Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.41
      1 /*	$NetBSD: if_kse.c,v 1.41 2019/11/07 22:00:37 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Micrel 8841/8842 10/100 ethernet driver
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.41 2019/11/07 22:00:37 nisimura Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/callout.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/malloc.h>
     44 #include <sys/kernel.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/errno.h>
     47 #include <sys/device.h>
     48 #include <sys/queue.h>
     49 
     50 #include <machine/endian.h>
     51 #include <sys/bus.h>
     52 #include <sys/intr.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_media.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/bpf.h>
     59 
     60 #include <dev/pci/pcivar.h>
     61 #include <dev/pci/pcireg.h>
     62 #include <dev/pci/pcidevs.h>
     63 
     64 #define KSE_LINKDEBUG 0
     65 
     66 #define CSR_READ_4(sc, off) \
     67 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     68 #define CSR_WRITE_4(sc, off, val) \
     69 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     70 #define CSR_READ_2(sc, off) \
     71 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     72 #define CSR_WRITE_2(sc, off, val) \
     73 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     74 
     75 #define MDTXC	0x000	/* DMA transmit control */
     76 #define MDRXC	0x004	/* DMA receive control */
     77 #define MDTSC	0x008	/* DMA transmit start */
     78 #define MDRSC	0x00c	/* DMA receive start */
     79 #define TDLB	0x010	/* transmit descriptor list base */
     80 #define RDLB	0x014	/* receive descriptor list base */
     81 #define MTR0	0x020	/* multicast table 31:0 */
     82 #define MTR1	0x024	/* multicast table 63:32 */
     83 #define INTEN	0x028	/* interrupt enable */
     84 #define INTST	0x02c	/* interrupt status */
     85 #define MARL	0x200	/* MAC address low */
     86 #define MARM	0x202	/* MAC address middle */
     87 #define MARH	0x204	/* MAC address high */
     88 #define GRR	0x216	/* global reset */
     89 #define CIDR	0x400	/* chip ID and enable */
     90 #define CGCR	0x40a	/* chip global control */
     91 #define IACR	0x4a0	/* indirect access control */
     92 #define IADR1	0x4a2	/* indirect access data 66:63 */
     93 #define IADR2	0x4a4	/* indirect access data 47:32 */
     94 #define IADR3	0x4a6	/* indirect access data 63:48 */
     95 #define IADR4	0x4a8	/* indirect access data 15:0 */
     96 #define IADR5	0x4aa	/* indirect access data 31:16 */
     97 #define P1CR4	0x512	/* port 1 control 4 */
     98 #define P1SR	0x514	/* port 1 status */
     99 #define P2CR4	0x532	/* port 2 control 4 */
    100 #define P2SR	0x534	/* port 2 status */
    101 #define PxCR_STARTNEG	(1U << 9)	/* restart auto negotiation */
    102 #define PxCR_AUTOEN	(1U << 7)	/* auto negotiation enable */
    103 #define PxCR_SPD100	(1U << 6)	/* force speed 100 */
    104 #define PxCR_USEFDX	(1U << 5)	/* force full duplex */
    105 #define PxCR_USEFC	(1U << 4)	/* advertise pause flow control */
    106 #define PxSR_ACOMP	(1U << 6)	/* auto negotiation completed */
    107 #define PxSR_SPD100	(1U << 10)	/* speed is 100Mbps */
    108 #define PxSR_FDX	(1U << 9)	/* full duplex */
    109 #define PxSR_LINKUP	(1U << 5)	/* link is good */
    110 #define PxSR_RXFLOW	(1U << 12)	/* receive flow control active */
    111 #define PxSR_TXFLOW	(1U << 11)	/* transmit flow control active */
    112 
    113 #define TXC_BS_MSK	0x3f000000	/* burst size */
    114 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    115 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    116 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    117 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    118 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
    119 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    120 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    121 #define TXC_TEN		(1)		/* enable DMA to run */
    122 
    123 #define RXC_BS_MSK	0x3f000000	/* burst size */
    124 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    125 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    126 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    127 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    128 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    129 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    130 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    131 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    132 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    133 #define RXC_RE		(1U<<3)		/* accept error frame */
    134 #define RXC_RA		(1U<<2)		/* receive all frame */
    135 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    136 #define RXC_REN		(1)		/* enable DMA to run */
    137 
    138 #define INT_DMLCS	(1U<<31)	/* link status change */
    139 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    140 #define INT_DMRS	(1U<<29)	/* frame was received */
    141 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    142 
    143 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    144 
    145 #define R0_OWN		(1U<<31)	/* desc is empty */
    146 #define R0_FS		(1U<<30)	/* first segment of frame */
    147 #define R0_LS		(1U<<29)	/* last segment of frame */
    148 #define R0_IPE		(1U<<28)	/* IP checksum error */
    149 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    150 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    151 #define R0_ES		(1U<<25)	/* error summary */
    152 #define R0_MF		(1U<<24)	/* multicast frame */
    153 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    154 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    155 #define R0_RE		(1U<<19)	/* MII reported error */
    156 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    157 #define R0_RF		(1U<<17)	/* damaged runt frame */
    158 #define R0_CE		(1U<<16)	/* CRC error */
    159 #define R0_FT		(1U<<15)	/* frame type */
    160 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    161 
    162 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    163 #define T1_FS		(1U<<30)	/* first segment of frame */
    164 #define T1_LS		(1U<<29)	/* last segment of frame */
    165 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    166 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    167 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    168 #define T1_TER		(1U<<25)	/* end of ring */
    169 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    170 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    171 
    172 #define R1_RER		(1U<<25)	/* end of ring */
    173 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    174 
    175 #define KSE_NTXSEGS		16
    176 #define KSE_TXQUEUELEN		64
    177 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    178 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    179 #define KSE_NTXDESC		256
    180 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    181 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    182 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    183 
    184 #define KSE_NRXDESC		64
    185 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    186 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    187 
    188 struct tdes {
    189 	uint32_t t0, t1, t2, t3;
    190 };
    191 
    192 struct rdes {
    193 	uint32_t r0, r1, r2, r3;
    194 };
    195 
    196 struct kse_control_data {
    197 	struct tdes kcd_txdescs[KSE_NTXDESC];
    198 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    199 };
    200 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    201 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    202 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    203 
    204 struct kse_txsoft {
    205 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    206 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    207 	int txs_firstdesc;		/* first descriptor in packet */
    208 	int txs_lastdesc;		/* last descriptor in packet */
    209 	int txs_ndesc;			/* # of descriptors used */
    210 };
    211 
    212 struct kse_rxsoft {
    213 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    214 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    215 };
    216 
    217 struct kse_softc {
    218 	device_t sc_dev;		/* generic device information */
    219 	bus_space_tag_t sc_st;		/* bus space tag */
    220 	bus_space_handle_t sc_sh;	/* bus space handle */
    221 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    222 	struct ethercom sc_ethercom;	/* Ethernet common data */
    223 	void *sc_ih;			/* interrupt cookie */
    224 
    225 	struct ifmedia sc_media;	/* ifmedia information */
    226 	int sc_linkstatus;		/* last P1SR register value */
    227 
    228 	callout_t  sc_callout;		/* MII tick callout */
    229 	callout_t  sc_stat_ch;		/* statistics counter callout */
    230 
    231 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    232 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    233 
    234 	struct kse_control_data *sc_control_data;
    235 #define sc_txdescs	sc_control_data->kcd_txdescs
    236 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    237 
    238 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    239 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    240 	int sc_txfree;			/* number of free Tx descriptors */
    241 	int sc_txnext;			/* next ready Tx descriptor */
    242 	int sc_txsfree;			/* number of free Tx jobs */
    243 	int sc_txsnext;			/* next ready Tx job */
    244 	int sc_txsdirty;		/* dirty Tx jobs */
    245 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    246 
    247 	uint32_t sc_txc, sc_rxc;
    248 	uint32_t sc_t1csum;
    249 	int sc_mcsum;
    250 	uint32_t sc_inten;
    251 
    252 	uint32_t sc_chip;
    253 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    254 	uint16_t sc_vlan[16];
    255 
    256 #ifdef KSE_EVENT_COUNTERS
    257 	struct ksext {
    258 		char evcntname[3][8];
    259 		struct evcnt pev[3][34];
    260 	} sc_ext;			/* switch statistics */
    261 #endif
    262 };
    263 
    264 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    265 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    266 
    267 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    268 do {									\
    269 	int __x, __n;							\
    270 									\
    271 	__x = (x);							\
    272 	__n = (n);							\
    273 									\
    274 	/* If it will wrap around, sync to the end of the ring. */	\
    275 	if ((__x + __n) > KSE_NTXDESC) {				\
    276 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    277 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    278 		    (KSE_NTXDESC - __x), (ops));			\
    279 		__n -= (KSE_NTXDESC - __x);				\
    280 		__x = 0;						\
    281 	}								\
    282 									\
    283 	/* Now sync whatever is left. */				\
    284 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    285 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    286 } while (/*CONSTCOND*/0)
    287 
    288 #define KSE_CDRXSYNC(sc, x, ops)					\
    289 do {									\
    290 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    291 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    292 } while (/*CONSTCOND*/0)
    293 
    294 #define KSE_INIT_RXDESC(sc, x)						\
    295 do {									\
    296 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    297 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    298 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    299 									\
    300 	__m->m_data = __m->m_ext.ext_buf;				\
    301 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    302 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    303 	__rxd->r0 = R0_OWN;						\
    304 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    305 } while (/*CONSTCOND*/0)
    306 
    307 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    308 
    309 #ifdef KSEDIAGNOSTIC
    310 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    311 #endif
    312 
    313 static int kse_match(device_t, cfdata_t, void *);
    314 static void kse_attach(device_t, device_t, void *);
    315 
    316 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
    317     kse_match, kse_attach, NULL, NULL);
    318 
    319 static int kse_ioctl(struct ifnet *, u_long, void *);
    320 static void kse_start(struct ifnet *);
    321 static void kse_watchdog(struct ifnet *);
    322 static int kse_init(struct ifnet *);
    323 static void kse_stop(struct ifnet *, int);
    324 static void kse_reset(struct kse_softc *);
    325 static void kse_set_filter(struct kse_softc *);
    326 static int add_rxbuf(struct kse_softc *, int);
    327 static void rxdrain(struct kse_softc *);
    328 static int kse_intr(void *);
    329 static void rxintr(struct kse_softc *);
    330 static void txreap(struct kse_softc *);
    331 static void lnkchg(struct kse_softc *);
    332 static int ksephy_change(struct ifnet *);
    333 static void ksephy_status(struct ifnet *, struct ifmediareq *);
    334 static void nopifm_status(struct ifnet *, struct ifmediareq *);
    335 static void phy_tick(void *);
    336 #ifdef KSE_EVENT_COUNTERS
    337 static void stat_tick(void *);
    338 static void zerostats(struct kse_softc *);
    339 #endif
    340 
    341 static int
    342 kse_match(device_t parent, cfdata_t match, void *aux)
    343 {
    344 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    345 
    346 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    347 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    348 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    349 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    350 		return 1;
    351 
    352 	return 0;
    353 }
    354 
    355 static void
    356 kse_attach(device_t parent, device_t self, void *aux)
    357 {
    358 	struct kse_softc *sc = device_private(self);
    359 	struct pci_attach_args *pa = aux;
    360 	pci_chipset_tag_t pc = pa->pa_pc;
    361 	pci_intr_handle_t ih;
    362 	const char *intrstr;
    363 	struct ifnet *ifp;
    364 	struct ifmedia *ifm;
    365 	uint8_t enaddr[ETHER_ADDR_LEN];
    366 	bus_dma_segment_t seg;
    367 	int i, error, nseg;
    368 	pcireg_t pmode;
    369 	int pmreg;
    370 	char intrbuf[PCI_INTRSTR_LEN];
    371 
    372 	if (pci_mapreg_map(pa, 0x10,
    373 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    374 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    375 		printf(": unable to map device registers\n");
    376 		return;
    377 	}
    378 
    379 	sc->sc_dev = self;
    380 	sc->sc_dmat = pa->pa_dmat;
    381 
    382 	/* Make sure bus mastering is enabled. */
    383 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    384 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    385 	    PCI_COMMAND_MASTER_ENABLE);
    386 
    387 	/* Get it out of power save mode, if needed. */
    388 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    389 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    390 		    PCI_PMCSR_STATE_MASK;
    391 		if (pmode == PCI_PMCSR_STATE_D3) {
    392 			/*
    393 			 * The card has lost all configuration data in
    394 			 * this state, so punt.
    395 			 */
    396 			printf("%s: unable to wake from power state D3\n",
    397 			    device_xname(sc->sc_dev));
    398 			return;
    399 		}
    400 		if (pmode != PCI_PMCSR_STATE_D0) {
    401 			printf("%s: waking up from power date D%d\n",
    402 			    device_xname(sc->sc_dev), pmode);
    403 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    404 			    PCI_PMCSR_STATE_D0);
    405 		}
    406 	}
    407 
    408 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    409 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    410 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    411 
    412 	/*
    413 	 * Read the Ethernet address from the EEPROM.
    414 	 */
    415 	i = CSR_READ_2(sc, MARL);
    416 	enaddr[5] = i; enaddr[4] = i >> 8;
    417 	i = CSR_READ_2(sc, MARM);
    418 	enaddr[3] = i; enaddr[2] = i >> 8;
    419 	i = CSR_READ_2(sc, MARH);
    420 	enaddr[1] = i; enaddr[0] = i >> 8;
    421 	printf("%s: Ethernet address %s\n",
    422 		device_xname(sc->sc_dev), ether_sprintf(enaddr));
    423 
    424 	/*
    425 	 * Enable chip function.
    426 	 */
    427 	CSR_WRITE_2(sc, CIDR, 1);
    428 
    429 	/*
    430 	 * Map and establish our interrupt.
    431 	 */
    432 	if (pci_intr_map(pa, &ih)) {
    433 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    434 		return;
    435 	}
    436 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    437 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
    438 	    device_xname(self));
    439 	if (sc->sc_ih == NULL) {
    440 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    441 		if (intrstr != NULL)
    442 			aprint_error(" at %s", intrstr);
    443 		aprint_error("\n");
    444 		return;
    445 	}
    446 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    447 
    448 	/*
    449 	 * Allocate the control data structures, and create and load the
    450 	 * DMA map for it.
    451 	 */
    452 	error = bus_dmamem_alloc(sc->sc_dmat,
    453 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    454 	if (error != 0) {
    455 		aprint_error_dev(sc->sc_dev,
    456 		    "unable to allocate control data, error = %d\n", error);
    457 		goto fail_0;
    458 	}
    459 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    460 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    461 	    BUS_DMA_COHERENT);
    462 	if (error != 0) {
    463 		aprint_error_dev(sc->sc_dev,
    464 		    "unable to map control data, error = %d\n", error);
    465 		goto fail_1;
    466 	}
    467 	error = bus_dmamap_create(sc->sc_dmat,
    468 	    sizeof(struct kse_control_data), 1,
    469 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    470 	if (error != 0) {
    471 		aprint_error_dev(sc->sc_dev,
    472 		    "unable to create control data DMA map, "
    473 		    "error = %d\n", error);
    474 		goto fail_2;
    475 	}
    476 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    477 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    478 	if (error != 0) {
    479 		aprint_error_dev(sc->sc_dev,
    480 		    "unable to load control data DMA map, error = %d\n",
    481 		    error);
    482 		goto fail_3;
    483 	}
    484 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    485 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    486 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    487 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    488 			aprint_error_dev(sc->sc_dev,
    489 			    "unable to create tx DMA map %d, error = %d\n",
    490 			    i, error);
    491 			goto fail_4;
    492 		}
    493 	}
    494 	for (i = 0; i < KSE_NRXDESC; i++) {
    495 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    496 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    497 			aprint_error_dev(sc->sc_dev,
    498 			    "unable to create rx DMA map %d, error = %d\n",
    499 			    i, error);
    500 			goto fail_5;
    501 		}
    502 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    503 	}
    504 
    505 	callout_init(&sc->sc_callout, 0);
    506 	callout_init(&sc->sc_stat_ch, 0);
    507 
    508 	/* Initialize ifmedia structures. */
    509 	ifm = &sc->sc_media;
    510 	sc->sc_ethercom.ec_ifmedia = ifm;
    511 	sc->sc_linkstatus = 0;
    512 	if (sc->sc_chip == 0x8841) {
    513 		ifmedia_init(ifm, 0, ksephy_change, ksephy_status);
    514 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T, 0, NULL);
    515 		ifmedia_add(ifm, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    516 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX, 0, NULL);
    517 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    518 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
    519 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    520 	} else {
    521 		/*
    522 		 * pretend 100FDX w/ no alternative media selection.
    523 		 * 8842 MAC is tied with a builtin 3 port switch.
    524 		 * It can do rate control over either of tx / rx direction
    525 		 * respectively, tough, this driver leaves the rate unlimited
    526 		 * intending 100Mbps maximum.
    527 		 * 2 ports behave in AN mode and this driver provides no mean
    528 		 * to see the exact details.
    529 		 */
    530 		ifmedia_init(ifm, 0, NULL, nopifm_status);
    531 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    532 		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
    533 	}
    534 
    535 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    536 	    device_xname(sc->sc_dev));
    537 
    538 	ifp = &sc->sc_ethercom.ec_if;
    539 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    540 	ifp->if_softc = sc;
    541 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    542 	ifp->if_ioctl = kse_ioctl;
    543 	ifp->if_start = kse_start;
    544 	ifp->if_watchdog = kse_watchdog;
    545 	ifp->if_init = kse_init;
    546 	ifp->if_stop = kse_stop;
    547 	IFQ_SET_READY(&ifp->if_snd);
    548 
    549 	/*
    550 	 * capable of 802.1Q VLAN-sized frames,
    551 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    552 	 */
    553 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    554 	ifp->if_capabilities |=
    555 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    556 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    557 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    558 
    559 	if_attach(ifp);
    560 	ether_ifattach(ifp, enaddr);
    561 
    562 #ifdef KSE_EVENT_COUNTERS
    563 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
    564 	for (i = 0; i < p; i++) {
    565 		struct ksext *ee = &sc->sc_ext;
    566 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
    567 		    "%s.%d", device_xname(sc->sc_dev), i+1);
    568 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    569 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    570 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    571 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    572 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    573 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    574 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    575 		    NULL, ee->evcntname[i], "RxFragments");
    576 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    577 		    NULL, ee->evcntname[i], "RxOversize");
    578 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    579 		    NULL, ee->evcntname[i], "RxJabbers");
    580 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    581 		    NULL, ee->evcntname[i], "RxSymbolError");
    582 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    583 		    NULL, ee->evcntname[i], "RxCRCError");
    584 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    585 		    NULL, ee->evcntname[i], "RxAlignmentError");
    586 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    587 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    588 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    589 		    NULL, ee->evcntname[i], "RxPausePkts");
    590 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    591 		    NULL, ee->evcntname[i], "RxBroadcast");
    592 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    593 		    NULL, ee->evcntname[i], "RxMulticast");
    594 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    595 		    NULL, ee->evcntname[i], "RxUnicast");
    596 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    597 		    NULL, ee->evcntname[i], "Rx64Octets");
    598 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    599 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    600 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    601 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    602 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    603 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    604 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    605 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    606 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    607 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    608 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    609 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    610 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    611 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    612 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    613 		    NULL, ee->evcntname[i], "TxLateCollision");
    614 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    615 		    NULL, ee->evcntname[i], "TxPausePkts");
    616 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    617 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    618 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    619 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    620 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    621 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    622 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    623 		    NULL, ee->evcntname[i], "TxDeferred");
    624 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    625 		    NULL, ee->evcntname[i], "TxTotalCollision");
    626 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    627 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    628 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    629 		    NULL, ee->evcntname[i], "TxSingleCollision");
    630 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    631 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    632 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    633 		    NULL, ee->evcntname[i], "TxDropPkts");
    634 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    635 		    NULL, ee->evcntname[i], "RxDropPkts");
    636 	}
    637 #endif
    638 	return;
    639 
    640  fail_5:
    641 	for (i = 0; i < KSE_NRXDESC; i++) {
    642 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    643 			bus_dmamap_destroy(sc->sc_dmat,
    644 			    sc->sc_rxsoft[i].rxs_dmamap);
    645 	}
    646  fail_4:
    647 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    648 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    649 			bus_dmamap_destroy(sc->sc_dmat,
    650 			    sc->sc_txsoft[i].txs_dmamap);
    651 	}
    652 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    653  fail_3:
    654 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    655  fail_2:
    656 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    657 	    sizeof(struct kse_control_data));
    658  fail_1:
    659 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    660  fail_0:
    661 	return;
    662 }
    663 
    664 static int
    665 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    666 {
    667 	struct kse_softc *sc = ifp->if_softc;
    668 	int s, error;
    669 
    670 	s = splnet();
    671 
    672 	switch (cmd) {
    673 	default:
    674 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    675 			break;
    676 
    677 		error = 0;
    678 
    679 		if (cmd == SIOCSIFCAP)
    680 			error = (*ifp->if_init)(ifp);
    681 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    682 			;
    683 		else if (ifp->if_flags & IFF_RUNNING) {
    684 			/*
    685 			 * Multicast list has changed; set the hardware filter
    686 			 * accordingly.
    687 			 */
    688 			kse_set_filter(sc);
    689 		}
    690 		break;
    691 	}
    692 
    693 	kse_start(ifp);
    694 
    695 	splx(s);
    696 	return error;
    697 }
    698 
    699 static int
    700 kse_init(struct ifnet *ifp)
    701 {
    702 	struct kse_softc *sc = ifp->if_softc;
    703 	uint32_t paddr;
    704 	int i, error = 0;
    705 
    706 	/* cancel pending I/O */
    707 	kse_stop(ifp, 0);
    708 
    709 	/* reset all registers but PCI configuration */
    710 	kse_reset(sc);
    711 
    712 	/* craft Tx descriptor ring */
    713 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    714 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    715 		sc->sc_txdescs[i].t3 = paddr;
    716 		paddr += sizeof(struct tdes);
    717 	}
    718 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    719 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    720 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    721 	sc->sc_txfree = KSE_NTXDESC;
    722 	sc->sc_txnext = 0;
    723 
    724 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    725 		sc->sc_txsoft[i].txs_mbuf = NULL;
    726 	sc->sc_txsfree = KSE_TXQUEUELEN;
    727 	sc->sc_txsnext = 0;
    728 	sc->sc_txsdirty = 0;
    729 
    730 	/* craft Rx descriptor ring */
    731 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    732 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    733 		sc->sc_rxdescs[i].r3 = paddr;
    734 		paddr += sizeof(struct rdes);
    735 	}
    736 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    737 	for (i = 0; i < KSE_NRXDESC; i++) {
    738 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    739 			if ((error = add_rxbuf(sc, i)) != 0) {
    740 				printf("%s: unable to allocate or map rx "
    741 				    "buffer %d, error = %d\n",
    742 				     device_xname(sc->sc_dev), i, error);
    743 				rxdrain(sc);
    744 				goto out;
    745 			}
    746 		}
    747 		else
    748 			KSE_INIT_RXDESC(sc, i);
    749 	}
    750 	sc->sc_rxptr = 0;
    751 
    752 	/* hand Tx/Rx rings to HW */
    753 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    754 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    755 
    756 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    757 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    758 	if (ifp->if_flags & IFF_PROMISC)
    759 		sc->sc_rxc |= RXC_RA;
    760 	if (ifp->if_flags & IFF_BROADCAST)
    761 		sc->sc_rxc |= RXC_RB;
    762 	sc->sc_t1csum = sc->sc_mcsum = 0;
    763 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    764 		sc->sc_rxc |= RXC_ICC;
    765 		sc->sc_mcsum |= M_CSUM_IPv4;
    766 	}
    767 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    768 		sc->sc_txc |= TXC_ICG;
    769 		sc->sc_t1csum |= T1_IPCKG;
    770 	}
    771 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    772 		sc->sc_rxc |= RXC_TCC;
    773 		sc->sc_mcsum |= M_CSUM_TCPv4;
    774 	}
    775 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    776 		sc->sc_txc |= TXC_TCG;
    777 		sc->sc_t1csum |= T1_TCPCKG;
    778 	}
    779 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    780 		sc->sc_rxc |= RXC_UCC;
    781 		sc->sc_mcsum |= M_CSUM_UDPv4;
    782 	}
    783 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    784 		sc->sc_txc |= TXC_UCG;
    785 		sc->sc_t1csum |= T1_UDPCKG;
    786 	}
    787 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    788 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    789 
    790 	/* build multicast hash filter if necessary */
    791 	kse_set_filter(sc);
    792 
    793 	/* set current media */
    794 	if (sc->sc_chip == 0x8841)
    795 		(void)ksephy_change(ifp);
    796 
    797 	/* enable transmitter and receiver */
    798 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    799 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    800 	CSR_WRITE_4(sc, MDRSC, 1);
    801 
    802 	/* enable interrupts */
    803 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
    804 	if (sc->sc_chip == 0x8841)
    805 		sc->sc_inten |= INT_DMLCS;
    806 	CSR_WRITE_4(sc, INTST, ~0);
    807 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    808 
    809 	ifp->if_flags |= IFF_RUNNING;
    810 	ifp->if_flags &= ~IFF_OACTIVE;
    811 
    812 	if (sc->sc_chip == 0x8841) {
    813 		/* start one second timer */
    814 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    815 	}
    816 #ifdef KSE_EVENT_COUNTERS
    817 	/* start statistics gather 1 minute timer */
    818 	zerostats(sc);
    819 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
    820 #endif
    821 
    822  out:
    823 	if (error) {
    824 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    825 		ifp->if_timer = 0;
    826 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
    827 	}
    828 	return error;
    829 }
    830 
    831 static void
    832 kse_stop(struct ifnet *ifp, int disable)
    833 {
    834 	struct kse_softc *sc = ifp->if_softc;
    835 	struct kse_txsoft *txs;
    836 	int i;
    837 
    838 	if (sc->sc_chip == 0x8841)
    839 		callout_stop(&sc->sc_callout);
    840 	callout_stop(&sc->sc_stat_ch);
    841 
    842 	sc->sc_txc &= ~TXC_TEN;
    843 	sc->sc_rxc &= ~RXC_REN;
    844 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    845 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    846 
    847 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    848 		txs = &sc->sc_txsoft[i];
    849 		if (txs->txs_mbuf != NULL) {
    850 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    851 			m_freem(txs->txs_mbuf);
    852 			txs->txs_mbuf = NULL;
    853 		}
    854 	}
    855 
    856 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    857 	ifp->if_timer = 0;
    858 
    859 	if (disable)
    860 		rxdrain(sc);
    861 }
    862 
    863 static void
    864 kse_reset(struct kse_softc *sc)
    865 {
    866 
    867 	CSR_WRITE_2(sc, GRR, 1);
    868 	delay(1000); /* PDF does not mention the delay amount */
    869 	CSR_WRITE_2(sc, GRR, 0);
    870 
    871 	CSR_WRITE_2(sc, CIDR, 1);
    872 }
    873 
    874 static void
    875 kse_watchdog(struct ifnet *ifp)
    876 {
    877 	struct kse_softc *sc = ifp->if_softc;
    878 
    879 	/*
    880 	 * Since we're not interrupting every packet, sweep
    881 	 * up before we report an error.
    882 	 */
    883 	txreap(sc);
    884 
    885 	if (sc->sc_txfree != KSE_NTXDESC) {
    886 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    887 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
    888 		    sc->sc_txnext);
    889 		ifp->if_oerrors++;
    890 
    891 		/* Reset the interface. */
    892 		kse_init(ifp);
    893 	}
    894 	else if (ifp->if_flags & IFF_DEBUG)
    895 		printf("%s: recovered from device timeout\n",
    896 		    device_xname(sc->sc_dev));
    897 
    898 	/* Try to get more packets going. */
    899 	kse_start(ifp);
    900 }
    901 
    902 static void
    903 kse_start(struct ifnet *ifp)
    904 {
    905 	struct kse_softc *sc = ifp->if_softc;
    906 	struct mbuf *m0, *m;
    907 	struct kse_txsoft *txs;
    908 	bus_dmamap_t dmamap;
    909 	int error, nexttx, lasttx, ofree, seg;
    910 	uint32_t tdes0;
    911 
    912 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    913 		return;
    914 
    915 	/* Remember the previous number of free descriptors. */
    916 	ofree = sc->sc_txfree;
    917 
    918 	/*
    919 	 * Loop through the send queue, setting up transmit descriptors
    920 	 * until we drain the queue, or use up all available transmit
    921 	 * descriptors.
    922 	 */
    923 	for (;;) {
    924 		IFQ_POLL(&ifp->if_snd, m0);
    925 		if (m0 == NULL)
    926 			break;
    927 
    928 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    929 			txreap(sc);
    930 			if (sc->sc_txsfree == 0)
    931 				break;
    932 		}
    933 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    934 		dmamap = txs->txs_dmamap;
    935 
    936 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    937 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    938 		if (error) {
    939 			if (error == EFBIG) {
    940 				printf("%s: Tx packet consumes too many "
    941 				    "DMA segments, dropping...\n",
    942 				    device_xname(sc->sc_dev));
    943 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    944 				    m_freem(m0);
    945 				    continue;
    946 			}
    947 			/* Short on resources, just stop for now. */
    948 			break;
    949 		}
    950 
    951 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    952 			/*
    953 			 * Not enough free descriptors to transmit this
    954 			 * packet.  We haven't committed anything yet,
    955 			 * so just unload the DMA map, put the packet
    956 			 * back on the queue, and punt.	 Notify the upper
    957 			 * layer that there are not more slots left.
    958 			 */
    959 			ifp->if_flags |= IFF_OACTIVE;
    960 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    961 			break;
    962 		}
    963 
    964 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    965 
    966 		/*
    967 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    968 		 */
    969 
    970 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    971 		    BUS_DMASYNC_PREWRITE);
    972 
    973 		lasttx = -1; tdes0 = 0;
    974 		for (nexttx = sc->sc_txnext, seg = 0;
    975 		     seg < dmamap->dm_nsegs;
    976 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    977 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    978 			/*
    979 			 * If this is the first descriptor we're
    980 			 * enqueueing, don't set the OWN bit just
    981 			 * yet.	 That could cause a race condition.
    982 			 * We'll do it below.
    983 			 */
    984 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    985 			tdes->t1 = sc->sc_t1csum
    986 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    987 			tdes->t0 = tdes0;
    988 			tdes0 |= T0_OWN;
    989 			lasttx = nexttx;
    990 		}
    991 
    992 		/*
    993 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    994 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    995 		 * time and NFS stops to proceed until kse_watchdog()
    996 		 * calls txreap() to reclaim the unack'ed mbuf.
    997 		 * It's painful to traverse every mbuf chain to determine
    998 		 * whether someone is waiting for Tx completion.
    999 		 */
   1000 		m = m0;
   1001 		do {
   1002 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1003 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
   1004 				break;
   1005 			}
   1006 		} while ((m = m->m_next) != NULL);
   1007 
   1008 		/* Write last T0_OWN bit of the 1st segment */
   1009 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
   1010 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
   1011 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
   1012 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1013 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1014 
   1015 		/* Tell DMA start transmit */
   1016 		CSR_WRITE_4(sc, MDTSC, 1);
   1017 
   1018 		txs->txs_mbuf = m0;
   1019 		txs->txs_firstdesc = sc->sc_txnext;
   1020 		txs->txs_lastdesc = lasttx;
   1021 		txs->txs_ndesc = dmamap->dm_nsegs;
   1022 
   1023 		sc->sc_txfree -= txs->txs_ndesc;
   1024 		sc->sc_txnext = nexttx;
   1025 		sc->sc_txsfree--;
   1026 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
   1027 		/*
   1028 		 * Pass the packet to any BPF listeners.
   1029 		 */
   1030 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1031 	}
   1032 
   1033 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1034 		/* No more slots left; notify upper layer. */
   1035 		ifp->if_flags |= IFF_OACTIVE;
   1036 	}
   1037 	if (sc->sc_txfree != ofree) {
   1038 		/* Set a watchdog timer in case the chip flakes out. */
   1039 		ifp->if_timer = 5;
   1040 	}
   1041 }
   1042 
   1043 static void
   1044 kse_set_filter(struct kse_softc *sc)
   1045 {
   1046 	struct ether_multistep step;
   1047 	struct ether_multi *enm;
   1048 	struct ethercom *ec = &sc->sc_ethercom;
   1049 	struct ifnet *ifp = &ec->ec_if;
   1050 	uint32_t h, hashes[2];
   1051 
   1052 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1053 	ifp->if_flags &= ~IFF_ALLMULTI;
   1054 	if (ifp->if_flags & IFF_PROMISC)
   1055 		return;
   1056 
   1057 	ETHER_LOCK(ec);
   1058 	ETHER_FIRST_MULTI(step, ec, enm);
   1059 	if (enm == NULL) {
   1060 		ETHER_UNLOCK(ec);
   1061 		return;
   1062 	}
   1063 	hashes[0] = hashes[1] = 0;
   1064 	do {
   1065 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1066 			/*
   1067 			 * We must listen to a range of multicast addresses.
   1068 			 * For now, just accept all multicasts, rather than
   1069 			 * trying to set only those filter bits needed to match
   1070 			 * the range.  (At this time, the only use of address
   1071 			 * ranges is for IP multicast routing, for which the
   1072 			 * range is big enough to require all bits set.)
   1073 			 */
   1074 			ETHER_UNLOCK(ec);
   1075 			goto allmulti;
   1076 		}
   1077 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1078 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1079 		ETHER_NEXT_MULTI(step, enm);
   1080 	} while (enm != NULL);
   1081 	ETHER_UNLOCK(ec);
   1082 	sc->sc_rxc |= RXC_MHTE;
   1083 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1084 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1085 	return;
   1086  allmulti:
   1087 	sc->sc_rxc |= RXC_RM;
   1088 	ifp->if_flags |= IFF_ALLMULTI;
   1089 }
   1090 
   1091 static int
   1092 add_rxbuf(struct kse_softc *sc, int idx)
   1093 {
   1094 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1095 	struct mbuf *m;
   1096 	int error;
   1097 
   1098 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1099 	if (m == NULL)
   1100 		return ENOBUFS;
   1101 
   1102 	MCLGET(m, M_DONTWAIT);
   1103 	if ((m->m_flags & M_EXT) == 0) {
   1104 		m_freem(m);
   1105 		return ENOBUFS;
   1106 	}
   1107 
   1108 	if (rxs->rxs_mbuf != NULL)
   1109 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1110 
   1111 	rxs->rxs_mbuf = m;
   1112 
   1113 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1114 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1115 	if (error) {
   1116 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1117 		    device_xname(sc->sc_dev), idx, error);
   1118 		panic("kse_add_rxbuf");
   1119 	}
   1120 
   1121 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1122 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1123 
   1124 	KSE_INIT_RXDESC(sc, idx);
   1125 
   1126 	return 0;
   1127 }
   1128 
   1129 static void
   1130 rxdrain(struct kse_softc *sc)
   1131 {
   1132 	struct kse_rxsoft *rxs;
   1133 	int i;
   1134 
   1135 	for (i = 0; i < KSE_NRXDESC; i++) {
   1136 		rxs = &sc->sc_rxsoft[i];
   1137 		if (rxs->rxs_mbuf != NULL) {
   1138 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1139 			m_freem(rxs->rxs_mbuf);
   1140 			rxs->rxs_mbuf = NULL;
   1141 		}
   1142 	}
   1143 }
   1144 
   1145 static int
   1146 kse_intr(void *arg)
   1147 {
   1148 	struct kse_softc *sc = arg;
   1149 	uint32_t isr;
   1150 
   1151 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1152 		return 0;
   1153 
   1154 	if (isr & INT_DMRS)
   1155 		rxintr(sc);
   1156 	if (isr & INT_DMTS)
   1157 		txreap(sc);
   1158 	if (isr & INT_DMLCS)
   1159 		lnkchg(sc);
   1160 	if (isr & INT_DMRBUS)
   1161 		printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
   1162 
   1163 	CSR_WRITE_4(sc, INTST, isr);
   1164 	return 1;
   1165 }
   1166 
   1167 static void
   1168 rxintr(struct kse_softc *sc)
   1169 {
   1170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1171 	struct kse_rxsoft *rxs;
   1172 	struct mbuf *m;
   1173 	uint32_t rxstat;
   1174 	int i, len;
   1175 
   1176 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1177 		rxs = &sc->sc_rxsoft[i];
   1178 
   1179 		KSE_CDRXSYNC(sc, i,
   1180 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1181 
   1182 		rxstat = sc->sc_rxdescs[i].r0;
   1183 
   1184 		if (rxstat & R0_OWN) /* desc is left empty */
   1185 			break;
   1186 
   1187 		/* R0_FS | R0_LS must have been marked for this desc */
   1188 
   1189 		if (rxstat & R0_ES) {
   1190 			ifp->if_ierrors++;
   1191 #define PRINTERR(bit, str)						\
   1192 			if (rxstat & (bit))				\
   1193 				printf("%s: receive error: %s\n",	\
   1194 				    device_xname(sc->sc_dev), str)
   1195 			PRINTERR(R0_TL, "frame too long");
   1196 			PRINTERR(R0_RF, "runt frame");
   1197 			PRINTERR(R0_CE, "bad FCS");
   1198 #undef PRINTERR
   1199 			KSE_INIT_RXDESC(sc, i);
   1200 			continue;
   1201 		}
   1202 
   1203 		/* HW errata; frame might be too small or too large */
   1204 
   1205 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1206 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1207 
   1208 		len = rxstat & R0_FL_MASK;
   1209 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1210 		m = rxs->rxs_mbuf;
   1211 
   1212 		if (add_rxbuf(sc, i) != 0) {
   1213 			ifp->if_ierrors++;
   1214 			KSE_INIT_RXDESC(sc, i);
   1215 			bus_dmamap_sync(sc->sc_dmat,
   1216 			    rxs->rxs_dmamap, 0,
   1217 			    rxs->rxs_dmamap->dm_mapsize,
   1218 			    BUS_DMASYNC_PREREAD);
   1219 			continue;
   1220 		}
   1221 
   1222 		m_set_rcvif(m, ifp);
   1223 		m->m_pkthdr.len = m->m_len = len;
   1224 
   1225 		if (sc->sc_mcsum) {
   1226 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1227 			if (rxstat & R0_IPE)
   1228 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1229 			if (rxstat & (R0_TCPE | R0_UDPE))
   1230 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1231 		}
   1232 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1233 #ifdef KSEDIAGNOSTIC
   1234 		if (kse_monitor_rxintr > 0) {
   1235 			printf("m stat %x data %p len %d\n",
   1236 			    rxstat, m->m_data, m->m_len);
   1237 		}
   1238 #endif
   1239 	}
   1240 	sc->sc_rxptr = i;
   1241 }
   1242 
   1243 static void
   1244 txreap(struct kse_softc *sc)
   1245 {
   1246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1247 	struct kse_txsoft *txs;
   1248 	uint32_t txstat;
   1249 	int i;
   1250 
   1251 	ifp->if_flags &= ~IFF_OACTIVE;
   1252 
   1253 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1254 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1255 		txs = &sc->sc_txsoft[i];
   1256 
   1257 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1258 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1259 
   1260 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1261 
   1262 		if (txstat & T0_OWN) /* desc is still in use */
   1263 			break;
   1264 
   1265 		/* There is no way to tell transmission status per frame */
   1266 
   1267 		ifp->if_opackets++;
   1268 
   1269 		sc->sc_txfree += txs->txs_ndesc;
   1270 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1271 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1272 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1273 		m_freem(txs->txs_mbuf);
   1274 		txs->txs_mbuf = NULL;
   1275 	}
   1276 	sc->sc_txsdirty = i;
   1277 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1278 		ifp->if_timer = 0;
   1279 }
   1280 
   1281 static void
   1282 lnkchg(struct kse_softc *sc)
   1283 {
   1284 	struct ifmediareq ifmr;
   1285 
   1286 #if KSE_LINKDEBUG > 0
   1287 printf("link change detected\n");
   1288 #endif
   1289 	ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
   1290 }
   1291 
   1292 static int
   1293 ksephy_change(struct ifnet *ifp)
   1294 {
   1295 	struct kse_softc *sc = ifp->if_softc;
   1296 	struct ifmedia *ifm = &sc->sc_media;
   1297 	uint16_t p1cr4;
   1298 #if KSE_LINKDEBUG > 0
   1299 printf("ifm_media: %x\n", ifm->ifm_cur->ifm_media);
   1300 #endif
   1301 	p1cr4 = 0;
   1302 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1303 		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
   1304 		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
   1305 		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
   1306 		p1cr4 |= 0xf;		/* advertise 100-FDX,100-HDX,10-FDX,10-HDX */
   1307 	} else {
   1308 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
   1309 			p1cr4 |= PxCR_SPD100;
   1310 		if (ifm->ifm_media & IFM_FDX)
   1311 			p1cr4 |= PxCR_USEFDX;
   1312 	}
   1313 	CSR_WRITE_2(sc, P1CR4, p1cr4);
   1314 #if KSE_LINKDEBUG > 0
   1315 printf("P1CR4: %04x\n", p1cr4);
   1316 #endif
   1317 	return 0;
   1318 }
   1319 
   1320 static void
   1321 ksephy_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   1322 {
   1323 	struct kse_softc *sc = ifp->if_softc;
   1324 	int media_status;
   1325 	u_int media_active;
   1326 	uint16_t p1cr4, p1sr;
   1327 
   1328 	media_status = IFM_AVALID;
   1329 	media_active = IFM_ETHER;
   1330 
   1331 	p1cr4 = CSR_READ_2(sc, P1CR4);
   1332 	p1sr = CSR_READ_2(sc, P1SR);
   1333 #if KSE_LINKDEBUG > 0
   1334 printf("P1SR: %04x link %s\n", p1sr, (p1sr & PxSR_LINKUP) ? "up" : "down");
   1335 #endif
   1336 	sc->sc_linkstatus = p1sr;
   1337 	if (p1sr & PxSR_LINKUP)
   1338 		media_status |= IFM_ACTIVE;
   1339 
   1340 	if (p1cr4 & PxCR_AUTOEN) {
   1341 		if ((p1sr & PxSR_ACOMP) == 0) {
   1342 			media_active |= IFM_NONE;
   1343 			goto out; /* Negotiation in progress */
   1344 		}
   1345 	}
   1346 
   1347 	media_active |= (p1sr & PxSR_SPD100) ? IFM_100_TX : IFM_10_T;
   1348 	if (p1sr & PxSR_FDX)
   1349 		media_active |= IFM_FDX;
   1350 	if (p1sr & PxSR_RXFLOW)
   1351 		media_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1352 	if (p1sr & PxSR_TXFLOW)
   1353 		media_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1354   out:
   1355 	ifmr->ifm_active = media_active;
   1356 	ifmr->ifm_status = media_status;
   1357 }
   1358 
   1359 static void
   1360 nopifm_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   1361 {
   1362 	struct kse_softc *sc = ifp->if_softc;
   1363 	struct ifmedia *ifm = &sc->sc_media;
   1364 
   1365 #if KSE_LINKDEBUG > 1
   1366 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
   1367 #endif
   1368 
   1369 	/* 8842 MAC pretends 100FDX all the time */
   1370 	ifmr->ifm_active = ifm->ifm_cur->ifm_media;
   1371 	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
   1372 }
   1373 
   1374 static void
   1375 phy_tick(void *arg)
   1376 {
   1377 	struct kse_softc *sc = arg;
   1378 	struct ifmediareq ifmr;
   1379 	int s;
   1380 	uint16_t p1sr;
   1381 
   1382 	s = splnet();
   1383 	p1sr = CSR_READ_2(sc, P1SR);
   1384 	if (sc->sc_linkstatus != p1sr)
   1385 		ksephy_status(&sc->sc_ethercom.ec_if, &ifmr);
   1386 	splx(s);
   1387 
   1388 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1389 }
   1390 
   1391 #ifdef KSE_EVENT_COUNTERS
   1392 static void
   1393 stat_tick(void *arg)
   1394 {
   1395 	struct kse_softc *sc = arg;
   1396 	struct ksext *ee = &sc->sc_ext;
   1397 	int nport, p, i, val;
   1398 
   1399 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1400 	for (p = 0; p < nport; p++) {
   1401 		for (i = 0; i < 32; i++) {
   1402 			val = 0x1c00 | (p * 0x20 + i);
   1403 			CSR_WRITE_2(sc, IACR, val);
   1404 			do {
   1405 				val = CSR_READ_2(sc, IADR5) << 16;
   1406 			} while ((val & (1U << 30)) == 0);
   1407 			if (val & (1U << 31)) {
   1408 				(void)CSR_READ_2(sc, IADR4);
   1409 				val = 0x3fffffff; /* has made overflow */
   1410 			}
   1411 			else {
   1412 				val &= 0x3fff0000;		/* 29:16 */
   1413 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1414 			}
   1415 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1416 		}
   1417 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1418 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1419 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1420 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1421 	}
   1422 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
   1423 }
   1424 
   1425 static void
   1426 zerostats(struct kse_softc *sc)
   1427 {
   1428 	struct ksext *ee = &sc->sc_ext;
   1429 	int nport, p, i, val;
   1430 
   1431 	/* Make sure all the HW counters get zero */
   1432 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1433 	for (p = 0; p < nport; p++) {
   1434 		for (i = 0; i < 31; i++) {
   1435 			val = 0x1c00 | (p * 0x20 + i);
   1436 			CSR_WRITE_2(sc, IACR, val);
   1437 			do {
   1438 				val = CSR_READ_2(sc, IADR5) << 16;
   1439 			} while ((val & (1U << 30)) == 0);
   1440 			(void)CSR_READ_2(sc, IADR4);
   1441 			ee->pev[p][i].ev_count = 0;
   1442 		}
   1443 	}
   1444 }
   1445 #endif
   1446