Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.39
      1 /*	$NetBSD: if_kse.c,v 1.39 2019/11/06 14:33:52 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.39 2019/11/06 14:33:52 nisimura Exp $");
     34 
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/callout.h>
     39 #include <sys/mbuf.h>
     40 #include <sys/malloc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/errno.h>
     44 #include <sys/device.h>
     45 #include <sys/queue.h>
     46 
     47 #include <machine/endian.h>
     48 #include <sys/bus.h>
     49 #include <sys/intr.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_media.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_ether.h>
     55 #include <net/bpf.h>
     56 
     57 #include <dev/pci/pcivar.h>
     58 #include <dev/pci/pcireg.h>
     59 #include <dev/pci/pcidevs.h>
     60 
     61 #define KSE_LINKDEBUG 0
     62 
     63 #define CSR_READ_4(sc, off) \
     64 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     65 #define CSR_WRITE_4(sc, off, val) \
     66 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     67 #define CSR_READ_2(sc, off) \
     68 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     69 #define CSR_WRITE_2(sc, off, val) \
     70 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     71 
     72 #define MDTXC	0x000	/* DMA transmit control */
     73 #define MDRXC	0x004	/* DMA receive control */
     74 #define MDTSC	0x008	/* DMA transmit start */
     75 #define MDRSC	0x00c	/* DMA receive start */
     76 #define TDLB	0x010	/* transmit descriptor list base */
     77 #define RDLB	0x014	/* receive descriptor list base */
     78 #define MTR0	0x020	/* multicast table 31:0 */
     79 #define MTR1	0x024	/* multicast table 63:32 */
     80 #define INTEN	0x028	/* interrupt enable */
     81 #define INTST	0x02c	/* interrupt status */
     82 #define MARL	0x200	/* MAC address low */
     83 #define MARM	0x202	/* MAC address middle */
     84 #define MARH	0x204	/* MAC address high */
     85 #define GRR	0x216	/* global reset */
     86 #define CIDR	0x400	/* chip ID and enable */
     87 #define CGCR	0x40a	/* chip global control */
     88 #define IACR	0x4a0	/* indirect access control */
     89 #define IADR1	0x4a2	/* indirect access data 66:63 */
     90 #define IADR2	0x4a4	/* indirect access data 47:32 */
     91 #define IADR3	0x4a6	/* indirect access data 63:48 */
     92 #define IADR4	0x4a8	/* indirect access data 15:0 */
     93 #define IADR5	0x4aa	/* indirect access data 31:16 */
     94 #define P1CR4	0x512	/* port 1 control 4 */
     95 #define P1SR	0x514	/* port 1 status */
     96 #define P2CR4	0x532	/* port 2 control 4 */
     97 #define P2SR	0x534	/* port 2 status */
     98 #define PxCR_STARTNEG	(1U << 9)	/* restart auto negotiation */
     99 #define PxCR_AUTOEN	(1U << 7)	/* auto negotiation enable */
    100 #define PxCR_SPD100	(1U << 6)	/* force speed 100 */
    101 #define PxCR_USEFDX	(1U << 5)	/* force full duplex */
    102 #define PxCR_USEFC	(1U << 4)	/* advertise pause flow control */
    103 #define PxSR_ACOMP	(1U << 6)	/* auto negotiation completed */
    104 #define PxSR_SPD100	(1U << 10)	/* speed is 100Mbps */
    105 #define PxSR_FDX	(1U << 9)	/* full duplex */
    106 #define PxSR_LINKUP	(1U << 5)	/* link is good */
    107 #define PxSR_RXFLOW	(1U << 12)	/* receive flow control active */
    108 #define PxSR_TXFLOW	(1U << 11)	/* transmit flow control active */
    109 
    110 #define TXC_BS_MSK	0x3f000000	/* burst size */
    111 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    112 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    113 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    114 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    115 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
    116 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    117 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    118 #define TXC_TEN		(1)		/* enable DMA to run */
    119 
    120 #define RXC_BS_MSK	0x3f000000	/* burst size */
    121 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    122 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    123 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    124 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    125 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    126 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    127 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    128 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    129 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    130 #define RXC_RE		(1U<<3)		/* accept error frame */
    131 #define RXC_RA		(1U<<2)		/* receive all frame */
    132 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    133 #define RXC_REN		(1)		/* enable DMA to run */
    134 
    135 #define INT_DMLCS	(1U<<31)	/* link status change */
    136 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    137 #define INT_DMRS	(1U<<29)	/* frame was received */
    138 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    139 
    140 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    141 
    142 #define R0_OWN		(1U<<31)	/* desc is empty */
    143 #define R0_FS		(1U<<30)	/* first segment of frame */
    144 #define R0_LS		(1U<<29)	/* last segment of frame */
    145 #define R0_IPE		(1U<<28)	/* IP checksum error */
    146 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    147 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    148 #define R0_ES		(1U<<25)	/* error summary */
    149 #define R0_MF		(1U<<24)	/* multicast frame */
    150 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    151 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    152 #define R0_RE		(1U<<19)	/* MII reported error */
    153 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    154 #define R0_RF		(1U<<17)	/* damaged runt frame */
    155 #define R0_CE		(1U<<16)	/* CRC error */
    156 #define R0_FT		(1U<<15)	/* frame type */
    157 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    158 
    159 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    160 #define T1_FS		(1U<<30)	/* first segment of frame */
    161 #define T1_LS		(1U<<29)	/* last segment of frame */
    162 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    163 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    164 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    165 #define T1_TER		(1U<<25)	/* end of ring */
    166 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    167 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    168 
    169 #define R1_RER		(1U<<25)	/* end of ring */
    170 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    171 
    172 #define KSE_NTXSEGS		16
    173 #define KSE_TXQUEUELEN		64
    174 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    175 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    176 #define KSE_NTXDESC		256
    177 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    178 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    179 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    180 
    181 #define KSE_NRXDESC		64
    182 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    183 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    184 
    185 struct tdes {
    186 	uint32_t t0, t1, t2, t3;
    187 };
    188 
    189 struct rdes {
    190 	uint32_t r0, r1, r2, r3;
    191 };
    192 
    193 struct kse_control_data {
    194 	struct tdes kcd_txdescs[KSE_NTXDESC];
    195 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    196 };
    197 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    198 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    199 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    200 
    201 struct kse_txsoft {
    202 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    203 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    204 	int txs_firstdesc;		/* first descriptor in packet */
    205 	int txs_lastdesc;		/* last descriptor in packet */
    206 	int txs_ndesc;			/* # of descriptors used */
    207 };
    208 
    209 struct kse_rxsoft {
    210 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    211 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    212 };
    213 
    214 struct kse_softc {
    215 	device_t sc_dev;		/* generic device information */
    216 	bus_space_tag_t sc_st;		/* bus space tag */
    217 	bus_space_handle_t sc_sh;	/* bus space handle */
    218 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    219 	struct ethercom sc_ethercom;	/* Ethernet common data */
    220 	void *sc_ih;			/* interrupt cookie */
    221 
    222 	struct ifmedia sc_media;	/* ifmedia information */
    223 	int sc_linkstatus;		/* last P1SR register value */
    224 
    225 	callout_t  sc_callout;		/* MII tick callout */
    226 	callout_t  sc_stat_ch;		/* statistics counter callout */
    227 
    228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    229 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    230 
    231 	struct kse_control_data *sc_control_data;
    232 #define sc_txdescs	sc_control_data->kcd_txdescs
    233 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    234 
    235 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    236 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    237 	int sc_txfree;			/* number of free Tx descriptors */
    238 	int sc_txnext;			/* next ready Tx descriptor */
    239 	int sc_txsfree;			/* number of free Tx jobs */
    240 	int sc_txsnext;			/* next ready Tx job */
    241 	int sc_txsdirty;		/* dirty Tx jobs */
    242 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    243 
    244 	uint32_t sc_txc, sc_rxc;
    245 	uint32_t sc_t1csum;
    246 	int sc_mcsum;
    247 	uint32_t sc_inten;
    248 
    249 	uint32_t sc_chip;
    250 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    251 	uint16_t sc_vlan[16];
    252 
    253 #ifdef KSE_EVENT_COUNTERS
    254 	struct ksext {
    255 		char evcntname[3][8];
    256 		struct evcnt pev[3][34];
    257 	} sc_ext;			/* switch statistics */
    258 #endif
    259 };
    260 
    261 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    262 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    263 
    264 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    265 do {									\
    266 	int __x, __n;							\
    267 									\
    268 	__x = (x);							\
    269 	__n = (n);							\
    270 									\
    271 	/* If it will wrap around, sync to the end of the ring. */	\
    272 	if ((__x + __n) > KSE_NTXDESC) {				\
    273 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    274 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    275 		    (KSE_NTXDESC - __x), (ops));			\
    276 		__n -= (KSE_NTXDESC - __x);				\
    277 		__x = 0;						\
    278 	}								\
    279 									\
    280 	/* Now sync whatever is left. */				\
    281 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    282 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    283 } while (/*CONSTCOND*/0)
    284 
    285 #define KSE_CDRXSYNC(sc, x, ops)					\
    286 do {									\
    287 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    288 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    289 } while (/*CONSTCOND*/0)
    290 
    291 #define KSE_INIT_RXDESC(sc, x)						\
    292 do {									\
    293 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    294 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    295 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    296 									\
    297 	__m->m_data = __m->m_ext.ext_buf;				\
    298 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    299 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    300 	__rxd->r0 = R0_OWN;						\
    301 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    302 } while (/*CONSTCOND*/0)
    303 
    304 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    305 
    306 #ifdef KSEDIAGNOSTIC
    307 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    308 #endif
    309 
    310 static int kse_match(device_t, cfdata_t, void *);
    311 static void kse_attach(device_t, device_t, void *);
    312 
    313 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
    314     kse_match, kse_attach, NULL, NULL);
    315 
    316 static int kse_ioctl(struct ifnet *, u_long, void *);
    317 static void kse_start(struct ifnet *);
    318 static void kse_watchdog(struct ifnet *);
    319 static int kse_init(struct ifnet *);
    320 static void kse_stop(struct ifnet *, int);
    321 static void kse_reset(struct kse_softc *);
    322 static void kse_set_filter(struct kse_softc *);
    323 static int add_rxbuf(struct kse_softc *, int);
    324 static void rxdrain(struct kse_softc *);
    325 static int kse_intr(void *);
    326 static void rxintr(struct kse_softc *);
    327 static void txreap(struct kse_softc *);
    328 static void lnkchg(struct kse_softc *);
    329 static int ksephy_change(struct ifnet *);
    330 static void ksephy_status(struct ifnet *, struct ifmediareq *);
    331 static void phy_tick(void *);
    332 #ifdef KSE_EVENT_COUNTERS
    333 static void stat_tick(void *);
    334 static void zerostats(struct kse_softc *);
    335 #endif
    336 
    337 static int
    338 kse_match(device_t parent, cfdata_t match, void *aux)
    339 {
    340 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    341 
    342 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    343 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    344 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    345 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    346 		return 1;
    347 
    348 	return 0;
    349 }
    350 
    351 static void
    352 kse_attach(device_t parent, device_t self, void *aux)
    353 {
    354 	struct kse_softc *sc = device_private(self);
    355 	struct pci_attach_args *pa = aux;
    356 	pci_chipset_tag_t pc = pa->pa_pc;
    357 	pci_intr_handle_t ih;
    358 	const char *intrstr;
    359 	struct ifnet *ifp;
    360 	struct ifmedia *ifm;
    361 	uint8_t enaddr[ETHER_ADDR_LEN];
    362 	bus_dma_segment_t seg;
    363 	int i, error, nseg;
    364 	pcireg_t pmode;
    365 	int pmreg;
    366 	char intrbuf[PCI_INTRSTR_LEN];
    367 
    368 	if (pci_mapreg_map(pa, 0x10,
    369 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    370 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    371 		printf(": unable to map device registers\n");
    372 		return;
    373 	}
    374 
    375 	sc->sc_dev = self;
    376 	sc->sc_dmat = pa->pa_dmat;
    377 
    378 	/* Make sure bus mastering is enabled. */
    379 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    380 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    381 	    PCI_COMMAND_MASTER_ENABLE);
    382 
    383 	/* Get it out of power save mode, if needed. */
    384 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    385 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    386 		    PCI_PMCSR_STATE_MASK;
    387 		if (pmode == PCI_PMCSR_STATE_D3) {
    388 			/*
    389 			 * The card has lost all configuration data in
    390 			 * this state, so punt.
    391 			 */
    392 			printf("%s: unable to wake from power state D3\n",
    393 			    device_xname(sc->sc_dev));
    394 			return;
    395 		}
    396 		if (pmode != PCI_PMCSR_STATE_D0) {
    397 			printf("%s: waking up from power date D%d\n",
    398 			    device_xname(sc->sc_dev), pmode);
    399 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    400 			    PCI_PMCSR_STATE_D0);
    401 		}
    402 	}
    403 
    404 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    405 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    406 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    407 
    408 	/*
    409 	 * Read the Ethernet address from the EEPROM.
    410 	 */
    411 	i = CSR_READ_2(sc, MARL);
    412 	enaddr[5] = i; enaddr[4] = i >> 8;
    413 	i = CSR_READ_2(sc, MARM);
    414 	enaddr[3] = i; enaddr[2] = i >> 8;
    415 	i = CSR_READ_2(sc, MARH);
    416 	enaddr[1] = i; enaddr[0] = i >> 8;
    417 	printf("%s: Ethernet address %s\n",
    418 		device_xname(sc->sc_dev), ether_sprintf(enaddr));
    419 
    420 	/*
    421 	 * Enable chip function.
    422 	 */
    423 	CSR_WRITE_2(sc, CIDR, 1);
    424 
    425 	/*
    426 	 * Map and establish our interrupt.
    427 	 */
    428 	if (pci_intr_map(pa, &ih)) {
    429 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    430 		return;
    431 	}
    432 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    433 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
    434 	    device_xname(self));
    435 	if (sc->sc_ih == NULL) {
    436 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    437 		if (intrstr != NULL)
    438 			aprint_error(" at %s", intrstr);
    439 		aprint_error("\n");
    440 		return;
    441 	}
    442 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    443 
    444 	/*
    445 	 * Allocate the control data structures, and create and load the
    446 	 * DMA map for it.
    447 	 */
    448 	error = bus_dmamem_alloc(sc->sc_dmat,
    449 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    450 	if (error != 0) {
    451 		aprint_error_dev(sc->sc_dev,
    452 		    "unable to allocate control data, error = %d\n", error);
    453 		goto fail_0;
    454 	}
    455 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    456 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    457 	    BUS_DMA_COHERENT);
    458 	if (error != 0) {
    459 		aprint_error_dev(sc->sc_dev,
    460 		    "unable to map control data, error = %d\n", error);
    461 		goto fail_1;
    462 	}
    463 	error = bus_dmamap_create(sc->sc_dmat,
    464 	    sizeof(struct kse_control_data), 1,
    465 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    466 	if (error != 0) {
    467 		aprint_error_dev(sc->sc_dev,
    468 		    "unable to create control data DMA map, "
    469 		    "error = %d\n", error);
    470 		goto fail_2;
    471 	}
    472 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    473 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    474 	if (error != 0) {
    475 		aprint_error_dev(sc->sc_dev,
    476 		    "unable to load control data DMA map, error = %d\n",
    477 		    error);
    478 		goto fail_3;
    479 	}
    480 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    481 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    482 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    483 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    484 			aprint_error_dev(sc->sc_dev,
    485 			    "unable to create tx DMA map %d, error = %d\n",
    486 			    i, error);
    487 			goto fail_4;
    488 		}
    489 	}
    490 	for (i = 0; i < KSE_NRXDESC; i++) {
    491 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    492 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    493 			aprint_error_dev(sc->sc_dev,
    494 			    "unable to create rx DMA map %d, error = %d\n",
    495 			    i, error);
    496 			goto fail_5;
    497 		}
    498 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    499 	}
    500 
    501 	callout_init(&sc->sc_callout, 0);
    502 	callout_init(&sc->sc_stat_ch, 0);
    503 
    504 	/* Initialize ifmedia structures. */
    505 	ifm = &sc->sc_media;
    506 	sc->sc_ethercom.ec_ifmedia = ifm;
    507 	sc->sc_linkstatus = 0;
    508 	if (sc->sc_chip == 0x8841) {
    509 		ifmedia_init(ifm, 0, ksephy_change, ksephy_status);
    510 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
    511 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    512 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
    513 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    514 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
    515 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    516 	} else {
    517 		ifmedia_init(ifm, 0, NULL, NULL);
    518 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
    519 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    520 		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
    521 	}
    522 
    523 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    524 	    device_xname(sc->sc_dev));
    525 
    526 	ifp = &sc->sc_ethercom.ec_if;
    527 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    528 	ifp->if_softc = sc;
    529 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    530 	ifp->if_ioctl = kse_ioctl;
    531 	ifp->if_start = kse_start;
    532 	ifp->if_watchdog = kse_watchdog;
    533 	ifp->if_init = kse_init;
    534 	ifp->if_stop = kse_stop;
    535 	IFQ_SET_READY(&ifp->if_snd);
    536 
    537 	/*
    538 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    539 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    540 	 */
    541 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    542 	ifp->if_capabilities |=
    543 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    544 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    545 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    546 
    547 	if_attach(ifp);
    548 	ether_ifattach(ifp, enaddr);
    549 
    550 #ifdef KSE_EVENT_COUNTERS
    551 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
    552 	for (i = 0; i < p; i++) {
    553 		struct ksext *ee = &sc->sc_ext;
    554 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
    555 		    "%s.%d", device_xname(sc->sc_dev), i+1);
    556 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    557 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    558 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    559 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    560 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    561 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    562 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    563 		    NULL, ee->evcntname[i], "RxFragments");
    564 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    565 		    NULL, ee->evcntname[i], "RxOversize");
    566 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    567 		    NULL, ee->evcntname[i], "RxJabbers");
    568 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    569 		    NULL, ee->evcntname[i], "RxSymbolError");
    570 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    571 		    NULL, ee->evcntname[i], "RxCRCError");
    572 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    573 		    NULL, ee->evcntname[i], "RxAlignmentError");
    574 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    575 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    576 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    577 		    NULL, ee->evcntname[i], "RxPausePkts");
    578 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    579 		    NULL, ee->evcntname[i], "RxBroadcast");
    580 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    581 		    NULL, ee->evcntname[i], "RxMulticast");
    582 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    583 		    NULL, ee->evcntname[i], "RxUnicast");
    584 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    585 		    NULL, ee->evcntname[i], "Rx64Octets");
    586 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    587 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    588 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    589 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    590 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    591 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    592 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    593 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    594 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    595 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    596 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    597 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    598 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    599 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    600 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    601 		    NULL, ee->evcntname[i], "TxLateCollision");
    602 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    603 		    NULL, ee->evcntname[i], "TxPausePkts");
    604 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    605 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    606 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    607 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    608 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    609 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    610 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    611 		    NULL, ee->evcntname[i], "TxDeferred");
    612 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    613 		    NULL, ee->evcntname[i], "TxTotalCollision");
    614 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    615 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    616 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    617 		    NULL, ee->evcntname[i], "TxSingleCollision");
    618 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    619 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    620 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    621 		    NULL, ee->evcntname[i], "TxDropPkts");
    622 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    623 		    NULL, ee->evcntname[i], "RxDropPkts");
    624 	}
    625 #endif
    626 	return;
    627 
    628  fail_5:
    629 	for (i = 0; i < KSE_NRXDESC; i++) {
    630 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    631 			bus_dmamap_destroy(sc->sc_dmat,
    632 			    sc->sc_rxsoft[i].rxs_dmamap);
    633 	}
    634  fail_4:
    635 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    636 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    637 			bus_dmamap_destroy(sc->sc_dmat,
    638 			    sc->sc_txsoft[i].txs_dmamap);
    639 	}
    640 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    641  fail_3:
    642 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    643  fail_2:
    644 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    645 	    sizeof(struct kse_control_data));
    646  fail_1:
    647 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    648  fail_0:
    649 	return;
    650 }
    651 
    652 static int
    653 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    654 {
    655 	struct kse_softc *sc = ifp->if_softc;
    656 	int s, error;
    657 
    658 	s = splnet();
    659 
    660 	switch (cmd) {
    661 	default:
    662 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    663 			break;
    664 
    665 		error = 0;
    666 
    667 		if (cmd == SIOCSIFCAP)
    668 			error = (*ifp->if_init)(ifp);
    669 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    670 			;
    671 		else if (ifp->if_flags & IFF_RUNNING) {
    672 			/*
    673 			 * Multicast list has changed; set the hardware filter
    674 			 * accordingly.
    675 			 */
    676 			kse_set_filter(sc);
    677 		}
    678 		break;
    679 	}
    680 
    681 	kse_start(ifp);
    682 
    683 	splx(s);
    684 	return error;
    685 }
    686 
    687 static int
    688 kse_init(struct ifnet *ifp)
    689 {
    690 	struct kse_softc *sc = ifp->if_softc;
    691 	uint32_t paddr;
    692 	int i, error = 0;
    693 
    694 	/* cancel pending I/O */
    695 	kse_stop(ifp, 0);
    696 
    697 	/* reset all registers but PCI configuration */
    698 	kse_reset(sc);
    699 
    700 	/* craft Tx descriptor ring */
    701 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    702 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    703 		sc->sc_txdescs[i].t3 = paddr;
    704 		paddr += sizeof(struct tdes);
    705 	}
    706 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    707 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    709 	sc->sc_txfree = KSE_NTXDESC;
    710 	sc->sc_txnext = 0;
    711 
    712 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    713 		sc->sc_txsoft[i].txs_mbuf = NULL;
    714 	sc->sc_txsfree = KSE_TXQUEUELEN;
    715 	sc->sc_txsnext = 0;
    716 	sc->sc_txsdirty = 0;
    717 
    718 	/* craft Rx descriptor ring */
    719 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    720 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    721 		sc->sc_rxdescs[i].r3 = paddr;
    722 		paddr += sizeof(struct rdes);
    723 	}
    724 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    725 	for (i = 0; i < KSE_NRXDESC; i++) {
    726 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    727 			if ((error = add_rxbuf(sc, i)) != 0) {
    728 				printf("%s: unable to allocate or map rx "
    729 				    "buffer %d, error = %d\n",
    730 				     device_xname(sc->sc_dev), i, error);
    731 				rxdrain(sc);
    732 				goto out;
    733 			}
    734 		}
    735 		else
    736 			KSE_INIT_RXDESC(sc, i);
    737 	}
    738 	sc->sc_rxptr = 0;
    739 
    740 	/* hand Tx/Rx rings to HW */
    741 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    742 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    743 
    744 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    745 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    746 	if (ifp->if_flags & IFF_PROMISC)
    747 		sc->sc_rxc |= RXC_RA;
    748 	if (ifp->if_flags & IFF_BROADCAST)
    749 		sc->sc_rxc |= RXC_RB;
    750 	sc->sc_t1csum = sc->sc_mcsum = 0;
    751 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    752 		sc->sc_rxc |= RXC_ICC;
    753 		sc->sc_mcsum |= M_CSUM_IPv4;
    754 	}
    755 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    756 		sc->sc_txc |= TXC_ICG;
    757 		sc->sc_t1csum |= T1_IPCKG;
    758 	}
    759 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    760 		sc->sc_rxc |= RXC_TCC;
    761 		sc->sc_mcsum |= M_CSUM_TCPv4;
    762 	}
    763 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    764 		sc->sc_txc |= TXC_TCG;
    765 		sc->sc_t1csum |= T1_TCPCKG;
    766 	}
    767 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    768 		sc->sc_rxc |= RXC_UCC;
    769 		sc->sc_mcsum |= M_CSUM_UDPv4;
    770 	}
    771 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    772 		sc->sc_txc |= TXC_UCG;
    773 		sc->sc_t1csum |= T1_UDPCKG;
    774 	}
    775 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    776 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    777 
    778 	/* build multicast hash filter if necessary */
    779 	kse_set_filter(sc);
    780 
    781 	/* set current media */
    782 	if (sc->sc_chip == 0x8841)
    783 		(void)ksephy_change(ifp);
    784 
    785 	/* enable transmitter and receiver */
    786 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    787 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    788 	CSR_WRITE_4(sc, MDRSC, 1);
    789 
    790 	/* enable interrupts */
    791 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
    792 	if (sc->sc_chip == 0x8841)
    793 		sc->sc_inten |= INT_DMLCS;
    794 	CSR_WRITE_4(sc, INTST, ~0);
    795 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    796 
    797 	ifp->if_flags |= IFF_RUNNING;
    798 	ifp->if_flags &= ~IFF_OACTIVE;
    799 
    800 	if (sc->sc_chip == 0x8841) {
    801 		/* start one second timer */
    802 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    803 	}
    804 #ifdef KSE_EVENT_COUNTERS
    805 	/* start statistics gather 1 minute timer */
    806 	zerostats(sc);
    807 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
    808 #endif
    809 
    810  out:
    811 	if (error) {
    812 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    813 		ifp->if_timer = 0;
    814 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
    815 	}
    816 	return error;
    817 }
    818 
    819 static void
    820 kse_stop(struct ifnet *ifp, int disable)
    821 {
    822 	struct kse_softc *sc = ifp->if_softc;
    823 	struct kse_txsoft *txs;
    824 	int i;
    825 
    826 	if (sc->sc_chip == 0x8841)
    827 		callout_stop(&sc->sc_callout);
    828 	callout_stop(&sc->sc_stat_ch);
    829 
    830 	sc->sc_txc &= ~TXC_TEN;
    831 	sc->sc_rxc &= ~RXC_REN;
    832 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    833 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    834 
    835 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    836 		txs = &sc->sc_txsoft[i];
    837 		if (txs->txs_mbuf != NULL) {
    838 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    839 			m_freem(txs->txs_mbuf);
    840 			txs->txs_mbuf = NULL;
    841 		}
    842 	}
    843 
    844 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    845 	ifp->if_timer = 0;
    846 
    847 	if (disable)
    848 		rxdrain(sc);
    849 }
    850 
    851 static void
    852 kse_reset(struct kse_softc *sc)
    853 {
    854 
    855 	CSR_WRITE_2(sc, GRR, 1);
    856 	delay(1000); /* PDF does not mention the delay amount */
    857 	CSR_WRITE_2(sc, GRR, 0);
    858 
    859 	CSR_WRITE_2(sc, CIDR, 1);
    860 }
    861 
    862 static void
    863 kse_watchdog(struct ifnet *ifp)
    864 {
    865 	struct kse_softc *sc = ifp->if_softc;
    866 
    867 	/*
    868 	 * Since we're not interrupting every packet, sweep
    869 	 * up before we report an error.
    870 	 */
    871 	txreap(sc);
    872 
    873 	if (sc->sc_txfree != KSE_NTXDESC) {
    874 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    875 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
    876 		    sc->sc_txnext);
    877 		ifp->if_oerrors++;
    878 
    879 		/* Reset the interface. */
    880 		kse_init(ifp);
    881 	}
    882 	else if (ifp->if_flags & IFF_DEBUG)
    883 		printf("%s: recovered from device timeout\n",
    884 		    device_xname(sc->sc_dev));
    885 
    886 	/* Try to get more packets going. */
    887 	kse_start(ifp);
    888 }
    889 
    890 static void
    891 kse_start(struct ifnet *ifp)
    892 {
    893 	struct kse_softc *sc = ifp->if_softc;
    894 	struct mbuf *m0, *m;
    895 	struct kse_txsoft *txs;
    896 	bus_dmamap_t dmamap;
    897 	int error, nexttx, lasttx, ofree, seg;
    898 	uint32_t tdes0;
    899 
    900 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    901 		return;
    902 
    903 	/* Remember the previous number of free descriptors. */
    904 	ofree = sc->sc_txfree;
    905 
    906 	/*
    907 	 * Loop through the send queue, setting up transmit descriptors
    908 	 * until we drain the queue, or use up all available transmit
    909 	 * descriptors.
    910 	 */
    911 	for (;;) {
    912 		IFQ_POLL(&ifp->if_snd, m0);
    913 		if (m0 == NULL)
    914 			break;
    915 
    916 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    917 			txreap(sc);
    918 			if (sc->sc_txsfree == 0)
    919 				break;
    920 		}
    921 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    922 		dmamap = txs->txs_dmamap;
    923 
    924 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    925 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    926 		if (error) {
    927 			if (error == EFBIG) {
    928 				printf("%s: Tx packet consumes too many "
    929 				    "DMA segments, dropping...\n",
    930 				    device_xname(sc->sc_dev));
    931 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    932 				    m_freem(m0);
    933 				    continue;
    934 			}
    935 			/* Short on resources, just stop for now. */
    936 			break;
    937 		}
    938 
    939 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    940 			/*
    941 			 * Not enough free descriptors to transmit this
    942 			 * packet.  We haven't committed anything yet,
    943 			 * so just unload the DMA map, put the packet
    944 			 * back on the queue, and punt.	 Notify the upper
    945 			 * layer that there are not more slots left.
    946 			 */
    947 			ifp->if_flags |= IFF_OACTIVE;
    948 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    949 			break;
    950 		}
    951 
    952 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    953 
    954 		/*
    955 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    956 		 */
    957 
    958 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    959 		    BUS_DMASYNC_PREWRITE);
    960 
    961 		lasttx = -1; tdes0 = 0;
    962 		for (nexttx = sc->sc_txnext, seg = 0;
    963 		     seg < dmamap->dm_nsegs;
    964 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    965 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    966 			/*
    967 			 * If this is the first descriptor we're
    968 			 * enqueueing, don't set the OWN bit just
    969 			 * yet.	 That could cause a race condition.
    970 			 * We'll do it below.
    971 			 */
    972 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    973 			tdes->t1 = sc->sc_t1csum
    974 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    975 			tdes->t0 = tdes0;
    976 			tdes0 |= T0_OWN;
    977 			lasttx = nexttx;
    978 		}
    979 
    980 		/*
    981 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    982 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    983 		 * time and NFS stops to proceed until kse_watchdog()
    984 		 * calls txreap() to reclaim the unack'ed mbuf.
    985 		 * It's painful to traverse every mbuf chain to determine
    986 		 * whether someone is waiting for Tx completion.
    987 		 */
    988 		m = m0;
    989 		do {
    990 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    991 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    992 				break;
    993 			}
    994 		} while ((m = m->m_next) != NULL);
    995 
    996 		/* Write last T0_OWN bit of the 1st segment */
    997 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    998 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    999 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
   1000 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1001 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1002 
   1003 		/* Tell DMA start transmit */
   1004 		CSR_WRITE_4(sc, MDTSC, 1);
   1005 
   1006 		txs->txs_mbuf = m0;
   1007 		txs->txs_firstdesc = sc->sc_txnext;
   1008 		txs->txs_lastdesc = lasttx;
   1009 		txs->txs_ndesc = dmamap->dm_nsegs;
   1010 
   1011 		sc->sc_txfree -= txs->txs_ndesc;
   1012 		sc->sc_txnext = nexttx;
   1013 		sc->sc_txsfree--;
   1014 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
   1015 		/*
   1016 		 * Pass the packet to any BPF listeners.
   1017 		 */
   1018 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1019 	}
   1020 
   1021 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1022 		/* No more slots left; notify upper layer. */
   1023 		ifp->if_flags |= IFF_OACTIVE;
   1024 	}
   1025 	if (sc->sc_txfree != ofree) {
   1026 		/* Set a watchdog timer in case the chip flakes out. */
   1027 		ifp->if_timer = 5;
   1028 	}
   1029 }
   1030 
   1031 static void
   1032 kse_set_filter(struct kse_softc *sc)
   1033 {
   1034 	struct ether_multistep step;
   1035 	struct ether_multi *enm;
   1036 	struct ethercom *ec = &sc->sc_ethercom;
   1037 	struct ifnet *ifp = &ec->ec_if;
   1038 	uint32_t h, hashes[2];
   1039 
   1040 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1041 	ifp->if_flags &= ~IFF_ALLMULTI;
   1042 	if (ifp->if_flags & IFF_PROMISC)
   1043 		return;
   1044 
   1045 	ETHER_LOCK(ec);
   1046 	ETHER_FIRST_MULTI(step, ec, enm);
   1047 	if (enm == NULL) {
   1048 		ETHER_UNLOCK(ec);
   1049 		return;
   1050 	}
   1051 	hashes[0] = hashes[1] = 0;
   1052 	do {
   1053 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1054 			/*
   1055 			 * We must listen to a range of multicast addresses.
   1056 			 * For now, just accept all multicasts, rather than
   1057 			 * trying to set only those filter bits needed to match
   1058 			 * the range.  (At this time, the only use of address
   1059 			 * ranges is for IP multicast routing, for which the
   1060 			 * range is big enough to require all bits set.)
   1061 			 */
   1062 			ETHER_UNLOCK(ec);
   1063 			goto allmulti;
   1064 		}
   1065 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1066 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1067 		ETHER_NEXT_MULTI(step, enm);
   1068 	} while (enm != NULL);
   1069 	ETHER_UNLOCK(ec);
   1070 	sc->sc_rxc |= RXC_MHTE;
   1071 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1072 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1073 	return;
   1074  allmulti:
   1075 	sc->sc_rxc |= RXC_RM;
   1076 	ifp->if_flags |= IFF_ALLMULTI;
   1077 }
   1078 
   1079 static int
   1080 add_rxbuf(struct kse_softc *sc, int idx)
   1081 {
   1082 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1083 	struct mbuf *m;
   1084 	int error;
   1085 
   1086 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1087 	if (m == NULL)
   1088 		return ENOBUFS;
   1089 
   1090 	MCLGET(m, M_DONTWAIT);
   1091 	if ((m->m_flags & M_EXT) == 0) {
   1092 		m_freem(m);
   1093 		return ENOBUFS;
   1094 	}
   1095 
   1096 	if (rxs->rxs_mbuf != NULL)
   1097 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1098 
   1099 	rxs->rxs_mbuf = m;
   1100 
   1101 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1102 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1103 	if (error) {
   1104 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1105 		    device_xname(sc->sc_dev), idx, error);
   1106 		panic("kse_add_rxbuf");
   1107 	}
   1108 
   1109 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1110 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1111 
   1112 	KSE_INIT_RXDESC(sc, idx);
   1113 
   1114 	return 0;
   1115 }
   1116 
   1117 static void
   1118 rxdrain(struct kse_softc *sc)
   1119 {
   1120 	struct kse_rxsoft *rxs;
   1121 	int i;
   1122 
   1123 	for (i = 0; i < KSE_NRXDESC; i++) {
   1124 		rxs = &sc->sc_rxsoft[i];
   1125 		if (rxs->rxs_mbuf != NULL) {
   1126 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1127 			m_freem(rxs->rxs_mbuf);
   1128 			rxs->rxs_mbuf = NULL;
   1129 		}
   1130 	}
   1131 }
   1132 
   1133 static int
   1134 kse_intr(void *arg)
   1135 {
   1136 	struct kse_softc *sc = arg;
   1137 	uint32_t isr;
   1138 
   1139 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1140 		return 0;
   1141 
   1142 	if (isr & INT_DMRS)
   1143 		rxintr(sc);
   1144 	if (isr & INT_DMTS)
   1145 		txreap(sc);
   1146 	if (isr & INT_DMLCS)
   1147 		lnkchg(sc);
   1148 	if (isr & INT_DMRBUS)
   1149 		printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
   1150 
   1151 	CSR_WRITE_4(sc, INTST, isr);
   1152 	return 1;
   1153 }
   1154 
   1155 static void
   1156 rxintr(struct kse_softc *sc)
   1157 {
   1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1159 	struct kse_rxsoft *rxs;
   1160 	struct mbuf *m;
   1161 	uint32_t rxstat;
   1162 	int i, len;
   1163 
   1164 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1165 		rxs = &sc->sc_rxsoft[i];
   1166 
   1167 		KSE_CDRXSYNC(sc, i,
   1168 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1169 
   1170 		rxstat = sc->sc_rxdescs[i].r0;
   1171 
   1172 		if (rxstat & R0_OWN) /* desc is left empty */
   1173 			break;
   1174 
   1175 		/* R0_FS | R0_LS must have been marked for this desc */
   1176 
   1177 		if (rxstat & R0_ES) {
   1178 			ifp->if_ierrors++;
   1179 #define PRINTERR(bit, str)						\
   1180 			if (rxstat & (bit))				\
   1181 				printf("%s: receive error: %s\n",	\
   1182 				    device_xname(sc->sc_dev), str)
   1183 			PRINTERR(R0_TL, "frame too long");
   1184 			PRINTERR(R0_RF, "runt frame");
   1185 			PRINTERR(R0_CE, "bad FCS");
   1186 #undef PRINTERR
   1187 			KSE_INIT_RXDESC(sc, i);
   1188 			continue;
   1189 		}
   1190 
   1191 		/* HW errata; frame might be too small or too large */
   1192 
   1193 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1194 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1195 
   1196 		len = rxstat & R0_FL_MASK;
   1197 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1198 		m = rxs->rxs_mbuf;
   1199 
   1200 		if (add_rxbuf(sc, i) != 0) {
   1201 			ifp->if_ierrors++;
   1202 			KSE_INIT_RXDESC(sc, i);
   1203 			bus_dmamap_sync(sc->sc_dmat,
   1204 			    rxs->rxs_dmamap, 0,
   1205 			    rxs->rxs_dmamap->dm_mapsize,
   1206 			    BUS_DMASYNC_PREREAD);
   1207 			continue;
   1208 		}
   1209 
   1210 		m_set_rcvif(m, ifp);
   1211 		m->m_pkthdr.len = m->m_len = len;
   1212 
   1213 		if (sc->sc_mcsum) {
   1214 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1215 			if (rxstat & R0_IPE)
   1216 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1217 			if (rxstat & (R0_TCPE | R0_UDPE))
   1218 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1219 		}
   1220 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1221 #ifdef KSEDIAGNOSTIC
   1222 		if (kse_monitor_rxintr > 0) {
   1223 			printf("m stat %x data %p len %d\n",
   1224 			    rxstat, m->m_data, m->m_len);
   1225 		}
   1226 #endif
   1227 	}
   1228 	sc->sc_rxptr = i;
   1229 }
   1230 
   1231 static void
   1232 txreap(struct kse_softc *sc)
   1233 {
   1234 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1235 	struct kse_txsoft *txs;
   1236 	uint32_t txstat;
   1237 	int i;
   1238 
   1239 	ifp->if_flags &= ~IFF_OACTIVE;
   1240 
   1241 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1242 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1243 		txs = &sc->sc_txsoft[i];
   1244 
   1245 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1246 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1247 
   1248 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1249 
   1250 		if (txstat & T0_OWN) /* desc is still in use */
   1251 			break;
   1252 
   1253 		/* There is no way to tell transmission status per frame */
   1254 
   1255 		ifp->if_opackets++;
   1256 
   1257 		sc->sc_txfree += txs->txs_ndesc;
   1258 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1259 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1260 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1261 		m_freem(txs->txs_mbuf);
   1262 		txs->txs_mbuf = NULL;
   1263 	}
   1264 	sc->sc_txsdirty = i;
   1265 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1266 		ifp->if_timer = 0;
   1267 }
   1268 
   1269 static void
   1270 lnkchg(struct kse_softc *sc)
   1271 {
   1272 	struct ifmediareq ifmr;
   1273 
   1274 #if KSE_LINKDEBUG > 0
   1275 printf("link change detected\n");
   1276 #endif
   1277 	ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
   1278 }
   1279 
   1280 static int
   1281 ksephy_change(struct ifnet *ifp)
   1282 {
   1283 	struct kse_softc *sc = ifp->if_softc;
   1284 	struct ifmedia *ifm = &sc->sc_media;
   1285 	uint16_t p1cr4;
   1286 #if KSE_LINKDEBUG > 0
   1287 printf("ifm_media: %x\n", ifm->ifm_cur->ifm_media);
   1288 #endif
   1289 	p1cr4 = 0;
   1290 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1291 		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
   1292 		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
   1293 		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
   1294 		p1cr4 |= 0xf;		/* advertise 100-FDX,100-HDX,10-FDX,10-HDX */
   1295 	} else {
   1296 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
   1297 			p1cr4 |= PxCR_SPD100;
   1298 		if (ifm->ifm_media & IFM_FDX)
   1299 			p1cr4 |= PxCR_USEFDX;
   1300 	}
   1301 	CSR_WRITE_2(sc, P1CR4, p1cr4);
   1302 #if KSE_LINKDEBUG > 0
   1303 printf("P1CR4: %04x\n", p1cr4);
   1304 #endif
   1305 	return 0;
   1306 }
   1307 
   1308 static void
   1309 ksephy_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   1310 {
   1311 	struct kse_softc *sc = ifp->if_softc;
   1312 	int media_status;
   1313 	u_int media_active;
   1314 	uint16_t p1cr4, p1sr;
   1315 
   1316 	media_status = IFM_AVALID;
   1317 	media_active = IFM_ETHER;
   1318 
   1319 	p1cr4 = CSR_READ_2(sc, P1CR4);
   1320 	p1sr = CSR_READ_2(sc, P1SR);
   1321 #if KSE_LINKDEBUG > 0
   1322 printf("P1SR: %04x link %s\n", p1sr, (p1sr & PxSR_LINKUP) ? "up" : "down");
   1323 #endif
   1324 	sc->sc_linkstatus = p1sr;
   1325 	if (p1sr & PxSR_LINKUP)
   1326 		media_status |= IFM_ACTIVE;
   1327 
   1328 	if (p1cr4 & PxCR_AUTOEN) {
   1329 		if ((p1sr & PxSR_ACOMP) == 0) {
   1330 			media_active |= IFM_NONE;
   1331 			goto out; /* Negotiation in progress */
   1332 		}
   1333 	}
   1334 
   1335 	media_active |= (p1sr & PxSR_SPD100) ? IFM_100_TX : IFM_10_T;
   1336 	if (p1sr & PxSR_FDX)
   1337 		media_active |= IFM_FDX;
   1338 	if (p1sr & PxSR_RXFLOW)
   1339 		media_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1340 	if (p1sr & PxSR_TXFLOW)
   1341 		media_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1342   out:
   1343 	ifmr->ifm_active = media_active;
   1344 	ifmr->ifm_status = media_status;
   1345 }
   1346 
   1347 static void
   1348 phy_tick(void *arg)
   1349 {
   1350 	struct kse_softc *sc = arg;
   1351 	struct ifmediareq ifmr;
   1352 	int s;
   1353 	uint16_t p1sr;
   1354 
   1355 	s = splnet();
   1356 	p1sr = CSR_READ_2(sc, P1SR);
   1357 	if (sc->sc_linkstatus != p1sr)
   1358 		ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
   1359 	splx(s);
   1360 
   1361 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1362 }
   1363 
   1364 #ifdef KSE_EVENT_COUNTERS
   1365 static void
   1366 stat_tick(void *arg)
   1367 {
   1368 	struct kse_softc *sc = arg;
   1369 	struct ksext *ee = &sc->sc_ext;
   1370 	int nport, p, i, val;
   1371 
   1372 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1373 	for (p = 0; p < nport; p++) {
   1374 		for (i = 0; i < 32; i++) {
   1375 			val = 0x1c00 | (p * 0x20 + i);
   1376 			CSR_WRITE_2(sc, IACR, val);
   1377 			do {
   1378 				val = CSR_READ_2(sc, IADR5) << 16;
   1379 			} while ((val & (1U << 30)) == 0);
   1380 			if (val & (1U << 31)) {
   1381 				(void)CSR_READ_2(sc, IADR4);
   1382 				val = 0x3fffffff; /* has made overflow */
   1383 			}
   1384 			else {
   1385 				val &= 0x3fff0000;		/* 29:16 */
   1386 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1387 			}
   1388 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1389 		}
   1390 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1391 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1392 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1393 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1394 	}
   1395 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
   1396 }
   1397 
   1398 static void
   1399 zerostats(struct kse_softc *sc)
   1400 {
   1401 	struct ksext *ee = &sc->sc_ext;
   1402 	int nport, p, i, val;
   1403 
   1404 	/* Make sure all the HW counters get zero */
   1405 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1406 	for (p = 0; p < nport; p++) {
   1407 		for (i = 0; i < 31; i++) {
   1408 			val = 0x1c00 | (p * 0x20 + i);
   1409 			CSR_WRITE_2(sc, IACR, val);
   1410 			do {
   1411 				val = CSR_READ_2(sc, IADR5) << 16;
   1412 			} while ((val & (1U << 30)) == 0);
   1413 			(void)CSR_READ_2(sc, IADR4);
   1414 			ee->pev[p][i].ev_count = 0;
   1415 		}
   1416 	}
   1417 }
   1418 #endif
   1419