2711 int qid;
2712
2713 DPRINTF(("ucode wakeup from power-down sleep\n"));
2714
2715 /* Wakeup RX and TX rings. */
2716 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2717 for (qid = 0; qid < sc->ntxqs; qid++) {
2718 struct iwn_tx_ring *ring = &sc->txq[qid];
2719 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2720 }
2721 }
2722
2723 /*
2724 * Dump the error log of the firmware when a firmware panic occurs. Although
2725 * we can't debug the firmware because it is neither open source nor free, it
2726 * can help us to identify certain classes of problems.
2727 */
2728 static void
2729 iwn_fatal_intr(struct iwn_softc *sc)
2730 {
2731 struct iwn_fw_dump dump;
2732 int i;
2733
2734 /* Force a complete recalibration on next init. */
2735 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2736
2737 /* Check that the error log address is valid. */
2738 if (sc->errptr < IWN_FW_DATA_BASE ||
2739 sc->errptr + sizeof (dump) >
2740 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2741 aprint_error_dev(sc->sc_dev,
2742 "bad firmware error log address 0x%08x\n", sc->errptr);
2743 return;
2744 }
2745 if (iwn_nic_lock(sc) != 0) {
2746 aprint_error_dev(sc->sc_dev,
2747 "could not read firmware error log\n");
2748 return;
2749 }
2750 /* Read firmware error log from SRAM. */
2751 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2752 sizeof (dump) / sizeof (uint32_t));
2753 iwn_nic_unlock(sc);
2754
2755 if (dump.valid == 0) {
2756 aprint_error_dev(sc->sc_dev,
2757 "firmware error log is empty\n");
2758 return;
2759 }
2760 aprint_error("firmware error log:\n");
2761 aprint_error(" error type = \"%s\" (0x%08X)\n",
2762 (dump.id < __arraycount(iwn_fw_errmsg)) ?
2763 iwn_fw_errmsg[dump.id] : "UNKNOWN",
2764 dump.id);
2765 aprint_error(" program counter = 0x%08X\n", dump.pc);
2766 aprint_error(" source line = 0x%08X\n", dump.src_line);
2767 aprint_error(" error data = 0x%08X%08X\n",
2768 dump.error_data[0], dump.error_data[1]);
2769 aprint_error(" branch link = 0x%08X%08X\n",
2770 dump.branch_link[0], dump.branch_link[1]);
2771 aprint_error(" interrupt link = 0x%08X%08X\n",
2772 dump.interrupt_link[0], dump.interrupt_link[1]);
2773 aprint_error(" time = %u\n", dump.time[0]);
2774
2775 /* Dump driver status (TX and RX rings) while we're here. */
2776 aprint_error("driver status:\n");
2777 for (i = 0; i < sc->ntxqs; i++) {
2778 struct iwn_tx_ring *ring = &sc->txq[i];
2779 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2780 i, ring->qid, ring->cur, ring->queued);
2781 }
2782 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
2783 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
2784 }
2785
2786 static int
2787 iwn_intr(void *arg)
2788 {
2789 struct iwn_softc *sc = arg;
2790
2791 /* Disable interrupts. */
2792 IWN_WRITE(sc, IWN_INT_MASK, 0);
2793
2794 softint_schedule(sc->sc_soft_ih);
2795 return 1;
2796 }
2797
2798 static void
2799 iwn_softintr(void *arg)
2800 {
2801 struct iwn_softc *sc = arg;
2802 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2803 uint32_t r1, r2, tmp;
2804 int s;
2805
2806 /* Read interrupts from ICT (fast) or from registers (slow). */
2807 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2808 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2809 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2810 tmp = 0;
2811 while (sc->ict[sc->ict_cur] != 0) {
2812 tmp |= sc->ict[sc->ict_cur];
2813 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
2814 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2815 }
2816 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2817 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2818 tmp = le32toh(tmp);
2819 if (tmp == 0xffffffff) /* Shouldn't happen. */
2820 tmp = 0;
2821 else if (tmp & 0xc0000) /* Workaround a HW bug. */
2822 tmp |= 0x8000;
2823 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2824 r2 = 0; /* Unused. */
2825 } else {
2826 r1 = IWN_READ(sc, IWN_INT);
2827 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2828 return; /* Hardware gone! */
2829 r2 = IWN_READ(sc, IWN_FH_INT);
2830 }
2831 if (r1 == 0 && r2 == 0) {
2832 goto out; /* Interrupt not for us. */
2833 }
2834
2835 /* Acknowledge interrupts. */
2836 IWN_WRITE(sc, IWN_INT, r1);
2837 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2838 IWN_WRITE(sc, IWN_FH_INT, r2);
2839
2840 if (r1 & IWN_INT_RF_TOGGLED) {
2841 tmp = IWN_READ(sc, IWN_GP_CNTRL);
2842 aprint_error_dev(sc->sc_dev,
2843 "RF switch: radio %s\n",
2844 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2845 }
2846 if (r1 & IWN_INT_CT_REACHED) {
2847 aprint_error_dev(sc->sc_dev,
2848 "critical temperature reached!\n");
2849 }
2850 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2851 aprint_error_dev(sc->sc_dev,
2852 "fatal firmware error\n");
2853 /* Dump firmware error log and stop. */
2854 iwn_fatal_intr(sc);
2855 s = splnet();
2856 ifp->if_flags &= ~IFF_UP;
2857 iwn_stop(ifp, 1);
2858 splx(s);
2859 return;
2860 }
2861 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2862 (r2 & IWN_FH_INT_RX)) {
2863 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2864 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2865 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2866 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2867 iwn_notif_intr(sc);
2868 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2869 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2870 IWN_INT_PERIODIC_ENA);
2871 }
2872 } else
2873 iwn_notif_intr(sc);
2874 }
2875
2876 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2877 if (sc->sc_flags & IWN_FLAG_USE_ICT)
2878 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2879 wakeup(sc); /* FH DMA transfer completed. */
2880 }
2881
2882 if (r1 & IWN_INT_ALIVE)
2883 wakeup(sc); /* Firmware is alive. */
2884
2885 if (r1 & IWN_INT_WAKEUP)
2886 iwn_wakeup_intr(sc);
2887
2888 out:
2889 /* Re-enable interrupts. */
2890 if (ifp->if_flags & IFF_UP)
2891 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2892 }
2893
2894 /*
2895 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2896 * 5000 adapters use a slightly different format).
2897 */
2898 static void
2899 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2900 uint16_t len)
2901 {
2902 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2903
2904 *w = htole16(len + 8);
2905 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2906 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2907 sizeof (uint16_t),
2908 BUS_DMASYNC_PREWRITE);
2909 if (idx < IWN_SCHED_WINSZ) {
2910 *(w + IWN_TX_RING_COUNT) = *w;
2911 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2912 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2913 (char *)(void *)sc->sched_dma.vaddr,
2914 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2915 }
2916 }
2917
2918 static void
2919 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2920 uint16_t len)
2921 {
2922 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2923
2924 *w = htole16(id << 12 | (len + 8));
2925 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2926 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2927 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2928 if (idx < IWN_SCHED_WINSZ) {
2929 *(w + IWN_TX_RING_COUNT) = *w;
2930 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2931 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2932 (char *)(void *)sc->sched_dma.vaddr,
2933 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2934 }
2935 }
2936
2937 #ifdef notyet
2938 static void
2939 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2940 {
2941 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2942
2943 *w = (*w & htole16(0xf000)) | htole16(1);
2944 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2945 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2946 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2947 if (idx < IWN_SCHED_WINSZ) {
2948 *(w + IWN_TX_RING_COUNT) = *w;
2949 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2950 (char *)(void *)(w + IWN_TX_RING_COUNT) -
2951 (char *)(void *)sc->sched_dma.vaddr,
2952 sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2953 }
2954 }
2955 #endif
2956
2957 static int
2958 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2959 {
2960 struct ieee80211com *ic = &sc->sc_ic;
2961 struct iwn_node *wn = (void *)ni;
2962 struct iwn_tx_ring *ring;
2963 struct iwn_tx_desc *desc;
2964 struct iwn_tx_data *data;
2965 struct iwn_tx_cmd *cmd;
2966 struct iwn_cmd_data *tx;
2967 const struct iwn_rate *rinfo;
2968 struct ieee80211_frame *wh;
2969 struct ieee80211_key *k = NULL;
2970 struct mbuf *m1;
2971 uint32_t flags;
2972 u_int hdrlen;
2973 bus_dma_segment_t *seg;
2974 uint8_t tid, ridx, txant, type;
2975 int i, totlen, error, pad;
2976
2977 const struct chanAccParams *cap;
2978 int noack;
2979 int hdrlen2;
2980
2981 wh = mtod(m, struct ieee80211_frame *);
2982 hdrlen = ieee80211_anyhdrsize(wh);
2983 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2984
2985 hdrlen2 = (ieee80211_has_qos(wh)) ?
2986 sizeof (struct ieee80211_qosframe) :
2987 sizeof (struct ieee80211_frame);
2988
2989 if (hdrlen != hdrlen2)
2990 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2991 hdrlen, hdrlen2);
2992
2993 /* XXX OpenBSD sets a different tid when using QOS */
2994 tid = 0;
2995 if (ieee80211_has_qos(wh)) {
2996 cap = &ic->ic_wme.wme_chanParams;
2997 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2998 }
2999 else
3000 noack = 0;
3001
3002 ring = &sc->txq[ac];
3003 desc = &ring->desc[ring->cur];
3004 data = &ring->data[ring->cur];
3005
3006 /* Choose a TX rate index. */
3007 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3008 type != IEEE80211_FC0_TYPE_DATA) {
3009 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3010 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3011 } else if (ic->ic_fixed_rate != -1) {
3012 ridx = sc->fixed_ridx;
3013 } else
3014 ridx = wn->ridx[ni->ni_txrate];
3015 rinfo = &iwn_rates[ridx];
3016
3017 /* Encrypt the frame if need be. */
3018 /*
3019 * XXX For now, NetBSD swaps the encryption and bpf sections
3020 * in order to match old code and other drivers. Tests with
3021 * tcpdump indicates that the order is irrelevant, however,
3022 * as bpf produces unencrypted data for both ordering choices.
3023 */
3024 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3025 k = ieee80211_crypto_encap(ic, ni, m);
3026 if (k == NULL) {
3027 m_freem(m);
3028 return ENOBUFS;
3029 }
3030 /* Packet header may have moved, reset our local pointer. */
3031 wh = mtod(m, struct ieee80211_frame *);
3032 }
3033 totlen = m->m_pkthdr.len;
3034
3035 if (sc->sc_drvbpf != NULL) {
3036 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3037
3038 tap->wt_flags = 0;
3039 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3040 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3041 tap->wt_rate = rinfo->rate;
3042 tap->wt_hwqueue = ac;
3043 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3044 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3045
3046 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3047 }
3048
3049 /* Prepare TX firmware command. */
3050 cmd = &ring->cmd[ring->cur];
3051 cmd->code = IWN_CMD_TX_DATA;
3052 cmd->flags = 0;
3053 cmd->qid = ring->qid;
3054 cmd->idx = ring->cur;
3055
3056 tx = (struct iwn_cmd_data *)cmd->data;
3057 /* NB: No need to clear tx, all fields are reinitialized here. */
3058 tx->scratch = 0; /* clear "scratch" area */
3059
3060 flags = 0;
3061 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3062 /* Unicast frame, check if an ACK is expected. */
3063 if (!noack)
3064 flags |= IWN_TX_NEED_ACK;
3065 }
3066
3067 #ifdef notyet
3068 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3069 if ((wh->i_fc[0] &
3070 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3071 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3072 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
3073 #endif
3074
3075 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3076 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
3077
3078 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3079 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3080 /* NB: Group frames are sent using CCK in 802.11b/g. */
3081 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3082 flags |= IWN_TX_NEED_RTS;
3083 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3084 ridx >= IWN_RIDX_OFDM6) {
3085 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3086 flags |= IWN_TX_NEED_CTS;
3087 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3088 flags |= IWN_TX_NEED_RTS;
3089 }
3090 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3091 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3092 /* 5000 autoselects RTS/CTS or CTS-to-self. */
3093 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3094 flags |= IWN_TX_NEED_PROTECTION;
3095 } else
3096 flags |= IWN_TX_FULL_TXOP;
3097 }
3098 }
3099
3100 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3101 type != IEEE80211_FC0_TYPE_DATA)
3102 tx->id = sc->broadcast_id;
3103 else
3104 tx->id = wn->id;
3105
3106 if (type == IEEE80211_FC0_TYPE_MGT) {
3107 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3108
3109 #ifndef IEEE80211_STA_ONLY
3110 /* Tell HW to set timestamp in probe responses. */
3111 /* XXX NetBSD rev 1.11 added probe requests here but */
3112 /* probe requests do not take timestamps (from Bergamini). */
3113 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3114 flags |= IWN_TX_INSERT_TSTAMP;
3115 #endif
3116 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3117 /* changes here. These are not needed (from Bergamini). */
3118 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3119 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3120 tx->timeout = htole16(3);
3121 else
3122 tx->timeout = htole16(2);
3123 } else
3124 tx->timeout = htole16(0);
3125
3126 if (hdrlen & 3) {
3127 /* First segment length must be a multiple of 4. */
3128 flags |= IWN_TX_NEED_PADDING;
3129 pad = 4 - (hdrlen & 3);
3130 } else
3131 pad = 0;
3132
3133 tx->len = htole16(totlen);
3134 tx->tid = tid;
3135 tx->rts_ntries = 60;
3136 tx->data_ntries = 15;
3137 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3138 tx->plcp = rinfo->plcp;
3139 tx->rflags = rinfo->flags;
3140 if (tx->id == sc->broadcast_id) {
3141 /* Group or management frame. */
3142 tx->linkq = 0;
3143 /* XXX Alternate between antenna A and B? */
3144 txant = IWN_LSB(sc->txchainmask);
3145 tx->rflags |= IWN_RFLAG_ANT(txant);
3146 } else {
3147 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3148 flags |= IWN_TX_LINKQ; /* enable MRR */
3149 }
3150 /* Set physical address of "scratch area". */
3151 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3152 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3153
3154 /* Copy 802.11 header in TX command. */
3155 /* XXX NetBSD changed this in rev 1.20 */
3156 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3157
3158 /* Trim 802.11 header. */
3159 m_adj(m, hdrlen);
3160 tx->security = 0;
3161 tx->flags = htole32(flags);
3162
3163 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3164 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3165 if (error != 0) {
3166 if (error != EFBIG) {
3167 aprint_error_dev(sc->sc_dev,
3168 "can't map mbuf (error %d)\n", error);
3169 m_freem(m);
3170 return error;
3171 }
3172 /* Too many DMA segments, linearize mbuf. */
3173 MGETHDR(m1, M_DONTWAIT, MT_DATA);
3174 if (m1 == NULL) {
3175 m_freem(m);
3176 return ENOBUFS;
3177 }
3178 if (m->m_pkthdr.len > MHLEN) {
3179 MCLGET(m1, M_DONTWAIT);
3180 if (!(m1->m_flags & M_EXT)) {
3181 m_freem(m);
3182 m_freem(m1);
3183 return ENOBUFS;
3184 }
3185 }
3186 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3187 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3188 m_freem(m);
3189 m = m1;
3190
3191 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3192 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3193 if (error != 0) {
3194 aprint_error_dev(sc->sc_dev,
3195 "can't map mbuf (error %d)\n", error);
3196 m_freem(m);
3197 return error;
3198 }
3199 }
3200
3201 data->m = m;
3202 data->ni = ni;
3203
3204 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3205 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3206
3207 /* Fill TX descriptor. */
3208 desc->nsegs = 1 + data->map->dm_nsegs;
3209 /* First DMA segment is used by the TX command. */
3210 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3211 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
3212 (4 + sizeof (*tx) + hdrlen + pad) << 4);
3213 /* Other DMA segments are for data payload. */
3214 seg = data->map->dm_segs;
3215 for (i = 1; i <= data->map->dm_nsegs; i++) {
3216 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3217 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
3218 seg->ds_len << 4);
3219 seg++;
3220 }
3221
3222 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3223 BUS_DMASYNC_PREWRITE);
3224 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3225 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3226 sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3227 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3228 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3229 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3230
3231 #ifdef notyet
3232 /* Update TX scheduler. */
3233 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3234 #endif
3235
3236 /* Kick TX ring. */
3237 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3238 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3239
3240 /* Mark TX ring as full if we reach a certain threshold. */
3241 if (++ring->queued > IWN_TX_RING_HIMARK)
3242 sc->qfullmsk |= 1 << ring->qid;
3243
3244 return 0;
3245 }
3246
3247 static void
3248 iwn_start(struct ifnet *ifp)
3249 {
3250 struct iwn_softc *sc = ifp->if_softc;
3251 struct ieee80211com *ic = &sc->sc_ic;
3252 struct ieee80211_node *ni;
3253 struct ether_header *eh;
3254 struct mbuf *m;
3255 int ac;
3256
3257 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3258 return;
3259
3260 for (;;) {
3261 if (sc->sc_beacon_wait == 1) {
3262 ifp->if_flags |= IFF_OACTIVE;
3263 break;
3264 }
3265
3266 if (sc->qfullmsk != 0) {
3267 ifp->if_flags |= IFF_OACTIVE;
3268 break;
3269 }
3270 /* Send pending management frames first. */
3271 IF_DEQUEUE(&ic->ic_mgtq, m);
3272 if (m != NULL) {
3273 ni = M_GETCTX(m, struct ieee80211_node *);
3274 ac = 0;
3275 goto sendit;
3276 }
3277 if (ic->ic_state != IEEE80211_S_RUN)
3278 break;
3279
3280 /* Encapsulate and send data frames. */
3281 IFQ_DEQUEUE(&ifp->if_snd, m);
3282 if (m == NULL)
3283 break;
3284 if (m->m_len < sizeof (*eh) &&
3285 (m = m_pullup(m, sizeof (*eh))) == NULL) {
3286 if_statinc(ifp, if_oerrors);
3287 continue;
3288 }
3289 eh = mtod(m, struct ether_header *);
3290 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3291 if (ni == NULL) {
3292 m_freem(m);
3293 if_statinc(ifp, if_oerrors);
3294 continue;
3295 }
3296 /* classify mbuf so we can find which tx ring to use */
3297 if (ieee80211_classify(ic, m, ni) != 0) {
3298 m_freem(m);
3299 ieee80211_free_node(ni);
3300 if_statinc(ifp, if_oerrors);
3301 continue;
3302 }
3303
3304 /* No QoS encapsulation for EAPOL frames. */
3305 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3306 M_WME_GETAC(m) : WME_AC_BE;
3307
3308 if (sc->sc_beacon_wait == 0)
3309 bpf_mtap(ifp, m, BPF_D_OUT);
3310
3311 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3312 ieee80211_free_node(ni);
3313 if_statinc(ifp, if_oerrors);
3314 continue;
3315 }
3316 sendit:
3317 if (sc->sc_beacon_wait)
3318 continue;
3319
3320 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3321
3322 if (iwn_tx(sc, m, ni, ac) != 0) {
3323 ieee80211_free_node(ni);
3324 if_statinc(ifp, if_oerrors);
3325 continue;
3326 }
3327
3328 sc->sc_tx_timer = 5;
3329 ifp->if_timer = 1;
3330 }
3331
3332 if (sc->sc_beacon_wait > 1)
3333 sc->sc_beacon_wait = 0;
3334 }
3335
3336 static void
3337 iwn_watchdog(struct ifnet *ifp)
3338 {
3339 struct iwn_softc *sc = ifp->if_softc;
3340
3341 ifp->if_timer = 0;
3342
3343 if (sc->sc_tx_timer > 0) {
3344 if (--sc->sc_tx_timer == 0) {
3345 aprint_error_dev(sc->sc_dev,
3346 "device timeout\n");
3347 ifp->if_flags &= ~IFF_UP;
3348 iwn_stop(ifp, 1);
3349 if_statinc(ifp, if_oerrors);
3350 return;
3351 }
3352 ifp->if_timer = 1;
3353 }
3354
3355 ieee80211_watchdog(&sc->sc_ic);
3356 }
3357
3358 static int
3359 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3360 {
3361 struct iwn_softc *sc = ifp->if_softc;
3362 struct ieee80211com *ic = &sc->sc_ic;
3363 const struct sockaddr *sa;
3364 int s, error = 0;
3365
3366 s = splnet();
3367
3368 switch (cmd) {
3369 case SIOCSIFADDR:
3370 ifp->if_flags |= IFF_UP;
3371 /* FALLTHROUGH */
3372 case SIOCSIFFLAGS:
3373 /* XXX Added as it is in every NetBSD driver */
3374 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3375 break;
3376 if (ifp->if_flags & IFF_UP) {
3377 if (!(ifp->if_flags & IFF_RUNNING))
3378 error = iwn_init(ifp);
3379 } else {
3380 if (ifp->if_flags & IFF_RUNNING)
3381 iwn_stop(ifp, 1);
3382 }
3383 break;
3384
3385 case SIOCADDMULTI:
3386 case SIOCDELMULTI:
3387 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3388 error = (cmd == SIOCADDMULTI) ?
3389 ether_addmulti(sa, &sc->sc_ec) :
3390 ether_delmulti(sa, &sc->sc_ec);
3391
3392 if (error == ENETRESET)
3393 error = 0;
3394 break;
3395
3396 default:
3397 error = ieee80211_ioctl(ic, cmd, data);
3398 }
3399
3400 if (error == ENETRESET) {
3401 error = 0;
3402 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3403 (IFF_UP | IFF_RUNNING)) {
3404 iwn_stop(ifp, 0);
3405 error = iwn_init(ifp);
3406 }
3407 }
3408
3409 splx(s);
3410 return error;
3411 }
3412
3413 /*
3414 * Send a command to the firmware.
3415 */
3416 static int
3417 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3418 {
3419 struct iwn_tx_ring *ring = &sc->txq[4];
3420 struct iwn_tx_desc *desc;
3421 struct iwn_tx_data *data;
3422 struct iwn_tx_cmd *cmd;
3423 struct mbuf *m;
3424 bus_addr_t paddr;
3425 int totlen, error;
3426
3427 desc = &ring->desc[ring->cur];
3428 data = &ring->data[ring->cur];
3429 totlen = 4 + size;
3430
3431 if (size > sizeof cmd->data) {
3432 /* Command is too large to fit in a descriptor. */
3433 if (totlen > MCLBYTES)
3434 return EINVAL;
3435 MGETHDR(m, M_DONTWAIT, MT_DATA);
3436 if (m == NULL)
3437 return ENOMEM;
3438 if (totlen > MHLEN) {
3439 MCLGET(m, M_DONTWAIT);
3440 if (!(m->m_flags & M_EXT)) {
3441 m_freem(m);
3442 return ENOMEM;
3443 }
3444 }
3445 cmd = mtod(m, struct iwn_tx_cmd *);
3446 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3447 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3448 if (error != 0) {
3449 m_freem(m);
3450 return error;
3451 }
3452 data->m = m;
3453 paddr = data->map->dm_segs[0].ds_addr;
3454 } else {
3455 cmd = &ring->cmd[ring->cur];
3456 paddr = data->cmd_paddr;
3457 }
3458
3459 cmd->code = code;
3460 cmd->flags = 0;
3461 cmd->qid = ring->qid;
3462 cmd->idx = ring->cur;
3463 /*
3464 * Coverity:[OUT_OF_BOUNDS]
3465 * false positive since, allocated in mbuf if it does not fit
3466 */
3467 memcpy(cmd->data, buf, size);
3468
3469 desc->nsegs = 1;
3470 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3471 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
3472
3473 if (size > sizeof cmd->data) {
3474 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3475 BUS_DMASYNC_PREWRITE);
3476 } else {
3477 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3478 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3479 totlen, BUS_DMASYNC_PREWRITE);
3480 }
3481 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3482 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3483 sizeof (*desc), BUS_DMASYNC_PREWRITE);
3484
3485 #ifdef notyet
3486 /* Update TX scheduler. */
3487 ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3488 #endif
3489 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3490
3491 /* Kick command ring. */
3492 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3493 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3494
3495 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3496 }
3497
3498 static int
3499 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3500 {
3501 struct iwn4965_node_info hnode;
3502 char *src, *dst;
3503
3504 /*
3505 * We use the node structure for 5000 Series internally (it is
3506 * a superset of the one for 4965AGN). We thus copy the common
3507 * fields before sending the command.
3508 */
3509 src = (char *)node;
3510 dst = (char *)&hnode;
3511 memcpy(dst, src, 48);
3512 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3513 memcpy(dst + 48, src + 72, 20);
3514 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3515 }
3516
3517 static int
3518 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3519 {
3520 /* Direct mapping. */
3521 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3522 }
3523
3524 static int
3525 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3526 {
3527 struct iwn_node *wn = (void *)ni;
3528 struct ieee80211_rateset *rs = &ni->ni_rates;
3529 struct iwn_cmd_link_quality linkq;
3530 const struct iwn_rate *rinfo;
3531 uint8_t txant;
3532 int i, txrate;
3533
3534 /* Use the first valid TX antenna. */
3535 txant = IWN_LSB(sc->txchainmask);
3536
3537 memset(&linkq, 0, sizeof linkq);
3538 linkq.id = wn->id;
3539 linkq.antmsk_1stream = txant;
3540 linkq.antmsk_2stream = IWN_ANT_AB;
3541 linkq.ampdu_max = 31;
3542 linkq.ampdu_threshold = 3;
3543 linkq.ampdu_limit = htole16(4000); /* 4ms */
3544
3545 /* Start at highest available bit-rate. */
3546 txrate = rs->rs_nrates - 1;
3547 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3548 rinfo = &iwn_rates[wn->ridx[txrate]];
3549 linkq.retry[i].plcp = rinfo->plcp;
3550 linkq.retry[i].rflags = rinfo->flags;
3551 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3552 /* Next retry at immediate lower bit-rate. */
3553 if (txrate > 0)
3554 txrate--;
3555 }
3556 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3557 }
3558
3559 /*
3560 * Broadcast node is used to send group-addressed and management frames.
3561 */
3562 static int
3563 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3564 {
3565 struct iwn_ops *ops = &sc->ops;
3566 struct iwn_node_info node;
3567 struct iwn_cmd_link_quality linkq;
3568 const struct iwn_rate *rinfo;
3569 uint8_t txant;
3570 int i, error;
3571
3572 memset(&node, 0, sizeof node);
3573 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3574 node.id = sc->broadcast_id;
3575 DPRINTF(("adding broadcast node\n"));
3576 if ((error = ops->add_node(sc, &node, async)) != 0)
3577 return error;
3578
3579 /* Use the first valid TX antenna. */
3580 txant = IWN_LSB(sc->txchainmask);
3581
3582 memset(&linkq, 0, sizeof linkq);
3583 linkq.id = sc->broadcast_id;
3584 linkq.antmsk_1stream = txant;
3585 linkq.antmsk_2stream = IWN_ANT_AB;
3586 linkq.ampdu_max = 64;
3587 linkq.ampdu_threshold = 3;
3588 linkq.ampdu_limit = htole16(4000); /* 4ms */
3589
3590 /* Use lowest mandatory bit-rate. */
3591 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3592 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3593 linkq.retry[0].plcp = rinfo->plcp;
3594 linkq.retry[0].rflags = rinfo->flags;
3595 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3596 /* Use same bit-rate for all TX retries. */
3597 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3598 linkq.retry[i].plcp = linkq.retry[0].plcp;
3599 linkq.retry[i].rflags = linkq.retry[0].rflags;
3600 }
3601 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3602 }
3603
3604 static void
3605 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3606 {
3607 struct iwn_cmd_led led;
3608
3609 /* Clear microcode LED ownership. */
3610 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3611
3612 led.which = which;
3613 led.unit = htole32(10000); /* on/off in unit of 100ms */
3614 led.off = off;
3615 led.on = on;
3616 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3617 }
3618
3619 /*
3620 * Set the critical temperature at which the firmware will stop the radio
3621 * and notify us.
3622 */
3623 static int
3624 iwn_set_critical_temp(struct iwn_softc *sc)
3625 {
3626 struct iwn_critical_temp crit;
3627 int32_t temp;
3628
3629 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3630
3631 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3632 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3633 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3634 temp = IWN_CTOK(110);
3635 else
3636 temp = 110;
3637 memset(&crit, 0, sizeof crit);
3638 crit.tempR = htole32(temp);
3639 DPRINTF(("setting critical temperature to %d\n", temp));
3640 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3641 }
3642
3643 static int
3644 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3645 {
3646 struct iwn_cmd_timing cmd;
3647 uint64_t val, mod;
3648
3649 memset(&cmd, 0, sizeof cmd);
3650 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3651 cmd.bintval = htole16(ni->ni_intval);
3652 cmd.lintval = htole16(10);
3653
3654 /* Compute remaining time until next beacon. */
3655 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
3656 mod = le64toh(cmd.tstamp) % val;
3657 cmd.binitval = htole32((uint32_t)(val - mod));
3658
3659 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3660 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3661
3662 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3663 }
3664
3665 static void
3666 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3667 {
3668 /* Adjust TX power if need be (delta >= 3 degC). */
3669 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3670 if (abs(temp - sc->temp) >= 3) {
3671 /* Record temperature of last calibration. */
3672 sc->temp = temp;
3673 (void)iwn4965_set_txpower(sc, 1);
3674 }
3675 }
3676
3677 /*
3678 * Set TX power for current channel (each rate has its own power settings).
3679 * This function takes into account the regulatory information from EEPROM,
3680 * the current temperature and the current voltage.
3681 */
3682 static int
3683 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3684 {
3685 /* Fixed-point arithmetic division using a n-bit fractional part. */
3686 #define fdivround(a, b, n) \
3687 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3688 /* Linear interpolation. */
3689 #define interpolate(x, x1, y1, x2, y2, n) \
3690 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3691
3692 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3693 struct ieee80211com *ic = &sc->sc_ic;
3694 struct iwn_ucode_info *uc = &sc->ucode_info;
3695 struct ieee80211_channel *ch;
3696 struct iwn4965_cmd_txpower cmd;
3697 struct iwn4965_eeprom_chan_samples *chans;
3698 const uint8_t *rf_gain, *dsp_gain;
3699 int32_t vdiff, tdiff;
3700 int i, c, grp, maxpwr;
3701 uint8_t chan;
3702
3703 /* Retrieve current channel from last RXON. */
3704 chan = sc->rxon.chan;
3705 DPRINTF(("setting TX power for channel %d\n", chan));
3706 ch = &ic->ic_channels[chan];
3707
3708 memset(&cmd, 0, sizeof cmd);
3709 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3710 cmd.chan = chan;
3711
3712 if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3713 maxpwr = sc->maxpwr5GHz;
3714 rf_gain = iwn4965_rf_gain_5ghz;
3715 dsp_gain = iwn4965_dsp_gain_5ghz;
3716 } else {
3717 maxpwr = sc->maxpwr2GHz;
3718 rf_gain = iwn4965_rf_gain_2ghz;
3719 dsp_gain = iwn4965_dsp_gain_2ghz;
3720 }
3721
3722 /* Compute voltage compensation. */
3723 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3724 if (vdiff > 0)
3725 vdiff *= 2;
3726 if (abs(vdiff) > 2)
3727 vdiff = 0;
3728 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3729 vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3730
3731 /* Get channel attenuation group. */
3732 if (chan <= 20) /* 1-20 */
3733 grp = 4;
3734 else if (chan <= 43) /* 34-43 */
3735 grp = 0;
3736 else if (chan <= 70) /* 44-70 */
3737 grp = 1;
3738 else if (chan <= 124) /* 71-124 */
3739 grp = 2;
3740 else /* 125-200 */
3741 grp = 3;
3742 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3743
3744 /* Get channel sub-band. */
3745 for (i = 0; i < IWN_NBANDS; i++)
3746 if (sc->bands[i].lo != 0 &&
3747 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3748 break;
3749 if (i == IWN_NBANDS) /* Can't happen in real-life. */
3750 return EINVAL;
3751 chans = sc->bands[i].chans;
3752 DPRINTF(("chan %d sub-band=%d\n", chan, i));
3753
3754 for (c = 0; c < 2; c++) {
3755 uint8_t power, gain, temp;
3756 int maxchpwr, pwr, ridx, idx;
3757
3758 power = interpolate(chan,
3759 chans[0].num, chans[0].samples[c][1].power,
3760 chans[1].num, chans[1].samples[c][1].power, 1);
3761 gain = interpolate(chan,
3762 chans[0].num, chans[0].samples[c][1].gain,
3763 chans[1].num, chans[1].samples[c][1].gain, 1);
3764 temp = interpolate(chan,
3765 chans[0].num, chans[0].samples[c][1].temp,
3766 chans[1].num, chans[1].samples[c][1].temp, 1);
3767 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3768 c, power, gain, temp));
3769
3770 /* Compute temperature compensation. */
3771 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3772 DPRINTF(("temperature compensation=%d (current=%d, "
3773 "EEPROM=%d)\n", tdiff, sc->temp, temp));
3774
3775 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3776 /* Convert dBm to half-dBm. */
3777 maxchpwr = sc->maxpwr[chan] * 2;
3778 if ((ridx / 8) & 1)
3779 maxchpwr -= 6; /* MIMO 2T: -3dB */
3780
3781 pwr = maxpwr;
3782
3783 /* Adjust TX power based on rate. */
3784 if ((ridx % 8) == 5)
3785 pwr -= 15; /* OFDM48: -7.5dB */
3786 else if ((ridx % 8) == 6)
3787 pwr -= 17; /* OFDM54: -8.5dB */
3788 else if ((ridx % 8) == 7)
3789 pwr -= 20; /* OFDM60: -10dB */
3790 else
3791 pwr -= 10; /* Others: -5dB */
3792
3793 /* Do not exceed channel max TX power. */
3794 if (pwr > maxchpwr)
3795 pwr = maxchpwr;
3796
3797 idx = gain - (pwr - power) - tdiff - vdiff;
3798 if ((ridx / 8) & 1) /* MIMO */
3799 idx += (int32_t)le32toh(uc->atten[grp][c]);
3800
3801 if (cmd.band == 0)
3802 idx += 9; /* 5GHz */
3803 if (ridx == IWN_RIDX_MAX)
3804 idx += 5; /* CCK */
3805
3806 /* Make sure idx stays in a valid range. */
3807 if (idx < 0)
3808 idx = 0;
3809 else if (idx > IWN4965_MAX_PWR_INDEX)
3810 idx = IWN4965_MAX_PWR_INDEX;
3811
3812 DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3813 c, ridx, idx));
3814 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3815 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3816 }
3817 }
3818
3819 DPRINTF(("setting TX power for chan %d\n", chan));
3820 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3821
3822 #undef interpolate
3823 #undef fdivround
3824 }
3825
3826 static int
3827 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3828 {
3829 struct iwn5000_cmd_txpower cmd;
3830 int cmdid;
3831
3832 /*
3833 * TX power calibration is handled automatically by the firmware
3834 * for 5000 Series.
3835 */
3836 memset(&cmd, 0, sizeof cmd);
3837 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
3838 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3839 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3840 DPRINTF(("setting TX power\n"));
3841 if (IWN_UCODE_API(sc->ucode_rev) == 1)
3842 cmdid = IWN_CMD_TXPOWER_DBM_V1;
3843 else
3844 cmdid = IWN_CMD_TXPOWER_DBM;
3845 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3846 }
3847
3848 /*
3849 * Retrieve the maximum RSSI (in dBm) among receivers.
3850 */
3851 static int
3852 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3853 {
3854 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3855 uint8_t mask, agc;
3856 int rssi;
3857
3858 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3859 agc = (le16toh(phy->agc) >> 7) & 0x7f;
3860
3861 rssi = 0;
3862 if (mask & IWN_ANT_A)
3863 rssi = MAX(rssi, phy->rssi[0]);
3864 if (mask & IWN_ANT_B)
3865 rssi = MAX(rssi, phy->rssi[2]);
3866 if (mask & IWN_ANT_C)
3867 rssi = MAX(rssi, phy->rssi[4]);
3868
3869 return rssi - agc - IWN_RSSI_TO_DBM;
3870 }
3871
3872 static int
3873 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3874 {
3875 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3876 uint8_t agc;
3877 int rssi;
3878
3879 agc = (le32toh(phy->agc) >> 9) & 0x7f;
3880
3881 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3882 le16toh(phy->rssi[1]) & 0xff);
3883 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3884
3885 return rssi - agc - IWN_RSSI_TO_DBM;
3886 }
3887
3888 /*
3889 * Retrieve the average noise (in dBm) among receivers.
3890 */
3891 static int
3892 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3893 {
3894 int i, total, nbant, noise;
3895
3896 total = nbant = 0;
3897 for (i = 0; i < 3; i++) {
3898 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3899 continue;
3900 total += noise;
3901 nbant++;
3902 }
3903 /* There should be at least one antenna but check anyway. */
3904 return (nbant == 0) ? -127 : (total / nbant) - 107;
3905 }
3906
3907 /*
3908 * Compute temperature (in degC) from last received statistics.
3909 */
3910 static int
3911 iwn4965_get_temperature(struct iwn_softc *sc)
3912 {
3913 struct iwn_ucode_info *uc = &sc->ucode_info;
3914 int32_t r1, r2, r3, r4, temp;
3915
3916 r1 = le32toh(uc->temp[0].chan20MHz);
3917 r2 = le32toh(uc->temp[1].chan20MHz);
3918 r3 = le32toh(uc->temp[2].chan20MHz);
3919 r4 = le32toh(sc->rawtemp);
3920
3921 if (r1 == r3) /* Prevents division by 0 (should not happen). */
3922 return 0;
3923
3924 /* Sign-extend 23-bit R4 value to 32-bit. */
3925 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3926 /* Compute temperature in Kelvin. */
3927 temp = (259 * (r4 - r2)) / (r3 - r1);
3928 temp = (temp * 97) / 100 + 8;
3929
3930 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3931 return IWN_KTOC(temp);
3932 }
3933
3934 static int
3935 iwn5000_get_temperature(struct iwn_softc *sc)
3936 {
3937 int32_t temp;
3938
3939 /*
3940 * Temperature is not used by the driver for 5000 Series because
3941 * TX power calibration is handled by firmware. We export it to
3942 * users through the sensor framework though.
3943 */
3944 temp = le32toh(sc->rawtemp);
3945 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3946 temp = (temp / -5) + sc->temp_off;
3947 temp = IWN_KTOC(temp);
3948 }
3949 return temp;
3950 }
3951
3952 /*
3953 * Initialize sensitivity calibration state machine.
3954 */
3955 static int
3956 iwn_init_sensitivity(struct iwn_softc *sc)
3957 {
3958 struct iwn_ops *ops = &sc->ops;
3959 struct iwn_calib_state *calib = &sc->calib;
3960 uint32_t flags;
3961 int error;
3962
3963 /* Reset calibration state machine. */
3964 memset(calib, 0, sizeof (*calib));
3965 calib->state = IWN_CALIB_STATE_INIT;
3966 calib->cck_state = IWN_CCK_STATE_HIFA;
3967 /* Set initial correlation values. */
3968 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
3969 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3970 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
3971 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3972 calib->cck_x4 = 125;
3973 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
3974 calib->energy_cck = sc->limits->energy_cck;
3975
3976 /* Write initial sensitivity. */
3977 if ((error = iwn_send_sensitivity(sc)) != 0)
3978 return error;
3979
3980 /* Write initial gains. */
3981 if ((error = ops->init_gains(sc)) != 0)
3982 return error;
3983
3984 /* Request statistics at each beacon interval. */
3985 flags = 0;
3986 DPRINTF(("sending request for statistics\n"));
3987 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3988 }
3989
3990 /*
3991 * Collect noise and RSSI statistics for the first 20 beacons received
3992 * after association and use them to determine connected antennas and
3993 * to set differential gains.
3994 */
3995 static void
3996 iwn_collect_noise(struct iwn_softc *sc,
3997 const struct iwn_rx_general_stats *stats)
3998 {
3999 struct iwn_ops *ops = &sc->ops;
4000 struct iwn_calib_state *calib = &sc->calib;
4001 uint32_t val;
4002 int i;
4003
4004 /* Accumulate RSSI and noise for all 3 antennas. */
4005 for (i = 0; i < 3; i++) {
4006 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4007 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4008 }
4009 /* NB: We update differential gains only once after 20 beacons. */
4010 if (++calib->nbeacons < 20)
4011 return;
4012
4013 /* Determine highest average RSSI. */
4014 val = MAX(calib->rssi[0], calib->rssi[1]);
4015 val = MAX(calib->rssi[2], val);
4016
4017 /* Determine which antennas are connected. */
4018 sc->chainmask = sc->rxchainmask;
4019 for (i = 0; i < 3; i++)
4020 if (val - calib->rssi[i] > 15 * 20)
4021 sc->chainmask &= ~(1 << i);
4022 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4023 sc->rxchainmask, sc->chainmask));
4024
4025 /* If none of the TX antennas are connected, keep at least one. */
4026 if ((sc->chainmask & sc->txchainmask) == 0)
4027 sc->chainmask |= IWN_LSB(sc->txchainmask);
4028
4029 (void)ops->set_gains(sc);
4030 calib->state = IWN_CALIB_STATE_RUN;
4031
4032 #ifdef notyet
4033 /* XXX Disable RX chains with no antennas connected. */
4034 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4035 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4036 #endif
4037
4038 /* Enable power-saving mode if requested by user. */
4039 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4040 (void)iwn_set_pslevel(sc, 0, 3, 1);
4041 }
4042
4043 static int
4044 iwn4965_init_gains(struct iwn_softc *sc)
4045 {
4046 struct iwn_phy_calib_gain cmd;
4047
4048 memset(&cmd, 0, sizeof cmd);
4049 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4050 /* Differential gains initially set to 0 for all 3 antennas. */
4051 DPRINTF(("setting initial differential gains\n"));
4052 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4053 }
4054
4055 static int
4056 iwn5000_init_gains(struct iwn_softc *sc)
4057 {
4058 struct iwn_phy_calib cmd;
4059
4060 memset(&cmd, 0, sizeof cmd);
4061 cmd.code = sc->reset_noise_gain;
4062 cmd.ngroups = 1;
4063 cmd.isvalid = 1;
4064 DPRINTF(("setting initial differential gains\n"));
4065 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4066 }
4067
4068 static int
4069 iwn4965_set_gains(struct iwn_softc *sc)
4070 {
4071 struct iwn_calib_state *calib = &sc->calib;
4072 struct iwn_phy_calib_gain cmd;
4073 int i, delta, noise;
4074
4075 /* Get minimal noise among connected antennas. */
4076 noise = INT_MAX; /* NB: There's at least one antenna. */
4077 for (i = 0; i < 3; i++)
4078 if (sc->chainmask & (1 << i))
4079 noise = MIN(calib->noise[i], noise);
4080
4081 memset(&cmd, 0, sizeof cmd);
4082 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4083 /* Set differential gains for connected antennas. */
4084 for (i = 0; i < 3; i++) {
4085 if (sc->chainmask & (1 << i)) {
4086 /* Compute attenuation (in unit of 1.5dB). */
4087 delta = (noise - (int32_t)calib->noise[i]) / 30;
4088 /* NB: delta <= 0 */
4089 /* Limit to [-4.5dB,0]. */
4090 cmd.gain[i] = MIN(abs(delta), 3);
4091 if (delta < 0)
4092 cmd.gain[i] |= 1 << 2; /* sign bit */
4093 }
4094 }
4095 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4096 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4097 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4098 }
4099
4100 static int
4101 iwn5000_set_gains(struct iwn_softc *sc)
4102 {
4103 struct iwn_calib_state *calib = &sc->calib;
4104 struct iwn_phy_calib_gain cmd;
4105 int i, ant, div, delta;
4106
4107 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
4108 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4109
4110 memset(&cmd, 0, sizeof cmd);
4111 cmd.code = sc->noise_gain;
4112 cmd.ngroups = 1;
4113 cmd.isvalid = 1;
4114 /* Get first available RX antenna as referential. */
4115 ant = IWN_LSB(sc->rxchainmask);
4116 /* Set differential gains for other antennas. */
4117 for (i = ant + 1; i < 3; i++) {
4118 if (sc->chainmask & (1 << i)) {
4119 /* The delta is relative to antenna "ant". */
4120 delta = ((int32_t)calib->noise[ant] -
4121 (int32_t)calib->noise[i]) / div;
4122 /* Limit to [-4.5dB,+4.5dB]. */
4123 cmd.gain[i - 1] = MIN(abs(delta), 3);
4124 if (delta < 0)
4125 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
4126 }
4127 }
4128 DPRINTF(("setting differential gains: %x/%x (%x)\n",
4129 cmd.gain[0], cmd.gain[1], sc->chainmask));
4130 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4131 }
4132
4133 /*
4134 * Tune RF RX sensitivity based on the number of false alarms detected
4135 * during the last beacon period.
4136 */
4137 static void
4138 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4139 {
4140 #define inc(val, inc, max) \
4141 if ((val) < (max)) { \
4142 if ((val) < (max) - (inc)) \
4143 (val) += (inc); \
4144 else \
4145 (val) = (max); \
4146 needs_update = 1; \
4147 }
4148 #define dec(val, dec, min) \
4149 if ((val) > (min)) { \
4150 if ((val) > (min) + (dec)) \
4151 (val) -= (dec); \
4152 else \
4153 (val) = (min); \
4154 needs_update = 1; \
4155 }
4156
4157 const struct iwn_sensitivity_limits *limits = sc->limits;
4158 struct iwn_calib_state *calib = &sc->calib;
4159 uint32_t val, rxena, fa;
4160 uint32_t energy[3], energy_min;
4161 uint8_t noise[3], noise_ref;
4162 int i, needs_update = 0;
4163
4164 /* Check that we've been enabled long enough. */
4165 if ((rxena = le32toh(stats->general.load)) == 0)
4166 return;
4167
4168 /* Compute number of false alarms since last call for OFDM. */
4169 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4170 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4171 fa *= 200 * 1024; /* 200TU */
4172
4173 /* Save counters values for next call. */
4174 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4175 calib->fa_ofdm = le32toh(stats->ofdm.fa);
4176
4177 if (fa > 50 * rxena) {
4178 /* High false alarm count, decrease sensitivity. */
4179 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4180 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
4181 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4182 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
4183 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4184
4185 } else if (fa < 5 * rxena) {
4186 /* Low false alarm count, increase sensitivity. */
4187 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4188 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
4189 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4190 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
4191 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4192 }
4193
4194 /* Compute maximum noise among 3 receivers. */
4195 for (i = 0; i < 3; i++)
4196 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4197 val = MAX(noise[0], noise[1]);
4198 val = MAX(noise[2], val);
4199 /* Insert it into our samples table. */
4200 calib->noise_samples[calib->cur_noise_sample] = val;
4201 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4202
4203 /* Compute maximum noise among last 20 samples. */
4204 noise_ref = calib->noise_samples[0];
4205 for (i = 1; i < 20; i++)
4206 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4207
4208 /* Compute maximum energy among 3 receivers. */
4209 for (i = 0; i < 3; i++)
4210 energy[i] = le32toh(stats->general.energy[i]);
4211 val = MIN(energy[0], energy[1]);
4212 val = MIN(energy[2], val);
4213 /* Insert it into our samples table. */
4214 calib->energy_samples[calib->cur_energy_sample] = val;
4215 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4216
4217 /* Compute minimum energy among last 10 samples. */
4218 energy_min = calib->energy_samples[0];
4219 for (i = 1; i < 10; i++)
4220 energy_min = MAX(energy_min, calib->energy_samples[i]);
4221 energy_min += 6;
4222
4223 /* Compute number of false alarms since last call for CCK. */
4224 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4225 fa += le32toh(stats->cck.fa) - calib->fa_cck;
4226 fa *= 200 * 1024; /* 200TU */
4227
4228 /* Save counters values for next call. */
4229 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4230 calib->fa_cck = le32toh(stats->cck.fa);
4231
4232 if (fa > 50 * rxena) {
4233 /* High false alarm count, decrease sensitivity. */
4234 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4235 calib->cck_state = IWN_CCK_STATE_HIFA;
4236 calib->low_fa = 0;
4237
4238 if (calib->cck_x4 > 160) {
4239 calib->noise_ref = noise_ref;
4240 if (calib->energy_cck > 2)
4241 dec(calib->energy_cck, 2, energy_min);
4242 }
4243 if (calib->cck_x4 < 160) {
4244 calib->cck_x4 = 161;
4245 needs_update = 1;
4246 } else
4247 inc(calib->cck_x4, 3, limits->max_cck_x4);
4248
4249 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4250
4251 } else if (fa < 5 * rxena) {
4252 /* Low false alarm count, increase sensitivity. */
4253 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4254 calib->cck_state = IWN_CCK_STATE_LOFA;
4255 calib->low_fa++;
4256
4257 if (calib->cck_state != IWN_CCK_STATE_INIT &&
4258 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4259 calib->low_fa > 100)) {
4260 inc(calib->energy_cck, 2, limits->min_energy_cck);
4261 dec(calib->cck_x4, 3, limits->min_cck_x4);
4262 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4263 }
4264 } else {
4265 /* Not worth to increase or decrease sensitivity. */
4266 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4267 calib->low_fa = 0;
4268 calib->noise_ref = noise_ref;
4269
4270 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4271 /* Previous interval had many false alarms. */
4272 dec(calib->energy_cck, 8, energy_min);
4273 }
4274 calib->cck_state = IWN_CCK_STATE_INIT;
4275 }
4276
4277 if (needs_update)
4278 (void)iwn_send_sensitivity(sc);
4279 #undef dec
4280 #undef inc
4281 }
4282
4283 static int
4284 iwn_send_sensitivity(struct iwn_softc *sc)
4285 {
4286 struct iwn_calib_state *calib = &sc->calib;
4287 struct iwn_enhanced_sensitivity_cmd cmd;
4288 int len;
4289
4290 memset(&cmd, 0, sizeof cmd);
4291 len = sizeof (struct iwn_sensitivity_cmd);
4292 cmd.which = IWN_SENSITIVITY_WORKTBL;
4293 /* OFDM modulation. */
4294 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
4295 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4296 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
4297 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4298 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
4299 cmd.energy_ofdm_th = htole16(62);
4300 /* CCK modulation. */
4301 cmd.corr_cck_x4 = htole16(calib->cck_x4);
4302 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
4303 cmd.energy_cck = htole16(calib->energy_cck);
4304 /* Barker modulation: use default values. */
4305 cmd.corr_barker = htole16(190);
4306 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
4307 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4308 goto send;
4309 /* Enhanced sensitivity settings. */
4310 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4311 cmd.ofdm_det_slope_mrc = htole16(668);
4312 cmd.ofdm_det_icept_mrc = htole16(4);
4313 cmd.ofdm_det_slope = htole16(486);
4314 cmd.ofdm_det_icept = htole16(37);
4315 cmd.cck_det_slope_mrc = htole16(853);
4316 cmd.cck_det_icept_mrc = htole16(4);
4317 cmd.cck_det_slope = htole16(476);
4318 cmd.cck_det_icept = htole16(99);
4319 send:
4320 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4321 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4322 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4323 calib->energy_cck));
4324 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4325 }
4326
4327 /*
4328 * Set STA mode power saving level (between 0 and 5).
4329 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4330 */
4331 static int
4332 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4333 {
4334 struct iwn_pmgt_cmd cmd;
4335 const struct iwn_pmgt *pmgt;
4336 uint32_t maxp, skip_dtim;
4337 pcireg_t reg;
4338 int i;
4339
4340 /* Select which PS parameters to use. */
4341 if (dtim <= 2)
4342 pmgt = &iwn_pmgt[0][level];
4343 else if (dtim <= 10)
4344 pmgt = &iwn_pmgt[1][level];
4345 else
4346 pmgt = &iwn_pmgt[2][level];
4347
4348 memset(&cmd, 0, sizeof cmd);
4349 if (level != 0) /* not CAM */
4350 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4351 if (level == 5)
4352 cmd.flags |= htole16(IWN_PS_FAST_PD);
4353 /* Retrieve PCIe Active State Power Management (ASPM). */
4354 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4355 sc->sc_cap_off + PCIE_LCSR);
4356 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
4357 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4358 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4359 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4360
4361 if (dtim == 0) {
4362 dtim = 1;
4363 skip_dtim = 0;
4364 } else
4365 skip_dtim = pmgt->skip_dtim;
4366 if (skip_dtim != 0) {
4367 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4368 maxp = pmgt->intval[4];
4369 if (maxp == (uint32_t)-1)
4370 maxp = dtim * (skip_dtim + 1);
4371 else if (maxp > dtim)
4372 maxp = (maxp / dtim) * dtim;
4373 } else
4374 maxp = dtim;
4375 for (i = 0; i < 5; i++)
4376 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4377
4378 DPRINTF(("setting power saving level to %d\n", level));
4379 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4380 }
4381
4382 int
4383 iwn5000_runtime_calib(struct iwn_softc *sc)
4384 {
4385 struct iwn5000_calib_config cmd;
4386
4387 memset(&cmd, 0, sizeof cmd);
4388 cmd.ucode.once.enable = 0xffffffff;
4389 cmd.ucode.once.start = IWN5000_CALIB_DC;
4390 DPRINTF(("configuring runtime calibration\n"));
4391 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4392 }
4393
4394 static int
4395 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4396 {
4397 struct iwn_bluetooth bluetooth;
4398
4399 memset(&bluetooth, 0, sizeof bluetooth);
4400 bluetooth.flags = IWN_BT_COEX_ENABLE;
4401 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4402 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4403
4404 DPRINTF(("configuring bluetooth coexistence\n"));
4405 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4406 }
4407
4408 static int
4409 iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4410 {
4411 uint8_t prio_table[16];
4412
4413 memset(&prio_table, 0, sizeof prio_table);
4414 prio_table[ 0] = 6; /* init calibration 1 */
4415 prio_table[ 1] = 7; /* init calibration 2 */
4416 prio_table[ 2] = 2; /* periodic calib low 1 */
4417 prio_table[ 3] = 3; /* periodic calib low 2 */
4418 prio_table[ 4] = 4; /* periodic calib high 1 */
4419 prio_table[ 5] = 5; /* periodic calib high 2 */
4420 prio_table[ 6] = 6; /* dtim */
4421 prio_table[ 7] = 8; /* scan52 */
4422 prio_table[ 8] = 10; /* scan24 */
4423
4424 DPRINTF(("sending priority lookup table\n"));
4425 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4426 &prio_table, sizeof prio_table, 0);
4427 }
4428
4429 static int
4430 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4431 size_t len)
4432 {
4433 struct iwn_btcoex_prot btprot;
4434 int error;
4435
4436 basic->bt.flags = IWN_BT_COEX_ENABLE;
4437 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4438 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4439 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4440 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4441 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4442 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4443 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4444 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4445 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4446 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4447 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4448 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4449 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4450 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4451 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4452 basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4453 basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4454 basic->bt3_lookup_table[10] = htole32(0xf0005000);
4455 basic->bt3_lookup_table[11] = htole32(0xf0005000);
4456 basic->reduce_txpower = 0; /* as not implemented */
4457 basic->valid = IWN_BT_ALL_VALID_MASK;
4458
4459 DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4460 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4461 if (error != 0) {
4462 aprint_error_dev(sc->sc_dev,
4463 "could not configure advanced bluetooth coexistence\n");
4464 return error;
4465 }
4466
4467 error = iwn_config_bt_coex_prio_table(sc);
4468 if (error != 0) {
4469 aprint_error_dev(sc->sc_dev,
4470 "could not configure send BT priority table\n");
4471 return error;
4472 }
4473
4474 /* Force BT state machine change */
4475 memset(&btprot, 0, sizeof btprot);
4476 btprot.open = 1;
4477 btprot.type = 1;
4478 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4479 if (error != 0) {
4480 aprint_error_dev(sc->sc_dev, "could not open BT protcol\n");
4481 return error;
4482 }
4483
4484 btprot.open = 0;
4485 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4486 if (error != 0) {
4487 aprint_error_dev(sc->sc_dev, "could not close BT protcol\n");
4488 return error;
4489 }
4490 return 0;
4491 }
4492
4493 static int
4494 iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4495 {
4496 struct iwn_bt_adv1 d;
4497
4498 memset(&d, 0, sizeof d);
4499 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4500 d.tx_prio_boost = 0;
4501 d.rx_prio_boost = 0;
4502 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4503 }
4504
4505 static int
4506 iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4507 {
4508 struct iwn_bt_adv2 d;
4509
4510 memset(&d, 0, sizeof d);
4511 d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4512 d.tx_prio_boost = 0;
4513 d.rx_prio_boost = 0;
4514 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4515 }
4516
4517 static int
4518 iwn_config(struct iwn_softc *sc)
4519 {
4520 struct iwn_ops *ops = &sc->ops;
4521 struct ieee80211com *ic = &sc->sc_ic;
4522 struct ifnet *ifp = ic->ic_ifp;
4523 uint32_t txmask;
4524 uint16_t rxchain;
4525 int error;
4526
4527 error = ops->config_bt_coex(sc);
4528 if (error != 0) {
4529 aprint_error_dev(sc->sc_dev,
4530 "could not configure bluetooth coexistence\n");
4531 return error;
4532 }
4533
4534 /* Set radio temperature sensor offset. */
4535 if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4536 error = iwn6000_temp_offset_calib(sc);
4537 if (error != 0) {
4538 aprint_error_dev(sc->sc_dev,
4539 "could not set temperature offset\n");
4540 return error;
4541 }
4542 }
4543
4544 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4545 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4546 sc->hw_type == IWN_HW_REV_TYPE_135 ||
4547 sc->hw_type == IWN_HW_REV_TYPE_105) {
4548 error = iwn2000_temp_offset_calib(sc);
4549 if (error != 0) {
4550 aprint_error_dev(sc->sc_dev,
4551 "could not set temperature offset\n");
4552 return error;
4553 }
4554 }
4555
4556 if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4557 sc->hw_type == IWN_HW_REV_TYPE_6005) {
4558 /* Configure runtime DC calibration. */
4559 error = iwn5000_runtime_calib(sc);
4560 if (error != 0) {
4561 aprint_error_dev(sc->sc_dev,
4562 "could not configure runtime calibration\n");
4563 return error;
4564 }
4565 }
4566
4567 /* Configure valid TX chains for 5000 Series. */
4568 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4569 txmask = htole32(sc->txchainmask);
4570 DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4571 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4572 sizeof txmask, 0);
4573 if (error != 0) {
4574 aprint_error_dev(sc->sc_dev,
4575 "could not configure valid TX chains\n");
4576 return error;
4577 }
4578 }
4579
4580 /* Set mode, channel, RX filter and enable RX. */
4581 memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4582 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4583 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4584 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4585 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4586 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4587 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4588 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4589 switch (ic->ic_opmode) {
4590 case IEEE80211_M_STA:
4591 sc->rxon.mode = IWN_MODE_STA;
4592 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4593 break;
4594 case IEEE80211_M_MONITOR:
4595 sc->rxon.mode = IWN_MODE_MONITOR;
4596 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4597 IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4598 break;
4599 default:
4600 /* Should not get there. */
4601 break;
4602 }
4603 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
4604 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
4605 sc->rxon.ht_single_mask = 0xff;
4606 sc->rxon.ht_dual_mask = 0xff;
4607 sc->rxon.ht_triple_mask = 0xff;
4608 rxchain =
4609 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4610 IWN_RXCHAIN_MIMO_COUNT(2) |
4611 IWN_RXCHAIN_IDLE_COUNT(2);
4612 sc->rxon.rxchain = htole16(rxchain);
4613 DPRINTF(("setting configuration\n"));
4614 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4615 if (error != 0) {
4616 aprint_error_dev(sc->sc_dev,
4617 "RXON command failed\n");
4618 return error;
4619 }
4620
4621 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4622 aprint_error_dev(sc->sc_dev,
4623 "could not add broadcast node\n");
4624 return error;
4625 }
4626
4627 /* Configuration has changed, set TX power accordingly. */
4628 if ((error = ops->set_txpower(sc, 0)) != 0) {
4629 aprint_error_dev(sc->sc_dev,
4630 "could not set TX power\n");
4631 return error;
4632 }
4633
4634 if ((error = iwn_set_critical_temp(sc)) != 0) {
4635 aprint_error_dev(sc->sc_dev,
4636 "could not set critical temperature\n");
4637 return error;
4638 }
4639
4640 /* Set power saving level to CAM during initialization. */
4641 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4642 aprint_error_dev(sc->sc_dev,
4643 "could not set power saving level\n");
4644 return error;
4645 }
4646 return 0;
4647 }
4648
4649 static uint16_t
4650 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4651 uint8_t n_probes)
4652 {
4653 /* No channel? Default to 2GHz settings */
4654 if (flags & IEEE80211_CHAN_2GHZ)
4655 return IWN_ACTIVE_DWELL_TIME_2GHZ +
4656 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4657
4658 /* 5GHz dwell time */
4659 return IWN_ACTIVE_DWELL_TIME_5GHZ +
4660 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4661 }
4662
4663 /*
4664 * Limit the total dwell time to 85% of the beacon interval.
4665 *
4666 * Returns the dwell time in milliseconds.
4667 */
4668 static uint16_t
4669 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4670 {
4671 struct ieee80211com *ic = &sc->sc_ic;
4672 struct ieee80211_node *ni = ic->ic_bss;
4673 int bintval = 0;
4674
4675 /* bintval is in TU (1.024mS) */
4676 if (ni != NULL)
4677 bintval = ni->ni_intval;
4678
4679 /*
4680 * If it's non-zero, we should calculate the minimum of
4681 * it and the DWELL_BASE.
4682 *
4683 * XXX Yes, the math should take into account that bintval
4684 * is 1.024mS, not 1mS..
4685 */
4686 if (bintval > 0)
4687 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4688
4689 /* No association context? Default */
4690 return IWN_PASSIVE_DWELL_BASE;
4691 }
4692
4693 static uint16_t
4694 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4695 {
4696 uint16_t passive;
4697 if (flags & IEEE80211_CHAN_2GHZ)
4698 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4699 else
4700 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4701
4702 /* Clamp to the beacon interval if we're associated */
4703 return iwn_limit_dwell(sc, passive);
4704 }
4705
4706 static int
4707 iwn_scan(struct iwn_softc *sc, uint16_t flags)
4708 {
4709 struct ieee80211com *ic = &sc->sc_ic;
4710 struct iwn_scan_hdr *hdr;
4711 struct iwn_cmd_data *tx;
4712 struct iwn_scan_essid *essid;
4713 struct iwn_scan_chan *chan;
4714 struct ieee80211_frame *wh;
4715 struct ieee80211_rateset *rs;
4716 struct ieee80211_channel *c;
4717 uint8_t *buf, *frm;
4718 uint16_t rxchain, dwell_active, dwell_passive;
4719 uint8_t txant;
4720 int buflen, error, is_active;
4721
4722 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4723 if (buf == NULL) {
4724 aprint_error_dev(sc->sc_dev,
4725 "could not allocate buffer for scan command\n");
4726 return ENOMEM;
4727 }
4728 hdr = (struct iwn_scan_hdr *)buf;
4729 /*
4730 * Move to the next channel if no frames are received within 10ms
4731 * after sending the probe request.
4732 */
4733 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
4734 hdr->quiet_threshold = htole16(1); /* min # of packets */
4735
4736 /* Select antennas for scanning. */
4737 rxchain =
4738 IWN_RXCHAIN_VALID(sc->rxchainmask) |
4739 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4740 IWN_RXCHAIN_DRIVER_FORCE;
4741 if ((flags & IEEE80211_CHAN_5GHZ) &&
4742 sc->hw_type == IWN_HW_REV_TYPE_4965) {
4743 /* Ant A must be avoided in 5GHz because of an HW bug. */
4744 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4745 } else /* Use all available RX antennas. */
4746 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4747 hdr->rxchain = htole16(rxchain);
4748 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4749
4750 tx = (struct iwn_cmd_data *)(hdr + 1);
4751 tx->flags = htole32(IWN_TX_AUTO_SEQ);
4752 tx->id = sc->broadcast_id;
4753 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4754
4755 if (flags & IEEE80211_CHAN_5GHZ) {
4756 hdr->crc_threshold = 0xffff;
4757 /* Send probe requests at 6Mbps. */
4758 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4759 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4760 } else {
4761 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4762 /* Send probe requests at 1Mbps. */
4763 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4764 tx->rflags = IWN_RFLAG_CCK;
4765 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4766 }
4767 /* Use the first valid TX antenna. */
4768 txant = IWN_LSB(sc->txchainmask);
4769 tx->rflags |= IWN_RFLAG_ANT(txant);
4770
4771 /*
4772 * Only do active scanning if we're announcing a probe request
4773 * for a given SSID (or more, if we ever add it to the driver.)
4774 */
4775 is_active = 0;
4776
4777 essid = (struct iwn_scan_essid *)(tx + 1);
4778 if (ic->ic_des_esslen != 0) {
4779 essid[0].id = IEEE80211_ELEMID_SSID;
4780 essid[0].len = ic->ic_des_esslen;
4781 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4782
4783 is_active = 1;
4784 }
4785 /*
4786 * Build a probe request frame. Most of the following code is a
4787 * copy & paste of what is done in net80211.
4788 */
4789 wh = (struct ieee80211_frame *)(essid + 20);
4790 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4791 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4792 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4793 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4794 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4795 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4796 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
4797 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
4798
4799 frm = (uint8_t *)(wh + 1);
4800 frm = ieee80211_add_ssid(frm, NULL, 0);
4801 frm = ieee80211_add_rates(frm, rs);
4802 #ifndef IEEE80211_NO_HT
4803 if (ic->ic_flags & IEEE80211_F_HTON)
4804 frm = ieee80211_add_htcaps(frm, ic);
4805 #endif
4806 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4807 frm = ieee80211_add_xrates(frm, rs);
4808
4809 /* Set length of probe request. */
4810 tx->len = htole16(frm - (uint8_t *)wh);
4811
4812
4813 /*
4814 * If active scanning is requested but a certain channel is
4815 * marked passive, we can do active scanning if we detect
4816 * transmissions.
4817 *
4818 * There is an issue with some firmware versions that triggers
4819 * a sysassert on a "good CRC threshold" of zero (== disabled),
4820 * on a radar channel even though this means that we should NOT
4821 * send probes.
4822 *
4823 * The "good CRC threshold" is the number of frames that we
4824 * need to receive during our dwell time on a channel before
4825 * sending out probes -- setting this to a huge value will
4826 * mean we never reach it, but at the same time work around
4827 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4828 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4829 *
4830 * This was fixed in later versions along with some other
4831 * scan changes, and the threshold behaves as a flag in those
4832 * versions.
4833 */
4834
4835 /*
4836 * If we're doing active scanning, set the crc_threshold
4837 * to a suitable value. This is different to active veruss
4838 * passive scanning depending upon the channel flags; the
4839 * firmware will obey that particular check for us.
4840 */
4841 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4842 hdr->crc_threshold = is_active ?
4843 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4844 else
4845 hdr->crc_threshold = is_active ?
4846 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4847
4848 chan = (struct iwn_scan_chan *)frm;
4849 for (c = &ic->ic_channels[1];
4850 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4851 if ((c->ic_flags & flags) != flags)
4852 continue;
4853
4854 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4855 DPRINTFN(2, ("adding channel %d\n", chan->chan));
4856 chan->flags = 0;
4857 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4858 chan->flags |= htole32(IWN_CHAN_ACTIVE);
4859 if (ic->ic_des_esslen != 0)
4860 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4861
4862 /*
4863 * Calculate the active/passive dwell times.
4864 */
4865
4866 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4867 dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4868
4869 /* Make sure they're valid */
4870 if (dwell_passive <= dwell_active)
4871 dwell_passive = dwell_active + 1;
4872
4873 chan->active = htole16(dwell_active);
4874 chan->passive = htole16(dwell_passive);
4875
4876 chan->dsp_gain = 0x6e;
4877 if (IEEE80211_IS_CHAN_5GHZ(c)) {
4878 chan->rf_gain = 0x3b;
4879 } else {
4880 chan->rf_gain = 0x28;
4881 }
4882 hdr->nchan++;
4883 chan++;
4884 }
4885
4886 buflen = (uint8_t *)chan - buf;
4887 hdr->len = htole16(buflen);
4888
4889 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4890 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4891 free(buf, M_DEVBUF);
4892 return error;
4893 }
4894
4895 static int
4896 iwn_auth(struct iwn_softc *sc)
4897 {
4898 struct iwn_ops *ops = &sc->ops;
4899 struct ieee80211com *ic = &sc->sc_ic;
4900 struct ieee80211_node *ni = ic->ic_bss;
4901 int error;
4902
4903 /* Update adapter configuration. */
4904 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4905 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4906 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4907 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4908 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4909 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4910 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4911 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4912 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4913 switch (ic->ic_curmode) {
4914 case IEEE80211_MODE_11A:
4915 sc->rxon.cck_mask = 0;
4916 sc->rxon.ofdm_mask = 0x15;
4917 break;
4918 case IEEE80211_MODE_11B:
4919 sc->rxon.cck_mask = 0x03;
4920 sc->rxon.ofdm_mask = 0;
4921 break;
4922 default: /* Assume 802.11b/g. */
4923 sc->rxon.cck_mask = 0x0f;
4924 sc->rxon.ofdm_mask = 0x15;
4925 }
4926 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4927 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4928 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4929 if (error != 0) {
4930 aprint_error_dev(sc->sc_dev,
4931 "RXON command failed\n");
4932 return error;
4933 }
4934
4935 /* Configuration has changed, set TX power accordingly. */
4936 if ((error = ops->set_txpower(sc, 1)) != 0) {
4937 aprint_error_dev(sc->sc_dev,
4938 "could not set TX power\n");
4939 return error;
4940 }
4941 /*
4942 * Reconfiguring RXON clears the firmware nodes table so we must
4943 * add the broadcast node again.
4944 */
4945 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4946 aprint_error_dev(sc->sc_dev,
4947 "could not add broadcast node\n");
4948 return error;
4949 }
4950 return 0;
4951 }
4952
4953 static int
4954 iwn_run(struct iwn_softc *sc)
4955 {
4956 struct iwn_ops *ops = &sc->ops;
4957 struct ieee80211com *ic = &sc->sc_ic;
4958 struct ieee80211_node *ni = ic->ic_bss;
4959 struct iwn_node_info node;
4960 int error;
4961
4962 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4963 /* Link LED blinks while monitoring. */
4964 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4965 return 0;
4966 }
4967 if ((error = iwn_set_timing(sc, ni)) != 0) {
4968 aprint_error_dev(sc->sc_dev,
4969 "could not set timing\n");
4970 return error;
4971 }
4972
4973 /* Update adapter configuration. */
4974 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4975 /* Short preamble and slot time are negotiated when associating. */
4976 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4977 if (ic->ic_flags & IEEE80211_F_SHSLOT)
4978 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4979 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4980 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4981 sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4982 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4983 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4984 if (error != 0) {
4985 aprint_error_dev(sc->sc_dev,
4986 "could not update configuration\n");
4987 return error;
4988 }
4989
4990 /* Configuration has changed, set TX power accordingly. */
4991 if ((error = ops->set_txpower(sc, 1)) != 0) {
4992 aprint_error_dev(sc->sc_dev,
4993 "could not set TX power\n");
4994 return error;
4995 }
4996
4997 /* Fake a join to initialize the TX rate. */
4998 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
4999 iwn_newassoc(ni, 1);
5000
5001 /* Add BSS node. */
5002 memset(&node, 0, sizeof node);
5003 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5004 node.id = IWN_ID_BSS;
5005 #ifdef notyet
5006 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5007 IWN_AMDPU_DENSITY(5)); /* 2us */
5008 #endif
5009 DPRINTF(("adding BSS node\n"));
5010 error = ops->add_node(sc, &node, 1);
5011 if (error != 0) {
5012 aprint_error_dev(sc->sc_dev,
5013 "could not add BSS node\n");
5014 return error;
5015 }
5016 DPRINTF(("setting link quality for node %d\n", node.id));
5017 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5018 aprint_error_dev(sc->sc_dev,
5019 "could not setup link quality for node %d\n", node.id);
5020 return error;
5021 }
5022
5023 if ((error = iwn_init_sensitivity(sc)) != 0) {
5024 aprint_error_dev(sc->sc_dev,
5025 "could not set sensitivity\n");
5026 return error;
5027 }
5028 /* Start periodic calibration timer. */
5029 sc->calib.state = IWN_CALIB_STATE_ASSOC;
5030 sc->calib_cnt = 0;
5031 callout_schedule(&sc->calib_to, hz/2);
5032
5033 /* Link LED always on while associated. */
5034 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5035 return 0;
5036 }
5037
5038 #ifdef IWN_HWCRYPTO
5039 /*
5040 * We support CCMP hardware encryption/decryption of unicast frames only.
5041 * HW support for TKIP really sucks. We should let TKIP die anyway.
5042 */
5043 static int
5044 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5045 struct ieee80211_key *k)
5046 {
5047 struct iwn_softc *sc = ic->ic_softc;
5048 struct iwn_ops *ops = &sc->ops;
5049 struct iwn_node *wn = (void *)ni;
5050 struct iwn_node_info node;
5051 uint16_t kflags;
5052
5053 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5054 k->k_cipher != IEEE80211_CIPHER_CCMP)
5055 return ieee80211_set_key(ic, ni, k);
5056
5057 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5058 if (k->k_flags & IEEE80211_KEY_GROUP)
5059 kflags |= IWN_KFLAG_GROUP;
5060
5061 memset(&node, 0, sizeof node);
5062 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5063 sc->broadcast_id : wn->id;
5064 node.control = IWN_NODE_UPDATE;
5065 node.flags = IWN_FLAG_SET_KEY;
5066 node.kflags = htole16(kflags);
5067 node.kid = k->k_id;
5068 memcpy(node.key, k->k_key, k->k_len);
5069 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5070 return ops->add_node(sc, &node, 1);
5071 }
5072
5073 static void
5074 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5075 struct ieee80211_key *k)
5076 {
5077 struct iwn_softc *sc = ic->ic_softc;
5078 struct iwn_ops *ops = &sc->ops;
5079 struct iwn_node *wn = (void *)ni;
5080 struct iwn_node_info node;
5081
5082 if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5083 k->k_cipher != IEEE80211_CIPHER_CCMP) {
5084 /* See comment about other ciphers above. */
5085 ieee80211_delete_key(ic, ni, k);
5086 return;
5087 }
5088 if (ic->ic_state != IEEE80211_S_RUN)
5089 return; /* Nothing to do. */
5090 memset(&node, 0, sizeof node);
5091 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5092 sc->broadcast_id : wn->id;
5093 node.control = IWN_NODE_UPDATE;
5094 node.flags = IWN_FLAG_SET_KEY;
5095 node.kflags = htole16(IWN_KFLAG_INVALID);
5096 node.kid = 0xff;
5097 DPRINTF(("delete keys for node %d\n", node.id));
5098 (void)ops->add_node(sc, &node, 1);
5099 }
5100 #endif
5101
5102 /* XXX Added for NetBSD (copied from rev 1.39). */
5103
5104 static int
5105 iwn_wme_update(struct ieee80211com *ic)
5106 {
5107 #define IWN_EXP2(v) htole16((1 << (v)) - 1)
5108 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
5109 struct iwn_softc *sc = ic->ic_ifp->if_softc;
5110 const struct wmeParams *wmep;
5111 struct iwn_edca_params cmd;
5112 int ac;
5113
5114 /* don't override default WME values if WME is not actually enabled */
5115 if (!(ic->ic_flags & IEEE80211_F_WME))
5116 return 0;
5117 cmd.flags = 0;
5118 for (ac = 0; ac < WME_NUM_AC; ac++) {
5119 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5120 cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5121 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5122 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5123 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
5124
5125 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5126 "txop=%d\n", ac, cmd.ac[ac].aifsn,
5127 cmd.ac[ac].cwmin,
5128 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5129 }
5130 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5131 #undef IWN_USEC
5132 #undef IWN_EXP2
5133 }
5134
5135 #ifndef IEEE80211_NO_HT
5136 /*
5137 * This function is called by upper layer when an ADDBA request is received
5138 * from another STA and before the ADDBA response is sent.
5139 */
5140 static int
5141 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5142 uint8_t tid)
5143 {
5144 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5145 struct iwn_softc *sc = ic->ic_softc;
5146 struct iwn_ops *ops = &sc->ops;
5147 struct iwn_node *wn = (void *)ni;
5148 struct iwn_node_info node;
5149
5150 memset(&node, 0, sizeof node);
5151 node.id = wn->id;
5152 node.control = IWN_NODE_UPDATE;
5153 node.flags = IWN_FLAG_SET_ADDBA;
5154 node.addba_tid = tid;
5155 node.addba_ssn = htole16(ba->ba_winstart);
5156 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5157 ba->ba_winstart));
5158 return ops->add_node(sc, &node, 1);
5159 }
5160
5161 /*
5162 * This function is called by upper layer on teardown of an HT-immediate
5163 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5164 */
5165 static void
5166 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5167 uint8_t tid)
5168 {
5169 struct iwn_softc *sc = ic->ic_softc;
5170 struct iwn_ops *ops = &sc->ops;
5171 struct iwn_node *wn = (void *)ni;
5172 struct iwn_node_info node;
5173
5174 memset(&node, 0, sizeof node);
5175 node.id = wn->id;
5176 node.control = IWN_NODE_UPDATE;
5177 node.flags = IWN_FLAG_SET_DELBA;
5178 node.delba_tid = tid;
5179 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5180 (void)ops->add_node(sc, &node, 1);
5181 }
5182
5183 /*
5184 * This function is called by upper layer when an ADDBA response is received
5185 * from another STA.
5186 */
5187 static int
5188 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5189 uint8_t tid)
5190 {
5191 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5192 struct iwn_softc *sc = ic->ic_softc;
5193 struct iwn_ops *ops = &sc->ops;
5194 struct iwn_node *wn = (void *)ni;
5195 struct iwn_node_info node;
5196 int error;
5197
5198 /* Enable TX for the specified RA/TID. */
5199 wn->disable_tid &= ~(1 << tid);
5200 memset(&node, 0, sizeof node);
5201 node.id = wn->id;
5202 node.control = IWN_NODE_UPDATE;
5203 node.flags = IWN_FLAG_SET_DISABLE_TID;
5204 node.disable_tid = htole16(wn->disable_tid);
5205 error = ops->add_node(sc, &node, 1);
5206 if (error != 0)
5207 return error;
5208
5209 if ((error = iwn_nic_lock(sc)) != 0)
5210 return error;
5211 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5212 iwn_nic_unlock(sc);
5213 return 0;
5214 }
5215
5216 static void
5217 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5218 uint8_t tid)
5219 {
5220 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5221 struct iwn_softc *sc = ic->ic_softc;
5222 struct iwn_ops *ops = &sc->ops;
5223
5224 if (iwn_nic_lock(sc) != 0)
5225 return;
5226 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5227 iwn_nic_unlock(sc);
5228 }
5229
5230 static void
5231 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5232 uint8_t tid, uint16_t ssn)
5233 {
5234 struct iwn_node *wn = (void *)ni;
5235 int qid = 7 + tid;
5236
5237 /* Stop TX scheduler while we're changing its configuration. */
5238 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5239 IWN4965_TXQ_STATUS_CHGACT);
5240
5241 /* Assign RA/TID translation to the queue. */
5242 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5243 wn->id << 4 | tid);
5244
5245 /* Enable chain-building mode for the queue. */
5246 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5247
5248 /* Set starting sequence number from the ADDBA request. */
5249 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5250 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5251
5252 /* Set scheduler window size. */
5253 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5254 IWN_SCHED_WINSZ);
5255 /* Set scheduler frame limit. */
5256 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5257 IWN_SCHED_LIMIT << 16);
5258
5259 /* Enable interrupts for the queue. */
5260 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5261
5262 /* Mark the queue as active. */
5263 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5264 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5265 iwn_tid2fifo[tid] << 1);
5266 }
5267
5268 static void
5269 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5270 {
5271 int qid = 7 + tid;
5272
5273 /* Stop TX scheduler while we're changing its configuration. */
5274 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5275 IWN4965_TXQ_STATUS_CHGACT);
5276
5277 /* Set starting sequence number from the ADDBA request. */
5278 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5279 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5280
5281 /* Disable interrupts for the queue. */
5282 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5283
5284 /* Mark the queue as inactive. */
5285 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5286 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5287 }
5288
5289 static void
5290 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5291 uint8_t tid, uint16_t ssn)
5292 {
5293 struct iwn_node *wn = (void *)ni;
5294 int qid = 10 + tid;
5295
5296 /* Stop TX scheduler while we're changing its configuration. */
5297 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5298 IWN5000_TXQ_STATUS_CHGACT);
5299
5300 /* Assign RA/TID translation to the queue. */
5301 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5302 wn->id << 4 | tid);
5303
5304 /* Enable chain-building mode for the queue. */
5305 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5306
5307 /* Enable aggregation for the queue. */
5308 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5309
5310 /* Set starting sequence number from the ADDBA request. */
5311 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5312 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5313
5314 /* Set scheduler window size and frame limit. */
5315 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5316 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5317
5318 /* Enable interrupts for the queue. */
5319 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5320
5321 /* Mark the queue as active. */
5322 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5323 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5324 }
5325
5326 static void
5327 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5328 {
5329 int qid = 10 + tid;
5330
5331 /* Stop TX scheduler while we're changing its configuration. */
5332 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5333 IWN5000_TXQ_STATUS_CHGACT);
5334
5335 /* Disable aggregation for the queue. */
5336 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5337
5338 /* Set starting sequence number from the ADDBA request. */
5339 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5340 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5341
5342 /* Disable interrupts for the queue. */
5343 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5344
5345 /* Mark the queue as inactive. */
5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5347 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5348 }
5349 #endif /* !IEEE80211_NO_HT */
5350
5351 /*
5352 * Query calibration tables from the initialization firmware. We do this
5353 * only once at first boot. Called from a process context.
5354 */
5355 static int
5356 iwn5000_query_calibration(struct iwn_softc *sc)
5357 {
5358 struct iwn5000_calib_config cmd;
5359 int error;
5360
5361 memset(&cmd, 0, sizeof cmd);
5362 cmd.ucode.once.enable = 0xffffffff;
5363 cmd.ucode.once.start = 0xffffffff;
5364 cmd.ucode.once.send = 0xffffffff;
5365 cmd.ucode.flags = 0xffffffff;
5366 DPRINTF(("sending calibration query\n"));
5367 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5368 if (error != 0)
5369 return error;
5370
5371 /* Wait at most two seconds for calibration to complete. */
5372 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5373 error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5374 return error;
5375 }
5376
5377 /*
5378 * Send calibration results to the runtime firmware. These results were
5379 * obtained on first boot from the initialization firmware.
5380 */
5381 static int
5382 iwn5000_send_calibration(struct iwn_softc *sc)
5383 {
5384 int idx, error;
5385
5386 for (idx = 0; idx < 5; idx++) {
5387 if (sc->calibcmd[idx].buf == NULL)
5388 continue; /* No results available. */
5389 DPRINTF(("send calibration result idx=%d len=%d\n",
5390 idx, sc->calibcmd[idx].len));
5391 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5392 sc->calibcmd[idx].len, 0);
5393 if (error != 0) {
5394 aprint_error_dev(sc->sc_dev,
5395 "could not send calibration result\n");
5396 return error;
5397 }
5398 }
5399 return 0;
5400 }
5401
5402 static int
5403 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5404 {
5405 struct iwn5000_wimax_coex wimax;
5406
5407 #ifdef notyet
5408 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5409 /* Enable WiMAX coexistence for combo adapters. */
5410 wimax.flags =
5411 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5412 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5413 IWN_WIMAX_COEX_STA_TABLE_VALID |
5414 IWN_WIMAX_COEX_ENABLE;
5415 memcpy(wimax.events, iwn6050_wimax_events,
5416 sizeof iwn6050_wimax_events);
5417 } else
5418 #endif
5419 {
5420 /* Disable WiMAX coexistence. */
5421 wimax.flags = 0;
5422 memset(wimax.events, 0, sizeof wimax.events);
5423 }
5424 DPRINTF(("Configuring WiMAX coexistence\n"));
5425 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5426 }
5427
5428 static int
5429 iwn6000_temp_offset_calib(struct iwn_softc *sc)
5430 {
5431 struct iwn6000_phy_calib_temp_offset cmd;
5432
5433 memset(&cmd, 0, sizeof cmd);
5434 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5435 cmd.ngroups = 1;
5436 cmd.isvalid = 1;
5437 if (sc->eeprom_temp != 0)
5438 cmd.offset = htole16(sc->eeprom_temp);
5439 else
5440 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5441 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5442 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5443 }
5444
5445 static int
5446 iwn2000_temp_offset_calib(struct iwn_softc *sc)
5447 {
5448 struct iwn2000_phy_calib_temp_offset cmd;
5449
5450 memset(&cmd, 0, sizeof cmd);
5451 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5452 cmd.ngroups = 1;
5453 cmd.isvalid = 1;
5454 if (sc->eeprom_rawtemp != 0) {
5455 cmd.offset_low = htole16(sc->eeprom_rawtemp);
5456 cmd.offset_high = htole16(sc->eeprom_temp);
5457 } else {
5458 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5459 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5460 }
5461 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5462 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5463 le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5464 le16toh(cmd.burnt_voltage_ref)));
5465 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5466 }
5467
5468 /*
5469 * This function is called after the runtime firmware notifies us of its
5470 * readiness (called in a process context).
5471 */
5472 static int
5473 iwn4965_post_alive(struct iwn_softc *sc)
5474 {
5475 int error, qid;
5476
5477 if ((error = iwn_nic_lock(sc)) != 0)
5478 return error;
5479
5480 /* Clear TX scheduler state in SRAM. */
5481 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5482 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5483 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5484
5485 /* Set physical address of TX scheduler rings (1KB aligned). */
5486 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5487
5488 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5489
5490 /* Disable chain mode for all our 16 queues. */
5491 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5492
5493 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5494 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5495 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5496
5497 /* Set scheduler window size. */
5498 iwn_mem_write(sc, sc->sched_base +
5499 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5500 /* Set scheduler frame limit. */
5501 iwn_mem_write(sc, sc->sched_base +
5502 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5503 IWN_SCHED_LIMIT << 16);
5504 }
5505
5506 /* Enable interrupts for all our 16 queues. */
5507 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5508 /* Identify TX FIFO rings (0-7). */
5509 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5510
5511 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5512 for (qid = 0; qid < 7; qid++) {
5513 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5514 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5515 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5516 }
5517 iwn_nic_unlock(sc);
5518 return 0;
5519 }
5520
5521 /*
5522 * This function is called after the initialization or runtime firmware
5523 * notifies us of its readiness (called in a process context).
5524 */
5525 static int
5526 iwn5000_post_alive(struct iwn_softc *sc)
5527 {
5528 int error, qid;
5529
5530 /* Switch to using ICT interrupt mode. */
5531 iwn5000_ict_reset(sc);
5532
5533 if ((error = iwn_nic_lock(sc)) != 0)
5534 return error;
5535
5536 /* Clear TX scheduler state in SRAM. */
5537 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5538 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5539 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5540
5541 /* Set physical address of TX scheduler rings (1KB aligned). */
5542 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5543
5544 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5545
5546 /* Enable chain mode for all queues, except command queue. */
5547 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5548 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5549
5550 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5551 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5552 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5553
5554 iwn_mem_write(sc, sc->sched_base +
5555 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5556 /* Set scheduler window size and frame limit. */
5557 iwn_mem_write(sc, sc->sched_base +
5558 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5559 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5560 }
5561
5562 /* Enable interrupts for all our 20 queues. */
5563 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5564 /* Identify TX FIFO rings (0-7). */
5565 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5566
5567 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5568 for (qid = 0; qid < 7; qid++) {
5569 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5570 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5571 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5572 }
5573 iwn_nic_unlock(sc);
5574
5575 /* Configure WiMAX coexistence for combo adapters. */
5576 error = iwn5000_send_wimax_coex(sc);
5577 if (error != 0) {
5578 aprint_error_dev(sc->sc_dev,
5579 "could not configure WiMAX coexistence\n");
5580 return error;
5581 }
5582 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5583 struct iwn5000_phy_calib_crystal cmd;
5584
5585 /* Perform crystal calibration. */
5586 memset(&cmd, 0, sizeof cmd);
5587 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5588 cmd.ngroups = 1;
5589 cmd.isvalid = 1;
5590 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5591 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5592 DPRINTF(("sending crystal calibration %d, %d\n",
5593 cmd.cap_pin[0], cmd.cap_pin[1]));
5594 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5595 if (error != 0) {
5596 aprint_error_dev(sc->sc_dev,
5597 "crystal calibration failed\n");
5598 return error;
5599 }
5600 }
5601 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5602 /* Query calibration from the initialization firmware. */
5603 if ((error = iwn5000_query_calibration(sc)) != 0) {
5604 aprint_error_dev(sc->sc_dev,
5605 "could not query calibration\n");
5606 return error;
5607 }
5608 /*
5609 * We have the calibration results now, reboot with the
5610 * runtime firmware (call ourselves recursively!)
5611 */
5612 iwn_hw_stop(sc);
5613 error = iwn_hw_init(sc);
5614 } else {
5615 /* Send calibration results to runtime firmware. */
5616 error = iwn5000_send_calibration(sc);
5617 }
5618 return error;
5619 }
5620
5621 /*
5622 * The firmware boot code is small and is intended to be copied directly into
5623 * the NIC internal memory (no DMA transfer).
5624 */
5625 static int
5626 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5627 {
5628 int error, ntries;
5629
5630 size /= sizeof (uint32_t);
5631
5632 if ((error = iwn_nic_lock(sc)) != 0)
5633 return error;
5634
5635 /* Copy microcode image into NIC memory. */
5636 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5637 (const uint32_t *)ucode, size);
5638
5639 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5640 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5641 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5642
5643 /* Start boot load now. */
5644 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5645
5646 /* Wait for transfer to complete. */
5647 for (ntries = 0; ntries < 1000; ntries++) {
5648 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5649 IWN_BSM_WR_CTRL_START))
5650 break;
5651 DELAY(10);
5652 }
5653 if (ntries == 1000) {
5654 aprint_error_dev(sc->sc_dev,
5655 "could not load boot firmware\n");
5656 iwn_nic_unlock(sc);
5657 return ETIMEDOUT;
5658 }
5659
5660 /* Enable boot after power up. */
5661 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5662
5663 iwn_nic_unlock(sc);
5664 return 0;
5665 }
5666
5667 static int
5668 iwn4965_load_firmware(struct iwn_softc *sc)
5669 {
5670 struct iwn_fw_info *fw = &sc->fw;
5671 struct iwn_dma_info *dma = &sc->fw_dma;
5672 int error;
5673
5674 /* Copy initialization sections into pre-allocated DMA-safe memory. */
5675 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5676 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5677 BUS_DMASYNC_PREWRITE);
5678 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5679 fw->init.text, fw->init.textsz);
5680 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5681 fw->init.textsz, BUS_DMASYNC_PREWRITE);
5682
5683 /* Tell adapter where to find initialization sections. */
5684 if ((error = iwn_nic_lock(sc)) != 0)
5685 return error;
5686 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5687 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5688 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5689 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5690 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5691 iwn_nic_unlock(sc);
5692
5693 /* Load firmware boot code. */
5694 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5695 if (error != 0) {
5696 aprint_error_dev(sc->sc_dev,
5697 "could not load boot firmware\n");
5698 return error;
5699 }
5700 /* Now press "execute". */
5701 IWN_WRITE(sc, IWN_RESET, 0);
5702
5703 /* Wait at most one second for first alive notification. */
5704 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5705 aprint_error_dev(sc->sc_dev,
5706 "timeout waiting for adapter to initialize\n");
5707 return error;
5708 }
5709
5710 /* Retrieve current temperature for initial TX power calibration. */
5711 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5712 sc->temp = iwn4965_get_temperature(sc);
5713
5714 /* Copy runtime sections into pre-allocated DMA-safe memory. */
5715 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5716 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5717 BUS_DMASYNC_PREWRITE);
5718 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5719 fw->main.text, fw->main.textsz);
5720 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5721 fw->main.textsz, BUS_DMASYNC_PREWRITE);
5722
5723 /* Tell adapter where to find runtime sections. */
5724 if ((error = iwn_nic_lock(sc)) != 0)
5725 return error;
5726 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5727 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5728 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5729 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5730 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5731 IWN_FW_UPDATED | fw->main.textsz);
5732 iwn_nic_unlock(sc);
5733
5734 return 0;
5735 }
5736
5737 static int
5738 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5739 const uint8_t *section, int size)
5740 {
5741 struct iwn_dma_info *dma = &sc->fw_dma;
5742 int error;
5743
5744 /* Copy firmware section into pre-allocated DMA-safe memory. */
5745 memcpy(dma->vaddr, section, size);
5746 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5747
5748 if ((error = iwn_nic_lock(sc)) != 0)
5749 return error;
5750
5751 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5752 IWN_FH_TX_CONFIG_DMA_PAUSE);
5753
5754 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5755 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5756 IWN_LOADDR(dma->paddr));
5757 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5758 IWN_HIADDR(dma->paddr) << 28 | size);
5759 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5760 IWN_FH_TXBUF_STATUS_TBNUM(1) |
5761 IWN_FH_TXBUF_STATUS_TBIDX(1) |
5762 IWN_FH_TXBUF_STATUS_TFBD_VALID);
5763
5764 /* Kick Flow Handler to start DMA transfer. */
5765 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5766 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5767
5768 iwn_nic_unlock(sc);
5769
5770 /* Wait at most five seconds for FH DMA transfer to complete. */
5771 return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5772 }
5773
5774 static int
5775 iwn5000_load_firmware(struct iwn_softc *sc)
5776 {
5777 struct iwn_fw_part *fw;
5778 int error;
5779
5780 /* Load the initialization firmware on first boot only. */
5781 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5782 &sc->fw.main : &sc->fw.init;
5783
5784 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5785 fw->text, fw->textsz);
5786 if (error != 0) {
5787 aprint_error_dev(sc->sc_dev,
5788 "could not load firmware %s section\n", ".text");
5789 return error;
5790 }
5791 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5792 fw->data, fw->datasz);
5793 if (error != 0) {
5794 aprint_error_dev(sc->sc_dev,
5795 "could not load firmware %s section\n", ".data");
5796 return error;
5797 }
5798
5799 /* Now press "execute". */
5800 IWN_WRITE(sc, IWN_RESET, 0);
5801 return 0;
5802 }
5803
5804 /*
5805 * Extract text and data sections from a legacy firmware image.
5806 */
5807 static int
5808 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5809 {
5810 const uint32_t *ptr;
5811 size_t hdrlen = 24;
5812 uint32_t rev;
5813
5814 ptr = (const uint32_t *)fw->data;
5815 rev = le32toh(*ptr++);
5816
5817 sc->ucode_rev = rev;
5818
5819 /* Check firmware API version. */
5820 if (IWN_FW_API(rev) <= 1) {
5821 aprint_error_dev(sc->sc_dev,
5822 "bad firmware, need API version >=2\n");
5823 return EINVAL;
5824 }
5825 if (IWN_FW_API(rev) >= 3) {
5826 /* Skip build number (version 2 header). */
5827 hdrlen += 4;
5828 ptr++;
5829 }
5830 if (fw->size < hdrlen) {
5831 aprint_error_dev(sc->sc_dev,
5832 "firmware too short: %zd bytes\n", fw->size);
5833 return EINVAL;
5834 }
5835 fw->main.textsz = le32toh(*ptr++);
5836 fw->main.datasz = le32toh(*ptr++);
5837 fw->init.textsz = le32toh(*ptr++);
5838 fw->init.datasz = le32toh(*ptr++);
5839 fw->boot.textsz = le32toh(*ptr++);
5840
5841 /* Check that all firmware sections fit. */
5842 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5843 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5844 aprint_error_dev(sc->sc_dev,
5845 "firmware too short: %zd bytes\n", fw->size);
5846 return EINVAL;
5847 }
5848
5849 /* Get pointers to firmware sections. */
5850 fw->main.text = (const uint8_t *)ptr;
5851 fw->main.data = fw->main.text + fw->main.textsz;
5852 fw->init.text = fw->main.data + fw->main.datasz;
5853 fw->init.data = fw->init.text + fw->init.textsz;
5854 fw->boot.text = fw->init.data + fw->init.datasz;
5855 return 0;
5856 }
5857
5858 /*
5859 * Extract text and data sections from a TLV firmware image.
5860 */
5861 static int
5862 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5863 uint16_t alt)
5864 {
5865 const struct iwn_fw_tlv_hdr *hdr;
5866 const struct iwn_fw_tlv *tlv;
5867 const uint8_t *ptr, *end;
5868 uint64_t altmask;
5869 uint32_t len;
5870
5871 if (fw->size < sizeof (*hdr)) {
5872 aprint_error_dev(sc->sc_dev,
5873 "firmware too short: %zd bytes\n", fw->size);
5874 return EINVAL;
5875 }
5876 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5877 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5878 aprint_error_dev(sc->sc_dev,
5879 "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5880 return EINVAL;
5881 }
5882 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5883 le32toh(hdr->build)));
5884 sc->ucode_rev = le32toh(hdr->rev);
5885
5886 /*
5887 * Select the closest supported alternative that is less than
5888 * or equal to the specified one.
5889 */
5890 altmask = le64toh(hdr->altmask);
5891 while (alt > 0 && !(altmask & (1ULL << alt)))
5892 alt--; /* Downgrade. */
5893 DPRINTF(("using alternative %d\n", alt));
5894
5895 ptr = (const uint8_t *)(hdr + 1);
5896 end = (const uint8_t *)(fw->data + fw->size);
5897
5898 /* Parse type-length-value fields. */
5899 while (ptr + sizeof (*tlv) <= end) {
5900 tlv = (const struct iwn_fw_tlv *)ptr;
5901 len = le32toh(tlv->len);
5902
5903 ptr += sizeof (*tlv);
5904 if (ptr + len > end) {
5905 aprint_error_dev(sc->sc_dev,
5906 "firmware too short: %zd bytes\n", fw->size);
5907 return EINVAL;
5908 }
5909 /* Skip other alternatives. */
5910 if (tlv->alt != 0 && tlv->alt != htole16(alt))
5911 goto next;
5912
5913 switch (le16toh(tlv->type)) {
5914 case IWN_FW_TLV_MAIN_TEXT:
5915 fw->main.text = ptr;
5916 fw->main.textsz = len;
5917 break;
5918 case IWN_FW_TLV_MAIN_DATA:
5919 fw->main.data = ptr;
5920 fw->main.datasz = len;
5921 break;
5922 case IWN_FW_TLV_INIT_TEXT:
5923 fw->init.text = ptr;
5924 fw->init.textsz = len;
5925 break;
5926 case IWN_FW_TLV_INIT_DATA:
5927 fw->init.data = ptr;
5928 fw->init.datasz = len;
5929 break;
5930 case IWN_FW_TLV_BOOT_TEXT:
5931 fw->boot.text = ptr;
5932 fw->boot.textsz = len;
5933 break;
5934 case IWN_FW_TLV_ENH_SENS:
5935 if (len != 0) {
5936 aprint_error_dev(sc->sc_dev,
5937 "TLV type %d has invalid size %u\n",
5938 le16toh(tlv->type), len);
5939 goto next;
5940 }
5941 sc->sc_flags |= IWN_FLAG_ENH_SENS;
5942 break;
5943 case IWN_FW_TLV_PHY_CALIB:
5944 if (len != sizeof(uint32_t)) {
5945 aprint_error_dev(sc->sc_dev,
5946 "TLV type %d has invalid size %u\n",
5947 le16toh(tlv->type), len);
5948 goto next;
5949 }
5950 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5951 sc->reset_noise_gain = le32toh(*ptr);
5952 sc->noise_gain = le32toh(*ptr) + 1;
5953 }
5954 break;
5955 case IWN_FW_TLV_FLAGS:
5956 if (len < sizeof(uint32_t))
5957 break;
5958 if (len % sizeof(uint32_t))
5959 break;
5960 sc->tlv_feature_flags = le32toh(*ptr);
5961 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5962 break;
5963 default:
5964 DPRINTF(("TLV type %d not handled\n",
5965 le16toh(tlv->type)));
5966 break;
5967 }
5968 next: /* TLV fields are 32-bit aligned. */
5969 ptr += (len + 3) & ~3;
5970 }
5971 return 0;
5972 }
5973
5974 static int
5975 iwn_read_firmware(struct iwn_softc *sc)
5976 {
5977 struct iwn_fw_info *fw = &sc->fw;
5978 firmware_handle_t fwh;
5979 int error;
5980
5981 /*
5982 * Some PHY calibration commands are firmware-dependent; these
5983 * are the default values that will be overridden if
5984 * necessary.
5985 */
5986 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5987 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5988
5989 /* Initialize for error returns */
5990 fw->data = NULL;
5991 fw->size = 0;
5992
5993 /* Open firmware image. */
5994 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5995 aprint_error_dev(sc->sc_dev,
5996 "could not get firmware handle %s\n", sc->fwname);
5997 return error;
5998 }
5999 fw->size = firmware_get_size(fwh);
6000 if (fw->size < sizeof (uint32_t)) {
6001 aprint_error_dev(sc->sc_dev,
6002 "firmware too short: %zd bytes\n", fw->size);
6003 firmware_close(fwh);
6004 return EINVAL;
6005 }
6006
6007 /* Read the firmware. */
6008 fw->data = firmware_malloc(fw->size);
6009 if (fw->data == NULL) {
6010 aprint_error_dev(sc->sc_dev,
6011 "not enough memory to stock firmware %s\n", sc->fwname);
6012 firmware_close(fwh);
6013 return ENOMEM;
6014 }
6015 error = firmware_read(fwh, 0, fw->data, fw->size);
6016 firmware_close(fwh);
6017 if (error != 0) {
6018 aprint_error_dev(sc->sc_dev,
6019 "could not read firmware %s\n", sc->fwname);
6020 goto out;
6021 }
6022
6023 /* Retrieve text and data sections. */
6024 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
6025 error = iwn_read_firmware_leg(sc, fw);
6026 else
6027 error = iwn_read_firmware_tlv(sc, fw, 1);
6028 if (error != 0) {
6029 aprint_error_dev(sc->sc_dev,
6030 "could not read firmware sections\n");
6031 goto out;
6032 }
6033
6034 /* Make sure text and data sections fit in hardware memory. */
6035 if (fw->main.textsz > sc->fw_text_maxsz ||
6036 fw->main.datasz > sc->fw_data_maxsz ||
6037 fw->init.textsz > sc->fw_text_maxsz ||
6038 fw->init.datasz > sc->fw_data_maxsz ||
6039 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6040 (fw->boot.textsz & 3) != 0) {
6041 aprint_error_dev(sc->sc_dev,
6042 "firmware sections too large\n");
6043 goto out;
6044 }
6045
6046 /* We can proceed with loading the firmware. */
6047 return 0;
6048 out:
6049 firmware_free(fw->data, fw->size);
6050 fw->data = NULL;
6051 fw->size = 0;
6052 return error ? error : EINVAL;
6053 }
6054
6055 static int
6056 iwn_clock_wait(struct iwn_softc *sc)
6057 {
6058 int ntries;
6059
6060 /* Set "initialization complete" bit. */
6061 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6062
6063 /* Wait for clock stabilization. */
6064 for (ntries = 0; ntries < 2500; ntries++) {
6065 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6066 return 0;
6067 DELAY(10);
6068 }
6069 aprint_error_dev(sc->sc_dev,
6070 "timeout waiting for clock stabilization\n");
6071 return ETIMEDOUT;
6072 }
6073
6074 static int
6075 iwn_apm_init(struct iwn_softc *sc)
6076 {
6077 pcireg_t reg;
6078 int error;
6079
6080 /* Disable L0s exit timer (NMI bug workaround). */
6081 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6082 /* Don't wait for ICH L0s (ICH bug workaround). */
6083 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6084
6085 /* Set FH wait threshold to max (HW bug under stress workaround). */
6086 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6087
6088 /* Enable HAP INTA to move adapter from L1a to L0s. */
6089 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6090
6091 /* Retrieve PCIe Active State Power Management (ASPM). */
6092 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6093 sc->sc_cap_off + PCIE_LCSR);
6094 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6095 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
6096 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6097 else
6098 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6099
6100 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6101 sc->hw_type <= IWN_HW_REV_TYPE_1000)
6102 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6103
6104 /* Wait for clock stabilization before accessing prph. */
6105 if ((error = iwn_clock_wait(sc)) != 0)
6106 return error;
6107
6108 if ((error = iwn_nic_lock(sc)) != 0)
6109 return error;
6110 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6111 /* Enable DMA and BSM (Bootstrap State Machine). */
6112 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6113 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6114 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6115 } else {
6116 /* Enable DMA. */
6117 iwn_prph_write(sc, IWN_APMG_CLK_EN,
6118 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6119 }
6120 DELAY(20);
6121 /* Disable L1-Active. */
6122 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6123 iwn_nic_unlock(sc);
6124
6125 return 0;
6126 }
6127
6128 static void
6129 iwn_apm_stop_master(struct iwn_softc *sc)
6130 {
6131 int ntries;
6132
6133 /* Stop busmaster DMA activity. */
6134 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6135 for (ntries = 0; ntries < 100; ntries++) {
6136 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6137 return;
6138 DELAY(10);
6139 }
6140 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6141 }
6142
6143 static void
6144 iwn_apm_stop(struct iwn_softc *sc)
6145 {
6146 iwn_apm_stop_master(sc);
6147
6148 /* Reset the entire device. */
6149 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6150 DELAY(10);
6151 /* Clear "initialization complete" bit. */
6152 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6153 }
6154
6155 static int
6156 iwn4965_nic_config(struct iwn_softc *sc)
6157 {
6158 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6159 /*
6160 * I don't believe this to be correct but this is what the
6161 * vendor driver is doing. Probably the bits should not be
6162 * shifted in IWN_RFCFG_*.
6163 */
6164 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6165 IWN_RFCFG_TYPE(sc->rfcfg) |
6166 IWN_RFCFG_STEP(sc->rfcfg) |
6167 IWN_RFCFG_DASH(sc->rfcfg));
6168 }
6169 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6170 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6171 return 0;
6172 }
6173
6174 static int
6175 iwn5000_nic_config(struct iwn_softc *sc)
6176 {
6177 uint32_t tmp;
6178 int error;
6179
6180 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6181 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6182 IWN_RFCFG_TYPE(sc->rfcfg) |
6183 IWN_RFCFG_STEP(sc->rfcfg) |
6184 IWN_RFCFG_DASH(sc->rfcfg));
6185 }
6186 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6187 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6188
6189 if ((error = iwn_nic_lock(sc)) != 0)
6190 return error;
6191 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6192
6193 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6194 /*
6195 * Select first Switching Voltage Regulator (1.32V) to
6196 * solve a stability issue related to noisy DC2DC line
6197 * in the silicon of 1000 Series.
6198 */
6199 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6200 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6201 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6202 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6203 }
6204 iwn_nic_unlock(sc);
6205
6206 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6207 /* Use internal power amplifier only. */
6208 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6209 }
6210 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6211 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6212 /* Indicate that ROM calibration version is >=6. */
6213 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6214 }
6215 if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6216 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6217 if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6218 sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6219 sc->hw_type == IWN_HW_REV_TYPE_135 ||
6220 sc->hw_type == IWN_HW_REV_TYPE_105)
6221 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6222 return 0;
6223 }
6224
6225 /*
6226 * Take NIC ownership over Intel Active Management Technology (AMT).
6227 */
6228 static int
6229 iwn_hw_prepare(struct iwn_softc *sc)
6230 {
6231 int ntries;
6232
6233 /* Check if hardware is ready. */
6234 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6235 for (ntries = 0; ntries < 5; ntries++) {
6236 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6237 IWN_HW_IF_CONFIG_NIC_READY)
6238 return 0;
6239 DELAY(10);
6240 }
6241
6242 /* Hardware not ready, force into ready state. */
6243 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6244 for (ntries = 0; ntries < 15000; ntries++) {
6245 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6246 IWN_HW_IF_CONFIG_PREPARE_DONE))
6247 break;
6248 DELAY(10);
6249 }
6250 if (ntries == 15000)
6251 return ETIMEDOUT;
6252
6253 /* Hardware should be ready now. */
6254 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6255 for (ntries = 0; ntries < 5; ntries++) {
6256 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6257 IWN_HW_IF_CONFIG_NIC_READY)
6258 return 0;
6259 DELAY(10);
6260 }
6261 return ETIMEDOUT;
6262 }
6263
6264 static int
6265 iwn_hw_init(struct iwn_softc *sc)
6266 {
6267 struct iwn_ops *ops = &sc->ops;
6268 int error, chnl, qid;
6269
6270 /* Clear pending interrupts. */
6271 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6272
6273 if ((error = iwn_apm_init(sc)) != 0) {
6274 aprint_error_dev(sc->sc_dev,
6275 "could not power ON adapter\n");
6276 return error;
6277 }
6278
6279 /* Select VMAIN power source. */
6280 if ((error = iwn_nic_lock(sc)) != 0)
6281 return error;
6282 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6283 iwn_nic_unlock(sc);
6284
6285 /* Perform adapter-specific initialization. */
6286 if ((error = ops->nic_config(sc)) != 0)
6287 return error;
6288
6289 /* Initialize RX ring. */
6290 if ((error = iwn_nic_lock(sc)) != 0)
6291 return error;
6292 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6293 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6294 /* Set physical address of RX ring (256-byte aligned). */
6295 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6296 /* Set physical address of RX status (16-byte aligned). */
6297 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6298 /* Enable RX. */
6299 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6300 IWN_FH_RX_CONFIG_ENA |
6301 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
6302 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
6303 IWN_FH_RX_CONFIG_SINGLE_FRAME |
6304 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6305 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6306 iwn_nic_unlock(sc);
6307 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6308
6309 if ((error = iwn_nic_lock(sc)) != 0)
6310 return error;
6311
6312 /* Initialize TX scheduler. */
6313 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6314
6315 /* Set physical address of "keep warm" page (16-byte aligned). */
6316 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6317
6318 /* Initialize TX rings. */
6319 for (qid = 0; qid < sc->ntxqs; qid++) {
6320 struct iwn_tx_ring *txq = &sc->txq[qid];
6321
6322 /* Set physical address of TX ring (256-byte aligned). */
6323 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6324 txq->desc_dma.paddr >> 8);
6325 }
6326 iwn_nic_unlock(sc);
6327
6328 /* Enable DMA channels. */
6329 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6330 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6331 IWN_FH_TX_CONFIG_DMA_ENA |
6332 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6333 }
6334
6335 /* Clear "radio off" and "commands blocked" bits. */
6336 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6337 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6338
6339 /* Clear pending interrupts. */
6340 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6341 /* Enable interrupt coalescing. */
6342 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6343 /* Enable interrupts. */
6344 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6345
6346 /* _Really_ make sure "radio off" bit is cleared! */
6347 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6348 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6349
6350 /* Enable shadow registers. */
6351 if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6352 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6353
6354 if ((error = ops->load_firmware(sc)) != 0) {
6355 aprint_error_dev(sc->sc_dev,
6356 "could not load firmware\n");
6357 return error;
6358 }
6359 /* Wait at most one second for firmware alive notification. */
6360 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6361 aprint_error_dev(sc->sc_dev,
6362 "timeout waiting for adapter to initialize\n");
6363 return error;
6364 }
6365 /* Do post-firmware initialization. */
6366 return ops->post_alive(sc);
6367 }
6368
6369 static void
6370 iwn_hw_stop(struct iwn_softc *sc)
6371 {
6372 int chnl, qid, ntries;
6373
6374 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6375
6376 /* Disable interrupts. */
6377 IWN_WRITE(sc, IWN_INT_MASK, 0);
6378 IWN_WRITE(sc, IWN_INT, 0xffffffff);
6379 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6380 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6381
6382 /* Make sure we no longer hold the NIC lock. */
6383 iwn_nic_unlock(sc);
6384
6385 /* Stop TX scheduler. */
6386 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6387
6388 /* Stop all DMA channels. */
6389 if (iwn_nic_lock(sc) == 0) {
6390 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6391 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6392 for (ntries = 0; ntries < 200; ntries++) {
6393 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6394 IWN_FH_TX_STATUS_IDLE(chnl))
6395 break;
6396 DELAY(10);
6397 }
6398 }
6399 iwn_nic_unlock(sc);
6400 }
6401
6402 /* Stop RX ring. */
6403 iwn_reset_rx_ring(sc, &sc->rxq);
6404
6405 /* Reset all TX rings. */
6406 for (qid = 0; qid < sc->ntxqs; qid++)
6407 iwn_reset_tx_ring(sc, &sc->txq[qid]);
6408
6409 if (iwn_nic_lock(sc) == 0) {
6410 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6411 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6412 iwn_nic_unlock(sc);
6413 }
6414 DELAY(5);
6415 /* Power OFF adapter. */
6416 iwn_apm_stop(sc);
6417 }
6418
6419 static int
6420 iwn_init(struct ifnet *ifp)
6421 {
6422 struct iwn_softc *sc = ifp->if_softc;
6423 struct ieee80211com *ic = &sc->sc_ic;
6424 int error;
6425
6426 mutex_enter(&sc->sc_mtx);
6427 if (sc->sc_flags & IWN_FLAG_HW_INITED)
6428 goto out;
6429 if ((error = iwn_hw_prepare(sc)) != 0) {
6430 aprint_error_dev(sc->sc_dev,
6431 "hardware not ready\n");
6432 goto fail;
6433 }
6434
6435 /* Check that the radio is not disabled by hardware switch. */
6436 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6437 aprint_error_dev(sc->sc_dev,
6438 "radio is disabled by hardware switch\n");
6439 error = EPERM; /* :-) */
6440 goto fail;
6441 }
6442
6443 /* Read firmware images from the filesystem. */
6444 if ((error = iwn_read_firmware(sc)) != 0) {
6445 aprint_error_dev(sc->sc_dev,
6446 "could not read firmware\n");
6447 goto fail;
6448 }
6449
6450 /* Initialize interrupt mask to default value. */
6451 sc->int_mask = IWN_INT_MASK_DEF;
6452 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6453
6454 /* Initialize hardware and upload firmware. */
6455 KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6456 error = iwn_hw_init(sc);
6457 firmware_free(sc->fw.data, sc->fw.size);
6458 sc->fw.data = NULL;
6459 sc->fw.size = 0;
6460 if (error != 0) {
6461 aprint_error_dev(sc->sc_dev,
6462 "could not initialize hardware\n");
6463 goto fail;
6464 }
6465
6466 /* Configure adapter now that it is ready. */
6467 if ((error = iwn_config(sc)) != 0) {
6468 aprint_error_dev(sc->sc_dev,
6469 "could not configure device\n");
6470 goto fail;
6471 }
6472
6473 sc->sc_beacon_wait = 0;
6474
6475 ifp->if_flags &= ~IFF_OACTIVE;
6476 ifp->if_flags |= IFF_RUNNING;
6477
6478 if (ic->ic_opmode != IEEE80211_M_MONITOR)
6479 ieee80211_begin_scan(ic, 0);
6480 else
6481 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6482
6483 sc->sc_flags |= IWN_FLAG_HW_INITED;
6484 out:
6485 mutex_exit(&sc->sc_mtx);
6486 return 0;
6487
6488 fail: mutex_exit(&sc->sc_mtx);
6489 iwn_stop(ifp, 1);
6490 return error;
6491 }
6492
6493 static void
6494 iwn_stop(struct ifnet *ifp, int disable)
6495 {
6496 struct iwn_softc *sc = ifp->if_softc;
6497 struct ieee80211com *ic = &sc->sc_ic;
6498
6499 if (!disable)
6500 mutex_enter(&sc->sc_mtx);
6501 sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6502 ifp->if_timer = sc->sc_tx_timer = 0;
6503 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6504
6505 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6506
6507 /* Power OFF hardware. */
6508 iwn_hw_stop(sc);
6509
6510 if (!disable)
6511 mutex_exit(&sc->sc_mtx);
6512 }
6513
6514 /*
6515 * XXX MCLGETI alternative
6516 *
6517 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6518 * as long as there are available free buffers then it uses MEXTMALLOC.,
6519 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6520 * The MCLGET4K code is used for testing an alternative mbuf cache.
6521 */
6522
6523 static struct mbuf *
6524 MCLGETIalt(struct iwn_softc *sc, int how,
6525 struct ifnet *ifp __unused, u_int size)
6526 {
6527 struct mbuf *m;
6528 #ifdef IWN_USE_RBUF
6529 struct iwn_rbuf *rbuf;
6530 #endif
6531
6532 MGETHDR(m, how, MT_DATA);
6533 if (m == NULL)
6534 return NULL;
6535
6536 #ifdef IWN_USE_RBUF
6537 if (sc->rxq.nb_free_entries > 0 &&
6538 (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6539 /* Attach buffer to mbuf header. */
6540 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6541 m->m_flags |= M_EXT_RW;
6542 }
6543 else {
6544 MEXTMALLOC(m, size, how);
6545 if ((m->m_flags & M_EXT) == 0) {
6546 m_freem(m);
6547 return NULL;
6548 }
6549 }
6550
6551 #else
6552 #ifdef MCLGET4K
6553 if (size == 4096)
6554 MCLGET4K(m, how);
6555 else
6556 panic("size must be 4k");
6557 #else
6558 MEXTMALLOC(m, size, how);
6559 #endif
6560 if ((m->m_flags & M_EXT) == 0) {
6561 m_freem(m);
6562 return NULL;
6563 }
6564 #endif
6565
6566 return m;
6567 }
6568
6569 #ifdef IWN_USE_RBUF
6570 static struct iwn_rbuf *
6571 iwn_alloc_rbuf(struct iwn_softc *sc)
6572 {
6573 struct iwn_rbuf *rbuf;
6574 mutex_enter(&sc->rxq.freelist_mtx);
6575
6576 rbuf = SLIST_FIRST(&sc->rxq.freelist);
6577 if (rbuf != NULL) {
6578 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6579 sc->rxq.nb_free_entries --;
6580 }
6581 mutex_exit(&sc->rxq.freelist_mtx);
6582 return rbuf;
6583 }
6584
6585 /*
6586 * This is called automatically by the network stack when the mbuf to which
6587 * our RX buffer is attached is freed.
6588 */
6589 static void
6590 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
6591 {
6592 struct iwn_rbuf *rbuf = arg;
6593 struct iwn_softc *sc = rbuf->sc;
6594
6595 /* Put the RX buffer back in the free list. */
6596 mutex_enter(&sc->rxq.freelist_mtx);
6597 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6598 mutex_exit(&sc->rxq.freelist_mtx);
6599
6600 sc->rxq.nb_free_entries ++;
6601 if (__predict_true(m != NULL))
6602 pool_cache_put(mb_cache, m);
6603 }
6604
6605 static int
6606 iwn_alloc_rpool(struct iwn_softc *sc)
6607 {
6608 struct iwn_rx_ring *ring = &sc->rxq;
6609 struct iwn_rbuf *rbuf;
6610 int i, error;
6611
6612 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6613
6614 /* Allocate a big chunk of DMA'able memory... */
6615 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6616 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6617 if (error != 0) {
6618 aprint_error_dev(sc->sc_dev,
6619 "could not allocate RX buffers DMA memory\n");
6620 return error;
6621 }
6622 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6623 SLIST_INIT(&ring->freelist);
6624 for (i = 0; i < IWN_RBUF_COUNT; i++) {
6625 rbuf = &ring->rbuf[i];
6626
6627 rbuf->sc = sc; /* Backpointer for callbacks. */
6628 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6629 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6630
6631 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6632 }
6633 ring->nb_free_entries = IWN_RBUF_COUNT;
6634 return 0;
6635 }
6636
6637 static void
6638 iwn_free_rpool(struct iwn_softc *sc)
6639 {
6640 iwn_dma_contig_free(&sc->rxq.buf_dma);
6641 }
6642 #endif
6643
6644 /*
6645 * XXX: Hack to set the current channel to the value advertised in beacons or
6646 * probe responses. Only used during AP detection.
6647 * XXX: Duplicated from if_iwi.c
6648 */
6649 static void
6650 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6651 struct iwn_rx_stat *stat)
6652 {
6653 struct iwn_softc *sc = ic->ic_ifp->if_softc;
6654 struct ieee80211_frame *wh;
6655 uint8_t subtype;
6656 uint8_t *frm, *efrm;
6657
6658 wh = mtod(m, struct ieee80211_frame *);
6659
6660 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6661 return;
6662
6663 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6664
6665 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6666 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6667 return;
6668
6669 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6670 int chan = le16toh(stat->chan);
6671 if (chan < __arraycount(ic->ic_channels))
6672 ic->ic_curchan = &ic->ic_channels[chan];
6673 return;
6674 }
6675
6676 frm = (uint8_t *)(wh + 1);
6677 efrm = mtod(m, uint8_t *) + m->m_len;
6678
6679 frm += 12; /* skip tstamp, bintval and capinfo fields */
6680 while (frm + 2 < efrm) {
6681 if (*frm == IEEE80211_ELEMID_DSPARMS) {
6682 #if IEEE80211_CHAN_MAX < 255
6683 if (frm[2] <= IEEE80211_CHAN_MAX)
6684 #endif
6685 ic->ic_curchan = &ic->ic_channels[frm[2]];
6686 }
6687
6688 frm += frm[1] + 2;
6689 }
6690 }
6691
6692 #ifdef notyetMODULE
6693
6694 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6695
6696 #ifdef _MODULE
6697 #include "ioconf.c"
6698 #endif
6699
6700 static int
6701 if_iwn_modcmd(modcmd_t cmd, void *data)
6702 {
6703 int error = 0;
6704
6705 switch (cmd) {
6706 case MODULE_CMD_INIT:
6707 #ifdef _MODULE
6708 error = config_init_component(cfdriver_ioconf_if_iwn,
6709 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6710 #endif
6711 return error;
6712 case MODULE_CMD_FINI:
6713 #ifdef _MODULE
6714 error = config_fini_component(cfdriver_ioconf_if_iwn,
6715 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6716 #endif
6717 return error;
6718 case MODULE_CMD_AUTOUNLOAD:
6719 #ifdef _MODULE
6720 /* XXX This is not optional! */
6721 #endif
6722 return error;
6723 default:
6724 return ENOTTY;
6725 }
6726 }
6727 #endif
6728