if_kse.c revision 1.35 1 /* $NetBSD: if_kse.c,v 1.35 2019/04/26 06:33:34 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.35 2019/04/26 06:33:34 msaitoh Exp $");
34
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56
57 #include <dev/pci/pcivar.h>
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcidevs.h>
60
61 #define CSR_READ_4(sc, off) \
62 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
63 #define CSR_WRITE_4(sc, off, val) \
64 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
65 #define CSR_READ_2(sc, off) \
66 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_2(sc, off, val) \
68 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
69
70 #define MDTXC 0x000 /* DMA transmit control */
71 #define MDRXC 0x004 /* DMA receive control */
72 #define MDTSC 0x008 /* DMA transmit start */
73 #define MDRSC 0x00c /* DMA receive start */
74 #define TDLB 0x010 /* transmit descriptor list base */
75 #define RDLB 0x014 /* receive descriptor list base */
76 #define MTR0 0x020 /* multicast table 31:0 */
77 #define MTR1 0x024 /* multicast table 63:32 */
78 #define INTEN 0x028 /* interrupt enable */
79 #define INTST 0x02c /* interrupt status */
80 #define MARL 0x200 /* MAC address low */
81 #define MARM 0x202 /* MAC address middle */
82 #define MARH 0x204 /* MAC address high */
83 #define GRR 0x216 /* global reset */
84 #define CIDR 0x400 /* chip ID and enable */
85 #define CGCR 0x40a /* chip global control */
86 #define IACR 0x4a0 /* indirect access control */
87 #define IADR1 0x4a2 /* indirect access data 66:63 */
88 #define IADR2 0x4a4 /* indirect access data 47:32 */
89 #define IADR3 0x4a6 /* indirect access data 63:48 */
90 #define IADR4 0x4a8 /* indirect access data 15:0 */
91 #define IADR5 0x4aa /* indirect access data 31:16 */
92 #define P1CR4 0x512 /* port 1 control 4 */
93 #define P1SR 0x514 /* port 1 status */
94 #define P2CR4 0x532 /* port 2 control 4 */
95 #define P2SR 0x534 /* port 2 status */
96
97 #define TXC_BS_MSK 0x3f000000 /* burst size */
98 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
99 #define TXC_UCG (1U<<18) /* generate UDP checksum */
100 #define TXC_TCG (1U<<17) /* generate TCP checksum */
101 #define TXC_ICG (1U<<16) /* generate IP checksum */
102 #define TXC_FCE (1U<<9) /* enable flowcontrol */
103 #define TXC_EP (1U<<2) /* enable automatic padding */
104 #define TXC_AC (1U<<1) /* add CRC to frame */
105 #define TXC_TEN (1) /* enable DMA to run */
106
107 #define RXC_BS_MSK 0x3f000000 /* burst size */
108 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
109 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
110 #define RXC_UCC (1U<<18) /* run UDP checksum */
111 #define RXC_TCC (1U<<17) /* run TDP checksum */
112 #define RXC_ICC (1U<<16) /* run IP checksum */
113 #define RXC_FCE (1U<<9) /* enable flowcontrol */
114 #define RXC_RB (1U<<6) /* receive broadcast frame */
115 #define RXC_RM (1U<<5) /* receive multicast frame */
116 #define RXC_RU (1U<<4) /* receive unicast frame */
117 #define RXC_RE (1U<<3) /* accept error frame */
118 #define RXC_RA (1U<<2) /* receive all frame */
119 #define RXC_MHTE (1U<<1) /* use multicast hash table */
120 #define RXC_REN (1) /* enable DMA to run */
121
122 #define INT_DMLCS (1U<<31) /* link status change */
123 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
124 #define INT_DMRS (1U<<29) /* frame was received */
125 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
126
127 #define T0_OWN (1U<<31) /* desc is ready to Tx */
128
129 #define R0_OWN (1U<<31) /* desc is empty */
130 #define R0_FS (1U<<30) /* first segment of frame */
131 #define R0_LS (1U<<29) /* last segment of frame */
132 #define R0_IPE (1U<<28) /* IP checksum error */
133 #define R0_TCPE (1U<<27) /* TCP checksum error */
134 #define R0_UDPE (1U<<26) /* UDP checksum error */
135 #define R0_ES (1U<<25) /* error summary */
136 #define R0_MF (1U<<24) /* multicast frame */
137 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
138 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
139 #define R0_RE (1U<<19) /* MII reported error */
140 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
141 #define R0_RF (1U<<17) /* damaged runt frame */
142 #define R0_CE (1U<<16) /* CRC error */
143 #define R0_FT (1U<<15) /* frame type */
144 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
145
146 #define T1_IC (1U<<31) /* post interrupt on complete */
147 #define T1_FS (1U<<30) /* first segment of frame */
148 #define T1_LS (1U<<29) /* last segment of frame */
149 #define T1_IPCKG (1U<<28) /* generate IP checksum */
150 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
151 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
152 #define T1_TER (1U<<25) /* end of ring */
153 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
154 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
155
156 #define R1_RER (1U<<25) /* end of ring */
157 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
158
159 #define KSE_NTXSEGS 16
160 #define KSE_TXQUEUELEN 64
161 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
162 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
163 #define KSE_NTXDESC 256
164 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
165 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
166 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
167
168 #define KSE_NRXDESC 64
169 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
170 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
171
172 struct tdes {
173 uint32_t t0, t1, t2, t3;
174 };
175
176 struct rdes {
177 uint32_t r0, r1, r2, r3;
178 };
179
180 struct kse_control_data {
181 struct tdes kcd_txdescs[KSE_NTXDESC];
182 struct rdes kcd_rxdescs[KSE_NRXDESC];
183 };
184 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
185 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
186 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
187
188 struct kse_txsoft {
189 struct mbuf *txs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t txs_dmamap; /* our DMA map */
191 int txs_firstdesc; /* first descriptor in packet */
192 int txs_lastdesc; /* last descriptor in packet */
193 int txs_ndesc; /* # of descriptors used */
194 };
195
196 struct kse_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 struct kse_softc {
202 device_t sc_dev; /* generic device information */
203 bus_space_tag_t sc_st; /* bus space tag */
204 bus_space_handle_t sc_sh; /* bus space handle */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 struct ethercom sc_ethercom; /* Ethernet common data */
207 void *sc_ih; /* interrupt cookie */
208
209 struct ifmedia sc_media; /* ifmedia information */
210 int sc_media_status; /* PHY */
211 int sc_media_active; /* PHY */
212 callout_t sc_callout; /* MII tick callout */
213 callout_t sc_stat_ch; /* statistics counter callout */
214
215 bus_dmamap_t sc_cddmamap; /* control data DMA map */
216 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
217
218 struct kse_control_data *sc_control_data;
219 #define sc_txdescs sc_control_data->kcd_txdescs
220 #define sc_rxdescs sc_control_data->kcd_rxdescs
221
222 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
223 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
224 int sc_txfree; /* number of free Tx descriptors */
225 int sc_txnext; /* next ready Tx descriptor */
226 int sc_txsfree; /* number of free Tx jobs */
227 int sc_txsnext; /* next ready Tx job */
228 int sc_txsdirty; /* dirty Tx jobs */
229 int sc_rxptr; /* next ready Rx descriptor/descsoft */
230
231 uint32_t sc_txc, sc_rxc;
232 uint32_t sc_t1csum;
233 int sc_mcsum;
234 uint32_t sc_inten;
235
236 uint32_t sc_chip;
237 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
238 uint16_t sc_vlan[16];
239
240 #ifdef KSE_EVENT_COUNTERS
241 struct ksext {
242 char evcntname[3][8];
243 struct evcnt pev[3][34];
244 } sc_ext; /* switch statistics */
245 #endif
246 };
247
248 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
249 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
250
251 #define KSE_CDTXSYNC(sc, x, n, ops) \
252 do { \
253 int __x, __n; \
254 \
255 __x = (x); \
256 __n = (n); \
257 \
258 /* If it will wrap around, sync to the end of the ring. */ \
259 if ((__x + __n) > KSE_NTXDESC) { \
260 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
261 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
262 (KSE_NTXDESC - __x), (ops)); \
263 __n -= (KSE_NTXDESC - __x); \
264 __x = 0; \
265 } \
266 \
267 /* Now sync whatever is left. */ \
268 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
269 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
270 } while (/*CONSTCOND*/0)
271
272 #define KSE_CDRXSYNC(sc, x, ops) \
273 do { \
274 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
275 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
276 } while (/*CONSTCOND*/0)
277
278 #define KSE_INIT_RXDESC(sc, x) \
279 do { \
280 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
281 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
282 struct mbuf *__m = __rxs->rxs_mbuf; \
283 \
284 __m->m_data = __m->m_ext.ext_buf; \
285 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
286 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
287 __rxd->r0 = R0_OWN; \
288 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
289 } while (/*CONSTCOND*/0)
290
291 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
292
293 #ifdef KSEDIAGNOSTIC
294 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
295 #endif
296
297 static int kse_match(device_t, cfdata_t, void *);
298 static void kse_attach(device_t, device_t, void *);
299
300 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
301 kse_match, kse_attach, NULL, NULL);
302
303 static int kse_ioctl(struct ifnet *, u_long, void *);
304 static void kse_start(struct ifnet *);
305 static void kse_watchdog(struct ifnet *);
306 static int kse_init(struct ifnet *);
307 static void kse_stop(struct ifnet *, int);
308 static void kse_reset(struct kse_softc *);
309 static void kse_set_filter(struct kse_softc *);
310 static int add_rxbuf(struct kse_softc *, int);
311 static void rxdrain(struct kse_softc *);
312 static int kse_intr(void *);
313 static void rxintr(struct kse_softc *);
314 static void txreap(struct kse_softc *);
315 static void lnkchg(struct kse_softc *);
316 static int ifmedia_upd(struct ifnet *);
317 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
318 static void phy_tick(void *);
319 static int ifmedia2_upd(struct ifnet *);
320 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
321 #ifdef KSE_EVENT_COUNTERS
322 static void stat_tick(void *);
323 static void zerostats(struct kse_softc *);
324 #endif
325
326 static int
327 kse_match(device_t parent, cfdata_t match, void *aux)
328 {
329 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
330
331 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
332 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
333 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
334 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
335 return 1;
336
337 return 0;
338 }
339
340 static void
341 kse_attach(device_t parent, device_t self, void *aux)
342 {
343 struct kse_softc *sc = device_private(self);
344 struct pci_attach_args *pa = aux;
345 pci_chipset_tag_t pc = pa->pa_pc;
346 pci_intr_handle_t ih;
347 const char *intrstr;
348 struct ifnet *ifp;
349 struct ifmedia *ifm;
350 uint8_t enaddr[ETHER_ADDR_LEN];
351 bus_dma_segment_t seg;
352 int i, error, nseg;
353 pcireg_t pmode;
354 int pmreg;
355 char intrbuf[PCI_INTRSTR_LEN];
356
357 if (pci_mapreg_map(pa, 0x10,
358 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
359 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
360 printf(": unable to map device registers\n");
361 return;
362 }
363
364 sc->sc_dev = self;
365 sc->sc_dmat = pa->pa_dmat;
366
367 /* Make sure bus mastering is enabled. */
368 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
369 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
370 PCI_COMMAND_MASTER_ENABLE);
371
372 /* Get it out of power save mode, if needed. */
373 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
374 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
375 PCI_PMCSR_STATE_MASK;
376 if (pmode == PCI_PMCSR_STATE_D3) {
377 /*
378 * The card has lost all configuration data in
379 * this state, so punt.
380 */
381 printf("%s: unable to wake from power state D3\n",
382 device_xname(sc->sc_dev));
383 return;
384 }
385 if (pmode != PCI_PMCSR_STATE_D0) {
386 printf("%s: waking up from power date D%d\n",
387 device_xname(sc->sc_dev), pmode);
388 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
389 PCI_PMCSR_STATE_D0);
390 }
391 }
392
393 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
394 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
395 sc->sc_chip, PCI_REVISION(pa->pa_class));
396
397 /*
398 * Read the Ethernet address from the EEPROM.
399 */
400 i = CSR_READ_2(sc, MARL);
401 enaddr[5] = i; enaddr[4] = i >> 8;
402 i = CSR_READ_2(sc, MARM);
403 enaddr[3] = i; enaddr[2] = i >> 8;
404 i = CSR_READ_2(sc, MARH);
405 enaddr[1] = i; enaddr[0] = i >> 8;
406 printf("%s: Ethernet address %s\n",
407 device_xname(sc->sc_dev), ether_sprintf(enaddr));
408
409 /*
410 * Enable chip function.
411 */
412 CSR_WRITE_2(sc, CIDR, 1);
413
414 /*
415 * Map and establish our interrupt.
416 */
417 if (pci_intr_map(pa, &ih)) {
418 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
419 return;
420 }
421 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
422 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
423 device_xname(self));
424 if (sc->sc_ih == NULL) {
425 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
426 if (intrstr != NULL)
427 aprint_error(" at %s", intrstr);
428 aprint_error("\n");
429 return;
430 }
431 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
432
433 /*
434 * Allocate the control data structures, and create and load the
435 * DMA map for it.
436 */
437 error = bus_dmamem_alloc(sc->sc_dmat,
438 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
439 if (error != 0) {
440 aprint_error_dev(sc->sc_dev,
441 "unable to allocate control data, error = %d\n", error);
442 goto fail_0;
443 }
444 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 BUS_DMA_COHERENT);
447 if (error != 0) {
448 aprint_error_dev(sc->sc_dev,
449 "unable to map control data, error = %d\n", error);
450 goto fail_1;
451 }
452 error = bus_dmamap_create(sc->sc_dmat,
453 sizeof(struct kse_control_data), 1,
454 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
455 if (error != 0) {
456 aprint_error_dev(sc->sc_dev,
457 "unable to create control data DMA map, "
458 "error = %d\n", error);
459 goto fail_2;
460 }
461 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
462 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
463 if (error != 0) {
464 aprint_error_dev(sc->sc_dev,
465 "unable to load control data DMA map, error = %d\n",
466 error);
467 goto fail_3;
468 }
469 for (i = 0; i < KSE_TXQUEUELEN; i++) {
470 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
471 KSE_NTXSEGS, MCLBYTES, 0, 0,
472 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
473 aprint_error_dev(sc->sc_dev,
474 "unable to create tx DMA map %d, error = %d\n",
475 i, error);
476 goto fail_4;
477 }
478 }
479 for (i = 0; i < KSE_NRXDESC; i++) {
480 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
481 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
482 aprint_error_dev(sc->sc_dev,
483 "unable to create rx DMA map %d, error = %d\n",
484 i, error);
485 goto fail_5;
486 }
487 sc->sc_rxsoft[i].rxs_mbuf = NULL;
488 }
489
490 callout_init(&sc->sc_callout, 0);
491 callout_init(&sc->sc_stat_ch, 0);
492
493 ifm = &sc->sc_media;
494 if (sc->sc_chip == 0x8841) {
495 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
496 ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
497 ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
498 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
499 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
500 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
501 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
502 } else {
503 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
504 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
505 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
506 }
507
508 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
509 device_xname(sc->sc_dev));
510
511 ifp = &sc->sc_ethercom.ec_if;
512 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
513 ifp->if_softc = sc;
514 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
515 ifp->if_ioctl = kse_ioctl;
516 ifp->if_start = kse_start;
517 ifp->if_watchdog = kse_watchdog;
518 ifp->if_init = kse_init;
519 ifp->if_stop = kse_stop;
520 IFQ_SET_READY(&ifp->if_snd);
521
522 /*
523 * KSZ8842 can handle 802.1Q VLAN-sized frames,
524 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
525 */
526 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
527 ifp->if_capabilities |=
528 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
529 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
530 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
531
532 if_attach(ifp);
533 ether_ifattach(ifp, enaddr);
534
535 #ifdef KSE_EVENT_COUNTERS
536 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
537 for (i = 0; i < p; i++) {
538 struct ksext *ee = &sc->sc_ext;
539 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
540 "%s.%d", device_xname(sc->sc_dev), i+1);
541 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
542 NULL, ee->evcntname[i], "RxLoPriotyByte");
543 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
544 NULL, ee->evcntname[i], "RxHiPriotyByte");
545 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
546 NULL, ee->evcntname[i], "RxUndersizePkt");
547 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
548 NULL, ee->evcntname[i], "RxFragments");
549 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
550 NULL, ee->evcntname[i], "RxOversize");
551 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
552 NULL, ee->evcntname[i], "RxJabbers");
553 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
554 NULL, ee->evcntname[i], "RxSymbolError");
555 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
556 NULL, ee->evcntname[i], "RxCRCError");
557 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
558 NULL, ee->evcntname[i], "RxAlignmentError");
559 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
560 NULL, ee->evcntname[i], "RxControl8808Pkts");
561 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
562 NULL, ee->evcntname[i], "RxPausePkts");
563 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
564 NULL, ee->evcntname[i], "RxBroadcast");
565 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
566 NULL, ee->evcntname[i], "RxMulticast");
567 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
568 NULL, ee->evcntname[i], "RxUnicast");
569 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
570 NULL, ee->evcntname[i], "Rx64Octets");
571 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
572 NULL, ee->evcntname[i], "Rx65To127Octets");
573 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
574 NULL, ee->evcntname[i], "Rx128To255Octets");
575 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
576 NULL, ee->evcntname[i], "Rx255To511Octets");
577 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
578 NULL, ee->evcntname[i], "Rx512To1023Octets");
579 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
580 NULL, ee->evcntname[i], "Rx1024To1522Octets");
581 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "TxLoPriotyByte");
583 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "TxHiPriotyByte");
585 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "TxLateCollision");
587 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "TxPausePkts");
589 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "TxBroadcastPkts");
591 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "TxMulticastPkts");
593 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "TxUnicastPkts");
595 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "TxDeferred");
597 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "TxTotalCollision");
599 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "TxExcessiveCollision");
601 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "TxSingleCollision");
603 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "TxMultipleCollision");
605 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
606 NULL, ee->evcntname[i], "TxDropPkts");
607 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
608 NULL, ee->evcntname[i], "RxDropPkts");
609 }
610 #endif
611 return;
612
613 fail_5:
614 for (i = 0; i < KSE_NRXDESC; i++) {
615 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
616 bus_dmamap_destroy(sc->sc_dmat,
617 sc->sc_rxsoft[i].rxs_dmamap);
618 }
619 fail_4:
620 for (i = 0; i < KSE_TXQUEUELEN; i++) {
621 if (sc->sc_txsoft[i].txs_dmamap != NULL)
622 bus_dmamap_destroy(sc->sc_dmat,
623 sc->sc_txsoft[i].txs_dmamap);
624 }
625 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
626 fail_3:
627 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
628 fail_2:
629 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
630 sizeof(struct kse_control_data));
631 fail_1:
632 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
633 fail_0:
634 return;
635 }
636
637 static int
638 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
639 {
640 struct kse_softc *sc = ifp->if_softc;
641 struct ifreq *ifr = (struct ifreq *)data;
642 int s, error;
643
644 s = splnet();
645
646 switch (cmd) {
647 case SIOCSIFMEDIA:
648 case SIOCGIFMEDIA:
649 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
650 break;
651
652 default:
653 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
654 break;
655
656 error = 0;
657
658 if (cmd == SIOCSIFCAP)
659 error = (*ifp->if_init)(ifp);
660 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
661 ;
662 else if (ifp->if_flags & IFF_RUNNING) {
663 /*
664 * Multicast list has changed; set the hardware filter
665 * accordingly.
666 */
667 kse_set_filter(sc);
668 }
669 break;
670 }
671
672 kse_start(ifp);
673
674 splx(s);
675 return error;
676 }
677
678 static int
679 kse_init(struct ifnet *ifp)
680 {
681 struct kse_softc *sc = ifp->if_softc;
682 uint32_t paddr;
683 int i, error = 0;
684
685 /* cancel pending I/O */
686 kse_stop(ifp, 0);
687
688 /* reset all registers but PCI configuration */
689 kse_reset(sc);
690
691 /* craft Tx descriptor ring */
692 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
693 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
694 sc->sc_txdescs[i].t3 = paddr;
695 paddr += sizeof(struct tdes);
696 }
697 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
698 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
699 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
700 sc->sc_txfree = KSE_NTXDESC;
701 sc->sc_txnext = 0;
702
703 for (i = 0; i < KSE_TXQUEUELEN; i++)
704 sc->sc_txsoft[i].txs_mbuf = NULL;
705 sc->sc_txsfree = KSE_TXQUEUELEN;
706 sc->sc_txsnext = 0;
707 sc->sc_txsdirty = 0;
708
709 /* craft Rx descriptor ring */
710 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
711 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
712 sc->sc_rxdescs[i].r3 = paddr;
713 paddr += sizeof(struct rdes);
714 }
715 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
716 for (i = 0; i < KSE_NRXDESC; i++) {
717 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
718 if ((error = add_rxbuf(sc, i)) != 0) {
719 printf("%s: unable to allocate or map rx "
720 "buffer %d, error = %d\n",
721 device_xname(sc->sc_dev), i, error);
722 rxdrain(sc);
723 goto out;
724 }
725 }
726 else
727 KSE_INIT_RXDESC(sc, i);
728 }
729 sc->sc_rxptr = 0;
730
731 /* hand Tx/Rx rings to HW */
732 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
733 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
734
735 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
736 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
737 if (ifp->if_flags & IFF_PROMISC)
738 sc->sc_rxc |= RXC_RA;
739 if (ifp->if_flags & IFF_BROADCAST)
740 sc->sc_rxc |= RXC_RB;
741 sc->sc_t1csum = sc->sc_mcsum = 0;
742 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
743 sc->sc_rxc |= RXC_ICC;
744 sc->sc_mcsum |= M_CSUM_IPv4;
745 }
746 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
747 sc->sc_txc |= TXC_ICG;
748 sc->sc_t1csum |= T1_IPCKG;
749 }
750 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
751 sc->sc_rxc |= RXC_TCC;
752 sc->sc_mcsum |= M_CSUM_TCPv4;
753 }
754 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
755 sc->sc_txc |= TXC_TCG;
756 sc->sc_t1csum |= T1_TCPCKG;
757 }
758 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
759 sc->sc_rxc |= RXC_UCC;
760 sc->sc_mcsum |= M_CSUM_UDPv4;
761 }
762 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
763 sc->sc_txc |= TXC_UCG;
764 sc->sc_t1csum |= T1_UDPCKG;
765 }
766 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
767 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
768
769 /* build multicast hash filter if necessary */
770 kse_set_filter(sc);
771
772 /* set current media */
773 (void)ifmedia_upd(ifp);
774
775 /* enable transmitter and receiver */
776 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
777 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
778 CSR_WRITE_4(sc, MDRSC, 1);
779
780 /* enable interrupts */
781 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
782 if (sc->sc_chip == 0x8841)
783 sc->sc_inten |= INT_DMLCS;
784 CSR_WRITE_4(sc, INTST, ~0);
785 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
786
787 ifp->if_flags |= IFF_RUNNING;
788 ifp->if_flags &= ~IFF_OACTIVE;
789
790 if (sc->sc_chip == 0x8841) {
791 /* start one second timer */
792 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
793 }
794 #ifdef KSE_EVENT_COUNTERS
795 /* start statistics gather 1 minute timer */
796 zerostats(sc);
797 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
798 #endif
799
800 out:
801 if (error) {
802 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
803 ifp->if_timer = 0;
804 printf("%s: interface not running\n", device_xname(sc->sc_dev));
805 }
806 return error;
807 }
808
809 static void
810 kse_stop(struct ifnet *ifp, int disable)
811 {
812 struct kse_softc *sc = ifp->if_softc;
813 struct kse_txsoft *txs;
814 int i;
815
816 if (sc->sc_chip == 0x8841)
817 callout_stop(&sc->sc_callout);
818 callout_stop(&sc->sc_stat_ch);
819
820 sc->sc_txc &= ~TXC_TEN;
821 sc->sc_rxc &= ~RXC_REN;
822 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
823 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
824
825 for (i = 0; i < KSE_TXQUEUELEN; i++) {
826 txs = &sc->sc_txsoft[i];
827 if (txs->txs_mbuf != NULL) {
828 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
829 m_freem(txs->txs_mbuf);
830 txs->txs_mbuf = NULL;
831 }
832 }
833
834 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
835 ifp->if_timer = 0;
836
837 if (disable)
838 rxdrain(sc);
839 }
840
841 static void
842 kse_reset(struct kse_softc *sc)
843 {
844
845 CSR_WRITE_2(sc, GRR, 1);
846 delay(1000); /* PDF does not mention the delay amount */
847 CSR_WRITE_2(sc, GRR, 0);
848
849 CSR_WRITE_2(sc, CIDR, 1);
850 }
851
852 static void
853 kse_watchdog(struct ifnet *ifp)
854 {
855 struct kse_softc *sc = ifp->if_softc;
856
857 /*
858 * Since we're not interrupting every packet, sweep
859 * up before we report an error.
860 */
861 txreap(sc);
862
863 if (sc->sc_txfree != KSE_NTXDESC) {
864 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
865 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
866 sc->sc_txnext);
867 ifp->if_oerrors++;
868
869 /* Reset the interface. */
870 kse_init(ifp);
871 }
872 else if (ifp->if_flags & IFF_DEBUG)
873 printf("%s: recovered from device timeout\n",
874 device_xname(sc->sc_dev));
875
876 /* Try to get more packets going. */
877 kse_start(ifp);
878 }
879
880 static void
881 kse_start(struct ifnet *ifp)
882 {
883 struct kse_softc *sc = ifp->if_softc;
884 struct mbuf *m0, *m;
885 struct kse_txsoft *txs;
886 bus_dmamap_t dmamap;
887 int error, nexttx, lasttx, ofree, seg;
888 uint32_t tdes0;
889
890 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
891 return;
892
893 /* Remember the previous number of free descriptors. */
894 ofree = sc->sc_txfree;
895
896 /*
897 * Loop through the send queue, setting up transmit descriptors
898 * until we drain the queue, or use up all available transmit
899 * descriptors.
900 */
901 for (;;) {
902 IFQ_POLL(&ifp->if_snd, m0);
903 if (m0 == NULL)
904 break;
905
906 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
907 txreap(sc);
908 if (sc->sc_txsfree == 0)
909 break;
910 }
911 txs = &sc->sc_txsoft[sc->sc_txsnext];
912 dmamap = txs->txs_dmamap;
913
914 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
915 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
916 if (error) {
917 if (error == EFBIG) {
918 printf("%s: Tx packet consumes too many "
919 "DMA segments, dropping...\n",
920 device_xname(sc->sc_dev));
921 IFQ_DEQUEUE(&ifp->if_snd, m0);
922 m_freem(m0);
923 continue;
924 }
925 /* Short on resources, just stop for now. */
926 break;
927 }
928
929 if (dmamap->dm_nsegs > sc->sc_txfree) {
930 /*
931 * Not enough free descriptors to transmit this
932 * packet. We haven't committed anything yet,
933 * so just unload the DMA map, put the packet
934 * back on the queue, and punt. Notify the upper
935 * layer that there are not more slots left.
936 */
937 ifp->if_flags |= IFF_OACTIVE;
938 bus_dmamap_unload(sc->sc_dmat, dmamap);
939 break;
940 }
941
942 IFQ_DEQUEUE(&ifp->if_snd, m0);
943
944 /*
945 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
946 */
947
948 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
949 BUS_DMASYNC_PREWRITE);
950
951 lasttx = -1; tdes0 = 0;
952 for (nexttx = sc->sc_txnext, seg = 0;
953 seg < dmamap->dm_nsegs;
954 seg++, nexttx = KSE_NEXTTX(nexttx)) {
955 struct tdes *tdes = &sc->sc_txdescs[nexttx];
956 /*
957 * If this is the first descriptor we're
958 * enqueueing, don't set the OWN bit just
959 * yet. That could cause a race condition.
960 * We'll do it below.
961 */
962 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
963 tdes->t1 = sc->sc_t1csum
964 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
965 tdes->t0 = tdes0;
966 tdes0 |= T0_OWN;
967 lasttx = nexttx;
968 }
969
970 /*
971 * Outgoing NFS mbuf must be unloaded when Tx completed.
972 * Without T1_IC NFS mbuf is left unack'ed for excessive
973 * time and NFS stops to proceed until kse_watchdog()
974 * calls txreap() to reclaim the unack'ed mbuf.
975 * It's painful to traverse every mbuf chain to determine
976 * whether someone is waiting for Tx completion.
977 */
978 m = m0;
979 do {
980 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
981 sc->sc_txdescs[lasttx].t1 |= T1_IC;
982 break;
983 }
984 } while ((m = m->m_next) != NULL);
985
986 /* Write last T0_OWN bit of the 1st segment */
987 sc->sc_txdescs[lasttx].t1 |= T1_LS;
988 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
989 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
990 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
991 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
992
993 /* Tell DMA start transmit */
994 CSR_WRITE_4(sc, MDTSC, 1);
995
996 txs->txs_mbuf = m0;
997 txs->txs_firstdesc = sc->sc_txnext;
998 txs->txs_lastdesc = lasttx;
999 txs->txs_ndesc = dmamap->dm_nsegs;
1000
1001 sc->sc_txfree -= txs->txs_ndesc;
1002 sc->sc_txnext = nexttx;
1003 sc->sc_txsfree--;
1004 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1005 /*
1006 * Pass the packet to any BPF listeners.
1007 */
1008 bpf_mtap(ifp, m0, BPF_D_OUT);
1009 }
1010
1011 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1012 /* No more slots left; notify upper layer. */
1013 ifp->if_flags |= IFF_OACTIVE;
1014 }
1015 if (sc->sc_txfree != ofree) {
1016 /* Set a watchdog timer in case the chip flakes out. */
1017 ifp->if_timer = 5;
1018 }
1019 }
1020
1021 static void
1022 kse_set_filter(struct kse_softc *sc)
1023 {
1024 struct ether_multistep step;
1025 struct ether_multi *enm;
1026 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1027 uint32_t h, hashes[2];
1028
1029 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1030 ifp->if_flags &= ~IFF_ALLMULTI;
1031 if (ifp->if_flags & IFF_PROMISC)
1032 return;
1033
1034 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1035 if (enm == NULL)
1036 return;
1037 hashes[0] = hashes[1] = 0;
1038 do {
1039 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1040 /*
1041 * We must listen to a range of multicast addresses.
1042 * For now, just accept all multicasts, rather than
1043 * trying to set only those filter bits needed to match
1044 * the range. (At this time, the only use of address
1045 * ranges is for IP multicast routing, for which the
1046 * range is big enough to require all bits set.)
1047 */
1048 goto allmulti;
1049 }
1050 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1051 hashes[h >> 5] |= 1 << (h & 0x1f);
1052 ETHER_NEXT_MULTI(step, enm);
1053 } while (enm != NULL);
1054 sc->sc_rxc |= RXC_MHTE;
1055 CSR_WRITE_4(sc, MTR0, hashes[0]);
1056 CSR_WRITE_4(sc, MTR1, hashes[1]);
1057 return;
1058 allmulti:
1059 sc->sc_rxc |= RXC_RM;
1060 ifp->if_flags |= IFF_ALLMULTI;
1061 }
1062
1063 static int
1064 add_rxbuf(struct kse_softc *sc, int idx)
1065 {
1066 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1067 struct mbuf *m;
1068 int error;
1069
1070 MGETHDR(m, M_DONTWAIT, MT_DATA);
1071 if (m == NULL)
1072 return ENOBUFS;
1073
1074 MCLGET(m, M_DONTWAIT);
1075 if ((m->m_flags & M_EXT) == 0) {
1076 m_freem(m);
1077 return ENOBUFS;
1078 }
1079
1080 if (rxs->rxs_mbuf != NULL)
1081 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1082
1083 rxs->rxs_mbuf = m;
1084
1085 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1086 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1087 if (error) {
1088 printf("%s: can't load rx DMA map %d, error = %d\n",
1089 device_xname(sc->sc_dev), idx, error);
1090 panic("kse_add_rxbuf");
1091 }
1092
1093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1095
1096 KSE_INIT_RXDESC(sc, idx);
1097
1098 return 0;
1099 }
1100
1101 static void
1102 rxdrain(struct kse_softc *sc)
1103 {
1104 struct kse_rxsoft *rxs;
1105 int i;
1106
1107 for (i = 0; i < KSE_NRXDESC; i++) {
1108 rxs = &sc->sc_rxsoft[i];
1109 if (rxs->rxs_mbuf != NULL) {
1110 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1111 m_freem(rxs->rxs_mbuf);
1112 rxs->rxs_mbuf = NULL;
1113 }
1114 }
1115 }
1116
1117 static int
1118 kse_intr(void *arg)
1119 {
1120 struct kse_softc *sc = arg;
1121 uint32_t isr;
1122
1123 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1124 return 0;
1125
1126 if (isr & INT_DMRS)
1127 rxintr(sc);
1128 if (isr & INT_DMTS)
1129 txreap(sc);
1130 if (isr & INT_DMLCS)
1131 lnkchg(sc);
1132 if (isr & INT_DMRBUS)
1133 printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1134
1135 CSR_WRITE_4(sc, INTST, isr);
1136 return 1;
1137 }
1138
1139 static void
1140 rxintr(struct kse_softc *sc)
1141 {
1142 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1143 struct kse_rxsoft *rxs;
1144 struct mbuf *m;
1145 uint32_t rxstat;
1146 int i, len;
1147
1148 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1149 rxs = &sc->sc_rxsoft[i];
1150
1151 KSE_CDRXSYNC(sc, i,
1152 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1153
1154 rxstat = sc->sc_rxdescs[i].r0;
1155
1156 if (rxstat & R0_OWN) /* desc is left empty */
1157 break;
1158
1159 /* R0_FS | R0_LS must have been marked for this desc */
1160
1161 if (rxstat & R0_ES) {
1162 ifp->if_ierrors++;
1163 #define PRINTERR(bit, str) \
1164 if (rxstat & (bit)) \
1165 printf("%s: receive error: %s\n", \
1166 device_xname(sc->sc_dev), str)
1167 PRINTERR(R0_TL, "frame too long");
1168 PRINTERR(R0_RF, "runt frame");
1169 PRINTERR(R0_CE, "bad FCS");
1170 #undef PRINTERR
1171 KSE_INIT_RXDESC(sc, i);
1172 continue;
1173 }
1174
1175 /* HW errata; frame might be too small or too large */
1176
1177 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1178 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1179
1180 len = rxstat & R0_FL_MASK;
1181 len -= ETHER_CRC_LEN; /* Trim CRC off */
1182 m = rxs->rxs_mbuf;
1183
1184 if (add_rxbuf(sc, i) != 0) {
1185 ifp->if_ierrors++;
1186 KSE_INIT_RXDESC(sc, i);
1187 bus_dmamap_sync(sc->sc_dmat,
1188 rxs->rxs_dmamap, 0,
1189 rxs->rxs_dmamap->dm_mapsize,
1190 BUS_DMASYNC_PREREAD);
1191 continue;
1192 }
1193
1194 m_set_rcvif(m, ifp);
1195 m->m_pkthdr.len = m->m_len = len;
1196
1197 if (sc->sc_mcsum) {
1198 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1199 if (rxstat & R0_IPE)
1200 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1201 if (rxstat & (R0_TCPE | R0_UDPE))
1202 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1203 }
1204 if_percpuq_enqueue(ifp->if_percpuq, m);
1205 #ifdef KSEDIAGNOSTIC
1206 if (kse_monitor_rxintr > 0) {
1207 printf("m stat %x data %p len %d\n",
1208 rxstat, m->m_data, m->m_len);
1209 }
1210 #endif
1211 }
1212 sc->sc_rxptr = i;
1213 }
1214
1215 static void
1216 txreap(struct kse_softc *sc)
1217 {
1218 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1219 struct kse_txsoft *txs;
1220 uint32_t txstat;
1221 int i;
1222
1223 ifp->if_flags &= ~IFF_OACTIVE;
1224
1225 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1226 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1227 txs = &sc->sc_txsoft[i];
1228
1229 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1230 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1231
1232 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1233
1234 if (txstat & T0_OWN) /* desc is still in use */
1235 break;
1236
1237 /* There is no way to tell transmission status per frame */
1238
1239 ifp->if_opackets++;
1240
1241 sc->sc_txfree += txs->txs_ndesc;
1242 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1243 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1244 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1245 m_freem(txs->txs_mbuf);
1246 txs->txs_mbuf = NULL;
1247 }
1248 sc->sc_txsdirty = i;
1249 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1250 ifp->if_timer = 0;
1251 }
1252
1253 static void
1254 lnkchg(struct kse_softc *sc)
1255 {
1256 struct ifmediareq ifmr;
1257
1258 #if 0 /* rambling link status */
1259 printf("%s: link %s\n", device_xname(sc->sc_dev),
1260 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1261 #endif
1262 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1263 }
1264
1265 static int
1266 ifmedia_upd(struct ifnet *ifp)
1267 {
1268 struct kse_softc *sc = ifp->if_softc;
1269 struct ifmedia *ifm = &sc->sc_media;
1270 uint16_t ctl;
1271
1272 ctl = 0;
1273 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1274 ctl |= (1U << 13); /* Restart AN */
1275 ctl |= (1U << 7); /* Enable AN */
1276 ctl |= (1U << 4); /* Advertise flow control pause */
1277 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1278 }
1279 else {
1280 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1281 ctl |= (1U << 6);
1282 if (ifm->ifm_media & IFM_FDX)
1283 ctl |= (1U << 5);
1284 }
1285 CSR_WRITE_2(sc, P1CR4, ctl);
1286
1287 sc->sc_media_active = IFM_NONE;
1288 sc->sc_media_status = IFM_AVALID;
1289
1290 return 0;
1291 }
1292
1293 static void
1294 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1295 {
1296 struct kse_softc *sc = ifp->if_softc;
1297 struct ifmedia *ifm = &sc->sc_media;
1298 uint16_t ctl, sts, result;
1299
1300 ifmr->ifm_status = IFM_AVALID;
1301 ifmr->ifm_active = IFM_ETHER;
1302
1303 ctl = CSR_READ_2(sc, P1CR4);
1304 sts = CSR_READ_2(sc, P1SR);
1305 if ((sts & (1U << 5)) == 0) {
1306 ifmr->ifm_active |= IFM_NONE;
1307 goto out; /* Link is down */
1308 }
1309 ifmr->ifm_status |= IFM_ACTIVE;
1310 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1311 if ((sts & (1U << 6)) == 0) {
1312 ifmr->ifm_active |= IFM_NONE;
1313 goto out; /* Negotiation in progress */
1314 }
1315 result = ctl & sts & 017;
1316 if (result & (1U << 3))
1317 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1318 else if (result & (1U << 2))
1319 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
1320 else if (result & (1U << 1))
1321 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
1322 else if (result & (1U << 0))
1323 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
1324 else
1325 ifmr->ifm_active |= IFM_NONE;
1326 if (ctl & (1U << 4))
1327 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1328 if (sts & (1U << 4))
1329 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1330 }
1331 else {
1332 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1333 if (sts & (1U << 9))
1334 ifmr->ifm_active |= IFM_FDX;
1335 if (sts & (1U << 12))
1336 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1337 if (sts & (1U << 11))
1338 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1339 }
1340
1341 out:
1342 sc->sc_media_status = ifmr->ifm_status;
1343 sc->sc_media_active = ifmr->ifm_active;
1344 }
1345
1346 static void
1347 phy_tick(void *arg)
1348 {
1349 struct kse_softc *sc = arg;
1350 struct ifmediareq ifmr;
1351 int s;
1352
1353 s = splnet();
1354 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1355 splx(s);
1356
1357 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1358 }
1359
1360 static int
1361 ifmedia2_upd(struct ifnet *ifp)
1362 {
1363 struct kse_softc *sc = ifp->if_softc;
1364
1365 sc->sc_media_status = IFM_AVALID;
1366 sc->sc_media_active = IFM_NONE;
1367 return 0;
1368 }
1369
1370 static void
1371 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1372 {
1373 struct kse_softc *sc = ifp->if_softc;
1374 int p1sts, p2sts;
1375
1376 ifmr->ifm_status = IFM_AVALID;
1377 ifmr->ifm_active = IFM_ETHER;
1378 p1sts = CSR_READ_2(sc, P1SR);
1379 p2sts = CSR_READ_2(sc, P2SR);
1380 if (((p1sts | p2sts) & (1U << 5)) == 0)
1381 ifmr->ifm_active |= IFM_NONE;
1382 else {
1383 ifmr->ifm_status |= IFM_ACTIVE;
1384 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1385 ifmr->ifm_active |= IFM_FLOW
1386 | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1387 }
1388 sc->sc_media_status = ifmr->ifm_status;
1389 sc->sc_media_active = ifmr->ifm_active;
1390 }
1391
1392 #ifdef KSE_EVENT_COUNTERS
1393 static void
1394 stat_tick(void *arg)
1395 {
1396 struct kse_softc *sc = arg;
1397 struct ksext *ee = &sc->sc_ext;
1398 int nport, p, i, val;
1399
1400 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1401 for (p = 0; p < nport; p++) {
1402 for (i = 0; i < 32; i++) {
1403 val = 0x1c00 | (p * 0x20 + i);
1404 CSR_WRITE_2(sc, IACR, val);
1405 do {
1406 val = CSR_READ_2(sc, IADR5) << 16;
1407 } while ((val & (1U << 30)) == 0);
1408 if (val & (1U << 31)) {
1409 (void)CSR_READ_2(sc, IADR4);
1410 val = 0x3fffffff; /* has made overflow */
1411 }
1412 else {
1413 val &= 0x3fff0000; /* 29:16 */
1414 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1415 }
1416 ee->pev[p][i].ev_count += val; /* i (0-31) */
1417 }
1418 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1419 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1420 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1421 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1422 }
1423 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1424 }
1425
1426 static void
1427 zerostats(struct kse_softc *sc)
1428 {
1429 struct ksext *ee = &sc->sc_ext;
1430 int nport, p, i, val;
1431
1432 /* Make sure all the HW counters get zero */
1433 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1434 for (p = 0; p < nport; p++) {
1435 for (i = 0; i < 31; i++) {
1436 val = 0x1c00 | (p * 0x20 + i);
1437 CSR_WRITE_2(sc, IACR, val);
1438 do {
1439 val = CSR_READ_2(sc, IADR5) << 16;
1440 } while ((val & (1U << 30)) == 0);
1441 (void)CSR_READ_2(sc, IADR4);
1442 ee->pev[p][i].ev_count = 0;
1443 }
1444 }
1445 }
1446 #endif
1447