Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.3
      1 /*	$NetBSD: if_kse.c,v 1.3 2007/03/04 06:02:20 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Tohru Nishimura
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by Tohru Nishimura.
     17  * 4. The name of the author may not be used to endorse or promote products
     18  *    derived from this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.3 2007/03/04 06:02:20 christos Exp $");
     34 
     35 #include "bpfilter.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/callout.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/malloc.h>
     42 #include <sys/kernel.h>
     43 #include <sys/ioctl.h>
     44 #include <sys/errno.h>
     45 #include <sys/device.h>
     46 #include <sys/queue.h>
     47 
     48 #include <machine/endian.h>
     49 #include <machine/bus.h>
     50 #include <machine/intr.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_media.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 
     57 #if NBPFILTER > 0
     58 #include <net/bpf.h>
     59 #endif
     60 
     61 #include <dev/pci/pcivar.h>
     62 #include <dev/pci/pcireg.h>
     63 #include <dev/pci/pcidevs.h>
     64 
     65 #define CSR_READ_4(sc, off) \
     66 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     67 #define CSR_WRITE_4(sc, off, val) \
     68 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     69 #define CSR_READ_2(sc, off) \
     70 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     71 #define CSR_WRITE_2(sc, off, val) \
     72 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     73 
     74 #define MDTXC	0x000	/* DMA transmit control */
     75 #define MDRXC	0x004	/* DMA receive control */
     76 #define MDTSC	0x008	/* DMA transmit start */
     77 #define MDRSC	0x00c	/* DMA receive start */
     78 #define TDLB	0x010	/* transmit descriptor list base */
     79 #define RDLB	0x014	/* receive descriptor list base */
     80 #define INTEN	0x028	/* interrupt enable */
     81 #define INTST	0x02c	/* interrupt status */
     82 #define MARL	0x200	/* MAC address low */
     83 #define MARM	0x202	/* MAC address middle */
     84 #define MARH	0x204	/* MAC address high */
     85 #define GRR	0x216	/* global reset */
     86 #define CIDR	0x400	/* chip ID and enable */
     87 #define CGCR	0x40a	/* chip global control */
     88 #define P1CR4	0x512	/* port 1 control 4 */
     89 #define P1SR	0x514	/* port 1 status */
     90 
     91 #define TXC_BS_MSK	0x3f000000	/* burst size */
     92 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
     93 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
     94 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
     95 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
     96 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
     97 #define TXC_EP		(1U<<2)		/* enable automatic padding */
     98 #define TXC_AC		(1U<<1)		/* add CRC to frame */
     99 #define TXC_TEN		(1)		/* enable DMA to run */
    100 
    101 #define RXC_BS_MSK	0x3f000000	/* burst size */
    102 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    103 #define RXC_UCG		(1U<<18)	/* run UDP checksum */
    104 #define RXC_TCG		(1U<<17)	/* run TDP checksum */
    105 #define RXC_ICG		(1U<<16)	/* run IP checksum */
    106 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    107 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    108 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    109 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    110 #define RXC_RE		(1U<<3)		/* accept error frame */
    111 #define RXC_RA		(1U<<2)		/* receive all frame */
    112 #define RXC_MA		(1U<<1)		/* receive through hash filter */
    113 #define RXC_REN		(1)		/* enable DMA to run */
    114 
    115 #define INT_DMLCS	(1U<<31)	/* link status change */
    116 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    117 #define INT_DMRS	(1U<<29)	/* frame was received */
    118 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    119 
    120 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    121 
    122 #define R0_OWN		(1U<<31)	/* desc is empty */
    123 #define R0_FS		(1U<<30)	/* first segment of frame */
    124 #define R0_LS		(1U<<29)	/* last segment of frame */
    125 #define R0_IPE		(1U<<28)	/* IP checksum error */
    126 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    127 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    128 #define R0_ES		(1U<<25)	/* error summary */
    129 #define R0_MF		(1U<<24)	/* multicast frame */
    130 #define R0_RE		(1U<<19)	/* framing error */
    131 #define R0_TL		(1U<<18)	/* too long frame */
    132 #define R0_RF		(1U<<17)	/* damaged runt frame */
    133 #define R0_CE		(1U<<16)	/* CRC error */
    134 #define R0_FT		(1U<<15)	/* frame type */
    135 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    136 
    137 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    138 #define T1_FS		(1U<<30)	/* first segment of frame */
    139 #define T1_LS		(1U<<29)	/* last segment of frame */
    140 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    141 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    142 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    143 #define T1_TER		(1U<<25)	/* end of ring */
    144 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    145 
    146 #define R1_RER		(1U<<25)	/* end of ring */
    147 #define R1_RBS_MASK	0x7ff		/* segment size 10:0 */
    148 
    149 #define KSE_NTXSEGS		16
    150 #define KSE_TXQUEUELEN		64
    151 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    152 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    153 #define KSE_NTXDESC		256
    154 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    155 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    156 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    157 
    158 #define KSE_NRXDESC		64
    159 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    160 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    161 
    162 struct tdes {
    163 	uint32_t t0, t1, t2, t3;
    164 };
    165 
    166 struct rdes {
    167 	uint32_t r0, r1, r2, r3;
    168 };
    169 
    170 struct kse_control_data {
    171 	struct tdes kcd_txdescs[KSE_NTXDESC];
    172 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    173 };
    174 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    175 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    176 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    177 
    178 struct kse_txsoft {
    179 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    180 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    181 	int txs_firstdesc;		/* first descriptor in packet */
    182 	int txs_lastdesc;		/* last descriptor in packet */
    183 	int txs_ndesc;			/* # of descriptors used */
    184 };
    185 
    186 struct kse_rxsoft {
    187 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    188 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    189 };
    190 
    191 struct kse_softc {
    192 	struct device sc_dev;		/* generic device information */
    193 	bus_space_tag_t sc_st;		/* bus space tag */
    194 	bus_space_handle_t sc_sh;	/* bus space handle */
    195 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    196 	struct ethercom sc_ethercom;	/* Ethernet common data */
    197 	void *sc_ih;			/* interrupt cookie */
    198 
    199 	struct ifmedia sc_media;	/* ifmedia information */
    200 	int sc_media_status;		/* PHY */
    201 	int sc_media_active;		/* PHY */
    202 	struct callout sc_callout;	/* tick callout */
    203 
    204 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    205 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    206 
    207 	struct kse_control_data *sc_control_data;
    208 #define sc_txdescs      sc_control_data->kcd_txdescs
    209 #define sc_rxdescs      sc_control_data->kcd_rxdescs
    210 
    211 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    212 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    213 	int sc_txfree;			/* number of free Tx descriptors */
    214 	int sc_txnext;			/* next ready Tx descriptor */
    215 	int sc_txsfree;			/* number of free Tx jobs */
    216 	int sc_txsnext;			/* next ready Tx job */
    217 	int sc_txsdirty;		/* dirty Tx jobs */
    218 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    219 
    220 	uint32_t sc_txc, sc_rxc;
    221 	uint32_t sc_t1csum;
    222 	int sc_mcsum;
    223 	uint32_t sc_chip;
    224 };
    225 
    226 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    227 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    228 
    229 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    230 do {									\
    231 	int __x, __n;							\
    232 									\
    233 	__x = (x);							\
    234 	__n = (n);							\
    235 									\
    236 	/* If it will wrap around, sync to the end of the ring. */	\
    237 	if ((__x + __n) > KSE_NTXDESC) {				\
    238 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    239 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    240 		    (KSE_NTXDESC - __x), (ops));			\
    241 		__n -= (KSE_NTXDESC - __x);				\
    242 		__x = 0;						\
    243 	}								\
    244 									\
    245 	/* Now sync whatever is left. */				\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    248 } while (/*CONSTCOND*/0)
    249 
    250 #define KSE_CDRXSYNC(sc, x, ops)					\
    251 do {									\
    252 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    253 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    254 } while (/*CONSTCOND*/0)
    255 
    256 #define KSE_INIT_RXDESC(sc, x)						\
    257 do {									\
    258 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    259 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    260 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    261 									\
    262 	/*								\
    263 	 * Note: may be able to scoot the packet forward 2 bytes for	\
    264 	 * the alignment. Unclear KS8842 Rx DMA really mandates to have	\
    265 	 * 32-bit buffer boundary. Tx DMA has no alignment limitation.	\
    266 	 */								\
    267 	__m->m_data = __m->m_ext.ext_buf;				\
    268 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    269 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    270 	__rxd->r0 = R0_OWN;						\
    271 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    272 } while (/*CONSTCOND*/0)
    273 
    274 u_int kse_burstsize = 16;	/* DMA burst length tuning knob */
    275 
    276 #ifdef KSEDIAGNOSTIC
    277 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    278 #endif
    279 
    280 static int kse_match(struct device *, struct cfdata *, void *);
    281 static void kse_attach(struct device *, struct device *, void *);
    282 
    283 CFATTACH_DECL(kse, sizeof(struct kse_softc),
    284     kse_match, kse_attach, NULL, NULL);
    285 
    286 static int kse_ioctl(struct ifnet *, u_long, void *);
    287 static void kse_start(struct ifnet *);
    288 static void kse_watchdog(struct ifnet *);
    289 static int kse_init(struct ifnet *);
    290 static void kse_stop(struct ifnet *, int);
    291 static void kse_reset(struct kse_softc *);
    292 static void kse_set_filter(struct kse_softc *);
    293 static int add_rxbuf(struct kse_softc *, int);
    294 static void rxdrain(struct kse_softc *);
    295 static int kse_intr(void *);
    296 static void rxintr(struct kse_softc *);
    297 static void txreap(struct kse_softc *);
    298 static void lnkchg(struct kse_softc *);
    299 static int ifmedia_upd(struct ifnet *);
    300 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
    301 static void phy_tick(void *);
    302 
    303 static int
    304 kse_match(struct device *parent, struct cfdata *match, void *aux)
    305 {
    306 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    307 
    308 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    309 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    310 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    311 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    312 		return 1;
    313 
    314 	return 0;
    315 }
    316 
    317 static void
    318 kse_attach(struct device *parent, struct device *self, void *aux)
    319 {
    320 	struct kse_softc *sc = (struct kse_softc *)self;
    321 	struct pci_attach_args *pa = aux;
    322 	pci_chipset_tag_t pc = pa->pa_pc;
    323 	pci_intr_handle_t ih;
    324 	const char *intrstr;
    325 	struct ifnet *ifp;
    326 	uint8_t enaddr[ETHER_ADDR_LEN];
    327 	bus_dma_segment_t seg;
    328 	int error, i, nseg;
    329 	pcireg_t pmode;
    330 	int pmreg;
    331 
    332 	if (pci_mapreg_map(pa, 0x10,
    333 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    334 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    335 		printf(": unable to map device registers\n");
    336 		return;
    337 	}
    338 
    339 	sc->sc_dmat = pa->pa_dmat;
    340 
    341 	/* Make sure bus mastering is enabled. */
    342 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    343 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    344 	    PCI_COMMAND_MASTER_ENABLE);
    345 
    346 	/* Get it out of power save mode, if needed. */
    347 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    348 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    349 		    PCI_PMCSR_STATE_MASK;
    350 		if (pmode == PCI_PMCSR_STATE_D3) {
    351 			/*
    352 			 * The card has lost all configuration data in
    353 			 * this state, so punt.
    354 			 */
    355 			printf("%s: unable to wake from power state D3\n",
    356 			    sc->sc_dev.dv_xname);
    357 			return;
    358 		}
    359 		if (pmode != PCI_PMCSR_STATE_D0) {
    360 			printf("%s: waking up from power date D%d\n",
    361 			    sc->sc_dev.dv_xname, pmode);
    362 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    363 			    PCI_PMCSR_STATE_D0);
    364 		}
    365 	}
    366 
    367 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    368 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    369 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    370 
    371 	/*
    372 	 * Read the Ethernet address from the EEPROM.
    373 	 */
    374 	i = CSR_READ_2(sc, MARL);
    375 	enaddr[5] = i; enaddr[4] = i >> 8;
    376 	i = CSR_READ_2(sc, MARM);
    377 	enaddr[3] = i; enaddr[2] = i >> 8;
    378 	i = CSR_READ_2(sc, MARH);
    379 	enaddr[1] = i; enaddr[0] = i >> 8;
    380 	printf("%s: Ethernet address: %s\n",
    381 		sc->sc_dev.dv_xname, ether_sprintf(enaddr));
    382 
    383 	/*
    384 	 * Enable chip function.
    385 	 */
    386 	CSR_WRITE_2(sc, CIDR, 1);
    387 
    388 	/*
    389 	 * Map and establish our interrupt.
    390 	 */
    391 	if (pci_intr_map(pa, &ih)) {
    392 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    393 		return;
    394 	}
    395 	intrstr = pci_intr_string(pc, ih);
    396 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
    397 	if (sc->sc_ih == NULL) {
    398 		printf("%s: unable to establish interrupt",
    399 		    sc->sc_dev.dv_xname);
    400 		if (intrstr != NULL)
    401 			printf(" at %s", intrstr);
    402 		printf("\n");
    403 		return;
    404 	}
    405 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    406 
    407 	/*
    408 	 * Allocate the control data structures, and create and load the
    409 	 * DMA map for it.
    410 	 */
    411 	error = bus_dmamem_alloc(sc->sc_dmat,
    412 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    413 	if (error != 0) {
    414 		printf("%s: unable to allocate control data, error = %d\n",
    415 		    sc->sc_dev.dv_xname, error);
    416 		goto fail_0;
    417 	}
    418 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    419 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    420 	    BUS_DMA_COHERENT);
    421 	if (error != 0) {
    422 		printf("%s: unable to map control data, error = %d\n",
    423 		    sc->sc_dev.dv_xname, error);
    424 		goto fail_1;
    425 	}
    426 	error = bus_dmamap_create(sc->sc_dmat,
    427 	    sizeof(struct kse_control_data), 1,
    428 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    429 	if (error != 0) {
    430 		printf("%s: unable to create control data DMA map, "
    431 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    432 		goto fail_2;
    433 	}
    434 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    435 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    436 	if (error != 0) {
    437 		printf("%s: unable to load control data DMA map, error = %d\n",
    438 		    sc->sc_dev.dv_xname, error);
    439 		goto fail_3;
    440 	}
    441 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    442 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    443 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    444 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    445 			printf("%s: unable to create tx DMA map %d, "
    446 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    447 			goto fail_4;
    448 		}
    449 	}
    450 	for (i = 0; i < KSE_NRXDESC; i++) {
    451 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    452 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    453 			printf("%s: unable to create rx DMA map %d, "
    454 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    455 			goto fail_5;
    456 		}
    457 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    458 	}
    459 
    460 	callout_init(&sc->sc_callout);
    461 
    462 	ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
    463 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
    464 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    465 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
    466 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    467 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    468 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    469 
    470 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    471 	    sc->sc_dev.dv_xname);
    472 
    473 	ifp = &sc->sc_ethercom.ec_if;
    474 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    475 	ifp->if_softc = sc;
    476 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    477 	ifp->if_ioctl = kse_ioctl;
    478 	ifp->if_start = kse_start;
    479 	ifp->if_watchdog = kse_watchdog;
    480 	ifp->if_init = kse_init;
    481 	ifp->if_stop = kse_stop;
    482 	IFQ_SET_READY(&ifp->if_snd);
    483 
    484 	/*
    485 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    486 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    487 	 */
    488 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    489 	ifp->if_capabilities |=
    490 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    491 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    492 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    493 
    494 	if_attach(ifp);
    495 	ether_ifattach(ifp, enaddr);
    496 	return;
    497 
    498  fail_5:
    499 	for (i = 0; i < KSE_NRXDESC; i++) {
    500 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    501 			bus_dmamap_destroy(sc->sc_dmat,
    502 			    sc->sc_rxsoft[i].rxs_dmamap);
    503 	}
    504  fail_4:
    505 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    506 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    507 			bus_dmamap_destroy(sc->sc_dmat,
    508 			    sc->sc_txsoft[i].txs_dmamap);
    509 	}
    510 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    511  fail_3:
    512 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    513  fail_2:
    514 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    515 	    sizeof(struct kse_control_data));
    516  fail_1:
    517 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    518  fail_0:
    519 	return;
    520 }
    521 
    522 static int
    523 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    524 {
    525 	struct kse_softc *sc = ifp->if_softc;
    526 	struct ifreq *ifr = (struct ifreq *)data;
    527 	int s, error;
    528 
    529 	s = splnet();
    530 
    531 	switch (cmd) {
    532 	case SIOCSIFMEDIA:
    533 	case SIOCGIFMEDIA:
    534 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    535 		break;
    536 
    537 	default:
    538 		error = ether_ioctl(ifp, cmd, data);
    539 		if (cmd == ENETRESET) {
    540 			/*
    541 			 * Multicast list has changed; set the hardware filter
    542 			 * accordingly.
    543 			 */
    544 			kse_set_filter(sc);
    545 			error = 0;
    546 		}
    547 		break;
    548 	}
    549 
    550 	kse_start(ifp);
    551 
    552 	splx(s);
    553 	return error;
    554 }
    555 
    556 #define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
    557 
    558 static int
    559 kse_init(struct ifnet *ifp)
    560 {
    561 	struct kse_softc *sc = ifp->if_softc;
    562 	uint32_t paddr;
    563 	int i, error = 0;
    564 
    565 	/* cancel pending I/O */
    566 	kse_stop(ifp, 0);
    567 
    568 	/* reset all registers but PCI configuration */
    569 	kse_reset(sc);
    570 
    571 	/* craft Tx descriptor ring */
    572 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    573 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    574 		sc->sc_txdescs[i].t3 = paddr;
    575 		paddr += sizeof(struct tdes);
    576 	}
    577 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    578 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    579 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    580 	sc->sc_txfree = KSE_NTXDESC;
    581 	sc->sc_txnext = 0;
    582 
    583 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    584 		sc->sc_txsoft[i].txs_mbuf = NULL;
    585 	sc->sc_txsfree = KSE_TXQUEUELEN;
    586 	sc->sc_txsnext = 0;
    587 	sc->sc_txsdirty = 0;
    588 
    589 	/* craft Rx descriptor ring */
    590 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    591 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    592 		sc->sc_rxdescs[i].r3 = paddr;
    593 		paddr += sizeof(struct rdes);
    594 	}
    595 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    596 	for (i = 0; i < KSE_NRXDESC; i++) {
    597 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    598 			if ((error = add_rxbuf(sc, i)) != 0) {
    599 				printf("%s: unable to allocate or map rx "
    600 				    "buffer %d, error = %d\n",
    601 				     sc->sc_dev.dv_xname, i, error);
    602 				rxdrain(sc);
    603 				goto out;
    604 			}
    605 		}
    606 		else
    607 			KSE_INIT_RXDESC(sc, i);
    608 	}
    609 	sc->sc_rxptr = 0;
    610 
    611 	/* hand Tx/Rx rings to HW */
    612 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    613 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    614 
    615 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    616 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    617 	if (ifp->if_flags & IFF_PROMISC)
    618 		sc->sc_rxc |= RXC_RA;
    619 	if (ifp->if_flags & IFF_BROADCAST)
    620 		sc->sc_rxc |= RXC_RB;
    621 
    622 	sc->sc_t1csum = sc->sc_mcsum = 0;
    623 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    624 		sc->sc_rxc |= RXC_ICG;
    625 		sc->sc_mcsum |= M_CSUM_IPv4;
    626 	}
    627 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    628 		sc->sc_txc |= TXC_ICG;
    629 		sc->sc_t1csum |= T1_IPCKG;
    630 	}
    631 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    632 		sc->sc_rxc |= RXC_TCG;
    633 		sc->sc_mcsum |= M_CSUM_TCPv4;
    634 	}
    635 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    636 		sc->sc_txc |= TXC_TCG;
    637 		sc->sc_t1csum |= T1_TCPCKG;
    638 	}
    639 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    640 		sc->sc_rxc |= RXC_UCG;
    641 		sc->sc_mcsum |= M_CSUM_UDPv4;
    642 	}
    643 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    644 		sc->sc_txc |= TXC_UCG;
    645 		sc->sc_t1csum |= T1_UDPCKG;
    646 	}
    647 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    648 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    649 
    650 	/* set current media */
    651 	(void)ifmedia_upd(ifp);
    652 
    653 	/* enable transmitter and receiver */
    654 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    655 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    656 	CSR_WRITE_4(sc, MDRSC, 1);
    657 
    658 	/* enable interrupts */
    659 	CSR_WRITE_4(sc, INTST, ~0);
    660 	CSR_WRITE_4(sc, INTEN, KSE_INTRS);
    661 
    662 	ifp->if_flags |= IFF_RUNNING;
    663 	ifp->if_flags &= ~IFF_OACTIVE;
    664 
    665 	/* start one second timer */
    666 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    667 
    668  out:
    669 	if (error) {
    670 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    671 		ifp->if_timer = 0;
    672 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
    673 	}
    674 	return error;
    675 }
    676 
    677 static void
    678 kse_stop(struct ifnet *ifp, int disable)
    679 {
    680 	struct kse_softc *sc = ifp->if_softc;
    681 	struct kse_txsoft *txs;
    682 	int i;
    683 
    684 	callout_stop(&sc->sc_callout);
    685 
    686 	sc->sc_txc &= ~TXC_TEN;
    687 	sc->sc_rxc &= ~RXC_REN;
    688 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    689 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    690 
    691 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    692 		txs = &sc->sc_txsoft[i];
    693 		if (txs->txs_mbuf != NULL) {
    694 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    695 			m_freem(txs->txs_mbuf);
    696 			txs->txs_mbuf = NULL;
    697 		}
    698 	}
    699 
    700 	if (disable)
    701 		rxdrain(sc);
    702 
    703 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    704 	ifp->if_timer = 0;
    705 }
    706 
    707 static void
    708 kse_reset(struct kse_softc *sc)
    709 {
    710 
    711 	CSR_WRITE_2(sc, GRR, 1);
    712 	delay(1000); /* PDF does not mention the delay amount */
    713 	CSR_WRITE_2(sc, GRR, 0);
    714 
    715 	CSR_WRITE_2(sc, CIDR, 1);
    716 }
    717 
    718 static void
    719 kse_watchdog(struct ifnet *ifp)
    720 {
    721 	struct kse_softc *sc = ifp->if_softc;
    722 
    723 	/*
    724 	 * Since we're not interrupting every packet, sweep
    725 	 * up before we report an error.
    726 	 */
    727 	txreap(sc);
    728 
    729 	if (sc->sc_txfree != KSE_NTXDESC) {
    730 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    731 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
    732 		    sc->sc_txnext);
    733 		ifp->if_oerrors++;
    734 
    735 		/* Reset the interface. */
    736 		kse_init(ifp);
    737 	}
    738 	else if (ifp->if_flags & IFF_DEBUG)
    739 		printf("%s: recovered from device timeout\n",
    740 		    sc->sc_dev.dv_xname);
    741 
    742 	/* Try to get more packets going. */
    743 	kse_start(ifp);
    744 }
    745 
    746 static void
    747 kse_start(struct ifnet *ifp)
    748 {
    749 	struct kse_softc *sc = ifp->if_softc;
    750 	struct mbuf *m0;
    751 	struct kse_txsoft *txs;
    752 	bus_dmamap_t dmamap;
    753 	int error, nexttx, lasttx, ofree, seg;
    754 
    755 	lasttx = -1;
    756 
    757 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    758 		return;
    759 
    760 	/*
    761 	 * Remember the previous number of free descriptors.
    762 	 */
    763 	ofree = sc->sc_txfree;
    764 
    765 	/*
    766 	 * Loop through the send queue, setting up transmit descriptors
    767 	 * until we drain the queue, or use up all available transmit
    768 	 * descriptors.
    769 	 */
    770 	for (;;) {
    771 		IFQ_POLL(&ifp->if_snd, m0);
    772 		if (m0 == NULL)
    773 			break;
    774 
    775 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    776 			txreap(sc);
    777 			if (sc->sc_txsfree == 0)
    778 				break;
    779 		}
    780 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    781 		dmamap = txs->txs_dmamap;
    782 
    783 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    784 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    785 		if (error) {
    786 			if (error == EFBIG) {
    787 				printf("%s: Tx packet consumes too many "
    788 				    "DMA segments, dropping...\n",
    789 				    sc->sc_dev.dv_xname);
    790 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    791 				    m_freem(m0);
    792 				    continue;
    793 			}
    794 			/* Short on resources, just stop for now. */
    795 			break;
    796 		}
    797 
    798 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    799 			/*
    800 			 * Not enough free descriptors to transmit this
    801 			 * packet.  We haven't committed anything yet,
    802 			 * so just unload the DMA map, put the packet
    803 			 * back on the queue, and punt.	 Notify the upper
    804 			 * layer that there are not more slots left.
    805 			 */
    806 			ifp->if_flags |= IFF_OACTIVE;
    807 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    808 			break;
    809 		}
    810 
    811 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    812 
    813 		/*
    814 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    815 		 */
    816 
    817 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    818 		    BUS_DMASYNC_PREWRITE);
    819 
    820 		for (nexttx = sc->sc_txnext, seg = 0;
    821 		     seg < dmamap->dm_nsegs;
    822 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    823 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    824 			/*
    825 			 * If this is the first descriptor we're
    826 			 * enqueueing, don't set the OWN bit just
    827 			 * yet.	 That could cause a race condition.
    828 			 * We'll do it below.
    829 			 */
    830 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    831 			tdes->t1 = sc->sc_t1csum
    832 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    833 			if (nexttx != sc->sc_txnext)
    834 				tdes->t0 = T0_OWN;
    835 			lasttx = nexttx;
    836 		}
    837 #if 0
    838 		/*
    839 		 * T1_IC bit could schedule Tx frame done interrupt here,
    840 		 * but this driver takes a "shoot away" Tx strategy.
    841 		 */
    842 #else
    843     {
    844 		/*
    845 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    846 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    847 		 * time and NFS stops to proceed until kse_watchdog()
    848 		 * calls txreap() to reclaim the unack'ed mbuf.
    849 		 * It's painful to tranverse every mbuf chain to determine
    850 		 * whether someone is waiting for Tx completion.
    851 		 */
    852 		struct mbuf *m = m0;
    853 		do {
    854 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    855 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    856 				break;
    857 			}
    858 		} while ((m = m->m_next) != NULL);
    859     }
    860 #endif
    861 
    862 		/* write last T0_OWN bit of the 1st segment */
    863 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    864 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    865 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
    866 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    867 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    868 
    869 		/* tell DMA start transmit */
    870 		CSR_WRITE_4(sc, MDTSC, 1);
    871 
    872 		txs->txs_mbuf = m0;
    873 		txs->txs_firstdesc = sc->sc_txnext;
    874 		txs->txs_lastdesc = lasttx;
    875 		txs->txs_ndesc = dmamap->dm_nsegs;
    876 
    877 		sc->sc_txfree -= txs->txs_ndesc;
    878 		sc->sc_txnext = nexttx;
    879 		sc->sc_txsfree--;
    880 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
    881 #if NBPFILTER > 0
    882 		/*
    883 		 * Pass the packet to any BPF listeners.
    884 		 */
    885 		if (ifp->if_bpf)
    886 			bpf_mtap(ifp->if_bpf, m0);
    887 #endif /* NBPFILTER > 0 */
    888 	}
    889 
    890 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
    891 		/* No more slots left; notify upper layer. */
    892 		ifp->if_flags |= IFF_OACTIVE;
    893 	}
    894 	if (sc->sc_txfree != ofree) {
    895 		/* Set a watchdog timer in case the chip flakes out. */
    896 		ifp->if_timer = 5;
    897 	}
    898 }
    899 
    900 static void
    901 kse_set_filter(struct kse_softc *sc)
    902 {
    903 #if 0 /* later */
    904 	struct ether_multistep step;
    905 	struct ether_multi *enm;
    906 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    907 	int cnt = 0;
    908 
    909 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    910 	while (enm != NULL) {
    911 		if (memcmp(enm->enm_addrlo,
    912 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
    913 			;
    914 		}
    915 		ETHER_NEXT_MULTI(step, enm);
    916 		cnt++;
    917 	}
    918 	return;
    919 #endif
    920 }
    921 
    922 static int
    923 add_rxbuf(struct kse_softc *sc, int idx)
    924 {
    925 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
    926 	struct mbuf *m;
    927 	int error;
    928 
    929 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    930 	if (m == NULL)
    931 		return ENOBUFS;
    932 
    933 	MCLGET(m, M_DONTWAIT);
    934 	if ((m->m_flags & M_EXT) == 0) {
    935 		m_freem(m);
    936 		return ENOBUFS;
    937 	}
    938 
    939 	if (rxs->rxs_mbuf != NULL)
    940 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
    941 
    942 	rxs->rxs_mbuf = m;
    943 
    944 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
    945 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    946 	if (error) {
    947 		printf("%s: can't load rx DMA map %d, error = %d\n",
    948 		    sc->sc_dev.dv_xname, idx, error);
    949 		panic("kse_add_rxbuf");
    950 	}
    951 
    952 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
    953 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    954 
    955 	KSE_INIT_RXDESC(sc, idx);
    956 
    957 	return 0;
    958 }
    959 
    960 static void
    961 rxdrain(struct kse_softc *sc)
    962 {
    963 	struct kse_rxsoft *rxs;
    964 	int i;
    965 
    966 	for (i = 0; i < KSE_NRXDESC; i++) {
    967 		rxs = &sc->sc_rxsoft[i];
    968 		if (rxs->rxs_mbuf != NULL) {
    969 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
    970 			m_freem(rxs->rxs_mbuf);
    971 			rxs->rxs_mbuf = NULL;
    972 		}
    973 	}
    974 }
    975 
    976 static int
    977 kse_intr(void *arg)
    978 {
    979 	struct kse_softc *sc = arg;
    980 	uint32_t isr;
    981 
    982 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
    983 		return 0;
    984 
    985 	if (isr & INT_DMRS)
    986 		rxintr(sc);
    987 	if (isr & INT_DMTS)
    988 		txreap(sc);
    989 	if (isr & INT_DMLCS)
    990 		lnkchg(sc);
    991 	if (isr & INT_DMRBUS)
    992 		printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
    993 
    994 	CSR_WRITE_4(sc, INTST, isr);
    995 	return 1;
    996 }
    997 
    998 static void
    999 rxintr(struct kse_softc *sc)
   1000 {
   1001 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1002 	struct kse_rxsoft *rxs;
   1003 	struct mbuf *m;
   1004 	uint32_t rxstat;
   1005 	int i, len;
   1006 
   1007 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1008 		rxs = &sc->sc_rxsoft[i];
   1009 
   1010 		KSE_CDRXSYNC(sc, i,
   1011 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1012 
   1013 		rxstat = sc->sc_rxdescs[i].r0;
   1014 
   1015 		if (rxstat & R0_OWN) /* desc is left empty */
   1016 			break;
   1017 
   1018 		/* R0_FS|R0_LS must have been marked for this desc */
   1019 
   1020 		if (rxstat & R0_ES) {
   1021 			ifp->if_ierrors++;
   1022 #define PRINTERR(bit, str)						\
   1023 			if (rxstat & (bit))				\
   1024 				printf("%s: receive error: %s\n",	\
   1025 				    sc->sc_dev.dv_xname, str)
   1026 			PRINTERR(R0_TL, "frame too long");
   1027 			PRINTERR(R0_RF, "runt frame");
   1028 			PRINTERR(R0_CE, "bad FCS");
   1029 #undef PRINTERR
   1030 			KSE_INIT_RXDESC(sc, i);
   1031 			continue;
   1032 		}
   1033 
   1034 		/* HW errata; frame might be too small or too large */
   1035 
   1036 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1037 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1038 
   1039 		len = rxstat & R0_FL_MASK;
   1040 		len -= ETHER_CRC_LEN;	/* trim CRC off */
   1041 		m = rxs->rxs_mbuf;
   1042 
   1043 		if (add_rxbuf(sc, i) != 0) {
   1044 			ifp->if_ierrors++;
   1045 			KSE_INIT_RXDESC(sc, i);
   1046 			bus_dmamap_sync(sc->sc_dmat,
   1047 			    rxs->rxs_dmamap, 0,
   1048 			    rxs->rxs_dmamap->dm_mapsize,
   1049 			    BUS_DMASYNC_PREREAD);
   1050 			continue;
   1051 		}
   1052 
   1053 		ifp->if_ipackets++;
   1054 		m->m_pkthdr.rcvif = ifp;
   1055 		m->m_pkthdr.len = m->m_len = len;
   1056 
   1057 		if (sc->sc_mcsum) {
   1058 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1059 			if (rxstat & R0_IPE)
   1060 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1061 			if (rxstat & (R0_TCPE | R0_UDPE))
   1062 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1063 		}
   1064 #if NBPFILTER > 0
   1065 		if (ifp->if_bpf)
   1066 			bpf_mtap(ifp->if_bpf, m);
   1067 #endif /* NBPFILTER > 0 */
   1068 		(*ifp->if_input)(ifp, m);
   1069 #ifdef KSEDIAGNOSTIC
   1070 		if (kse_monitor_rxintr > 0) {
   1071 			printf("m stat %x data %p len %d\n",
   1072 			    rxstat, m->m_data, m->m_len);
   1073 		}
   1074 #endif
   1075 	}
   1076 	sc->sc_rxptr = i;
   1077 }
   1078 
   1079 static void
   1080 txreap(struct kse_softc *sc)
   1081 {
   1082 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1083 	struct kse_txsoft *txs;
   1084 	uint32_t txstat;
   1085 	int i;
   1086 
   1087 	ifp->if_flags &= ~IFF_OACTIVE;
   1088 
   1089 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1090 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1091 		txs = &sc->sc_txsoft[i];
   1092 
   1093 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1094 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1095 
   1096 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1097 
   1098 		if (txstat & T0_OWN) /* desc is still in use */
   1099 			break;
   1100 
   1101 		/* there is no way to tell transmission status per frame */
   1102 
   1103 		ifp->if_opackets++;
   1104 
   1105 		sc->sc_txfree += txs->txs_ndesc;
   1106 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1107 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1108 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1109 		m_freem(txs->txs_mbuf);
   1110 		txs->txs_mbuf = NULL;
   1111 	}
   1112 	sc->sc_txsdirty = i;
   1113 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1114 		ifp->if_timer = 0;
   1115 }
   1116 
   1117 static void
   1118 lnkchg(struct kse_softc *sc)
   1119 {
   1120 	struct ifmediareq ifmr;
   1121 
   1122 #if 0 /* rambling link status */
   1123 	printf("%s: link %s\n", sc->sc_dev.dv_xname,
   1124 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
   1125 #endif
   1126 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1127 }
   1128 
   1129 static int
   1130 ifmedia_upd(struct ifnet *ifp)
   1131 {
   1132 	struct kse_softc *sc = ifp->if_softc;
   1133 	struct ifmedia *ifm = &sc->sc_media;
   1134 	uint16_t ctl;
   1135 
   1136 	ctl = 0;
   1137 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1138 		ctl |= (1U << 13); /* restart AN */
   1139 		ctl |= (1U << 7);  /* enable AN */
   1140 		ctl |= (1U << 4);  /* advertise flow control pause */
   1141 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
   1142 	}
   1143 	else {
   1144 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
   1145 			ctl |= (1U << 6);
   1146 		if (ifm->ifm_media & IFM_FDX)
   1147 			ctl |= (1U << 5);
   1148 	}
   1149 	CSR_WRITE_2(sc, P1CR4, ctl);
   1150 
   1151 	sc->sc_media_active = IFM_NONE;
   1152 	sc->sc_media_status = IFM_AVALID;
   1153 
   1154 	return 0;
   1155 }
   1156 
   1157 static void
   1158 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1159 {
   1160 	struct kse_softc *sc = ifp->if_softc;
   1161 	struct ifmedia *ifm = &sc->sc_media;
   1162 	uint16_t ctl, sts, result;
   1163 
   1164 	ifmr->ifm_status = IFM_AVALID;
   1165 	ifmr->ifm_active = IFM_ETHER;
   1166 
   1167 	ctl = CSR_READ_2(sc, P1CR4);
   1168 	sts = CSR_READ_2(sc, P1SR);
   1169 	if ((sts & (1U << 5)) == 0) {
   1170 		ifmr->ifm_active |= IFM_NONE;
   1171 		goto out; /* link is down */
   1172 	}
   1173 	ifmr->ifm_status |= IFM_ACTIVE;
   1174 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1175 		if ((sts & (1U << 6)) == 0) {
   1176 			ifmr->ifm_active |= IFM_NONE;
   1177 			goto out; /* negotiation in progress */
   1178 		}
   1179 		result = ctl & sts & 017;
   1180 		if (result & (1U << 3))
   1181 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1182 		else if (result & (1U << 2))
   1183 			ifmr->ifm_active |= IFM_100_TX;
   1184 		else if (result & (1U << 1))
   1185 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
   1186 		else if (result & (1U << 0))
   1187 			ifmr->ifm_active |= IFM_10_T;
   1188 		else
   1189 			ifmr->ifm_active |= IFM_NONE;
   1190 		if (ctl & (1U << 4))
   1191 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1192 		if (sts & (1U << 4))
   1193 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1194 	}
   1195 	else {
   1196 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
   1197 		if (sts & (1U << 9))
   1198 			ifmr->ifm_active |= IFM_FDX;
   1199 		if (sts & (1U << 12))
   1200 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1201 		if (sts & (1U << 11))
   1202 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1203 	}
   1204 
   1205   out:
   1206 	sc->sc_media_status = ifmr->ifm_status;
   1207 	sc->sc_media_active = ifmr->ifm_active;
   1208 }
   1209 
   1210 static void
   1211 phy_tick(void *arg)
   1212 {
   1213 	struct kse_softc *sc = arg;
   1214 	struct ifmediareq ifmr;
   1215 	int s;
   1216 
   1217 	s = splnet();
   1218 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1219 	splx(s);
   1220 
   1221 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1222 }
   1223