if_kse.c revision 1.38 1 /* $NetBSD: if_kse.c,v 1.38 2019/05/29 10:07:29 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.38 2019/05/29 10:07:29 msaitoh Exp $");
34
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56
57 #include <dev/pci/pcivar.h>
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcidevs.h>
60
61 #define CSR_READ_4(sc, off) \
62 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
63 #define CSR_WRITE_4(sc, off, val) \
64 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
65 #define CSR_READ_2(sc, off) \
66 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_2(sc, off, val) \
68 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
69
70 #define MDTXC 0x000 /* DMA transmit control */
71 #define MDRXC 0x004 /* DMA receive control */
72 #define MDTSC 0x008 /* DMA transmit start */
73 #define MDRSC 0x00c /* DMA receive start */
74 #define TDLB 0x010 /* transmit descriptor list base */
75 #define RDLB 0x014 /* receive descriptor list base */
76 #define MTR0 0x020 /* multicast table 31:0 */
77 #define MTR1 0x024 /* multicast table 63:32 */
78 #define INTEN 0x028 /* interrupt enable */
79 #define INTST 0x02c /* interrupt status */
80 #define MARL 0x200 /* MAC address low */
81 #define MARM 0x202 /* MAC address middle */
82 #define MARH 0x204 /* MAC address high */
83 #define GRR 0x216 /* global reset */
84 #define CIDR 0x400 /* chip ID and enable */
85 #define CGCR 0x40a /* chip global control */
86 #define IACR 0x4a0 /* indirect access control */
87 #define IADR1 0x4a2 /* indirect access data 66:63 */
88 #define IADR2 0x4a4 /* indirect access data 47:32 */
89 #define IADR3 0x4a6 /* indirect access data 63:48 */
90 #define IADR4 0x4a8 /* indirect access data 15:0 */
91 #define IADR5 0x4aa /* indirect access data 31:16 */
92 #define P1CR4 0x512 /* port 1 control 4 */
93 #define P1SR 0x514 /* port 1 status */
94 #define P2CR4 0x532 /* port 2 control 4 */
95 #define P2SR 0x534 /* port 2 status */
96
97 #define TXC_BS_MSK 0x3f000000 /* burst size */
98 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
99 #define TXC_UCG (1U<<18) /* generate UDP checksum */
100 #define TXC_TCG (1U<<17) /* generate TCP checksum */
101 #define TXC_ICG (1U<<16) /* generate IP checksum */
102 #define TXC_FCE (1U<<9) /* enable flowcontrol */
103 #define TXC_EP (1U<<2) /* enable automatic padding */
104 #define TXC_AC (1U<<1) /* add CRC to frame */
105 #define TXC_TEN (1) /* enable DMA to run */
106
107 #define RXC_BS_MSK 0x3f000000 /* burst size */
108 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
109 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
110 #define RXC_UCC (1U<<18) /* run UDP checksum */
111 #define RXC_TCC (1U<<17) /* run TDP checksum */
112 #define RXC_ICC (1U<<16) /* run IP checksum */
113 #define RXC_FCE (1U<<9) /* enable flowcontrol */
114 #define RXC_RB (1U<<6) /* receive broadcast frame */
115 #define RXC_RM (1U<<5) /* receive multicast frame */
116 #define RXC_RU (1U<<4) /* receive unicast frame */
117 #define RXC_RE (1U<<3) /* accept error frame */
118 #define RXC_RA (1U<<2) /* receive all frame */
119 #define RXC_MHTE (1U<<1) /* use multicast hash table */
120 #define RXC_REN (1) /* enable DMA to run */
121
122 #define INT_DMLCS (1U<<31) /* link status change */
123 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
124 #define INT_DMRS (1U<<29) /* frame was received */
125 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
126
127 #define T0_OWN (1U<<31) /* desc is ready to Tx */
128
129 #define R0_OWN (1U<<31) /* desc is empty */
130 #define R0_FS (1U<<30) /* first segment of frame */
131 #define R0_LS (1U<<29) /* last segment of frame */
132 #define R0_IPE (1U<<28) /* IP checksum error */
133 #define R0_TCPE (1U<<27) /* TCP checksum error */
134 #define R0_UDPE (1U<<26) /* UDP checksum error */
135 #define R0_ES (1U<<25) /* error summary */
136 #define R0_MF (1U<<24) /* multicast frame */
137 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
138 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
139 #define R0_RE (1U<<19) /* MII reported error */
140 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
141 #define R0_RF (1U<<17) /* damaged runt frame */
142 #define R0_CE (1U<<16) /* CRC error */
143 #define R0_FT (1U<<15) /* frame type */
144 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
145
146 #define T1_IC (1U<<31) /* post interrupt on complete */
147 #define T1_FS (1U<<30) /* first segment of frame */
148 #define T1_LS (1U<<29) /* last segment of frame */
149 #define T1_IPCKG (1U<<28) /* generate IP checksum */
150 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
151 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
152 #define T1_TER (1U<<25) /* end of ring */
153 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
154 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
155
156 #define R1_RER (1U<<25) /* end of ring */
157 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
158
159 #define KSE_NTXSEGS 16
160 #define KSE_TXQUEUELEN 64
161 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
162 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
163 #define KSE_NTXDESC 256
164 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
165 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
166 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
167
168 #define KSE_NRXDESC 64
169 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
170 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
171
172 struct tdes {
173 uint32_t t0, t1, t2, t3;
174 };
175
176 struct rdes {
177 uint32_t r0, r1, r2, r3;
178 };
179
180 struct kse_control_data {
181 struct tdes kcd_txdescs[KSE_NTXDESC];
182 struct rdes kcd_rxdescs[KSE_NRXDESC];
183 };
184 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
185 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
186 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
187
188 struct kse_txsoft {
189 struct mbuf *txs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t txs_dmamap; /* our DMA map */
191 int txs_firstdesc; /* first descriptor in packet */
192 int txs_lastdesc; /* last descriptor in packet */
193 int txs_ndesc; /* # of descriptors used */
194 };
195
196 struct kse_rxsoft {
197 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t rxs_dmamap; /* our DMA map */
199 };
200
201 struct kse_softc {
202 device_t sc_dev; /* generic device information */
203 bus_space_tag_t sc_st; /* bus space tag */
204 bus_space_handle_t sc_sh; /* bus space handle */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 struct ethercom sc_ethercom; /* Ethernet common data */
207 void *sc_ih; /* interrupt cookie */
208
209 struct ifmedia sc_media; /* ifmedia information */
210 int sc_media_status; /* PHY */
211 int sc_media_active; /* PHY */
212 callout_t sc_callout; /* MII tick callout */
213 callout_t sc_stat_ch; /* statistics counter callout */
214
215 bus_dmamap_t sc_cddmamap; /* control data DMA map */
216 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
217
218 struct kse_control_data *sc_control_data;
219 #define sc_txdescs sc_control_data->kcd_txdescs
220 #define sc_rxdescs sc_control_data->kcd_rxdescs
221
222 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
223 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
224 int sc_txfree; /* number of free Tx descriptors */
225 int sc_txnext; /* next ready Tx descriptor */
226 int sc_txsfree; /* number of free Tx jobs */
227 int sc_txsnext; /* next ready Tx job */
228 int sc_txsdirty; /* dirty Tx jobs */
229 int sc_rxptr; /* next ready Rx descriptor/descsoft */
230
231 uint32_t sc_txc, sc_rxc;
232 uint32_t sc_t1csum;
233 int sc_mcsum;
234 uint32_t sc_inten;
235
236 uint32_t sc_chip;
237 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
238 uint16_t sc_vlan[16];
239
240 #ifdef KSE_EVENT_COUNTERS
241 struct ksext {
242 char evcntname[3][8];
243 struct evcnt pev[3][34];
244 } sc_ext; /* switch statistics */
245 #endif
246 };
247
248 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
249 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
250
251 #define KSE_CDTXSYNC(sc, x, n, ops) \
252 do { \
253 int __x, __n; \
254 \
255 __x = (x); \
256 __n = (n); \
257 \
258 /* If it will wrap around, sync to the end of the ring. */ \
259 if ((__x + __n) > KSE_NTXDESC) { \
260 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
261 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
262 (KSE_NTXDESC - __x), (ops)); \
263 __n -= (KSE_NTXDESC - __x); \
264 __x = 0; \
265 } \
266 \
267 /* Now sync whatever is left. */ \
268 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
269 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
270 } while (/*CONSTCOND*/0)
271
272 #define KSE_CDRXSYNC(sc, x, ops) \
273 do { \
274 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
275 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
276 } while (/*CONSTCOND*/0)
277
278 #define KSE_INIT_RXDESC(sc, x) \
279 do { \
280 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
281 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
282 struct mbuf *__m = __rxs->rxs_mbuf; \
283 \
284 __m->m_data = __m->m_ext.ext_buf; \
285 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
286 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
287 __rxd->r0 = R0_OWN; \
288 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
289 } while (/*CONSTCOND*/0)
290
291 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
292
293 #ifdef KSEDIAGNOSTIC
294 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
295 #endif
296
297 static int kse_match(device_t, cfdata_t, void *);
298 static void kse_attach(device_t, device_t, void *);
299
300 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
301 kse_match, kse_attach, NULL, NULL);
302
303 static int kse_ioctl(struct ifnet *, u_long, void *);
304 static void kse_start(struct ifnet *);
305 static void kse_watchdog(struct ifnet *);
306 static int kse_init(struct ifnet *);
307 static void kse_stop(struct ifnet *, int);
308 static void kse_reset(struct kse_softc *);
309 static void kse_set_filter(struct kse_softc *);
310 static int add_rxbuf(struct kse_softc *, int);
311 static void rxdrain(struct kse_softc *);
312 static int kse_intr(void *);
313 static void rxintr(struct kse_softc *);
314 static void txreap(struct kse_softc *);
315 static void lnkchg(struct kse_softc *);
316 static int ifmedia_upd(struct ifnet *);
317 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
318 static void phy_tick(void *);
319 static int ifmedia2_upd(struct ifnet *);
320 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
321 #ifdef KSE_EVENT_COUNTERS
322 static void stat_tick(void *);
323 static void zerostats(struct kse_softc *);
324 #endif
325
326 static int
327 kse_match(device_t parent, cfdata_t match, void *aux)
328 {
329 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
330
331 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
332 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
333 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
334 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
335 return 1;
336
337 return 0;
338 }
339
340 static void
341 kse_attach(device_t parent, device_t self, void *aux)
342 {
343 struct kse_softc *sc = device_private(self);
344 struct pci_attach_args *pa = aux;
345 pci_chipset_tag_t pc = pa->pa_pc;
346 pci_intr_handle_t ih;
347 const char *intrstr;
348 struct ifnet *ifp;
349 struct ifmedia *ifm;
350 uint8_t enaddr[ETHER_ADDR_LEN];
351 bus_dma_segment_t seg;
352 int i, error, nseg;
353 pcireg_t pmode;
354 int pmreg;
355 char intrbuf[PCI_INTRSTR_LEN];
356
357 if (pci_mapreg_map(pa, 0x10,
358 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
359 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
360 printf(": unable to map device registers\n");
361 return;
362 }
363
364 sc->sc_dev = self;
365 sc->sc_dmat = pa->pa_dmat;
366
367 /* Make sure bus mastering is enabled. */
368 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
369 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
370 PCI_COMMAND_MASTER_ENABLE);
371
372 /* Get it out of power save mode, if needed. */
373 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
374 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
375 PCI_PMCSR_STATE_MASK;
376 if (pmode == PCI_PMCSR_STATE_D3) {
377 /*
378 * The card has lost all configuration data in
379 * this state, so punt.
380 */
381 printf("%s: unable to wake from power state D3\n",
382 device_xname(sc->sc_dev));
383 return;
384 }
385 if (pmode != PCI_PMCSR_STATE_D0) {
386 printf("%s: waking up from power date D%d\n",
387 device_xname(sc->sc_dev), pmode);
388 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
389 PCI_PMCSR_STATE_D0);
390 }
391 }
392
393 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
394 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
395 sc->sc_chip, PCI_REVISION(pa->pa_class));
396
397 /*
398 * Read the Ethernet address from the EEPROM.
399 */
400 i = CSR_READ_2(sc, MARL);
401 enaddr[5] = i; enaddr[4] = i >> 8;
402 i = CSR_READ_2(sc, MARM);
403 enaddr[3] = i; enaddr[2] = i >> 8;
404 i = CSR_READ_2(sc, MARH);
405 enaddr[1] = i; enaddr[0] = i >> 8;
406 printf("%s: Ethernet address %s\n",
407 device_xname(sc->sc_dev), ether_sprintf(enaddr));
408
409 /*
410 * Enable chip function.
411 */
412 CSR_WRITE_2(sc, CIDR, 1);
413
414 /*
415 * Map and establish our interrupt.
416 */
417 if (pci_intr_map(pa, &ih)) {
418 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
419 return;
420 }
421 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
422 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
423 device_xname(self));
424 if (sc->sc_ih == NULL) {
425 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
426 if (intrstr != NULL)
427 aprint_error(" at %s", intrstr);
428 aprint_error("\n");
429 return;
430 }
431 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
432
433 /*
434 * Allocate the control data structures, and create and load the
435 * DMA map for it.
436 */
437 error = bus_dmamem_alloc(sc->sc_dmat,
438 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
439 if (error != 0) {
440 aprint_error_dev(sc->sc_dev,
441 "unable to allocate control data, error = %d\n", error);
442 goto fail_0;
443 }
444 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
445 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
446 BUS_DMA_COHERENT);
447 if (error != 0) {
448 aprint_error_dev(sc->sc_dev,
449 "unable to map control data, error = %d\n", error);
450 goto fail_1;
451 }
452 error = bus_dmamap_create(sc->sc_dmat,
453 sizeof(struct kse_control_data), 1,
454 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
455 if (error != 0) {
456 aprint_error_dev(sc->sc_dev,
457 "unable to create control data DMA map, "
458 "error = %d\n", error);
459 goto fail_2;
460 }
461 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
462 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
463 if (error != 0) {
464 aprint_error_dev(sc->sc_dev,
465 "unable to load control data DMA map, error = %d\n",
466 error);
467 goto fail_3;
468 }
469 for (i = 0; i < KSE_TXQUEUELEN; i++) {
470 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
471 KSE_NTXSEGS, MCLBYTES, 0, 0,
472 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
473 aprint_error_dev(sc->sc_dev,
474 "unable to create tx DMA map %d, error = %d\n",
475 i, error);
476 goto fail_4;
477 }
478 }
479 for (i = 0; i < KSE_NRXDESC; i++) {
480 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
481 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
482 aprint_error_dev(sc->sc_dev,
483 "unable to create rx DMA map %d, error = %d\n",
484 i, error);
485 goto fail_5;
486 }
487 sc->sc_rxsoft[i].rxs_mbuf = NULL;
488 }
489
490 callout_init(&sc->sc_callout, 0);
491 callout_init(&sc->sc_stat_ch, 0);
492
493 /* Initialize ifmedia structures. */
494 ifm = &sc->sc_media;
495 sc->sc_ethercom.ec_ifmedia = ifm;
496 if (sc->sc_chip == 0x8841) {
497 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
498 ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
499 ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
500 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
501 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
502 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
503 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
504 } else {
505 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
506 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
507 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
508 }
509
510 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
511 device_xname(sc->sc_dev));
512
513 ifp = &sc->sc_ethercom.ec_if;
514 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
515 ifp->if_softc = sc;
516 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
517 ifp->if_ioctl = kse_ioctl;
518 ifp->if_start = kse_start;
519 ifp->if_watchdog = kse_watchdog;
520 ifp->if_init = kse_init;
521 ifp->if_stop = kse_stop;
522 IFQ_SET_READY(&ifp->if_snd);
523
524 /*
525 * KSZ8842 can handle 802.1Q VLAN-sized frames,
526 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
527 */
528 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
529 ifp->if_capabilities |=
530 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
531 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
532 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
533
534 if_attach(ifp);
535 ether_ifattach(ifp, enaddr);
536
537 #ifdef KSE_EVENT_COUNTERS
538 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
539 for (i = 0; i < p; i++) {
540 struct ksext *ee = &sc->sc_ext;
541 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
542 "%s.%d", device_xname(sc->sc_dev), i+1);
543 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
544 NULL, ee->evcntname[i], "RxLoPriotyByte");
545 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
546 NULL, ee->evcntname[i], "RxHiPriotyByte");
547 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
548 NULL, ee->evcntname[i], "RxUndersizePkt");
549 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
550 NULL, ee->evcntname[i], "RxFragments");
551 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
552 NULL, ee->evcntname[i], "RxOversize");
553 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
554 NULL, ee->evcntname[i], "RxJabbers");
555 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
556 NULL, ee->evcntname[i], "RxSymbolError");
557 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
558 NULL, ee->evcntname[i], "RxCRCError");
559 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
560 NULL, ee->evcntname[i], "RxAlignmentError");
561 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
562 NULL, ee->evcntname[i], "RxControl8808Pkts");
563 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
564 NULL, ee->evcntname[i], "RxPausePkts");
565 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
566 NULL, ee->evcntname[i], "RxBroadcast");
567 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
568 NULL, ee->evcntname[i], "RxMulticast");
569 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
570 NULL, ee->evcntname[i], "RxUnicast");
571 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
572 NULL, ee->evcntname[i], "Rx64Octets");
573 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
574 NULL, ee->evcntname[i], "Rx65To127Octets");
575 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
576 NULL, ee->evcntname[i], "Rx128To255Octets");
577 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
578 NULL, ee->evcntname[i], "Rx255To511Octets");
579 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
580 NULL, ee->evcntname[i], "Rx512To1023Octets");
581 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "Rx1024To1522Octets");
583 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "TxLoPriotyByte");
585 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "TxHiPriotyByte");
587 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "TxLateCollision");
589 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "TxPausePkts");
591 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "TxBroadcastPkts");
593 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "TxMulticastPkts");
595 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "TxUnicastPkts");
597 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "TxDeferred");
599 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "TxTotalCollision");
601 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "TxExcessiveCollision");
603 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "TxSingleCollision");
605 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
606 NULL, ee->evcntname[i], "TxMultipleCollision");
607 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
608 NULL, ee->evcntname[i], "TxDropPkts");
609 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
610 NULL, ee->evcntname[i], "RxDropPkts");
611 }
612 #endif
613 return;
614
615 fail_5:
616 for (i = 0; i < KSE_NRXDESC; i++) {
617 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
618 bus_dmamap_destroy(sc->sc_dmat,
619 sc->sc_rxsoft[i].rxs_dmamap);
620 }
621 fail_4:
622 for (i = 0; i < KSE_TXQUEUELEN; i++) {
623 if (sc->sc_txsoft[i].txs_dmamap != NULL)
624 bus_dmamap_destroy(sc->sc_dmat,
625 sc->sc_txsoft[i].txs_dmamap);
626 }
627 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
628 fail_3:
629 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
630 fail_2:
631 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
632 sizeof(struct kse_control_data));
633 fail_1:
634 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
635 fail_0:
636 return;
637 }
638
639 static int
640 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
641 {
642 struct kse_softc *sc = ifp->if_softc;
643 int s, error;
644
645 s = splnet();
646
647 switch (cmd) {
648 default:
649 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
650 break;
651
652 error = 0;
653
654 if (cmd == SIOCSIFCAP)
655 error = (*ifp->if_init)(ifp);
656 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
657 ;
658 else if (ifp->if_flags & IFF_RUNNING) {
659 /*
660 * Multicast list has changed; set the hardware filter
661 * accordingly.
662 */
663 kse_set_filter(sc);
664 }
665 break;
666 }
667
668 kse_start(ifp);
669
670 splx(s);
671 return error;
672 }
673
674 static int
675 kse_init(struct ifnet *ifp)
676 {
677 struct kse_softc *sc = ifp->if_softc;
678 uint32_t paddr;
679 int i, error = 0;
680
681 /* cancel pending I/O */
682 kse_stop(ifp, 0);
683
684 /* reset all registers but PCI configuration */
685 kse_reset(sc);
686
687 /* craft Tx descriptor ring */
688 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
689 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
690 sc->sc_txdescs[i].t3 = paddr;
691 paddr += sizeof(struct tdes);
692 }
693 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
694 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
695 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
696 sc->sc_txfree = KSE_NTXDESC;
697 sc->sc_txnext = 0;
698
699 for (i = 0; i < KSE_TXQUEUELEN; i++)
700 sc->sc_txsoft[i].txs_mbuf = NULL;
701 sc->sc_txsfree = KSE_TXQUEUELEN;
702 sc->sc_txsnext = 0;
703 sc->sc_txsdirty = 0;
704
705 /* craft Rx descriptor ring */
706 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
707 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
708 sc->sc_rxdescs[i].r3 = paddr;
709 paddr += sizeof(struct rdes);
710 }
711 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
712 for (i = 0; i < KSE_NRXDESC; i++) {
713 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
714 if ((error = add_rxbuf(sc, i)) != 0) {
715 printf("%s: unable to allocate or map rx "
716 "buffer %d, error = %d\n",
717 device_xname(sc->sc_dev), i, error);
718 rxdrain(sc);
719 goto out;
720 }
721 }
722 else
723 KSE_INIT_RXDESC(sc, i);
724 }
725 sc->sc_rxptr = 0;
726
727 /* hand Tx/Rx rings to HW */
728 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
729 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
730
731 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
732 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
733 if (ifp->if_flags & IFF_PROMISC)
734 sc->sc_rxc |= RXC_RA;
735 if (ifp->if_flags & IFF_BROADCAST)
736 sc->sc_rxc |= RXC_RB;
737 sc->sc_t1csum = sc->sc_mcsum = 0;
738 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
739 sc->sc_rxc |= RXC_ICC;
740 sc->sc_mcsum |= M_CSUM_IPv4;
741 }
742 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
743 sc->sc_txc |= TXC_ICG;
744 sc->sc_t1csum |= T1_IPCKG;
745 }
746 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
747 sc->sc_rxc |= RXC_TCC;
748 sc->sc_mcsum |= M_CSUM_TCPv4;
749 }
750 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
751 sc->sc_txc |= TXC_TCG;
752 sc->sc_t1csum |= T1_TCPCKG;
753 }
754 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
755 sc->sc_rxc |= RXC_UCC;
756 sc->sc_mcsum |= M_CSUM_UDPv4;
757 }
758 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
759 sc->sc_txc |= TXC_UCG;
760 sc->sc_t1csum |= T1_UDPCKG;
761 }
762 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
763 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
764
765 /* build multicast hash filter if necessary */
766 kse_set_filter(sc);
767
768 /* set current media */
769 (void)ifmedia_upd(ifp);
770
771 /* enable transmitter and receiver */
772 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
773 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
774 CSR_WRITE_4(sc, MDRSC, 1);
775
776 /* enable interrupts */
777 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
778 if (sc->sc_chip == 0x8841)
779 sc->sc_inten |= INT_DMLCS;
780 CSR_WRITE_4(sc, INTST, ~0);
781 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
782
783 ifp->if_flags |= IFF_RUNNING;
784 ifp->if_flags &= ~IFF_OACTIVE;
785
786 if (sc->sc_chip == 0x8841) {
787 /* start one second timer */
788 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
789 }
790 #ifdef KSE_EVENT_COUNTERS
791 /* start statistics gather 1 minute timer */
792 zerostats(sc);
793 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
794 #endif
795
796 out:
797 if (error) {
798 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
799 ifp->if_timer = 0;
800 printf("%s: interface not running\n", device_xname(sc->sc_dev));
801 }
802 return error;
803 }
804
805 static void
806 kse_stop(struct ifnet *ifp, int disable)
807 {
808 struct kse_softc *sc = ifp->if_softc;
809 struct kse_txsoft *txs;
810 int i;
811
812 if (sc->sc_chip == 0x8841)
813 callout_stop(&sc->sc_callout);
814 callout_stop(&sc->sc_stat_ch);
815
816 sc->sc_txc &= ~TXC_TEN;
817 sc->sc_rxc &= ~RXC_REN;
818 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
819 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
820
821 for (i = 0; i < KSE_TXQUEUELEN; i++) {
822 txs = &sc->sc_txsoft[i];
823 if (txs->txs_mbuf != NULL) {
824 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
825 m_freem(txs->txs_mbuf);
826 txs->txs_mbuf = NULL;
827 }
828 }
829
830 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831 ifp->if_timer = 0;
832
833 if (disable)
834 rxdrain(sc);
835 }
836
837 static void
838 kse_reset(struct kse_softc *sc)
839 {
840
841 CSR_WRITE_2(sc, GRR, 1);
842 delay(1000); /* PDF does not mention the delay amount */
843 CSR_WRITE_2(sc, GRR, 0);
844
845 CSR_WRITE_2(sc, CIDR, 1);
846 }
847
848 static void
849 kse_watchdog(struct ifnet *ifp)
850 {
851 struct kse_softc *sc = ifp->if_softc;
852
853 /*
854 * Since we're not interrupting every packet, sweep
855 * up before we report an error.
856 */
857 txreap(sc);
858
859 if (sc->sc_txfree != KSE_NTXDESC) {
860 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
861 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
862 sc->sc_txnext);
863 ifp->if_oerrors++;
864
865 /* Reset the interface. */
866 kse_init(ifp);
867 }
868 else if (ifp->if_flags & IFF_DEBUG)
869 printf("%s: recovered from device timeout\n",
870 device_xname(sc->sc_dev));
871
872 /* Try to get more packets going. */
873 kse_start(ifp);
874 }
875
876 static void
877 kse_start(struct ifnet *ifp)
878 {
879 struct kse_softc *sc = ifp->if_softc;
880 struct mbuf *m0, *m;
881 struct kse_txsoft *txs;
882 bus_dmamap_t dmamap;
883 int error, nexttx, lasttx, ofree, seg;
884 uint32_t tdes0;
885
886 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
887 return;
888
889 /* Remember the previous number of free descriptors. */
890 ofree = sc->sc_txfree;
891
892 /*
893 * Loop through the send queue, setting up transmit descriptors
894 * until we drain the queue, or use up all available transmit
895 * descriptors.
896 */
897 for (;;) {
898 IFQ_POLL(&ifp->if_snd, m0);
899 if (m0 == NULL)
900 break;
901
902 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
903 txreap(sc);
904 if (sc->sc_txsfree == 0)
905 break;
906 }
907 txs = &sc->sc_txsoft[sc->sc_txsnext];
908 dmamap = txs->txs_dmamap;
909
910 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
911 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
912 if (error) {
913 if (error == EFBIG) {
914 printf("%s: Tx packet consumes too many "
915 "DMA segments, dropping...\n",
916 device_xname(sc->sc_dev));
917 IFQ_DEQUEUE(&ifp->if_snd, m0);
918 m_freem(m0);
919 continue;
920 }
921 /* Short on resources, just stop for now. */
922 break;
923 }
924
925 if (dmamap->dm_nsegs > sc->sc_txfree) {
926 /*
927 * Not enough free descriptors to transmit this
928 * packet. We haven't committed anything yet,
929 * so just unload the DMA map, put the packet
930 * back on the queue, and punt. Notify the upper
931 * layer that there are not more slots left.
932 */
933 ifp->if_flags |= IFF_OACTIVE;
934 bus_dmamap_unload(sc->sc_dmat, dmamap);
935 break;
936 }
937
938 IFQ_DEQUEUE(&ifp->if_snd, m0);
939
940 /*
941 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
942 */
943
944 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
945 BUS_DMASYNC_PREWRITE);
946
947 lasttx = -1; tdes0 = 0;
948 for (nexttx = sc->sc_txnext, seg = 0;
949 seg < dmamap->dm_nsegs;
950 seg++, nexttx = KSE_NEXTTX(nexttx)) {
951 struct tdes *tdes = &sc->sc_txdescs[nexttx];
952 /*
953 * If this is the first descriptor we're
954 * enqueueing, don't set the OWN bit just
955 * yet. That could cause a race condition.
956 * We'll do it below.
957 */
958 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
959 tdes->t1 = sc->sc_t1csum
960 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
961 tdes->t0 = tdes0;
962 tdes0 |= T0_OWN;
963 lasttx = nexttx;
964 }
965
966 /*
967 * Outgoing NFS mbuf must be unloaded when Tx completed.
968 * Without T1_IC NFS mbuf is left unack'ed for excessive
969 * time and NFS stops to proceed until kse_watchdog()
970 * calls txreap() to reclaim the unack'ed mbuf.
971 * It's painful to traverse every mbuf chain to determine
972 * whether someone is waiting for Tx completion.
973 */
974 m = m0;
975 do {
976 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
977 sc->sc_txdescs[lasttx].t1 |= T1_IC;
978 break;
979 }
980 } while ((m = m->m_next) != NULL);
981
982 /* Write last T0_OWN bit of the 1st segment */
983 sc->sc_txdescs[lasttx].t1 |= T1_LS;
984 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
985 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
986 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
987 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
988
989 /* Tell DMA start transmit */
990 CSR_WRITE_4(sc, MDTSC, 1);
991
992 txs->txs_mbuf = m0;
993 txs->txs_firstdesc = sc->sc_txnext;
994 txs->txs_lastdesc = lasttx;
995 txs->txs_ndesc = dmamap->dm_nsegs;
996
997 sc->sc_txfree -= txs->txs_ndesc;
998 sc->sc_txnext = nexttx;
999 sc->sc_txsfree--;
1000 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1001 /*
1002 * Pass the packet to any BPF listeners.
1003 */
1004 bpf_mtap(ifp, m0, BPF_D_OUT);
1005 }
1006
1007 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1008 /* No more slots left; notify upper layer. */
1009 ifp->if_flags |= IFF_OACTIVE;
1010 }
1011 if (sc->sc_txfree != ofree) {
1012 /* Set a watchdog timer in case the chip flakes out. */
1013 ifp->if_timer = 5;
1014 }
1015 }
1016
1017 static void
1018 kse_set_filter(struct kse_softc *sc)
1019 {
1020 struct ether_multistep step;
1021 struct ether_multi *enm;
1022 struct ethercom *ec = &sc->sc_ethercom;
1023 struct ifnet *ifp = &ec->ec_if;
1024 uint32_t h, hashes[2];
1025
1026 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1027 ifp->if_flags &= ~IFF_ALLMULTI;
1028 if (ifp->if_flags & IFF_PROMISC)
1029 return;
1030
1031 ETHER_LOCK(ec);
1032 ETHER_FIRST_MULTI(step, ec, enm);
1033 if (enm == NULL) {
1034 ETHER_UNLOCK(ec);
1035 return;
1036 }
1037 hashes[0] = hashes[1] = 0;
1038 do {
1039 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1040 /*
1041 * We must listen to a range of multicast addresses.
1042 * For now, just accept all multicasts, rather than
1043 * trying to set only those filter bits needed to match
1044 * the range. (At this time, the only use of address
1045 * ranges is for IP multicast routing, for which the
1046 * range is big enough to require all bits set.)
1047 */
1048 ETHER_UNLOCK(ec);
1049 goto allmulti;
1050 }
1051 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1052 hashes[h >> 5] |= 1 << (h & 0x1f);
1053 ETHER_NEXT_MULTI(step, enm);
1054 } while (enm != NULL);
1055 ETHER_UNLOCK(ec);
1056 sc->sc_rxc |= RXC_MHTE;
1057 CSR_WRITE_4(sc, MTR0, hashes[0]);
1058 CSR_WRITE_4(sc, MTR1, hashes[1]);
1059 return;
1060 allmulti:
1061 sc->sc_rxc |= RXC_RM;
1062 ifp->if_flags |= IFF_ALLMULTI;
1063 }
1064
1065 static int
1066 add_rxbuf(struct kse_softc *sc, int idx)
1067 {
1068 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1069 struct mbuf *m;
1070 int error;
1071
1072 MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 if (m == NULL)
1074 return ENOBUFS;
1075
1076 MCLGET(m, M_DONTWAIT);
1077 if ((m->m_flags & M_EXT) == 0) {
1078 m_freem(m);
1079 return ENOBUFS;
1080 }
1081
1082 if (rxs->rxs_mbuf != NULL)
1083 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1084
1085 rxs->rxs_mbuf = m;
1086
1087 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1088 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1089 if (error) {
1090 printf("%s: can't load rx DMA map %d, error = %d\n",
1091 device_xname(sc->sc_dev), idx, error);
1092 panic("kse_add_rxbuf");
1093 }
1094
1095 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1096 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1097
1098 KSE_INIT_RXDESC(sc, idx);
1099
1100 return 0;
1101 }
1102
1103 static void
1104 rxdrain(struct kse_softc *sc)
1105 {
1106 struct kse_rxsoft *rxs;
1107 int i;
1108
1109 for (i = 0; i < KSE_NRXDESC; i++) {
1110 rxs = &sc->sc_rxsoft[i];
1111 if (rxs->rxs_mbuf != NULL) {
1112 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1113 m_freem(rxs->rxs_mbuf);
1114 rxs->rxs_mbuf = NULL;
1115 }
1116 }
1117 }
1118
1119 static int
1120 kse_intr(void *arg)
1121 {
1122 struct kse_softc *sc = arg;
1123 uint32_t isr;
1124
1125 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1126 return 0;
1127
1128 if (isr & INT_DMRS)
1129 rxintr(sc);
1130 if (isr & INT_DMTS)
1131 txreap(sc);
1132 if (isr & INT_DMLCS)
1133 lnkchg(sc);
1134 if (isr & INT_DMRBUS)
1135 printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1136
1137 CSR_WRITE_4(sc, INTST, isr);
1138 return 1;
1139 }
1140
1141 static void
1142 rxintr(struct kse_softc *sc)
1143 {
1144 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1145 struct kse_rxsoft *rxs;
1146 struct mbuf *m;
1147 uint32_t rxstat;
1148 int i, len;
1149
1150 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1151 rxs = &sc->sc_rxsoft[i];
1152
1153 KSE_CDRXSYNC(sc, i,
1154 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1155
1156 rxstat = sc->sc_rxdescs[i].r0;
1157
1158 if (rxstat & R0_OWN) /* desc is left empty */
1159 break;
1160
1161 /* R0_FS | R0_LS must have been marked for this desc */
1162
1163 if (rxstat & R0_ES) {
1164 ifp->if_ierrors++;
1165 #define PRINTERR(bit, str) \
1166 if (rxstat & (bit)) \
1167 printf("%s: receive error: %s\n", \
1168 device_xname(sc->sc_dev), str)
1169 PRINTERR(R0_TL, "frame too long");
1170 PRINTERR(R0_RF, "runt frame");
1171 PRINTERR(R0_CE, "bad FCS");
1172 #undef PRINTERR
1173 KSE_INIT_RXDESC(sc, i);
1174 continue;
1175 }
1176
1177 /* HW errata; frame might be too small or too large */
1178
1179 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1180 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1181
1182 len = rxstat & R0_FL_MASK;
1183 len -= ETHER_CRC_LEN; /* Trim CRC off */
1184 m = rxs->rxs_mbuf;
1185
1186 if (add_rxbuf(sc, i) != 0) {
1187 ifp->if_ierrors++;
1188 KSE_INIT_RXDESC(sc, i);
1189 bus_dmamap_sync(sc->sc_dmat,
1190 rxs->rxs_dmamap, 0,
1191 rxs->rxs_dmamap->dm_mapsize,
1192 BUS_DMASYNC_PREREAD);
1193 continue;
1194 }
1195
1196 m_set_rcvif(m, ifp);
1197 m->m_pkthdr.len = m->m_len = len;
1198
1199 if (sc->sc_mcsum) {
1200 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1201 if (rxstat & R0_IPE)
1202 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1203 if (rxstat & (R0_TCPE | R0_UDPE))
1204 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1205 }
1206 if_percpuq_enqueue(ifp->if_percpuq, m);
1207 #ifdef KSEDIAGNOSTIC
1208 if (kse_monitor_rxintr > 0) {
1209 printf("m stat %x data %p len %d\n",
1210 rxstat, m->m_data, m->m_len);
1211 }
1212 #endif
1213 }
1214 sc->sc_rxptr = i;
1215 }
1216
1217 static void
1218 txreap(struct kse_softc *sc)
1219 {
1220 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 struct kse_txsoft *txs;
1222 uint32_t txstat;
1223 int i;
1224
1225 ifp->if_flags &= ~IFF_OACTIVE;
1226
1227 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1228 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1229 txs = &sc->sc_txsoft[i];
1230
1231 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1232 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1233
1234 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1235
1236 if (txstat & T0_OWN) /* desc is still in use */
1237 break;
1238
1239 /* There is no way to tell transmission status per frame */
1240
1241 ifp->if_opackets++;
1242
1243 sc->sc_txfree += txs->txs_ndesc;
1244 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1245 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1246 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1247 m_freem(txs->txs_mbuf);
1248 txs->txs_mbuf = NULL;
1249 }
1250 sc->sc_txsdirty = i;
1251 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1252 ifp->if_timer = 0;
1253 }
1254
1255 static void
1256 lnkchg(struct kse_softc *sc)
1257 {
1258 struct ifmediareq ifmr;
1259
1260 #if 0 /* rambling link status */
1261 printf("%s: link %s\n", device_xname(sc->sc_dev),
1262 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1263 #endif
1264 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1265 }
1266
1267 static int
1268 ifmedia_upd(struct ifnet *ifp)
1269 {
1270 struct kse_softc *sc = ifp->if_softc;
1271 struct ifmedia *ifm = &sc->sc_media;
1272 uint16_t ctl;
1273
1274 ctl = 0;
1275 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1276 ctl |= (1U << 13); /* Restart AN */
1277 ctl |= (1U << 7); /* Enable AN */
1278 ctl |= (1U << 4); /* Advertise flow control pause */
1279 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1280 }
1281 else {
1282 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1283 ctl |= (1U << 6);
1284 if (ifm->ifm_media & IFM_FDX)
1285 ctl |= (1U << 5);
1286 }
1287 CSR_WRITE_2(sc, P1CR4, ctl);
1288
1289 sc->sc_media_active = IFM_NONE;
1290 sc->sc_media_status = IFM_AVALID;
1291
1292 return 0;
1293 }
1294
1295 static void
1296 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1297 {
1298 struct kse_softc *sc = ifp->if_softc;
1299 struct ifmedia *ifm = &sc->sc_media;
1300 uint16_t ctl, sts, result;
1301
1302 ifmr->ifm_status = IFM_AVALID;
1303 ifmr->ifm_active = IFM_ETHER;
1304
1305 ctl = CSR_READ_2(sc, P1CR4);
1306 sts = CSR_READ_2(sc, P1SR);
1307 if ((sts & (1U << 5)) == 0) {
1308 ifmr->ifm_active |= IFM_NONE;
1309 goto out; /* Link is down */
1310 }
1311 ifmr->ifm_status |= IFM_ACTIVE;
1312 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1313 if ((sts & (1U << 6)) == 0) {
1314 ifmr->ifm_active |= IFM_NONE;
1315 goto out; /* Negotiation in progress */
1316 }
1317 result = ctl & sts & 017;
1318 if (result & (1U << 3))
1319 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1320 else if (result & (1U << 2))
1321 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
1322 else if (result & (1U << 1))
1323 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
1324 else if (result & (1U << 0))
1325 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
1326 else
1327 ifmr->ifm_active |= IFM_NONE;
1328 if (ctl & (1U << 4))
1329 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1330 if (sts & (1U << 4))
1331 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1332 }
1333 else {
1334 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1335 if (sts & (1U << 9))
1336 ifmr->ifm_active |= IFM_FDX;
1337 if (sts & (1U << 12))
1338 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1339 if (sts & (1U << 11))
1340 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1341 }
1342
1343 out:
1344 sc->sc_media_status = ifmr->ifm_status;
1345 sc->sc_media_active = ifmr->ifm_active;
1346 }
1347
1348 static void
1349 phy_tick(void *arg)
1350 {
1351 struct kse_softc *sc = arg;
1352 struct ifmediareq ifmr;
1353 int s;
1354
1355 s = splnet();
1356 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1357 splx(s);
1358
1359 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1360 }
1361
1362 static int
1363 ifmedia2_upd(struct ifnet *ifp)
1364 {
1365 struct kse_softc *sc = ifp->if_softc;
1366
1367 sc->sc_media_status = IFM_AVALID;
1368 sc->sc_media_active = IFM_NONE;
1369 return 0;
1370 }
1371
1372 static void
1373 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1374 {
1375 struct kse_softc *sc = ifp->if_softc;
1376 int p1sts, p2sts;
1377
1378 ifmr->ifm_status = IFM_AVALID;
1379 ifmr->ifm_active = IFM_ETHER;
1380 p1sts = CSR_READ_2(sc, P1SR);
1381 p2sts = CSR_READ_2(sc, P2SR);
1382 if (((p1sts | p2sts) & (1U << 5)) == 0)
1383 ifmr->ifm_active |= IFM_NONE;
1384 else {
1385 ifmr->ifm_status |= IFM_ACTIVE;
1386 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
1387 ifmr->ifm_active |= IFM_FLOW
1388 | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1389 }
1390 sc->sc_media_status = ifmr->ifm_status;
1391 sc->sc_media_active = ifmr->ifm_active;
1392 }
1393
1394 #ifdef KSE_EVENT_COUNTERS
1395 static void
1396 stat_tick(void *arg)
1397 {
1398 struct kse_softc *sc = arg;
1399 struct ksext *ee = &sc->sc_ext;
1400 int nport, p, i, val;
1401
1402 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1403 for (p = 0; p < nport; p++) {
1404 for (i = 0; i < 32; i++) {
1405 val = 0x1c00 | (p * 0x20 + i);
1406 CSR_WRITE_2(sc, IACR, val);
1407 do {
1408 val = CSR_READ_2(sc, IADR5) << 16;
1409 } while ((val & (1U << 30)) == 0);
1410 if (val & (1U << 31)) {
1411 (void)CSR_READ_2(sc, IADR4);
1412 val = 0x3fffffff; /* has made overflow */
1413 }
1414 else {
1415 val &= 0x3fff0000; /* 29:16 */
1416 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1417 }
1418 ee->pev[p][i].ev_count += val; /* i (0-31) */
1419 }
1420 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1421 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1422 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1423 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1424 }
1425 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1426 }
1427
1428 static void
1429 zerostats(struct kse_softc *sc)
1430 {
1431 struct ksext *ee = &sc->sc_ext;
1432 int nport, p, i, val;
1433
1434 /* Make sure all the HW counters get zero */
1435 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1436 for (p = 0; p < nport; p++) {
1437 for (i = 0; i < 31; i++) {
1438 val = 0x1c00 | (p * 0x20 + i);
1439 CSR_WRITE_2(sc, IACR, val);
1440 do {
1441 val = CSR_READ_2(sc, IADR5) << 16;
1442 } while ((val & (1U << 30)) == 0);
1443 (void)CSR_READ_2(sc, IADR4);
1444 ee->pev[p][i].ev_count = 0;
1445 }
1446 }
1447 }
1448 #endif
1449