if_kse.c revision 1.39 1 /* $NetBSD: if_kse.c,v 1.39 2019/11/06 14:33:52 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.39 2019/11/06 14:33:52 nisimura Exp $");
34
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56
57 #include <dev/pci/pcivar.h>
58 #include <dev/pci/pcireg.h>
59 #include <dev/pci/pcidevs.h>
60
61 #define KSE_LINKDEBUG 0
62
63 #define CSR_READ_4(sc, off) \
64 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
65 #define CSR_WRITE_4(sc, off, val) \
66 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
67 #define CSR_READ_2(sc, off) \
68 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
69 #define CSR_WRITE_2(sc, off, val) \
70 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
71
72 #define MDTXC 0x000 /* DMA transmit control */
73 #define MDRXC 0x004 /* DMA receive control */
74 #define MDTSC 0x008 /* DMA transmit start */
75 #define MDRSC 0x00c /* DMA receive start */
76 #define TDLB 0x010 /* transmit descriptor list base */
77 #define RDLB 0x014 /* receive descriptor list base */
78 #define MTR0 0x020 /* multicast table 31:0 */
79 #define MTR1 0x024 /* multicast table 63:32 */
80 #define INTEN 0x028 /* interrupt enable */
81 #define INTST 0x02c /* interrupt status */
82 #define MARL 0x200 /* MAC address low */
83 #define MARM 0x202 /* MAC address middle */
84 #define MARH 0x204 /* MAC address high */
85 #define GRR 0x216 /* global reset */
86 #define CIDR 0x400 /* chip ID and enable */
87 #define CGCR 0x40a /* chip global control */
88 #define IACR 0x4a0 /* indirect access control */
89 #define IADR1 0x4a2 /* indirect access data 66:63 */
90 #define IADR2 0x4a4 /* indirect access data 47:32 */
91 #define IADR3 0x4a6 /* indirect access data 63:48 */
92 #define IADR4 0x4a8 /* indirect access data 15:0 */
93 #define IADR5 0x4aa /* indirect access data 31:16 */
94 #define P1CR4 0x512 /* port 1 control 4 */
95 #define P1SR 0x514 /* port 1 status */
96 #define P2CR4 0x532 /* port 2 control 4 */
97 #define P2SR 0x534 /* port 2 status */
98 #define PxCR_STARTNEG (1U << 9) /* restart auto negotiation */
99 #define PxCR_AUTOEN (1U << 7) /* auto negotiation enable */
100 #define PxCR_SPD100 (1U << 6) /* force speed 100 */
101 #define PxCR_USEFDX (1U << 5) /* force full duplex */
102 #define PxCR_USEFC (1U << 4) /* advertise pause flow control */
103 #define PxSR_ACOMP (1U << 6) /* auto negotiation completed */
104 #define PxSR_SPD100 (1U << 10) /* speed is 100Mbps */
105 #define PxSR_FDX (1U << 9) /* full duplex */
106 #define PxSR_LINKUP (1U << 5) /* link is good */
107 #define PxSR_RXFLOW (1U << 12) /* receive flow control active */
108 #define PxSR_TXFLOW (1U << 11) /* transmit flow control active */
109
110 #define TXC_BS_MSK 0x3f000000 /* burst size */
111 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
112 #define TXC_UCG (1U<<18) /* generate UDP checksum */
113 #define TXC_TCG (1U<<17) /* generate TCP checksum */
114 #define TXC_ICG (1U<<16) /* generate IP checksum */
115 #define TXC_FCE (1U<<9) /* enable flowcontrol */
116 #define TXC_EP (1U<<2) /* enable automatic padding */
117 #define TXC_AC (1U<<1) /* add CRC to frame */
118 #define TXC_TEN (1) /* enable DMA to run */
119
120 #define RXC_BS_MSK 0x3f000000 /* burst size */
121 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
122 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
123 #define RXC_UCC (1U<<18) /* run UDP checksum */
124 #define RXC_TCC (1U<<17) /* run TDP checksum */
125 #define RXC_ICC (1U<<16) /* run IP checksum */
126 #define RXC_FCE (1U<<9) /* enable flowcontrol */
127 #define RXC_RB (1U<<6) /* receive broadcast frame */
128 #define RXC_RM (1U<<5) /* receive multicast frame */
129 #define RXC_RU (1U<<4) /* receive unicast frame */
130 #define RXC_RE (1U<<3) /* accept error frame */
131 #define RXC_RA (1U<<2) /* receive all frame */
132 #define RXC_MHTE (1U<<1) /* use multicast hash table */
133 #define RXC_REN (1) /* enable DMA to run */
134
135 #define INT_DMLCS (1U<<31) /* link status change */
136 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
137 #define INT_DMRS (1U<<29) /* frame was received */
138 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
139
140 #define T0_OWN (1U<<31) /* desc is ready to Tx */
141
142 #define R0_OWN (1U<<31) /* desc is empty */
143 #define R0_FS (1U<<30) /* first segment of frame */
144 #define R0_LS (1U<<29) /* last segment of frame */
145 #define R0_IPE (1U<<28) /* IP checksum error */
146 #define R0_TCPE (1U<<27) /* TCP checksum error */
147 #define R0_UDPE (1U<<26) /* UDP checksum error */
148 #define R0_ES (1U<<25) /* error summary */
149 #define R0_MF (1U<<24) /* multicast frame */
150 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
151 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
152 #define R0_RE (1U<<19) /* MII reported error */
153 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
154 #define R0_RF (1U<<17) /* damaged runt frame */
155 #define R0_CE (1U<<16) /* CRC error */
156 #define R0_FT (1U<<15) /* frame type */
157 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
158
159 #define T1_IC (1U<<31) /* post interrupt on complete */
160 #define T1_FS (1U<<30) /* first segment of frame */
161 #define T1_LS (1U<<29) /* last segment of frame */
162 #define T1_IPCKG (1U<<28) /* generate IP checksum */
163 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
164 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
165 #define T1_TER (1U<<25) /* end of ring */
166 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
167 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
168
169 #define R1_RER (1U<<25) /* end of ring */
170 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
171
172 #define KSE_NTXSEGS 16
173 #define KSE_TXQUEUELEN 64
174 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
175 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
176 #define KSE_NTXDESC 256
177 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
178 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
179 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
180
181 #define KSE_NRXDESC 64
182 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
183 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
184
185 struct tdes {
186 uint32_t t0, t1, t2, t3;
187 };
188
189 struct rdes {
190 uint32_t r0, r1, r2, r3;
191 };
192
193 struct kse_control_data {
194 struct tdes kcd_txdescs[KSE_NTXDESC];
195 struct rdes kcd_rxdescs[KSE_NRXDESC];
196 };
197 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
198 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
199 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
200
201 struct kse_txsoft {
202 struct mbuf *txs_mbuf; /* head of our mbuf chain */
203 bus_dmamap_t txs_dmamap; /* our DMA map */
204 int txs_firstdesc; /* first descriptor in packet */
205 int txs_lastdesc; /* last descriptor in packet */
206 int txs_ndesc; /* # of descriptors used */
207 };
208
209 struct kse_rxsoft {
210 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
211 bus_dmamap_t rxs_dmamap; /* our DMA map */
212 };
213
214 struct kse_softc {
215 device_t sc_dev; /* generic device information */
216 bus_space_tag_t sc_st; /* bus space tag */
217 bus_space_handle_t sc_sh; /* bus space handle */
218 bus_dma_tag_t sc_dmat; /* bus DMA tag */
219 struct ethercom sc_ethercom; /* Ethernet common data */
220 void *sc_ih; /* interrupt cookie */
221
222 struct ifmedia sc_media; /* ifmedia information */
223 int sc_linkstatus; /* last P1SR register value */
224
225 callout_t sc_callout; /* MII tick callout */
226 callout_t sc_stat_ch; /* statistics counter callout */
227
228 bus_dmamap_t sc_cddmamap; /* control data DMA map */
229 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
230
231 struct kse_control_data *sc_control_data;
232 #define sc_txdescs sc_control_data->kcd_txdescs
233 #define sc_rxdescs sc_control_data->kcd_rxdescs
234
235 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
236 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
237 int sc_txfree; /* number of free Tx descriptors */
238 int sc_txnext; /* next ready Tx descriptor */
239 int sc_txsfree; /* number of free Tx jobs */
240 int sc_txsnext; /* next ready Tx job */
241 int sc_txsdirty; /* dirty Tx jobs */
242 int sc_rxptr; /* next ready Rx descriptor/descsoft */
243
244 uint32_t sc_txc, sc_rxc;
245 uint32_t sc_t1csum;
246 int sc_mcsum;
247 uint32_t sc_inten;
248
249 uint32_t sc_chip;
250 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
251 uint16_t sc_vlan[16];
252
253 #ifdef KSE_EVENT_COUNTERS
254 struct ksext {
255 char evcntname[3][8];
256 struct evcnt pev[3][34];
257 } sc_ext; /* switch statistics */
258 #endif
259 };
260
261 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
262 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
263
264 #define KSE_CDTXSYNC(sc, x, n, ops) \
265 do { \
266 int __x, __n; \
267 \
268 __x = (x); \
269 __n = (n); \
270 \
271 /* If it will wrap around, sync to the end of the ring. */ \
272 if ((__x + __n) > KSE_NTXDESC) { \
273 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
274 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
275 (KSE_NTXDESC - __x), (ops)); \
276 __n -= (KSE_NTXDESC - __x); \
277 __x = 0; \
278 } \
279 \
280 /* Now sync whatever is left. */ \
281 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
282 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
283 } while (/*CONSTCOND*/0)
284
285 #define KSE_CDRXSYNC(sc, x, ops) \
286 do { \
287 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
288 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
289 } while (/*CONSTCOND*/0)
290
291 #define KSE_INIT_RXDESC(sc, x) \
292 do { \
293 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
294 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
295 struct mbuf *__m = __rxs->rxs_mbuf; \
296 \
297 __m->m_data = __m->m_ext.ext_buf; \
298 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
299 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
300 __rxd->r0 = R0_OWN; \
301 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
302 } while (/*CONSTCOND*/0)
303
304 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
305
306 #ifdef KSEDIAGNOSTIC
307 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
308 #endif
309
310 static int kse_match(device_t, cfdata_t, void *);
311 static void kse_attach(device_t, device_t, void *);
312
313 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
314 kse_match, kse_attach, NULL, NULL);
315
316 static int kse_ioctl(struct ifnet *, u_long, void *);
317 static void kse_start(struct ifnet *);
318 static void kse_watchdog(struct ifnet *);
319 static int kse_init(struct ifnet *);
320 static void kse_stop(struct ifnet *, int);
321 static void kse_reset(struct kse_softc *);
322 static void kse_set_filter(struct kse_softc *);
323 static int add_rxbuf(struct kse_softc *, int);
324 static void rxdrain(struct kse_softc *);
325 static int kse_intr(void *);
326 static void rxintr(struct kse_softc *);
327 static void txreap(struct kse_softc *);
328 static void lnkchg(struct kse_softc *);
329 static int ksephy_change(struct ifnet *);
330 static void ksephy_status(struct ifnet *, struct ifmediareq *);
331 static void phy_tick(void *);
332 #ifdef KSE_EVENT_COUNTERS
333 static void stat_tick(void *);
334 static void zerostats(struct kse_softc *);
335 #endif
336
337 static int
338 kse_match(device_t parent, cfdata_t match, void *aux)
339 {
340 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
341
342 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
343 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
344 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
345 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
346 return 1;
347
348 return 0;
349 }
350
351 static void
352 kse_attach(device_t parent, device_t self, void *aux)
353 {
354 struct kse_softc *sc = device_private(self);
355 struct pci_attach_args *pa = aux;
356 pci_chipset_tag_t pc = pa->pa_pc;
357 pci_intr_handle_t ih;
358 const char *intrstr;
359 struct ifnet *ifp;
360 struct ifmedia *ifm;
361 uint8_t enaddr[ETHER_ADDR_LEN];
362 bus_dma_segment_t seg;
363 int i, error, nseg;
364 pcireg_t pmode;
365 int pmreg;
366 char intrbuf[PCI_INTRSTR_LEN];
367
368 if (pci_mapreg_map(pa, 0x10,
369 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
370 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
371 printf(": unable to map device registers\n");
372 return;
373 }
374
375 sc->sc_dev = self;
376 sc->sc_dmat = pa->pa_dmat;
377
378 /* Make sure bus mastering is enabled. */
379 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
380 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
381 PCI_COMMAND_MASTER_ENABLE);
382
383 /* Get it out of power save mode, if needed. */
384 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
385 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
386 PCI_PMCSR_STATE_MASK;
387 if (pmode == PCI_PMCSR_STATE_D3) {
388 /*
389 * The card has lost all configuration data in
390 * this state, so punt.
391 */
392 printf("%s: unable to wake from power state D3\n",
393 device_xname(sc->sc_dev));
394 return;
395 }
396 if (pmode != PCI_PMCSR_STATE_D0) {
397 printf("%s: waking up from power date D%d\n",
398 device_xname(sc->sc_dev), pmode);
399 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
400 PCI_PMCSR_STATE_D0);
401 }
402 }
403
404 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
405 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
406 sc->sc_chip, PCI_REVISION(pa->pa_class));
407
408 /*
409 * Read the Ethernet address from the EEPROM.
410 */
411 i = CSR_READ_2(sc, MARL);
412 enaddr[5] = i; enaddr[4] = i >> 8;
413 i = CSR_READ_2(sc, MARM);
414 enaddr[3] = i; enaddr[2] = i >> 8;
415 i = CSR_READ_2(sc, MARH);
416 enaddr[1] = i; enaddr[0] = i >> 8;
417 printf("%s: Ethernet address %s\n",
418 device_xname(sc->sc_dev), ether_sprintf(enaddr));
419
420 /*
421 * Enable chip function.
422 */
423 CSR_WRITE_2(sc, CIDR, 1);
424
425 /*
426 * Map and establish our interrupt.
427 */
428 if (pci_intr_map(pa, &ih)) {
429 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
430 return;
431 }
432 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
433 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
434 device_xname(self));
435 if (sc->sc_ih == NULL) {
436 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
437 if (intrstr != NULL)
438 aprint_error(" at %s", intrstr);
439 aprint_error("\n");
440 return;
441 }
442 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
443
444 /*
445 * Allocate the control data structures, and create and load the
446 * DMA map for it.
447 */
448 error = bus_dmamem_alloc(sc->sc_dmat,
449 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
450 if (error != 0) {
451 aprint_error_dev(sc->sc_dev,
452 "unable to allocate control data, error = %d\n", error);
453 goto fail_0;
454 }
455 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
456 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
457 BUS_DMA_COHERENT);
458 if (error != 0) {
459 aprint_error_dev(sc->sc_dev,
460 "unable to map control data, error = %d\n", error);
461 goto fail_1;
462 }
463 error = bus_dmamap_create(sc->sc_dmat,
464 sizeof(struct kse_control_data), 1,
465 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
466 if (error != 0) {
467 aprint_error_dev(sc->sc_dev,
468 "unable to create control data DMA map, "
469 "error = %d\n", error);
470 goto fail_2;
471 }
472 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
473 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
474 if (error != 0) {
475 aprint_error_dev(sc->sc_dev,
476 "unable to load control data DMA map, error = %d\n",
477 error);
478 goto fail_3;
479 }
480 for (i = 0; i < KSE_TXQUEUELEN; i++) {
481 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
482 KSE_NTXSEGS, MCLBYTES, 0, 0,
483 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
484 aprint_error_dev(sc->sc_dev,
485 "unable to create tx DMA map %d, error = %d\n",
486 i, error);
487 goto fail_4;
488 }
489 }
490 for (i = 0; i < KSE_NRXDESC; i++) {
491 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
492 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
493 aprint_error_dev(sc->sc_dev,
494 "unable to create rx DMA map %d, error = %d\n",
495 i, error);
496 goto fail_5;
497 }
498 sc->sc_rxsoft[i].rxs_mbuf = NULL;
499 }
500
501 callout_init(&sc->sc_callout, 0);
502 callout_init(&sc->sc_stat_ch, 0);
503
504 /* Initialize ifmedia structures. */
505 ifm = &sc->sc_media;
506 sc->sc_ethercom.ec_ifmedia = ifm;
507 sc->sc_linkstatus = 0;
508 if (sc->sc_chip == 0x8841) {
509 ifmedia_init(ifm, 0, ksephy_change, ksephy_status);
510 ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
511 ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
512 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
513 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
514 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
515 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
516 } else {
517 ifmedia_init(ifm, 0, NULL, NULL);
518 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
519 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
520 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
521 }
522
523 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
524 device_xname(sc->sc_dev));
525
526 ifp = &sc->sc_ethercom.ec_if;
527 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
528 ifp->if_softc = sc;
529 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
530 ifp->if_ioctl = kse_ioctl;
531 ifp->if_start = kse_start;
532 ifp->if_watchdog = kse_watchdog;
533 ifp->if_init = kse_init;
534 ifp->if_stop = kse_stop;
535 IFQ_SET_READY(&ifp->if_snd);
536
537 /*
538 * KSZ8842 can handle 802.1Q VLAN-sized frames,
539 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
540 */
541 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
542 ifp->if_capabilities |=
543 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
544 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
545 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
546
547 if_attach(ifp);
548 ether_ifattach(ifp, enaddr);
549
550 #ifdef KSE_EVENT_COUNTERS
551 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
552 for (i = 0; i < p; i++) {
553 struct ksext *ee = &sc->sc_ext;
554 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
555 "%s.%d", device_xname(sc->sc_dev), i+1);
556 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
557 NULL, ee->evcntname[i], "RxLoPriotyByte");
558 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
559 NULL, ee->evcntname[i], "RxHiPriotyByte");
560 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
561 NULL, ee->evcntname[i], "RxUndersizePkt");
562 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
563 NULL, ee->evcntname[i], "RxFragments");
564 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
565 NULL, ee->evcntname[i], "RxOversize");
566 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
567 NULL, ee->evcntname[i], "RxJabbers");
568 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
569 NULL, ee->evcntname[i], "RxSymbolError");
570 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
571 NULL, ee->evcntname[i], "RxCRCError");
572 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
573 NULL, ee->evcntname[i], "RxAlignmentError");
574 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
575 NULL, ee->evcntname[i], "RxControl8808Pkts");
576 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
577 NULL, ee->evcntname[i], "RxPausePkts");
578 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
579 NULL, ee->evcntname[i], "RxBroadcast");
580 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
581 NULL, ee->evcntname[i], "RxMulticast");
582 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "RxUnicast");
584 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "Rx64Octets");
586 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "Rx65To127Octets");
588 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "Rx128To255Octets");
590 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "Rx255To511Octets");
592 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "Rx512To1023Octets");
594 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "Rx1024To1522Octets");
596 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "TxLoPriotyByte");
598 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "TxHiPriotyByte");
600 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "TxLateCollision");
602 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "TxPausePkts");
604 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
605 NULL, ee->evcntname[i], "TxBroadcastPkts");
606 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
607 NULL, ee->evcntname[i], "TxMulticastPkts");
608 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
609 NULL, ee->evcntname[i], "TxUnicastPkts");
610 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
611 NULL, ee->evcntname[i], "TxDeferred");
612 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
613 NULL, ee->evcntname[i], "TxTotalCollision");
614 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
615 NULL, ee->evcntname[i], "TxExcessiveCollision");
616 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
617 NULL, ee->evcntname[i], "TxSingleCollision");
618 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
619 NULL, ee->evcntname[i], "TxMultipleCollision");
620 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
621 NULL, ee->evcntname[i], "TxDropPkts");
622 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
623 NULL, ee->evcntname[i], "RxDropPkts");
624 }
625 #endif
626 return;
627
628 fail_5:
629 for (i = 0; i < KSE_NRXDESC; i++) {
630 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
631 bus_dmamap_destroy(sc->sc_dmat,
632 sc->sc_rxsoft[i].rxs_dmamap);
633 }
634 fail_4:
635 for (i = 0; i < KSE_TXQUEUELEN; i++) {
636 if (sc->sc_txsoft[i].txs_dmamap != NULL)
637 bus_dmamap_destroy(sc->sc_dmat,
638 sc->sc_txsoft[i].txs_dmamap);
639 }
640 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
641 fail_3:
642 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
643 fail_2:
644 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
645 sizeof(struct kse_control_data));
646 fail_1:
647 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
648 fail_0:
649 return;
650 }
651
652 static int
653 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
654 {
655 struct kse_softc *sc = ifp->if_softc;
656 int s, error;
657
658 s = splnet();
659
660 switch (cmd) {
661 default:
662 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
663 break;
664
665 error = 0;
666
667 if (cmd == SIOCSIFCAP)
668 error = (*ifp->if_init)(ifp);
669 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
670 ;
671 else if (ifp->if_flags & IFF_RUNNING) {
672 /*
673 * Multicast list has changed; set the hardware filter
674 * accordingly.
675 */
676 kse_set_filter(sc);
677 }
678 break;
679 }
680
681 kse_start(ifp);
682
683 splx(s);
684 return error;
685 }
686
687 static int
688 kse_init(struct ifnet *ifp)
689 {
690 struct kse_softc *sc = ifp->if_softc;
691 uint32_t paddr;
692 int i, error = 0;
693
694 /* cancel pending I/O */
695 kse_stop(ifp, 0);
696
697 /* reset all registers but PCI configuration */
698 kse_reset(sc);
699
700 /* craft Tx descriptor ring */
701 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
702 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
703 sc->sc_txdescs[i].t3 = paddr;
704 paddr += sizeof(struct tdes);
705 }
706 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
707 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
708 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
709 sc->sc_txfree = KSE_NTXDESC;
710 sc->sc_txnext = 0;
711
712 for (i = 0; i < KSE_TXQUEUELEN; i++)
713 sc->sc_txsoft[i].txs_mbuf = NULL;
714 sc->sc_txsfree = KSE_TXQUEUELEN;
715 sc->sc_txsnext = 0;
716 sc->sc_txsdirty = 0;
717
718 /* craft Rx descriptor ring */
719 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
720 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
721 sc->sc_rxdescs[i].r3 = paddr;
722 paddr += sizeof(struct rdes);
723 }
724 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
725 for (i = 0; i < KSE_NRXDESC; i++) {
726 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
727 if ((error = add_rxbuf(sc, i)) != 0) {
728 printf("%s: unable to allocate or map rx "
729 "buffer %d, error = %d\n",
730 device_xname(sc->sc_dev), i, error);
731 rxdrain(sc);
732 goto out;
733 }
734 }
735 else
736 KSE_INIT_RXDESC(sc, i);
737 }
738 sc->sc_rxptr = 0;
739
740 /* hand Tx/Rx rings to HW */
741 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
742 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
743
744 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
745 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
746 if (ifp->if_flags & IFF_PROMISC)
747 sc->sc_rxc |= RXC_RA;
748 if (ifp->if_flags & IFF_BROADCAST)
749 sc->sc_rxc |= RXC_RB;
750 sc->sc_t1csum = sc->sc_mcsum = 0;
751 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
752 sc->sc_rxc |= RXC_ICC;
753 sc->sc_mcsum |= M_CSUM_IPv4;
754 }
755 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
756 sc->sc_txc |= TXC_ICG;
757 sc->sc_t1csum |= T1_IPCKG;
758 }
759 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
760 sc->sc_rxc |= RXC_TCC;
761 sc->sc_mcsum |= M_CSUM_TCPv4;
762 }
763 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
764 sc->sc_txc |= TXC_TCG;
765 sc->sc_t1csum |= T1_TCPCKG;
766 }
767 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
768 sc->sc_rxc |= RXC_UCC;
769 sc->sc_mcsum |= M_CSUM_UDPv4;
770 }
771 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
772 sc->sc_txc |= TXC_UCG;
773 sc->sc_t1csum |= T1_UDPCKG;
774 }
775 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
776 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
777
778 /* build multicast hash filter if necessary */
779 kse_set_filter(sc);
780
781 /* set current media */
782 if (sc->sc_chip == 0x8841)
783 (void)ksephy_change(ifp);
784
785 /* enable transmitter and receiver */
786 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
787 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
788 CSR_WRITE_4(sc, MDRSC, 1);
789
790 /* enable interrupts */
791 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
792 if (sc->sc_chip == 0x8841)
793 sc->sc_inten |= INT_DMLCS;
794 CSR_WRITE_4(sc, INTST, ~0);
795 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
796
797 ifp->if_flags |= IFF_RUNNING;
798 ifp->if_flags &= ~IFF_OACTIVE;
799
800 if (sc->sc_chip == 0x8841) {
801 /* start one second timer */
802 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
803 }
804 #ifdef KSE_EVENT_COUNTERS
805 /* start statistics gather 1 minute timer */
806 zerostats(sc);
807 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
808 #endif
809
810 out:
811 if (error) {
812 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
813 ifp->if_timer = 0;
814 printf("%s: interface not running\n", device_xname(sc->sc_dev));
815 }
816 return error;
817 }
818
819 static void
820 kse_stop(struct ifnet *ifp, int disable)
821 {
822 struct kse_softc *sc = ifp->if_softc;
823 struct kse_txsoft *txs;
824 int i;
825
826 if (sc->sc_chip == 0x8841)
827 callout_stop(&sc->sc_callout);
828 callout_stop(&sc->sc_stat_ch);
829
830 sc->sc_txc &= ~TXC_TEN;
831 sc->sc_rxc &= ~RXC_REN;
832 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
833 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
834
835 for (i = 0; i < KSE_TXQUEUELEN; i++) {
836 txs = &sc->sc_txsoft[i];
837 if (txs->txs_mbuf != NULL) {
838 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
839 m_freem(txs->txs_mbuf);
840 txs->txs_mbuf = NULL;
841 }
842 }
843
844 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
845 ifp->if_timer = 0;
846
847 if (disable)
848 rxdrain(sc);
849 }
850
851 static void
852 kse_reset(struct kse_softc *sc)
853 {
854
855 CSR_WRITE_2(sc, GRR, 1);
856 delay(1000); /* PDF does not mention the delay amount */
857 CSR_WRITE_2(sc, GRR, 0);
858
859 CSR_WRITE_2(sc, CIDR, 1);
860 }
861
862 static void
863 kse_watchdog(struct ifnet *ifp)
864 {
865 struct kse_softc *sc = ifp->if_softc;
866
867 /*
868 * Since we're not interrupting every packet, sweep
869 * up before we report an error.
870 */
871 txreap(sc);
872
873 if (sc->sc_txfree != KSE_NTXDESC) {
874 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
875 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
876 sc->sc_txnext);
877 ifp->if_oerrors++;
878
879 /* Reset the interface. */
880 kse_init(ifp);
881 }
882 else if (ifp->if_flags & IFF_DEBUG)
883 printf("%s: recovered from device timeout\n",
884 device_xname(sc->sc_dev));
885
886 /* Try to get more packets going. */
887 kse_start(ifp);
888 }
889
890 static void
891 kse_start(struct ifnet *ifp)
892 {
893 struct kse_softc *sc = ifp->if_softc;
894 struct mbuf *m0, *m;
895 struct kse_txsoft *txs;
896 bus_dmamap_t dmamap;
897 int error, nexttx, lasttx, ofree, seg;
898 uint32_t tdes0;
899
900 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
901 return;
902
903 /* Remember the previous number of free descriptors. */
904 ofree = sc->sc_txfree;
905
906 /*
907 * Loop through the send queue, setting up transmit descriptors
908 * until we drain the queue, or use up all available transmit
909 * descriptors.
910 */
911 for (;;) {
912 IFQ_POLL(&ifp->if_snd, m0);
913 if (m0 == NULL)
914 break;
915
916 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
917 txreap(sc);
918 if (sc->sc_txsfree == 0)
919 break;
920 }
921 txs = &sc->sc_txsoft[sc->sc_txsnext];
922 dmamap = txs->txs_dmamap;
923
924 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
925 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
926 if (error) {
927 if (error == EFBIG) {
928 printf("%s: Tx packet consumes too many "
929 "DMA segments, dropping...\n",
930 device_xname(sc->sc_dev));
931 IFQ_DEQUEUE(&ifp->if_snd, m0);
932 m_freem(m0);
933 continue;
934 }
935 /* Short on resources, just stop for now. */
936 break;
937 }
938
939 if (dmamap->dm_nsegs > sc->sc_txfree) {
940 /*
941 * Not enough free descriptors to transmit this
942 * packet. We haven't committed anything yet,
943 * so just unload the DMA map, put the packet
944 * back on the queue, and punt. Notify the upper
945 * layer that there are not more slots left.
946 */
947 ifp->if_flags |= IFF_OACTIVE;
948 bus_dmamap_unload(sc->sc_dmat, dmamap);
949 break;
950 }
951
952 IFQ_DEQUEUE(&ifp->if_snd, m0);
953
954 /*
955 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
956 */
957
958 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
959 BUS_DMASYNC_PREWRITE);
960
961 lasttx = -1; tdes0 = 0;
962 for (nexttx = sc->sc_txnext, seg = 0;
963 seg < dmamap->dm_nsegs;
964 seg++, nexttx = KSE_NEXTTX(nexttx)) {
965 struct tdes *tdes = &sc->sc_txdescs[nexttx];
966 /*
967 * If this is the first descriptor we're
968 * enqueueing, don't set the OWN bit just
969 * yet. That could cause a race condition.
970 * We'll do it below.
971 */
972 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
973 tdes->t1 = sc->sc_t1csum
974 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
975 tdes->t0 = tdes0;
976 tdes0 |= T0_OWN;
977 lasttx = nexttx;
978 }
979
980 /*
981 * Outgoing NFS mbuf must be unloaded when Tx completed.
982 * Without T1_IC NFS mbuf is left unack'ed for excessive
983 * time and NFS stops to proceed until kse_watchdog()
984 * calls txreap() to reclaim the unack'ed mbuf.
985 * It's painful to traverse every mbuf chain to determine
986 * whether someone is waiting for Tx completion.
987 */
988 m = m0;
989 do {
990 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
991 sc->sc_txdescs[lasttx].t1 |= T1_IC;
992 break;
993 }
994 } while ((m = m->m_next) != NULL);
995
996 /* Write last T0_OWN bit of the 1st segment */
997 sc->sc_txdescs[lasttx].t1 |= T1_LS;
998 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
999 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1000 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1001 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1002
1003 /* Tell DMA start transmit */
1004 CSR_WRITE_4(sc, MDTSC, 1);
1005
1006 txs->txs_mbuf = m0;
1007 txs->txs_firstdesc = sc->sc_txnext;
1008 txs->txs_lastdesc = lasttx;
1009 txs->txs_ndesc = dmamap->dm_nsegs;
1010
1011 sc->sc_txfree -= txs->txs_ndesc;
1012 sc->sc_txnext = nexttx;
1013 sc->sc_txsfree--;
1014 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1015 /*
1016 * Pass the packet to any BPF listeners.
1017 */
1018 bpf_mtap(ifp, m0, BPF_D_OUT);
1019 }
1020
1021 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1022 /* No more slots left; notify upper layer. */
1023 ifp->if_flags |= IFF_OACTIVE;
1024 }
1025 if (sc->sc_txfree != ofree) {
1026 /* Set a watchdog timer in case the chip flakes out. */
1027 ifp->if_timer = 5;
1028 }
1029 }
1030
1031 static void
1032 kse_set_filter(struct kse_softc *sc)
1033 {
1034 struct ether_multistep step;
1035 struct ether_multi *enm;
1036 struct ethercom *ec = &sc->sc_ethercom;
1037 struct ifnet *ifp = &ec->ec_if;
1038 uint32_t h, hashes[2];
1039
1040 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1041 ifp->if_flags &= ~IFF_ALLMULTI;
1042 if (ifp->if_flags & IFF_PROMISC)
1043 return;
1044
1045 ETHER_LOCK(ec);
1046 ETHER_FIRST_MULTI(step, ec, enm);
1047 if (enm == NULL) {
1048 ETHER_UNLOCK(ec);
1049 return;
1050 }
1051 hashes[0] = hashes[1] = 0;
1052 do {
1053 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1054 /*
1055 * We must listen to a range of multicast addresses.
1056 * For now, just accept all multicasts, rather than
1057 * trying to set only those filter bits needed to match
1058 * the range. (At this time, the only use of address
1059 * ranges is for IP multicast routing, for which the
1060 * range is big enough to require all bits set.)
1061 */
1062 ETHER_UNLOCK(ec);
1063 goto allmulti;
1064 }
1065 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1066 hashes[h >> 5] |= 1 << (h & 0x1f);
1067 ETHER_NEXT_MULTI(step, enm);
1068 } while (enm != NULL);
1069 ETHER_UNLOCK(ec);
1070 sc->sc_rxc |= RXC_MHTE;
1071 CSR_WRITE_4(sc, MTR0, hashes[0]);
1072 CSR_WRITE_4(sc, MTR1, hashes[1]);
1073 return;
1074 allmulti:
1075 sc->sc_rxc |= RXC_RM;
1076 ifp->if_flags |= IFF_ALLMULTI;
1077 }
1078
1079 static int
1080 add_rxbuf(struct kse_softc *sc, int idx)
1081 {
1082 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1083 struct mbuf *m;
1084 int error;
1085
1086 MGETHDR(m, M_DONTWAIT, MT_DATA);
1087 if (m == NULL)
1088 return ENOBUFS;
1089
1090 MCLGET(m, M_DONTWAIT);
1091 if ((m->m_flags & M_EXT) == 0) {
1092 m_freem(m);
1093 return ENOBUFS;
1094 }
1095
1096 if (rxs->rxs_mbuf != NULL)
1097 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1098
1099 rxs->rxs_mbuf = m;
1100
1101 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1102 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1103 if (error) {
1104 printf("%s: can't load rx DMA map %d, error = %d\n",
1105 device_xname(sc->sc_dev), idx, error);
1106 panic("kse_add_rxbuf");
1107 }
1108
1109 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1110 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1111
1112 KSE_INIT_RXDESC(sc, idx);
1113
1114 return 0;
1115 }
1116
1117 static void
1118 rxdrain(struct kse_softc *sc)
1119 {
1120 struct kse_rxsoft *rxs;
1121 int i;
1122
1123 for (i = 0; i < KSE_NRXDESC; i++) {
1124 rxs = &sc->sc_rxsoft[i];
1125 if (rxs->rxs_mbuf != NULL) {
1126 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1127 m_freem(rxs->rxs_mbuf);
1128 rxs->rxs_mbuf = NULL;
1129 }
1130 }
1131 }
1132
1133 static int
1134 kse_intr(void *arg)
1135 {
1136 struct kse_softc *sc = arg;
1137 uint32_t isr;
1138
1139 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1140 return 0;
1141
1142 if (isr & INT_DMRS)
1143 rxintr(sc);
1144 if (isr & INT_DMTS)
1145 txreap(sc);
1146 if (isr & INT_DMLCS)
1147 lnkchg(sc);
1148 if (isr & INT_DMRBUS)
1149 printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1150
1151 CSR_WRITE_4(sc, INTST, isr);
1152 return 1;
1153 }
1154
1155 static void
1156 rxintr(struct kse_softc *sc)
1157 {
1158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 struct kse_rxsoft *rxs;
1160 struct mbuf *m;
1161 uint32_t rxstat;
1162 int i, len;
1163
1164 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1165 rxs = &sc->sc_rxsoft[i];
1166
1167 KSE_CDRXSYNC(sc, i,
1168 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1169
1170 rxstat = sc->sc_rxdescs[i].r0;
1171
1172 if (rxstat & R0_OWN) /* desc is left empty */
1173 break;
1174
1175 /* R0_FS | R0_LS must have been marked for this desc */
1176
1177 if (rxstat & R0_ES) {
1178 ifp->if_ierrors++;
1179 #define PRINTERR(bit, str) \
1180 if (rxstat & (bit)) \
1181 printf("%s: receive error: %s\n", \
1182 device_xname(sc->sc_dev), str)
1183 PRINTERR(R0_TL, "frame too long");
1184 PRINTERR(R0_RF, "runt frame");
1185 PRINTERR(R0_CE, "bad FCS");
1186 #undef PRINTERR
1187 KSE_INIT_RXDESC(sc, i);
1188 continue;
1189 }
1190
1191 /* HW errata; frame might be too small or too large */
1192
1193 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1194 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1195
1196 len = rxstat & R0_FL_MASK;
1197 len -= ETHER_CRC_LEN; /* Trim CRC off */
1198 m = rxs->rxs_mbuf;
1199
1200 if (add_rxbuf(sc, i) != 0) {
1201 ifp->if_ierrors++;
1202 KSE_INIT_RXDESC(sc, i);
1203 bus_dmamap_sync(sc->sc_dmat,
1204 rxs->rxs_dmamap, 0,
1205 rxs->rxs_dmamap->dm_mapsize,
1206 BUS_DMASYNC_PREREAD);
1207 continue;
1208 }
1209
1210 m_set_rcvif(m, ifp);
1211 m->m_pkthdr.len = m->m_len = len;
1212
1213 if (sc->sc_mcsum) {
1214 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1215 if (rxstat & R0_IPE)
1216 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1217 if (rxstat & (R0_TCPE | R0_UDPE))
1218 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1219 }
1220 if_percpuq_enqueue(ifp->if_percpuq, m);
1221 #ifdef KSEDIAGNOSTIC
1222 if (kse_monitor_rxintr > 0) {
1223 printf("m stat %x data %p len %d\n",
1224 rxstat, m->m_data, m->m_len);
1225 }
1226 #endif
1227 }
1228 sc->sc_rxptr = i;
1229 }
1230
1231 static void
1232 txreap(struct kse_softc *sc)
1233 {
1234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1235 struct kse_txsoft *txs;
1236 uint32_t txstat;
1237 int i;
1238
1239 ifp->if_flags &= ~IFF_OACTIVE;
1240
1241 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1242 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1243 txs = &sc->sc_txsoft[i];
1244
1245 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1246 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1247
1248 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1249
1250 if (txstat & T0_OWN) /* desc is still in use */
1251 break;
1252
1253 /* There is no way to tell transmission status per frame */
1254
1255 ifp->if_opackets++;
1256
1257 sc->sc_txfree += txs->txs_ndesc;
1258 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1259 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1260 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1261 m_freem(txs->txs_mbuf);
1262 txs->txs_mbuf = NULL;
1263 }
1264 sc->sc_txsdirty = i;
1265 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1266 ifp->if_timer = 0;
1267 }
1268
1269 static void
1270 lnkchg(struct kse_softc *sc)
1271 {
1272 struct ifmediareq ifmr;
1273
1274 #if KSE_LINKDEBUG > 0
1275 printf("link change detected\n");
1276 #endif
1277 ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
1278 }
1279
1280 static int
1281 ksephy_change(struct ifnet *ifp)
1282 {
1283 struct kse_softc *sc = ifp->if_softc;
1284 struct ifmedia *ifm = &sc->sc_media;
1285 uint16_t p1cr4;
1286 #if KSE_LINKDEBUG > 0
1287 printf("ifm_media: %x\n", ifm->ifm_cur->ifm_media);
1288 #endif
1289 p1cr4 = 0;
1290 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1291 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1292 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1293 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1294 p1cr4 |= 0xf; /* advertise 100-FDX,100-HDX,10-FDX,10-HDX */
1295 } else {
1296 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1297 p1cr4 |= PxCR_SPD100;
1298 if (ifm->ifm_media & IFM_FDX)
1299 p1cr4 |= PxCR_USEFDX;
1300 }
1301 CSR_WRITE_2(sc, P1CR4, p1cr4);
1302 #if KSE_LINKDEBUG > 0
1303 printf("P1CR4: %04x\n", p1cr4);
1304 #endif
1305 return 0;
1306 }
1307
1308 static void
1309 ksephy_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1310 {
1311 struct kse_softc *sc = ifp->if_softc;
1312 int media_status;
1313 u_int media_active;
1314 uint16_t p1cr4, p1sr;
1315
1316 media_status = IFM_AVALID;
1317 media_active = IFM_ETHER;
1318
1319 p1cr4 = CSR_READ_2(sc, P1CR4);
1320 p1sr = CSR_READ_2(sc, P1SR);
1321 #if KSE_LINKDEBUG > 0
1322 printf("P1SR: %04x link %s\n", p1sr, (p1sr & PxSR_LINKUP) ? "up" : "down");
1323 #endif
1324 sc->sc_linkstatus = p1sr;
1325 if (p1sr & PxSR_LINKUP)
1326 media_status |= IFM_ACTIVE;
1327
1328 if (p1cr4 & PxCR_AUTOEN) {
1329 if ((p1sr & PxSR_ACOMP) == 0) {
1330 media_active |= IFM_NONE;
1331 goto out; /* Negotiation in progress */
1332 }
1333 }
1334
1335 media_active |= (p1sr & PxSR_SPD100) ? IFM_100_TX : IFM_10_T;
1336 if (p1sr & PxSR_FDX)
1337 media_active |= IFM_FDX;
1338 if (p1sr & PxSR_RXFLOW)
1339 media_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1340 if (p1sr & PxSR_TXFLOW)
1341 media_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1342 out:
1343 ifmr->ifm_active = media_active;
1344 ifmr->ifm_status = media_status;
1345 }
1346
1347 static void
1348 phy_tick(void *arg)
1349 {
1350 struct kse_softc *sc = arg;
1351 struct ifmediareq ifmr;
1352 int s;
1353 uint16_t p1sr;
1354
1355 s = splnet();
1356 p1sr = CSR_READ_2(sc, P1SR);
1357 if (sc->sc_linkstatus != p1sr)
1358 ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
1359 splx(s);
1360
1361 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1362 }
1363
1364 #ifdef KSE_EVENT_COUNTERS
1365 static void
1366 stat_tick(void *arg)
1367 {
1368 struct kse_softc *sc = arg;
1369 struct ksext *ee = &sc->sc_ext;
1370 int nport, p, i, val;
1371
1372 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1373 for (p = 0; p < nport; p++) {
1374 for (i = 0; i < 32; i++) {
1375 val = 0x1c00 | (p * 0x20 + i);
1376 CSR_WRITE_2(sc, IACR, val);
1377 do {
1378 val = CSR_READ_2(sc, IADR5) << 16;
1379 } while ((val & (1U << 30)) == 0);
1380 if (val & (1U << 31)) {
1381 (void)CSR_READ_2(sc, IADR4);
1382 val = 0x3fffffff; /* has made overflow */
1383 }
1384 else {
1385 val &= 0x3fff0000; /* 29:16 */
1386 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1387 }
1388 ee->pev[p][i].ev_count += val; /* i (0-31) */
1389 }
1390 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1391 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1392 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1393 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1394 }
1395 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1396 }
1397
1398 static void
1399 zerostats(struct kse_softc *sc)
1400 {
1401 struct ksext *ee = &sc->sc_ext;
1402 int nport, p, i, val;
1403
1404 /* Make sure all the HW counters get zero */
1405 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1406 for (p = 0; p < nport; p++) {
1407 for (i = 0; i < 31; i++) {
1408 val = 0x1c00 | (p * 0x20 + i);
1409 CSR_WRITE_2(sc, IACR, val);
1410 do {
1411 val = CSR_READ_2(sc, IADR5) << 16;
1412 } while ((val & (1U << 30)) == 0);
1413 (void)CSR_READ_2(sc, IADR4);
1414 ee->pev[p][i].ev_count = 0;
1415 }
1416 }
1417 }
1418 #endif
1419