if_kse.c revision 1.42 1 /* $NetBSD: if_kse.c,v 1.42 2019/11/26 08:37:05 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Micrel 8841/8842 10/100 PCI ethernet driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.42 2019/11/26 08:37:05 nisimura Exp $");
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/ioctl.h>
46 #include <sys/errno.h>
47 #include <sys/device.h>
48 #include <sys/queue.h>
49
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>
53
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <net/bpf.h>
61
62 #include <dev/pci/pcivar.h>
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcidevs.h>
65
66 #define KSE_LINKDEBUG 0
67
68 #define CSR_READ_4(sc, off) \
69 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
70 #define CSR_WRITE_4(sc, off, val) \
71 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
72 #define CSR_READ_2(sc, off) \
73 bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
74 #define CSR_WRITE_2(sc, off, val) \
75 bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
76
77 #define MDTXC 0x000 /* DMA transmit control */
78 #define MDRXC 0x004 /* DMA receive control */
79 #define MDTSC 0x008 /* DMA transmit start */
80 #define MDRSC 0x00c /* DMA receive start */
81 #define TDLB 0x010 /* transmit descriptor list base */
82 #define RDLB 0x014 /* receive descriptor list base */
83 #define MTR0 0x020 /* multicast table 31:0 */
84 #define MTR1 0x024 /* multicast table 63:32 */
85 #define INTEN 0x028 /* interrupt enable */
86 #define INTST 0x02c /* interrupt status */
87 #define MARL 0x200 /* MAC address low */
88 #define MARM 0x202 /* MAC address middle */
89 #define MARH 0x204 /* MAC address high */
90 #define GRR 0x216 /* global reset */
91 #define SIDER 0x400 /* switch ID and function enable */
92 #define IACR 0x4a0 /* indirect access control */
93 #define IADR1 0x4a2 /* indirect access data 66:63 */
94 #define IADR2 0x4a4 /* indirect access data 47:32 */
95 #define IADR3 0x4a6 /* indirect access data 63:48 */
96 #define IADR4 0x4a8 /* indirect access data 15:0 */
97 #define IADR5 0x4aa /* indirect access data 31:16 */
98 #define P1CR4 0x512 /* port 1 control 4 */
99 #define P1SR 0x514 /* port 1 status */
100 #define P2CR4 0x532 /* port 2 control 4 */
101 #define P2SR 0x534 /* port 2 status */
102 #define PxCR_STARTNEG (1U<<9) /* restart auto negotiation */
103 #define PxCR_AUTOEN (1U<<7) /* auto negotiation enable */
104 #define PxCR_SPD100 (1U<<6) /* force speed 100 */
105 #define PxCR_USEFDX (1U<<5) /* force full duplex */
106 #define PxCR_USEFC (1U<<4) /* advertise pause flow control */
107 #define PxSR_ACOMP (1U<<6) /* auto negotiation completed */
108 #define PxSR_SPD100 (1U<<10) /* speed is 100Mbps */
109 #define PxSR_FDX (1U<<9) /* full duplex */
110 #define PxSR_LINKUP (1U<<5) /* link is good */
111 #define PxSR_RXFLOW (1U<<12) /* receive flow control active */
112 #define PxSR_TXFLOW (1U<<11) /* transmit flow control active */
113 #define P1VIDCR 0x504 /* port 1 vtag */
114 #define P2VIDCR 0x524 /* port 2 vtag */
115 #define P3VIDCR 0x544 /* 8842 host vtag */
116
117 #define TXC_BS_MSK 0x3f000000 /* burst size */
118 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
119 #define TXC_UCG (1U<<18) /* generate UDP checksum */
120 #define TXC_TCG (1U<<17) /* generate TCP checksum */
121 #define TXC_ICG (1U<<16) /* generate IP checksum */
122 #define TXC_FCE (1U<<9) /* generate PAUSE to moderate Rx lvl */
123 #define TXC_EP (1U<<2) /* enable automatic padding */
124 #define TXC_AC (1U<<1) /* add CRC to frame */
125 #define TXC_TEN (1) /* enable DMA to run */
126
127 #define RXC_BS_MSK 0x3f000000 /* burst size */
128 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
129 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
130 #define RXC_UCC (1U<<18) /* run UDP checksum */
131 #define RXC_TCC (1U<<17) /* run TDP checksum */
132 #define RXC_ICC (1U<<16) /* run IP checksum */
133 #define RXC_FCE (1U<<9) /* accept PAUSE to throttle Tx */
134 #define RXC_RB (1U<<6) /* receive broadcast frame */
135 #define RXC_RM (1U<<5) /* receive multicast frame */
136 #define RXC_RU (1U<<4) /* receive unicast frame */
137 #define RXC_RE (1U<<3) /* accept error frame */
138 #define RXC_RA (1U<<2) /* receive all frame */
139 #define RXC_MHTE (1U<<1) /* use multicast hash table */
140 #define RXC_REN (1) /* enable DMA to run */
141
142 #define INT_DMLCS (1U<<31) /* link status change */
143 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
144 #define INT_DMRS (1U<<29) /* frame was received */
145 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
146
147 #define T0_OWN (1U<<31) /* desc is ready to Tx */
148
149 #define R0_OWN (1U<<31) /* desc is empty */
150 #define R0_FS (1U<<30) /* first segment of frame */
151 #define R0_LS (1U<<29) /* last segment of frame */
152 #define R0_IPE (1U<<28) /* IP checksum error */
153 #define R0_TCPE (1U<<27) /* TCP checksum error */
154 #define R0_UDPE (1U<<26) /* UDP checksum error */
155 #define R0_ES (1U<<25) /* error summary */
156 #define R0_MF (1U<<24) /* multicast frame */
157 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
158 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
159 #define R0_RE (1U<<19) /* MII reported error */
160 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
161 #define R0_RF (1U<<17) /* damaged runt frame */
162 #define R0_CE (1U<<16) /* CRC error */
163 #define R0_FT (1U<<15) /* frame type */
164 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
165
166 #define T1_IC (1U<<31) /* post interrupt on complete */
167 #define T1_FS (1U<<30) /* first segment of frame */
168 #define T1_LS (1U<<29) /* last segment of frame */
169 #define T1_IPCKG (1U<<28) /* generate IP checksum */
170 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
171 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
172 #define T1_TER (1U<<25) /* end of ring */
173 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
174 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
175
176 #define R1_RER (1U<<25) /* end of ring */
177 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
178
179 #define KSE_NTXSEGS 16
180 #define KSE_TXQUEUELEN 64
181 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
182 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
183 #define KSE_NTXDESC 256
184 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
185 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
186 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
187
188 #define KSE_NRXDESC 64
189 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
190 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
191
192 struct tdes {
193 uint32_t t0, t1, t2, t3;
194 };
195
196 struct rdes {
197 uint32_t r0, r1, r2, r3;
198 };
199
200 struct kse_control_data {
201 struct tdes kcd_txdescs[KSE_NTXDESC];
202 struct rdes kcd_rxdescs[KSE_NRXDESC];
203 };
204 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
205 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
206 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
207
208 struct kse_txsoft {
209 struct mbuf *txs_mbuf; /* head of our mbuf chain */
210 bus_dmamap_t txs_dmamap; /* our DMA map */
211 int txs_firstdesc; /* first descriptor in packet */
212 int txs_lastdesc; /* last descriptor in packet */
213 int txs_ndesc; /* # of descriptors used */
214 };
215
216 struct kse_rxsoft {
217 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
218 bus_dmamap_t rxs_dmamap; /* our DMA map */
219 };
220
221 struct kse_softc {
222 device_t sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_size_t sc_memsize; /* csr map size */
226 bus_dma_tag_t sc_dmat; /* bus DMA tag */
227 pci_chipset_tag_t sc_pc; /* PCI chipset tag */
228 struct ethercom sc_ethercom; /* Ethernet common data */
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* mii 8841 */
232 struct ifmedia sc_media; /* ifmedia 8842 */
233 int sc_flowflags; /* 802.3x PAUSE flow control */
234
235 callout_t sc_tick_ch; /* MII tick callout */
236 callout_t sc_stat_ch; /* statistics counter callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 struct kse_control_data *sc_control_data;
242 #define sc_txdescs sc_control_data->kcd_txdescs
243 #define sc_rxdescs sc_control_data->kcd_rxdescs
244
245 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
246 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
247 int sc_txfree; /* number of free Tx descriptors */
248 int sc_txnext; /* next ready Tx descriptor */
249 int sc_txsfree; /* number of free Tx jobs */
250 int sc_txsnext; /* next ready Tx job */
251 int sc_txsdirty; /* dirty Tx jobs */
252 int sc_rxptr; /* next ready Rx descriptor/descsoft */
253
254 uint32_t sc_txc, sc_rxc;
255 uint32_t sc_t1csum;
256 int sc_mcsum;
257 uint32_t sc_inten;
258
259 uint32_t sc_chip;
260 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
261 uint16_t sc_vlan[16];
262
263 #ifdef KSE_EVENT_COUNTERS
264 struct ksext {
265 char evcntname[3][8];
266 struct evcnt pev[3][34];
267 } sc_ext; /* switch statistics */
268 #endif
269 };
270
271 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
272 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
273
274 #define KSE_CDTXSYNC(sc, x, n, ops) \
275 do { \
276 int __x, __n; \
277 \
278 __x = (x); \
279 __n = (n); \
280 \
281 /* If it will wrap around, sync to the end of the ring. */ \
282 if ((__x + __n) > KSE_NTXDESC) { \
283 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
284 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
285 (KSE_NTXDESC - __x), (ops)); \
286 __n -= (KSE_NTXDESC - __x); \
287 __x = 0; \
288 } \
289 \
290 /* Now sync whatever is left. */ \
291 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
292 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
293 } while (/*CONSTCOND*/0)
294
295 #define KSE_CDRXSYNC(sc, x, ops) \
296 do { \
297 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
298 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
299 } while (/*CONSTCOND*/0)
300
301 #define KSE_INIT_RXDESC(sc, x) \
302 do { \
303 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
304 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
305 struct mbuf *__m = __rxs->rxs_mbuf; \
306 \
307 __m->m_data = __m->m_ext.ext_buf; \
308 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
309 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
310 __rxd->r0 = R0_OWN; \
311 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
312 } while (/*CONSTCOND*/0)
313
314 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
315
316 #ifdef KSEDIAGNOSTIC
317 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
318 #endif
319
320 static int kse_match(device_t, cfdata_t, void *);
321 static void kse_attach(device_t, device_t, void *);
322
323 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
324 kse_match, kse_attach, NULL, NULL);
325
326 static int kse_ioctl(struct ifnet *, u_long, void *);
327 static void kse_start(struct ifnet *);
328 static void kse_watchdog(struct ifnet *);
329 static int kse_init(struct ifnet *);
330 static void kse_stop(struct ifnet *, int);
331 static void kse_reset(struct kse_softc *);
332 static void kse_set_filter(struct kse_softc *);
333 static int add_rxbuf(struct kse_softc *, int);
334 static void rxdrain(struct kse_softc *);
335 static int kse_intr(void *);
336 static void rxintr(struct kse_softc *);
337 static void txreap(struct kse_softc *);
338 static void lnkchg(struct kse_softc *);
339 static int kse_ifmedia_upd(struct ifnet *);
340 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
341 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
342 static void phy_tick(void *);
343 int kse_mii_readreg(device_t, int, int, uint16_t *);
344 int kse_mii_writereg(device_t, int, int, uint16_t);
345 void kse_mii_statchg(struct ifnet *);
346 #ifdef KSE_EVENT_COUNTERS
347 static void stat_tick(void *);
348 static void zerostats(struct kse_softc *);
349 #endif
350
351 static int
352 kse_match(device_t parent, cfdata_t match, void *aux)
353 {
354 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
355
356 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
357 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
358 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
359 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
360 return 1;
361
362 return 0;
363 }
364
365 static void
366 kse_attach(device_t parent, device_t self, void *aux)
367 {
368 struct kse_softc *sc = device_private(self);
369 struct pci_attach_args *pa = aux;
370 pci_chipset_tag_t pc = pa->pa_pc;
371 pci_intr_handle_t ih;
372 const char *intrstr;
373 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
374 struct mii_data * const mii = &sc->sc_mii;
375 struct ifmedia *ifm;
376 uint8_t enaddr[ETHER_ADDR_LEN];
377 bus_dma_segment_t seg;
378 int i, error, nseg;
379 char intrbuf[PCI_INTRSTR_LEN];
380
381 aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
382 PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
383
384 if (pci_mapreg_map(pa, 0x10,
385 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
386 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
387 aprint_error_dev(self, "unable to map device registers\n");
388 return;
389 }
390
391 /* Make sure bus mastering is enabled. */
392 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
393 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
394 PCI_COMMAND_MASTER_ENABLE);
395
396 /* Power up chip if necessary. */
397 if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
398 && error != EOPNOTSUPP) {
399 aprint_error_dev(self, "cannot activate %d\n", error);
400 return;
401 }
402
403 /* Map and establish our interrupt. */
404 if (pci_intr_map(pa, &ih)) {
405 aprint_error_dev(self, "unable to map interrupt\n");
406 return;
407 }
408 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
409 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
410 device_xname(self));
411 if (sc->sc_ih == NULL) {
412 aprint_error_dev(self, "unable to establish interrupt");
413 if (intrstr != NULL)
414 aprint_error(" at %s", intrstr);
415 aprint_error("\n");
416 return;
417 }
418 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
419
420 sc->sc_dev = self;
421 sc->sc_dmat = pa->pa_dmat;
422 sc->sc_pc = pa->pa_pc;
423 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
424
425 /*
426 * Read the Ethernet address from the EEPROM.
427 */
428 i = CSR_READ_2(sc, MARL);
429 enaddr[5] = i;
430 enaddr[4] = i >> 8;
431 i = CSR_READ_2(sc, MARM);
432 enaddr[3] = i;
433 enaddr[2] = i >> 8;
434 i = CSR_READ_2(sc, MARH);
435 enaddr[1] = i;
436 enaddr[0] = i >> 8;
437 aprint_normal_dev(self,
438 "Ethernet address %s\n", ether_sprintf(enaddr));
439
440 /*
441 * Enable chip function.
442 */
443 CSR_WRITE_2(sc, SIDER, 1);
444
445 /*
446 * Allocate the control data structures, and create and load the
447 * DMA map for it.
448 */
449 error = bus_dmamem_alloc(sc->sc_dmat,
450 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
451 if (error != 0) {
452 aprint_error_dev(self,
453 "unable to allocate control data, error = %d\n", error);
454 goto fail_0;
455 }
456 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
457 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
458 BUS_DMA_COHERENT);
459 if (error != 0) {
460 aprint_error_dev(self,
461 "unable to map control data, error = %d\n", error);
462 goto fail_1;
463 }
464 error = bus_dmamap_create(sc->sc_dmat,
465 sizeof(struct kse_control_data), 1,
466 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
467 if (error != 0) {
468 aprint_error_dev(self,
469 "unable to create control data DMA map, "
470 "error = %d\n", error);
471 goto fail_2;
472 }
473 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
474 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
475 if (error != 0) {
476 aprint_error_dev(self,
477 "unable to load control data DMA map, error = %d\n",
478 error);
479 goto fail_3;
480 }
481 for (i = 0; i < KSE_TXQUEUELEN; i++) {
482 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
483 KSE_NTXSEGS, MCLBYTES, 0, 0,
484 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
485 aprint_error_dev(self,
486 "unable to create tx DMA map %d, error = %d\n",
487 i, error);
488 goto fail_4;
489 }
490 }
491 for (i = 0; i < KSE_NRXDESC; i++) {
492 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
493 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
494 aprint_error_dev(self,
495 "unable to create rx DMA map %d, error = %d\n",
496 i, error);
497 goto fail_5;
498 }
499 sc->sc_rxsoft[i].rxs_mbuf = NULL;
500 }
501
502 callout_init(&sc->sc_tick_ch, 0);
503 callout_init(&sc->sc_stat_ch, 0);
504 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
505 #ifdef KSE_EVENT_COUNTERS
506 callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
507 #endif
508
509 mii->mii_ifp = ifp;
510 mii->mii_readreg = kse_mii_readreg;
511 mii->mii_writereg = kse_mii_writereg;
512 mii->mii_statchg = kse_mii_statchg;
513
514 /* Initialize ifmedia structures. */
515 sc->sc_flowflags = 0;
516 if (sc->sc_chip == 0x8841) {
517 /* use port 1 builtin PHY as index 1 device */
518 sc->sc_ethercom.ec_mii = mii;
519 ifm = &mii->mii_media;
520 ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
521 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
522 MII_OFFSET_ANY, MIIF_DOPAUSE);
523 if (LIST_FIRST(&mii->mii_phys) == NULL) {
524 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
525 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
526 } else
527 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
528 } else {
529 /*
530 * pretend 100FDX w/ no alternative media selection.
531 * 8842 MAC is tied with a builtin 3 port switch. It can do
532 * 4 degree priotised rate control over either of tx/rx
533 * direction for any of ports, respectively. Tough, this
534 * driver leaves the rate unlimited intending 100Mbps maximum.
535 * 2 external ports behave in AN mode and this driver provides
536 * no mean to manipulate and see their operational details.
537 */
538 sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
539 ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
540 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
541 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
542
543 aprint_normal_dev(self,
544 "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
545 }
546 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
547
548
549 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
550 ifp->if_softc = sc;
551 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
552 ifp->if_ioctl = kse_ioctl;
553 ifp->if_start = kse_start;
554 ifp->if_watchdog = kse_watchdog;
555 ifp->if_init = kse_init;
556 ifp->if_stop = kse_stop;
557 IFQ_SET_READY(&ifp->if_snd);
558
559 /*
560 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
561 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
562 */
563 sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
564 ifp->if_capabilities =
565 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
566 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
567 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
568
569 if_attach(ifp);
570 ether_ifattach(ifp, enaddr);
571
572 #ifdef KSE_EVENT_COUNTERS
573 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
574 for (i = 0; i < p; i++) {
575 struct ksext *ee = &sc->sc_ext;
576 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
577 "%s.%d", device_xname(sc->sc_dev), i+1);
578 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
579 NULL, ee->evcntname[i], "RxLoPriotyByte");
580 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
581 NULL, ee->evcntname[i], "RxHiPriotyByte");
582 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "RxUndersizePkt");
584 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "RxFragments");
586 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "RxOversize");
588 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "RxJabbers");
590 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "RxSymbolError");
592 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "RxCRCError");
594 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "RxAlignmentError");
596 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "RxControl8808Pkts");
598 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "RxPausePkts");
600 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "RxBroadcast");
602 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "RxMulticast");
604 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
605 NULL, ee->evcntname[i], "RxUnicast");
606 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
607 NULL, ee->evcntname[i], "Rx64Octets");
608 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
609 NULL, ee->evcntname[i], "Rx65To127Octets");
610 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
611 NULL, ee->evcntname[i], "Rx128To255Octets");
612 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
613 NULL, ee->evcntname[i], "Rx255To511Octets");
614 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
615 NULL, ee->evcntname[i], "Rx512To1023Octets");
616 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
617 NULL, ee->evcntname[i], "Rx1024To1522Octets");
618 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
619 NULL, ee->evcntname[i], "TxLoPriotyByte");
620 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
621 NULL, ee->evcntname[i], "TxHiPriotyByte");
622 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
623 NULL, ee->evcntname[i], "TxLateCollision");
624 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
625 NULL, ee->evcntname[i], "TxPausePkts");
626 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
627 NULL, ee->evcntname[i], "TxBroadcastPkts");
628 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
629 NULL, ee->evcntname[i], "TxMulticastPkts");
630 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
631 NULL, ee->evcntname[i], "TxUnicastPkts");
632 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
633 NULL, ee->evcntname[i], "TxDeferred");
634 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
635 NULL, ee->evcntname[i], "TxTotalCollision");
636 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
637 NULL, ee->evcntname[i], "TxExcessiveCollision");
638 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
639 NULL, ee->evcntname[i], "TxSingleCollision");
640 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
641 NULL, ee->evcntname[i], "TxMultipleCollision");
642 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
643 NULL, ee->evcntname[i], "TxDropPkts");
644 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
645 NULL, ee->evcntname[i], "RxDropPkts");
646 }
647 #endif
648 return;
649
650 fail_5:
651 for (i = 0; i < KSE_NRXDESC; i++) {
652 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
653 bus_dmamap_destroy(sc->sc_dmat,
654 sc->sc_rxsoft[i].rxs_dmamap);
655 }
656 fail_4:
657 for (i = 0; i < KSE_TXQUEUELEN; i++) {
658 if (sc->sc_txsoft[i].txs_dmamap != NULL)
659 bus_dmamap_destroy(sc->sc_dmat,
660 sc->sc_txsoft[i].txs_dmamap);
661 }
662 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
663 fail_3:
664 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
665 fail_2:
666 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
667 sizeof(struct kse_control_data));
668 fail_1:
669 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
670 fail_0:
671 if (sc->sc_ih != NULL) {
672 pci_intr_disestablish(pc, sc->sc_ih);
673 sc->sc_ih = NULL;
674 }
675 if (sc->sc_memsize) {
676 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
677 sc->sc_memsize = 0;
678 }
679 return;
680 }
681
682 static int
683 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
684 {
685 struct kse_softc *sc = ifp->if_softc;
686 struct ifreq *ifr = (struct ifreq *)data;
687 struct ifmedia *ifm;
688 int s, error;
689
690 s = splnet();
691
692 switch (cmd) {
693 case SIOCSIFMEDIA:
694 /* Flow control requires full-duplex mode. */
695 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
696 (ifr->ifr_media & IFM_FDX) == 0)
697 ifr->ifr_media &= ~IFM_ETH_FMASK;
698 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
699 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
700 /* We can do both TXPAUSE and RXPAUSE. */
701 ifr->ifr_media |=
702 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
703 }
704 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
705 }
706 ifm = (sc->sc_chip == 0x8841)
707 ? &sc->sc_mii.mii_media : &sc->sc_media;
708 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
709 break;
710 default:
711 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
712 break;
713
714 error = 0;
715
716 if (cmd == SIOCSIFCAP)
717 error = (*ifp->if_init)(ifp);
718 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
719 ;
720 else if (ifp->if_flags & IFF_RUNNING) {
721 /*
722 * Multicast list has changed; set the hardware filter
723 * accordingly.
724 */
725 kse_set_filter(sc);
726 }
727 break;
728 }
729
730 splx(s);
731 return error;
732 }
733
734 static int
735 kse_init(struct ifnet *ifp)
736 {
737 struct kse_softc *sc = ifp->if_softc;
738 uint32_t paddr;
739 int i, error = 0;
740
741 /* cancel pending I/O */
742 kse_stop(ifp, 0);
743
744 /* reset all registers but PCI configuration */
745 kse_reset(sc);
746
747 /* craft Tx descriptor ring */
748 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
749 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
750 sc->sc_txdescs[i].t3 = paddr;
751 paddr += sizeof(struct tdes);
752 }
753 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
754 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
755 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
756 sc->sc_txfree = KSE_NTXDESC;
757 sc->sc_txnext = 0;
758
759 for (i = 0; i < KSE_TXQUEUELEN; i++)
760 sc->sc_txsoft[i].txs_mbuf = NULL;
761 sc->sc_txsfree = KSE_TXQUEUELEN;
762 sc->sc_txsnext = 0;
763 sc->sc_txsdirty = 0;
764
765 /* craft Rx descriptor ring */
766 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
767 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
768 sc->sc_rxdescs[i].r3 = paddr;
769 paddr += sizeof(struct rdes);
770 }
771 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
772 for (i = 0; i < KSE_NRXDESC; i++) {
773 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
774 if ((error = add_rxbuf(sc, i)) != 0) {
775 aprint_error_dev(sc->sc_dev,
776 "unable to allocate or map rx "
777 "buffer %d, error = %d\n",
778 i, error);
779 rxdrain(sc);
780 goto out;
781 }
782 }
783 else
784 KSE_INIT_RXDESC(sc, i);
785 }
786 sc->sc_rxptr = 0;
787
788 /* hand Tx/Rx rings to HW */
789 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
790 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
791
792 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
793 sc->sc_rxc = RXC_REN | RXC_RU;
794 if (ifp->if_flags & IFF_PROMISC)
795 sc->sc_rxc |= RXC_RA;
796 if (ifp->if_flags & IFF_BROADCAST)
797 sc->sc_rxc |= RXC_RB;
798 sc->sc_t1csum = sc->sc_mcsum = 0;
799 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
800 sc->sc_rxc |= RXC_ICC;
801 sc->sc_mcsum |= M_CSUM_IPv4;
802 }
803 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
804 sc->sc_txc |= TXC_ICG;
805 sc->sc_t1csum |= T1_IPCKG;
806 }
807 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
808 sc->sc_rxc |= RXC_TCC;
809 sc->sc_mcsum |= M_CSUM_TCPv4;
810 }
811 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
812 sc->sc_txc |= TXC_TCG;
813 sc->sc_t1csum |= T1_TCPCKG;
814 }
815 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
816 sc->sc_rxc |= RXC_UCC;
817 sc->sc_mcsum |= M_CSUM_UDPv4;
818 }
819 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
820 sc->sc_txc |= TXC_UCG;
821 sc->sc_t1csum |= T1_UDPCKG;
822 }
823 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
824 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
825
826 if (sc->sc_chip == 0x8842) {
827 sc->sc_txc |= TXC_FCE;
828 sc->sc_rxc |= RXC_FCE;
829 }
830
831 /* build multicast hash filter if necessary */
832 kse_set_filter(sc);
833
834 /* set current media */
835 if (sc->sc_chip == 0x8841)
836 (void)kse_ifmedia_upd(ifp);
837
838 /* enable transmitter and receiver */
839 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
840 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
841 CSR_WRITE_4(sc, MDRSC, 1);
842
843 /* enable interrupts */
844 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
845 if (sc->sc_chip == 0x8841)
846 sc->sc_inten |= INT_DMLCS;
847 CSR_WRITE_4(sc, INTST, ~0);
848 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
849
850 ifp->if_flags |= IFF_RUNNING;
851 ifp->if_flags &= ~IFF_OACTIVE;
852
853 if (sc->sc_chip == 0x8841) {
854 /* start one second timer */
855 callout_schedule(&sc->sc_tick_ch, hz);
856 }
857 #ifdef KSE_EVENT_COUNTERS
858 /* start statistics gather 1 minute timer. should be tunable */
859 zerostats(sc);
860 callout_schedule(&sc->sc_stat_ch, hz * 60);
861 #endif
862
863 out:
864 if (error) {
865 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
866 ifp->if_timer = 0;
867 aprint_error_dev(sc->sc_dev, "interface not running\n");
868 }
869 return error;
870 }
871
872 static void
873 kse_stop(struct ifnet *ifp, int disable)
874 {
875 struct kse_softc *sc = ifp->if_softc;
876 struct kse_txsoft *txs;
877 int i;
878
879 if (sc->sc_chip == 0x8841)
880 callout_stop(&sc->sc_tick_ch);
881 callout_stop(&sc->sc_stat_ch);
882
883 sc->sc_txc &= ~TXC_TEN;
884 sc->sc_rxc &= ~RXC_REN;
885 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
886 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
887
888 for (i = 0; i < KSE_TXQUEUELEN; i++) {
889 txs = &sc->sc_txsoft[i];
890 if (txs->txs_mbuf != NULL) {
891 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
892 m_freem(txs->txs_mbuf);
893 txs->txs_mbuf = NULL;
894 }
895 }
896
897 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
898 ifp->if_timer = 0;
899
900 if (disable)
901 rxdrain(sc);
902 }
903
904 static void
905 kse_reset(struct kse_softc *sc)
906 {
907
908 /* software reset */
909 CSR_WRITE_2(sc, GRR, 1);
910 delay(1000); /* PDF does not mention the delay amount */
911 CSR_WRITE_2(sc, GRR, 0);
912
913 /* enable switch function */
914 CSR_WRITE_2(sc, SIDER, 1);
915 }
916
917 static void
918 kse_watchdog(struct ifnet *ifp)
919 {
920 struct kse_softc *sc = ifp->if_softc;
921
922 /*
923 * Since we're not interrupting every packet, sweep
924 * up before we report an error.
925 */
926 txreap(sc);
927
928 if (sc->sc_txfree != KSE_NTXDESC) {
929 aprint_error_dev(sc->sc_dev,
930 "device timeout (txfree %d txsfree %d txnext %d)\n",
931 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
932 ifp->if_oerrors++;
933
934 /* Reset the interface. */
935 kse_init(ifp);
936 }
937 else if (ifp->if_flags & IFF_DEBUG)
938 aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
939
940 /* Try to get more packets going. */
941 kse_start(ifp);
942 }
943
944 static void
945 kse_start(struct ifnet *ifp)
946 {
947 struct kse_softc *sc = ifp->if_softc;
948 struct mbuf *m0, *m;
949 struct kse_txsoft *txs;
950 bus_dmamap_t dmamap;
951 int error, nexttx, lasttx, ofree, seg;
952 uint32_t tdes0;
953
954 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
955 return;
956
957 /* Remember the previous number of free descriptors. */
958 ofree = sc->sc_txfree;
959
960 /*
961 * Loop through the send queue, setting up transmit descriptors
962 * until we drain the queue, or use up all available transmit
963 * descriptors.
964 */
965 for (;;) {
966 IFQ_POLL(&ifp->if_snd, m0);
967 if (m0 == NULL)
968 break;
969
970 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
971 txreap(sc);
972 if (sc->sc_txsfree == 0)
973 break;
974 }
975 txs = &sc->sc_txsoft[sc->sc_txsnext];
976 dmamap = txs->txs_dmamap;
977
978 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
979 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
980 if (error) {
981 if (error == EFBIG) {
982 aprint_error_dev(sc->sc_dev,
983 "Tx packet consumes too many "
984 "DMA segments, dropping...\n");
985 IFQ_DEQUEUE(&ifp->if_snd, m0);
986 m_freem(m0);
987 continue;
988 }
989 /* Short on resources, just stop for now. */
990 break;
991 }
992
993 if (dmamap->dm_nsegs > sc->sc_txfree) {
994 /*
995 * Not enough free descriptors to transmit this
996 * packet. We haven't committed anything yet,
997 * so just unload the DMA map, put the packet
998 * back on the queue, and punt. Notify the upper
999 * layer that there are not more slots left.
1000 */
1001 ifp->if_flags |= IFF_OACTIVE;
1002 bus_dmamap_unload(sc->sc_dmat, dmamap);
1003 break;
1004 }
1005
1006 IFQ_DEQUEUE(&ifp->if_snd, m0);
1007
1008 /*
1009 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1010 */
1011
1012 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1013 BUS_DMASYNC_PREWRITE);
1014
1015 lasttx = -1; tdes0 = 0;
1016 for (nexttx = sc->sc_txnext, seg = 0;
1017 seg < dmamap->dm_nsegs;
1018 seg++, nexttx = KSE_NEXTTX(nexttx)) {
1019 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1020 /*
1021 * If this is the first descriptor we're
1022 * enqueueing, don't set the OWN bit just
1023 * yet. That could cause a race condition.
1024 * We'll do it below.
1025 */
1026 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1027 tdes->t1 = sc->sc_t1csum
1028 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1029 tdes->t0 = tdes0;
1030 tdes0 |= T0_OWN;
1031 lasttx = nexttx;
1032 }
1033
1034 /*
1035 * Outgoing NFS mbuf must be unloaded when Tx completed.
1036 * Without T1_IC NFS mbuf is left unack'ed for excessive
1037 * time and NFS stops to proceed until kse_watchdog()
1038 * calls txreap() to reclaim the unack'ed mbuf.
1039 * It's painful to traverse every mbuf chain to determine
1040 * whether someone is waiting for Tx completion.
1041 */
1042 m = m0;
1043 do {
1044 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1045 sc->sc_txdescs[lasttx].t1 |= T1_IC;
1046 break;
1047 }
1048 } while ((m = m->m_next) != NULL);
1049
1050 /* Write last T0_OWN bit of the 1st segment */
1051 sc->sc_txdescs[lasttx].t1 |= T1_LS;
1052 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1053 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1054 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1055 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1056
1057 /* Tell DMA start transmit */
1058 CSR_WRITE_4(sc, MDTSC, 1);
1059
1060 txs->txs_mbuf = m0;
1061 txs->txs_firstdesc = sc->sc_txnext;
1062 txs->txs_lastdesc = lasttx;
1063 txs->txs_ndesc = dmamap->dm_nsegs;
1064
1065 sc->sc_txfree -= txs->txs_ndesc;
1066 sc->sc_txnext = nexttx;
1067 sc->sc_txsfree--;
1068 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1069 /*
1070 * Pass the packet to any BPF listeners.
1071 */
1072 bpf_mtap(ifp, m0, BPF_D_OUT);
1073 }
1074
1075 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1076 /* No more slots left; notify upper layer. */
1077 ifp->if_flags |= IFF_OACTIVE;
1078 }
1079 if (sc->sc_txfree != ofree) {
1080 /* Set a watchdog timer in case the chip flakes out. */
1081 ifp->if_timer = 5;
1082 }
1083 }
1084
1085 static void
1086 kse_set_filter(struct kse_softc *sc)
1087 {
1088 struct ether_multistep step;
1089 struct ether_multi *enm;
1090 struct ethercom *ec = &sc->sc_ethercom;
1091 struct ifnet *ifp = &ec->ec_if;
1092 uint32_t h, hashes[2];
1093
1094 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1095 ifp->if_flags &= ~IFF_ALLMULTI;
1096 if (ifp->if_flags & IFF_PROMISC)
1097 return;
1098
1099 ETHER_LOCK(ec);
1100 ETHER_FIRST_MULTI(step, ec, enm);
1101 if (enm == NULL) {
1102 ETHER_UNLOCK(ec);
1103 return;
1104 }
1105 hashes[0] = hashes[1] = 0;
1106 do {
1107 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1108 /*
1109 * We must listen to a range of multicast addresses.
1110 * For now, just accept all multicasts, rather than
1111 * trying to set only those filter bits needed to match
1112 * the range. (At this time, the only use of address
1113 * ranges is for IP multicast routing, for which the
1114 * range is big enough to require all bits set.)
1115 */
1116 ETHER_UNLOCK(ec);
1117 goto allmulti;
1118 }
1119 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1120 hashes[h >> 5] |= 1 << (h & 0x1f);
1121 ETHER_NEXT_MULTI(step, enm);
1122 } while (enm != NULL);
1123 ETHER_UNLOCK(ec);
1124 sc->sc_rxc |= RXC_MHTE;
1125 CSR_WRITE_4(sc, MTR0, hashes[0]);
1126 CSR_WRITE_4(sc, MTR1, hashes[1]);
1127 return;
1128 allmulti:
1129 sc->sc_rxc |= RXC_RM;
1130 ifp->if_flags |= IFF_ALLMULTI;
1131 }
1132
1133 static int
1134 add_rxbuf(struct kse_softc *sc, int idx)
1135 {
1136 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1137 struct mbuf *m;
1138 int error;
1139
1140 MGETHDR(m, M_DONTWAIT, MT_DATA);
1141 if (m == NULL)
1142 return ENOBUFS;
1143
1144 MCLGET(m, M_DONTWAIT);
1145 if ((m->m_flags & M_EXT) == 0) {
1146 m_freem(m);
1147 return ENOBUFS;
1148 }
1149
1150 if (rxs->rxs_mbuf != NULL)
1151 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1152
1153 rxs->rxs_mbuf = m;
1154
1155 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1156 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1157 if (error) {
1158 aprint_error_dev(sc->sc_dev,
1159 "can't load rx DMA map %d, error = %d\n", idx, error);
1160 panic("kse_add_rxbuf");
1161 }
1162
1163 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1164 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1165
1166 KSE_INIT_RXDESC(sc, idx);
1167
1168 return 0;
1169 }
1170
1171 static void
1172 rxdrain(struct kse_softc *sc)
1173 {
1174 struct kse_rxsoft *rxs;
1175 int i;
1176
1177 for (i = 0; i < KSE_NRXDESC; i++) {
1178 rxs = &sc->sc_rxsoft[i];
1179 if (rxs->rxs_mbuf != NULL) {
1180 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1181 m_freem(rxs->rxs_mbuf);
1182 rxs->rxs_mbuf = NULL;
1183 }
1184 }
1185 }
1186
1187 static int
1188 kse_intr(void *arg)
1189 {
1190 struct kse_softc *sc = arg;
1191 uint32_t isr;
1192
1193 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1194 return 0;
1195
1196 if (isr & INT_DMRS)
1197 rxintr(sc);
1198 if (isr & INT_DMTS)
1199 txreap(sc);
1200 if (isr & INT_DMLCS)
1201 lnkchg(sc);
1202 if (isr & INT_DMRBUS)
1203 aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1204
1205 CSR_WRITE_4(sc, INTST, isr);
1206 return 1;
1207 }
1208
1209 static void
1210 rxintr(struct kse_softc *sc)
1211 {
1212 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1213 struct kse_rxsoft *rxs;
1214 struct mbuf *m;
1215 uint32_t rxstat;
1216 int i, len;
1217
1218 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1219 rxs = &sc->sc_rxsoft[i];
1220
1221 KSE_CDRXSYNC(sc, i,
1222 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1223
1224 rxstat = sc->sc_rxdescs[i].r0;
1225
1226 if (rxstat & R0_OWN) /* desc is left empty */
1227 break;
1228
1229 /* R0_FS | R0_LS must have been marked for this desc */
1230
1231 if (rxstat & R0_ES) {
1232 ifp->if_ierrors++;
1233 #define PRINTERR(bit, str) \
1234 if (rxstat & (bit)) \
1235 aprint_error_dev(sc->sc_dev, \
1236 "%s\n", str)
1237 PRINTERR(R0_TL, "frame too long");
1238 PRINTERR(R0_RF, "runt frame");
1239 PRINTERR(R0_CE, "bad FCS");
1240 #undef PRINTERR
1241 KSE_INIT_RXDESC(sc, i);
1242 continue;
1243 }
1244
1245 /* HW errata; frame might be too small or too large */
1246
1247 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1248 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1249
1250 len = rxstat & R0_FL_MASK;
1251 len -= ETHER_CRC_LEN; /* Trim CRC off */
1252 m = rxs->rxs_mbuf;
1253
1254 if (add_rxbuf(sc, i) != 0) {
1255 ifp->if_ierrors++;
1256 KSE_INIT_RXDESC(sc, i);
1257 bus_dmamap_sync(sc->sc_dmat,
1258 rxs->rxs_dmamap, 0,
1259 rxs->rxs_dmamap->dm_mapsize,
1260 BUS_DMASYNC_PREREAD);
1261 continue;
1262 }
1263
1264 m_set_rcvif(m, ifp);
1265 m->m_pkthdr.len = m->m_len = len;
1266
1267 if (sc->sc_mcsum) {
1268 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1269 if (rxstat & R0_IPE)
1270 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1271 if (rxstat & (R0_TCPE | R0_UDPE))
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 }
1274 if_percpuq_enqueue(ifp->if_percpuq, m);
1275 #ifdef KSEDIAGNOSTIC
1276 if (kse_monitor_rxintr > 0) {
1277 aprint_error_dev(sc->sc_dev,
1278 "m stat %x data %p len %d\n",
1279 rxstat, m->m_data, m->m_len);
1280 }
1281 #endif
1282 }
1283 sc->sc_rxptr = i;
1284 }
1285
1286 static void
1287 txreap(struct kse_softc *sc)
1288 {
1289 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 struct kse_txsoft *txs;
1291 uint32_t txstat;
1292 int i;
1293
1294 ifp->if_flags &= ~IFF_OACTIVE;
1295
1296 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1297 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1298 txs = &sc->sc_txsoft[i];
1299
1300 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1301 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1302
1303 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1304
1305 if (txstat & T0_OWN) /* desc is still in use */
1306 break;
1307
1308 /* There is no way to tell transmission status per frame */
1309
1310 ifp->if_opackets++;
1311
1312 sc->sc_txfree += txs->txs_ndesc;
1313 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1314 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1315 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1316 m_freem(txs->txs_mbuf);
1317 txs->txs_mbuf = NULL;
1318 }
1319 sc->sc_txsdirty = i;
1320 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1321 ifp->if_timer = 0;
1322 }
1323
1324 static void
1325 lnkchg(struct kse_softc *sc)
1326 {
1327 struct ifmediareq ifmr;
1328
1329 #if KSE_LINKDEBUG == 1
1330 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1331 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1332 #endif
1333 kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1334 }
1335
1336 static int
1337 kse_ifmedia_upd(struct ifnet *ifp)
1338 {
1339 struct kse_softc *sc = ifp->if_softc;
1340 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1341 uint16_t p1cr4;
1342
1343 p1cr4 = 0;
1344 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1345 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1346 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1347 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1348 p1cr4 |= 0xf; /* adv. 100FDX,100HDX,10FDX,10HDX */
1349 } else {
1350 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1351 p1cr4 |= PxCR_SPD100;
1352 if (ifm->ifm_media & IFM_FDX)
1353 p1cr4 |= PxCR_USEFDX;
1354 }
1355 CSR_WRITE_2(sc, P1CR4, p1cr4);
1356 #if KSE_LINKDEBUG == 1
1357 printf("P1CR4: %04x\n", p1cr4);
1358 #endif
1359 return 0;
1360 }
1361
1362 static void
1363 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1364 {
1365 struct kse_softc *sc = ifp->if_softc;
1366 struct mii_data *mii = &sc->sc_mii;
1367
1368 mii_pollstat(mii);
1369 ifmr->ifm_status = mii->mii_media_status;
1370 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1371 sc->sc_flowflags;
1372 }
1373
1374 static void
1375 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1376 {
1377 struct kse_softc *sc = ifp->if_softc;
1378 struct ifmedia *ifm = &sc->sc_media;
1379
1380 #if KSE_LINKDEBUG == 2
1381 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1382 #endif
1383
1384 /* 8842 MAC pretends 100FDX all the time */
1385 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1386 ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1387 IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1388 }
1389
1390 static void
1391 phy_tick(void *arg)
1392 {
1393 struct kse_softc *sc = arg;
1394 struct mii_data *mii = &sc->sc_mii;
1395 int s;
1396
1397 s = splnet();
1398 mii_tick(mii);
1399 splx(s);
1400
1401 callout_schedule(&sc->sc_tick_ch, hz);
1402 }
1403
1404 static const uint16_t phy1csr[] = {
1405 /* 0 BMCR */ 0x4d0,
1406 /* 1 BMSR */ 0x4d2,
1407 /* 2 PHYID1 */ 0x4d6, /* 0x0022 - PHY1HR */
1408 /* 3 PHYID2 */ 0x4d4, /* 0x1430 - PHY1LR */
1409 /* 4 ANAR */ 0x4d8,
1410 /* 5 ANLPAR */ 0x4da,
1411 };
1412
1413 int
1414 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1415 {
1416 struct kse_softc *sc = device_private(self);
1417
1418 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1419 return EINVAL;
1420 *val = CSR_READ_2(sc, phy1csr[reg]);
1421 return 0;
1422 }
1423
1424 int
1425 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1426 {
1427 struct kse_softc *sc = device_private(self);
1428
1429 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1430 return EINVAL;
1431 CSR_WRITE_2(sc, phy1csr[reg], val);
1432 return 0;
1433 }
1434
1435 void
1436 kse_mii_statchg(struct ifnet *ifp)
1437 {
1438 struct kse_softc *sc = ifp->if_softc;
1439 struct mii_data *mii = &sc->sc_mii;
1440
1441 #if KSE_LINKDEBUG == 1
1442 /* decode P1SR register value */
1443 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1444 printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1445 if (p1sr & PxSR_FDX)
1446 printf(",full-duplex");
1447 if (p1sr & PxSR_RXFLOW)
1448 printf(",rxpause");
1449 if (p1sr & PxSR_TXFLOW)
1450 printf(",txpause");
1451 printf("\n");
1452 /* show resolved mii(4) parameters to compare against above */
1453 printf("MII spd%d",
1454 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1455 if (mii->mii_media_active & IFM_FDX)
1456 printf(",full-duplex");
1457 if (mii->mii_media_active & IFM_FLOW) {
1458 printf(",flowcontrol");
1459 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1460 printf(",rxpause");
1461 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1462 printf(",txpause");
1463 }
1464 printf("\n");
1465 #endif
1466 /* Get flow control negotiation result. */
1467 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1468 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1469 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1470
1471 /* Adjust MAC PAUSE flow control. */
1472 if ((mii->mii_media_active & IFM_FDX)
1473 && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1474 sc->sc_txc |= TXC_FCE;
1475 else
1476 sc->sc_txc &= ~TXC_FCE;
1477 if ((mii->mii_media_active & IFM_FDX)
1478 && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1479 sc->sc_rxc |= RXC_FCE;
1480 else
1481 sc->sc_rxc &= ~RXC_FCE;
1482 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1483 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1484 #if KSE_LINKDEBUG == 1
1485 printf("%ctxfce, %crxfce\n",
1486 (sc->sc_txc & TXC_FCE) ? '+' : '-',
1487 (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1488 #endif
1489 }
1490
1491 #ifdef KSE_EVENT_COUNTERS
1492 static void
1493 stat_tick(void *arg)
1494 {
1495 struct kse_softc *sc = arg;
1496 struct ksext *ee = &sc->sc_ext;
1497 int nport, p, i, val;
1498
1499 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1500 for (p = 0; p < nport; p++) {
1501 for (i = 0; i < 32; i++) {
1502 val = 0x1c00 | (p * 0x20 + i);
1503 CSR_WRITE_2(sc, IACR, val);
1504 do {
1505 val = CSR_READ_2(sc, IADR5) << 16;
1506 } while ((val & (1U << 30)) == 0);
1507 if (val & (1U << 31)) {
1508 (void)CSR_READ_2(sc, IADR4);
1509 val = 0x3fffffff; /* has made overflow */
1510 }
1511 else {
1512 val &= 0x3fff0000; /* 29:16 */
1513 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1514 }
1515 ee->pev[p][i].ev_count += val; /* i (0-31) */
1516 }
1517 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1518 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1519 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1520 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1521 }
1522 callout_schedule(&sc->sc_stat_ch, hz * 60);
1523 }
1524
1525 static void
1526 zerostats(struct kse_softc *sc)
1527 {
1528 struct ksext *ee = &sc->sc_ext;
1529 int nport, p, i, val;
1530
1531 /* Make sure all the HW counters get zero */
1532 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1533 for (p = 0; p < nport; p++) {
1534 for (i = 0; i < 31; i++) {
1535 val = 0x1c00 | (p * 0x20 + i);
1536 CSR_WRITE_2(sc, IACR, val);
1537 do {
1538 val = CSR_READ_2(sc, IADR5) << 16;
1539 } while ((val & (1U << 30)) == 0);
1540 (void)CSR_READ_2(sc, IADR4);
1541 ee->pev[p][i].ev_count = 0;
1542 }
1543 }
1544 }
1545 #endif
1546