if_kse.c revision 1.1 1 /* $NetBSD: if_kse.c,v 1.1 2006/06/30 17:17:09 nisimura Exp $ */
2
3 /*
4 * Copyright (c) 2006 Tohru Nishimura
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Tohru Nishimura.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.1 2006/06/30 17:17:09 nisimura Exp $");
34
35 #include "bpfilter.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47
48 #include <machine/endian.h>
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define INTEN 0x028 /* interrupt enable */
81 #define INTST 0x02c /* interrupt status */
82 #define MARL 0x200 /* MAC address low */
83 #define MARM 0x202 /* MAC address middle */
84 #define MARH 0x204 /* MAC address high */
85 #define GRR 0x216 /* global reset */
86 #define CIDR 0x400 /* chip ID and enable */
87 #define CGCR 0x40a /* chip global control */
88 #define P1CR4 0x512 /* port 1 control 4 */
89 #define P1SR 0x514 /* port 1 status */
90
91 #define TXC_BS_MSK 0x3f000000 /* burst size */
92 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
93 #define TXC_UCG (1U<<18) /* generate UDP checksum */
94 #define TXC_TCG (1U<<17) /* generate TCP checksum */
95 #define TXC_ICG (1U<<16) /* generate IP checksum */
96 #define TXC_FCE (1U<<9) /* enable flowcontrol */
97 #define TXC_EP (1U<<2) /* enable automatic padding */
98 #define TXC_AC (1U<<1) /* add CRC to frame */
99 #define TXC_TEN (1) /* enable DMA to run */
100
101 #define RXC_BS_MSK 0x3f000000 /* burst size */
102 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
103 #define RXC_UCG (1U<<18) /* run UDP checksum */
104 #define RXC_TCG (1U<<17) /* run TDP checksum */
105 #define RXC_ICG (1U<<16) /* run IP checksum */
106 #define RXC_FCE (1U<<9) /* enable flowcontrol */
107 #define RXC_RB (1U<<6) /* receive broadcast frame */
108 #define RXC_RM (1U<<5) /* receive multicast frame */
109 #define RXC_RU (1U<<4) /* receive unicast frame */
110 #define RXC_RE (1U<<3) /* accept error frame */
111 #define RXC_RA (1U<<2) /* receive all frame */
112 #define RXC_MA (1U<<1) /* receive through hash filter */
113 #define RXC_REN (1) /* enable DMA to run */
114
115 #define INT_DMLCS (1U<<31) /* link status change */
116 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
117 #define INT_DMRS (1U<<29) /* frame was received */
118 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
119
120 #define T0_OWN (1U<<31) /* desc is ready to Tx */
121
122 #define R0_OWN (1U<<31) /* desc is empty */
123 #define R0_FS (1U<<30) /* first segment of frame */
124 #define R0_LS (1U<<29) /* last segment of frame */
125 #define R0_IPE (1U<<28) /* IP checksum error */
126 #define R0_TCPE (1U<<27) /* TCP checksum error */
127 #define R0_UDPE (1U<<26) /* UDP checksum error */
128 #define R0_ES (1U<<25) /* error summary */
129 #define R0_MF (1U<<24) /* multicast frame */
130 #define R0_RE (1U<<19) /* framing error */
131 #define R0_TL (1U<<18) /* too long frame */
132 #define R0_RF (1U<<17) /* damaged runt frame */
133 #define R0_CE (1U<<16) /* CRC error */
134 #define R0_FT (1U<<15) /* frame type */
135 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
136
137 #define T1_IC (1U<<31) /* post interrupt on complete */
138 #define T1_FS (1U<<30) /* first segment of frame */
139 #define T1_LS (1U<<29) /* last segment of frame */
140 #define T1_IPCKG (1U<<28) /* generate IP checksum */
141 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
142 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
143 #define T1_TER (1U<<25) /* end of ring */
144 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
145
146 #define R1_RER (1U<<25) /* end of ring */
147 #define R1_RBS_MASK 0x7ff /* segment size 10:0 */
148
149 #define KSE_NTXSEGS 16
150 #define KSE_TXQUEUELEN 64
151 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
152 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
153 #define KSE_NTXDESC 256
154 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
155 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
156 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
157
158 #define KSE_NRXDESC 64
159 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
160 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
161
162 struct tdes {
163 unsigned t0, t1, t2, t3;
164 };
165
166 struct rdes {
167 unsigned r0, r1, r2, r3;
168 };
169
170 struct kse_control_data {
171 struct tdes kcd_txdescs[KSE_NTXDESC];
172 struct rdes kcd_rxdescs[KSE_NRXDESC];
173 };
174 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
175 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
176 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
177
178 struct kse_txsoft {
179 struct mbuf *txs_mbuf; /* head of our mbuf chain */
180 bus_dmamap_t txs_dmamap; /* our DMA map */
181 int txs_firstdesc; /* first descriptor in packet */
182 int txs_lastdesc; /* last descriptor in packet */
183 int txs_ndesc; /* # of descriptors used */
184 };
185
186 struct kse_rxsoft {
187 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
188 bus_dmamap_t rxs_dmamap; /* our DMA map */
189 };
190
191 struct kse_softc {
192 struct device sc_dev; /* generic device information */
193 bus_space_tag_t sc_st; /* bus space tag */
194 bus_space_handle_t sc_sh; /* bus space handle */
195 bus_dma_tag_t sc_dmat; /* bus DMA tag */
196 struct ethercom sc_ethercom; /* Ethernet common data */
197 void *sc_ih; /* interrupt cookie */
198
199 struct ifmedia sc_media; /* ifmedia information */
200 int sc_media_status; /* PHY */
201 unsigned sc_media_active; /* PHY */
202 struct callout sc_callout; /* tick callout */
203
204 bus_dmamap_t sc_cddmamap; /* control data DMA map */
205 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
206
207 struct kse_control_data *sc_control_data;
208 #define sc_txdescs sc_control_data->kcd_txdescs
209 #define sc_rxdescs sc_control_data->kcd_rxdescs
210
211 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
212 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
213 int sc_txfree; /* number of free Tx descriptors */
214 int sc_txnext; /* next ready Tx descriptor */
215 int sc_txsfree; /* number of free Tx jobs */
216 int sc_txsnext; /* next ready Tx job */
217 int sc_txsdirty; /* dirty Tx jobs */
218 int sc_rxptr; /* next ready Rx descriptor/descsoft */
219
220 unsigned sc_txc, sc_rxc;
221 unsigned sc_t1csum, sc_mcsum;
222 unsigned sc_chip;
223 };
224
225 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
226 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
227
228 #define KSE_CDTXSYNC(sc, x, n, ops) \
229 do { \
230 int __x, __n; \
231 \
232 __x = (x); \
233 __n = (n); \
234 \
235 /* If it will wrap around, sync to the end of the ring. */ \
236 if ((__x + __n) > KSE_NTXDESC) { \
237 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
238 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
239 (KSE_NTXDESC - __x), (ops)); \
240 __n -= (KSE_NTXDESC - __x); \
241 __x = 0; \
242 } \
243 \
244 /* Now sync whatever is left. */ \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
247 } while (/*CONSTCOND*/0)
248
249 #define KSE_CDRXSYNC(sc, x, ops) \
250 do { \
251 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
252 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
253 } while (/*CONSTCOND*/0)
254
255 #define KSE_INIT_RXDESC(sc, x) \
256 do { \
257 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
258 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
259 struct mbuf *__m = __rxs->rxs_mbuf; \
260 \
261 /* \
262 * Note: may be able to scoot the packet forward 2 bytes for \
263 * the alignment. Unclear KS8842 Rx DMA really mandates to have \
264 * 32-bit buffer boundary. Tx DMA has no alignment limitation. \
265 */ \
266 __m->m_data = __m->m_ext.ext_buf; \
267 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
268 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
269 __rxd->r0 = R0_OWN; \
270 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 } while (/*CONSTCOND*/0)
272
273 unsigned kse_burstsize = 16; /* DMA burst length tuning knob */
274
275 #ifdef KSEDIAGNOSTIC
276 unsigned kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
277 #endif
278
279 static int kse_match(struct device *, struct cfdata *, void *);
280 static void kse_attach(struct device *, struct device *, void *);
281
282 CFATTACH_DECL(kse, sizeof(struct kse_softc),
283 kse_match, kse_attach, NULL, NULL);
284
285 static int kse_ioctl(struct ifnet *, u_long, caddr_t);
286 static void kse_start(struct ifnet *);
287 static void kse_watchdog(struct ifnet *);
288 static int kse_init(struct ifnet *);
289 static void kse_stop(struct ifnet *, int);
290 static void kse_reset(struct kse_softc *);
291 static void kse_set_filter(struct kse_softc *);
292 static int add_rxbuf(struct kse_softc *, int);
293 static void rxdrain(struct kse_softc *);
294 static int kse_intr(void *);
295 static void rxintr(struct kse_softc *);
296 static void txreap(struct kse_softc *);
297 static void lnkchg(struct kse_softc *);
298 static int ifmedia_upd(struct ifnet *);
299 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
300 static void phy_tick(void *);
301
302 static int
303 kse_match(struct device *parent, struct cfdata *match, void *aux)
304 {
305 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
306
307 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
308 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
309 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
310 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
311 return 1;
312
313 return 0;
314 }
315
316 static void
317 kse_attach(struct device *parent, struct device *self, void *aux)
318 {
319 struct kse_softc *sc = (struct kse_softc *)self;
320 struct pci_attach_args *pa = aux;
321 pci_chipset_tag_t pc = pa->pa_pc;
322 pci_intr_handle_t ih;
323 const char *intrstr;
324 struct ifnet *ifp;
325 uint8_t enaddr[ETHER_ADDR_LEN];
326 bus_dma_segment_t seg;
327 int error, i, nseg;
328 pcireg_t pmode;
329 int pmreg;
330
331 if (pci_mapreg_map(pa, 0x10,
332 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
333 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
334 printf(": unable to map device registers\n");
335 return;
336 }
337
338 sc->sc_dmat = pa->pa_dmat;
339
340 /* Make sure bus mastering is enabled. */
341 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
342 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
343 PCI_COMMAND_MASTER_ENABLE);
344
345 /* Get it out of power save mode, if needed. */
346 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
347 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
348 PCI_PMCSR_STATE_MASK;
349 if (pmode == PCI_PMCSR_STATE_D3) {
350 /*
351 * The card has lost all configuration data in
352 * this state, so punt.
353 */
354 printf("%s: unable to wake from power state D3\n",
355 sc->sc_dev.dv_xname);
356 return;
357 }
358 if (pmode != PCI_PMCSR_STATE_D0) {
359 printf("%s: waking up from power date D%d\n",
360 sc->sc_dev.dv_xname, pmode);
361 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
362 PCI_PMCSR_STATE_D0);
363 }
364 }
365
366 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
367 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
368 sc->sc_chip, PCI_REVISION(pa->pa_class));
369
370 /*
371 * Read the Ethernet address from the EEPROM.
372 */
373 i = CSR_READ_2(sc, MARL);
374 enaddr[5] = i; enaddr[4] = i >> 8;
375 i = CSR_READ_2(sc, MARM);
376 enaddr[3] = i; enaddr[2] = i >> 8;
377 i = CSR_READ_2(sc, MARH);
378 enaddr[1] = i; enaddr[0] = i >> 8;
379 printf("%s: Ethernet address: %s\n",
380 sc->sc_dev.dv_xname, ether_sprintf(enaddr));
381
382 /*
383 * Enable chip function.
384 */
385 CSR_WRITE_2(sc, CIDR, 1);
386
387 /*
388 * Map and establish our interrupt.
389 */
390 if (pci_intr_map(pa, &ih)) {
391 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
392 return;
393 }
394 intrstr = pci_intr_string(pc, ih);
395 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
396 if (sc->sc_ih == NULL) {
397 printf("%s: unable to establish interrupt",
398 sc->sc_dev.dv_xname);
399 if (intrstr != NULL)
400 printf(" at %s", intrstr);
401 printf("\n");
402 return;
403 }
404 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
405
406 /*
407 * Allocate the control data structures, and create and load the
408 * DMA map for it.
409 */
410 error = bus_dmamem_alloc(sc->sc_dmat,
411 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
412 if (error != 0) {
413 printf("%s: unable to allocate control data, error = %d\n",
414 sc->sc_dev.dv_xname, error);
415 goto fail_0;
416 }
417 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
418 sizeof(struct kse_control_data), (caddr_t *)&sc->sc_control_data,
419 BUS_DMA_COHERENT);
420 if (error != 0) {
421 printf("%s: unable to map control data, error = %d\n",
422 sc->sc_dev.dv_xname, error);
423 goto fail_1;
424 }
425 error = bus_dmamap_create(sc->sc_dmat,
426 sizeof(struct kse_control_data), 1,
427 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
428 if (error != 0) {
429 printf("%s: unable to create control data DMA map, "
430 "error = %d\n", sc->sc_dev.dv_xname, error);
431 goto fail_2;
432 }
433 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
434 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
435 if (error != 0) {
436 printf("%s: unable to load control data DMA map, error = %d\n",
437 sc->sc_dev.dv_xname, error);
438 goto fail_3;
439 }
440 for (i = 0; i < KSE_TXQUEUELEN; i++) {
441 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
442 KSE_NTXSEGS, MCLBYTES, 0, 0,
443 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
444 printf("%s: unable to create tx DMA map %d, "
445 "error = %d\n", sc->sc_dev.dv_xname, i, error);
446 goto fail_4;
447 }
448 }
449 for (i = 0; i < KSE_NRXDESC; i++) {
450 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
451 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
452 printf("%s: unable to create rx DMA map %d, "
453 "error = %d\n", sc->sc_dev.dv_xname, i, error);
454 goto fail_5;
455 }
456 sc->sc_rxsoft[i].rxs_mbuf = NULL;
457 }
458
459 callout_init(&sc->sc_callout);
460
461 ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
462 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
463 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
464 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
465 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
466 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
467 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
468
469 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
470 sc->sc_dev.dv_xname);
471
472 ifp = &sc->sc_ethercom.ec_if;
473 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
474 ifp->if_softc = sc;
475 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 ifp->if_ioctl = kse_ioctl;
477 ifp->if_start = kse_start;
478 ifp->if_watchdog = kse_watchdog;
479 ifp->if_init = kse_init;
480 ifp->if_stop = kse_stop;
481 IFQ_SET_READY(&ifp->if_snd);
482
483 /*
484 * KSZ8842 can handle 802.1Q VLAN-sized frames,
485 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
486 */
487 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
488 ifp->if_capabilities |=
489 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
490 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
491 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
492
493 if_attach(ifp);
494 ether_ifattach(ifp, enaddr);
495 return;
496
497 fail_5:
498 for (i = 0; i < KSE_NRXDESC; i++) {
499 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
500 bus_dmamap_destroy(sc->sc_dmat,
501 sc->sc_rxsoft[i].rxs_dmamap);
502 }
503 fail_4:
504 for (i = 0; i < KSE_TXQUEUELEN; i++) {
505 if (sc->sc_txsoft[i].txs_dmamap != NULL)
506 bus_dmamap_destroy(sc->sc_dmat,
507 sc->sc_txsoft[i].txs_dmamap);
508 }
509 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
510 fail_3:
511 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
512 fail_2:
513 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
514 sizeof(struct kse_control_data));
515 fail_1:
516 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
517 fail_0:
518 return;
519 }
520
521 static int
522 kse_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
523 {
524 struct kse_softc *sc = ifp->if_softc;
525 struct ifreq *ifr = (struct ifreq *)data;
526 int s, error;
527
528 s = splnet();
529
530 switch (cmd) {
531 case SIOCSIFMEDIA:
532 case SIOCGIFMEDIA:
533 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
534 break;
535
536 default:
537 error = ether_ioctl(ifp, cmd, data);
538 if (cmd == ENETRESET) {
539 /*
540 * Multicast list has changed; set the hardware filter
541 * accordingly.
542 */
543 kse_set_filter(sc);
544 error = 0;
545 }
546 break;
547 }
548
549 kse_start(ifp);
550
551 splx(s);
552 return error;
553 }
554
555 #define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
556
557 static int
558 kse_init(struct ifnet *ifp)
559 {
560 struct kse_softc *sc = ifp->if_softc;
561 unsigned paddr;
562 int i, error = 0;
563
564 /* cancel pending I/O */
565 kse_stop(ifp, 0);
566
567 /* reset all registers but PCI configuration */
568 kse_reset(sc);
569
570 /* craft Tx descriptor ring */
571 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
572 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
573 sc->sc_txdescs[i].t3 = paddr;
574 paddr += sizeof(struct tdes);
575 }
576 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
577 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
578 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
579 sc->sc_txfree = KSE_NTXDESC;
580 sc->sc_txnext = 0;
581
582 for (i = 0; i < KSE_TXQUEUELEN; i++)
583 sc->sc_txsoft[i].txs_mbuf = NULL;
584 sc->sc_txsfree = KSE_TXQUEUELEN;
585 sc->sc_txsnext = 0;
586 sc->sc_txsdirty = 0;
587
588 /* craft Rx descriptor ring */
589 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
590 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
591 sc->sc_rxdescs[i].r3 = paddr;
592 paddr += sizeof(struct rdes);
593 }
594 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
595 for (i = 0; i < KSE_NRXDESC; i++) {
596 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
597 if ((error = add_rxbuf(sc, i)) != 0) {
598 printf("%s: unable to allocate or map rx "
599 "buffer %d, error = %d\n",
600 sc->sc_dev.dv_xname, i, error);
601 rxdrain(sc);
602 goto out;
603 }
604 }
605 else
606 KSE_INIT_RXDESC(sc, i);
607 }
608 sc->sc_rxptr = 0;
609
610 /* hand Tx/Rx rings to HW */
611 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
612 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
613
614 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
615 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
616 if (ifp->if_flags & IFF_PROMISC)
617 sc->sc_rxc |= RXC_RA;
618 if (ifp->if_flags & IFF_BROADCAST)
619 sc->sc_rxc |= RXC_RB;
620
621 sc->sc_t1csum = sc->sc_mcsum = 0;
622 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
623 sc->sc_rxc |= RXC_ICG;
624 sc->sc_mcsum |= M_CSUM_IPv4;
625 }
626 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
627 sc->sc_txc |= TXC_ICG;
628 sc->sc_t1csum |= T1_IPCKG;
629 }
630 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
631 sc->sc_rxc |= RXC_TCG;
632 sc->sc_mcsum |= M_CSUM_TCPv4;
633 }
634 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
635 sc->sc_txc |= TXC_TCG;
636 sc->sc_t1csum |= T1_TCPCKG;
637 }
638 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
639 sc->sc_rxc |= RXC_UCG;
640 sc->sc_mcsum |= M_CSUM_UDPv4;
641 }
642 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
643 sc->sc_txc |= TXC_UCG;
644 sc->sc_t1csum |= T1_UDPCKG;
645 }
646 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
647 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
648
649 /* set current media */
650 (void)ifmedia_upd(ifp);
651
652 /* enable transmitter and receiver */
653 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
654 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
655 CSR_WRITE_4(sc, MDRSC, 1);
656
657 /* enable interrupts */
658 CSR_WRITE_4(sc, INTST, ~0);
659 CSR_WRITE_4(sc, INTEN, KSE_INTRS);
660
661 ifp->if_flags |= IFF_RUNNING;
662 ifp->if_flags &= ~IFF_OACTIVE;
663
664 /* start one second timer */
665 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
666
667 out:
668 if (error) {
669 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
670 ifp->if_timer = 0;
671 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
672 }
673 return error;
674 }
675
676 static void
677 kse_stop(struct ifnet *ifp, int disable)
678 {
679 struct kse_softc *sc = ifp->if_softc;
680 struct kse_txsoft *txs;
681 int i;
682
683 callout_stop(&sc->sc_callout);
684
685 sc->sc_txc &= ~TXC_TEN;
686 sc->sc_rxc &= ~RXC_REN;
687 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
688 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
689
690 for (i = 0; i < KSE_TXQUEUELEN; i++) {
691 txs = &sc->sc_txsoft[i];
692 if (txs->txs_mbuf != NULL) {
693 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
694 m_freem(txs->txs_mbuf);
695 txs->txs_mbuf = NULL;
696 }
697 }
698
699 if (disable)
700 rxdrain(sc);
701
702 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
703 ifp->if_timer = 0;
704 }
705
706 static void
707 kse_reset(struct kse_softc *sc)
708 {
709
710 CSR_WRITE_2(sc, GRR, 1);
711 delay(1000); /* PDF does not mention the delay amount */
712 CSR_WRITE_2(sc, GRR, 0);
713
714 CSR_WRITE_2(sc, CIDR, 1);
715 }
716
717 static void
718 kse_watchdog(struct ifnet *ifp)
719 {
720 struct kse_softc *sc = ifp->if_softc;
721
722 /*
723 * Since we're not interrupting every packet, sweep
724 * up before we report an error.
725 */
726 txreap(sc);
727
728 if (sc->sc_txfree != KSE_NTXDESC) {
729 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
730 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
731 sc->sc_txnext);
732 ifp->if_oerrors++;
733
734 /* Reset the interface. */
735 kse_init(ifp);
736 }
737 else if (ifp->if_flags & IFF_DEBUG)
738 printf("%s: recovered from device timeout\n",
739 sc->sc_dev.dv_xname);
740
741 /* Try to get more packets going. */
742 kse_start(ifp);
743 }
744
745 static void
746 kse_start(struct ifnet *ifp)
747 {
748 struct kse_softc *sc = ifp->if_softc;
749 struct mbuf *m0;
750 struct kse_txsoft *txs;
751 bus_dmamap_t dmamap;
752 int error, nexttx, lasttx, ofree, seg;
753
754 lasttx = -1;
755
756 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
757 return;
758
759 /*
760 * Remember the previous number of free descriptors.
761 */
762 ofree = sc->sc_txfree;
763
764 /*
765 * Loop through the send queue, setting up transmit descriptors
766 * until we drain the queue, or use up all available transmit
767 * descriptors.
768 */
769 for (;;) {
770 IFQ_POLL(&ifp->if_snd, m0);
771 if (m0 == NULL)
772 break;
773
774 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
775 txreap(sc);
776 if (sc->sc_txsfree == 0)
777 break;
778 }
779 txs = &sc->sc_txsoft[sc->sc_txsnext];
780 dmamap = txs->txs_dmamap;
781
782 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
783 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
784 if (error) {
785 if (error == EFBIG) {
786 printf("%s: Tx packet consumes too many "
787 "DMA segments, dropping...\n",
788 sc->sc_dev.dv_xname);
789 IFQ_DEQUEUE(&ifp->if_snd, m0);
790 m_freem(m0);
791 continue;
792 }
793 /* Short on resources, just stop for now. */
794 break;
795 }
796
797 if (dmamap->dm_nsegs > sc->sc_txfree) {
798 /*
799 * Not enough free descriptors to transmit this
800 * packet. We haven't committed anything yet,
801 * so just unload the DMA map, put the packet
802 * back on the queue, and punt. Notify the upper
803 * layer that there are not more slots left.
804 */
805 ifp->if_flags |= IFF_OACTIVE;
806 bus_dmamap_unload(sc->sc_dmat, dmamap);
807 break;
808 }
809
810 IFQ_DEQUEUE(&ifp->if_snd, m0);
811
812 /*
813 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
814 */
815
816 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
817 BUS_DMASYNC_PREWRITE);
818
819 for (nexttx = sc->sc_txnext, seg = 0;
820 seg < dmamap->dm_nsegs;
821 seg++, nexttx = KSE_NEXTTX(nexttx)) {
822 struct tdes *tdes = &sc->sc_txdescs[nexttx];
823 /*
824 * If this is the first descriptor we're
825 * enqueueing, don't set the OWN bit just
826 * yet. That could cause a race condition.
827 * We'll do it below.
828 */
829 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
830 tdes->t1 = sc->sc_t1csum
831 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
832 if (nexttx != sc->sc_txnext)
833 tdes->t0 = T0_OWN;
834 lasttx = nexttx;
835 }
836 #if 0
837 /*
838 * T1_IC bit could schedule Tx frame done interrupt here,
839 * but this driver takes a "shoot away" Tx strategy.
840 */
841 #else
842 {
843 /*
844 * Outgoing NFS mbuf must be unloaded when Tx completed.
845 * Without T1_IC NFS mbuf is left unack'ed for excessive
846 * time and NFS stops to proceed until kse_watchdog()
847 * calls txreap() to reclaim the unack'ed mbuf.
848 * It's painful to tranverse every mbuf chain to determine
849 * whether someone is waiting for Tx completion.
850 */
851 struct mbuf *m = m0;
852 do {
853 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
854 sc->sc_txdescs[lasttx].t1 |= T1_IC;
855 break;
856 }
857 } while ((m = m->m_next) != NULL);
858 }
859 #endif
860
861 /* write last T0_OWN bit of the 1st segment */
862 sc->sc_txdescs[lasttx].t1 |= T1_LS;
863 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
864 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
865 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
866 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
867
868 /* tell DMA start transmit */
869 CSR_WRITE_4(sc, MDTSC, 1);
870
871 txs->txs_mbuf = m0;
872 txs->txs_firstdesc = sc->sc_txnext;
873 txs->txs_lastdesc = lasttx;
874 txs->txs_ndesc = dmamap->dm_nsegs;
875
876 sc->sc_txfree -= txs->txs_ndesc;
877 sc->sc_txnext = nexttx;
878 sc->sc_txsfree--;
879 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
880 #if NBPFILTER > 0
881 /*
882 * Pass the packet to any BPF listeners.
883 */
884 if (ifp->if_bpf)
885 bpf_mtap(ifp->if_bpf, m0);
886 #endif /* NBPFILTER > 0 */
887 }
888
889 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
890 /* No more slots left; notify upper layer. */
891 ifp->if_flags |= IFF_OACTIVE;
892 }
893 if (sc->sc_txfree != ofree) {
894 /* Set a watchdog timer in case the chip flakes out. */
895 ifp->if_timer = 5;
896 }
897 }
898
899 static void
900 kse_set_filter(struct kse_softc *sc)
901 {
902 #if 0 /* later */
903 struct ether_multistep step;
904 struct ether_multi *enm;
905 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
906 int cnt = 0;
907
908 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
909 while (enm != NULL) {
910 if (memcmp(enm->enm_addrlo,
911 enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
912 ;
913 }
914 ETHER_NEXT_MULTI(step, enm);
915 cnt++;
916 }
917 return;
918 #endif
919 }
920
921 static int
922 add_rxbuf(struct kse_softc *sc, int idx)
923 {
924 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
925 struct mbuf *m;
926 int error;
927
928 MGETHDR(m, M_DONTWAIT, MT_DATA);
929 if (m == NULL)
930 return ENOBUFS;
931
932 MCLGET(m, M_DONTWAIT);
933 if ((m->m_flags & M_EXT) == 0) {
934 m_freem(m);
935 return ENOBUFS;
936 }
937
938 if (rxs->rxs_mbuf != NULL)
939 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
940
941 rxs->rxs_mbuf = m;
942
943 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
944 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
945 if (error) {
946 printf("%s: can't load rx DMA map %d, error = %d\n",
947 sc->sc_dev.dv_xname, idx, error);
948 panic("kse_add_rxbuf");
949 }
950
951 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
952 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
953
954 KSE_INIT_RXDESC(sc, idx);
955
956 return 0;
957 }
958
959 static void
960 rxdrain(struct kse_softc *sc)
961 {
962 struct kse_rxsoft *rxs;
963 int i;
964
965 for (i = 0; i < KSE_NRXDESC; i++) {
966 rxs = &sc->sc_rxsoft[i];
967 if (rxs->rxs_mbuf != NULL) {
968 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
969 m_freem(rxs->rxs_mbuf);
970 rxs->rxs_mbuf = NULL;
971 }
972 }
973 }
974
975 static int
976 kse_intr(void *arg)
977 {
978 struct kse_softc *sc = arg;
979 unsigned isr;
980
981 if ((isr = CSR_READ_4(sc, INTST)) == 0)
982 return 0;
983
984 if (isr & INT_DMRS)
985 rxintr(sc);
986 if (isr & INT_DMTS)
987 txreap(sc);
988 if (isr & INT_DMLCS)
989 lnkchg(sc);
990 if (isr & INT_DMRBUS)
991 printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
992
993 CSR_WRITE_4(sc, INTST, isr);
994 return 1;
995 }
996
997 static void
998 rxintr(struct kse_softc *sc)
999 {
1000 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1001 struct kse_rxsoft *rxs;
1002 struct mbuf *m;
1003 unsigned rxstat;
1004 int i, len;
1005
1006 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1007 rxs = &sc->sc_rxsoft[i];
1008
1009 KSE_CDRXSYNC(sc, i,
1010 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1011
1012 rxstat = sc->sc_rxdescs[i].r0;
1013
1014 if (rxstat & R0_OWN) /* desc is left empty */
1015 break;
1016
1017 /* R0_FS|R0_LS must have been marked for this desc */
1018
1019 if (rxstat & R0_ES) {
1020 ifp->if_ierrors++;
1021 #define PRINTERR(bit, str) \
1022 if (rxstat & (bit)) \
1023 printf("%s: receive error: %s\n", \
1024 sc->sc_dev.dv_xname, str)
1025 PRINTERR(R0_TL, "frame too long");
1026 PRINTERR(R0_RF, "runt frame");
1027 PRINTERR(R0_CE, "bad FCS");
1028 #undef PRINTERR
1029 KSE_INIT_RXDESC(sc, i);
1030 continue;
1031 }
1032
1033 /* HW errata; frame might be too small or too large */
1034
1035 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1037
1038 len = rxstat & R0_FL_MASK;
1039 m = rxs->rxs_mbuf;
1040
1041 if (add_rxbuf(sc, i) != 0) {
1042 ifp->if_ierrors++;
1043 KSE_INIT_RXDESC(sc, i);
1044 bus_dmamap_sync(sc->sc_dmat,
1045 rxs->rxs_dmamap, 0,
1046 rxs->rxs_dmamap->dm_mapsize,
1047 BUS_DMASYNC_PREREAD);
1048 continue;
1049 }
1050
1051 ifp->if_ipackets++;
1052 m->m_flags |= M_HASFCS;
1053 m->m_pkthdr.rcvif = ifp;
1054 m->m_pkthdr.len = m->m_len = len;
1055
1056 if (sc->sc_mcsum) {
1057 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1058 if (rxstat & R0_IPE)
1059 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1060 if (rxstat & (R0_TCPE | R0_UDPE))
1061 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1062 }
1063 #if NBPFILTER > 0
1064 if (ifp->if_bpf)
1065 bpf_mtap(ifp->if_bpf, m);
1066 #endif /* NBPFILTER > 0 */
1067 (*ifp->if_input)(ifp, m);
1068 #ifdef KSEDIAGNOSTIC
1069 if (kse_monitor_rxintr > 0) {
1070 printf("m stat %x data %p len %d\n",
1071 rxstat, m->m_data, m->m_len);
1072 }
1073 #endif
1074 }
1075 sc->sc_rxptr = i;
1076 }
1077
1078 static void
1079 txreap(struct kse_softc *sc)
1080 {
1081 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1082 struct kse_txsoft *txs;
1083 unsigned txstat;
1084 int i;
1085
1086 ifp->if_flags &= ~IFF_OACTIVE;
1087
1088 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1089 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1090 txs = &sc->sc_txsoft[i];
1091
1092 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1093 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1094
1095 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1096
1097 if (txstat & T0_OWN) /* desc is still in use */
1098 break;
1099
1100 /* there is no way to tell transmission status per frame */
1101
1102 ifp->if_opackets++;
1103
1104 sc->sc_txfree += txs->txs_ndesc;
1105 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1106 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1107 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1108 m_freem(txs->txs_mbuf);
1109 txs->txs_mbuf = NULL;
1110 }
1111 sc->sc_txsdirty = i;
1112 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1113 ifp->if_timer = 0;
1114 }
1115
1116 static void
1117 lnkchg(struct kse_softc *sc)
1118 {
1119 struct ifmediareq ifmr;
1120
1121 #if 0 /* rambling link status */
1122 printf("%s: link %s\n", sc->sc_dev.dv_xname,
1123 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1124 #endif
1125 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1126 }
1127
1128 static int
1129 ifmedia_upd(struct ifnet *ifp)
1130 {
1131 struct kse_softc *sc = ifp->if_softc;
1132 struct ifmedia *ifm = &sc->sc_media;
1133 unsigned ctl;
1134
1135 ctl = 0;
1136 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1137 ctl |= (1U << 13); /* restart AN */
1138 ctl |= (1U << 7); /* enable AN */
1139 ctl |= (1U << 4); /* advertise flow control pause */
1140 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1141 }
1142 else {
1143 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1144 ctl |= (1U << 6);
1145 if (ifm->ifm_media & IFM_FDX)
1146 ctl |= (1U << 5);
1147 }
1148 CSR_WRITE_2(sc, P1CR4, ctl);
1149
1150 sc->sc_media_active = IFM_NONE;
1151 sc->sc_media_status = IFM_AVALID;
1152
1153 return 0;
1154 }
1155
1156 static void
1157 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1158 {
1159 struct kse_softc *sc = ifp->if_softc;
1160 struct ifmedia *ifm = &sc->sc_media;
1161 unsigned ctl, sts, result;
1162
1163 ifmr->ifm_status = IFM_AVALID;
1164 ifmr->ifm_active = IFM_ETHER;
1165
1166 ctl = CSR_READ_2(sc, P1CR4);
1167 sts = CSR_READ_2(sc, P1SR);
1168 if ((sts & (1U << 5)) == 0) {
1169 ifmr->ifm_active |= IFM_NONE;
1170 goto out; /* link is down */
1171 }
1172 ifmr->ifm_status |= IFM_ACTIVE;
1173 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1174 if ((sts & (1U << 6)) == 0) {
1175 ifmr->ifm_active |= IFM_NONE;
1176 goto out; /* negotiation in progress */
1177 }
1178 result = ctl & sts & 017;
1179 if (result & (1U << 3))
1180 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1181 else if (result & (1U << 2))
1182 ifmr->ifm_active |= IFM_100_TX;
1183 else if (result & (1U << 1))
1184 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1185 else if (result & (1U << 0))
1186 ifmr->ifm_active |= IFM_10_T;
1187 else
1188 ifmr->ifm_active |= IFM_NONE;
1189 if (ctl & (1U << 4))
1190 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1191 if (sts & (1U << 4))
1192 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1193 }
1194 else {
1195 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1196 if (sts & (1U << 9))
1197 ifmr->ifm_active |= IFM_FDX;
1198 if (sts & (1U << 12))
1199 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1200 if (sts & (1U << 11))
1201 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1202 }
1203
1204 out:
1205 sc->sc_media_status = ifmr->ifm_status;
1206 sc->sc_media_active = ifmr->ifm_active;
1207 }
1208
1209 static void
1210 phy_tick(void *arg)
1211 {
1212 struct kse_softc *sc = arg;
1213 struct ifmediareq ifmr;
1214 int s;
1215
1216 s = splnet();
1217 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1218 splx(s);
1219
1220 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1221 }
1222