if_kse.c revision 1.10 1 /* $NetBSD: if_kse.c,v 1.10 2007/10/19 12:00:46 ad Exp $ */
2
3 /*
4 * Copyright (c) 2006 Tohru Nishimura
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Tohru Nishimura.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.10 2007/10/19 12:00:46 ad Exp $");
34
35 #include "bpfilter.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47
48 #include <machine/endian.h>
49 #include <sys/bus.h>
50 #include <sys/intr.h>
51
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define MTR0 0x020 /* multicast table 31:0 */
81 #define MTR1 0x024 /* multicast table 63:32 */
82 #define INTEN 0x028 /* interrupt enable */
83 #define INTST 0x02c /* interrupt status */
84 #define MARL 0x200 /* MAC address low */
85 #define MARM 0x202 /* MAC address middle */
86 #define MARH 0x204 /* MAC address high */
87 #define GRR 0x216 /* global reset */
88 #define CIDR 0x400 /* chip ID and enable */
89 #define CGCR 0x40a /* chip global control */
90 #define IACR 0x4a0 /* indirect access control */
91 #define IADR1 0x4a2 /* indirect access data 66:63 */
92 #define IADR2 0x4a4 /* indirect access data 47:32 */
93 #define IADR3 0x4a6 /* indirect access data 63:48 */
94 #define IADR4 0x4a8 /* indirect access data 15:0 */
95 #define IADR5 0x4aa /* indirect access data 31:16 */
96 #define P1CR4 0x512 /* port 1 control 4 */
97 #define P1SR 0x514 /* port 1 status */
98 #define P2CR4 0x532 /* port 2 control 4 */
99 #define P2SR 0x534 /* port 2 status */
100
101 #define TXC_BS_MSK 0x3f000000 /* burst size */
102 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
103 #define TXC_UCG (1U<<18) /* generate UDP checksum */
104 #define TXC_TCG (1U<<17) /* generate TCP checksum */
105 #define TXC_ICG (1U<<16) /* generate IP checksum */
106 #define TXC_FCE (1U<<9) /* enable flowcontrol */
107 #define TXC_EP (1U<<2) /* enable automatic padding */
108 #define TXC_AC (1U<<1) /* add CRC to frame */
109 #define TXC_TEN (1) /* enable DMA to run */
110
111 #define RXC_BS_MSK 0x3f000000 /* burst size */
112 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
113 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
114 #define RXC_UCC (1U<<18) /* run UDP checksum */
115 #define RXC_TCC (1U<<17) /* run TDP checksum */
116 #define RXC_ICC (1U<<16) /* run IP checksum */
117 #define RXC_FCE (1U<<9) /* enable flowcontrol */
118 #define RXC_RB (1U<<6) /* receive broadcast frame */
119 #define RXC_RM (1U<<5) /* receive multicast frame */
120 #define RXC_RU (1U<<4) /* receive unicast frame */
121 #define RXC_RE (1U<<3) /* accept error frame */
122 #define RXC_RA (1U<<2) /* receive all frame */
123 #define RXC_MHTE (1U<<1) /* use multicast hash table */
124 #define RXC_REN (1) /* enable DMA to run */
125
126 #define INT_DMLCS (1U<<31) /* link status change */
127 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
128 #define INT_DMRS (1U<<29) /* frame was received */
129 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
130
131 #define T0_OWN (1U<<31) /* desc is ready to Tx */
132
133 #define R0_OWN (1U<<31) /* desc is empty */
134 #define R0_FS (1U<<30) /* first segment of frame */
135 #define R0_LS (1U<<29) /* last segment of frame */
136 #define R0_IPE (1U<<28) /* IP checksum error */
137 #define R0_TCPE (1U<<27) /* TCP checksum error */
138 #define R0_UDPE (1U<<26) /* UDP checksum error */
139 #define R0_ES (1U<<25) /* error summary */
140 #define R0_MF (1U<<24) /* multicast frame */
141 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
142 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
143 #define R0_RE (1U<<19) /* MII reported error */
144 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
145 #define R0_RF (1U<<17) /* damaged runt frame */
146 #define R0_CE (1U<<16) /* CRC error */
147 #define R0_FT (1U<<15) /* frame type */
148 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
149
150 #define T1_IC (1U<<31) /* post interrupt on complete */
151 #define T1_FS (1U<<30) /* first segment of frame */
152 #define T1_LS (1U<<29) /* last segment of frame */
153 #define T1_IPCKG (1U<<28) /* generate IP checksum */
154 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
155 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
156 #define T1_TER (1U<<25) /* end of ring */
157 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
158 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
159
160 #define R1_RER (1U<<25) /* end of ring */
161 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
162
163 #define KSE_NTXSEGS 16
164 #define KSE_TXQUEUELEN 64
165 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
166 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
167 #define KSE_NTXDESC 256
168 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
169 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
170 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
171
172 #define KSE_NRXDESC 64
173 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
174 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
175
176 struct tdes {
177 uint32_t t0, t1, t2, t3;
178 };
179
180 struct rdes {
181 uint32_t r0, r1, r2, r3;
182 };
183
184 struct kse_control_data {
185 struct tdes kcd_txdescs[KSE_NTXDESC];
186 struct rdes kcd_rxdescs[KSE_NRXDESC];
187 };
188 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
189 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
190 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
191
192 struct kse_txsoft {
193 struct mbuf *txs_mbuf; /* head of our mbuf chain */
194 bus_dmamap_t txs_dmamap; /* our DMA map */
195 int txs_firstdesc; /* first descriptor in packet */
196 int txs_lastdesc; /* last descriptor in packet */
197 int txs_ndesc; /* # of descriptors used */
198 };
199
200 struct kse_rxsoft {
201 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t rxs_dmamap; /* our DMA map */
203 };
204
205 struct kse_softc {
206 struct device sc_dev; /* generic device information */
207 bus_space_tag_t sc_st; /* bus space tag */
208 bus_space_handle_t sc_sh; /* bus space handle */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 struct ethercom sc_ethercom; /* Ethernet common data */
211 void *sc_ih; /* interrupt cookie */
212
213 struct ifmedia sc_media; /* ifmedia information */
214 int sc_media_status; /* PHY */
215 int sc_media_active; /* PHY */
216 callout_t sc_callout; /* MII tick callout */
217 callout_t sc_stat_ch; /* statistics counter callout */
218
219 bus_dmamap_t sc_cddmamap; /* control data DMA map */
220 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
221
222 struct kse_control_data *sc_control_data;
223 #define sc_txdescs sc_control_data->kcd_txdescs
224 #define sc_rxdescs sc_control_data->kcd_rxdescs
225
226 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
227 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
228 int sc_txfree; /* number of free Tx descriptors */
229 int sc_txnext; /* next ready Tx descriptor */
230 int sc_txsfree; /* number of free Tx jobs */
231 int sc_txsnext; /* next ready Tx job */
232 int sc_txsdirty; /* dirty Tx jobs */
233 int sc_rxptr; /* next ready Rx descriptor/descsoft */
234
235 uint32_t sc_txc, sc_rxc;
236 uint32_t sc_t1csum;
237 int sc_mcsum;
238 uint32_t sc_inten;
239
240 uint32_t sc_chip;
241 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
242 uint16_t sc_vlan[16];
243
244 #ifdef KSE_EVENT_COUNTERS
245 struct ksext {
246 char evcntname[3][8];
247 struct evcnt pev[3][34];
248 } sc_ext; /* switch statistics */
249 #endif
250 };
251
252 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
253 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
254
255 #define KSE_CDTXSYNC(sc, x, n, ops) \
256 do { \
257 int __x, __n; \
258 \
259 __x = (x); \
260 __n = (n); \
261 \
262 /* If it will wrap around, sync to the end of the ring. */ \
263 if ((__x + __n) > KSE_NTXDESC) { \
264 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
265 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
266 (KSE_NTXDESC - __x), (ops)); \
267 __n -= (KSE_NTXDESC - __x); \
268 __x = 0; \
269 } \
270 \
271 /* Now sync whatever is left. */ \
272 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
273 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
274 } while (/*CONSTCOND*/0)
275
276 #define KSE_CDRXSYNC(sc, x, ops) \
277 do { \
278 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
279 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
280 } while (/*CONSTCOND*/0)
281
282 #define KSE_INIT_RXDESC(sc, x) \
283 do { \
284 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
285 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
286 struct mbuf *__m = __rxs->rxs_mbuf; \
287 \
288 __m->m_data = __m->m_ext.ext_buf; \
289 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
290 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
291 __rxd->r0 = R0_OWN; \
292 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
293 } while (/*CONSTCOND*/0)
294
295 u_int kse_burstsize = 32; /* DMA burst length tuning knob */
296
297 #ifdef KSEDIAGNOSTIC
298 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
299 #endif
300
301 static int kse_match(struct device *, struct cfdata *, void *);
302 static void kse_attach(struct device *, struct device *, void *);
303
304 CFATTACH_DECL(kse, sizeof(struct kse_softc),
305 kse_match, kse_attach, NULL, NULL);
306
307 static int kse_ioctl(struct ifnet *, u_long, void *);
308 static void kse_start(struct ifnet *);
309 static void kse_watchdog(struct ifnet *);
310 static int kse_init(struct ifnet *);
311 static void kse_stop(struct ifnet *, int);
312 static void kse_reset(struct kse_softc *);
313 static void kse_set_filter(struct kse_softc *);
314 static int add_rxbuf(struct kse_softc *, int);
315 static void rxdrain(struct kse_softc *);
316 static int kse_intr(void *);
317 static void rxintr(struct kse_softc *);
318 static void txreap(struct kse_softc *);
319 static void lnkchg(struct kse_softc *);
320 static int ifmedia_upd(struct ifnet *);
321 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
322 static void phy_tick(void *);
323 static int ifmedia2_upd(struct ifnet *);
324 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
325 #ifdef KSE_EVENT_COUNTERS
326 static void stat_tick(void *);
327 static void zerostats(struct kse_softc *);
328 #endif
329
330 static int
331 kse_match(struct device *parent, struct cfdata *match, void *aux)
332 {
333 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
334
335 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
336 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
337 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
338 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
339 return 1;
340
341 return 0;
342 }
343
344 static void
345 kse_attach(struct device *parent, struct device *self, void *aux)
346 {
347 struct kse_softc *sc = (struct kse_softc *)self;
348 struct pci_attach_args *pa = aux;
349 pci_chipset_tag_t pc = pa->pa_pc;
350 pci_intr_handle_t ih;
351 const char *intrstr;
352 struct ifnet *ifp;
353 struct ifmedia *ifm;
354 uint8_t enaddr[ETHER_ADDR_LEN];
355 bus_dma_segment_t seg;
356 int i, p, error, nseg;
357 pcireg_t pmode;
358 int pmreg;
359
360 if (pci_mapreg_map(pa, 0x10,
361 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
362 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
363 printf(": unable to map device registers\n");
364 return;
365 }
366
367 sc->sc_dmat = pa->pa_dmat;
368
369 /* Make sure bus mastering is enabled. */
370 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
371 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
372 PCI_COMMAND_MASTER_ENABLE);
373
374 /* Get it out of power save mode, if needed. */
375 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
376 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
377 PCI_PMCSR_STATE_MASK;
378 if (pmode == PCI_PMCSR_STATE_D3) {
379 /*
380 * The card has lost all configuration data in
381 * this state, so punt.
382 */
383 printf("%s: unable to wake from power state D3\n",
384 sc->sc_dev.dv_xname);
385 return;
386 }
387 if (pmode != PCI_PMCSR_STATE_D0) {
388 printf("%s: waking up from power date D%d\n",
389 sc->sc_dev.dv_xname, pmode);
390 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
391 PCI_PMCSR_STATE_D0);
392 }
393 }
394
395 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
396 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
397 sc->sc_chip, PCI_REVISION(pa->pa_class));
398
399 /*
400 * Read the Ethernet address from the EEPROM.
401 */
402 i = CSR_READ_2(sc, MARL);
403 enaddr[5] = i; enaddr[4] = i >> 8;
404 i = CSR_READ_2(sc, MARM);
405 enaddr[3] = i; enaddr[2] = i >> 8;
406 i = CSR_READ_2(sc, MARH);
407 enaddr[1] = i; enaddr[0] = i >> 8;
408 printf("%s: Ethernet address: %s\n",
409 sc->sc_dev.dv_xname, ether_sprintf(enaddr));
410
411 /*
412 * Enable chip function.
413 */
414 CSR_WRITE_2(sc, CIDR, 1);
415
416 /*
417 * Map and establish our interrupt.
418 */
419 if (pci_intr_map(pa, &ih)) {
420 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
421 return;
422 }
423 intrstr = pci_intr_string(pc, ih);
424 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
425 if (sc->sc_ih == NULL) {
426 printf("%s: unable to establish interrupt",
427 sc->sc_dev.dv_xname);
428 if (intrstr != NULL)
429 printf(" at %s", intrstr);
430 printf("\n");
431 return;
432 }
433 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
434
435 /*
436 * Allocate the control data structures, and create and load the
437 * DMA map for it.
438 */
439 error = bus_dmamem_alloc(sc->sc_dmat,
440 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
441 if (error != 0) {
442 printf("%s: unable to allocate control data, error = %d\n",
443 sc->sc_dev.dv_xname, error);
444 goto fail_0;
445 }
446 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
447 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
448 BUS_DMA_COHERENT);
449 if (error != 0) {
450 printf("%s: unable to map control data, error = %d\n",
451 sc->sc_dev.dv_xname, error);
452 goto fail_1;
453 }
454 error = bus_dmamap_create(sc->sc_dmat,
455 sizeof(struct kse_control_data), 1,
456 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
457 if (error != 0) {
458 printf("%s: unable to create control data DMA map, "
459 "error = %d\n", sc->sc_dev.dv_xname, error);
460 goto fail_2;
461 }
462 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
463 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
464 if (error != 0) {
465 printf("%s: unable to load control data DMA map, error = %d\n",
466 sc->sc_dev.dv_xname, error);
467 goto fail_3;
468 }
469 for (i = 0; i < KSE_TXQUEUELEN; i++) {
470 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
471 KSE_NTXSEGS, MCLBYTES, 0, 0,
472 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
473 printf("%s: unable to create tx DMA map %d, "
474 "error = %d\n", sc->sc_dev.dv_xname, i, error);
475 goto fail_4;
476 }
477 }
478 for (i = 0; i < KSE_NRXDESC; i++) {
479 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
480 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
481 printf("%s: unable to create rx DMA map %d, "
482 "error = %d\n", sc->sc_dev.dv_xname, i, error);
483 goto fail_5;
484 }
485 sc->sc_rxsoft[i].rxs_mbuf = NULL;
486 }
487
488 callout_init(&sc->sc_callout, 0);
489 callout_init(&sc->sc_stat_ch, 0);
490
491 ifm = &sc->sc_media;
492 if (sc->sc_chip == 0x8841) {
493 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
494 ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
495 ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
496 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
497 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
498 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
499 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
500 }
501 else {
502 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
503 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
504 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
505 }
506
507 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
508 sc->sc_dev.dv_xname);
509
510 ifp = &sc->sc_ethercom.ec_if;
511 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
512 ifp->if_softc = sc;
513 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
514 ifp->if_ioctl = kse_ioctl;
515 ifp->if_start = kse_start;
516 ifp->if_watchdog = kse_watchdog;
517 ifp->if_init = kse_init;
518 ifp->if_stop = kse_stop;
519 IFQ_SET_READY(&ifp->if_snd);
520
521 /*
522 * KSZ8842 can handle 802.1Q VLAN-sized frames,
523 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
524 */
525 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
526 ifp->if_capabilities |=
527 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
528 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
529 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
530
531 if_attach(ifp);
532 ether_ifattach(ifp, enaddr);
533
534 p = (sc->sc_chip == 0x8842) ? 3 : 1;
535 #ifdef KSE_EVENT_COUNTERS
536 for (i = 0; i < p; i++) {
537 struct ksext *ee = &sc->sc_ext;
538 sprintf(ee->evcntname[i], "%s.%d", sc->sc_dev.dv_xname, i+1);
539 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
540 NULL, ee->evcntname[i], "RxLoPriotyByte");
541 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
542 NULL, ee->evcntname[i], "RxHiPriotyByte");
543 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
544 NULL, ee->evcntname[i], "RxUndersizePkt");
545 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
546 NULL, ee->evcntname[i], "RxFragments");
547 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
548 NULL, ee->evcntname[i], "RxOversize");
549 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
550 NULL, ee->evcntname[i], "RxJabbers");
551 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
552 NULL, ee->evcntname[i], "RxSymbolError");
553 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
554 NULL, ee->evcntname[i], "RxCRCError");
555 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
556 NULL, ee->evcntname[i], "RxAlignmentError");
557 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
558 NULL, ee->evcntname[i], "RxControl8808Pkts");
559 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
560 NULL, ee->evcntname[i], "RxPausePkts");
561 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
562 NULL, ee->evcntname[i], "RxBroadcast");
563 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
564 NULL, ee->evcntname[i], "RxMulticast");
565 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
566 NULL, ee->evcntname[i], "RxUnicast");
567 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
568 NULL, ee->evcntname[i], "Rx64Octets");
569 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
570 NULL, ee->evcntname[i], "Rx65To127Octets");
571 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
572 NULL, ee->evcntname[i], "Rx128To255Octets");
573 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
574 NULL, ee->evcntname[i], "Rx255To511Octets");
575 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
576 NULL, ee->evcntname[i], "Rx512To1023Octets");
577 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
578 NULL, ee->evcntname[i], "Rx1024To1522Octets");
579 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
580 NULL, ee->evcntname[i], "TxLoPriotyByte");
581 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "TxHiPriotyByte");
583 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "TxLateCollision");
585 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "TxPausePkts");
587 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "TxBroadcastPkts");
589 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "TxMulticastPkts");
591 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "TxUnicastPkts");
593 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "TxDeferred");
595 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "TxTotalCollision");
597 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "TxExcessiveCollision");
599 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "TxSingleCollision");
601 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "TxMultipleCollision");
603 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "TxDropPkts");
605 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
606 NULL, ee->evcntname[i], "RxDropPkts");
607 }
608 #endif
609 return;
610
611 fail_5:
612 for (i = 0; i < KSE_NRXDESC; i++) {
613 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
614 bus_dmamap_destroy(sc->sc_dmat,
615 sc->sc_rxsoft[i].rxs_dmamap);
616 }
617 fail_4:
618 for (i = 0; i < KSE_TXQUEUELEN; i++) {
619 if (sc->sc_txsoft[i].txs_dmamap != NULL)
620 bus_dmamap_destroy(sc->sc_dmat,
621 sc->sc_txsoft[i].txs_dmamap);
622 }
623 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
624 fail_3:
625 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
626 fail_2:
627 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
628 sizeof(struct kse_control_data));
629 fail_1:
630 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
631 fail_0:
632 return;
633 }
634
635 static int
636 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
637 {
638 struct kse_softc *sc = ifp->if_softc;
639 struct ifreq *ifr = (struct ifreq *)data;
640 int s, error;
641
642 s = splnet();
643
644 switch (cmd) {
645 case SIOCSIFMEDIA:
646 case SIOCGIFMEDIA:
647 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
648 break;
649
650 default:
651 error = ether_ioctl(ifp, cmd, data);
652 if (cmd == ENETRESET) {
653 /*
654 * Multicast list has changed; set the hardware filter
655 * accordingly.
656 */
657 if (ifp->if_flags & IFF_RUNNING)
658 kse_set_filter(sc);
659 error = 0;
660 }
661 break;
662 }
663
664 kse_start(ifp);
665
666 splx(s);
667 return error;
668 }
669
670 static int
671 kse_init(struct ifnet *ifp)
672 {
673 struct kse_softc *sc = ifp->if_softc;
674 uint32_t paddr;
675 int i, error = 0;
676
677 /* cancel pending I/O */
678 kse_stop(ifp, 0);
679
680 /* reset all registers but PCI configuration */
681 kse_reset(sc);
682
683 /* craft Tx descriptor ring */
684 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
685 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
686 sc->sc_txdescs[i].t3 = paddr;
687 paddr += sizeof(struct tdes);
688 }
689 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
690 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
691 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
692 sc->sc_txfree = KSE_NTXDESC;
693 sc->sc_txnext = 0;
694
695 for (i = 0; i < KSE_TXQUEUELEN; i++)
696 sc->sc_txsoft[i].txs_mbuf = NULL;
697 sc->sc_txsfree = KSE_TXQUEUELEN;
698 sc->sc_txsnext = 0;
699 sc->sc_txsdirty = 0;
700
701 /* craft Rx descriptor ring */
702 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
703 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
704 sc->sc_rxdescs[i].r3 = paddr;
705 paddr += sizeof(struct rdes);
706 }
707 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
708 for (i = 0; i < KSE_NRXDESC; i++) {
709 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
710 if ((error = add_rxbuf(sc, i)) != 0) {
711 printf("%s: unable to allocate or map rx "
712 "buffer %d, error = %d\n",
713 sc->sc_dev.dv_xname, i, error);
714 rxdrain(sc);
715 goto out;
716 }
717 }
718 else
719 KSE_INIT_RXDESC(sc, i);
720 }
721 sc->sc_rxptr = 0;
722
723 /* hand Tx/Rx rings to HW */
724 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
725 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
726
727 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
728 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
729 if (ifp->if_flags & IFF_PROMISC)
730 sc->sc_rxc |= RXC_RA;
731 if (ifp->if_flags & IFF_BROADCAST)
732 sc->sc_rxc |= RXC_RB;
733 sc->sc_t1csum = sc->sc_mcsum = 0;
734 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
735 sc->sc_rxc |= RXC_ICC;
736 sc->sc_mcsum |= M_CSUM_IPv4;
737 }
738 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
739 sc->sc_txc |= TXC_ICG;
740 sc->sc_t1csum |= T1_IPCKG;
741 }
742 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
743 sc->sc_rxc |= RXC_TCC;
744 sc->sc_mcsum |= M_CSUM_TCPv4;
745 }
746 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
747 sc->sc_txc |= TXC_TCG;
748 sc->sc_t1csum |= T1_TCPCKG;
749 }
750 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
751 sc->sc_rxc |= RXC_UCC;
752 sc->sc_mcsum |= M_CSUM_UDPv4;
753 }
754 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
755 sc->sc_txc |= TXC_UCG;
756 sc->sc_t1csum |= T1_UDPCKG;
757 }
758 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
759 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
760
761 /* build multicast hash filter if necessary */
762 kse_set_filter(sc);
763
764 /* set current media */
765 (void)ifmedia_upd(ifp);
766
767 /* enable transmitter and receiver */
768 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
769 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
770 CSR_WRITE_4(sc, MDRSC, 1);
771
772 /* enable interrupts */
773 sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
774 if (sc->sc_chip == 0x8841)
775 sc->sc_inten |= INT_DMLCS;
776 CSR_WRITE_4(sc, INTST, ~0);
777 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
778
779 ifp->if_flags |= IFF_RUNNING;
780 ifp->if_flags &= ~IFF_OACTIVE;
781
782 if (sc->sc_chip == 0x8841) {
783 /* start one second timer */
784 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
785 }
786 #ifdef KSE_EVENT_COUNTERS
787 /* start statistics gather 1 minute timer */
788 zerostats(sc);
789 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
790 #endif
791
792 out:
793 if (error) {
794 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
795 ifp->if_timer = 0;
796 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
797 }
798 return error;
799 }
800
801 static void
802 kse_stop(struct ifnet *ifp, int disable)
803 {
804 struct kse_softc *sc = ifp->if_softc;
805 struct kse_txsoft *txs;
806 int i;
807
808 if (sc->sc_chip == 0x8841)
809 callout_stop(&sc->sc_callout);
810 callout_stop(&sc->sc_stat_ch);
811
812 sc->sc_txc &= ~TXC_TEN;
813 sc->sc_rxc &= ~RXC_REN;
814 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
815 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
816
817 for (i = 0; i < KSE_TXQUEUELEN; i++) {
818 txs = &sc->sc_txsoft[i];
819 if (txs->txs_mbuf != NULL) {
820 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
821 m_freem(txs->txs_mbuf);
822 txs->txs_mbuf = NULL;
823 }
824 }
825
826 if (disable)
827 rxdrain(sc);
828
829 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830 ifp->if_timer = 0;
831 }
832
833 static void
834 kse_reset(struct kse_softc *sc)
835 {
836
837 CSR_WRITE_2(sc, GRR, 1);
838 delay(1000); /* PDF does not mention the delay amount */
839 CSR_WRITE_2(sc, GRR, 0);
840
841 CSR_WRITE_2(sc, CIDR, 1);
842 }
843
844 static void
845 kse_watchdog(struct ifnet *ifp)
846 {
847 struct kse_softc *sc = ifp->if_softc;
848
849 /*
850 * Since we're not interrupting every packet, sweep
851 * up before we report an error.
852 */
853 txreap(sc);
854
855 if (sc->sc_txfree != KSE_NTXDESC) {
856 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
857 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
858 sc->sc_txnext);
859 ifp->if_oerrors++;
860
861 /* Reset the interface. */
862 kse_init(ifp);
863 }
864 else if (ifp->if_flags & IFF_DEBUG)
865 printf("%s: recovered from device timeout\n",
866 sc->sc_dev.dv_xname);
867
868 /* Try to get more packets going. */
869 kse_start(ifp);
870 }
871
872 static void
873 kse_start(struct ifnet *ifp)
874 {
875 struct kse_softc *sc = ifp->if_softc;
876 struct mbuf *m0, *m;
877 struct kse_txsoft *txs;
878 bus_dmamap_t dmamap;
879 int error, nexttx, lasttx, ofree, seg;
880 uint32_t tdes0;
881
882 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
883 return;
884
885 /*
886 * Remember the previous number of free descriptors.
887 */
888 ofree = sc->sc_txfree;
889
890 /*
891 * Loop through the send queue, setting up transmit descriptors
892 * until we drain the queue, or use up all available transmit
893 * descriptors.
894 */
895 for (;;) {
896 IFQ_POLL(&ifp->if_snd, m0);
897 if (m0 == NULL)
898 break;
899
900 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
901 txreap(sc);
902 if (sc->sc_txsfree == 0)
903 break;
904 }
905 txs = &sc->sc_txsoft[sc->sc_txsnext];
906 dmamap = txs->txs_dmamap;
907
908 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
909 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
910 if (error) {
911 if (error == EFBIG) {
912 printf("%s: Tx packet consumes too many "
913 "DMA segments, dropping...\n",
914 sc->sc_dev.dv_xname);
915 IFQ_DEQUEUE(&ifp->if_snd, m0);
916 m_freem(m0);
917 continue;
918 }
919 /* Short on resources, just stop for now. */
920 break;
921 }
922
923 if (dmamap->dm_nsegs > sc->sc_txfree) {
924 /*
925 * Not enough free descriptors to transmit this
926 * packet. We haven't committed anything yet,
927 * so just unload the DMA map, put the packet
928 * back on the queue, and punt. Notify the upper
929 * layer that there are not more slots left.
930 */
931 ifp->if_flags |= IFF_OACTIVE;
932 bus_dmamap_unload(sc->sc_dmat, dmamap);
933 break;
934 }
935
936 IFQ_DEQUEUE(&ifp->if_snd, m0);
937
938 /*
939 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
940 */
941
942 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
943 BUS_DMASYNC_PREWRITE);
944
945 lasttx = -1; tdes0 = 0;
946 for (nexttx = sc->sc_txnext, seg = 0;
947 seg < dmamap->dm_nsegs;
948 seg++, nexttx = KSE_NEXTTX(nexttx)) {
949 struct tdes *tdes = &sc->sc_txdescs[nexttx];
950 /*
951 * If this is the first descriptor we're
952 * enqueueing, don't set the OWN bit just
953 * yet. That could cause a race condition.
954 * We'll do it below.
955 */
956 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
957 tdes->t1 = sc->sc_t1csum
958 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
959 tdes->t0 = tdes0;
960 tdes0 |= T0_OWN;
961 lasttx = nexttx;
962 }
963
964 /*
965 * Outgoing NFS mbuf must be unloaded when Tx completed.
966 * Without T1_IC NFS mbuf is left unack'ed for excessive
967 * time and NFS stops to proceed until kse_watchdog()
968 * calls txreap() to reclaim the unack'ed mbuf.
969 * It's painful to traverse every mbuf chain to determine
970 * whether someone is waiting for Tx completion.
971 */
972 m = m0;
973 do {
974 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
975 sc->sc_txdescs[lasttx].t1 |= T1_IC;
976 break;
977 }
978 } while ((m = m->m_next) != NULL);
979
980 /* write last T0_OWN bit of the 1st segment */
981 sc->sc_txdescs[lasttx].t1 |= T1_LS;
982 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
983 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
984 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
985 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
986
987 /* tell DMA start transmit */
988 CSR_WRITE_4(sc, MDTSC, 1);
989
990 txs->txs_mbuf = m0;
991 txs->txs_firstdesc = sc->sc_txnext;
992 txs->txs_lastdesc = lasttx;
993 txs->txs_ndesc = dmamap->dm_nsegs;
994
995 sc->sc_txfree -= txs->txs_ndesc;
996 sc->sc_txnext = nexttx;
997 sc->sc_txsfree--;
998 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
999 #if NBPFILTER > 0
1000 /*
1001 * Pass the packet to any BPF listeners.
1002 */
1003 if (ifp->if_bpf)
1004 bpf_mtap(ifp->if_bpf, m0);
1005 #endif /* NBPFILTER > 0 */
1006 }
1007
1008 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1009 /* No more slots left; notify upper layer. */
1010 ifp->if_flags |= IFF_OACTIVE;
1011 }
1012 if (sc->sc_txfree != ofree) {
1013 /* Set a watchdog timer in case the chip flakes out. */
1014 ifp->if_timer = 5;
1015 }
1016 }
1017
1018 static void
1019 kse_set_filter(struct kse_softc *sc)
1020 {
1021 struct ether_multistep step;
1022 struct ether_multi *enm;
1023 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1024 uint32_t h, hashes[2];
1025
1026 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1027 ifp->if_flags &= ~IFF_ALLMULTI;
1028 if (ifp->if_flags & IFF_PROMISC)
1029 return;
1030
1031 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1032 if (enm == NULL)
1033 return;
1034 hashes[0] = hashes[1] = 0;
1035 do {
1036 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1037 /*
1038 * We must listen to a range of multicast addresses.
1039 * For now, just accept all multicasts, rather than
1040 * trying to set only those filter bits needed to match
1041 * the range. (At this time, the only use of address
1042 * ranges is for IP multicast routing, for which the
1043 * range is big enough to require all bits set.)
1044 */
1045 goto allmulti;
1046 }
1047 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1048 hashes[h >> 5] |= 1 << (h & 0x1f);
1049 ETHER_NEXT_MULTI(step, enm);
1050 } while (enm != NULL);
1051 sc->sc_rxc |= RXC_MHTE;
1052 CSR_WRITE_4(sc, MTR0, hashes[0]);
1053 CSR_WRITE_4(sc, MTR1, hashes[1]);
1054 return;
1055 allmulti:
1056 sc->sc_rxc |= RXC_RM;
1057 ifp->if_flags |= IFF_ALLMULTI;
1058 }
1059
1060 static int
1061 add_rxbuf(struct kse_softc *sc, int idx)
1062 {
1063 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1064 struct mbuf *m;
1065 int error;
1066
1067 MGETHDR(m, M_DONTWAIT, MT_DATA);
1068 if (m == NULL)
1069 return ENOBUFS;
1070
1071 MCLGET(m, M_DONTWAIT);
1072 if ((m->m_flags & M_EXT) == 0) {
1073 m_freem(m);
1074 return ENOBUFS;
1075 }
1076
1077 if (rxs->rxs_mbuf != NULL)
1078 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1079
1080 rxs->rxs_mbuf = m;
1081
1082 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1083 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1084 if (error) {
1085 printf("%s: can't load rx DMA map %d, error = %d\n",
1086 sc->sc_dev.dv_xname, idx, error);
1087 panic("kse_add_rxbuf");
1088 }
1089
1090 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1091 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1092
1093 KSE_INIT_RXDESC(sc, idx);
1094
1095 return 0;
1096 }
1097
1098 static void
1099 rxdrain(struct kse_softc *sc)
1100 {
1101 struct kse_rxsoft *rxs;
1102 int i;
1103
1104 for (i = 0; i < KSE_NRXDESC; i++) {
1105 rxs = &sc->sc_rxsoft[i];
1106 if (rxs->rxs_mbuf != NULL) {
1107 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1108 m_freem(rxs->rxs_mbuf);
1109 rxs->rxs_mbuf = NULL;
1110 }
1111 }
1112 }
1113
1114 static int
1115 kse_intr(void *arg)
1116 {
1117 struct kse_softc *sc = arg;
1118 uint32_t isr;
1119
1120 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1121 return 0;
1122
1123 if (isr & INT_DMRS)
1124 rxintr(sc);
1125 if (isr & INT_DMTS)
1126 txreap(sc);
1127 if (isr & INT_DMLCS)
1128 lnkchg(sc);
1129 if (isr & INT_DMRBUS)
1130 printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
1131
1132 CSR_WRITE_4(sc, INTST, isr);
1133 return 1;
1134 }
1135
1136 static void
1137 rxintr(struct kse_softc *sc)
1138 {
1139 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1140 struct kse_rxsoft *rxs;
1141 struct mbuf *m;
1142 uint32_t rxstat;
1143 int i, len;
1144
1145 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1146 rxs = &sc->sc_rxsoft[i];
1147
1148 KSE_CDRXSYNC(sc, i,
1149 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1150
1151 rxstat = sc->sc_rxdescs[i].r0;
1152
1153 if (rxstat & R0_OWN) /* desc is left empty */
1154 break;
1155
1156 /* R0_FS|R0_LS must have been marked for this desc */
1157
1158 if (rxstat & R0_ES) {
1159 ifp->if_ierrors++;
1160 #define PRINTERR(bit, str) \
1161 if (rxstat & (bit)) \
1162 printf("%s: receive error: %s\n", \
1163 sc->sc_dev.dv_xname, str)
1164 PRINTERR(R0_TL, "frame too long");
1165 PRINTERR(R0_RF, "runt frame");
1166 PRINTERR(R0_CE, "bad FCS");
1167 #undef PRINTERR
1168 KSE_INIT_RXDESC(sc, i);
1169 continue;
1170 }
1171
1172 /* HW errata; frame might be too small or too large */
1173
1174 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1175 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1176
1177 len = rxstat & R0_FL_MASK;
1178 len -= ETHER_CRC_LEN; /* trim CRC off */
1179 m = rxs->rxs_mbuf;
1180
1181 if (add_rxbuf(sc, i) != 0) {
1182 ifp->if_ierrors++;
1183 KSE_INIT_RXDESC(sc, i);
1184 bus_dmamap_sync(sc->sc_dmat,
1185 rxs->rxs_dmamap, 0,
1186 rxs->rxs_dmamap->dm_mapsize,
1187 BUS_DMASYNC_PREREAD);
1188 continue;
1189 }
1190
1191 ifp->if_ipackets++;
1192 m->m_pkthdr.rcvif = ifp;
1193 m->m_pkthdr.len = m->m_len = len;
1194
1195 if (sc->sc_mcsum) {
1196 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1197 if (rxstat & R0_IPE)
1198 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1199 if (rxstat & (R0_TCPE | R0_UDPE))
1200 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1201 }
1202 #if NBPFILTER > 0
1203 if (ifp->if_bpf)
1204 bpf_mtap(ifp->if_bpf, m);
1205 #endif /* NBPFILTER > 0 */
1206 (*ifp->if_input)(ifp, m);
1207 #ifdef KSEDIAGNOSTIC
1208 if (kse_monitor_rxintr > 0) {
1209 printf("m stat %x data %p len %d\n",
1210 rxstat, m->m_data, m->m_len);
1211 }
1212 #endif
1213 }
1214 sc->sc_rxptr = i;
1215 }
1216
1217 static void
1218 txreap(struct kse_softc *sc)
1219 {
1220 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 struct kse_txsoft *txs;
1222 uint32_t txstat;
1223 int i;
1224
1225 ifp->if_flags &= ~IFF_OACTIVE;
1226
1227 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1228 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1229 txs = &sc->sc_txsoft[i];
1230
1231 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1232 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1233
1234 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1235
1236 if (txstat & T0_OWN) /* desc is still in use */
1237 break;
1238
1239 /* there is no way to tell transmission status per frame */
1240
1241 ifp->if_opackets++;
1242
1243 sc->sc_txfree += txs->txs_ndesc;
1244 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1245 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1246 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1247 m_freem(txs->txs_mbuf);
1248 txs->txs_mbuf = NULL;
1249 }
1250 sc->sc_txsdirty = i;
1251 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1252 ifp->if_timer = 0;
1253 }
1254
1255 static void
1256 lnkchg(struct kse_softc *sc)
1257 {
1258 struct ifmediareq ifmr;
1259
1260 #if 0 /* rambling link status */
1261 printf("%s: link %s\n", sc->sc_dev.dv_xname,
1262 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1263 #endif
1264 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1265 }
1266
1267 static int
1268 ifmedia_upd(struct ifnet *ifp)
1269 {
1270 struct kse_softc *sc = ifp->if_softc;
1271 struct ifmedia *ifm = &sc->sc_media;
1272 uint16_t ctl;
1273
1274 ctl = 0;
1275 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1276 ctl |= (1U << 13); /* restart AN */
1277 ctl |= (1U << 7); /* enable AN */
1278 ctl |= (1U << 4); /* advertise flow control pause */
1279 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1280 }
1281 else {
1282 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1283 ctl |= (1U << 6);
1284 if (ifm->ifm_media & IFM_FDX)
1285 ctl |= (1U << 5);
1286 }
1287 CSR_WRITE_2(sc, P1CR4, ctl);
1288
1289 sc->sc_media_active = IFM_NONE;
1290 sc->sc_media_status = IFM_AVALID;
1291
1292 return 0;
1293 }
1294
1295 static void
1296 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1297 {
1298 struct kse_softc *sc = ifp->if_softc;
1299 struct ifmedia *ifm = &sc->sc_media;
1300 uint16_t ctl, sts, result;
1301
1302 ifmr->ifm_status = IFM_AVALID;
1303 ifmr->ifm_active = IFM_ETHER;
1304
1305 ctl = CSR_READ_2(sc, P1CR4);
1306 sts = CSR_READ_2(sc, P1SR);
1307 if ((sts & (1U << 5)) == 0) {
1308 ifmr->ifm_active |= IFM_NONE;
1309 goto out; /* link is down */
1310 }
1311 ifmr->ifm_status |= IFM_ACTIVE;
1312 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1313 if ((sts & (1U << 6)) == 0) {
1314 ifmr->ifm_active |= IFM_NONE;
1315 goto out; /* negotiation in progress */
1316 }
1317 result = ctl & sts & 017;
1318 if (result & (1U << 3))
1319 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1320 else if (result & (1U << 2))
1321 ifmr->ifm_active |= IFM_100_TX;
1322 else if (result & (1U << 1))
1323 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1324 else if (result & (1U << 0))
1325 ifmr->ifm_active |= IFM_10_T;
1326 else
1327 ifmr->ifm_active |= IFM_NONE;
1328 if (ctl & (1U << 4))
1329 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1330 if (sts & (1U << 4))
1331 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1332 }
1333 else {
1334 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1335 if (sts & (1U << 9))
1336 ifmr->ifm_active |= IFM_FDX;
1337 if (sts & (1U << 12))
1338 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1339 if (sts & (1U << 11))
1340 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1341 }
1342
1343 out:
1344 sc->sc_media_status = ifmr->ifm_status;
1345 sc->sc_media_active = ifmr->ifm_active;
1346 }
1347
1348 static void
1349 phy_tick(void *arg)
1350 {
1351 struct kse_softc *sc = arg;
1352 struct ifmediareq ifmr;
1353 int s;
1354
1355 s = splnet();
1356 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1357 splx(s);
1358
1359 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1360 }
1361
1362 static int
1363 ifmedia2_upd(struct ifnet *ifp)
1364 {
1365 struct kse_softc *sc = ifp->if_softc;
1366
1367 sc->sc_media_status = IFM_AVALID;
1368 sc->sc_media_active = IFM_NONE;
1369 return 0;
1370 }
1371
1372 static void
1373 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1374 {
1375 struct kse_softc *sc = ifp->if_softc;
1376 int p1sts, p2sts;
1377
1378 ifmr->ifm_status = IFM_AVALID;
1379 ifmr->ifm_active = IFM_ETHER;
1380 p1sts = CSR_READ_2(sc, P1SR);
1381 p2sts = CSR_READ_2(sc, P2SR);
1382 if (((p1sts | p2sts) & (1U << 5)) == 0)
1383 ifmr->ifm_active |= IFM_NONE;
1384 else {
1385 ifmr->ifm_status |= IFM_ACTIVE;
1386 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1387 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1388 }
1389 sc->sc_media_status = ifmr->ifm_status;
1390 sc->sc_media_active = ifmr->ifm_active;
1391 }
1392
1393 #ifdef KSE_EVENT_COUNTERS
1394 static void
1395 stat_tick(arg)
1396 void *arg;
1397 {
1398 struct kse_softc *sc = arg;
1399 struct ksext *ee = &sc->sc_ext;
1400 int nport, p, i, val;
1401
1402 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1403 for (p = 0; p < nport; p++) {
1404 for (i = 0; i < 32; i++) {
1405 val = 0x1c00 | (p * 0x20 + i);
1406 CSR_WRITE_2(sc, IACR, val);
1407 do {
1408 val = CSR_READ_2(sc, IADR5) << 16;
1409 } while ((val & (1U << 30)) == 0);
1410 if (val & (1U << 31)) {
1411 (void)CSR_READ_2(sc, IADR4);
1412 val = 0x3fffffff; /* has made overflow */
1413 }
1414 else {
1415 val &= 0x3fff0000; /* 29:16 */
1416 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1417 }
1418 ee->pev[p][i].ev_count += val; /* i (0-31) */
1419 }
1420 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1421 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1422 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1423 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1424 }
1425 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1426 }
1427
1428 static void
1429 zerostats(struct kse_softc *sc)
1430 {
1431 struct ksext *ee = &sc->sc_ext;
1432 int nport, p, i, val;
1433
1434 /* make sure all the HW counters get zero */
1435 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1436 for (p = 0; p < nport; p++) {
1437 for (i = 0; i < 31; i++) {
1438 val = 0x1c00 | (p * 0x20 + i);
1439 CSR_WRITE_2(sc, IACR, val);
1440 do {
1441 val = CSR_READ_2(sc, IADR5) << 16;
1442 } while ((val & (1U << 30)) == 0);
1443 (void)CSR_READ_2(sc, IADR4);
1444 ee->pev[p][i].ev_count = 0;
1445 }
1446 }
1447 }
1448 #endif
1449