if_kse.c revision 1.34 1 /* $NetBSD: if_kse.c,v 1.34 2018/12/09 11:14:02 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.34 2018/12/09 11:14:02 jdolecek Exp $");
34
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55
56 #include <net/bpf.h>
57
58 #include <dev/pci/pcivar.h>
59 #include <dev/pci/pcireg.h>
60 #include <dev/pci/pcidevs.h>
61
62 #define CSR_READ_4(sc, off) \
63 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
64 #define CSR_WRITE_4(sc, off, val) \
65 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
66 #define CSR_READ_2(sc, off) \
67 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
68 #define CSR_WRITE_2(sc, off, val) \
69 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
70
71 #define MDTXC 0x000 /* DMA transmit control */
72 #define MDRXC 0x004 /* DMA receive control */
73 #define MDTSC 0x008 /* DMA transmit start */
74 #define MDRSC 0x00c /* DMA receive start */
75 #define TDLB 0x010 /* transmit descriptor list base */
76 #define RDLB 0x014 /* receive descriptor list base */
77 #define MTR0 0x020 /* multicast table 31:0 */
78 #define MTR1 0x024 /* multicast table 63:32 */
79 #define INTEN 0x028 /* interrupt enable */
80 #define INTST 0x02c /* interrupt status */
81 #define MARL 0x200 /* MAC address low */
82 #define MARM 0x202 /* MAC address middle */
83 #define MARH 0x204 /* MAC address high */
84 #define GRR 0x216 /* global reset */
85 #define CIDR 0x400 /* chip ID and enable */
86 #define CGCR 0x40a /* chip global control */
87 #define IACR 0x4a0 /* indirect access control */
88 #define IADR1 0x4a2 /* indirect access data 66:63 */
89 #define IADR2 0x4a4 /* indirect access data 47:32 */
90 #define IADR3 0x4a6 /* indirect access data 63:48 */
91 #define IADR4 0x4a8 /* indirect access data 15:0 */
92 #define IADR5 0x4aa /* indirect access data 31:16 */
93 #define P1CR4 0x512 /* port 1 control 4 */
94 #define P1SR 0x514 /* port 1 status */
95 #define P2CR4 0x532 /* port 2 control 4 */
96 #define P2SR 0x534 /* port 2 status */
97
98 #define TXC_BS_MSK 0x3f000000 /* burst size */
99 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
100 #define TXC_UCG (1U<<18) /* generate UDP checksum */
101 #define TXC_TCG (1U<<17) /* generate TCP checksum */
102 #define TXC_ICG (1U<<16) /* generate IP checksum */
103 #define TXC_FCE (1U<<9) /* enable flowcontrol */
104 #define TXC_EP (1U<<2) /* enable automatic padding */
105 #define TXC_AC (1U<<1) /* add CRC to frame */
106 #define TXC_TEN (1) /* enable DMA to run */
107
108 #define RXC_BS_MSK 0x3f000000 /* burst size */
109 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
110 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
111 #define RXC_UCC (1U<<18) /* run UDP checksum */
112 #define RXC_TCC (1U<<17) /* run TDP checksum */
113 #define RXC_ICC (1U<<16) /* run IP checksum */
114 #define RXC_FCE (1U<<9) /* enable flowcontrol */
115 #define RXC_RB (1U<<6) /* receive broadcast frame */
116 #define RXC_RM (1U<<5) /* receive multicast frame */
117 #define RXC_RU (1U<<4) /* receive unicast frame */
118 #define RXC_RE (1U<<3) /* accept error frame */
119 #define RXC_RA (1U<<2) /* receive all frame */
120 #define RXC_MHTE (1U<<1) /* use multicast hash table */
121 #define RXC_REN (1) /* enable DMA to run */
122
123 #define INT_DMLCS (1U<<31) /* link status change */
124 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
125 #define INT_DMRS (1U<<29) /* frame was received */
126 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
127
128 #define T0_OWN (1U<<31) /* desc is ready to Tx */
129
130 #define R0_OWN (1U<<31) /* desc is empty */
131 #define R0_FS (1U<<30) /* first segment of frame */
132 #define R0_LS (1U<<29) /* last segment of frame */
133 #define R0_IPE (1U<<28) /* IP checksum error */
134 #define R0_TCPE (1U<<27) /* TCP checksum error */
135 #define R0_UDPE (1U<<26) /* UDP checksum error */
136 #define R0_ES (1U<<25) /* error summary */
137 #define R0_MF (1U<<24) /* multicast frame */
138 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
139 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
140 #define R0_RE (1U<<19) /* MII reported error */
141 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
142 #define R0_RF (1U<<17) /* damaged runt frame */
143 #define R0_CE (1U<<16) /* CRC error */
144 #define R0_FT (1U<<15) /* frame type */
145 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
146
147 #define T1_IC (1U<<31) /* post interrupt on complete */
148 #define T1_FS (1U<<30) /* first segment of frame */
149 #define T1_LS (1U<<29) /* last segment of frame */
150 #define T1_IPCKG (1U<<28) /* generate IP checksum */
151 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
152 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
153 #define T1_TER (1U<<25) /* end of ring */
154 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
155 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
156
157 #define R1_RER (1U<<25) /* end of ring */
158 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
159
160 #define KSE_NTXSEGS 16
161 #define KSE_TXQUEUELEN 64
162 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
163 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
164 #define KSE_NTXDESC 256
165 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
166 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
167 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
168
169 #define KSE_NRXDESC 64
170 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
171 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
172
173 struct tdes {
174 uint32_t t0, t1, t2, t3;
175 };
176
177 struct rdes {
178 uint32_t r0, r1, r2, r3;
179 };
180
181 struct kse_control_data {
182 struct tdes kcd_txdescs[KSE_NTXDESC];
183 struct rdes kcd_rxdescs[KSE_NRXDESC];
184 };
185 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
186 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
187 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
188
189 struct kse_txsoft {
190 struct mbuf *txs_mbuf; /* head of our mbuf chain */
191 bus_dmamap_t txs_dmamap; /* our DMA map */
192 int txs_firstdesc; /* first descriptor in packet */
193 int txs_lastdesc; /* last descriptor in packet */
194 int txs_ndesc; /* # of descriptors used */
195 };
196
197 struct kse_rxsoft {
198 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t rxs_dmamap; /* our DMA map */
200 };
201
202 struct kse_softc {
203 device_t sc_dev; /* generic device information */
204 bus_space_tag_t sc_st; /* bus space tag */
205 bus_space_handle_t sc_sh; /* bus space handle */
206 bus_dma_tag_t sc_dmat; /* bus DMA tag */
207 struct ethercom sc_ethercom; /* Ethernet common data */
208 void *sc_ih; /* interrupt cookie */
209
210 struct ifmedia sc_media; /* ifmedia information */
211 int sc_media_status; /* PHY */
212 int sc_media_active; /* PHY */
213 callout_t sc_callout; /* MII tick callout */
214 callout_t sc_stat_ch; /* statistics counter callout */
215
216 bus_dmamap_t sc_cddmamap; /* control data DMA map */
217 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
218
219 struct kse_control_data *sc_control_data;
220 #define sc_txdescs sc_control_data->kcd_txdescs
221 #define sc_rxdescs sc_control_data->kcd_rxdescs
222
223 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
224 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
225 int sc_txfree; /* number of free Tx descriptors */
226 int sc_txnext; /* next ready Tx descriptor */
227 int sc_txsfree; /* number of free Tx jobs */
228 int sc_txsnext; /* next ready Tx job */
229 int sc_txsdirty; /* dirty Tx jobs */
230 int sc_rxptr; /* next ready Rx descriptor/descsoft */
231
232 uint32_t sc_txc, sc_rxc;
233 uint32_t sc_t1csum;
234 int sc_mcsum;
235 uint32_t sc_inten;
236
237 uint32_t sc_chip;
238 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
239 uint16_t sc_vlan[16];
240
241 #ifdef KSE_EVENT_COUNTERS
242 struct ksext {
243 char evcntname[3][8];
244 struct evcnt pev[3][34];
245 } sc_ext; /* switch statistics */
246 #endif
247 };
248
249 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
250 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
251
252 #define KSE_CDTXSYNC(sc, x, n, ops) \
253 do { \
254 int __x, __n; \
255 \
256 __x = (x); \
257 __n = (n); \
258 \
259 /* If it will wrap around, sync to the end of the ring. */ \
260 if ((__x + __n) > KSE_NTXDESC) { \
261 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
262 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
263 (KSE_NTXDESC - __x), (ops)); \
264 __n -= (KSE_NTXDESC - __x); \
265 __x = 0; \
266 } \
267 \
268 /* Now sync whatever is left. */ \
269 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
270 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
271 } while (/*CONSTCOND*/0)
272
273 #define KSE_CDRXSYNC(sc, x, ops) \
274 do { \
275 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
276 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
277 } while (/*CONSTCOND*/0)
278
279 #define KSE_INIT_RXDESC(sc, x) \
280 do { \
281 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
282 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
283 struct mbuf *__m = __rxs->rxs_mbuf; \
284 \
285 __m->m_data = __m->m_ext.ext_buf; \
286 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
287 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
288 __rxd->r0 = R0_OWN; \
289 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (/*CONSTCOND*/0)
291
292 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
293
294 #ifdef KSEDIAGNOSTIC
295 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
296 #endif
297
298 static int kse_match(device_t, cfdata_t, void *);
299 static void kse_attach(device_t, device_t, void *);
300
301 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
302 kse_match, kse_attach, NULL, NULL);
303
304 static int kse_ioctl(struct ifnet *, u_long, void *);
305 static void kse_start(struct ifnet *);
306 static void kse_watchdog(struct ifnet *);
307 static int kse_init(struct ifnet *);
308 static void kse_stop(struct ifnet *, int);
309 static void kse_reset(struct kse_softc *);
310 static void kse_set_filter(struct kse_softc *);
311 static int add_rxbuf(struct kse_softc *, int);
312 static void rxdrain(struct kse_softc *);
313 static int kse_intr(void *);
314 static void rxintr(struct kse_softc *);
315 static void txreap(struct kse_softc *);
316 static void lnkchg(struct kse_softc *);
317 static int ifmedia_upd(struct ifnet *);
318 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
319 static void phy_tick(void *);
320 static int ifmedia2_upd(struct ifnet *);
321 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
322 #ifdef KSE_EVENT_COUNTERS
323 static void stat_tick(void *);
324 static void zerostats(struct kse_softc *);
325 #endif
326
327 static int
328 kse_match(device_t parent, cfdata_t match, void *aux)
329 {
330 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
331
332 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
333 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
334 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
335 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
336 return 1;
337
338 return 0;
339 }
340
341 static void
342 kse_attach(device_t parent, device_t self, void *aux)
343 {
344 struct kse_softc *sc = device_private(self);
345 struct pci_attach_args *pa = aux;
346 pci_chipset_tag_t pc = pa->pa_pc;
347 pci_intr_handle_t ih;
348 const char *intrstr;
349 struct ifnet *ifp;
350 struct ifmedia *ifm;
351 uint8_t enaddr[ETHER_ADDR_LEN];
352 bus_dma_segment_t seg;
353 int i, error, nseg;
354 pcireg_t pmode;
355 int pmreg;
356 char intrbuf[PCI_INTRSTR_LEN];
357
358 if (pci_mapreg_map(pa, 0x10,
359 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
360 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
361 printf(": unable to map device registers\n");
362 return;
363 }
364
365 sc->sc_dev = self;
366 sc->sc_dmat = pa->pa_dmat;
367
368 /* Make sure bus mastering is enabled. */
369 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
370 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
371 PCI_COMMAND_MASTER_ENABLE);
372
373 /* Get it out of power save mode, if needed. */
374 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
375 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
376 PCI_PMCSR_STATE_MASK;
377 if (pmode == PCI_PMCSR_STATE_D3) {
378 /*
379 * The card has lost all configuration data in
380 * this state, so punt.
381 */
382 printf("%s: unable to wake from power state D3\n",
383 device_xname(sc->sc_dev));
384 return;
385 }
386 if (pmode != PCI_PMCSR_STATE_D0) {
387 printf("%s: waking up from power date D%d\n",
388 device_xname(sc->sc_dev), pmode);
389 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
390 PCI_PMCSR_STATE_D0);
391 }
392 }
393
394 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
395 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
396 sc->sc_chip, PCI_REVISION(pa->pa_class));
397
398 /*
399 * Read the Ethernet address from the EEPROM.
400 */
401 i = CSR_READ_2(sc, MARL);
402 enaddr[5] = i; enaddr[4] = i >> 8;
403 i = CSR_READ_2(sc, MARM);
404 enaddr[3] = i; enaddr[2] = i >> 8;
405 i = CSR_READ_2(sc, MARH);
406 enaddr[1] = i; enaddr[0] = i >> 8;
407 printf("%s: Ethernet address %s\n",
408 device_xname(sc->sc_dev), ether_sprintf(enaddr));
409
410 /*
411 * Enable chip function.
412 */
413 CSR_WRITE_2(sc, CIDR, 1);
414
415 /*
416 * Map and establish our interrupt.
417 */
418 if (pci_intr_map(pa, &ih)) {
419 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
420 return;
421 }
422 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
423 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
424 device_xname(self));
425 if (sc->sc_ih == NULL) {
426 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
427 if (intrstr != NULL)
428 aprint_error(" at %s", intrstr);
429 aprint_error("\n");
430 return;
431 }
432 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
433
434 /*
435 * Allocate the control data structures, and create and load the
436 * DMA map for it.
437 */
438 error = bus_dmamem_alloc(sc->sc_dmat,
439 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
440 if (error != 0) {
441 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error);
442 goto fail_0;
443 }
444 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 BUS_DMA_COHERENT);
447 if (error != 0) {
448 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error);
449 goto fail_1;
450 }
451 error = bus_dmamap_create(sc->sc_dmat,
452 sizeof(struct kse_control_data), 1,
453 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
454 if (error != 0) {
455 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
456 "error = %d\n", error);
457 goto fail_2;
458 }
459 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
460 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
461 if (error != 0) {
462 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
463 error);
464 goto fail_3;
465 }
466 for (i = 0; i < KSE_TXQUEUELEN; i++) {
467 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
468 KSE_NTXSEGS, MCLBYTES, 0, 0,
469 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
470 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
471 "error = %d\n", i, error);
472 goto fail_4;
473 }
474 }
475 for (i = 0; i < KSE_NRXDESC; i++) {
476 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
478 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
479 "error = %d\n", i, error);
480 goto fail_5;
481 }
482 sc->sc_rxsoft[i].rxs_mbuf = NULL;
483 }
484
485 callout_init(&sc->sc_callout, 0);
486 callout_init(&sc->sc_stat_ch, 0);
487
488 ifm = &sc->sc_media;
489 if (sc->sc_chip == 0x8841) {
490 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
491 ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
492 ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
493 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
494 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
495 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
496 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
497 }
498 else {
499 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
500 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
501 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
502 }
503
504 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
505 device_xname(sc->sc_dev));
506
507 ifp = &sc->sc_ethercom.ec_if;
508 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 ifp->if_ioctl = kse_ioctl;
512 ifp->if_start = kse_start;
513 ifp->if_watchdog = kse_watchdog;
514 ifp->if_init = kse_init;
515 ifp->if_stop = kse_stop;
516 IFQ_SET_READY(&ifp->if_snd);
517
518 /*
519 * KSZ8842 can handle 802.1Q VLAN-sized frames,
520 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
521 */
522 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
523 ifp->if_capabilities |=
524 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
525 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
526 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
527
528 if_attach(ifp);
529 ether_ifattach(ifp, enaddr);
530
531 #ifdef KSE_EVENT_COUNTERS
532 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
533 for (i = 0; i < p; i++) {
534 struct ksext *ee = &sc->sc_ext;
535 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
536 "%s.%d", device_xname(sc->sc_dev), i+1);
537 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
538 NULL, ee->evcntname[i], "RxLoPriotyByte");
539 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
540 NULL, ee->evcntname[i], "RxHiPriotyByte");
541 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
542 NULL, ee->evcntname[i], "RxUndersizePkt");
543 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
544 NULL, ee->evcntname[i], "RxFragments");
545 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
546 NULL, ee->evcntname[i], "RxOversize");
547 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
548 NULL, ee->evcntname[i], "RxJabbers");
549 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
550 NULL, ee->evcntname[i], "RxSymbolError");
551 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
552 NULL, ee->evcntname[i], "RxCRCError");
553 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
554 NULL, ee->evcntname[i], "RxAlignmentError");
555 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
556 NULL, ee->evcntname[i], "RxControl8808Pkts");
557 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
558 NULL, ee->evcntname[i], "RxPausePkts");
559 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
560 NULL, ee->evcntname[i], "RxBroadcast");
561 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
562 NULL, ee->evcntname[i], "RxMulticast");
563 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
564 NULL, ee->evcntname[i], "RxUnicast");
565 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
566 NULL, ee->evcntname[i], "Rx64Octets");
567 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
568 NULL, ee->evcntname[i], "Rx65To127Octets");
569 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
570 NULL, ee->evcntname[i], "Rx128To255Octets");
571 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
572 NULL, ee->evcntname[i], "Rx255To511Octets");
573 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
574 NULL, ee->evcntname[i], "Rx512To1023Octets");
575 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
576 NULL, ee->evcntname[i], "Rx1024To1522Octets");
577 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
578 NULL, ee->evcntname[i], "TxLoPriotyByte");
579 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
580 NULL, ee->evcntname[i], "TxHiPriotyByte");
581 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "TxLateCollision");
583 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "TxPausePkts");
585 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "TxBroadcastPkts");
587 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "TxMulticastPkts");
589 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "TxUnicastPkts");
591 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "TxDeferred");
593 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "TxTotalCollision");
595 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "TxExcessiveCollision");
597 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "TxSingleCollision");
599 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "TxMultipleCollision");
601 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "TxDropPkts");
603 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "RxDropPkts");
605 }
606 #endif
607 return;
608
609 fail_5:
610 for (i = 0; i < KSE_NRXDESC; i++) {
611 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
612 bus_dmamap_destroy(sc->sc_dmat,
613 sc->sc_rxsoft[i].rxs_dmamap);
614 }
615 fail_4:
616 for (i = 0; i < KSE_TXQUEUELEN; i++) {
617 if (sc->sc_txsoft[i].txs_dmamap != NULL)
618 bus_dmamap_destroy(sc->sc_dmat,
619 sc->sc_txsoft[i].txs_dmamap);
620 }
621 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
622 fail_3:
623 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
624 fail_2:
625 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
626 sizeof(struct kse_control_data));
627 fail_1:
628 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
629 fail_0:
630 return;
631 }
632
633 static int
634 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
635 {
636 struct kse_softc *sc = ifp->if_softc;
637 struct ifreq *ifr = (struct ifreq *)data;
638 int s, error;
639
640 s = splnet();
641
642 switch (cmd) {
643 case SIOCSIFMEDIA:
644 case SIOCGIFMEDIA:
645 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
646 break;
647
648 default:
649 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
650 break;
651
652 error = 0;
653
654 if (cmd == SIOCSIFCAP)
655 error = (*ifp->if_init)(ifp);
656 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
657 ;
658 else if (ifp->if_flags & IFF_RUNNING) {
659 /*
660 * Multicast list has changed; set the hardware filter
661 * accordingly.
662 */
663 kse_set_filter(sc);
664 }
665 break;
666 }
667
668 kse_start(ifp);
669
670 splx(s);
671 return error;
672 }
673
674 static int
675 kse_init(struct ifnet *ifp)
676 {
677 struct kse_softc *sc = ifp->if_softc;
678 uint32_t paddr;
679 int i, error = 0;
680
681 /* cancel pending I/O */
682 kse_stop(ifp, 0);
683
684 /* reset all registers but PCI configuration */
685 kse_reset(sc);
686
687 /* craft Tx descriptor ring */
688 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
689 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
690 sc->sc_txdescs[i].t3 = paddr;
691 paddr += sizeof(struct tdes);
692 }
693 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
694 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
695 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
696 sc->sc_txfree = KSE_NTXDESC;
697 sc->sc_txnext = 0;
698
699 for (i = 0; i < KSE_TXQUEUELEN; i++)
700 sc->sc_txsoft[i].txs_mbuf = NULL;
701 sc->sc_txsfree = KSE_TXQUEUELEN;
702 sc->sc_txsnext = 0;
703 sc->sc_txsdirty = 0;
704
705 /* craft Rx descriptor ring */
706 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
707 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
708 sc->sc_rxdescs[i].r3 = paddr;
709 paddr += sizeof(struct rdes);
710 }
711 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
712 for (i = 0; i < KSE_NRXDESC; i++) {
713 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
714 if ((error = add_rxbuf(sc, i)) != 0) {
715 printf("%s: unable to allocate or map rx "
716 "buffer %d, error = %d\n",
717 device_xname(sc->sc_dev), i, error);
718 rxdrain(sc);
719 goto out;
720 }
721 }
722 else
723 KSE_INIT_RXDESC(sc, i);
724 }
725 sc->sc_rxptr = 0;
726
727 /* hand Tx/Rx rings to HW */
728 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
729 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
730
731 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
732 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
733 if (ifp->if_flags & IFF_PROMISC)
734 sc->sc_rxc |= RXC_RA;
735 if (ifp->if_flags & IFF_BROADCAST)
736 sc->sc_rxc |= RXC_RB;
737 sc->sc_t1csum = sc->sc_mcsum = 0;
738 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
739 sc->sc_rxc |= RXC_ICC;
740 sc->sc_mcsum |= M_CSUM_IPv4;
741 }
742 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
743 sc->sc_txc |= TXC_ICG;
744 sc->sc_t1csum |= T1_IPCKG;
745 }
746 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
747 sc->sc_rxc |= RXC_TCC;
748 sc->sc_mcsum |= M_CSUM_TCPv4;
749 }
750 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
751 sc->sc_txc |= TXC_TCG;
752 sc->sc_t1csum |= T1_TCPCKG;
753 }
754 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
755 sc->sc_rxc |= RXC_UCC;
756 sc->sc_mcsum |= M_CSUM_UDPv4;
757 }
758 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
759 sc->sc_txc |= TXC_UCG;
760 sc->sc_t1csum |= T1_UDPCKG;
761 }
762 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
763 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
764
765 /* build multicast hash filter if necessary */
766 kse_set_filter(sc);
767
768 /* set current media */
769 (void)ifmedia_upd(ifp);
770
771 /* enable transmitter and receiver */
772 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
773 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
774 CSR_WRITE_4(sc, MDRSC, 1);
775
776 /* enable interrupts */
777 sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
778 if (sc->sc_chip == 0x8841)
779 sc->sc_inten |= INT_DMLCS;
780 CSR_WRITE_4(sc, INTST, ~0);
781 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
782
783 ifp->if_flags |= IFF_RUNNING;
784 ifp->if_flags &= ~IFF_OACTIVE;
785
786 if (sc->sc_chip == 0x8841) {
787 /* start one second timer */
788 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
789 }
790 #ifdef KSE_EVENT_COUNTERS
791 /* start statistics gather 1 minute timer */
792 zerostats(sc);
793 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
794 #endif
795
796 out:
797 if (error) {
798 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
799 ifp->if_timer = 0;
800 printf("%s: interface not running\n", device_xname(sc->sc_dev));
801 }
802 return error;
803 }
804
805 static void
806 kse_stop(struct ifnet *ifp, int disable)
807 {
808 struct kse_softc *sc = ifp->if_softc;
809 struct kse_txsoft *txs;
810 int i;
811
812 if (sc->sc_chip == 0x8841)
813 callout_stop(&sc->sc_callout);
814 callout_stop(&sc->sc_stat_ch);
815
816 sc->sc_txc &= ~TXC_TEN;
817 sc->sc_rxc &= ~RXC_REN;
818 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
819 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
820
821 for (i = 0; i < KSE_TXQUEUELEN; i++) {
822 txs = &sc->sc_txsoft[i];
823 if (txs->txs_mbuf != NULL) {
824 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
825 m_freem(txs->txs_mbuf);
826 txs->txs_mbuf = NULL;
827 }
828 }
829
830 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831 ifp->if_timer = 0;
832
833 if (disable)
834 rxdrain(sc);
835 }
836
837 static void
838 kse_reset(struct kse_softc *sc)
839 {
840
841 CSR_WRITE_2(sc, GRR, 1);
842 delay(1000); /* PDF does not mention the delay amount */
843 CSR_WRITE_2(sc, GRR, 0);
844
845 CSR_WRITE_2(sc, CIDR, 1);
846 }
847
848 static void
849 kse_watchdog(struct ifnet *ifp)
850 {
851 struct kse_softc *sc = ifp->if_softc;
852
853 /*
854 * Since we're not interrupting every packet, sweep
855 * up before we report an error.
856 */
857 txreap(sc);
858
859 if (sc->sc_txfree != KSE_NTXDESC) {
860 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
861 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
862 sc->sc_txnext);
863 ifp->if_oerrors++;
864
865 /* Reset the interface. */
866 kse_init(ifp);
867 }
868 else if (ifp->if_flags & IFF_DEBUG)
869 printf("%s: recovered from device timeout\n",
870 device_xname(sc->sc_dev));
871
872 /* Try to get more packets going. */
873 kse_start(ifp);
874 }
875
876 static void
877 kse_start(struct ifnet *ifp)
878 {
879 struct kse_softc *sc = ifp->if_softc;
880 struct mbuf *m0, *m;
881 struct kse_txsoft *txs;
882 bus_dmamap_t dmamap;
883 int error, nexttx, lasttx, ofree, seg;
884 uint32_t tdes0;
885
886 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
887 return;
888
889 /*
890 * Remember the previous number of free descriptors.
891 */
892 ofree = sc->sc_txfree;
893
894 /*
895 * Loop through the send queue, setting up transmit descriptors
896 * until we drain the queue, or use up all available transmit
897 * descriptors.
898 */
899 for (;;) {
900 IFQ_POLL(&ifp->if_snd, m0);
901 if (m0 == NULL)
902 break;
903
904 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
905 txreap(sc);
906 if (sc->sc_txsfree == 0)
907 break;
908 }
909 txs = &sc->sc_txsoft[sc->sc_txsnext];
910 dmamap = txs->txs_dmamap;
911
912 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
913 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
914 if (error) {
915 if (error == EFBIG) {
916 printf("%s: Tx packet consumes too many "
917 "DMA segments, dropping...\n",
918 device_xname(sc->sc_dev));
919 IFQ_DEQUEUE(&ifp->if_snd, m0);
920 m_freem(m0);
921 continue;
922 }
923 /* Short on resources, just stop for now. */
924 break;
925 }
926
927 if (dmamap->dm_nsegs > sc->sc_txfree) {
928 /*
929 * Not enough free descriptors to transmit this
930 * packet. We haven't committed anything yet,
931 * so just unload the DMA map, put the packet
932 * back on the queue, and punt. Notify the upper
933 * layer that there are not more slots left.
934 */
935 ifp->if_flags |= IFF_OACTIVE;
936 bus_dmamap_unload(sc->sc_dmat, dmamap);
937 break;
938 }
939
940 IFQ_DEQUEUE(&ifp->if_snd, m0);
941
942 /*
943 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
944 */
945
946 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
947 BUS_DMASYNC_PREWRITE);
948
949 lasttx = -1; tdes0 = 0;
950 for (nexttx = sc->sc_txnext, seg = 0;
951 seg < dmamap->dm_nsegs;
952 seg++, nexttx = KSE_NEXTTX(nexttx)) {
953 struct tdes *tdes = &sc->sc_txdescs[nexttx];
954 /*
955 * If this is the first descriptor we're
956 * enqueueing, don't set the OWN bit just
957 * yet. That could cause a race condition.
958 * We'll do it below.
959 */
960 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
961 tdes->t1 = sc->sc_t1csum
962 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
963 tdes->t0 = tdes0;
964 tdes0 |= T0_OWN;
965 lasttx = nexttx;
966 }
967
968 /*
969 * Outgoing NFS mbuf must be unloaded when Tx completed.
970 * Without T1_IC NFS mbuf is left unack'ed for excessive
971 * time and NFS stops to proceed until kse_watchdog()
972 * calls txreap() to reclaim the unack'ed mbuf.
973 * It's painful to traverse every mbuf chain to determine
974 * whether someone is waiting for Tx completion.
975 */
976 m = m0;
977 do {
978 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
979 sc->sc_txdescs[lasttx].t1 |= T1_IC;
980 break;
981 }
982 } while ((m = m->m_next) != NULL);
983
984 /* write last T0_OWN bit of the 1st segment */
985 sc->sc_txdescs[lasttx].t1 |= T1_LS;
986 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
987 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
988 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
989 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
990
991 /* tell DMA start transmit */
992 CSR_WRITE_4(sc, MDTSC, 1);
993
994 txs->txs_mbuf = m0;
995 txs->txs_firstdesc = sc->sc_txnext;
996 txs->txs_lastdesc = lasttx;
997 txs->txs_ndesc = dmamap->dm_nsegs;
998
999 sc->sc_txfree -= txs->txs_ndesc;
1000 sc->sc_txnext = nexttx;
1001 sc->sc_txsfree--;
1002 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1003 /*
1004 * Pass the packet to any BPF listeners.
1005 */
1006 bpf_mtap(ifp, m0, BPF_D_OUT);
1007 }
1008
1009 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1010 /* No more slots left; notify upper layer. */
1011 ifp->if_flags |= IFF_OACTIVE;
1012 }
1013 if (sc->sc_txfree != ofree) {
1014 /* Set a watchdog timer in case the chip flakes out. */
1015 ifp->if_timer = 5;
1016 }
1017 }
1018
1019 static void
1020 kse_set_filter(struct kse_softc *sc)
1021 {
1022 struct ether_multistep step;
1023 struct ether_multi *enm;
1024 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1025 uint32_t h, hashes[2];
1026
1027 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1028 ifp->if_flags &= ~IFF_ALLMULTI;
1029 if (ifp->if_flags & IFF_PROMISC)
1030 return;
1031
1032 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1033 if (enm == NULL)
1034 return;
1035 hashes[0] = hashes[1] = 0;
1036 do {
1037 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1038 /*
1039 * We must listen to a range of multicast addresses.
1040 * For now, just accept all multicasts, rather than
1041 * trying to set only those filter bits needed to match
1042 * the range. (At this time, the only use of address
1043 * ranges is for IP multicast routing, for which the
1044 * range is big enough to require all bits set.)
1045 */
1046 goto allmulti;
1047 }
1048 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1049 hashes[h >> 5] |= 1 << (h & 0x1f);
1050 ETHER_NEXT_MULTI(step, enm);
1051 } while (enm != NULL);
1052 sc->sc_rxc |= RXC_MHTE;
1053 CSR_WRITE_4(sc, MTR0, hashes[0]);
1054 CSR_WRITE_4(sc, MTR1, hashes[1]);
1055 return;
1056 allmulti:
1057 sc->sc_rxc |= RXC_RM;
1058 ifp->if_flags |= IFF_ALLMULTI;
1059 }
1060
1061 static int
1062 add_rxbuf(struct kse_softc *sc, int idx)
1063 {
1064 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1065 struct mbuf *m;
1066 int error;
1067
1068 MGETHDR(m, M_DONTWAIT, MT_DATA);
1069 if (m == NULL)
1070 return ENOBUFS;
1071
1072 MCLGET(m, M_DONTWAIT);
1073 if ((m->m_flags & M_EXT) == 0) {
1074 m_freem(m);
1075 return ENOBUFS;
1076 }
1077
1078 if (rxs->rxs_mbuf != NULL)
1079 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1080
1081 rxs->rxs_mbuf = m;
1082
1083 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1084 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1085 if (error) {
1086 printf("%s: can't load rx DMA map %d, error = %d\n",
1087 device_xname(sc->sc_dev), idx, error);
1088 panic("kse_add_rxbuf");
1089 }
1090
1091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1093
1094 KSE_INIT_RXDESC(sc, idx);
1095
1096 return 0;
1097 }
1098
1099 static void
1100 rxdrain(struct kse_softc *sc)
1101 {
1102 struct kse_rxsoft *rxs;
1103 int i;
1104
1105 for (i = 0; i < KSE_NRXDESC; i++) {
1106 rxs = &sc->sc_rxsoft[i];
1107 if (rxs->rxs_mbuf != NULL) {
1108 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1109 m_freem(rxs->rxs_mbuf);
1110 rxs->rxs_mbuf = NULL;
1111 }
1112 }
1113 }
1114
1115 static int
1116 kse_intr(void *arg)
1117 {
1118 struct kse_softc *sc = arg;
1119 uint32_t isr;
1120
1121 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1122 return 0;
1123
1124 if (isr & INT_DMRS)
1125 rxintr(sc);
1126 if (isr & INT_DMTS)
1127 txreap(sc);
1128 if (isr & INT_DMLCS)
1129 lnkchg(sc);
1130 if (isr & INT_DMRBUS)
1131 printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1132
1133 CSR_WRITE_4(sc, INTST, isr);
1134 return 1;
1135 }
1136
1137 static void
1138 rxintr(struct kse_softc *sc)
1139 {
1140 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1141 struct kse_rxsoft *rxs;
1142 struct mbuf *m;
1143 uint32_t rxstat;
1144 int i, len;
1145
1146 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1147 rxs = &sc->sc_rxsoft[i];
1148
1149 KSE_CDRXSYNC(sc, i,
1150 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1151
1152 rxstat = sc->sc_rxdescs[i].r0;
1153
1154 if (rxstat & R0_OWN) /* desc is left empty */
1155 break;
1156
1157 /* R0_FS|R0_LS must have been marked for this desc */
1158
1159 if (rxstat & R0_ES) {
1160 ifp->if_ierrors++;
1161 #define PRINTERR(bit, str) \
1162 if (rxstat & (bit)) \
1163 printf("%s: receive error: %s\n", \
1164 device_xname(sc->sc_dev), str)
1165 PRINTERR(R0_TL, "frame too long");
1166 PRINTERR(R0_RF, "runt frame");
1167 PRINTERR(R0_CE, "bad FCS");
1168 #undef PRINTERR
1169 KSE_INIT_RXDESC(sc, i);
1170 continue;
1171 }
1172
1173 /* HW errata; frame might be too small or too large */
1174
1175 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1176 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1177
1178 len = rxstat & R0_FL_MASK;
1179 len -= ETHER_CRC_LEN; /* trim CRC off */
1180 m = rxs->rxs_mbuf;
1181
1182 if (add_rxbuf(sc, i) != 0) {
1183 ifp->if_ierrors++;
1184 KSE_INIT_RXDESC(sc, i);
1185 bus_dmamap_sync(sc->sc_dmat,
1186 rxs->rxs_dmamap, 0,
1187 rxs->rxs_dmamap->dm_mapsize,
1188 BUS_DMASYNC_PREREAD);
1189 continue;
1190 }
1191
1192 m_set_rcvif(m, ifp);
1193 m->m_pkthdr.len = m->m_len = len;
1194
1195 if (sc->sc_mcsum) {
1196 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1197 if (rxstat & R0_IPE)
1198 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1199 if (rxstat & (R0_TCPE | R0_UDPE))
1200 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1201 }
1202 if_percpuq_enqueue(ifp->if_percpuq, m);
1203 #ifdef KSEDIAGNOSTIC
1204 if (kse_monitor_rxintr > 0) {
1205 printf("m stat %x data %p len %d\n",
1206 rxstat, m->m_data, m->m_len);
1207 }
1208 #endif
1209 }
1210 sc->sc_rxptr = i;
1211 }
1212
1213 static void
1214 txreap(struct kse_softc *sc)
1215 {
1216 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1217 struct kse_txsoft *txs;
1218 uint32_t txstat;
1219 int i;
1220
1221 ifp->if_flags &= ~IFF_OACTIVE;
1222
1223 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1224 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1225 txs = &sc->sc_txsoft[i];
1226
1227 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1228 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1229
1230 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1231
1232 if (txstat & T0_OWN) /* desc is still in use */
1233 break;
1234
1235 /* there is no way to tell transmission status per frame */
1236
1237 ifp->if_opackets++;
1238
1239 sc->sc_txfree += txs->txs_ndesc;
1240 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1241 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1242 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1243 m_freem(txs->txs_mbuf);
1244 txs->txs_mbuf = NULL;
1245 }
1246 sc->sc_txsdirty = i;
1247 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1248 ifp->if_timer = 0;
1249 }
1250
1251 static void
1252 lnkchg(struct kse_softc *sc)
1253 {
1254 struct ifmediareq ifmr;
1255
1256 #if 0 /* rambling link status */
1257 printf("%s: link %s\n", device_xname(sc->sc_dev),
1258 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1259 #endif
1260 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1261 }
1262
1263 static int
1264 ifmedia_upd(struct ifnet *ifp)
1265 {
1266 struct kse_softc *sc = ifp->if_softc;
1267 struct ifmedia *ifm = &sc->sc_media;
1268 uint16_t ctl;
1269
1270 ctl = 0;
1271 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1272 ctl |= (1U << 13); /* restart AN */
1273 ctl |= (1U << 7); /* enable AN */
1274 ctl |= (1U << 4); /* advertise flow control pause */
1275 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1276 }
1277 else {
1278 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1279 ctl |= (1U << 6);
1280 if (ifm->ifm_media & IFM_FDX)
1281 ctl |= (1U << 5);
1282 }
1283 CSR_WRITE_2(sc, P1CR4, ctl);
1284
1285 sc->sc_media_active = IFM_NONE;
1286 sc->sc_media_status = IFM_AVALID;
1287
1288 return 0;
1289 }
1290
1291 static void
1292 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1293 {
1294 struct kse_softc *sc = ifp->if_softc;
1295 struct ifmedia *ifm = &sc->sc_media;
1296 uint16_t ctl, sts, result;
1297
1298 ifmr->ifm_status = IFM_AVALID;
1299 ifmr->ifm_active = IFM_ETHER;
1300
1301 ctl = CSR_READ_2(sc, P1CR4);
1302 sts = CSR_READ_2(sc, P1SR);
1303 if ((sts & (1U << 5)) == 0) {
1304 ifmr->ifm_active |= IFM_NONE;
1305 goto out; /* link is down */
1306 }
1307 ifmr->ifm_status |= IFM_ACTIVE;
1308 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1309 if ((sts & (1U << 6)) == 0) {
1310 ifmr->ifm_active |= IFM_NONE;
1311 goto out; /* negotiation in progress */
1312 }
1313 result = ctl & sts & 017;
1314 if (result & (1U << 3))
1315 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1316 else if (result & (1U << 2))
1317 ifmr->ifm_active |= IFM_100_TX|IFM_HDX;
1318 else if (result & (1U << 1))
1319 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1320 else if (result & (1U << 0))
1321 ifmr->ifm_active |= IFM_10_T|IFM_HDX;
1322 else
1323 ifmr->ifm_active |= IFM_NONE;
1324 if (ctl & (1U << 4))
1325 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1326 if (sts & (1U << 4))
1327 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1328 }
1329 else {
1330 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1331 if (sts & (1U << 9))
1332 ifmr->ifm_active |= IFM_FDX;
1333 if (sts & (1U << 12))
1334 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1335 if (sts & (1U << 11))
1336 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1337 }
1338
1339 out:
1340 sc->sc_media_status = ifmr->ifm_status;
1341 sc->sc_media_active = ifmr->ifm_active;
1342 }
1343
1344 static void
1345 phy_tick(void *arg)
1346 {
1347 struct kse_softc *sc = arg;
1348 struct ifmediareq ifmr;
1349 int s;
1350
1351 s = splnet();
1352 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1353 splx(s);
1354
1355 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1356 }
1357
1358 static int
1359 ifmedia2_upd(struct ifnet *ifp)
1360 {
1361 struct kse_softc *sc = ifp->if_softc;
1362
1363 sc->sc_media_status = IFM_AVALID;
1364 sc->sc_media_active = IFM_NONE;
1365 return 0;
1366 }
1367
1368 static void
1369 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1370 {
1371 struct kse_softc *sc = ifp->if_softc;
1372 int p1sts, p2sts;
1373
1374 ifmr->ifm_status = IFM_AVALID;
1375 ifmr->ifm_active = IFM_ETHER;
1376 p1sts = CSR_READ_2(sc, P1SR);
1377 p2sts = CSR_READ_2(sc, P2SR);
1378 if (((p1sts | p2sts) & (1U << 5)) == 0)
1379 ifmr->ifm_active |= IFM_NONE;
1380 else {
1381 ifmr->ifm_status |= IFM_ACTIVE;
1382 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1383 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1384 }
1385 sc->sc_media_status = ifmr->ifm_status;
1386 sc->sc_media_active = ifmr->ifm_active;
1387 }
1388
1389 #ifdef KSE_EVENT_COUNTERS
1390 static void
1391 stat_tick(void *arg)
1392 {
1393 struct kse_softc *sc = arg;
1394 struct ksext *ee = &sc->sc_ext;
1395 int nport, p, i, val;
1396
1397 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1398 for (p = 0; p < nport; p++) {
1399 for (i = 0; i < 32; i++) {
1400 val = 0x1c00 | (p * 0x20 + i);
1401 CSR_WRITE_2(sc, IACR, val);
1402 do {
1403 val = CSR_READ_2(sc, IADR5) << 16;
1404 } while ((val & (1U << 30)) == 0);
1405 if (val & (1U << 31)) {
1406 (void)CSR_READ_2(sc, IADR4);
1407 val = 0x3fffffff; /* has made overflow */
1408 }
1409 else {
1410 val &= 0x3fff0000; /* 29:16 */
1411 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1412 }
1413 ee->pev[p][i].ev_count += val; /* i (0-31) */
1414 }
1415 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1416 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1417 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1418 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1419 }
1420 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1421 }
1422
1423 static void
1424 zerostats(struct kse_softc *sc)
1425 {
1426 struct ksext *ee = &sc->sc_ext;
1427 int nport, p, i, val;
1428
1429 /* make sure all the HW counters get zero */
1430 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1431 for (p = 0; p < nport; p++) {
1432 for (i = 0; i < 31; i++) {
1433 val = 0x1c00 | (p * 0x20 + i);
1434 CSR_WRITE_2(sc, IACR, val);
1435 do {
1436 val = CSR_READ_2(sc, IADR5) << 16;
1437 } while ((val & (1U << 30)) == 0);
1438 (void)CSR_READ_2(sc, IADR4);
1439 ee->pev[p][i].ev_count = 0;
1440 }
1441 }
1442 }
1443 #endif
1444