Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.16
      1 /*	$NetBSD: if_kse.c,v 1.16 2009/03/14 15:36:19 dsl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.16 2009/03/14 15:36:19 dsl Exp $");
     34 
     35 #include "bpfilter.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/callout.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/malloc.h>
     42 #include <sys/kernel.h>
     43 #include <sys/ioctl.h>
     44 #include <sys/errno.h>
     45 #include <sys/device.h>
     46 #include <sys/queue.h>
     47 
     48 #include <machine/endian.h>
     49 #include <sys/bus.h>
     50 #include <sys/intr.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_media.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 
     57 #if NBPFILTER > 0
     58 #include <net/bpf.h>
     59 #endif
     60 
     61 #include <dev/pci/pcivar.h>
     62 #include <dev/pci/pcireg.h>
     63 #include <dev/pci/pcidevs.h>
     64 
     65 #define CSR_READ_4(sc, off) \
     66 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     67 #define CSR_WRITE_4(sc, off, val) \
     68 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     69 #define CSR_READ_2(sc, off) \
     70 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     71 #define CSR_WRITE_2(sc, off, val) \
     72 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     73 
     74 #define MDTXC	0x000	/* DMA transmit control */
     75 #define MDRXC	0x004	/* DMA receive control */
     76 #define MDTSC	0x008	/* DMA transmit start */
     77 #define MDRSC	0x00c	/* DMA receive start */
     78 #define TDLB	0x010	/* transmit descriptor list base */
     79 #define RDLB	0x014	/* receive descriptor list base */
     80 #define MTR0	0x020	/* multicast table 31:0 */
     81 #define MTR1	0x024	/* multicast table 63:32 */
     82 #define INTEN	0x028	/* interrupt enable */
     83 #define INTST	0x02c	/* interrupt status */
     84 #define MARL	0x200	/* MAC address low */
     85 #define MARM	0x202	/* MAC address middle */
     86 #define MARH	0x204	/* MAC address high */
     87 #define GRR	0x216	/* global reset */
     88 #define CIDR	0x400	/* chip ID and enable */
     89 #define CGCR	0x40a	/* chip global control */
     90 #define IACR	0x4a0	/* indirect access control */
     91 #define IADR1	0x4a2	/* indirect access data 66:63 */
     92 #define IADR2	0x4a4	/* indirect access data 47:32 */
     93 #define IADR3	0x4a6	/* indirect access data 63:48 */
     94 #define IADR4	0x4a8	/* indirect access data 15:0 */
     95 #define IADR5	0x4aa	/* indirect access data 31:16 */
     96 #define P1CR4	0x512	/* port 1 control 4 */
     97 #define P1SR	0x514	/* port 1 status */
     98 #define P2CR4	0x532	/* port 2 control 4 */
     99 #define P2SR	0x534	/* port 2 status */
    100 
    101 #define TXC_BS_MSK	0x3f000000	/* burst size */
    102 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    103 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    104 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    105 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    106 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
    107 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    108 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    109 #define TXC_TEN		(1)		/* enable DMA to run */
    110 
    111 #define RXC_BS_MSK	0x3f000000	/* burst size */
    112 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    113 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    114 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    115 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    116 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    117 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    118 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    119 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    120 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    121 #define RXC_RE		(1U<<3)		/* accept error frame */
    122 #define RXC_RA		(1U<<2)		/* receive all frame */
    123 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    124 #define RXC_REN		(1)		/* enable DMA to run */
    125 
    126 #define INT_DMLCS	(1U<<31)	/* link status change */
    127 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    128 #define INT_DMRS	(1U<<29)	/* frame was received */
    129 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    130 
    131 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    132 
    133 #define R0_OWN		(1U<<31)	/* desc is empty */
    134 #define R0_FS		(1U<<30)	/* first segment of frame */
    135 #define R0_LS		(1U<<29)	/* last segment of frame */
    136 #define R0_IPE		(1U<<28)	/* IP checksum error */
    137 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    138 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    139 #define R0_ES		(1U<<25)	/* error summary */
    140 #define R0_MF		(1U<<24)	/* multicast frame */
    141 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    142 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    143 #define R0_RE		(1U<<19)	/* MII reported error */
    144 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    145 #define R0_RF		(1U<<17)	/* damaged runt frame */
    146 #define R0_CE		(1U<<16)	/* CRC error */
    147 #define R0_FT		(1U<<15)	/* frame type */
    148 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    149 
    150 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    151 #define T1_FS		(1U<<30)	/* first segment of frame */
    152 #define T1_LS		(1U<<29)	/* last segment of frame */
    153 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    154 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    155 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    156 #define T1_TER		(1U<<25)	/* end of ring */
    157 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    158 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    159 
    160 #define R1_RER		(1U<<25)	/* end of ring */
    161 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    162 
    163 #define KSE_NTXSEGS		16
    164 #define KSE_TXQUEUELEN		64
    165 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    166 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    167 #define KSE_NTXDESC		256
    168 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    169 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    170 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    171 
    172 #define KSE_NRXDESC		64
    173 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    174 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    175 
    176 struct tdes {
    177 	uint32_t t0, t1, t2, t3;
    178 };
    179 
    180 struct rdes {
    181 	uint32_t r0, r1, r2, r3;
    182 };
    183 
    184 struct kse_control_data {
    185 	struct tdes kcd_txdescs[KSE_NTXDESC];
    186 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    187 };
    188 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    189 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    190 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    191 
    192 struct kse_txsoft {
    193 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    194 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    195 	int txs_firstdesc;		/* first descriptor in packet */
    196 	int txs_lastdesc;		/* last descriptor in packet */
    197 	int txs_ndesc;			/* # of descriptors used */
    198 };
    199 
    200 struct kse_rxsoft {
    201 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    203 };
    204 
    205 struct kse_softc {
    206 	struct device sc_dev;		/* generic device information */
    207 	bus_space_tag_t sc_st;		/* bus space tag */
    208 	bus_space_handle_t sc_sh;	/* bus space handle */
    209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    210 	struct ethercom sc_ethercom;	/* Ethernet common data */
    211 	void *sc_ih;			/* interrupt cookie */
    212 
    213 	struct ifmedia sc_media;	/* ifmedia information */
    214 	int sc_media_status;		/* PHY */
    215 	int sc_media_active;		/* PHY */
    216 	callout_t  sc_callout;		/* MII tick callout */
    217 	callout_t  sc_stat_ch;		/* statistics counter callout */
    218 
    219 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    220 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    221 
    222 	struct kse_control_data *sc_control_data;
    223 #define sc_txdescs	sc_control_data->kcd_txdescs
    224 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    225 
    226 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    227 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    228 	int sc_txfree;			/* number of free Tx descriptors */
    229 	int sc_txnext;			/* next ready Tx descriptor */
    230 	int sc_txsfree;			/* number of free Tx jobs */
    231 	int sc_txsnext;			/* next ready Tx job */
    232 	int sc_txsdirty;		/* dirty Tx jobs */
    233 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    234 
    235 	uint32_t sc_txc, sc_rxc;
    236 	uint32_t sc_t1csum;
    237 	int sc_mcsum;
    238 	uint32_t sc_inten;
    239 
    240 	uint32_t sc_chip;
    241 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    242 	uint16_t sc_vlan[16];
    243 
    244 #ifdef KSE_EVENT_COUNTERS
    245 	struct ksext {
    246 		char evcntname[3][8];
    247 		struct evcnt pev[3][34];
    248 	} sc_ext;			/* switch statistics */
    249 #endif
    250 };
    251 
    252 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    253 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    254 
    255 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    256 do {									\
    257 	int __x, __n;							\
    258 									\
    259 	__x = (x);							\
    260 	__n = (n);							\
    261 									\
    262 	/* If it will wrap around, sync to the end of the ring. */	\
    263 	if ((__x + __n) > KSE_NTXDESC) {				\
    264 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    265 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    266 		    (KSE_NTXDESC - __x), (ops));			\
    267 		__n -= (KSE_NTXDESC - __x);				\
    268 		__x = 0;						\
    269 	}								\
    270 									\
    271 	/* Now sync whatever is left. */				\
    272 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    273 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    274 } while (/*CONSTCOND*/0)
    275 
    276 #define KSE_CDRXSYNC(sc, x, ops)					\
    277 do {									\
    278 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    279 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    280 } while (/*CONSTCOND*/0)
    281 
    282 #define KSE_INIT_RXDESC(sc, x)						\
    283 do {									\
    284 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    285 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    286 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    287 									\
    288 	__m->m_data = __m->m_ext.ext_buf;				\
    289 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    290 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    291 	__rxd->r0 = R0_OWN;						\
    292 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    293 } while (/*CONSTCOND*/0)
    294 
    295 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    296 
    297 #ifdef KSEDIAGNOSTIC
    298 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    299 #endif
    300 
    301 static int kse_match(struct device *, struct cfdata *, void *);
    302 static void kse_attach(struct device *, struct device *, void *);
    303 
    304 CFATTACH_DECL(kse, sizeof(struct kse_softc),
    305     kse_match, kse_attach, NULL, NULL);
    306 
    307 static int kse_ioctl(struct ifnet *, u_long, void *);
    308 static void kse_start(struct ifnet *);
    309 static void kse_watchdog(struct ifnet *);
    310 static int kse_init(struct ifnet *);
    311 static void kse_stop(struct ifnet *, int);
    312 static void kse_reset(struct kse_softc *);
    313 static void kse_set_filter(struct kse_softc *);
    314 static int add_rxbuf(struct kse_softc *, int);
    315 static void rxdrain(struct kse_softc *);
    316 static int kse_intr(void *);
    317 static void rxintr(struct kse_softc *);
    318 static void txreap(struct kse_softc *);
    319 static void lnkchg(struct kse_softc *);
    320 static int ifmedia_upd(struct ifnet *);
    321 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
    322 static void phy_tick(void *);
    323 static int ifmedia2_upd(struct ifnet *);
    324 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
    325 #ifdef KSE_EVENT_COUNTERS
    326 static void stat_tick(void *);
    327 static void zerostats(struct kse_softc *);
    328 #endif
    329 
    330 static int
    331 kse_match(struct device *parent, struct cfdata *match, void *aux)
    332 {
    333 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    334 
    335 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    336 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    337 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    338 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    339 		return 1;
    340 
    341 	return 0;
    342 }
    343 
    344 static void
    345 kse_attach(struct device *parent, struct device *self, void *aux)
    346 {
    347 	struct kse_softc *sc = (struct kse_softc *)self;
    348 	struct pci_attach_args *pa = aux;
    349 	pci_chipset_tag_t pc = pa->pa_pc;
    350 	pci_intr_handle_t ih;
    351 	const char *intrstr;
    352 	struct ifnet *ifp;
    353 	struct ifmedia *ifm;
    354 	uint8_t enaddr[ETHER_ADDR_LEN];
    355 	bus_dma_segment_t seg;
    356 	int i, p, error, nseg;
    357 	pcireg_t pmode;
    358 	int pmreg;
    359 
    360 	if (pci_mapreg_map(pa, 0x10,
    361 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    362 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    363 		printf(": unable to map device registers\n");
    364 		return;
    365 	}
    366 
    367 	sc->sc_dmat = pa->pa_dmat;
    368 
    369 	/* Make sure bus mastering is enabled. */
    370 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    371 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    372 	    PCI_COMMAND_MASTER_ENABLE);
    373 
    374 	/* Get it out of power save mode, if needed. */
    375 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    376 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    377 		    PCI_PMCSR_STATE_MASK;
    378 		if (pmode == PCI_PMCSR_STATE_D3) {
    379 			/*
    380 			 * The card has lost all configuration data in
    381 			 * this state, so punt.
    382 			 */
    383 			printf("%s: unable to wake from power state D3\n",
    384 			    device_xname(&sc->sc_dev));
    385 			return;
    386 		}
    387 		if (pmode != PCI_PMCSR_STATE_D0) {
    388 			printf("%s: waking up from power date D%d\n",
    389 			    device_xname(&sc->sc_dev), pmode);
    390 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    391 			    PCI_PMCSR_STATE_D0);
    392 		}
    393 	}
    394 
    395 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    396 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    397 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    398 
    399 	/*
    400 	 * Read the Ethernet address from the EEPROM.
    401 	 */
    402 	i = CSR_READ_2(sc, MARL);
    403 	enaddr[5] = i; enaddr[4] = i >> 8;
    404 	i = CSR_READ_2(sc, MARM);
    405 	enaddr[3] = i; enaddr[2] = i >> 8;
    406 	i = CSR_READ_2(sc, MARH);
    407 	enaddr[1] = i; enaddr[0] = i >> 8;
    408 	printf("%s: Ethernet address: %s\n",
    409 		device_xname(&sc->sc_dev), ether_sprintf(enaddr));
    410 
    411 	/*
    412 	 * Enable chip function.
    413 	 */
    414 	CSR_WRITE_2(sc, CIDR, 1);
    415 
    416 	/*
    417 	 * Map and establish our interrupt.
    418 	 */
    419 	if (pci_intr_map(pa, &ih)) {
    420 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    421 		return;
    422 	}
    423 	intrstr = pci_intr_string(pc, ih);
    424 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
    425 	if (sc->sc_ih == NULL) {
    426 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    427 		if (intrstr != NULL)
    428 			printf(" at %s", intrstr);
    429 		printf("\n");
    430 		return;
    431 	}
    432 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    433 
    434 	/*
    435 	 * Allocate the control data structures, and create and load the
    436 	 * DMA map for it.
    437 	 */
    438 	error = bus_dmamem_alloc(sc->sc_dmat,
    439 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    440 	if (error != 0) {
    441 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n", error);
    442 		goto fail_0;
    443 	}
    444 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    445 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    446 	    BUS_DMA_COHERENT);
    447 	if (error != 0) {
    448 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
    449 		goto fail_1;
    450 	}
    451 	error = bus_dmamap_create(sc->sc_dmat,
    452 	    sizeof(struct kse_control_data), 1,
    453 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    454 	if (error != 0) {
    455 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    456 		    "error = %d\n", error);
    457 		goto fail_2;
    458 	}
    459 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    460 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    461 	if (error != 0) {
    462 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    463 		    error);
    464 		goto fail_3;
    465 	}
    466 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    467 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    468 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    469 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    470 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    471 			    "error = %d\n", i, error);
    472 			goto fail_4;
    473 		}
    474 	}
    475 	for (i = 0; i < KSE_NRXDESC; i++) {
    476 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    477 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    478 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    479 			    "error = %d\n", i, error);
    480 			goto fail_5;
    481 		}
    482 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    483 	}
    484 
    485 	callout_init(&sc->sc_callout, 0);
    486 	callout_init(&sc->sc_stat_ch, 0);
    487 
    488 	ifm = &sc->sc_media;
    489 	if (sc->sc_chip == 0x8841) {
    490 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
    491 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
    492 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    493 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
    494 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    495 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
    496 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
    497 	}
    498 	else {
    499 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
    500 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
    501 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
    502 	}
    503 
    504 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    505 	    device_xname(&sc->sc_dev));
    506 
    507 	ifp = &sc->sc_ethercom.ec_if;
    508 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    509 	ifp->if_softc = sc;
    510 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    511 	ifp->if_ioctl = kse_ioctl;
    512 	ifp->if_start = kse_start;
    513 	ifp->if_watchdog = kse_watchdog;
    514 	ifp->if_init = kse_init;
    515 	ifp->if_stop = kse_stop;
    516 	IFQ_SET_READY(&ifp->if_snd);
    517 
    518 	/*
    519 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    520 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    521 	 */
    522 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    523 	ifp->if_capabilities |=
    524 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    525 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    526 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    527 
    528 	if_attach(ifp);
    529 	ether_ifattach(ifp, enaddr);
    530 
    531 	p = (sc->sc_chip == 0x8842) ? 3 : 1;
    532 #ifdef KSE_EVENT_COUNTERS
    533 	for (i = 0; i < p; i++) {
    534 		struct ksext *ee = &sc->sc_ext;
    535 		sprintf(ee->evcntname[i], "%s.%d", device_xname(&sc->sc_dev), i+1);
    536 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    537 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    538 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    539 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    540 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    541 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    542 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    543 		    NULL, ee->evcntname[i], "RxFragments");
    544 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    545 		    NULL, ee->evcntname[i], "RxOversize");
    546 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    547 		    NULL, ee->evcntname[i], "RxJabbers");
    548 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    549 		    NULL, ee->evcntname[i], "RxSymbolError");
    550 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    551 		    NULL, ee->evcntname[i], "RxCRCError");
    552 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    553 		    NULL, ee->evcntname[i], "RxAlignmentError");
    554 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    555 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    556 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    557 		    NULL, ee->evcntname[i], "RxPausePkts");
    558 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    559 		    NULL, ee->evcntname[i], "RxBroadcast");
    560 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    561 		    NULL, ee->evcntname[i], "RxMulticast");
    562 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    563 		    NULL, ee->evcntname[i], "RxUnicast");
    564 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    565 		    NULL, ee->evcntname[i], "Rx64Octets");
    566 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    567 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    568 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    569 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    570 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    571 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    572 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    573 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    574 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    575 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    576 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    577 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    578 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    579 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    580 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    581 		    NULL, ee->evcntname[i], "TxLateCollision");
    582 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    583 		    NULL, ee->evcntname[i], "TxPausePkts");
    584 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    585 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    586 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    587 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    588 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    589 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    590 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    591 		    NULL, ee->evcntname[i], "TxDeferred");
    592 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    593 		    NULL, ee->evcntname[i], "TxTotalCollision");
    594 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    595 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    596 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    597 		    NULL, ee->evcntname[i], "TxSingleCollision");
    598 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    599 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    600 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    601 		    NULL, ee->evcntname[i], "TxDropPkts");
    602 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    603 		    NULL, ee->evcntname[i], "RxDropPkts");
    604 	}
    605 #endif
    606 	return;
    607 
    608  fail_5:
    609 	for (i = 0; i < KSE_NRXDESC; i++) {
    610 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    611 			bus_dmamap_destroy(sc->sc_dmat,
    612 			    sc->sc_rxsoft[i].rxs_dmamap);
    613 	}
    614  fail_4:
    615 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    616 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    617 			bus_dmamap_destroy(sc->sc_dmat,
    618 			    sc->sc_txsoft[i].txs_dmamap);
    619 	}
    620 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    621  fail_3:
    622 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    623  fail_2:
    624 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    625 	    sizeof(struct kse_control_data));
    626  fail_1:
    627 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    628  fail_0:
    629 	return;
    630 }
    631 
    632 static int
    633 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    634 {
    635 	struct kse_softc *sc = ifp->if_softc;
    636 	struct ifreq *ifr = (struct ifreq *)data;
    637 	int s, error;
    638 
    639 	s = splnet();
    640 
    641 	switch (cmd) {
    642 	case SIOCSIFMEDIA:
    643 	case SIOCGIFMEDIA:
    644 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    645 		break;
    646 
    647 	default:
    648 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    649 			break;
    650 
    651 		error = 0;
    652 
    653 		if (cmd == SIOCSIFCAP)
    654 			error = (*ifp->if_init)(ifp);
    655 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    656 			;
    657 		else if (ifp->if_flags & IFF_RUNNING) {
    658 			/*
    659 			 * Multicast list has changed; set the hardware filter
    660 			 * accordingly.
    661 			 */
    662 			kse_set_filter(sc);
    663 		}
    664 		break;
    665 	}
    666 
    667 	kse_start(ifp);
    668 
    669 	splx(s);
    670 	return error;
    671 }
    672 
    673 static int
    674 kse_init(struct ifnet *ifp)
    675 {
    676 	struct kse_softc *sc = ifp->if_softc;
    677 	uint32_t paddr;
    678 	int i, error = 0;
    679 
    680 	/* cancel pending I/O */
    681 	kse_stop(ifp, 0);
    682 
    683 	/* reset all registers but PCI configuration */
    684 	kse_reset(sc);
    685 
    686 	/* craft Tx descriptor ring */
    687 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    688 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    689 		sc->sc_txdescs[i].t3 = paddr;
    690 		paddr += sizeof(struct tdes);
    691 	}
    692 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    693 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    694 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    695 	sc->sc_txfree = KSE_NTXDESC;
    696 	sc->sc_txnext = 0;
    697 
    698 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    699 		sc->sc_txsoft[i].txs_mbuf = NULL;
    700 	sc->sc_txsfree = KSE_TXQUEUELEN;
    701 	sc->sc_txsnext = 0;
    702 	sc->sc_txsdirty = 0;
    703 
    704 	/* craft Rx descriptor ring */
    705 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    706 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    707 		sc->sc_rxdescs[i].r3 = paddr;
    708 		paddr += sizeof(struct rdes);
    709 	}
    710 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    711 	for (i = 0; i < KSE_NRXDESC; i++) {
    712 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    713 			if ((error = add_rxbuf(sc, i)) != 0) {
    714 				printf("%s: unable to allocate or map rx "
    715 				    "buffer %d, error = %d\n",
    716 				     device_xname(&sc->sc_dev), i, error);
    717 				rxdrain(sc);
    718 				goto out;
    719 			}
    720 		}
    721 		else
    722 			KSE_INIT_RXDESC(sc, i);
    723 	}
    724 	sc->sc_rxptr = 0;
    725 
    726 	/* hand Tx/Rx rings to HW */
    727 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    728 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    729 
    730 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    731 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    732 	if (ifp->if_flags & IFF_PROMISC)
    733 		sc->sc_rxc |= RXC_RA;
    734 	if (ifp->if_flags & IFF_BROADCAST)
    735 		sc->sc_rxc |= RXC_RB;
    736 	sc->sc_t1csum = sc->sc_mcsum = 0;
    737 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    738 		sc->sc_rxc |= RXC_ICC;
    739 		sc->sc_mcsum |= M_CSUM_IPv4;
    740 	}
    741 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    742 		sc->sc_txc |= TXC_ICG;
    743 		sc->sc_t1csum |= T1_IPCKG;
    744 	}
    745 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    746 		sc->sc_rxc |= RXC_TCC;
    747 		sc->sc_mcsum |= M_CSUM_TCPv4;
    748 	}
    749 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    750 		sc->sc_txc |= TXC_TCG;
    751 		sc->sc_t1csum |= T1_TCPCKG;
    752 	}
    753 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    754 		sc->sc_rxc |= RXC_UCC;
    755 		sc->sc_mcsum |= M_CSUM_UDPv4;
    756 	}
    757 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    758 		sc->sc_txc |= TXC_UCG;
    759 		sc->sc_t1csum |= T1_UDPCKG;
    760 	}
    761 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    762 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    763 
    764 	/* build multicast hash filter if necessary */
    765 	kse_set_filter(sc);
    766 
    767 	/* set current media */
    768 	(void)ifmedia_upd(ifp);
    769 
    770 	/* enable transmitter and receiver */
    771 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    772 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    773 	CSR_WRITE_4(sc, MDRSC, 1);
    774 
    775 	/* enable interrupts */
    776 	sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
    777 	if (sc->sc_chip == 0x8841)
    778 		sc->sc_inten |= INT_DMLCS;
    779 	CSR_WRITE_4(sc, INTST, ~0);
    780 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    781 
    782 	ifp->if_flags |= IFF_RUNNING;
    783 	ifp->if_flags &= ~IFF_OACTIVE;
    784 
    785 	if (sc->sc_chip == 0x8841) {
    786 		/* start one second timer */
    787 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    788 	}
    789 #ifdef KSE_EVENT_COUNTERS
    790 	/* start statistics gather 1 minute timer */
    791 	zerostats(sc);
    792 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
    793 #endif
    794 
    795  out:
    796 	if (error) {
    797 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    798 		ifp->if_timer = 0;
    799 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
    800 	}
    801 	return error;
    802 }
    803 
    804 static void
    805 kse_stop(struct ifnet *ifp, int disable)
    806 {
    807 	struct kse_softc *sc = ifp->if_softc;
    808 	struct kse_txsoft *txs;
    809 	int i;
    810 
    811 	if (sc->sc_chip == 0x8841)
    812 		callout_stop(&sc->sc_callout);
    813 	callout_stop(&sc->sc_stat_ch);
    814 
    815 	sc->sc_txc &= ~TXC_TEN;
    816 	sc->sc_rxc &= ~RXC_REN;
    817 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    818 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    819 
    820 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    821 		txs = &sc->sc_txsoft[i];
    822 		if (txs->txs_mbuf != NULL) {
    823 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    824 			m_freem(txs->txs_mbuf);
    825 			txs->txs_mbuf = NULL;
    826 		}
    827 	}
    828 
    829 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    830 	ifp->if_timer = 0;
    831 
    832 	if (disable)
    833 		rxdrain(sc);
    834 }
    835 
    836 static void
    837 kse_reset(struct kse_softc *sc)
    838 {
    839 
    840 	CSR_WRITE_2(sc, GRR, 1);
    841 	delay(1000); /* PDF does not mention the delay amount */
    842 	CSR_WRITE_2(sc, GRR, 0);
    843 
    844 	CSR_WRITE_2(sc, CIDR, 1);
    845 }
    846 
    847 static void
    848 kse_watchdog(struct ifnet *ifp)
    849 {
    850 	struct kse_softc *sc = ifp->if_softc;
    851 
    852 	/*
    853 	 * Since we're not interrupting every packet, sweep
    854 	 * up before we report an error.
    855 	 */
    856 	txreap(sc);
    857 
    858 	if (sc->sc_txfree != KSE_NTXDESC) {
    859 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    860 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
    861 		    sc->sc_txnext);
    862 		ifp->if_oerrors++;
    863 
    864 		/* Reset the interface. */
    865 		kse_init(ifp);
    866 	}
    867 	else if (ifp->if_flags & IFF_DEBUG)
    868 		printf("%s: recovered from device timeout\n",
    869 		    device_xname(&sc->sc_dev));
    870 
    871 	/* Try to get more packets going. */
    872 	kse_start(ifp);
    873 }
    874 
    875 static void
    876 kse_start(struct ifnet *ifp)
    877 {
    878 	struct kse_softc *sc = ifp->if_softc;
    879 	struct mbuf *m0, *m;
    880 	struct kse_txsoft *txs;
    881 	bus_dmamap_t dmamap;
    882 	int error, nexttx, lasttx, ofree, seg;
    883 	uint32_t tdes0;
    884 
    885 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    886 		return;
    887 
    888 	/*
    889 	 * Remember the previous number of free descriptors.
    890 	 */
    891 	ofree = sc->sc_txfree;
    892 
    893 	/*
    894 	 * Loop through the send queue, setting up transmit descriptors
    895 	 * until we drain the queue, or use up all available transmit
    896 	 * descriptors.
    897 	 */
    898 	for (;;) {
    899 		IFQ_POLL(&ifp->if_snd, m0);
    900 		if (m0 == NULL)
    901 			break;
    902 
    903 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    904 			txreap(sc);
    905 			if (sc->sc_txsfree == 0)
    906 				break;
    907 		}
    908 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    909 		dmamap = txs->txs_dmamap;
    910 
    911 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    912 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    913 		if (error) {
    914 			if (error == EFBIG) {
    915 				printf("%s: Tx packet consumes too many "
    916 				    "DMA segments, dropping...\n",
    917 				    device_xname(&sc->sc_dev));
    918 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    919 				    m_freem(m0);
    920 				    continue;
    921 			}
    922 			/* Short on resources, just stop for now. */
    923 			break;
    924 		}
    925 
    926 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    927 			/*
    928 			 * Not enough free descriptors to transmit this
    929 			 * packet.  We haven't committed anything yet,
    930 			 * so just unload the DMA map, put the packet
    931 			 * back on the queue, and punt.	 Notify the upper
    932 			 * layer that there are not more slots left.
    933 			 */
    934 			ifp->if_flags |= IFF_OACTIVE;
    935 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    936 			break;
    937 		}
    938 
    939 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    940 
    941 		/*
    942 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    943 		 */
    944 
    945 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    946 		    BUS_DMASYNC_PREWRITE);
    947 
    948 		lasttx = -1; tdes0 = 0;
    949 		for (nexttx = sc->sc_txnext, seg = 0;
    950 		     seg < dmamap->dm_nsegs;
    951 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    952 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    953 			/*
    954 			 * If this is the first descriptor we're
    955 			 * enqueueing, don't set the OWN bit just
    956 			 * yet.	 That could cause a race condition.
    957 			 * We'll do it below.
    958 			 */
    959 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    960 			tdes->t1 = sc->sc_t1csum
    961 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    962 			tdes->t0 = tdes0;
    963 			tdes0 |= T0_OWN;
    964 			lasttx = nexttx;
    965 		}
    966 
    967 		/*
    968 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    969 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    970 		 * time and NFS stops to proceed until kse_watchdog()
    971 		 * calls txreap() to reclaim the unack'ed mbuf.
    972 		 * It's painful to traverse every mbuf chain to determine
    973 		 * whether someone is waiting for Tx completion.
    974 		 */
    975 		m = m0;
    976 		do {
    977 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    978 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    979 				break;
    980 			}
    981 		} while ((m = m->m_next) != NULL);
    982 
    983 		/* write last T0_OWN bit of the 1st segment */
    984 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    985 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    986 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
    987 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    988 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    989 
    990 		/* tell DMA start transmit */
    991 		CSR_WRITE_4(sc, MDTSC, 1);
    992 
    993 		txs->txs_mbuf = m0;
    994 		txs->txs_firstdesc = sc->sc_txnext;
    995 		txs->txs_lastdesc = lasttx;
    996 		txs->txs_ndesc = dmamap->dm_nsegs;
    997 
    998 		sc->sc_txfree -= txs->txs_ndesc;
    999 		sc->sc_txnext = nexttx;
   1000 		sc->sc_txsfree--;
   1001 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
   1002 #if NBPFILTER > 0
   1003 		/*
   1004 		 * Pass the packet to any BPF listeners.
   1005 		 */
   1006 		if (ifp->if_bpf)
   1007 			bpf_mtap(ifp->if_bpf, m0);
   1008 #endif /* NBPFILTER > 0 */
   1009 	}
   1010 
   1011 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1012 		/* No more slots left; notify upper layer. */
   1013 		ifp->if_flags |= IFF_OACTIVE;
   1014 	}
   1015 	if (sc->sc_txfree != ofree) {
   1016 		/* Set a watchdog timer in case the chip flakes out. */
   1017 		ifp->if_timer = 5;
   1018 	}
   1019 }
   1020 
   1021 static void
   1022 kse_set_filter(struct kse_softc *sc)
   1023 {
   1024 	struct ether_multistep step;
   1025 	struct ether_multi *enm;
   1026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1027 	uint32_t h, hashes[2];
   1028 
   1029 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1030 	ifp->if_flags &= ~IFF_ALLMULTI;
   1031 	if (ifp->if_flags & IFF_PROMISC)
   1032 		return;
   1033 
   1034 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1035 	if (enm == NULL)
   1036 		return;
   1037 	hashes[0] = hashes[1] = 0;
   1038 	do {
   1039 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1040 			/*
   1041 			 * We must listen to a range of multicast addresses.
   1042 			 * For now, just accept all multicasts, rather than
   1043 			 * trying to set only those filter bits needed to match
   1044 			 * the range.  (At this time, the only use of address
   1045 			 * ranges is for IP multicast routing, for which the
   1046 			 * range is big enough to require all bits set.)
   1047 			 */
   1048 			goto allmulti;
   1049 		}
   1050 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1051 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1052 		ETHER_NEXT_MULTI(step, enm);
   1053 	} while (enm != NULL);
   1054 	sc->sc_rxc |= RXC_MHTE;
   1055 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1056 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1057 	return;
   1058  allmulti:
   1059 	sc->sc_rxc |= RXC_RM;
   1060 	ifp->if_flags |= IFF_ALLMULTI;
   1061 }
   1062 
   1063 static int
   1064 add_rxbuf(struct kse_softc *sc, int idx)
   1065 {
   1066 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1067 	struct mbuf *m;
   1068 	int error;
   1069 
   1070 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1071 	if (m == NULL)
   1072 		return ENOBUFS;
   1073 
   1074 	MCLGET(m, M_DONTWAIT);
   1075 	if ((m->m_flags & M_EXT) == 0) {
   1076 		m_freem(m);
   1077 		return ENOBUFS;
   1078 	}
   1079 
   1080 	if (rxs->rxs_mbuf != NULL)
   1081 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1082 
   1083 	rxs->rxs_mbuf = m;
   1084 
   1085 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1086 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1087 	if (error) {
   1088 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1089 		    device_xname(&sc->sc_dev), idx, error);
   1090 		panic("kse_add_rxbuf");
   1091 	}
   1092 
   1093 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1094 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1095 
   1096 	KSE_INIT_RXDESC(sc, idx);
   1097 
   1098 	return 0;
   1099 }
   1100 
   1101 static void
   1102 rxdrain(struct kse_softc *sc)
   1103 {
   1104 	struct kse_rxsoft *rxs;
   1105 	int i;
   1106 
   1107 	for (i = 0; i < KSE_NRXDESC; i++) {
   1108 		rxs = &sc->sc_rxsoft[i];
   1109 		if (rxs->rxs_mbuf != NULL) {
   1110 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1111 			m_freem(rxs->rxs_mbuf);
   1112 			rxs->rxs_mbuf = NULL;
   1113 		}
   1114 	}
   1115 }
   1116 
   1117 static int
   1118 kse_intr(void *arg)
   1119 {
   1120 	struct kse_softc *sc = arg;
   1121 	uint32_t isr;
   1122 
   1123 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1124 		return 0;
   1125 
   1126 	if (isr & INT_DMRS)
   1127 		rxintr(sc);
   1128 	if (isr & INT_DMTS)
   1129 		txreap(sc);
   1130 	if (isr & INT_DMLCS)
   1131 		lnkchg(sc);
   1132 	if (isr & INT_DMRBUS)
   1133 		printf("%s: Rx descriptor full\n", device_xname(&sc->sc_dev));
   1134 
   1135 	CSR_WRITE_4(sc, INTST, isr);
   1136 	return 1;
   1137 }
   1138 
   1139 static void
   1140 rxintr(struct kse_softc *sc)
   1141 {
   1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1143 	struct kse_rxsoft *rxs;
   1144 	struct mbuf *m;
   1145 	uint32_t rxstat;
   1146 	int i, len;
   1147 
   1148 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1149 		rxs = &sc->sc_rxsoft[i];
   1150 
   1151 		KSE_CDRXSYNC(sc, i,
   1152 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1153 
   1154 		rxstat = sc->sc_rxdescs[i].r0;
   1155 
   1156 		if (rxstat & R0_OWN) /* desc is left empty */
   1157 			break;
   1158 
   1159 		/* R0_FS|R0_LS must have been marked for this desc */
   1160 
   1161 		if (rxstat & R0_ES) {
   1162 			ifp->if_ierrors++;
   1163 #define PRINTERR(bit, str)						\
   1164 			if (rxstat & (bit))				\
   1165 				printf("%s: receive error: %s\n",	\
   1166 				    device_xname(&sc->sc_dev), str)
   1167 			PRINTERR(R0_TL, "frame too long");
   1168 			PRINTERR(R0_RF, "runt frame");
   1169 			PRINTERR(R0_CE, "bad FCS");
   1170 #undef PRINTERR
   1171 			KSE_INIT_RXDESC(sc, i);
   1172 			continue;
   1173 		}
   1174 
   1175 		/* HW errata; frame might be too small or too large */
   1176 
   1177 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1178 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1179 
   1180 		len = rxstat & R0_FL_MASK;
   1181 		len -= ETHER_CRC_LEN;	/* trim CRC off */
   1182 		m = rxs->rxs_mbuf;
   1183 
   1184 		if (add_rxbuf(sc, i) != 0) {
   1185 			ifp->if_ierrors++;
   1186 			KSE_INIT_RXDESC(sc, i);
   1187 			bus_dmamap_sync(sc->sc_dmat,
   1188 			    rxs->rxs_dmamap, 0,
   1189 			    rxs->rxs_dmamap->dm_mapsize,
   1190 			    BUS_DMASYNC_PREREAD);
   1191 			continue;
   1192 		}
   1193 
   1194 		ifp->if_ipackets++;
   1195 		m->m_pkthdr.rcvif = ifp;
   1196 		m->m_pkthdr.len = m->m_len = len;
   1197 
   1198 		if (sc->sc_mcsum) {
   1199 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1200 			if (rxstat & R0_IPE)
   1201 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1202 			if (rxstat & (R0_TCPE | R0_UDPE))
   1203 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1204 		}
   1205 #if NBPFILTER > 0
   1206 		if (ifp->if_bpf)
   1207 			bpf_mtap(ifp->if_bpf, m);
   1208 #endif /* NBPFILTER > 0 */
   1209 		(*ifp->if_input)(ifp, m);
   1210 #ifdef KSEDIAGNOSTIC
   1211 		if (kse_monitor_rxintr > 0) {
   1212 			printf("m stat %x data %p len %d\n",
   1213 			    rxstat, m->m_data, m->m_len);
   1214 		}
   1215 #endif
   1216 	}
   1217 	sc->sc_rxptr = i;
   1218 }
   1219 
   1220 static void
   1221 txreap(struct kse_softc *sc)
   1222 {
   1223 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1224 	struct kse_txsoft *txs;
   1225 	uint32_t txstat;
   1226 	int i;
   1227 
   1228 	ifp->if_flags &= ~IFF_OACTIVE;
   1229 
   1230 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1231 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1232 		txs = &sc->sc_txsoft[i];
   1233 
   1234 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1235 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1236 
   1237 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1238 
   1239 		if (txstat & T0_OWN) /* desc is still in use */
   1240 			break;
   1241 
   1242 		/* there is no way to tell transmission status per frame */
   1243 
   1244 		ifp->if_opackets++;
   1245 
   1246 		sc->sc_txfree += txs->txs_ndesc;
   1247 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1248 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1249 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1250 		m_freem(txs->txs_mbuf);
   1251 		txs->txs_mbuf = NULL;
   1252 	}
   1253 	sc->sc_txsdirty = i;
   1254 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1255 		ifp->if_timer = 0;
   1256 }
   1257 
   1258 static void
   1259 lnkchg(struct kse_softc *sc)
   1260 {
   1261 	struct ifmediareq ifmr;
   1262 
   1263 #if 0 /* rambling link status */
   1264 	printf("%s: link %s\n", device_xname(&sc->sc_dev),
   1265 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
   1266 #endif
   1267 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1268 }
   1269 
   1270 static int
   1271 ifmedia_upd(struct ifnet *ifp)
   1272 {
   1273 	struct kse_softc *sc = ifp->if_softc;
   1274 	struct ifmedia *ifm = &sc->sc_media;
   1275 	uint16_t ctl;
   1276 
   1277 	ctl = 0;
   1278 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1279 		ctl |= (1U << 13); /* restart AN */
   1280 		ctl |= (1U << 7);  /* enable AN */
   1281 		ctl |= (1U << 4);  /* advertise flow control pause */
   1282 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
   1283 	}
   1284 	else {
   1285 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
   1286 			ctl |= (1U << 6);
   1287 		if (ifm->ifm_media & IFM_FDX)
   1288 			ctl |= (1U << 5);
   1289 	}
   1290 	CSR_WRITE_2(sc, P1CR4, ctl);
   1291 
   1292 	sc->sc_media_active = IFM_NONE;
   1293 	sc->sc_media_status = IFM_AVALID;
   1294 
   1295 	return 0;
   1296 }
   1297 
   1298 static void
   1299 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1300 {
   1301 	struct kse_softc *sc = ifp->if_softc;
   1302 	struct ifmedia *ifm = &sc->sc_media;
   1303 	uint16_t ctl, sts, result;
   1304 
   1305 	ifmr->ifm_status = IFM_AVALID;
   1306 	ifmr->ifm_active = IFM_ETHER;
   1307 
   1308 	ctl = CSR_READ_2(sc, P1CR4);
   1309 	sts = CSR_READ_2(sc, P1SR);
   1310 	if ((sts & (1U << 5)) == 0) {
   1311 		ifmr->ifm_active |= IFM_NONE;
   1312 		goto out; /* link is down */
   1313 	}
   1314 	ifmr->ifm_status |= IFM_ACTIVE;
   1315 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1316 		if ((sts & (1U << 6)) == 0) {
   1317 			ifmr->ifm_active |= IFM_NONE;
   1318 			goto out; /* negotiation in progress */
   1319 		}
   1320 		result = ctl & sts & 017;
   1321 		if (result & (1U << 3))
   1322 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1323 		else if (result & (1U << 2))
   1324 			ifmr->ifm_active |= IFM_100_TX;
   1325 		else if (result & (1U << 1))
   1326 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
   1327 		else if (result & (1U << 0))
   1328 			ifmr->ifm_active |= IFM_10_T;
   1329 		else
   1330 			ifmr->ifm_active |= IFM_NONE;
   1331 		if (ctl & (1U << 4))
   1332 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1333 		if (sts & (1U << 4))
   1334 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1335 	}
   1336 	else {
   1337 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
   1338 		if (sts & (1U << 9))
   1339 			ifmr->ifm_active |= IFM_FDX;
   1340 		if (sts & (1U << 12))
   1341 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1342 		if (sts & (1U << 11))
   1343 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1344 	}
   1345 
   1346   out:
   1347 	sc->sc_media_status = ifmr->ifm_status;
   1348 	sc->sc_media_active = ifmr->ifm_active;
   1349 }
   1350 
   1351 static void
   1352 phy_tick(void *arg)
   1353 {
   1354 	struct kse_softc *sc = arg;
   1355 	struct ifmediareq ifmr;
   1356 	int s;
   1357 
   1358 	s = splnet();
   1359 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1360 	splx(s);
   1361 
   1362 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1363 }
   1364 
   1365 static int
   1366 ifmedia2_upd(struct ifnet *ifp)
   1367 {
   1368 	struct kse_softc *sc = ifp->if_softc;
   1369 
   1370 	sc->sc_media_status = IFM_AVALID;
   1371 	sc->sc_media_active = IFM_NONE;
   1372 	return 0;
   1373 }
   1374 
   1375 static void
   1376 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1377 {
   1378 	struct kse_softc *sc = ifp->if_softc;
   1379 	int p1sts, p2sts;
   1380 
   1381 	ifmr->ifm_status = IFM_AVALID;
   1382 	ifmr->ifm_active = IFM_ETHER;
   1383 	p1sts = CSR_READ_2(sc, P1SR);
   1384 	p2sts = CSR_READ_2(sc, P2SR);
   1385 	if (((p1sts | p2sts) & (1U << 5)) == 0)
   1386 		ifmr->ifm_active |= IFM_NONE;
   1387 	else {
   1388 		ifmr->ifm_status |= IFM_ACTIVE;
   1389 		ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1390 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
   1391 	}
   1392 	sc->sc_media_status = ifmr->ifm_status;
   1393 	sc->sc_media_active = ifmr->ifm_active;
   1394 }
   1395 
   1396 #ifdef KSE_EVENT_COUNTERS
   1397 static void
   1398 stat_tick(void *arg)
   1399 {
   1400 	struct kse_softc *sc = arg;
   1401 	struct ksext *ee = &sc->sc_ext;
   1402 	int nport, p, i, val;
   1403 
   1404 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1405 	for (p = 0; p < nport; p++) {
   1406 		for (i = 0; i < 32; i++) {
   1407 			val = 0x1c00 | (p * 0x20 + i);
   1408 			CSR_WRITE_2(sc, IACR, val);
   1409 			do {
   1410 				val = CSR_READ_2(sc, IADR5) << 16;
   1411 			} while ((val & (1U << 30)) == 0);
   1412 			if (val & (1U << 31)) {
   1413 				(void)CSR_READ_2(sc, IADR4);
   1414 				val = 0x3fffffff; /* has made overflow */
   1415 			}
   1416 			else {
   1417 				val &= 0x3fff0000;		/* 29:16 */
   1418 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1419 			}
   1420 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1421 		}
   1422 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1423 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1424 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1425 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1426 	}
   1427 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
   1428 }
   1429 
   1430 static void
   1431 zerostats(struct kse_softc *sc)
   1432 {
   1433 	struct ksext *ee = &sc->sc_ext;
   1434 	int nport, p, i, val;
   1435 
   1436 	/* make sure all the HW counters get zero */
   1437 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1438 	for (p = 0; p < nport; p++) {
   1439 		for (i = 0; i < 31; i++) {
   1440 			val = 0x1c00 | (p * 0x20 + i);
   1441 			CSR_WRITE_2(sc, IACR, val);
   1442 			do {
   1443 				val = CSR_READ_2(sc, IADR5) << 16;
   1444 			} while ((val & (1U << 30)) == 0);
   1445 			(void)CSR_READ_2(sc, IADR4);
   1446 			ee->pev[p][i].ev_count = 0;
   1447 		}
   1448 	}
   1449 }
   1450 #endif
   1451