Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.22
      1 /*	$NetBSD: if_kse.c,v 1.22 2010/04/05 07:20:26 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.22 2010/04/05 07:20:26 joerg Exp $");
     34 
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/callout.h>
     39 #include <sys/mbuf.h>
     40 #include <sys/malloc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/errno.h>
     44 #include <sys/device.h>
     45 #include <sys/queue.h>
     46 
     47 #include <machine/endian.h>
     48 #include <sys/bus.h>
     49 #include <sys/intr.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_media.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_ether.h>
     55 
     56 #include <net/bpf.h>
     57 
     58 #include <dev/pci/pcivar.h>
     59 #include <dev/pci/pcireg.h>
     60 #include <dev/pci/pcidevs.h>
     61 
     62 #define CSR_READ_4(sc, off) \
     63 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     64 #define CSR_WRITE_4(sc, off, val) \
     65 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     66 #define CSR_READ_2(sc, off) \
     67 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     68 #define CSR_WRITE_2(sc, off, val) \
     69 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     70 
     71 #define MDTXC	0x000	/* DMA transmit control */
     72 #define MDRXC	0x004	/* DMA receive control */
     73 #define MDTSC	0x008	/* DMA transmit start */
     74 #define MDRSC	0x00c	/* DMA receive start */
     75 #define TDLB	0x010	/* transmit descriptor list base */
     76 #define RDLB	0x014	/* receive descriptor list base */
     77 #define MTR0	0x020	/* multicast table 31:0 */
     78 #define MTR1	0x024	/* multicast table 63:32 */
     79 #define INTEN	0x028	/* interrupt enable */
     80 #define INTST	0x02c	/* interrupt status */
     81 #define MARL	0x200	/* MAC address low */
     82 #define MARM	0x202	/* MAC address middle */
     83 #define MARH	0x204	/* MAC address high */
     84 #define GRR	0x216	/* global reset */
     85 #define CIDR	0x400	/* chip ID and enable */
     86 #define CGCR	0x40a	/* chip global control */
     87 #define IACR	0x4a0	/* indirect access control */
     88 #define IADR1	0x4a2	/* indirect access data 66:63 */
     89 #define IADR2	0x4a4	/* indirect access data 47:32 */
     90 #define IADR3	0x4a6	/* indirect access data 63:48 */
     91 #define IADR4	0x4a8	/* indirect access data 15:0 */
     92 #define IADR5	0x4aa	/* indirect access data 31:16 */
     93 #define P1CR4	0x512	/* port 1 control 4 */
     94 #define P1SR	0x514	/* port 1 status */
     95 #define P2CR4	0x532	/* port 2 control 4 */
     96 #define P2SR	0x534	/* port 2 status */
     97 
     98 #define TXC_BS_MSK	0x3f000000	/* burst size */
     99 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    100 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    101 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    102 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    103 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
    104 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    105 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    106 #define TXC_TEN		(1)		/* enable DMA to run */
    107 
    108 #define RXC_BS_MSK	0x3f000000	/* burst size */
    109 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    110 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    111 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    112 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    113 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    114 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    115 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    116 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    117 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    118 #define RXC_RE		(1U<<3)		/* accept error frame */
    119 #define RXC_RA		(1U<<2)		/* receive all frame */
    120 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    121 #define RXC_REN		(1)		/* enable DMA to run */
    122 
    123 #define INT_DMLCS	(1U<<31)	/* link status change */
    124 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    125 #define INT_DMRS	(1U<<29)	/* frame was received */
    126 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    127 
    128 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    129 
    130 #define R0_OWN		(1U<<31)	/* desc is empty */
    131 #define R0_FS		(1U<<30)	/* first segment of frame */
    132 #define R0_LS		(1U<<29)	/* last segment of frame */
    133 #define R0_IPE		(1U<<28)	/* IP checksum error */
    134 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    135 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    136 #define R0_ES		(1U<<25)	/* error summary */
    137 #define R0_MF		(1U<<24)	/* multicast frame */
    138 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    139 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    140 #define R0_RE		(1U<<19)	/* MII reported error */
    141 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    142 #define R0_RF		(1U<<17)	/* damaged runt frame */
    143 #define R0_CE		(1U<<16)	/* CRC error */
    144 #define R0_FT		(1U<<15)	/* frame type */
    145 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    146 
    147 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    148 #define T1_FS		(1U<<30)	/* first segment of frame */
    149 #define T1_LS		(1U<<29)	/* last segment of frame */
    150 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    151 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    152 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    153 #define T1_TER		(1U<<25)	/* end of ring */
    154 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    155 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    156 
    157 #define R1_RER		(1U<<25)	/* end of ring */
    158 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    159 
    160 #define KSE_NTXSEGS		16
    161 #define KSE_TXQUEUELEN		64
    162 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    163 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    164 #define KSE_NTXDESC		256
    165 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    166 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    167 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    168 
    169 #define KSE_NRXDESC		64
    170 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    171 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    172 
    173 struct tdes {
    174 	uint32_t t0, t1, t2, t3;
    175 };
    176 
    177 struct rdes {
    178 	uint32_t r0, r1, r2, r3;
    179 };
    180 
    181 struct kse_control_data {
    182 	struct tdes kcd_txdescs[KSE_NTXDESC];
    183 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    184 };
    185 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    186 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    187 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    188 
    189 struct kse_txsoft {
    190 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    191 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    192 	int txs_firstdesc;		/* first descriptor in packet */
    193 	int txs_lastdesc;		/* last descriptor in packet */
    194 	int txs_ndesc;			/* # of descriptors used */
    195 };
    196 
    197 struct kse_rxsoft {
    198 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    199 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    200 };
    201 
    202 struct kse_softc {
    203 	struct device sc_dev;		/* generic device information */
    204 	bus_space_tag_t sc_st;		/* bus space tag */
    205 	bus_space_handle_t sc_sh;	/* bus space handle */
    206 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    207 	struct ethercom sc_ethercom;	/* Ethernet common data */
    208 	void *sc_ih;			/* interrupt cookie */
    209 
    210 	struct ifmedia sc_media;	/* ifmedia information */
    211 	int sc_media_status;		/* PHY */
    212 	int sc_media_active;		/* PHY */
    213 	callout_t  sc_callout;		/* MII tick callout */
    214 	callout_t  sc_stat_ch;		/* statistics counter callout */
    215 
    216 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    217 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    218 
    219 	struct kse_control_data *sc_control_data;
    220 #define sc_txdescs	sc_control_data->kcd_txdescs
    221 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    222 
    223 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    224 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    225 	int sc_txfree;			/* number of free Tx descriptors */
    226 	int sc_txnext;			/* next ready Tx descriptor */
    227 	int sc_txsfree;			/* number of free Tx jobs */
    228 	int sc_txsnext;			/* next ready Tx job */
    229 	int sc_txsdirty;		/* dirty Tx jobs */
    230 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    231 
    232 	uint32_t sc_txc, sc_rxc;
    233 	uint32_t sc_t1csum;
    234 	int sc_mcsum;
    235 	uint32_t sc_inten;
    236 
    237 	uint32_t sc_chip;
    238 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    239 	uint16_t sc_vlan[16];
    240 
    241 #ifdef KSE_EVENT_COUNTERS
    242 	struct ksext {
    243 		char evcntname[3][8];
    244 		struct evcnt pev[3][34];
    245 	} sc_ext;			/* switch statistics */
    246 #endif
    247 };
    248 
    249 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    250 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    251 
    252 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    253 do {									\
    254 	int __x, __n;							\
    255 									\
    256 	__x = (x);							\
    257 	__n = (n);							\
    258 									\
    259 	/* If it will wrap around, sync to the end of the ring. */	\
    260 	if ((__x + __n) > KSE_NTXDESC) {				\
    261 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    262 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    263 		    (KSE_NTXDESC - __x), (ops));			\
    264 		__n -= (KSE_NTXDESC - __x);				\
    265 		__x = 0;						\
    266 	}								\
    267 									\
    268 	/* Now sync whatever is left. */				\
    269 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    270 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    271 } while (/*CONSTCOND*/0)
    272 
    273 #define KSE_CDRXSYNC(sc, x, ops)					\
    274 do {									\
    275 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    276 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    277 } while (/*CONSTCOND*/0)
    278 
    279 #define KSE_INIT_RXDESC(sc, x)						\
    280 do {									\
    281 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    282 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    283 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    284 									\
    285 	__m->m_data = __m->m_ext.ext_buf;				\
    286 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    287 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    288 	__rxd->r0 = R0_OWN;						\
    289 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    290 } while (/*CONSTCOND*/0)
    291 
    292 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    293 
    294 #ifdef KSEDIAGNOSTIC
    295 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    296 #endif
    297 
    298 static int kse_match(device_t, cfdata_t, void *);
    299 static void kse_attach(device_t, device_t, void *);
    300 
    301 CFATTACH_DECL(kse, sizeof(struct kse_softc),
    302     kse_match, kse_attach, NULL, NULL);
    303 
    304 static int kse_ioctl(struct ifnet *, u_long, void *);
    305 static void kse_start(struct ifnet *);
    306 static void kse_watchdog(struct ifnet *);
    307 static int kse_init(struct ifnet *);
    308 static void kse_stop(struct ifnet *, int);
    309 static void kse_reset(struct kse_softc *);
    310 static void kse_set_filter(struct kse_softc *);
    311 static int add_rxbuf(struct kse_softc *, int);
    312 static void rxdrain(struct kse_softc *);
    313 static int kse_intr(void *);
    314 static void rxintr(struct kse_softc *);
    315 static void txreap(struct kse_softc *);
    316 static void lnkchg(struct kse_softc *);
    317 static int ifmedia_upd(struct ifnet *);
    318 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
    319 static void phy_tick(void *);
    320 static int ifmedia2_upd(struct ifnet *);
    321 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
    322 #ifdef KSE_EVENT_COUNTERS
    323 static void stat_tick(void *);
    324 static void zerostats(struct kse_softc *);
    325 #endif
    326 
    327 static int
    328 kse_match(device_t parent, cfdata_t match, void *aux)
    329 {
    330 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    331 
    332 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    333 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    334 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    335 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    336 		return 1;
    337 
    338 	return 0;
    339 }
    340 
    341 static void
    342 kse_attach(device_t parent, device_t self, void *aux)
    343 {
    344 	struct kse_softc *sc = device_private(self);
    345 	struct pci_attach_args *pa = aux;
    346 	pci_chipset_tag_t pc = pa->pa_pc;
    347 	pci_intr_handle_t ih;
    348 	const char *intrstr;
    349 	struct ifnet *ifp;
    350 	struct ifmedia *ifm;
    351 	uint8_t enaddr[ETHER_ADDR_LEN];
    352 	bus_dma_segment_t seg;
    353 	int i, p, error, nseg;
    354 	pcireg_t pmode;
    355 	int pmreg;
    356 
    357 	if (pci_mapreg_map(pa, 0x10,
    358 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    359 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    360 		printf(": unable to map device registers\n");
    361 		return;
    362 	}
    363 
    364 	sc->sc_dmat = pa->pa_dmat;
    365 
    366 	/* Make sure bus mastering is enabled. */
    367 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    368 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    369 	    PCI_COMMAND_MASTER_ENABLE);
    370 
    371 	/* Get it out of power save mode, if needed. */
    372 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    373 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    374 		    PCI_PMCSR_STATE_MASK;
    375 		if (pmode == PCI_PMCSR_STATE_D3) {
    376 			/*
    377 			 * The card has lost all configuration data in
    378 			 * this state, so punt.
    379 			 */
    380 			printf("%s: unable to wake from power state D3\n",
    381 			    device_xname(&sc->sc_dev));
    382 			return;
    383 		}
    384 		if (pmode != PCI_PMCSR_STATE_D0) {
    385 			printf("%s: waking up from power date D%d\n",
    386 			    device_xname(&sc->sc_dev), pmode);
    387 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    388 			    PCI_PMCSR_STATE_D0);
    389 		}
    390 	}
    391 
    392 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    393 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    394 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    395 
    396 	/*
    397 	 * Read the Ethernet address from the EEPROM.
    398 	 */
    399 	i = CSR_READ_2(sc, MARL);
    400 	enaddr[5] = i; enaddr[4] = i >> 8;
    401 	i = CSR_READ_2(sc, MARM);
    402 	enaddr[3] = i; enaddr[2] = i >> 8;
    403 	i = CSR_READ_2(sc, MARH);
    404 	enaddr[1] = i; enaddr[0] = i >> 8;
    405 	printf("%s: Ethernet address: %s\n",
    406 		device_xname(&sc->sc_dev), ether_sprintf(enaddr));
    407 
    408 	/*
    409 	 * Enable chip function.
    410 	 */
    411 	CSR_WRITE_2(sc, CIDR, 1);
    412 
    413 	/*
    414 	 * Map and establish our interrupt.
    415 	 */
    416 	if (pci_intr_map(pa, &ih)) {
    417 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    418 		return;
    419 	}
    420 	intrstr = pci_intr_string(pc, ih);
    421 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
    422 	if (sc->sc_ih == NULL) {
    423 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    424 		if (intrstr != NULL)
    425 			aprint_error(" at %s", intrstr);
    426 		aprint_error("\n");
    427 		return;
    428 	}
    429 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    430 
    431 	/*
    432 	 * Allocate the control data structures, and create and load the
    433 	 * DMA map for it.
    434 	 */
    435 	error = bus_dmamem_alloc(sc->sc_dmat,
    436 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    437 	if (error != 0) {
    438 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n", error);
    439 		goto fail_0;
    440 	}
    441 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    442 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    443 	    BUS_DMA_COHERENT);
    444 	if (error != 0) {
    445 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
    446 		goto fail_1;
    447 	}
    448 	error = bus_dmamap_create(sc->sc_dmat,
    449 	    sizeof(struct kse_control_data), 1,
    450 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    451 	if (error != 0) {
    452 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    453 		    "error = %d\n", error);
    454 		goto fail_2;
    455 	}
    456 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    457 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    458 	if (error != 0) {
    459 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
    460 		    error);
    461 		goto fail_3;
    462 	}
    463 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    464 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    465 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    466 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    467 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
    468 			    "error = %d\n", i, error);
    469 			goto fail_4;
    470 		}
    471 	}
    472 	for (i = 0; i < KSE_NRXDESC; i++) {
    473 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    474 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    475 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
    476 			    "error = %d\n", i, error);
    477 			goto fail_5;
    478 		}
    479 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    480 	}
    481 
    482 	callout_init(&sc->sc_callout, 0);
    483 	callout_init(&sc->sc_stat_ch, 0);
    484 
    485 	ifm = &sc->sc_media;
    486 	if (sc->sc_chip == 0x8841) {
    487 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
    488 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
    489 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    490 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
    491 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    492 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
    493 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
    494 	}
    495 	else {
    496 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
    497 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
    498 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
    499 	}
    500 
    501 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    502 	    device_xname(&sc->sc_dev));
    503 
    504 	ifp = &sc->sc_ethercom.ec_if;
    505 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    506 	ifp->if_softc = sc;
    507 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    508 	ifp->if_ioctl = kse_ioctl;
    509 	ifp->if_start = kse_start;
    510 	ifp->if_watchdog = kse_watchdog;
    511 	ifp->if_init = kse_init;
    512 	ifp->if_stop = kse_stop;
    513 	IFQ_SET_READY(&ifp->if_snd);
    514 
    515 	/*
    516 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    517 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    518 	 */
    519 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    520 	ifp->if_capabilities |=
    521 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    522 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    523 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    524 
    525 	if_attach(ifp);
    526 	ether_ifattach(ifp, enaddr);
    527 
    528 	p = (sc->sc_chip == 0x8842) ? 3 : 1;
    529 #ifdef KSE_EVENT_COUNTERS
    530 	for (i = 0; i < p; i++) {
    531 		struct ksext *ee = &sc->sc_ext;
    532 		sprintf(ee->evcntname[i], "%s.%d", device_xname(&sc->sc_dev), i+1);
    533 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    534 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    535 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    536 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    537 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    538 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    539 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    540 		    NULL, ee->evcntname[i], "RxFragments");
    541 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    542 		    NULL, ee->evcntname[i], "RxOversize");
    543 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    544 		    NULL, ee->evcntname[i], "RxJabbers");
    545 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    546 		    NULL, ee->evcntname[i], "RxSymbolError");
    547 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    548 		    NULL, ee->evcntname[i], "RxCRCError");
    549 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    550 		    NULL, ee->evcntname[i], "RxAlignmentError");
    551 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    552 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    553 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    554 		    NULL, ee->evcntname[i], "RxPausePkts");
    555 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    556 		    NULL, ee->evcntname[i], "RxBroadcast");
    557 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    558 		    NULL, ee->evcntname[i], "RxMulticast");
    559 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    560 		    NULL, ee->evcntname[i], "RxUnicast");
    561 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    562 		    NULL, ee->evcntname[i], "Rx64Octets");
    563 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    564 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    565 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    566 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    567 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    568 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    569 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    570 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    571 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    572 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    573 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    574 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    575 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    576 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    577 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    578 		    NULL, ee->evcntname[i], "TxLateCollision");
    579 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    580 		    NULL, ee->evcntname[i], "TxPausePkts");
    581 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    582 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    583 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    584 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    585 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    586 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    587 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    588 		    NULL, ee->evcntname[i], "TxDeferred");
    589 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    590 		    NULL, ee->evcntname[i], "TxTotalCollision");
    591 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    592 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    593 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    594 		    NULL, ee->evcntname[i], "TxSingleCollision");
    595 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    596 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    597 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    598 		    NULL, ee->evcntname[i], "TxDropPkts");
    599 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    600 		    NULL, ee->evcntname[i], "RxDropPkts");
    601 	}
    602 #endif
    603 	return;
    604 
    605  fail_5:
    606 	for (i = 0; i < KSE_NRXDESC; i++) {
    607 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    608 			bus_dmamap_destroy(sc->sc_dmat,
    609 			    sc->sc_rxsoft[i].rxs_dmamap);
    610 	}
    611  fail_4:
    612 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    613 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    614 			bus_dmamap_destroy(sc->sc_dmat,
    615 			    sc->sc_txsoft[i].txs_dmamap);
    616 	}
    617 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    618  fail_3:
    619 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    620  fail_2:
    621 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    622 	    sizeof(struct kse_control_data));
    623  fail_1:
    624 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    625  fail_0:
    626 	return;
    627 }
    628 
    629 static int
    630 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    631 {
    632 	struct kse_softc *sc = ifp->if_softc;
    633 	struct ifreq *ifr = (struct ifreq *)data;
    634 	int s, error;
    635 
    636 	s = splnet();
    637 
    638 	switch (cmd) {
    639 	case SIOCSIFMEDIA:
    640 	case SIOCGIFMEDIA:
    641 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    642 		break;
    643 
    644 	default:
    645 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    646 			break;
    647 
    648 		error = 0;
    649 
    650 		if (cmd == SIOCSIFCAP)
    651 			error = (*ifp->if_init)(ifp);
    652 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    653 			;
    654 		else if (ifp->if_flags & IFF_RUNNING) {
    655 			/*
    656 			 * Multicast list has changed; set the hardware filter
    657 			 * accordingly.
    658 			 */
    659 			kse_set_filter(sc);
    660 		}
    661 		break;
    662 	}
    663 
    664 	kse_start(ifp);
    665 
    666 	splx(s);
    667 	return error;
    668 }
    669 
    670 static int
    671 kse_init(struct ifnet *ifp)
    672 {
    673 	struct kse_softc *sc = ifp->if_softc;
    674 	uint32_t paddr;
    675 	int i, error = 0;
    676 
    677 	/* cancel pending I/O */
    678 	kse_stop(ifp, 0);
    679 
    680 	/* reset all registers but PCI configuration */
    681 	kse_reset(sc);
    682 
    683 	/* craft Tx descriptor ring */
    684 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    685 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    686 		sc->sc_txdescs[i].t3 = paddr;
    687 		paddr += sizeof(struct tdes);
    688 	}
    689 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    690 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    691 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    692 	sc->sc_txfree = KSE_NTXDESC;
    693 	sc->sc_txnext = 0;
    694 
    695 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    696 		sc->sc_txsoft[i].txs_mbuf = NULL;
    697 	sc->sc_txsfree = KSE_TXQUEUELEN;
    698 	sc->sc_txsnext = 0;
    699 	sc->sc_txsdirty = 0;
    700 
    701 	/* craft Rx descriptor ring */
    702 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    703 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    704 		sc->sc_rxdescs[i].r3 = paddr;
    705 		paddr += sizeof(struct rdes);
    706 	}
    707 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    708 	for (i = 0; i < KSE_NRXDESC; i++) {
    709 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    710 			if ((error = add_rxbuf(sc, i)) != 0) {
    711 				printf("%s: unable to allocate or map rx "
    712 				    "buffer %d, error = %d\n",
    713 				     device_xname(&sc->sc_dev), i, error);
    714 				rxdrain(sc);
    715 				goto out;
    716 			}
    717 		}
    718 		else
    719 			KSE_INIT_RXDESC(sc, i);
    720 	}
    721 	sc->sc_rxptr = 0;
    722 
    723 	/* hand Tx/Rx rings to HW */
    724 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    725 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    726 
    727 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    728 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    729 	if (ifp->if_flags & IFF_PROMISC)
    730 		sc->sc_rxc |= RXC_RA;
    731 	if (ifp->if_flags & IFF_BROADCAST)
    732 		sc->sc_rxc |= RXC_RB;
    733 	sc->sc_t1csum = sc->sc_mcsum = 0;
    734 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    735 		sc->sc_rxc |= RXC_ICC;
    736 		sc->sc_mcsum |= M_CSUM_IPv4;
    737 	}
    738 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    739 		sc->sc_txc |= TXC_ICG;
    740 		sc->sc_t1csum |= T1_IPCKG;
    741 	}
    742 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    743 		sc->sc_rxc |= RXC_TCC;
    744 		sc->sc_mcsum |= M_CSUM_TCPv4;
    745 	}
    746 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    747 		sc->sc_txc |= TXC_TCG;
    748 		sc->sc_t1csum |= T1_TCPCKG;
    749 	}
    750 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    751 		sc->sc_rxc |= RXC_UCC;
    752 		sc->sc_mcsum |= M_CSUM_UDPv4;
    753 	}
    754 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    755 		sc->sc_txc |= TXC_UCG;
    756 		sc->sc_t1csum |= T1_UDPCKG;
    757 	}
    758 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    759 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    760 
    761 	/* build multicast hash filter if necessary */
    762 	kse_set_filter(sc);
    763 
    764 	/* set current media */
    765 	(void)ifmedia_upd(ifp);
    766 
    767 	/* enable transmitter and receiver */
    768 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    769 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    770 	CSR_WRITE_4(sc, MDRSC, 1);
    771 
    772 	/* enable interrupts */
    773 	sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
    774 	if (sc->sc_chip == 0x8841)
    775 		sc->sc_inten |= INT_DMLCS;
    776 	CSR_WRITE_4(sc, INTST, ~0);
    777 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    778 
    779 	ifp->if_flags |= IFF_RUNNING;
    780 	ifp->if_flags &= ~IFF_OACTIVE;
    781 
    782 	if (sc->sc_chip == 0x8841) {
    783 		/* start one second timer */
    784 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    785 	}
    786 #ifdef KSE_EVENT_COUNTERS
    787 	/* start statistics gather 1 minute timer */
    788 	zerostats(sc);
    789 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
    790 #endif
    791 
    792  out:
    793 	if (error) {
    794 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    795 		ifp->if_timer = 0;
    796 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
    797 	}
    798 	return error;
    799 }
    800 
    801 static void
    802 kse_stop(struct ifnet *ifp, int disable)
    803 {
    804 	struct kse_softc *sc = ifp->if_softc;
    805 	struct kse_txsoft *txs;
    806 	int i;
    807 
    808 	if (sc->sc_chip == 0x8841)
    809 		callout_stop(&sc->sc_callout);
    810 	callout_stop(&sc->sc_stat_ch);
    811 
    812 	sc->sc_txc &= ~TXC_TEN;
    813 	sc->sc_rxc &= ~RXC_REN;
    814 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    815 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    816 
    817 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    818 		txs = &sc->sc_txsoft[i];
    819 		if (txs->txs_mbuf != NULL) {
    820 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    821 			m_freem(txs->txs_mbuf);
    822 			txs->txs_mbuf = NULL;
    823 		}
    824 	}
    825 
    826 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    827 	ifp->if_timer = 0;
    828 
    829 	if (disable)
    830 		rxdrain(sc);
    831 }
    832 
    833 static void
    834 kse_reset(struct kse_softc *sc)
    835 {
    836 
    837 	CSR_WRITE_2(sc, GRR, 1);
    838 	delay(1000); /* PDF does not mention the delay amount */
    839 	CSR_WRITE_2(sc, GRR, 0);
    840 
    841 	CSR_WRITE_2(sc, CIDR, 1);
    842 }
    843 
    844 static void
    845 kse_watchdog(struct ifnet *ifp)
    846 {
    847 	struct kse_softc *sc = ifp->if_softc;
    848 
    849 	/*
    850 	 * Since we're not interrupting every packet, sweep
    851 	 * up before we report an error.
    852 	 */
    853 	txreap(sc);
    854 
    855 	if (sc->sc_txfree != KSE_NTXDESC) {
    856 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    857 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
    858 		    sc->sc_txnext);
    859 		ifp->if_oerrors++;
    860 
    861 		/* Reset the interface. */
    862 		kse_init(ifp);
    863 	}
    864 	else if (ifp->if_flags & IFF_DEBUG)
    865 		printf("%s: recovered from device timeout\n",
    866 		    device_xname(&sc->sc_dev));
    867 
    868 	/* Try to get more packets going. */
    869 	kse_start(ifp);
    870 }
    871 
    872 static void
    873 kse_start(struct ifnet *ifp)
    874 {
    875 	struct kse_softc *sc = ifp->if_softc;
    876 	struct mbuf *m0, *m;
    877 	struct kse_txsoft *txs;
    878 	bus_dmamap_t dmamap;
    879 	int error, nexttx, lasttx, ofree, seg;
    880 	uint32_t tdes0;
    881 
    882 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    883 		return;
    884 
    885 	/*
    886 	 * Remember the previous number of free descriptors.
    887 	 */
    888 	ofree = sc->sc_txfree;
    889 
    890 	/*
    891 	 * Loop through the send queue, setting up transmit descriptors
    892 	 * until we drain the queue, or use up all available transmit
    893 	 * descriptors.
    894 	 */
    895 	for (;;) {
    896 		IFQ_POLL(&ifp->if_snd, m0);
    897 		if (m0 == NULL)
    898 			break;
    899 
    900 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    901 			txreap(sc);
    902 			if (sc->sc_txsfree == 0)
    903 				break;
    904 		}
    905 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    906 		dmamap = txs->txs_dmamap;
    907 
    908 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    909 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    910 		if (error) {
    911 			if (error == EFBIG) {
    912 				printf("%s: Tx packet consumes too many "
    913 				    "DMA segments, dropping...\n",
    914 				    device_xname(&sc->sc_dev));
    915 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    916 				    m_freem(m0);
    917 				    continue;
    918 			}
    919 			/* Short on resources, just stop for now. */
    920 			break;
    921 		}
    922 
    923 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    924 			/*
    925 			 * Not enough free descriptors to transmit this
    926 			 * packet.  We haven't committed anything yet,
    927 			 * so just unload the DMA map, put the packet
    928 			 * back on the queue, and punt.	 Notify the upper
    929 			 * layer that there are not more slots left.
    930 			 */
    931 			ifp->if_flags |= IFF_OACTIVE;
    932 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    933 			break;
    934 		}
    935 
    936 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    937 
    938 		/*
    939 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    940 		 */
    941 
    942 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    943 		    BUS_DMASYNC_PREWRITE);
    944 
    945 		lasttx = -1; tdes0 = 0;
    946 		for (nexttx = sc->sc_txnext, seg = 0;
    947 		     seg < dmamap->dm_nsegs;
    948 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    949 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    950 			/*
    951 			 * If this is the first descriptor we're
    952 			 * enqueueing, don't set the OWN bit just
    953 			 * yet.	 That could cause a race condition.
    954 			 * We'll do it below.
    955 			 */
    956 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    957 			tdes->t1 = sc->sc_t1csum
    958 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    959 			tdes->t0 = tdes0;
    960 			tdes0 |= T0_OWN;
    961 			lasttx = nexttx;
    962 		}
    963 
    964 		/*
    965 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    966 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    967 		 * time and NFS stops to proceed until kse_watchdog()
    968 		 * calls txreap() to reclaim the unack'ed mbuf.
    969 		 * It's painful to traverse every mbuf chain to determine
    970 		 * whether someone is waiting for Tx completion.
    971 		 */
    972 		m = m0;
    973 		do {
    974 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    975 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    976 				break;
    977 			}
    978 		} while ((m = m->m_next) != NULL);
    979 
    980 		/* write last T0_OWN bit of the 1st segment */
    981 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    982 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    983 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
    984 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    985 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    986 
    987 		/* tell DMA start transmit */
    988 		CSR_WRITE_4(sc, MDTSC, 1);
    989 
    990 		txs->txs_mbuf = m0;
    991 		txs->txs_firstdesc = sc->sc_txnext;
    992 		txs->txs_lastdesc = lasttx;
    993 		txs->txs_ndesc = dmamap->dm_nsegs;
    994 
    995 		sc->sc_txfree -= txs->txs_ndesc;
    996 		sc->sc_txnext = nexttx;
    997 		sc->sc_txsfree--;
    998 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
    999 		/*
   1000 		 * Pass the packet to any BPF listeners.
   1001 		 */
   1002 		bpf_mtap(ifp, m0);
   1003 	}
   1004 
   1005 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1006 		/* No more slots left; notify upper layer. */
   1007 		ifp->if_flags |= IFF_OACTIVE;
   1008 	}
   1009 	if (sc->sc_txfree != ofree) {
   1010 		/* Set a watchdog timer in case the chip flakes out. */
   1011 		ifp->if_timer = 5;
   1012 	}
   1013 }
   1014 
   1015 static void
   1016 kse_set_filter(struct kse_softc *sc)
   1017 {
   1018 	struct ether_multistep step;
   1019 	struct ether_multi *enm;
   1020 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1021 	uint32_t h, hashes[2];
   1022 
   1023 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1024 	ifp->if_flags &= ~IFF_ALLMULTI;
   1025 	if (ifp->if_flags & IFF_PROMISC)
   1026 		return;
   1027 
   1028 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1029 	if (enm == NULL)
   1030 		return;
   1031 	hashes[0] = hashes[1] = 0;
   1032 	do {
   1033 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1034 			/*
   1035 			 * We must listen to a range of multicast addresses.
   1036 			 * For now, just accept all multicasts, rather than
   1037 			 * trying to set only those filter bits needed to match
   1038 			 * the range.  (At this time, the only use of address
   1039 			 * ranges is for IP multicast routing, for which the
   1040 			 * range is big enough to require all bits set.)
   1041 			 */
   1042 			goto allmulti;
   1043 		}
   1044 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1045 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1046 		ETHER_NEXT_MULTI(step, enm);
   1047 	} while (enm != NULL);
   1048 	sc->sc_rxc |= RXC_MHTE;
   1049 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1050 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1051 	return;
   1052  allmulti:
   1053 	sc->sc_rxc |= RXC_RM;
   1054 	ifp->if_flags |= IFF_ALLMULTI;
   1055 }
   1056 
   1057 static int
   1058 add_rxbuf(struct kse_softc *sc, int idx)
   1059 {
   1060 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1061 	struct mbuf *m;
   1062 	int error;
   1063 
   1064 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1065 	if (m == NULL)
   1066 		return ENOBUFS;
   1067 
   1068 	MCLGET(m, M_DONTWAIT);
   1069 	if ((m->m_flags & M_EXT) == 0) {
   1070 		m_freem(m);
   1071 		return ENOBUFS;
   1072 	}
   1073 
   1074 	if (rxs->rxs_mbuf != NULL)
   1075 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1076 
   1077 	rxs->rxs_mbuf = m;
   1078 
   1079 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1080 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1081 	if (error) {
   1082 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1083 		    device_xname(&sc->sc_dev), idx, error);
   1084 		panic("kse_add_rxbuf");
   1085 	}
   1086 
   1087 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1088 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1089 
   1090 	KSE_INIT_RXDESC(sc, idx);
   1091 
   1092 	return 0;
   1093 }
   1094 
   1095 static void
   1096 rxdrain(struct kse_softc *sc)
   1097 {
   1098 	struct kse_rxsoft *rxs;
   1099 	int i;
   1100 
   1101 	for (i = 0; i < KSE_NRXDESC; i++) {
   1102 		rxs = &sc->sc_rxsoft[i];
   1103 		if (rxs->rxs_mbuf != NULL) {
   1104 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1105 			m_freem(rxs->rxs_mbuf);
   1106 			rxs->rxs_mbuf = NULL;
   1107 		}
   1108 	}
   1109 }
   1110 
   1111 static int
   1112 kse_intr(void *arg)
   1113 {
   1114 	struct kse_softc *sc = arg;
   1115 	uint32_t isr;
   1116 
   1117 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1118 		return 0;
   1119 
   1120 	if (isr & INT_DMRS)
   1121 		rxintr(sc);
   1122 	if (isr & INT_DMTS)
   1123 		txreap(sc);
   1124 	if (isr & INT_DMLCS)
   1125 		lnkchg(sc);
   1126 	if (isr & INT_DMRBUS)
   1127 		printf("%s: Rx descriptor full\n", device_xname(&sc->sc_dev));
   1128 
   1129 	CSR_WRITE_4(sc, INTST, isr);
   1130 	return 1;
   1131 }
   1132 
   1133 static void
   1134 rxintr(struct kse_softc *sc)
   1135 {
   1136 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1137 	struct kse_rxsoft *rxs;
   1138 	struct mbuf *m;
   1139 	uint32_t rxstat;
   1140 	int i, len;
   1141 
   1142 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1143 		rxs = &sc->sc_rxsoft[i];
   1144 
   1145 		KSE_CDRXSYNC(sc, i,
   1146 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1147 
   1148 		rxstat = sc->sc_rxdescs[i].r0;
   1149 
   1150 		if (rxstat & R0_OWN) /* desc is left empty */
   1151 			break;
   1152 
   1153 		/* R0_FS|R0_LS must have been marked for this desc */
   1154 
   1155 		if (rxstat & R0_ES) {
   1156 			ifp->if_ierrors++;
   1157 #define PRINTERR(bit, str)						\
   1158 			if (rxstat & (bit))				\
   1159 				printf("%s: receive error: %s\n",	\
   1160 				    device_xname(&sc->sc_dev), str)
   1161 			PRINTERR(R0_TL, "frame too long");
   1162 			PRINTERR(R0_RF, "runt frame");
   1163 			PRINTERR(R0_CE, "bad FCS");
   1164 #undef PRINTERR
   1165 			KSE_INIT_RXDESC(sc, i);
   1166 			continue;
   1167 		}
   1168 
   1169 		/* HW errata; frame might be too small or too large */
   1170 
   1171 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1172 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1173 
   1174 		len = rxstat & R0_FL_MASK;
   1175 		len -= ETHER_CRC_LEN;	/* trim CRC off */
   1176 		m = rxs->rxs_mbuf;
   1177 
   1178 		if (add_rxbuf(sc, i) != 0) {
   1179 			ifp->if_ierrors++;
   1180 			KSE_INIT_RXDESC(sc, i);
   1181 			bus_dmamap_sync(sc->sc_dmat,
   1182 			    rxs->rxs_dmamap, 0,
   1183 			    rxs->rxs_dmamap->dm_mapsize,
   1184 			    BUS_DMASYNC_PREREAD);
   1185 			continue;
   1186 		}
   1187 
   1188 		ifp->if_ipackets++;
   1189 		m->m_pkthdr.rcvif = ifp;
   1190 		m->m_pkthdr.len = m->m_len = len;
   1191 
   1192 		if (sc->sc_mcsum) {
   1193 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1194 			if (rxstat & R0_IPE)
   1195 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1196 			if (rxstat & (R0_TCPE | R0_UDPE))
   1197 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1198 		}
   1199 		bpf_mtap(ifp, m);
   1200 		(*ifp->if_input)(ifp, m);
   1201 #ifdef KSEDIAGNOSTIC
   1202 		if (kse_monitor_rxintr > 0) {
   1203 			printf("m stat %x data %p len %d\n",
   1204 			    rxstat, m->m_data, m->m_len);
   1205 		}
   1206 #endif
   1207 	}
   1208 	sc->sc_rxptr = i;
   1209 }
   1210 
   1211 static void
   1212 txreap(struct kse_softc *sc)
   1213 {
   1214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1215 	struct kse_txsoft *txs;
   1216 	uint32_t txstat;
   1217 	int i;
   1218 
   1219 	ifp->if_flags &= ~IFF_OACTIVE;
   1220 
   1221 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1222 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1223 		txs = &sc->sc_txsoft[i];
   1224 
   1225 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1226 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1227 
   1228 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1229 
   1230 		if (txstat & T0_OWN) /* desc is still in use */
   1231 			break;
   1232 
   1233 		/* there is no way to tell transmission status per frame */
   1234 
   1235 		ifp->if_opackets++;
   1236 
   1237 		sc->sc_txfree += txs->txs_ndesc;
   1238 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1239 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1240 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1241 		m_freem(txs->txs_mbuf);
   1242 		txs->txs_mbuf = NULL;
   1243 	}
   1244 	sc->sc_txsdirty = i;
   1245 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1246 		ifp->if_timer = 0;
   1247 }
   1248 
   1249 static void
   1250 lnkchg(struct kse_softc *sc)
   1251 {
   1252 	struct ifmediareq ifmr;
   1253 
   1254 #if 0 /* rambling link status */
   1255 	printf("%s: link %s\n", device_xname(&sc->sc_dev),
   1256 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
   1257 #endif
   1258 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1259 }
   1260 
   1261 static int
   1262 ifmedia_upd(struct ifnet *ifp)
   1263 {
   1264 	struct kse_softc *sc = ifp->if_softc;
   1265 	struct ifmedia *ifm = &sc->sc_media;
   1266 	uint16_t ctl;
   1267 
   1268 	ctl = 0;
   1269 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1270 		ctl |= (1U << 13); /* restart AN */
   1271 		ctl |= (1U << 7);  /* enable AN */
   1272 		ctl |= (1U << 4);  /* advertise flow control pause */
   1273 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
   1274 	}
   1275 	else {
   1276 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
   1277 			ctl |= (1U << 6);
   1278 		if (ifm->ifm_media & IFM_FDX)
   1279 			ctl |= (1U << 5);
   1280 	}
   1281 	CSR_WRITE_2(sc, P1CR4, ctl);
   1282 
   1283 	sc->sc_media_active = IFM_NONE;
   1284 	sc->sc_media_status = IFM_AVALID;
   1285 
   1286 	return 0;
   1287 }
   1288 
   1289 static void
   1290 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1291 {
   1292 	struct kse_softc *sc = ifp->if_softc;
   1293 	struct ifmedia *ifm = &sc->sc_media;
   1294 	uint16_t ctl, sts, result;
   1295 
   1296 	ifmr->ifm_status = IFM_AVALID;
   1297 	ifmr->ifm_active = IFM_ETHER;
   1298 
   1299 	ctl = CSR_READ_2(sc, P1CR4);
   1300 	sts = CSR_READ_2(sc, P1SR);
   1301 	if ((sts & (1U << 5)) == 0) {
   1302 		ifmr->ifm_active |= IFM_NONE;
   1303 		goto out; /* link is down */
   1304 	}
   1305 	ifmr->ifm_status |= IFM_ACTIVE;
   1306 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1307 		if ((sts & (1U << 6)) == 0) {
   1308 			ifmr->ifm_active |= IFM_NONE;
   1309 			goto out; /* negotiation in progress */
   1310 		}
   1311 		result = ctl & sts & 017;
   1312 		if (result & (1U << 3))
   1313 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1314 		else if (result & (1U << 2))
   1315 			ifmr->ifm_active |= IFM_100_TX;
   1316 		else if (result & (1U << 1))
   1317 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
   1318 		else if (result & (1U << 0))
   1319 			ifmr->ifm_active |= IFM_10_T;
   1320 		else
   1321 			ifmr->ifm_active |= IFM_NONE;
   1322 		if (ctl & (1U << 4))
   1323 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1324 		if (sts & (1U << 4))
   1325 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1326 	}
   1327 	else {
   1328 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
   1329 		if (sts & (1U << 9))
   1330 			ifmr->ifm_active |= IFM_FDX;
   1331 		if (sts & (1U << 12))
   1332 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1333 		if (sts & (1U << 11))
   1334 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1335 	}
   1336 
   1337   out:
   1338 	sc->sc_media_status = ifmr->ifm_status;
   1339 	sc->sc_media_active = ifmr->ifm_active;
   1340 }
   1341 
   1342 static void
   1343 phy_tick(void *arg)
   1344 {
   1345 	struct kse_softc *sc = arg;
   1346 	struct ifmediareq ifmr;
   1347 	int s;
   1348 
   1349 	s = splnet();
   1350 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1351 	splx(s);
   1352 
   1353 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1354 }
   1355 
   1356 static int
   1357 ifmedia2_upd(struct ifnet *ifp)
   1358 {
   1359 	struct kse_softc *sc = ifp->if_softc;
   1360 
   1361 	sc->sc_media_status = IFM_AVALID;
   1362 	sc->sc_media_active = IFM_NONE;
   1363 	return 0;
   1364 }
   1365 
   1366 static void
   1367 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1368 {
   1369 	struct kse_softc *sc = ifp->if_softc;
   1370 	int p1sts, p2sts;
   1371 
   1372 	ifmr->ifm_status = IFM_AVALID;
   1373 	ifmr->ifm_active = IFM_ETHER;
   1374 	p1sts = CSR_READ_2(sc, P1SR);
   1375 	p2sts = CSR_READ_2(sc, P2SR);
   1376 	if (((p1sts | p2sts) & (1U << 5)) == 0)
   1377 		ifmr->ifm_active |= IFM_NONE;
   1378 	else {
   1379 		ifmr->ifm_status |= IFM_ACTIVE;
   1380 		ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1381 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
   1382 	}
   1383 	sc->sc_media_status = ifmr->ifm_status;
   1384 	sc->sc_media_active = ifmr->ifm_active;
   1385 }
   1386 
   1387 #ifdef KSE_EVENT_COUNTERS
   1388 static void
   1389 stat_tick(void *arg)
   1390 {
   1391 	struct kse_softc *sc = arg;
   1392 	struct ksext *ee = &sc->sc_ext;
   1393 	int nport, p, i, val;
   1394 
   1395 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1396 	for (p = 0; p < nport; p++) {
   1397 		for (i = 0; i < 32; i++) {
   1398 			val = 0x1c00 | (p * 0x20 + i);
   1399 			CSR_WRITE_2(sc, IACR, val);
   1400 			do {
   1401 				val = CSR_READ_2(sc, IADR5) << 16;
   1402 			} while ((val & (1U << 30)) == 0);
   1403 			if (val & (1U << 31)) {
   1404 				(void)CSR_READ_2(sc, IADR4);
   1405 				val = 0x3fffffff; /* has made overflow */
   1406 			}
   1407 			else {
   1408 				val &= 0x3fff0000;		/* 29:16 */
   1409 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1410 			}
   1411 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1412 		}
   1413 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1414 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1415 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1416 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1417 	}
   1418 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
   1419 }
   1420 
   1421 static void
   1422 zerostats(struct kse_softc *sc)
   1423 {
   1424 	struct ksext *ee = &sc->sc_ext;
   1425 	int nport, p, i, val;
   1426 
   1427 	/* make sure all the HW counters get zero */
   1428 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1429 	for (p = 0; p < nport; p++) {
   1430 		for (i = 0; i < 31; i++) {
   1431 			val = 0x1c00 | (p * 0x20 + i);
   1432 			CSR_WRITE_2(sc, IACR, val);
   1433 			do {
   1434 				val = CSR_READ_2(sc, IADR5) << 16;
   1435 			} while ((val & (1U << 30)) == 0);
   1436 			(void)CSR_READ_2(sc, IADR4);
   1437 			ee->pev[p][i].ev_count = 0;
   1438 		}
   1439 	}
   1440 }
   1441 #endif
   1442