if_kse.c revision 1.22 1 /* $NetBSD: if_kse.c,v 1.22 2010/04/05 07:20:26 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.22 2010/04/05 07:20:26 joerg Exp $");
34
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55
56 #include <net/bpf.h>
57
58 #include <dev/pci/pcivar.h>
59 #include <dev/pci/pcireg.h>
60 #include <dev/pci/pcidevs.h>
61
62 #define CSR_READ_4(sc, off) \
63 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
64 #define CSR_WRITE_4(sc, off, val) \
65 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
66 #define CSR_READ_2(sc, off) \
67 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
68 #define CSR_WRITE_2(sc, off, val) \
69 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
70
71 #define MDTXC 0x000 /* DMA transmit control */
72 #define MDRXC 0x004 /* DMA receive control */
73 #define MDTSC 0x008 /* DMA transmit start */
74 #define MDRSC 0x00c /* DMA receive start */
75 #define TDLB 0x010 /* transmit descriptor list base */
76 #define RDLB 0x014 /* receive descriptor list base */
77 #define MTR0 0x020 /* multicast table 31:0 */
78 #define MTR1 0x024 /* multicast table 63:32 */
79 #define INTEN 0x028 /* interrupt enable */
80 #define INTST 0x02c /* interrupt status */
81 #define MARL 0x200 /* MAC address low */
82 #define MARM 0x202 /* MAC address middle */
83 #define MARH 0x204 /* MAC address high */
84 #define GRR 0x216 /* global reset */
85 #define CIDR 0x400 /* chip ID and enable */
86 #define CGCR 0x40a /* chip global control */
87 #define IACR 0x4a0 /* indirect access control */
88 #define IADR1 0x4a2 /* indirect access data 66:63 */
89 #define IADR2 0x4a4 /* indirect access data 47:32 */
90 #define IADR3 0x4a6 /* indirect access data 63:48 */
91 #define IADR4 0x4a8 /* indirect access data 15:0 */
92 #define IADR5 0x4aa /* indirect access data 31:16 */
93 #define P1CR4 0x512 /* port 1 control 4 */
94 #define P1SR 0x514 /* port 1 status */
95 #define P2CR4 0x532 /* port 2 control 4 */
96 #define P2SR 0x534 /* port 2 status */
97
98 #define TXC_BS_MSK 0x3f000000 /* burst size */
99 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
100 #define TXC_UCG (1U<<18) /* generate UDP checksum */
101 #define TXC_TCG (1U<<17) /* generate TCP checksum */
102 #define TXC_ICG (1U<<16) /* generate IP checksum */
103 #define TXC_FCE (1U<<9) /* enable flowcontrol */
104 #define TXC_EP (1U<<2) /* enable automatic padding */
105 #define TXC_AC (1U<<1) /* add CRC to frame */
106 #define TXC_TEN (1) /* enable DMA to run */
107
108 #define RXC_BS_MSK 0x3f000000 /* burst size */
109 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
110 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
111 #define RXC_UCC (1U<<18) /* run UDP checksum */
112 #define RXC_TCC (1U<<17) /* run TDP checksum */
113 #define RXC_ICC (1U<<16) /* run IP checksum */
114 #define RXC_FCE (1U<<9) /* enable flowcontrol */
115 #define RXC_RB (1U<<6) /* receive broadcast frame */
116 #define RXC_RM (1U<<5) /* receive multicast frame */
117 #define RXC_RU (1U<<4) /* receive unicast frame */
118 #define RXC_RE (1U<<3) /* accept error frame */
119 #define RXC_RA (1U<<2) /* receive all frame */
120 #define RXC_MHTE (1U<<1) /* use multicast hash table */
121 #define RXC_REN (1) /* enable DMA to run */
122
123 #define INT_DMLCS (1U<<31) /* link status change */
124 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
125 #define INT_DMRS (1U<<29) /* frame was received */
126 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
127
128 #define T0_OWN (1U<<31) /* desc is ready to Tx */
129
130 #define R0_OWN (1U<<31) /* desc is empty */
131 #define R0_FS (1U<<30) /* first segment of frame */
132 #define R0_LS (1U<<29) /* last segment of frame */
133 #define R0_IPE (1U<<28) /* IP checksum error */
134 #define R0_TCPE (1U<<27) /* TCP checksum error */
135 #define R0_UDPE (1U<<26) /* UDP checksum error */
136 #define R0_ES (1U<<25) /* error summary */
137 #define R0_MF (1U<<24) /* multicast frame */
138 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
139 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
140 #define R0_RE (1U<<19) /* MII reported error */
141 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
142 #define R0_RF (1U<<17) /* damaged runt frame */
143 #define R0_CE (1U<<16) /* CRC error */
144 #define R0_FT (1U<<15) /* frame type */
145 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
146
147 #define T1_IC (1U<<31) /* post interrupt on complete */
148 #define T1_FS (1U<<30) /* first segment of frame */
149 #define T1_LS (1U<<29) /* last segment of frame */
150 #define T1_IPCKG (1U<<28) /* generate IP checksum */
151 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
152 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
153 #define T1_TER (1U<<25) /* end of ring */
154 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
155 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
156
157 #define R1_RER (1U<<25) /* end of ring */
158 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
159
160 #define KSE_NTXSEGS 16
161 #define KSE_TXQUEUELEN 64
162 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
163 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
164 #define KSE_NTXDESC 256
165 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
166 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
167 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
168
169 #define KSE_NRXDESC 64
170 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
171 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
172
173 struct tdes {
174 uint32_t t0, t1, t2, t3;
175 };
176
177 struct rdes {
178 uint32_t r0, r1, r2, r3;
179 };
180
181 struct kse_control_data {
182 struct tdes kcd_txdescs[KSE_NTXDESC];
183 struct rdes kcd_rxdescs[KSE_NRXDESC];
184 };
185 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
186 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
187 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
188
189 struct kse_txsoft {
190 struct mbuf *txs_mbuf; /* head of our mbuf chain */
191 bus_dmamap_t txs_dmamap; /* our DMA map */
192 int txs_firstdesc; /* first descriptor in packet */
193 int txs_lastdesc; /* last descriptor in packet */
194 int txs_ndesc; /* # of descriptors used */
195 };
196
197 struct kse_rxsoft {
198 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t rxs_dmamap; /* our DMA map */
200 };
201
202 struct kse_softc {
203 struct device sc_dev; /* generic device information */
204 bus_space_tag_t sc_st; /* bus space tag */
205 bus_space_handle_t sc_sh; /* bus space handle */
206 bus_dma_tag_t sc_dmat; /* bus DMA tag */
207 struct ethercom sc_ethercom; /* Ethernet common data */
208 void *sc_ih; /* interrupt cookie */
209
210 struct ifmedia sc_media; /* ifmedia information */
211 int sc_media_status; /* PHY */
212 int sc_media_active; /* PHY */
213 callout_t sc_callout; /* MII tick callout */
214 callout_t sc_stat_ch; /* statistics counter callout */
215
216 bus_dmamap_t sc_cddmamap; /* control data DMA map */
217 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
218
219 struct kse_control_data *sc_control_data;
220 #define sc_txdescs sc_control_data->kcd_txdescs
221 #define sc_rxdescs sc_control_data->kcd_rxdescs
222
223 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
224 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
225 int sc_txfree; /* number of free Tx descriptors */
226 int sc_txnext; /* next ready Tx descriptor */
227 int sc_txsfree; /* number of free Tx jobs */
228 int sc_txsnext; /* next ready Tx job */
229 int sc_txsdirty; /* dirty Tx jobs */
230 int sc_rxptr; /* next ready Rx descriptor/descsoft */
231
232 uint32_t sc_txc, sc_rxc;
233 uint32_t sc_t1csum;
234 int sc_mcsum;
235 uint32_t sc_inten;
236
237 uint32_t sc_chip;
238 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
239 uint16_t sc_vlan[16];
240
241 #ifdef KSE_EVENT_COUNTERS
242 struct ksext {
243 char evcntname[3][8];
244 struct evcnt pev[3][34];
245 } sc_ext; /* switch statistics */
246 #endif
247 };
248
249 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
250 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
251
252 #define KSE_CDTXSYNC(sc, x, n, ops) \
253 do { \
254 int __x, __n; \
255 \
256 __x = (x); \
257 __n = (n); \
258 \
259 /* If it will wrap around, sync to the end of the ring. */ \
260 if ((__x + __n) > KSE_NTXDESC) { \
261 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
262 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
263 (KSE_NTXDESC - __x), (ops)); \
264 __n -= (KSE_NTXDESC - __x); \
265 __x = 0; \
266 } \
267 \
268 /* Now sync whatever is left. */ \
269 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
270 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
271 } while (/*CONSTCOND*/0)
272
273 #define KSE_CDRXSYNC(sc, x, ops) \
274 do { \
275 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
276 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
277 } while (/*CONSTCOND*/0)
278
279 #define KSE_INIT_RXDESC(sc, x) \
280 do { \
281 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
282 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
283 struct mbuf *__m = __rxs->rxs_mbuf; \
284 \
285 __m->m_data = __m->m_ext.ext_buf; \
286 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
287 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
288 __rxd->r0 = R0_OWN; \
289 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (/*CONSTCOND*/0)
291
292 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
293
294 #ifdef KSEDIAGNOSTIC
295 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
296 #endif
297
298 static int kse_match(device_t, cfdata_t, void *);
299 static void kse_attach(device_t, device_t, void *);
300
301 CFATTACH_DECL(kse, sizeof(struct kse_softc),
302 kse_match, kse_attach, NULL, NULL);
303
304 static int kse_ioctl(struct ifnet *, u_long, void *);
305 static void kse_start(struct ifnet *);
306 static void kse_watchdog(struct ifnet *);
307 static int kse_init(struct ifnet *);
308 static void kse_stop(struct ifnet *, int);
309 static void kse_reset(struct kse_softc *);
310 static void kse_set_filter(struct kse_softc *);
311 static int add_rxbuf(struct kse_softc *, int);
312 static void rxdrain(struct kse_softc *);
313 static int kse_intr(void *);
314 static void rxintr(struct kse_softc *);
315 static void txreap(struct kse_softc *);
316 static void lnkchg(struct kse_softc *);
317 static int ifmedia_upd(struct ifnet *);
318 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
319 static void phy_tick(void *);
320 static int ifmedia2_upd(struct ifnet *);
321 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
322 #ifdef KSE_EVENT_COUNTERS
323 static void stat_tick(void *);
324 static void zerostats(struct kse_softc *);
325 #endif
326
327 static int
328 kse_match(device_t parent, cfdata_t match, void *aux)
329 {
330 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
331
332 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
333 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
334 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
335 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
336 return 1;
337
338 return 0;
339 }
340
341 static void
342 kse_attach(device_t parent, device_t self, void *aux)
343 {
344 struct kse_softc *sc = device_private(self);
345 struct pci_attach_args *pa = aux;
346 pci_chipset_tag_t pc = pa->pa_pc;
347 pci_intr_handle_t ih;
348 const char *intrstr;
349 struct ifnet *ifp;
350 struct ifmedia *ifm;
351 uint8_t enaddr[ETHER_ADDR_LEN];
352 bus_dma_segment_t seg;
353 int i, p, error, nseg;
354 pcireg_t pmode;
355 int pmreg;
356
357 if (pci_mapreg_map(pa, 0x10,
358 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
359 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
360 printf(": unable to map device registers\n");
361 return;
362 }
363
364 sc->sc_dmat = pa->pa_dmat;
365
366 /* Make sure bus mastering is enabled. */
367 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
368 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
369 PCI_COMMAND_MASTER_ENABLE);
370
371 /* Get it out of power save mode, if needed. */
372 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
373 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
374 PCI_PMCSR_STATE_MASK;
375 if (pmode == PCI_PMCSR_STATE_D3) {
376 /*
377 * The card has lost all configuration data in
378 * this state, so punt.
379 */
380 printf("%s: unable to wake from power state D3\n",
381 device_xname(&sc->sc_dev));
382 return;
383 }
384 if (pmode != PCI_PMCSR_STATE_D0) {
385 printf("%s: waking up from power date D%d\n",
386 device_xname(&sc->sc_dev), pmode);
387 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
388 PCI_PMCSR_STATE_D0);
389 }
390 }
391
392 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
393 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
394 sc->sc_chip, PCI_REVISION(pa->pa_class));
395
396 /*
397 * Read the Ethernet address from the EEPROM.
398 */
399 i = CSR_READ_2(sc, MARL);
400 enaddr[5] = i; enaddr[4] = i >> 8;
401 i = CSR_READ_2(sc, MARM);
402 enaddr[3] = i; enaddr[2] = i >> 8;
403 i = CSR_READ_2(sc, MARH);
404 enaddr[1] = i; enaddr[0] = i >> 8;
405 printf("%s: Ethernet address: %s\n",
406 device_xname(&sc->sc_dev), ether_sprintf(enaddr));
407
408 /*
409 * Enable chip function.
410 */
411 CSR_WRITE_2(sc, CIDR, 1);
412
413 /*
414 * Map and establish our interrupt.
415 */
416 if (pci_intr_map(pa, &ih)) {
417 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
418 return;
419 }
420 intrstr = pci_intr_string(pc, ih);
421 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
422 if (sc->sc_ih == NULL) {
423 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
424 if (intrstr != NULL)
425 aprint_error(" at %s", intrstr);
426 aprint_error("\n");
427 return;
428 }
429 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
430
431 /*
432 * Allocate the control data structures, and create and load the
433 * DMA map for it.
434 */
435 error = bus_dmamem_alloc(sc->sc_dmat,
436 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
437 if (error != 0) {
438 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n", error);
439 goto fail_0;
440 }
441 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
442 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
443 BUS_DMA_COHERENT);
444 if (error != 0) {
445 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
446 goto fail_1;
447 }
448 error = bus_dmamap_create(sc->sc_dmat,
449 sizeof(struct kse_control_data), 1,
450 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
451 if (error != 0) {
452 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
453 "error = %d\n", error);
454 goto fail_2;
455 }
456 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
457 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
458 if (error != 0) {
459 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
460 error);
461 goto fail_3;
462 }
463 for (i = 0; i < KSE_TXQUEUELEN; i++) {
464 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
465 KSE_NTXSEGS, MCLBYTES, 0, 0,
466 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
467 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
468 "error = %d\n", i, error);
469 goto fail_4;
470 }
471 }
472 for (i = 0; i < KSE_NRXDESC; i++) {
473 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
474 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
475 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
476 "error = %d\n", i, error);
477 goto fail_5;
478 }
479 sc->sc_rxsoft[i].rxs_mbuf = NULL;
480 }
481
482 callout_init(&sc->sc_callout, 0);
483 callout_init(&sc->sc_stat_ch, 0);
484
485 ifm = &sc->sc_media;
486 if (sc->sc_chip == 0x8841) {
487 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
488 ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
489 ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
490 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
491 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
492 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
493 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
494 }
495 else {
496 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
497 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
498 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
499 }
500
501 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
502 device_xname(&sc->sc_dev));
503
504 ifp = &sc->sc_ethercom.ec_if;
505 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
506 ifp->if_softc = sc;
507 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
508 ifp->if_ioctl = kse_ioctl;
509 ifp->if_start = kse_start;
510 ifp->if_watchdog = kse_watchdog;
511 ifp->if_init = kse_init;
512 ifp->if_stop = kse_stop;
513 IFQ_SET_READY(&ifp->if_snd);
514
515 /*
516 * KSZ8842 can handle 802.1Q VLAN-sized frames,
517 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
518 */
519 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
520 ifp->if_capabilities |=
521 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
522 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
523 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
524
525 if_attach(ifp);
526 ether_ifattach(ifp, enaddr);
527
528 p = (sc->sc_chip == 0x8842) ? 3 : 1;
529 #ifdef KSE_EVENT_COUNTERS
530 for (i = 0; i < p; i++) {
531 struct ksext *ee = &sc->sc_ext;
532 sprintf(ee->evcntname[i], "%s.%d", device_xname(&sc->sc_dev), i+1);
533 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
534 NULL, ee->evcntname[i], "RxLoPriotyByte");
535 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
536 NULL, ee->evcntname[i], "RxHiPriotyByte");
537 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
538 NULL, ee->evcntname[i], "RxUndersizePkt");
539 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
540 NULL, ee->evcntname[i], "RxFragments");
541 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
542 NULL, ee->evcntname[i], "RxOversize");
543 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
544 NULL, ee->evcntname[i], "RxJabbers");
545 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
546 NULL, ee->evcntname[i], "RxSymbolError");
547 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
548 NULL, ee->evcntname[i], "RxCRCError");
549 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
550 NULL, ee->evcntname[i], "RxAlignmentError");
551 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
552 NULL, ee->evcntname[i], "RxControl8808Pkts");
553 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
554 NULL, ee->evcntname[i], "RxPausePkts");
555 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
556 NULL, ee->evcntname[i], "RxBroadcast");
557 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
558 NULL, ee->evcntname[i], "RxMulticast");
559 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
560 NULL, ee->evcntname[i], "RxUnicast");
561 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
562 NULL, ee->evcntname[i], "Rx64Octets");
563 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
564 NULL, ee->evcntname[i], "Rx65To127Octets");
565 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
566 NULL, ee->evcntname[i], "Rx128To255Octets");
567 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
568 NULL, ee->evcntname[i], "Rx255To511Octets");
569 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
570 NULL, ee->evcntname[i], "Rx512To1023Octets");
571 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
572 NULL, ee->evcntname[i], "Rx1024To1522Octets");
573 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
574 NULL, ee->evcntname[i], "TxLoPriotyByte");
575 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
576 NULL, ee->evcntname[i], "TxHiPriotyByte");
577 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
578 NULL, ee->evcntname[i], "TxLateCollision");
579 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
580 NULL, ee->evcntname[i], "TxPausePkts");
581 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "TxBroadcastPkts");
583 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "TxMulticastPkts");
585 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "TxUnicastPkts");
587 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "TxDeferred");
589 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "TxTotalCollision");
591 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "TxExcessiveCollision");
593 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "TxSingleCollision");
595 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "TxMultipleCollision");
597 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "TxDropPkts");
599 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "RxDropPkts");
601 }
602 #endif
603 return;
604
605 fail_5:
606 for (i = 0; i < KSE_NRXDESC; i++) {
607 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
608 bus_dmamap_destroy(sc->sc_dmat,
609 sc->sc_rxsoft[i].rxs_dmamap);
610 }
611 fail_4:
612 for (i = 0; i < KSE_TXQUEUELEN; i++) {
613 if (sc->sc_txsoft[i].txs_dmamap != NULL)
614 bus_dmamap_destroy(sc->sc_dmat,
615 sc->sc_txsoft[i].txs_dmamap);
616 }
617 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
618 fail_3:
619 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
620 fail_2:
621 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
622 sizeof(struct kse_control_data));
623 fail_1:
624 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
625 fail_0:
626 return;
627 }
628
629 static int
630 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
631 {
632 struct kse_softc *sc = ifp->if_softc;
633 struct ifreq *ifr = (struct ifreq *)data;
634 int s, error;
635
636 s = splnet();
637
638 switch (cmd) {
639 case SIOCSIFMEDIA:
640 case SIOCGIFMEDIA:
641 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
642 break;
643
644 default:
645 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
646 break;
647
648 error = 0;
649
650 if (cmd == SIOCSIFCAP)
651 error = (*ifp->if_init)(ifp);
652 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
653 ;
654 else if (ifp->if_flags & IFF_RUNNING) {
655 /*
656 * Multicast list has changed; set the hardware filter
657 * accordingly.
658 */
659 kse_set_filter(sc);
660 }
661 break;
662 }
663
664 kse_start(ifp);
665
666 splx(s);
667 return error;
668 }
669
670 static int
671 kse_init(struct ifnet *ifp)
672 {
673 struct kse_softc *sc = ifp->if_softc;
674 uint32_t paddr;
675 int i, error = 0;
676
677 /* cancel pending I/O */
678 kse_stop(ifp, 0);
679
680 /* reset all registers but PCI configuration */
681 kse_reset(sc);
682
683 /* craft Tx descriptor ring */
684 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
685 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
686 sc->sc_txdescs[i].t3 = paddr;
687 paddr += sizeof(struct tdes);
688 }
689 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
690 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
691 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
692 sc->sc_txfree = KSE_NTXDESC;
693 sc->sc_txnext = 0;
694
695 for (i = 0; i < KSE_TXQUEUELEN; i++)
696 sc->sc_txsoft[i].txs_mbuf = NULL;
697 sc->sc_txsfree = KSE_TXQUEUELEN;
698 sc->sc_txsnext = 0;
699 sc->sc_txsdirty = 0;
700
701 /* craft Rx descriptor ring */
702 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
703 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
704 sc->sc_rxdescs[i].r3 = paddr;
705 paddr += sizeof(struct rdes);
706 }
707 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
708 for (i = 0; i < KSE_NRXDESC; i++) {
709 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
710 if ((error = add_rxbuf(sc, i)) != 0) {
711 printf("%s: unable to allocate or map rx "
712 "buffer %d, error = %d\n",
713 device_xname(&sc->sc_dev), i, error);
714 rxdrain(sc);
715 goto out;
716 }
717 }
718 else
719 KSE_INIT_RXDESC(sc, i);
720 }
721 sc->sc_rxptr = 0;
722
723 /* hand Tx/Rx rings to HW */
724 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
725 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
726
727 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
728 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
729 if (ifp->if_flags & IFF_PROMISC)
730 sc->sc_rxc |= RXC_RA;
731 if (ifp->if_flags & IFF_BROADCAST)
732 sc->sc_rxc |= RXC_RB;
733 sc->sc_t1csum = sc->sc_mcsum = 0;
734 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
735 sc->sc_rxc |= RXC_ICC;
736 sc->sc_mcsum |= M_CSUM_IPv4;
737 }
738 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
739 sc->sc_txc |= TXC_ICG;
740 sc->sc_t1csum |= T1_IPCKG;
741 }
742 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
743 sc->sc_rxc |= RXC_TCC;
744 sc->sc_mcsum |= M_CSUM_TCPv4;
745 }
746 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
747 sc->sc_txc |= TXC_TCG;
748 sc->sc_t1csum |= T1_TCPCKG;
749 }
750 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
751 sc->sc_rxc |= RXC_UCC;
752 sc->sc_mcsum |= M_CSUM_UDPv4;
753 }
754 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
755 sc->sc_txc |= TXC_UCG;
756 sc->sc_t1csum |= T1_UDPCKG;
757 }
758 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
759 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
760
761 /* build multicast hash filter if necessary */
762 kse_set_filter(sc);
763
764 /* set current media */
765 (void)ifmedia_upd(ifp);
766
767 /* enable transmitter and receiver */
768 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
769 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
770 CSR_WRITE_4(sc, MDRSC, 1);
771
772 /* enable interrupts */
773 sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
774 if (sc->sc_chip == 0x8841)
775 sc->sc_inten |= INT_DMLCS;
776 CSR_WRITE_4(sc, INTST, ~0);
777 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
778
779 ifp->if_flags |= IFF_RUNNING;
780 ifp->if_flags &= ~IFF_OACTIVE;
781
782 if (sc->sc_chip == 0x8841) {
783 /* start one second timer */
784 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
785 }
786 #ifdef KSE_EVENT_COUNTERS
787 /* start statistics gather 1 minute timer */
788 zerostats(sc);
789 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
790 #endif
791
792 out:
793 if (error) {
794 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
795 ifp->if_timer = 0;
796 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
797 }
798 return error;
799 }
800
801 static void
802 kse_stop(struct ifnet *ifp, int disable)
803 {
804 struct kse_softc *sc = ifp->if_softc;
805 struct kse_txsoft *txs;
806 int i;
807
808 if (sc->sc_chip == 0x8841)
809 callout_stop(&sc->sc_callout);
810 callout_stop(&sc->sc_stat_ch);
811
812 sc->sc_txc &= ~TXC_TEN;
813 sc->sc_rxc &= ~RXC_REN;
814 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
815 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
816
817 for (i = 0; i < KSE_TXQUEUELEN; i++) {
818 txs = &sc->sc_txsoft[i];
819 if (txs->txs_mbuf != NULL) {
820 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
821 m_freem(txs->txs_mbuf);
822 txs->txs_mbuf = NULL;
823 }
824 }
825
826 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
827 ifp->if_timer = 0;
828
829 if (disable)
830 rxdrain(sc);
831 }
832
833 static void
834 kse_reset(struct kse_softc *sc)
835 {
836
837 CSR_WRITE_2(sc, GRR, 1);
838 delay(1000); /* PDF does not mention the delay amount */
839 CSR_WRITE_2(sc, GRR, 0);
840
841 CSR_WRITE_2(sc, CIDR, 1);
842 }
843
844 static void
845 kse_watchdog(struct ifnet *ifp)
846 {
847 struct kse_softc *sc = ifp->if_softc;
848
849 /*
850 * Since we're not interrupting every packet, sweep
851 * up before we report an error.
852 */
853 txreap(sc);
854
855 if (sc->sc_txfree != KSE_NTXDESC) {
856 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
857 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
858 sc->sc_txnext);
859 ifp->if_oerrors++;
860
861 /* Reset the interface. */
862 kse_init(ifp);
863 }
864 else if (ifp->if_flags & IFF_DEBUG)
865 printf("%s: recovered from device timeout\n",
866 device_xname(&sc->sc_dev));
867
868 /* Try to get more packets going. */
869 kse_start(ifp);
870 }
871
872 static void
873 kse_start(struct ifnet *ifp)
874 {
875 struct kse_softc *sc = ifp->if_softc;
876 struct mbuf *m0, *m;
877 struct kse_txsoft *txs;
878 bus_dmamap_t dmamap;
879 int error, nexttx, lasttx, ofree, seg;
880 uint32_t tdes0;
881
882 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
883 return;
884
885 /*
886 * Remember the previous number of free descriptors.
887 */
888 ofree = sc->sc_txfree;
889
890 /*
891 * Loop through the send queue, setting up transmit descriptors
892 * until we drain the queue, or use up all available transmit
893 * descriptors.
894 */
895 for (;;) {
896 IFQ_POLL(&ifp->if_snd, m0);
897 if (m0 == NULL)
898 break;
899
900 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
901 txreap(sc);
902 if (sc->sc_txsfree == 0)
903 break;
904 }
905 txs = &sc->sc_txsoft[sc->sc_txsnext];
906 dmamap = txs->txs_dmamap;
907
908 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
909 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
910 if (error) {
911 if (error == EFBIG) {
912 printf("%s: Tx packet consumes too many "
913 "DMA segments, dropping...\n",
914 device_xname(&sc->sc_dev));
915 IFQ_DEQUEUE(&ifp->if_snd, m0);
916 m_freem(m0);
917 continue;
918 }
919 /* Short on resources, just stop for now. */
920 break;
921 }
922
923 if (dmamap->dm_nsegs > sc->sc_txfree) {
924 /*
925 * Not enough free descriptors to transmit this
926 * packet. We haven't committed anything yet,
927 * so just unload the DMA map, put the packet
928 * back on the queue, and punt. Notify the upper
929 * layer that there are not more slots left.
930 */
931 ifp->if_flags |= IFF_OACTIVE;
932 bus_dmamap_unload(sc->sc_dmat, dmamap);
933 break;
934 }
935
936 IFQ_DEQUEUE(&ifp->if_snd, m0);
937
938 /*
939 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
940 */
941
942 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
943 BUS_DMASYNC_PREWRITE);
944
945 lasttx = -1; tdes0 = 0;
946 for (nexttx = sc->sc_txnext, seg = 0;
947 seg < dmamap->dm_nsegs;
948 seg++, nexttx = KSE_NEXTTX(nexttx)) {
949 struct tdes *tdes = &sc->sc_txdescs[nexttx];
950 /*
951 * If this is the first descriptor we're
952 * enqueueing, don't set the OWN bit just
953 * yet. That could cause a race condition.
954 * We'll do it below.
955 */
956 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
957 tdes->t1 = sc->sc_t1csum
958 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
959 tdes->t0 = tdes0;
960 tdes0 |= T0_OWN;
961 lasttx = nexttx;
962 }
963
964 /*
965 * Outgoing NFS mbuf must be unloaded when Tx completed.
966 * Without T1_IC NFS mbuf is left unack'ed for excessive
967 * time and NFS stops to proceed until kse_watchdog()
968 * calls txreap() to reclaim the unack'ed mbuf.
969 * It's painful to traverse every mbuf chain to determine
970 * whether someone is waiting for Tx completion.
971 */
972 m = m0;
973 do {
974 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
975 sc->sc_txdescs[lasttx].t1 |= T1_IC;
976 break;
977 }
978 } while ((m = m->m_next) != NULL);
979
980 /* write last T0_OWN bit of the 1st segment */
981 sc->sc_txdescs[lasttx].t1 |= T1_LS;
982 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
983 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
984 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
985 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
986
987 /* tell DMA start transmit */
988 CSR_WRITE_4(sc, MDTSC, 1);
989
990 txs->txs_mbuf = m0;
991 txs->txs_firstdesc = sc->sc_txnext;
992 txs->txs_lastdesc = lasttx;
993 txs->txs_ndesc = dmamap->dm_nsegs;
994
995 sc->sc_txfree -= txs->txs_ndesc;
996 sc->sc_txnext = nexttx;
997 sc->sc_txsfree--;
998 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
999 /*
1000 * Pass the packet to any BPF listeners.
1001 */
1002 bpf_mtap(ifp, m0);
1003 }
1004
1005 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1006 /* No more slots left; notify upper layer. */
1007 ifp->if_flags |= IFF_OACTIVE;
1008 }
1009 if (sc->sc_txfree != ofree) {
1010 /* Set a watchdog timer in case the chip flakes out. */
1011 ifp->if_timer = 5;
1012 }
1013 }
1014
1015 static void
1016 kse_set_filter(struct kse_softc *sc)
1017 {
1018 struct ether_multistep step;
1019 struct ether_multi *enm;
1020 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1021 uint32_t h, hashes[2];
1022
1023 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1024 ifp->if_flags &= ~IFF_ALLMULTI;
1025 if (ifp->if_flags & IFF_PROMISC)
1026 return;
1027
1028 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1029 if (enm == NULL)
1030 return;
1031 hashes[0] = hashes[1] = 0;
1032 do {
1033 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1034 /*
1035 * We must listen to a range of multicast addresses.
1036 * For now, just accept all multicasts, rather than
1037 * trying to set only those filter bits needed to match
1038 * the range. (At this time, the only use of address
1039 * ranges is for IP multicast routing, for which the
1040 * range is big enough to require all bits set.)
1041 */
1042 goto allmulti;
1043 }
1044 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1045 hashes[h >> 5] |= 1 << (h & 0x1f);
1046 ETHER_NEXT_MULTI(step, enm);
1047 } while (enm != NULL);
1048 sc->sc_rxc |= RXC_MHTE;
1049 CSR_WRITE_4(sc, MTR0, hashes[0]);
1050 CSR_WRITE_4(sc, MTR1, hashes[1]);
1051 return;
1052 allmulti:
1053 sc->sc_rxc |= RXC_RM;
1054 ifp->if_flags |= IFF_ALLMULTI;
1055 }
1056
1057 static int
1058 add_rxbuf(struct kse_softc *sc, int idx)
1059 {
1060 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1061 struct mbuf *m;
1062 int error;
1063
1064 MGETHDR(m, M_DONTWAIT, MT_DATA);
1065 if (m == NULL)
1066 return ENOBUFS;
1067
1068 MCLGET(m, M_DONTWAIT);
1069 if ((m->m_flags & M_EXT) == 0) {
1070 m_freem(m);
1071 return ENOBUFS;
1072 }
1073
1074 if (rxs->rxs_mbuf != NULL)
1075 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1076
1077 rxs->rxs_mbuf = m;
1078
1079 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1080 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1081 if (error) {
1082 printf("%s: can't load rx DMA map %d, error = %d\n",
1083 device_xname(&sc->sc_dev), idx, error);
1084 panic("kse_add_rxbuf");
1085 }
1086
1087 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1088 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1089
1090 KSE_INIT_RXDESC(sc, idx);
1091
1092 return 0;
1093 }
1094
1095 static void
1096 rxdrain(struct kse_softc *sc)
1097 {
1098 struct kse_rxsoft *rxs;
1099 int i;
1100
1101 for (i = 0; i < KSE_NRXDESC; i++) {
1102 rxs = &sc->sc_rxsoft[i];
1103 if (rxs->rxs_mbuf != NULL) {
1104 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1105 m_freem(rxs->rxs_mbuf);
1106 rxs->rxs_mbuf = NULL;
1107 }
1108 }
1109 }
1110
1111 static int
1112 kse_intr(void *arg)
1113 {
1114 struct kse_softc *sc = arg;
1115 uint32_t isr;
1116
1117 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1118 return 0;
1119
1120 if (isr & INT_DMRS)
1121 rxintr(sc);
1122 if (isr & INT_DMTS)
1123 txreap(sc);
1124 if (isr & INT_DMLCS)
1125 lnkchg(sc);
1126 if (isr & INT_DMRBUS)
1127 printf("%s: Rx descriptor full\n", device_xname(&sc->sc_dev));
1128
1129 CSR_WRITE_4(sc, INTST, isr);
1130 return 1;
1131 }
1132
1133 static void
1134 rxintr(struct kse_softc *sc)
1135 {
1136 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1137 struct kse_rxsoft *rxs;
1138 struct mbuf *m;
1139 uint32_t rxstat;
1140 int i, len;
1141
1142 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1143 rxs = &sc->sc_rxsoft[i];
1144
1145 KSE_CDRXSYNC(sc, i,
1146 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1147
1148 rxstat = sc->sc_rxdescs[i].r0;
1149
1150 if (rxstat & R0_OWN) /* desc is left empty */
1151 break;
1152
1153 /* R0_FS|R0_LS must have been marked for this desc */
1154
1155 if (rxstat & R0_ES) {
1156 ifp->if_ierrors++;
1157 #define PRINTERR(bit, str) \
1158 if (rxstat & (bit)) \
1159 printf("%s: receive error: %s\n", \
1160 device_xname(&sc->sc_dev), str)
1161 PRINTERR(R0_TL, "frame too long");
1162 PRINTERR(R0_RF, "runt frame");
1163 PRINTERR(R0_CE, "bad FCS");
1164 #undef PRINTERR
1165 KSE_INIT_RXDESC(sc, i);
1166 continue;
1167 }
1168
1169 /* HW errata; frame might be too small or too large */
1170
1171 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1172 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1173
1174 len = rxstat & R0_FL_MASK;
1175 len -= ETHER_CRC_LEN; /* trim CRC off */
1176 m = rxs->rxs_mbuf;
1177
1178 if (add_rxbuf(sc, i) != 0) {
1179 ifp->if_ierrors++;
1180 KSE_INIT_RXDESC(sc, i);
1181 bus_dmamap_sync(sc->sc_dmat,
1182 rxs->rxs_dmamap, 0,
1183 rxs->rxs_dmamap->dm_mapsize,
1184 BUS_DMASYNC_PREREAD);
1185 continue;
1186 }
1187
1188 ifp->if_ipackets++;
1189 m->m_pkthdr.rcvif = ifp;
1190 m->m_pkthdr.len = m->m_len = len;
1191
1192 if (sc->sc_mcsum) {
1193 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1194 if (rxstat & R0_IPE)
1195 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1196 if (rxstat & (R0_TCPE | R0_UDPE))
1197 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1198 }
1199 bpf_mtap(ifp, m);
1200 (*ifp->if_input)(ifp, m);
1201 #ifdef KSEDIAGNOSTIC
1202 if (kse_monitor_rxintr > 0) {
1203 printf("m stat %x data %p len %d\n",
1204 rxstat, m->m_data, m->m_len);
1205 }
1206 #endif
1207 }
1208 sc->sc_rxptr = i;
1209 }
1210
1211 static void
1212 txreap(struct kse_softc *sc)
1213 {
1214 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1215 struct kse_txsoft *txs;
1216 uint32_t txstat;
1217 int i;
1218
1219 ifp->if_flags &= ~IFF_OACTIVE;
1220
1221 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1222 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1223 txs = &sc->sc_txsoft[i];
1224
1225 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1226 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1227
1228 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1229
1230 if (txstat & T0_OWN) /* desc is still in use */
1231 break;
1232
1233 /* there is no way to tell transmission status per frame */
1234
1235 ifp->if_opackets++;
1236
1237 sc->sc_txfree += txs->txs_ndesc;
1238 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1239 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1240 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1241 m_freem(txs->txs_mbuf);
1242 txs->txs_mbuf = NULL;
1243 }
1244 sc->sc_txsdirty = i;
1245 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1246 ifp->if_timer = 0;
1247 }
1248
1249 static void
1250 lnkchg(struct kse_softc *sc)
1251 {
1252 struct ifmediareq ifmr;
1253
1254 #if 0 /* rambling link status */
1255 printf("%s: link %s\n", device_xname(&sc->sc_dev),
1256 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1257 #endif
1258 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1259 }
1260
1261 static int
1262 ifmedia_upd(struct ifnet *ifp)
1263 {
1264 struct kse_softc *sc = ifp->if_softc;
1265 struct ifmedia *ifm = &sc->sc_media;
1266 uint16_t ctl;
1267
1268 ctl = 0;
1269 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1270 ctl |= (1U << 13); /* restart AN */
1271 ctl |= (1U << 7); /* enable AN */
1272 ctl |= (1U << 4); /* advertise flow control pause */
1273 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1274 }
1275 else {
1276 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1277 ctl |= (1U << 6);
1278 if (ifm->ifm_media & IFM_FDX)
1279 ctl |= (1U << 5);
1280 }
1281 CSR_WRITE_2(sc, P1CR4, ctl);
1282
1283 sc->sc_media_active = IFM_NONE;
1284 sc->sc_media_status = IFM_AVALID;
1285
1286 return 0;
1287 }
1288
1289 static void
1290 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1291 {
1292 struct kse_softc *sc = ifp->if_softc;
1293 struct ifmedia *ifm = &sc->sc_media;
1294 uint16_t ctl, sts, result;
1295
1296 ifmr->ifm_status = IFM_AVALID;
1297 ifmr->ifm_active = IFM_ETHER;
1298
1299 ctl = CSR_READ_2(sc, P1CR4);
1300 sts = CSR_READ_2(sc, P1SR);
1301 if ((sts & (1U << 5)) == 0) {
1302 ifmr->ifm_active |= IFM_NONE;
1303 goto out; /* link is down */
1304 }
1305 ifmr->ifm_status |= IFM_ACTIVE;
1306 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1307 if ((sts & (1U << 6)) == 0) {
1308 ifmr->ifm_active |= IFM_NONE;
1309 goto out; /* negotiation in progress */
1310 }
1311 result = ctl & sts & 017;
1312 if (result & (1U << 3))
1313 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1314 else if (result & (1U << 2))
1315 ifmr->ifm_active |= IFM_100_TX;
1316 else if (result & (1U << 1))
1317 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1318 else if (result & (1U << 0))
1319 ifmr->ifm_active |= IFM_10_T;
1320 else
1321 ifmr->ifm_active |= IFM_NONE;
1322 if (ctl & (1U << 4))
1323 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1324 if (sts & (1U << 4))
1325 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1326 }
1327 else {
1328 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1329 if (sts & (1U << 9))
1330 ifmr->ifm_active |= IFM_FDX;
1331 if (sts & (1U << 12))
1332 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1333 if (sts & (1U << 11))
1334 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1335 }
1336
1337 out:
1338 sc->sc_media_status = ifmr->ifm_status;
1339 sc->sc_media_active = ifmr->ifm_active;
1340 }
1341
1342 static void
1343 phy_tick(void *arg)
1344 {
1345 struct kse_softc *sc = arg;
1346 struct ifmediareq ifmr;
1347 int s;
1348
1349 s = splnet();
1350 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1351 splx(s);
1352
1353 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1354 }
1355
1356 static int
1357 ifmedia2_upd(struct ifnet *ifp)
1358 {
1359 struct kse_softc *sc = ifp->if_softc;
1360
1361 sc->sc_media_status = IFM_AVALID;
1362 sc->sc_media_active = IFM_NONE;
1363 return 0;
1364 }
1365
1366 static void
1367 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1368 {
1369 struct kse_softc *sc = ifp->if_softc;
1370 int p1sts, p2sts;
1371
1372 ifmr->ifm_status = IFM_AVALID;
1373 ifmr->ifm_active = IFM_ETHER;
1374 p1sts = CSR_READ_2(sc, P1SR);
1375 p2sts = CSR_READ_2(sc, P2SR);
1376 if (((p1sts | p2sts) & (1U << 5)) == 0)
1377 ifmr->ifm_active |= IFM_NONE;
1378 else {
1379 ifmr->ifm_status |= IFM_ACTIVE;
1380 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1381 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1382 }
1383 sc->sc_media_status = ifmr->ifm_status;
1384 sc->sc_media_active = ifmr->ifm_active;
1385 }
1386
1387 #ifdef KSE_EVENT_COUNTERS
1388 static void
1389 stat_tick(void *arg)
1390 {
1391 struct kse_softc *sc = arg;
1392 struct ksext *ee = &sc->sc_ext;
1393 int nport, p, i, val;
1394
1395 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1396 for (p = 0; p < nport; p++) {
1397 for (i = 0; i < 32; i++) {
1398 val = 0x1c00 | (p * 0x20 + i);
1399 CSR_WRITE_2(sc, IACR, val);
1400 do {
1401 val = CSR_READ_2(sc, IADR5) << 16;
1402 } while ((val & (1U << 30)) == 0);
1403 if (val & (1U << 31)) {
1404 (void)CSR_READ_2(sc, IADR4);
1405 val = 0x3fffffff; /* has made overflow */
1406 }
1407 else {
1408 val &= 0x3fff0000; /* 29:16 */
1409 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1410 }
1411 ee->pev[p][i].ev_count += val; /* i (0-31) */
1412 }
1413 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1414 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1415 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1416 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1417 }
1418 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1419 }
1420
1421 static void
1422 zerostats(struct kse_softc *sc)
1423 {
1424 struct ksext *ee = &sc->sc_ext;
1425 int nport, p, i, val;
1426
1427 /* make sure all the HW counters get zero */
1428 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1429 for (p = 0; p < nport; p++) {
1430 for (i = 0; i < 31; i++) {
1431 val = 0x1c00 | (p * 0x20 + i);
1432 CSR_WRITE_2(sc, IACR, val);
1433 do {
1434 val = CSR_READ_2(sc, IADR5) << 16;
1435 } while ((val & (1U << 30)) == 0);
1436 (void)CSR_READ_2(sc, IADR4);
1437 ee->pev[p][i].ev_count = 0;
1438 }
1439 }
1440 }
1441 #endif
1442