Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.42
      1 /*	$NetBSD: if_kse.c,v 1.42 2019/11/26 08:37:05 nisimura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Micrel 8841/8842 10/100 PCI ethernet driver
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.42 2019/11/26 08:37:05 nisimura Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/callout.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/malloc.h>
     44 #include <sys/kernel.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/errno.h>
     47 #include <sys/device.h>
     48 #include <sys/queue.h>
     49 
     50 #include <machine/endian.h>
     51 #include <sys/bus.h>
     52 #include <sys/intr.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_media.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <dev/mii/mii.h>
     59 #include <dev/mii/miivar.h>
     60 #include <net/bpf.h>
     61 
     62 #include <dev/pci/pcivar.h>
     63 #include <dev/pci/pcireg.h>
     64 #include <dev/pci/pcidevs.h>
     65 
     66 #define KSE_LINKDEBUG 0
     67 
     68 #define CSR_READ_4(sc, off) \
     69 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     70 #define CSR_WRITE_4(sc, off, val) \
     71 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     72 #define CSR_READ_2(sc, off) \
     73 	    bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
     74 #define CSR_WRITE_2(sc, off, val) \
     75 	    bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
     76 
     77 #define MDTXC	0x000	/* DMA transmit control */
     78 #define MDRXC	0x004	/* DMA receive control */
     79 #define MDTSC	0x008	/* DMA transmit start */
     80 #define MDRSC	0x00c	/* DMA receive start */
     81 #define TDLB	0x010	/* transmit descriptor list base */
     82 #define RDLB	0x014	/* receive descriptor list base */
     83 #define MTR0	0x020	/* multicast table 31:0 */
     84 #define MTR1	0x024	/* multicast table 63:32 */
     85 #define INTEN	0x028	/* interrupt enable */
     86 #define INTST	0x02c	/* interrupt status */
     87 #define MARL	0x200	/* MAC address low */
     88 #define MARM	0x202	/* MAC address middle */
     89 #define MARH	0x204	/* MAC address high */
     90 #define GRR	0x216	/* global reset */
     91 #define SIDER	0x400	/* switch ID and function enable */
     92 #define IACR	0x4a0	/* indirect access control */
     93 #define IADR1	0x4a2	/* indirect access data 66:63 */
     94 #define IADR2	0x4a4	/* indirect access data 47:32 */
     95 #define IADR3	0x4a6	/* indirect access data 63:48 */
     96 #define IADR4	0x4a8	/* indirect access data 15:0 */
     97 #define IADR5	0x4aa	/* indirect access data 31:16 */
     98 #define P1CR4	0x512	/* port 1 control 4 */
     99 #define P1SR	0x514	/* port 1 status */
    100 #define P2CR4	0x532	/* port 2 control 4 */
    101 #define P2SR	0x534	/* port 2 status */
    102 #define  PxCR_STARTNEG	(1U<<9)		/* restart auto negotiation */
    103 #define  PxCR_AUTOEN	(1U<<7)		/* auto negotiation enable */
    104 #define  PxCR_SPD100	(1U<<6)		/* force speed 100 */
    105 #define  PxCR_USEFDX	(1U<<5)		/* force full duplex */
    106 #define  PxCR_USEFC	(1U<<4)		/* advertise pause flow control */
    107 #define  PxSR_ACOMP	(1U<<6)		/* auto negotiation completed */
    108 #define  PxSR_SPD100	(1U<<10)	/* speed is 100Mbps */
    109 #define  PxSR_FDX	(1U<<9)		/* full duplex */
    110 #define  PxSR_LINKUP	(1U<<5)		/* link is good */
    111 #define  PxSR_RXFLOW	(1U<<12)	/* receive flow control active */
    112 #define  PxSR_TXFLOW	(1U<<11)	/* transmit flow control active */
    113 #define P1VIDCR	0x504	/* port 1 vtag */
    114 #define P2VIDCR	0x524	/* port 2 vtag */
    115 #define P3VIDCR	0x544	/* 8842 host vtag */
    116 
    117 #define TXC_BS_MSK	0x3f000000	/* burst size */
    118 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    119 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
    120 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
    121 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
    122 #define TXC_FCE		(1U<<9)		/* generate PAUSE to moderate Rx lvl */
    123 #define TXC_EP		(1U<<2)		/* enable automatic padding */
    124 #define TXC_AC		(1U<<1)		/* add CRC to frame */
    125 #define TXC_TEN		(1)		/* enable DMA to run */
    126 
    127 #define RXC_BS_MSK	0x3f000000	/* burst size */
    128 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    129 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
    130 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    131 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    132 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    133 #define RXC_FCE		(1U<<9)		/* accept PAUSE to throttle Tx */
    134 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    135 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    136 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    137 #define RXC_RE		(1U<<3)		/* accept error frame */
    138 #define RXC_RA		(1U<<2)		/* receive all frame */
    139 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
    140 #define RXC_REN		(1)		/* enable DMA to run */
    141 
    142 #define INT_DMLCS	(1U<<31)	/* link status change */
    143 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    144 #define INT_DMRS	(1U<<29)	/* frame was received */
    145 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    146 
    147 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    148 
    149 #define R0_OWN		(1U<<31)	/* desc is empty */
    150 #define R0_FS		(1U<<30)	/* first segment of frame */
    151 #define R0_LS		(1U<<29)	/* last segment of frame */
    152 #define R0_IPE		(1U<<28)	/* IP checksum error */
    153 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    154 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    155 #define R0_ES		(1U<<25)	/* error summary */
    156 #define R0_MF		(1U<<24)	/* multicast frame */
    157 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    158 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    159 #define R0_RE		(1U<<19)	/* MII reported error */
    160 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    161 #define R0_RF		(1U<<17)	/* damaged runt frame */
    162 #define R0_CE		(1U<<16)	/* CRC error */
    163 #define R0_FT		(1U<<15)	/* frame type */
    164 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    165 
    166 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    167 #define T1_FS		(1U<<30)	/* first segment of frame */
    168 #define T1_LS		(1U<<29)	/* last segment of frame */
    169 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    170 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    171 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    172 #define T1_TER		(1U<<25)	/* end of ring */
    173 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    174 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    175 
    176 #define R1_RER		(1U<<25)	/* end of ring */
    177 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
    178 
    179 #define KSE_NTXSEGS		16
    180 #define KSE_TXQUEUELEN		64
    181 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    182 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    183 #define KSE_NTXDESC		256
    184 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    185 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    186 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    187 
    188 #define KSE_NRXDESC		64
    189 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    190 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    191 
    192 struct tdes {
    193 	uint32_t t0, t1, t2, t3;
    194 };
    195 
    196 struct rdes {
    197 	uint32_t r0, r1, r2, r3;
    198 };
    199 
    200 struct kse_control_data {
    201 	struct tdes kcd_txdescs[KSE_NTXDESC];
    202 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    203 };
    204 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    205 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    206 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    207 
    208 struct kse_txsoft {
    209 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    210 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    211 	int txs_firstdesc;		/* first descriptor in packet */
    212 	int txs_lastdesc;		/* last descriptor in packet */
    213 	int txs_ndesc;			/* # of descriptors used */
    214 };
    215 
    216 struct kse_rxsoft {
    217 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    218 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    219 };
    220 
    221 struct kse_softc {
    222 	device_t sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_size_t sc_memsize;		/* csr map size */
    226 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    227 	pci_chipset_tag_t sc_pc;	/* PCI chipset tag */
    228 	struct ethercom sc_ethercom;	/* Ethernet common data */
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* mii 8841 */
    232 	struct ifmedia sc_media;	/* ifmedia 8842 */
    233 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    234 
    235 	callout_t  sc_tick_ch;		/* MII tick callout */
    236 	callout_t  sc_stat_ch;		/* statistics counter callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	struct kse_control_data *sc_control_data;
    242 #define sc_txdescs	sc_control_data->kcd_txdescs
    243 #define sc_rxdescs	sc_control_data->kcd_rxdescs
    244 
    245 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    246 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    247 	int sc_txfree;			/* number of free Tx descriptors */
    248 	int sc_txnext;			/* next ready Tx descriptor */
    249 	int sc_txsfree;			/* number of free Tx jobs */
    250 	int sc_txsnext;			/* next ready Tx job */
    251 	int sc_txsdirty;		/* dirty Tx jobs */
    252 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    253 
    254 	uint32_t sc_txc, sc_rxc;
    255 	uint32_t sc_t1csum;
    256 	int sc_mcsum;
    257 	uint32_t sc_inten;
    258 
    259 	uint32_t sc_chip;
    260 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
    261 	uint16_t sc_vlan[16];
    262 
    263 #ifdef KSE_EVENT_COUNTERS
    264 	struct ksext {
    265 		char evcntname[3][8];
    266 		struct evcnt pev[3][34];
    267 	} sc_ext;			/* switch statistics */
    268 #endif
    269 };
    270 
    271 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    272 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    273 
    274 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    275 do {									\
    276 	int __x, __n;							\
    277 									\
    278 	__x = (x);							\
    279 	__n = (n);							\
    280 									\
    281 	/* If it will wrap around, sync to the end of the ring. */	\
    282 	if ((__x + __n) > KSE_NTXDESC) {				\
    283 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    284 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    285 		    (KSE_NTXDESC - __x), (ops));			\
    286 		__n -= (KSE_NTXDESC - __x);				\
    287 		__x = 0;						\
    288 	}								\
    289 									\
    290 	/* Now sync whatever is left. */				\
    291 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    292 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    293 } while (/*CONSTCOND*/0)
    294 
    295 #define KSE_CDRXSYNC(sc, x, ops)					\
    296 do {									\
    297 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    298 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    299 } while (/*CONSTCOND*/0)
    300 
    301 #define KSE_INIT_RXDESC(sc, x)						\
    302 do {									\
    303 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    304 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    305 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    306 									\
    307 	__m->m_data = __m->m_ext.ext_buf;				\
    308 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    309 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    310 	__rxd->r0 = R0_OWN;						\
    311 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    312 } while (/*CONSTCOND*/0)
    313 
    314 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
    315 
    316 #ifdef KSEDIAGNOSTIC
    317 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    318 #endif
    319 
    320 static int kse_match(device_t, cfdata_t, void *);
    321 static void kse_attach(device_t, device_t, void *);
    322 
    323 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
    324     kse_match, kse_attach, NULL, NULL);
    325 
    326 static int kse_ioctl(struct ifnet *, u_long, void *);
    327 static void kse_start(struct ifnet *);
    328 static void kse_watchdog(struct ifnet *);
    329 static int kse_init(struct ifnet *);
    330 static void kse_stop(struct ifnet *, int);
    331 static void kse_reset(struct kse_softc *);
    332 static void kse_set_filter(struct kse_softc *);
    333 static int add_rxbuf(struct kse_softc *, int);
    334 static void rxdrain(struct kse_softc *);
    335 static int kse_intr(void *);
    336 static void rxintr(struct kse_softc *);
    337 static void txreap(struct kse_softc *);
    338 static void lnkchg(struct kse_softc *);
    339 static int kse_ifmedia_upd(struct ifnet *);
    340 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    341 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
    342 static void phy_tick(void *);
    343 int kse_mii_readreg(device_t, int, int, uint16_t *);
    344 int kse_mii_writereg(device_t, int, int, uint16_t);
    345 void kse_mii_statchg(struct ifnet *);
    346 #ifdef KSE_EVENT_COUNTERS
    347 static void stat_tick(void *);
    348 static void zerostats(struct kse_softc *);
    349 #endif
    350 
    351 static int
    352 kse_match(device_t parent, cfdata_t match, void *aux)
    353 {
    354 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    355 
    356 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    357 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    358 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    359 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    360 		return 1;
    361 
    362 	return 0;
    363 }
    364 
    365 static void
    366 kse_attach(device_t parent, device_t self, void *aux)
    367 {
    368 	struct kse_softc *sc = device_private(self);
    369 	struct pci_attach_args *pa = aux;
    370 	pci_chipset_tag_t pc = pa->pa_pc;
    371 	pci_intr_handle_t ih;
    372 	const char *intrstr;
    373 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    374 	struct mii_data * const mii = &sc->sc_mii;
    375 	struct ifmedia *ifm;
    376 	uint8_t enaddr[ETHER_ADDR_LEN];
    377 	bus_dma_segment_t seg;
    378 	int i, error, nseg;
    379 	char intrbuf[PCI_INTRSTR_LEN];
    380 
    381 	aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    382 	    PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
    383 
    384 	if (pci_mapreg_map(pa, 0x10,
    385 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    386 	    0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
    387 		aprint_error_dev(self, "unable to map device registers\n");
    388 		return;
    389 	}
    390 
    391 	/* Make sure bus mastering is enabled. */
    392 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    393 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    394 	    PCI_COMMAND_MASTER_ENABLE);
    395 
    396 	/* Power up chip if necessary. */
    397 	if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
    398 	    && error != EOPNOTSUPP) {
    399 		aprint_error_dev(self, "cannot activate %d\n", error);
    400 		return;
    401 	}
    402 
    403 	/* Map and establish our interrupt. */
    404 	if (pci_intr_map(pa, &ih)) {
    405 		aprint_error_dev(self, "unable to map interrupt\n");
    406 		return;
    407 	}
    408 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    409 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
    410 	    device_xname(self));
    411 	if (sc->sc_ih == NULL) {
    412 		aprint_error_dev(self, "unable to establish interrupt");
    413 		if (intrstr != NULL)
    414 			aprint_error(" at %s", intrstr);
    415 		aprint_error("\n");
    416 		return;
    417 	}
    418 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    419 
    420 	sc->sc_dev = self;
    421 	sc->sc_dmat = pa->pa_dmat;
    422 	sc->sc_pc = pa->pa_pc;
    423 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    424 
    425 	/*
    426 	 * Read the Ethernet address from the EEPROM.
    427 	 */
    428 	i = CSR_READ_2(sc, MARL);
    429 	enaddr[5] = i;
    430 	enaddr[4] = i >> 8;
    431 	i = CSR_READ_2(sc, MARM);
    432 	enaddr[3] = i;
    433 	enaddr[2] = i >> 8;
    434 	i = CSR_READ_2(sc, MARH);
    435 	enaddr[1] = i;
    436 	enaddr[0] = i >> 8;
    437 	aprint_normal_dev(self,
    438 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    439 
    440 	/*
    441 	 * Enable chip function.
    442 	 */
    443 	CSR_WRITE_2(sc, SIDER, 1);
    444 
    445 	/*
    446 	 * Allocate the control data structures, and create and load the
    447 	 * DMA map for it.
    448 	 */
    449 	error = bus_dmamem_alloc(sc->sc_dmat,
    450 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    451 	if (error != 0) {
    452 		aprint_error_dev(self,
    453 		    "unable to allocate control data, error = %d\n", error);
    454 		goto fail_0;
    455 	}
    456 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    457 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    458 	    BUS_DMA_COHERENT);
    459 	if (error != 0) {
    460 		aprint_error_dev(self,
    461 		    "unable to map control data, error = %d\n", error);
    462 		goto fail_1;
    463 	}
    464 	error = bus_dmamap_create(sc->sc_dmat,
    465 	    sizeof(struct kse_control_data), 1,
    466 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    467 	if (error != 0) {
    468 		aprint_error_dev(self,
    469 		    "unable to create control data DMA map, "
    470 		    "error = %d\n", error);
    471 		goto fail_2;
    472 	}
    473 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    474 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    475 	if (error != 0) {
    476 		aprint_error_dev(self,
    477 		    "unable to load control data DMA map, error = %d\n",
    478 		    error);
    479 		goto fail_3;
    480 	}
    481 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    482 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    483 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    484 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    485 			aprint_error_dev(self,
    486 			    "unable to create tx DMA map %d, error = %d\n",
    487 			    i, error);
    488 			goto fail_4;
    489 		}
    490 	}
    491 	for (i = 0; i < KSE_NRXDESC; i++) {
    492 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    493 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    494 			aprint_error_dev(self,
    495 			    "unable to create rx DMA map %d, error = %d\n",
    496 			    i, error);
    497 			goto fail_5;
    498 		}
    499 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    500 	}
    501 
    502 	callout_init(&sc->sc_tick_ch, 0);
    503 	callout_init(&sc->sc_stat_ch, 0);
    504 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
    505 #ifdef KSE_EVENT_COUNTERS
    506 	callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
    507 #endif
    508 
    509 	mii->mii_ifp = ifp;
    510 	mii->mii_readreg = kse_mii_readreg;
    511 	mii->mii_writereg = kse_mii_writereg;
    512 	mii->mii_statchg = kse_mii_statchg;
    513 
    514 	/* Initialize ifmedia structures. */
    515 	sc->sc_flowflags = 0;
    516 	if (sc->sc_chip == 0x8841) {
    517 		/* use port 1 builtin PHY as index 1 device */
    518 		sc->sc_ethercom.ec_mii = mii;
    519 		ifm = &mii->mii_media;
    520 		ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
    521 		mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
    522 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
    523 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
    524 			ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    525 			ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    526 		} else
    527 			ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    528 	} else {
    529 		/*
    530 		 * pretend 100FDX w/ no alternative media selection.
    531 		 * 8842 MAC is tied with a builtin 3 port switch. It can do
    532 		 * 4 degree priotised rate control over either of tx/rx
    533 		 * direction for any of ports, respectively. Tough, this
    534 		 * driver leaves the rate unlimited intending 100Mbps maximum.
    535 		 * 2 external ports behave in AN mode and this driver provides
    536 		 * no mean to manipulate and see their operational details.
    537 		 */
    538 		sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
    539 		ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
    540 		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    541 		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
    542 
    543 		aprint_normal_dev(self,
    544 		    "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
    545 	}
    546 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    547 
    548 
    549 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    550 	ifp->if_softc = sc;
    551 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    552 	ifp->if_ioctl = kse_ioctl;
    553 	ifp->if_start = kse_start;
    554 	ifp->if_watchdog = kse_watchdog;
    555 	ifp->if_init = kse_init;
    556 	ifp->if_stop = kse_stop;
    557 	IFQ_SET_READY(&ifp->if_snd);
    558 
    559 	/*
    560 	 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
    561 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    562 	 */
    563 	sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
    564 	ifp->if_capabilities =
    565 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    566 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    567 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    568 
    569 	if_attach(ifp);
    570 	ether_ifattach(ifp, enaddr);
    571 
    572 #ifdef KSE_EVENT_COUNTERS
    573 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
    574 	for (i = 0; i < p; i++) {
    575 		struct ksext *ee = &sc->sc_ext;
    576 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
    577 		    "%s.%d", device_xname(sc->sc_dev), i+1);
    578 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
    579 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
    580 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
    581 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
    582 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
    583 		    NULL, ee->evcntname[i], "RxUndersizePkt");
    584 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
    585 		    NULL, ee->evcntname[i], "RxFragments");
    586 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
    587 		    NULL, ee->evcntname[i], "RxOversize");
    588 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
    589 		    NULL, ee->evcntname[i], "RxJabbers");
    590 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
    591 		    NULL, ee->evcntname[i], "RxSymbolError");
    592 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
    593 		    NULL, ee->evcntname[i], "RxCRCError");
    594 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
    595 		    NULL, ee->evcntname[i], "RxAlignmentError");
    596 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
    597 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
    598 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
    599 		    NULL, ee->evcntname[i], "RxPausePkts");
    600 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
    601 		    NULL, ee->evcntname[i], "RxBroadcast");
    602 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
    603 		    NULL, ee->evcntname[i], "RxMulticast");
    604 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
    605 		    NULL, ee->evcntname[i], "RxUnicast");
    606 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
    607 		    NULL, ee->evcntname[i], "Rx64Octets");
    608 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
    609 		    NULL, ee->evcntname[i], "Rx65To127Octets");
    610 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
    611 		    NULL, ee->evcntname[i], "Rx128To255Octets");
    612 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
    613 		    NULL, ee->evcntname[i], "Rx255To511Octets");
    614 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
    615 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
    616 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
    617 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
    618 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
    619 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
    620 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
    621 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
    622 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
    623 		    NULL, ee->evcntname[i], "TxLateCollision");
    624 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
    625 		    NULL, ee->evcntname[i], "TxPausePkts");
    626 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
    627 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
    628 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
    629 		    NULL, ee->evcntname[i], "TxMulticastPkts");
    630 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
    631 		    NULL, ee->evcntname[i], "TxUnicastPkts");
    632 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
    633 		    NULL, ee->evcntname[i], "TxDeferred");
    634 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
    635 		    NULL, ee->evcntname[i], "TxTotalCollision");
    636 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
    637 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
    638 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
    639 		    NULL, ee->evcntname[i], "TxSingleCollision");
    640 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
    641 		    NULL, ee->evcntname[i], "TxMultipleCollision");
    642 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
    643 		    NULL, ee->evcntname[i], "TxDropPkts");
    644 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
    645 		    NULL, ee->evcntname[i], "RxDropPkts");
    646 	}
    647 #endif
    648 	return;
    649 
    650  fail_5:
    651 	for (i = 0; i < KSE_NRXDESC; i++) {
    652 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    653 			bus_dmamap_destroy(sc->sc_dmat,
    654 			    sc->sc_rxsoft[i].rxs_dmamap);
    655 	}
    656  fail_4:
    657 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    658 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    659 			bus_dmamap_destroy(sc->sc_dmat,
    660 			    sc->sc_txsoft[i].txs_dmamap);
    661 	}
    662 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    663  fail_3:
    664 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    665  fail_2:
    666 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    667 	    sizeof(struct kse_control_data));
    668  fail_1:
    669 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    670  fail_0:
    671 	if (sc->sc_ih != NULL) {
    672 		pci_intr_disestablish(pc, sc->sc_ih);
    673 		sc->sc_ih = NULL;
    674 	}
    675 	if (sc->sc_memsize) {
    676 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
    677 		sc->sc_memsize = 0;
    678 	}
    679 	return;
    680 }
    681 
    682 static int
    683 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    684 {
    685 	struct kse_softc *sc = ifp->if_softc;
    686 	struct ifreq *ifr = (struct ifreq *)data;
    687 	struct ifmedia *ifm;
    688 	int s, error;
    689 
    690 	s = splnet();
    691 
    692 	switch (cmd) {
    693 	case SIOCSIFMEDIA:
    694 		/* Flow control requires full-duplex mode. */
    695 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    696 		    (ifr->ifr_media & IFM_FDX) == 0)
    697 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    698 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    699 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    700 				/* We can do both TXPAUSE and RXPAUSE. */
    701 				ifr->ifr_media |=
    702 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    703 			}
    704 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
    705 		}
    706 		ifm = (sc->sc_chip == 0x8841)
    707 		    ? &sc->sc_mii.mii_media : &sc->sc_media;
    708 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    709 		break;
    710 	default:
    711 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    712 			break;
    713 
    714 		error = 0;
    715 
    716 		if (cmd == SIOCSIFCAP)
    717 			error = (*ifp->if_init)(ifp);
    718 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    719 			;
    720 		else if (ifp->if_flags & IFF_RUNNING) {
    721 			/*
    722 			 * Multicast list has changed; set the hardware filter
    723 			 * accordingly.
    724 			 */
    725 			kse_set_filter(sc);
    726 		}
    727 		break;
    728 	}
    729 
    730 	splx(s);
    731 	return error;
    732 }
    733 
    734 static int
    735 kse_init(struct ifnet *ifp)
    736 {
    737 	struct kse_softc *sc = ifp->if_softc;
    738 	uint32_t paddr;
    739 	int i, error = 0;
    740 
    741 	/* cancel pending I/O */
    742 	kse_stop(ifp, 0);
    743 
    744 	/* reset all registers but PCI configuration */
    745 	kse_reset(sc);
    746 
    747 	/* craft Tx descriptor ring */
    748 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    749 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    750 		sc->sc_txdescs[i].t3 = paddr;
    751 		paddr += sizeof(struct tdes);
    752 	}
    753 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    754 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    755 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    756 	sc->sc_txfree = KSE_NTXDESC;
    757 	sc->sc_txnext = 0;
    758 
    759 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    760 		sc->sc_txsoft[i].txs_mbuf = NULL;
    761 	sc->sc_txsfree = KSE_TXQUEUELEN;
    762 	sc->sc_txsnext = 0;
    763 	sc->sc_txsdirty = 0;
    764 
    765 	/* craft Rx descriptor ring */
    766 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    767 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    768 		sc->sc_rxdescs[i].r3 = paddr;
    769 		paddr += sizeof(struct rdes);
    770 	}
    771 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    772 	for (i = 0; i < KSE_NRXDESC; i++) {
    773 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    774 			if ((error = add_rxbuf(sc, i)) != 0) {
    775 				aprint_error_dev(sc->sc_dev,
    776 				    "unable to allocate or map rx "
    777 				    "buffer %d, error = %d\n",
    778 				    i, error);
    779 				rxdrain(sc);
    780 				goto out;
    781 			}
    782 		}
    783 		else
    784 			KSE_INIT_RXDESC(sc, i);
    785 	}
    786 	sc->sc_rxptr = 0;
    787 
    788 	/* hand Tx/Rx rings to HW */
    789 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    790 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    791 
    792 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
    793 	sc->sc_rxc = RXC_REN | RXC_RU;
    794 	if (ifp->if_flags & IFF_PROMISC)
    795 		sc->sc_rxc |= RXC_RA;
    796 	if (ifp->if_flags & IFF_BROADCAST)
    797 		sc->sc_rxc |= RXC_RB;
    798 	sc->sc_t1csum = sc->sc_mcsum = 0;
    799 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    800 		sc->sc_rxc |= RXC_ICC;
    801 		sc->sc_mcsum |= M_CSUM_IPv4;
    802 	}
    803 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    804 		sc->sc_txc |= TXC_ICG;
    805 		sc->sc_t1csum |= T1_IPCKG;
    806 	}
    807 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    808 		sc->sc_rxc |= RXC_TCC;
    809 		sc->sc_mcsum |= M_CSUM_TCPv4;
    810 	}
    811 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    812 		sc->sc_txc |= TXC_TCG;
    813 		sc->sc_t1csum |= T1_TCPCKG;
    814 	}
    815 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    816 		sc->sc_rxc |= RXC_UCC;
    817 		sc->sc_mcsum |= M_CSUM_UDPv4;
    818 	}
    819 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    820 		sc->sc_txc |= TXC_UCG;
    821 		sc->sc_t1csum |= T1_UDPCKG;
    822 	}
    823 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    824 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    825 
    826 	if (sc->sc_chip == 0x8842) {
    827 		sc->sc_txc |= TXC_FCE;
    828 		sc->sc_rxc |= RXC_FCE;
    829 	}
    830 
    831 	/* build multicast hash filter if necessary */
    832 	kse_set_filter(sc);
    833 
    834 	/* set current media */
    835 	if (sc->sc_chip == 0x8841)
    836 		(void)kse_ifmedia_upd(ifp);
    837 
    838 	/* enable transmitter and receiver */
    839 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    840 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    841 	CSR_WRITE_4(sc, MDRSC, 1);
    842 
    843 	/* enable interrupts */
    844 	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
    845 	if (sc->sc_chip == 0x8841)
    846 		sc->sc_inten |= INT_DMLCS;
    847 	CSR_WRITE_4(sc, INTST, ~0);
    848 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
    849 
    850 	ifp->if_flags |= IFF_RUNNING;
    851 	ifp->if_flags &= ~IFF_OACTIVE;
    852 
    853 	if (sc->sc_chip == 0x8841) {
    854 		/* start one second timer */
    855 		callout_schedule(&sc->sc_tick_ch, hz);
    856 	}
    857 #ifdef KSE_EVENT_COUNTERS
    858 	/* start statistics gather 1 minute timer. should be tunable */
    859 	zerostats(sc);
    860 	callout_schedule(&sc->sc_stat_ch, hz * 60);
    861 #endif
    862 
    863  out:
    864 	if (error) {
    865 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    866 		ifp->if_timer = 0;
    867 		aprint_error_dev(sc->sc_dev, "interface not running\n");
    868 	}
    869 	return error;
    870 }
    871 
    872 static void
    873 kse_stop(struct ifnet *ifp, int disable)
    874 {
    875 	struct kse_softc *sc = ifp->if_softc;
    876 	struct kse_txsoft *txs;
    877 	int i;
    878 
    879 	if (sc->sc_chip == 0x8841)
    880 		callout_stop(&sc->sc_tick_ch);
    881 	callout_stop(&sc->sc_stat_ch);
    882 
    883 	sc->sc_txc &= ~TXC_TEN;
    884 	sc->sc_rxc &= ~RXC_REN;
    885 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    886 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    887 
    888 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    889 		txs = &sc->sc_txsoft[i];
    890 		if (txs->txs_mbuf != NULL) {
    891 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    892 			m_freem(txs->txs_mbuf);
    893 			txs->txs_mbuf = NULL;
    894 		}
    895 	}
    896 
    897 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    898 	ifp->if_timer = 0;
    899 
    900 	if (disable)
    901 		rxdrain(sc);
    902 }
    903 
    904 static void
    905 kse_reset(struct kse_softc *sc)
    906 {
    907 
    908 	/* software reset */
    909 	CSR_WRITE_2(sc, GRR, 1);
    910 	delay(1000); /* PDF does not mention the delay amount */
    911 	CSR_WRITE_2(sc, GRR, 0);
    912 
    913 	/* enable switch function */
    914 	CSR_WRITE_2(sc, SIDER, 1);
    915 }
    916 
    917 static void
    918 kse_watchdog(struct ifnet *ifp)
    919 {
    920 	struct kse_softc *sc = ifp->if_softc;
    921 
    922 	/*
    923 	 * Since we're not interrupting every packet, sweep
    924 	 * up before we report an error.
    925 	 */
    926 	txreap(sc);
    927 
    928 	if (sc->sc_txfree != KSE_NTXDESC) {
    929 		aprint_error_dev(sc->sc_dev,
    930 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
    931 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
    932 		ifp->if_oerrors++;
    933 
    934 		/* Reset the interface. */
    935 		kse_init(ifp);
    936 	}
    937 	else if (ifp->if_flags & IFF_DEBUG)
    938 		aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
    939 
    940 	/* Try to get more packets going. */
    941 	kse_start(ifp);
    942 }
    943 
    944 static void
    945 kse_start(struct ifnet *ifp)
    946 {
    947 	struct kse_softc *sc = ifp->if_softc;
    948 	struct mbuf *m0, *m;
    949 	struct kse_txsoft *txs;
    950 	bus_dmamap_t dmamap;
    951 	int error, nexttx, lasttx, ofree, seg;
    952 	uint32_t tdes0;
    953 
    954 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    955 		return;
    956 
    957 	/* Remember the previous number of free descriptors. */
    958 	ofree = sc->sc_txfree;
    959 
    960 	/*
    961 	 * Loop through the send queue, setting up transmit descriptors
    962 	 * until we drain the queue, or use up all available transmit
    963 	 * descriptors.
    964 	 */
    965 	for (;;) {
    966 		IFQ_POLL(&ifp->if_snd, m0);
    967 		if (m0 == NULL)
    968 			break;
    969 
    970 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    971 			txreap(sc);
    972 			if (sc->sc_txsfree == 0)
    973 				break;
    974 		}
    975 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    976 		dmamap = txs->txs_dmamap;
    977 
    978 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    979 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    980 		if (error) {
    981 			if (error == EFBIG) {
    982 				aprint_error_dev(sc->sc_dev,
    983 				    "Tx packet consumes too many "
    984 				    "DMA segments, dropping...\n");
    985 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    986 				    m_freem(m0);
    987 				    continue;
    988 			}
    989 			/* Short on resources, just stop for now. */
    990 			break;
    991 		}
    992 
    993 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    994 			/*
    995 			 * Not enough free descriptors to transmit this
    996 			 * packet.  We haven't committed anything yet,
    997 			 * so just unload the DMA map, put the packet
    998 			 * back on the queue, and punt.	 Notify the upper
    999 			 * layer that there are not more slots left.
   1000 			 */
   1001 			ifp->if_flags |= IFF_OACTIVE;
   1002 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1003 			break;
   1004 		}
   1005 
   1006 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1007 
   1008 		/*
   1009 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1010 		 */
   1011 
   1012 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1013 		    BUS_DMASYNC_PREWRITE);
   1014 
   1015 		lasttx = -1; tdes0 = 0;
   1016 		for (nexttx = sc->sc_txnext, seg = 0;
   1017 		     seg < dmamap->dm_nsegs;
   1018 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
   1019 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1020 			/*
   1021 			 * If this is the first descriptor we're
   1022 			 * enqueueing, don't set the OWN bit just
   1023 			 * yet.	 That could cause a race condition.
   1024 			 * We'll do it below.
   1025 			 */
   1026 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
   1027 			tdes->t1 = sc->sc_t1csum
   1028 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
   1029 			tdes->t0 = tdes0;
   1030 			tdes0 |= T0_OWN;
   1031 			lasttx = nexttx;
   1032 		}
   1033 
   1034 		/*
   1035 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
   1036 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
   1037 		 * time and NFS stops to proceed until kse_watchdog()
   1038 		 * calls txreap() to reclaim the unack'ed mbuf.
   1039 		 * It's painful to traverse every mbuf chain to determine
   1040 		 * whether someone is waiting for Tx completion.
   1041 		 */
   1042 		m = m0;
   1043 		do {
   1044 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
   1045 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
   1046 				break;
   1047 			}
   1048 		} while ((m = m->m_next) != NULL);
   1049 
   1050 		/* Write last T0_OWN bit of the 1st segment */
   1051 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
   1052 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
   1053 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
   1054 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1055 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1056 
   1057 		/* Tell DMA start transmit */
   1058 		CSR_WRITE_4(sc, MDTSC, 1);
   1059 
   1060 		txs->txs_mbuf = m0;
   1061 		txs->txs_firstdesc = sc->sc_txnext;
   1062 		txs->txs_lastdesc = lasttx;
   1063 		txs->txs_ndesc = dmamap->dm_nsegs;
   1064 
   1065 		sc->sc_txfree -= txs->txs_ndesc;
   1066 		sc->sc_txnext = nexttx;
   1067 		sc->sc_txsfree--;
   1068 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
   1069 		/*
   1070 		 * Pass the packet to any BPF listeners.
   1071 		 */
   1072 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1073 	}
   1074 
   1075 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1076 		/* No more slots left; notify upper layer. */
   1077 		ifp->if_flags |= IFF_OACTIVE;
   1078 	}
   1079 	if (sc->sc_txfree != ofree) {
   1080 		/* Set a watchdog timer in case the chip flakes out. */
   1081 		ifp->if_timer = 5;
   1082 	}
   1083 }
   1084 
   1085 static void
   1086 kse_set_filter(struct kse_softc *sc)
   1087 {
   1088 	struct ether_multistep step;
   1089 	struct ether_multi *enm;
   1090 	struct ethercom *ec = &sc->sc_ethercom;
   1091 	struct ifnet *ifp = &ec->ec_if;
   1092 	uint32_t h, hashes[2];
   1093 
   1094 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
   1095 	ifp->if_flags &= ~IFF_ALLMULTI;
   1096 	if (ifp->if_flags & IFF_PROMISC)
   1097 		return;
   1098 
   1099 	ETHER_LOCK(ec);
   1100 	ETHER_FIRST_MULTI(step, ec, enm);
   1101 	if (enm == NULL) {
   1102 		ETHER_UNLOCK(ec);
   1103 		return;
   1104 	}
   1105 	hashes[0] = hashes[1] = 0;
   1106 	do {
   1107 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1108 			/*
   1109 			 * We must listen to a range of multicast addresses.
   1110 			 * For now, just accept all multicasts, rather than
   1111 			 * trying to set only those filter bits needed to match
   1112 			 * the range.  (At this time, the only use of address
   1113 			 * ranges is for IP multicast routing, for which the
   1114 			 * range is big enough to require all bits set.)
   1115 			 */
   1116 			ETHER_UNLOCK(ec);
   1117 			goto allmulti;
   1118 		}
   1119 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
   1120 		hashes[h >> 5] |= 1 << (h & 0x1f);
   1121 		ETHER_NEXT_MULTI(step, enm);
   1122 	} while (enm != NULL);
   1123 	ETHER_UNLOCK(ec);
   1124 	sc->sc_rxc |= RXC_MHTE;
   1125 	CSR_WRITE_4(sc, MTR0, hashes[0]);
   1126 	CSR_WRITE_4(sc, MTR1, hashes[1]);
   1127 	return;
   1128  allmulti:
   1129 	sc->sc_rxc |= RXC_RM;
   1130 	ifp->if_flags |= IFF_ALLMULTI;
   1131 }
   1132 
   1133 static int
   1134 add_rxbuf(struct kse_softc *sc, int idx)
   1135 {
   1136 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1137 	struct mbuf *m;
   1138 	int error;
   1139 
   1140 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1141 	if (m == NULL)
   1142 		return ENOBUFS;
   1143 
   1144 	MCLGET(m, M_DONTWAIT);
   1145 	if ((m->m_flags & M_EXT) == 0) {
   1146 		m_freem(m);
   1147 		return ENOBUFS;
   1148 	}
   1149 
   1150 	if (rxs->rxs_mbuf != NULL)
   1151 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1152 
   1153 	rxs->rxs_mbuf = m;
   1154 
   1155 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1156 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1157 	if (error) {
   1158 		aprint_error_dev(sc->sc_dev,
   1159 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1160 		panic("kse_add_rxbuf");
   1161 	}
   1162 
   1163 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1164 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1165 
   1166 	KSE_INIT_RXDESC(sc, idx);
   1167 
   1168 	return 0;
   1169 }
   1170 
   1171 static void
   1172 rxdrain(struct kse_softc *sc)
   1173 {
   1174 	struct kse_rxsoft *rxs;
   1175 	int i;
   1176 
   1177 	for (i = 0; i < KSE_NRXDESC; i++) {
   1178 		rxs = &sc->sc_rxsoft[i];
   1179 		if (rxs->rxs_mbuf != NULL) {
   1180 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1181 			m_freem(rxs->rxs_mbuf);
   1182 			rxs->rxs_mbuf = NULL;
   1183 		}
   1184 	}
   1185 }
   1186 
   1187 static int
   1188 kse_intr(void *arg)
   1189 {
   1190 	struct kse_softc *sc = arg;
   1191 	uint32_t isr;
   1192 
   1193 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
   1194 		return 0;
   1195 
   1196 	if (isr & INT_DMRS)
   1197 		rxintr(sc);
   1198 	if (isr & INT_DMTS)
   1199 		txreap(sc);
   1200 	if (isr & INT_DMLCS)
   1201 		lnkchg(sc);
   1202 	if (isr & INT_DMRBUS)
   1203 		aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
   1204 
   1205 	CSR_WRITE_4(sc, INTST, isr);
   1206 	return 1;
   1207 }
   1208 
   1209 static void
   1210 rxintr(struct kse_softc *sc)
   1211 {
   1212 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1213 	struct kse_rxsoft *rxs;
   1214 	struct mbuf *m;
   1215 	uint32_t rxstat;
   1216 	int i, len;
   1217 
   1218 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1219 		rxs = &sc->sc_rxsoft[i];
   1220 
   1221 		KSE_CDRXSYNC(sc, i,
   1222 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1223 
   1224 		rxstat = sc->sc_rxdescs[i].r0;
   1225 
   1226 		if (rxstat & R0_OWN) /* desc is left empty */
   1227 			break;
   1228 
   1229 		/* R0_FS | R0_LS must have been marked for this desc */
   1230 
   1231 		if (rxstat & R0_ES) {
   1232 			ifp->if_ierrors++;
   1233 #define PRINTERR(bit, str)						\
   1234 			if (rxstat & (bit))				\
   1235 				aprint_error_dev(sc->sc_dev,		\
   1236 				    "%s\n", str)
   1237 			PRINTERR(R0_TL, "frame too long");
   1238 			PRINTERR(R0_RF, "runt frame");
   1239 			PRINTERR(R0_CE, "bad FCS");
   1240 #undef PRINTERR
   1241 			KSE_INIT_RXDESC(sc, i);
   1242 			continue;
   1243 		}
   1244 
   1245 		/* HW errata; frame might be too small or too large */
   1246 
   1247 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1248 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1249 
   1250 		len = rxstat & R0_FL_MASK;
   1251 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
   1252 		m = rxs->rxs_mbuf;
   1253 
   1254 		if (add_rxbuf(sc, i) != 0) {
   1255 			ifp->if_ierrors++;
   1256 			KSE_INIT_RXDESC(sc, i);
   1257 			bus_dmamap_sync(sc->sc_dmat,
   1258 			    rxs->rxs_dmamap, 0,
   1259 			    rxs->rxs_dmamap->dm_mapsize,
   1260 			    BUS_DMASYNC_PREREAD);
   1261 			continue;
   1262 		}
   1263 
   1264 		m_set_rcvif(m, ifp);
   1265 		m->m_pkthdr.len = m->m_len = len;
   1266 
   1267 		if (sc->sc_mcsum) {
   1268 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1269 			if (rxstat & R0_IPE)
   1270 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1271 			if (rxstat & (R0_TCPE | R0_UDPE))
   1272 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1273 		}
   1274 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1275 #ifdef KSEDIAGNOSTIC
   1276 		if (kse_monitor_rxintr > 0) {
   1277 			aprint_error_dev(sc->sc_dev,
   1278 			    "m stat %x data %p len %d\n",
   1279 			    rxstat, m->m_data, m->m_len);
   1280 		}
   1281 #endif
   1282 	}
   1283 	sc->sc_rxptr = i;
   1284 }
   1285 
   1286 static void
   1287 txreap(struct kse_softc *sc)
   1288 {
   1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1290 	struct kse_txsoft *txs;
   1291 	uint32_t txstat;
   1292 	int i;
   1293 
   1294 	ifp->if_flags &= ~IFF_OACTIVE;
   1295 
   1296 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1297 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1298 		txs = &sc->sc_txsoft[i];
   1299 
   1300 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1301 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1302 
   1303 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1304 
   1305 		if (txstat & T0_OWN) /* desc is still in use */
   1306 			break;
   1307 
   1308 		/* There is no way to tell transmission status per frame */
   1309 
   1310 		ifp->if_opackets++;
   1311 
   1312 		sc->sc_txfree += txs->txs_ndesc;
   1313 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1314 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1315 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1316 		m_freem(txs->txs_mbuf);
   1317 		txs->txs_mbuf = NULL;
   1318 	}
   1319 	sc->sc_txsdirty = i;
   1320 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1321 		ifp->if_timer = 0;
   1322 }
   1323 
   1324 static void
   1325 lnkchg(struct kse_softc *sc)
   1326 {
   1327 	struct ifmediareq ifmr;
   1328 
   1329 #if KSE_LINKDEBUG == 1
   1330 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
   1331 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
   1332 #endif
   1333 	kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1334 }
   1335 
   1336 static int
   1337 kse_ifmedia_upd(struct ifnet *ifp)
   1338 {
   1339 	struct kse_softc *sc = ifp->if_softc;
   1340 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1341 	uint16_t p1cr4;
   1342 
   1343 	p1cr4 = 0;
   1344 	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
   1345 		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
   1346 		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
   1347 		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
   1348 		p1cr4 |= 0xf;		/* adv. 100FDX,100HDX,10FDX,10HDX */
   1349 	} else {
   1350 		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
   1351 			p1cr4 |= PxCR_SPD100;
   1352 		if (ifm->ifm_media & IFM_FDX)
   1353 			p1cr4 |= PxCR_USEFDX;
   1354 	}
   1355 	CSR_WRITE_2(sc, P1CR4, p1cr4);
   1356 #if KSE_LINKDEBUG == 1
   1357 printf("P1CR4: %04x\n", p1cr4);
   1358 #endif
   1359 	return 0;
   1360 }
   1361 
   1362 static void
   1363 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1364 {
   1365 	struct kse_softc *sc = ifp->if_softc;
   1366 	struct mii_data *mii = &sc->sc_mii;
   1367 
   1368 	mii_pollstat(mii);
   1369 	ifmr->ifm_status = mii->mii_media_status;
   1370 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   1371 	    sc->sc_flowflags;
   1372 }
   1373 
   1374 static void
   1375 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1376 {
   1377 	struct kse_softc *sc = ifp->if_softc;
   1378 	struct ifmedia *ifm = &sc->sc_media;
   1379 
   1380 #if KSE_LINKDEBUG == 2
   1381 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
   1382 #endif
   1383 
   1384 	/* 8842 MAC pretends 100FDX all the time */
   1385 	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
   1386 	ifmr->ifm_active = ifm->ifm_cur->ifm_media |
   1387 	    IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
   1388 }
   1389 
   1390 static void
   1391 phy_tick(void *arg)
   1392 {
   1393 	struct kse_softc *sc = arg;
   1394 	struct mii_data *mii = &sc->sc_mii;
   1395 	int s;
   1396 
   1397 	s = splnet();
   1398 	mii_tick(mii);
   1399 	splx(s);
   1400 
   1401 	callout_schedule(&sc->sc_tick_ch, hz);
   1402 }
   1403 
   1404 static const uint16_t phy1csr[] = {
   1405 	/* 0 BMCR */	0x4d0,
   1406 	/* 1 BMSR */	0x4d2,
   1407 	/* 2 PHYID1 */	0x4d6,	/* 0x0022 - PHY1HR */
   1408 	/* 3 PHYID2 */	0x4d4,	/* 0x1430 - PHY1LR */
   1409 	/* 4 ANAR */	0x4d8,
   1410 	/* 5 ANLPAR */	0x4da,
   1411 };
   1412 
   1413 int
   1414 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1415 {
   1416 	struct kse_softc *sc = device_private(self);
   1417 
   1418 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
   1419 		return EINVAL;
   1420 	*val = CSR_READ_2(sc, phy1csr[reg]);
   1421 	return 0;
   1422 }
   1423 
   1424 int
   1425 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1426 {
   1427 	struct kse_softc *sc = device_private(self);
   1428 
   1429 	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
   1430 		return EINVAL;
   1431 	CSR_WRITE_2(sc, phy1csr[reg], val);
   1432 	return 0;
   1433 }
   1434 
   1435 void
   1436 kse_mii_statchg(struct ifnet *ifp)
   1437 {
   1438 	struct kse_softc *sc = ifp->if_softc;
   1439 	struct mii_data *mii = &sc->sc_mii;
   1440 
   1441 #if KSE_LINKDEBUG == 1
   1442 	/* decode P1SR register value */
   1443 	uint16_t p1sr = CSR_READ_2(sc, P1SR);
   1444 	printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
   1445 	if (p1sr & PxSR_FDX)
   1446 		printf(",full-duplex");
   1447 	if (p1sr & PxSR_RXFLOW)
   1448 		printf(",rxpause");
   1449 	if (p1sr & PxSR_TXFLOW)
   1450 		printf(",txpause");
   1451 	printf("\n");
   1452 	/* show resolved mii(4) parameters to compare against above */
   1453 	printf("MII spd%d",
   1454 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
   1455 	if (mii->mii_media_active & IFM_FDX)
   1456 		printf(",full-duplex");
   1457 	if (mii->mii_media_active & IFM_FLOW) {
   1458 		printf(",flowcontrol");
   1459 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
   1460 			printf(",rxpause");
   1461 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
   1462 			printf(",txpause");
   1463 	}
   1464 	printf("\n");
   1465 #endif
   1466 	/* Get flow control negotiation result. */
   1467 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1468 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1469 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1470 
   1471 	/* Adjust MAC PAUSE flow control. */
   1472 	if ((mii->mii_media_active & IFM_FDX)
   1473 	    && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
   1474 		sc->sc_txc |= TXC_FCE;
   1475 	else
   1476 		sc->sc_txc &= ~TXC_FCE;
   1477 	if ((mii->mii_media_active & IFM_FDX)
   1478 	    && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
   1479 		sc->sc_rxc |= RXC_FCE;
   1480 	else
   1481 		sc->sc_rxc &= ~RXC_FCE;
   1482 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
   1483 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
   1484 #if KSE_LINKDEBUG == 1
   1485 	printf("%ctxfce, %crxfce\n",
   1486 	    (sc->sc_txc & TXC_FCE) ? '+' : '-',
   1487 	    (sc->sc_rxc & RXC_FCE) ? '+' : '-');
   1488 #endif
   1489 }
   1490 
   1491 #ifdef KSE_EVENT_COUNTERS
   1492 static void
   1493 stat_tick(void *arg)
   1494 {
   1495 	struct kse_softc *sc = arg;
   1496 	struct ksext *ee = &sc->sc_ext;
   1497 	int nport, p, i, val;
   1498 
   1499 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1500 	for (p = 0; p < nport; p++) {
   1501 		for (i = 0; i < 32; i++) {
   1502 			val = 0x1c00 | (p * 0x20 + i);
   1503 			CSR_WRITE_2(sc, IACR, val);
   1504 			do {
   1505 				val = CSR_READ_2(sc, IADR5) << 16;
   1506 			} while ((val & (1U << 30)) == 0);
   1507 			if (val & (1U << 31)) {
   1508 				(void)CSR_READ_2(sc, IADR4);
   1509 				val = 0x3fffffff; /* has made overflow */
   1510 			}
   1511 			else {
   1512 				val &= 0x3fff0000;		/* 29:16 */
   1513 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
   1514 			}
   1515 			ee->pev[p][i].ev_count += val; /* i (0-31) */
   1516 		}
   1517 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
   1518 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
   1519 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
   1520 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
   1521 	}
   1522 	callout_schedule(&sc->sc_stat_ch, hz * 60);
   1523 }
   1524 
   1525 static void
   1526 zerostats(struct kse_softc *sc)
   1527 {
   1528 	struct ksext *ee = &sc->sc_ext;
   1529 	int nport, p, i, val;
   1530 
   1531 	/* Make sure all the HW counters get zero */
   1532 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
   1533 	for (p = 0; p < nport; p++) {
   1534 		for (i = 0; i < 31; i++) {
   1535 			val = 0x1c00 | (p * 0x20 + i);
   1536 			CSR_WRITE_2(sc, IACR, val);
   1537 			do {
   1538 				val = CSR_READ_2(sc, IADR5) << 16;
   1539 			} while ((val & (1U << 30)) == 0);
   1540 			(void)CSR_READ_2(sc, IADR4);
   1541 			ee->pev[p][i].ev_count = 0;
   1542 		}
   1543 	}
   1544 }
   1545 #endif
   1546