Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.37
      1 /*	$NetBSD: if_kse.c,v 1.37 2019/05/28 07:41:49 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.37 2019/05/28 07:41:49 msaitoh Exp $");
     34 
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/callout.h>
     39 #include <sys/mbuf.h>
     40 #include <sys/malloc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/errno.h>
     44 #include <sys/device.h>
     45 #include <sys/queue.h>
     46 
     47 #include <machine/endian.h>
     48 #include <sys/bus.h>
     49 #include <sys/intr.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_media.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_ether.h>
     55 #include <net/bpf.h>
     56 
     57 #include <dev/pci/pcivar.h>
     58 #include <dev/pci/pcireg.h>
     59 #include <dev/pci/pcidevs.h>
     60 
     61 #define CSR_READ_4(sc, off) \
     62 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     63 #define CSR_WRITE_4(sc, off, val) \
     64 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     65 #define CSR_READ_2(sc, off) \
     66 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     67 #define CSR_WRITE_2(sc, off, val) \
     68 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     69 
     70 #define MDTXC	0x000	/* DMA transmit control */
     71 #define MDRXC	0x004	/* DMA receive control */
     72 #define MDTSC	0x008	/* DMA transmit start */
     73 #define MDRSC	0x00c	/* DMA receive start */
     74 #define TDLB	0x010	/* transmit descriptor list base */
     75 #define RDLB	0x014	/* receive descriptor list base */
     76 #define MTR0	0x020	/* multicast table 31:0 */
     77 #define MTR1	0x024	/* multicast table 63:32 */
     78 #define INTEN	0x028	/* interrupt enable */
     79 #define INTST	0x02c	/* interrupt status */
     80 #define MARL	0x200	/* MAC address low */
     81 #define MARM	0x202	/* MAC address middle */
     82 #define MARH	0x204	/* MAC address high */
     83 #define GRR	0x216	/* global reset */
     84 #define CIDR	0x400	/* chip ID and enable */
     85 #define CGCR	0x40a	/* chip global control */
     86 #define IACR	0x4a0	/* indirect access control */
     87 #define IADR1	0x4a2	/* indirect access data 66:63 */
     88 #define IADR2	0x4a4	/* indirect access data 47:32 */
     89 #define IADR3	0x4a6	/* indirect access data 63:48 */
     90 #define IADR4	0x4a8	/* indirect access data 15:0 */
     91 #define IADR5	0x4aa	/* indirect access data 31:16 */
     92 #define P1CR4	0x512	/* port 1 control 4 */
     93 #define P1SR	0x514	/* port 1 status */
     94 #define P2CR4	0x532	/* port 2 control 4 */
     95 #define P2SR	0x534	/* port 2 status */
     96 
     97 #define TXC_BS_MSK	0x3f000000	/* burst size */
     98 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
     99 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    100 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    101 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    102 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
    103 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    104 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    105 #define TXC_TEN		(1)		/* enable DMA to run */
    106 
    107 #define RXC_BS_MSK	0x3f000000	/* burst size */
    108 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    109 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    110 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    111 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    112 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    113 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    114 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    115 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    116 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    117 #define RXC_RE		(1U<<3)		/* accept error frame */
    118 #define RXC_RA		(1U<<2)		/* receive all frame */
    119 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    120 #define RXC_REN		(1)		/* enable DMA to run */
    121 
    122 #define INT_DMLCS	(1U<<31)	/* link status change */
    123 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    124 #define INT_DMRS	(1U<<29)	/* frame was received */
    125 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    126 
    127 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    128 
    129 #define R0_OWN		(1U<<31)	/* desc is empty */
    130 #define R0_FS		(1U<<30)	/* first segment of frame */
    131 #define R0_LS		(1U<<29)	/* last segment of frame */
    132 #define R0_IPE		(1U<<28)	/* IP checksum error */
    133 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    134 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    135 #define R0_ES		(1U<<25)	/* error summary */
    136 #define R0_MF		(1U<<24)	/* multicast frame */
    137 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    138 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    139 #define R0_RE		(1U<<19)	/* MII reported error */
    140 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    141 #define R0_RF		(1U<<17)	/* damaged runt frame */
    142 #define R0_CE		(1U<<16)	/* CRC error */
    143 #define R0_FT		(1U<<15)	/* frame type */
    144 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    145 
    146 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    147 #define T1_FS		(1U<<30)	/* first segment of frame */
    148 #define T1_LS		(1U<<29)	/* last segment of frame */
    149 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    150 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    151 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    152 #define T1_TER		(1U<<25)	/* end of ring */
    153 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    154 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    155 
    156 #define R1_RER		(1U<<25)	/* end of ring */
    157 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    158 
    159 #define KSE_NTXSEGS		16
    160 #define KSE_TXQUEUELEN		64
    161 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    162 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    163 #define KSE_NTXDESC		256
    164 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    165 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    166 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    167 
    168 #define KSE_NRXDESC		64
    169 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    170 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    171 
    172 struct tdes {
    173 	uint32_t t0, t1, t2, t3;
    174 };
    175 
    176 struct rdes {
    177 	uint32_t r0, r1, r2, r3;
    178 };
    179 
    180 struct kse_control_data {
    181 	struct tdes kcd_txdescs[KSE_NTXDESC];
    182 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    183 };
    184 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    185 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    186 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    187 
    188 struct kse_txsoft {
    189 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    190 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    191 	int txs_firstdesc;		/* first descriptor in packet */
    192 	int txs_lastdesc;		/* last descriptor in packet */
    193 	int txs_ndesc;			/* # of descriptors used */
    194 };
    195 
    196 struct kse_rxsoft {
    197 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    198 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    199 };
    200 
    201 struct kse_softc {
    202 	device_t sc_dev;		/* generic device information */
    203 	bus_space_tag_t sc_st;		/* bus space tag */
    204 	bus_space_handle_t sc_sh;	/* bus space handle */
    205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    206 	struct ethercom sc_ethercom;	/* Ethernet common data */
    207 	void *sc_ih;			/* interrupt cookie */
    208 
    209 	struct ifmedia sc_media;	/* ifmedia information */
    210 	int sc_media_status;		/* PHY */
    211 	int sc_media_active;		/* PHY */
    212 	callout_t  sc_callout;		/* MII tick callout */
    213 	callout_t  sc_stat_ch;		/* statistics counter callout */
    214 
    215 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    216 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    217 
    218 	struct kse_control_data *sc_control_data;
    219 #define sc_txdescs	sc_control_data->kcd_txdescs
    220 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    221 
    222 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    223 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    224 	int sc_txfree;			/* number of free Tx descriptors */
    225 	int sc_txnext;			/* next ready Tx descriptor */
    226 	int sc_txsfree;			/* number of free Tx jobs */
    227 	int sc_txsnext;			/* next ready Tx job */
    228 	int sc_txsdirty;		/* dirty Tx jobs */
    229 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    230 
    231 	uint32_t sc_txc, sc_rxc;
    232 	uint32_t sc_t1csum;
    233 	int sc_mcsum;
    234 	uint32_t sc_inten;
    235 
    236 	uint32_t sc_chip;
    237 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    238 	uint16_t sc_vlan[16];
    239 
    240 #ifdef KSE_EVENT_COUNTERS
    241 	struct ksext {
    242 		char evcntname[3][8];
    243 		struct evcnt pev[3][34];
    244 	} sc_ext;			/* switch statistics */
    245 #endif
    246 };
    247 
    248 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    249 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    250 
    251 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    252 do {									\
    253 	int __x, __n;							\
    254 									\
    255 	__x = (x);							\
    256 	__n = (n);							\
    257 									\
    258 	/* If it will wrap around, sync to the end of the ring. */	\
    259 	if ((__x + __n) > KSE_NTXDESC) {				\
    260 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    261 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    262 		    (KSE_NTXDESC - __x), (ops));			\
    263 		__n -= (KSE_NTXDESC - __x);				\
    264 		__x = 0;						\
    265 	}								\
    266 									\
    267 	/* Now sync whatever is left. */				\
    268 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    269 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    270 } while (/*CONSTCOND*/0)
    271 
    272 #define KSE_CDRXSYNC(sc, x, ops)					\
    273 do {									\
    274 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    275 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    276 } while (/*CONSTCOND*/0)
    277 
    278 #define KSE_INIT_RXDESC(sc, x)						\
    279 do {									\
    280 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    281 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    282 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    283 									\
    284 	__m->m_data = __m->m_ext.ext_buf;				\
    285 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    286 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    287 	__rxd->r0 = R0_OWN;						\
    288 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    289 } while (/*CONSTCOND*/0)
    290 
    291 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    292 
    293 #ifdef KSEDIAGNOSTIC
    294 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    295 #endif
    296 
    297 static int kse_match(device_t, cfdata_t, void *);
    298 static void kse_attach(device_t, device_t, void *);
    299 
    300 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
    301     kse_match, kse_attach, NULL, NULL);
    302 
    303 static int kse_ioctl(struct ifnet *, u_long, void *);
    304 static void kse_start(struct ifnet *);
    305 static void kse_watchdog(struct ifnet *);
    306 static int kse_init(struct ifnet *);
    307 static void kse_stop(struct ifnet *, int);
    308 static void kse_reset(struct kse_softc *);
    309 static void kse_set_filter(struct kse_softc *);
    310 static int add_rxbuf(struct kse_softc *, int);
    311 static void rxdrain(struct kse_softc *);
    312 static int kse_intr(void *);
    313 static void rxintr(struct kse_softc *);
    314 static void txreap(struct kse_softc *);
    315 static void lnkchg(struct kse_softc *);
    316 static int ifmedia_upd(struct ifnet *);
    317 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
    318 static void phy_tick(void *);
    319 static int ifmedia2_upd(struct ifnet *);
    320 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
    321 #ifdef KSE_EVENT_COUNTERS
    322 static void stat_tick(void *);
    323 static void zerostats(struct kse_softc *);
    324 #endif
    325 
    326 static int
    327 kse_match(device_t parent, cfdata_t match, void *aux)
    328 {
    329 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    330 
    331 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    332 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    333 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    334 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    335 		return 1;
    336 
    337 	return 0;
    338 }
    339 
    340 static void
    341 kse_attach(device_t parent, device_t self, void *aux)
    342 {
    343 	struct kse_softc *sc = device_private(self);
    344 	struct pci_attach_args *pa = aux;
    345 	pci_chipset_tag_t pc = pa->pa_pc;
    346 	pci_intr_handle_t ih;
    347 	const char *intrstr;
    348 	struct ifnet *ifp;
    349 	struct ifmedia *ifm;
    350 	uint8_t enaddr[ETHER_ADDR_LEN];
    351 	bus_dma_segment_t seg;
    352 	int i, error, nseg;
    353 	pcireg_t pmode;
    354 	int pmreg;
    355 	char intrbuf[PCI_INTRSTR_LEN];
    356 
    357 	if (pci_mapreg_map(pa, 0x10,
    358 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    359 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    360 		printf(": unable to map device registers\n");
    361 		return;
    362 	}
    363 
    364 	sc->sc_dev = self;
    365 	sc->sc_dmat = pa->pa_dmat;
    366 
    367 	/* Make sure bus mastering is enabled. */
    368 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    369 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    370 	    PCI_COMMAND_MASTER_ENABLE);
    371 
    372 	/* Get it out of power save mode, if needed. */
    373 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    374 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    375 		    PCI_PMCSR_STATE_MASK;
    376 		if (pmode == PCI_PMCSR_STATE_D3) {
    377 			/*
    378 			 * The card has lost all configuration data in
    379 			 * this state, so punt.
    380 			 */
    381 			printf("%s: unable to wake from power state D3\n",
    382 			    device_xname(sc->sc_dev));
    383 			return;
    384 		}
    385 		if (pmode != PCI_PMCSR_STATE_D0) {
    386 			printf("%s: waking up from power date D%d\n",
    387 			    device_xname(sc->sc_dev), pmode);
    388 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    389 			    PCI_PMCSR_STATE_D0);
    390 		}
    391 	}
    392 
    393 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    394 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    395 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    396 
    397 	/*
    398 	 * Read the Ethernet address from the EEPROM.
    399 	 */
    400 	i = CSR_READ_2(sc, MARL);
    401 	enaddr[5] = i; enaddr[4] = i >> 8;
    402 	i = CSR_READ_2(sc, MARM);
    403 	enaddr[3] = i; enaddr[2] = i >> 8;
    404 	i = CSR_READ_2(sc, MARH);
    405 	enaddr[1] = i; enaddr[0] = i >> 8;
    406 	printf("%s: Ethernet address %s\n",
    407 		device_xname(sc->sc_dev), ether_sprintf(enaddr));
    408 
    409 	/*
    410 	 * Enable chip function.
    411 	 */
    412 	CSR_WRITE_2(sc, CIDR, 1);
    413 
    414 	/*
    415 	 * Map and establish our interrupt.
    416 	 */
    417 	if (pci_intr_map(pa, &ih)) {
    418 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    419 		return;
    420 	}
    421 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    422 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
    423 	    device_xname(self));
    424 	if (sc->sc_ih == NULL) {
    425 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    426 		if (intrstr != NULL)
    427 			aprint_error(" at %s", intrstr);
    428 		aprint_error("\n");
    429 		return;
    430 	}
    431 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    432 
    433 	/*
    434 	 * Allocate the control data structures, and create and load the
    435 	 * DMA map for it.
    436 	 */
    437 	error = bus_dmamem_alloc(sc->sc_dmat,
    438 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    439 	if (error != 0) {
    440 		aprint_error_dev(sc->sc_dev,
    441 		    "unable to allocate control data, error = %d\n", error);
    442 		goto fail_0;
    443 	}
    444 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    445 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    446 	    BUS_DMA_COHERENT);
    447 	if (error != 0) {
    448 		aprint_error_dev(sc->sc_dev,
    449 		    "unable to map control data, error = %d\n", error);
    450 		goto fail_1;
    451 	}
    452 	error = bus_dmamap_create(sc->sc_dmat,
    453 	    sizeof(struct kse_control_data), 1,
    454 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    455 	if (error != 0) {
    456 		aprint_error_dev(sc->sc_dev,
    457 		    "unable to create control data DMA map, "
    458 		    "error = %d\n", error);
    459 		goto fail_2;
    460 	}
    461 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    462 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    463 	if (error != 0) {
    464 		aprint_error_dev(sc->sc_dev,
    465 		    "unable to load control data DMA map, error = %d\n",
    466 		    error);
    467 		goto fail_3;
    468 	}
    469 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    470 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    471 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    472 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    473 			aprint_error_dev(sc->sc_dev,
    474 			    "unable to create tx DMA map %d, error = %d\n",
    475 			    i, error);
    476 			goto fail_4;
    477 		}
    478 	}
    479 	for (i = 0; i < KSE_NRXDESC; i++) {
    480 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    481 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    482 			aprint_error_dev(sc->sc_dev,
    483 			    "unable to create rx DMA map %d, error = %d\n",
    484 			    i, error);
    485 			goto fail_5;
    486 		}
    487 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    488 	}
    489 
    490 	callout_init(&sc->sc_callout, 0);
    491 	callout_init(&sc->sc_stat_ch, 0);
    492 
    493 	ifm = &sc->sc_media;
    494 	if (sc->sc_chip == 0x8841) {
    495 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
    496 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
    497 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    498 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
    499 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    500 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
    501 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    502 	} else {
    503 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
    504 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
    505 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    506 	}
    507 
    508 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    509 	    device_xname(sc->sc_dev));
    510 
    511 	ifp = &sc->sc_ethercom.ec_if;
    512 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    513 	ifp->if_softc = sc;
    514 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    515 	ifp->if_ioctl = kse_ioctl;
    516 	ifp->if_start = kse_start;
    517 	ifp->if_watchdog = kse_watchdog;
    518 	ifp->if_init = kse_init;
    519 	ifp->if_stop = kse_stop;
    520 	IFQ_SET_READY(&ifp->if_snd);
    521 
    522 	/*
    523 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    524 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    525 	 */
    526 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    527 	ifp->if_capabilities |=
    528 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    529 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    530 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    531 
    532 	if_attach(ifp);
    533 	ether_ifattach(ifp, enaddr);
    534 
    535 #ifdef KSE_EVENT_COUNTERS
    536 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
    537 	for (i = 0; i < p; i++) {
    538 		struct ksext *ee = &sc->sc_ext;
    539 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
    540 		    "%s.%d", device_xname(sc->sc_dev), i+1);
    541 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    542 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    543 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    544 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    545 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    546 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    547 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    548 		    NULL, ee->evcntname[i], "RxFragments");
    549 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    550 		    NULL, ee->evcntname[i], "RxOversize");
    551 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    552 		    NULL, ee->evcntname[i], "RxJabbers");
    553 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    554 		    NULL, ee->evcntname[i], "RxSymbolError");
    555 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    556 		    NULL, ee->evcntname[i], "RxCRCError");
    557 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    558 		    NULL, ee->evcntname[i], "RxAlignmentError");
    559 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    560 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    561 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    562 		    NULL, ee->evcntname[i], "RxPausePkts");
    563 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    564 		    NULL, ee->evcntname[i], "RxBroadcast");
    565 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    566 		    NULL, ee->evcntname[i], "RxMulticast");
    567 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    568 		    NULL, ee->evcntname[i], "RxUnicast");
    569 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    570 		    NULL, ee->evcntname[i], "Rx64Octets");
    571 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    572 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    573 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    574 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    575 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    576 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    577 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    578 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    579 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    580 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    581 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    582 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    583 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    584 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    585 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    586 		    NULL, ee->evcntname[i], "TxLateCollision");
    587 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    588 		    NULL, ee->evcntname[i], "TxPausePkts");
    589 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    590 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    591 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    592 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    593 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    594 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    595 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    596 		    NULL, ee->evcntname[i], "TxDeferred");
    597 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    598 		    NULL, ee->evcntname[i], "TxTotalCollision");
    599 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    600 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    601 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    602 		    NULL, ee->evcntname[i], "TxSingleCollision");
    603 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    604 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    605 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    606 		    NULL, ee->evcntname[i], "TxDropPkts");
    607 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    608 		    NULL, ee->evcntname[i], "RxDropPkts");
    609 	}
    610 #endif
    611 	return;
    612 
    613  fail_5:
    614 	for (i = 0; i < KSE_NRXDESC; i++) {
    615 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    616 			bus_dmamap_destroy(sc->sc_dmat,
    617 			    sc->sc_rxsoft[i].rxs_dmamap);
    618 	}
    619  fail_4:
    620 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    621 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    622 			bus_dmamap_destroy(sc->sc_dmat,
    623 			    sc->sc_txsoft[i].txs_dmamap);
    624 	}
    625 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    626  fail_3:
    627 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    628  fail_2:
    629 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    630 	    sizeof(struct kse_control_data));
    631  fail_1:
    632 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    633  fail_0:
    634 	return;
    635 }
    636 
    637 static int
    638 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    639 {
    640 	struct kse_softc *sc = ifp->if_softc;
    641 	struct ifreq *ifr = (struct ifreq *)data;
    642 	int s, error;
    643 
    644 	s = splnet();
    645 
    646 	switch (cmd) {
    647 	case SIOCSIFMEDIA:
    648 	case SIOCGIFMEDIA:
    649 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    650 		break;
    651 
    652 	default:
    653 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    654 			break;
    655 
    656 		error = 0;
    657 
    658 		if (cmd == SIOCSIFCAP)
    659 			error = (*ifp->if_init)(ifp);
    660 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    661 			;
    662 		else if (ifp->if_flags & IFF_RUNNING) {
    663 			/*
    664 			 * Multicast list has changed; set the hardware filter
    665 			 * accordingly.
    666 			 */
    667 			kse_set_filter(sc);
    668 		}
    669 		break;
    670 	}
    671 
    672 	kse_start(ifp);
    673 
    674 	splx(s);
    675 	return error;
    676 }
    677 
    678 static int
    679 kse_init(struct ifnet *ifp)
    680 {
    681 	struct kse_softc *sc = ifp->if_softc;
    682 	uint32_t paddr;
    683 	int i, error = 0;
    684 
    685 	/* cancel pending I/O */
    686 	kse_stop(ifp, 0);
    687 
    688 	/* reset all registers but PCI configuration */
    689 	kse_reset(sc);
    690 
    691 	/* craft Tx descriptor ring */
    692 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    693 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    694 		sc->sc_txdescs[i].t3 = paddr;
    695 		paddr += sizeof(struct tdes);
    696 	}
    697 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    698 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    699 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    700 	sc->sc_txfree = KSE_NTXDESC;
    701 	sc->sc_txnext = 0;
    702 
    703 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    704 		sc->sc_txsoft[i].txs_mbuf = NULL;
    705 	sc->sc_txsfree = KSE_TXQUEUELEN;
    706 	sc->sc_txsnext = 0;
    707 	sc->sc_txsdirty = 0;
    708 
    709 	/* craft Rx descriptor ring */
    710 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    711 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    712 		sc->sc_rxdescs[i].r3 = paddr;
    713 		paddr += sizeof(struct rdes);
    714 	}
    715 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    716 	for (i = 0; i < KSE_NRXDESC; i++) {
    717 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    718 			if ((error = add_rxbuf(sc, i)) != 0) {
    719 				printf("%s: unable to allocate or map rx "
    720 				    "buffer %d, error = %d\n",
    721 				     device_xname(sc->sc_dev), i, error);
    722 				rxdrain(sc);
    723 				goto out;
    724 			}
    725 		}
    726 		else
    727 			KSE_INIT_RXDESC(sc, i);
    728 	}
    729 	sc->sc_rxptr = 0;
    730 
    731 	/* hand Tx/Rx rings to HW */
    732 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    733 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    734 
    735 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    736 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    737 	if (ifp->if_flags & IFF_PROMISC)
    738 		sc->sc_rxc |= RXC_RA;
    739 	if (ifp->if_flags & IFF_BROADCAST)
    740 		sc->sc_rxc |= RXC_RB;
    741 	sc->sc_t1csum = sc->sc_mcsum = 0;
    742 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    743 		sc->sc_rxc |= RXC_ICC;
    744 		sc->sc_mcsum |= M_CSUM_IPv4;
    745 	}
    746 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    747 		sc->sc_txc |= TXC_ICG;
    748 		sc->sc_t1csum |= T1_IPCKG;
    749 	}
    750 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    751 		sc->sc_rxc |= RXC_TCC;
    752 		sc->sc_mcsum |= M_CSUM_TCPv4;
    753 	}
    754 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    755 		sc->sc_txc |= TXC_TCG;
    756 		sc->sc_t1csum |= T1_TCPCKG;
    757 	}
    758 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    759 		sc->sc_rxc |= RXC_UCC;
    760 		sc->sc_mcsum |= M_CSUM_UDPv4;
    761 	}
    762 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    763 		sc->sc_txc |= TXC_UCG;
    764 		sc->sc_t1csum |= T1_UDPCKG;
    765 	}
    766 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    767 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    768 
    769 	/* build multicast hash filter if necessary */
    770 	kse_set_filter(sc);
    771 
    772 	/* set current media */
    773 	(void)ifmedia_upd(ifp);
    774 
    775 	/* enable transmitter and receiver */
    776 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    777 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    778 	CSR_WRITE_4(sc, MDRSC, 1);
    779 
    780 	/* enable interrupts */
    781 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
    782 	if (sc->sc_chip == 0x8841)
    783 		sc->sc_inten |= INT_DMLCS;
    784 	CSR_WRITE_4(sc, INTST, ~0);
    785 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    786 
    787 	ifp->if_flags |= IFF_RUNNING;
    788 	ifp->if_flags &= ~IFF_OACTIVE;
    789 
    790 	if (sc->sc_chip == 0x8841) {
    791 		/* start one second timer */
    792 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    793 	}
    794 #ifdef KSE_EVENT_COUNTERS
    795 	/* start statistics gather 1 minute timer */
    796 	zerostats(sc);
    797 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
    798 #endif
    799 
    800  out:
    801 	if (error) {
    802 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    803 		ifp->if_timer = 0;
    804 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
    805 	}
    806 	return error;
    807 }
    808 
    809 static void
    810 kse_stop(struct ifnet *ifp, int disable)
    811 {
    812 	struct kse_softc *sc = ifp->if_softc;
    813 	struct kse_txsoft *txs;
    814 	int i;
    815 
    816 	if (sc->sc_chip == 0x8841)
    817 		callout_stop(&sc->sc_callout);
    818 	callout_stop(&sc->sc_stat_ch);
    819 
    820 	sc->sc_txc &= ~TXC_TEN;
    821 	sc->sc_rxc &= ~RXC_REN;
    822 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    823 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    824 
    825 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    826 		txs = &sc->sc_txsoft[i];
    827 		if (txs->txs_mbuf != NULL) {
    828 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    829 			m_freem(txs->txs_mbuf);
    830 			txs->txs_mbuf = NULL;
    831 		}
    832 	}
    833 
    834 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    835 	ifp->if_timer = 0;
    836 
    837 	if (disable)
    838 		rxdrain(sc);
    839 }
    840 
    841 static void
    842 kse_reset(struct kse_softc *sc)
    843 {
    844 
    845 	CSR_WRITE_2(sc, GRR, 1);
    846 	delay(1000); /* PDF does not mention the delay amount */
    847 	CSR_WRITE_2(sc, GRR, 0);
    848 
    849 	CSR_WRITE_2(sc, CIDR, 1);
    850 }
    851 
    852 static void
    853 kse_watchdog(struct ifnet *ifp)
    854 {
    855 	struct kse_softc *sc = ifp->if_softc;
    856 
    857 	/*
    858 	 * Since we're not interrupting every packet, sweep
    859 	 * up before we report an error.
    860 	 */
    861 	txreap(sc);
    862 
    863 	if (sc->sc_txfree != KSE_NTXDESC) {
    864 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    865 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
    866 		    sc->sc_txnext);
    867 		ifp->if_oerrors++;
    868 
    869 		/* Reset the interface. */
    870 		kse_init(ifp);
    871 	}
    872 	else if (ifp->if_flags & IFF_DEBUG)
    873 		printf("%s: recovered from device timeout\n",
    874 		    device_xname(sc->sc_dev));
    875 
    876 	/* Try to get more packets going. */
    877 	kse_start(ifp);
    878 }
    879 
    880 static void
    881 kse_start(struct ifnet *ifp)
    882 {
    883 	struct kse_softc *sc = ifp->if_softc;
    884 	struct mbuf *m0, *m;
    885 	struct kse_txsoft *txs;
    886 	bus_dmamap_t dmamap;
    887 	int error, nexttx, lasttx, ofree, seg;
    888 	uint32_t tdes0;
    889 
    890 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    891 		return;
    892 
    893 	/* Remember the previous number of free descriptors. */
    894 	ofree = sc->sc_txfree;
    895 
    896 	/*
    897 	 * Loop through the send queue, setting up transmit descriptors
    898 	 * until we drain the queue, or use up all available transmit
    899 	 * descriptors.
    900 	 */
    901 	for (;;) {
    902 		IFQ_POLL(&ifp->if_snd, m0);
    903 		if (m0 == NULL)
    904 			break;
    905 
    906 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    907 			txreap(sc);
    908 			if (sc->sc_txsfree == 0)
    909 				break;
    910 		}
    911 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    912 		dmamap = txs->txs_dmamap;
    913 
    914 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    915 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    916 		if (error) {
    917 			if (error == EFBIG) {
    918 				printf("%s: Tx packet consumes too many "
    919 				    "DMA segments, dropping...\n",
    920 				    device_xname(sc->sc_dev));
    921 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    922 				    m_freem(m0);
    923 				    continue;
    924 			}
    925 			/* Short on resources, just stop for now. */
    926 			break;
    927 		}
    928 
    929 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    930 			/*
    931 			 * Not enough free descriptors to transmit this
    932 			 * packet.  We haven't committed anything yet,
    933 			 * so just unload the DMA map, put the packet
    934 			 * back on the queue, and punt.	 Notify the upper
    935 			 * layer that there are not more slots left.
    936 			 */
    937 			ifp->if_flags |= IFF_OACTIVE;
    938 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    939 			break;
    940 		}
    941 
    942 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    943 
    944 		/*
    945 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    946 		 */
    947 
    948 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    949 		    BUS_DMASYNC_PREWRITE);
    950 
    951 		lasttx = -1; tdes0 = 0;
    952 		for (nexttx = sc->sc_txnext, seg = 0;
    953 		     seg < dmamap->dm_nsegs;
    954 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    955 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    956 			/*
    957 			 * If this is the first descriptor we're
    958 			 * enqueueing, don't set the OWN bit just
    959 			 * yet.	 That could cause a race condition.
    960 			 * We'll do it below.
    961 			 */
    962 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    963 			tdes->t1 = sc->sc_t1csum
    964 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    965 			tdes->t0 = tdes0;
    966 			tdes0 |= T0_OWN;
    967 			lasttx = nexttx;
    968 		}
    969 
    970 		/*
    971 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    972 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    973 		 * time and NFS stops to proceed until kse_watchdog()
    974 		 * calls txreap() to reclaim the unack'ed mbuf.
    975 		 * It's painful to traverse every mbuf chain to determine
    976 		 * whether someone is waiting for Tx completion.
    977 		 */
    978 		m = m0;
    979 		do {
    980 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    981 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    982 				break;
    983 			}
    984 		} while ((m = m->m_next) != NULL);
    985 
    986 		/* Write last T0_OWN bit of the 1st segment */
    987 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    988 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    989 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
    990 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    991 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    992 
    993 		/* Tell DMA start transmit */
    994 		CSR_WRITE_4(sc, MDTSC, 1);
    995 
    996 		txs->txs_mbuf = m0;
    997 		txs->txs_firstdesc = sc->sc_txnext;
    998 		txs->txs_lastdesc = lasttx;
    999 		txs->txs_ndesc = dmamap->dm_nsegs;
   1000 
   1001 		sc->sc_txfree -= txs->txs_ndesc;
   1002 		sc->sc_txnext = nexttx;
   1003 		sc->sc_txsfree--;
   1004 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
   1005 		/*
   1006 		 * Pass the packet to any BPF listeners.
   1007 		 */
   1008 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1009 	}
   1010 
   1011 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1012 		/* No more slots left; notify upper layer. */
   1013 		ifp->if_flags |= IFF_OACTIVE;
   1014 	}
   1015 	if (sc->sc_txfree != ofree) {
   1016 		/* Set a watchdog timer in case the chip flakes out. */
   1017 		ifp->if_timer = 5;
   1018 	}
   1019 }
   1020 
   1021 static void
   1022 kse_set_filter(struct kse_softc *sc)
   1023 {
   1024 	struct ether_multistep step;
   1025 	struct ether_multi *enm;
   1026 	struct ethercom *ec = &sc->sc_ethercom;
   1027 	struct ifnet *ifp = &ec->ec_if;
   1028 	uint32_t h, hashes[2];
   1029 
   1030 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1031 	ifp->if_flags &= ~IFF_ALLMULTI;
   1032 	if (ifp->if_flags & IFF_PROMISC)
   1033 		return;
   1034 
   1035 	ETHER_LOCK(ec);
   1036 	ETHER_FIRST_MULTI(step, ec, enm);
   1037 	if (enm == NULL) {
   1038 		ETHER_UNLOCK(ec);
   1039 		return;
   1040 	}
   1041 	hashes[0] = hashes[1] = 0;
   1042 	do {
   1043 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1044 			/*
   1045 			 * We must listen to a range of multicast addresses.
   1046 			 * For now, just accept all multicasts, rather than
   1047 			 * trying to set only those filter bits needed to match
   1048 			 * the range.  (At this time, the only use of address
   1049 			 * ranges is for IP multicast routing, for which the
   1050 			 * range is big enough to require all bits set.)
   1051 			 */
   1052 			ETHER_UNLOCK(ec);
   1053 			goto allmulti;
   1054 		}
   1055 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1056 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1057 		ETHER_NEXT_MULTI(step, enm);
   1058 	} while (enm != NULL);
   1059 	ETHER_UNLOCK(ec);
   1060 	sc->sc_rxc |= RXC_MHTE;
   1061 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1062 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1063 	return;
   1064  allmulti:
   1065 	sc->sc_rxc |= RXC_RM;
   1066 	ifp->if_flags |= IFF_ALLMULTI;
   1067 }
   1068 
   1069 static int
   1070 add_rxbuf(struct kse_softc *sc, int idx)
   1071 {
   1072 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1073 	struct mbuf *m;
   1074 	int error;
   1075 
   1076 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1077 	if (m == NULL)
   1078 		return ENOBUFS;
   1079 
   1080 	MCLGET(m, M_DONTWAIT);
   1081 	if ((m->m_flags & M_EXT) == 0) {
   1082 		m_freem(m);
   1083 		return ENOBUFS;
   1084 	}
   1085 
   1086 	if (rxs->rxs_mbuf != NULL)
   1087 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1088 
   1089 	rxs->rxs_mbuf = m;
   1090 
   1091 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1092 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1093 	if (error) {
   1094 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1095 		    device_xname(sc->sc_dev), idx, error);
   1096 		panic("kse_add_rxbuf");
   1097 	}
   1098 
   1099 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1100 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1101 
   1102 	KSE_INIT_RXDESC(sc, idx);
   1103 
   1104 	return 0;
   1105 }
   1106 
   1107 static void
   1108 rxdrain(struct kse_softc *sc)
   1109 {
   1110 	struct kse_rxsoft *rxs;
   1111 	int i;
   1112 
   1113 	for (i = 0; i < KSE_NRXDESC; i++) {
   1114 		rxs = &sc->sc_rxsoft[i];
   1115 		if (rxs->rxs_mbuf != NULL) {
   1116 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1117 			m_freem(rxs->rxs_mbuf);
   1118 			rxs->rxs_mbuf = NULL;
   1119 		}
   1120 	}
   1121 }
   1122 
   1123 static int
   1124 kse_intr(void *arg)
   1125 {
   1126 	struct kse_softc *sc = arg;
   1127 	uint32_t isr;
   1128 
   1129 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1130 		return 0;
   1131 
   1132 	if (isr & INT_DMRS)
   1133 		rxintr(sc);
   1134 	if (isr & INT_DMTS)
   1135 		txreap(sc);
   1136 	if (isr & INT_DMLCS)
   1137 		lnkchg(sc);
   1138 	if (isr & INT_DMRBUS)
   1139 		printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
   1140 
   1141 	CSR_WRITE_4(sc, INTST, isr);
   1142 	return 1;
   1143 }
   1144 
   1145 static void
   1146 rxintr(struct kse_softc *sc)
   1147 {
   1148 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1149 	struct kse_rxsoft *rxs;
   1150 	struct mbuf *m;
   1151 	uint32_t rxstat;
   1152 	int i, len;
   1153 
   1154 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1155 		rxs = &sc->sc_rxsoft[i];
   1156 
   1157 		KSE_CDRXSYNC(sc, i,
   1158 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1159 
   1160 		rxstat = sc->sc_rxdescs[i].r0;
   1161 
   1162 		if (rxstat & R0_OWN) /* desc is left empty */
   1163 			break;
   1164 
   1165 		/* R0_FS | R0_LS must have been marked for this desc */
   1166 
   1167 		if (rxstat & R0_ES) {
   1168 			ifp->if_ierrors++;
   1169 #define PRINTERR(bit, str)						\
   1170 			if (rxstat & (bit))				\
   1171 				printf("%s: receive error: %s\n",	\
   1172 				    device_xname(sc->sc_dev), str)
   1173 			PRINTERR(R0_TL, "frame too long");
   1174 			PRINTERR(R0_RF, "runt frame");
   1175 			PRINTERR(R0_CE, "bad FCS");
   1176 #undef PRINTERR
   1177 			KSE_INIT_RXDESC(sc, i);
   1178 			continue;
   1179 		}
   1180 
   1181 		/* HW errata; frame might be too small or too large */
   1182 
   1183 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1184 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1185 
   1186 		len = rxstat & R0_FL_MASK;
   1187 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1188 		m = rxs->rxs_mbuf;
   1189 
   1190 		if (add_rxbuf(sc, i) != 0) {
   1191 			ifp->if_ierrors++;
   1192 			KSE_INIT_RXDESC(sc, i);
   1193 			bus_dmamap_sync(sc->sc_dmat,
   1194 			    rxs->rxs_dmamap, 0,
   1195 			    rxs->rxs_dmamap->dm_mapsize,
   1196 			    BUS_DMASYNC_PREREAD);
   1197 			continue;
   1198 		}
   1199 
   1200 		m_set_rcvif(m, ifp);
   1201 		m->m_pkthdr.len = m->m_len = len;
   1202 
   1203 		if (sc->sc_mcsum) {
   1204 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1205 			if (rxstat & R0_IPE)
   1206 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1207 			if (rxstat & (R0_TCPE | R0_UDPE))
   1208 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1209 		}
   1210 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1211 #ifdef KSEDIAGNOSTIC
   1212 		if (kse_monitor_rxintr > 0) {
   1213 			printf("m stat %x data %p len %d\n",
   1214 			    rxstat, m->m_data, m->m_len);
   1215 		}
   1216 #endif
   1217 	}
   1218 	sc->sc_rxptr = i;
   1219 }
   1220 
   1221 static void
   1222 txreap(struct kse_softc *sc)
   1223 {
   1224 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1225 	struct kse_txsoft *txs;
   1226 	uint32_t txstat;
   1227 	int i;
   1228 
   1229 	ifp->if_flags &= ~IFF_OACTIVE;
   1230 
   1231 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1232 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1233 		txs = &sc->sc_txsoft[i];
   1234 
   1235 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1236 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1237 
   1238 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1239 
   1240 		if (txstat & T0_OWN) /* desc is still in use */
   1241 			break;
   1242 
   1243 		/* There is no way to tell transmission status per frame */
   1244 
   1245 		ifp->if_opackets++;
   1246 
   1247 		sc->sc_txfree += txs->txs_ndesc;
   1248 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1249 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1250 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1251 		m_freem(txs->txs_mbuf);
   1252 		txs->txs_mbuf = NULL;
   1253 	}
   1254 	sc->sc_txsdirty = i;
   1255 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1256 		ifp->if_timer = 0;
   1257 }
   1258 
   1259 static void
   1260 lnkchg(struct kse_softc *sc)
   1261 {
   1262 	struct ifmediareq ifmr;
   1263 
   1264 #if 0 /* rambling link status */
   1265 	printf("%s: link %s\n", device_xname(sc->sc_dev),
   1266 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
   1267 #endif
   1268 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1269 }
   1270 
   1271 static int
   1272 ifmedia_upd(struct ifnet *ifp)
   1273 {
   1274 	struct kse_softc *sc = ifp->if_softc;
   1275 	struct ifmedia *ifm = &sc->sc_media;
   1276 	uint16_t ctl;
   1277 
   1278 	ctl = 0;
   1279 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1280 		ctl |= (1U << 13); /* Restart AN */
   1281 		ctl |= (1U << 7);  /* Enable AN */
   1282 		ctl |= (1U << 4);  /* Advertise flow control pause */
   1283 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
   1284 	}
   1285 	else {
   1286 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
   1287 			ctl |= (1U << 6);
   1288 		if (ifm->ifm_media & IFM_FDX)
   1289 			ctl |= (1U << 5);
   1290 	}
   1291 	CSR_WRITE_2(sc, P1CR4, ctl);
   1292 
   1293 	sc->sc_media_active = IFM_NONE;
   1294 	sc->sc_media_status = IFM_AVALID;
   1295 
   1296 	return 0;
   1297 }
   1298 
   1299 static void
   1300 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1301 {
   1302 	struct kse_softc *sc = ifp->if_softc;
   1303 	struct ifmedia *ifm = &sc->sc_media;
   1304 	uint16_t ctl, sts, result;
   1305 
   1306 	ifmr->ifm_status = IFM_AVALID;
   1307 	ifmr->ifm_active = IFM_ETHER;
   1308 
   1309 	ctl = CSR_READ_2(sc, P1CR4);
   1310 	sts = CSR_READ_2(sc, P1SR);
   1311 	if ((sts & (1U << 5)) == 0) {
   1312 		ifmr->ifm_active |= IFM_NONE;
   1313 		goto out; /* Link is down */
   1314 	}
   1315 	ifmr->ifm_status |= IFM_ACTIVE;
   1316 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1317 		if ((sts & (1U << 6)) == 0) {
   1318 			ifmr->ifm_active |= IFM_NONE;
   1319 			goto out; /* Negotiation in progress */
   1320 		}
   1321 		result = ctl & sts & 017;
   1322 		if (result & (1U << 3))
   1323 			ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   1324 		else if (result & (1U << 2))
   1325 			ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
   1326 		else if (result & (1U << 1))
   1327 			ifmr->ifm_active |= IFM_10_T | IFM_FDX;
   1328 		else if (result & (1U << 0))
   1329 			ifmr->ifm_active |= IFM_10_T | IFM_HDX;
   1330 		else
   1331 			ifmr->ifm_active |= IFM_NONE;
   1332 		if (ctl & (1U << 4))
   1333 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1334 		if (sts & (1U << 4))
   1335 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1336 	}
   1337 	else {
   1338 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
   1339 		if (sts & (1U << 9))
   1340 			ifmr->ifm_active |= IFM_FDX;
   1341 		if (sts & (1U << 12))
   1342 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1343 		if (sts & (1U << 11))
   1344 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1345 	}
   1346 
   1347   out:
   1348 	sc->sc_media_status = ifmr->ifm_status;
   1349 	sc->sc_media_active = ifmr->ifm_active;
   1350 }
   1351 
   1352 static void
   1353 phy_tick(void *arg)
   1354 {
   1355 	struct kse_softc *sc = arg;
   1356 	struct ifmediareq ifmr;
   1357 	int s;
   1358 
   1359 	s = splnet();
   1360 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1361 	splx(s);
   1362 
   1363 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1364 }
   1365 
   1366 static int
   1367 ifmedia2_upd(struct ifnet *ifp)
   1368 {
   1369 	struct kse_softc *sc = ifp->if_softc;
   1370 
   1371 	sc->sc_media_status = IFM_AVALID;
   1372 	sc->sc_media_active = IFM_NONE;
   1373 	return 0;
   1374 }
   1375 
   1376 static void
   1377 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1378 {
   1379 	struct kse_softc *sc = ifp->if_softc;
   1380 	int p1sts, p2sts;
   1381 
   1382 	ifmr->ifm_status = IFM_AVALID;
   1383 	ifmr->ifm_active = IFM_ETHER;
   1384 	p1sts = CSR_READ_2(sc, P1SR);
   1385 	p2sts = CSR_READ_2(sc, P2SR);
   1386 	if (((p1sts | p2sts) & (1U << 5)) == 0)
   1387 		ifmr->ifm_active |= IFM_NONE;
   1388 	else {
   1389 		ifmr->ifm_status |= IFM_ACTIVE;
   1390 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
   1391 		ifmr->ifm_active |= IFM_FLOW
   1392 		    | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
   1393 	}
   1394 	sc->sc_media_status = ifmr->ifm_status;
   1395 	sc->sc_media_active = ifmr->ifm_active;
   1396 }
   1397 
   1398 #ifdef KSE_EVENT_COUNTERS
   1399 static void
   1400 stat_tick(void *arg)
   1401 {
   1402 	struct kse_softc *sc = arg;
   1403 	struct ksext *ee = &sc->sc_ext;
   1404 	int nport, p, i, val;
   1405 
   1406 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1407 	for (p = 0; p < nport; p++) {
   1408 		for (i = 0; i < 32; i++) {
   1409 			val = 0x1c00 | (p * 0x20 + i);
   1410 			CSR_WRITE_2(sc, IACR, val);
   1411 			do {
   1412 				val = CSR_READ_2(sc, IADR5) << 16;
   1413 			} while ((val & (1U << 30)) == 0);
   1414 			if (val & (1U << 31)) {
   1415 				(void)CSR_READ_2(sc, IADR4);
   1416 				val = 0x3fffffff; /* has made overflow */
   1417 			}
   1418 			else {
   1419 				val &= 0x3fff0000;		/* 29:16 */
   1420 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1421 			}
   1422 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1423 		}
   1424 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1425 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1426 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1427 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1428 	}
   1429 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
   1430 }
   1431 
   1432 static void
   1433 zerostats(struct kse_softc *sc)
   1434 {
   1435 	struct ksext *ee = &sc->sc_ext;
   1436 	int nport, p, i, val;
   1437 
   1438 	/* Make sure all the HW counters get zero */
   1439 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1440 	for (p = 0; p < nport; p++) {
   1441 		for (i = 0; i < 31; i++) {
   1442 			val = 0x1c00 | (p * 0x20 + i);
   1443 			CSR_WRITE_2(sc, IACR, val);
   1444 			do {
   1445 				val = CSR_READ_2(sc, IADR5) << 16;
   1446 			} while ((val & (1U << 30)) == 0);
   1447 			(void)CSR_READ_2(sc, IADR4);
   1448 			ee->pev[p][i].ev_count = 0;
   1449 		}
   1450 	}
   1451 }
   1452 #endif
   1453