if_kse.c revision 1.45 1 /* $NetBSD: if_kse.c,v 1.45 2019/12/12 12:00:06 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Micrel 8841/8842 10/100 PCI ethernet driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.45 2019/12/12 12:00:06 nisimura Exp $");
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/ioctl.h>
46 #include <sys/errno.h>
47 #include <sys/device.h>
48 #include <sys/queue.h>
49
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>
53
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <net/bpf.h>
61
62 #include <dev/pci/pcivar.h>
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcidevs.h>
65
66 #define KSE_LINKDEBUG 1
67
68 #define CSR_READ_4(sc, off) \
69 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
70 #define CSR_WRITE_4(sc, off, val) \
71 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
72 #define CSR_READ_2(sc, off) \
73 bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
74 #define CSR_WRITE_2(sc, off, val) \
75 bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
76
77 #define MDTXC 0x000 /* DMA transmit control */
78 #define MDRXC 0x004 /* DMA receive control */
79 #define MDTSC 0x008 /* DMA transmit start */
80 #define MDRSC 0x00c /* DMA receive start */
81 #define TDLB 0x010 /* transmit descriptor list base */
82 #define RDLB 0x014 /* receive descriptor list base */
83 #define MTR0 0x020 /* multicast table 31:0 */
84 #define MTR1 0x024 /* multicast table 63:32 */
85 #define INTEN 0x028 /* interrupt enable */
86 #define INTST 0x02c /* interrupt status */
87 #define MAAL0 0x080 /* additional MAC address 0 low */
88 #define MAAH0 0x084 /* additional MAC address 0 high */
89 #define MARL 0x200 /* MAC address low */
90 #define MARM 0x202 /* MAC address middle */
91 #define MARH 0x204 /* MAC address high */
92 #define GRR 0x216 /* global reset */
93 #define SIDER 0x400 /* switch ID and function enable */
94 #define IACR 0x4a0 /* indirect access control */
95 #define IADR1 0x4a2 /* indirect access data 66:63 */
96 #define IADR2 0x4a4 /* indirect access data 47:32 */
97 #define IADR3 0x4a6 /* indirect access data 63:48 */
98 #define IADR4 0x4a8 /* indirect access data 15:0 */
99 #define IADR5 0x4aa /* indirect access data 31:16 */
100 #define P1CR4 0x512 /* port 1 control 4 */
101 #define P1SR 0x514 /* port 1 status */
102 #define P2CR4 0x532 /* port 2 control 4 */
103 #define P2SR 0x534 /* port 2 status */
104 #define PxCR_STARTNEG (1U<<9) /* restart auto negotiation */
105 #define PxCR_AUTOEN (1U<<7) /* auto negotiation enable */
106 #define PxCR_SPD100 (1U<<6) /* force speed 100 */
107 #define PxCR_USEFDX (1U<<5) /* force full duplex */
108 #define PxCR_USEFC (1U<<4) /* advertise pause flow control */
109 #define PxSR_ACOMP (1U<<6) /* auto negotiation completed */
110 #define PxSR_SPD100 (1U<<10) /* speed is 100Mbps */
111 #define PxSR_FDX (1U<<9) /* full duplex */
112 #define PxSR_LINKUP (1U<<5) /* link is good */
113 #define PxSR_RXFLOW (1U<<12) /* receive flow control active */
114 #define PxSR_TXFLOW (1U<<11) /* transmit flow control active */
115 #define P1VIDCR 0x504 /* port 1 vtag */
116 #define P2VIDCR 0x524 /* port 2 vtag */
117 #define P3VIDCR 0x544 /* 8842 host vtag */
118
119 #define TXC_BS_MSK 0x3f000000 /* burst size */
120 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
121 #define TXC_UCG (1U<<18) /* generate UDP checksum */
122 #define TXC_TCG (1U<<17) /* generate TCP checksum */
123 #define TXC_ICG (1U<<16) /* generate IP checksum */
124 #define TXC_FCE (1U<<9) /* generate PAUSE to moderate Rx lvl */
125 #define TXC_EP (1U<<2) /* enable automatic padding */
126 #define TXC_AC (1U<<1) /* add CRC to frame */
127 #define TXC_TEN (1) /* enable DMA to run */
128
129 #define RXC_BS_MSK 0x3f000000 /* burst size */
130 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
131 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
132 #define RXC_UCC (1U<<18) /* run UDP checksum */
133 #define RXC_TCC (1U<<17) /* run TDP checksum */
134 #define RXC_ICC (1U<<16) /* run IP checksum */
135 #define RXC_FCE (1U<<9) /* accept PAUSE to throttle Tx */
136 #define RXC_RB (1U<<6) /* receive broadcast frame */
137 #define RXC_RM (1U<<5) /* receive all multicast (inc. RB) */
138 #define RXC_RU (1U<<4) /* receive 16 additional unicasts */
139 #define RXC_RE (1U<<3) /* accept error frame */
140 #define RXC_RA (1U<<2) /* receive all frame */
141 #define RXC_MHTE (1U<<1) /* use multicast hash table */
142 #define RXC_REN (1) /* enable DMA to run */
143
144 #define INT_DMLCS (1U<<31) /* link status change */
145 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
146 #define INT_DMRS (1U<<29) /* frame was received */
147 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
148
149 #define T0_OWN (1U<<31) /* desc is ready to Tx */
150
151 #define R0_OWN (1U<<31) /* desc is empty */
152 #define R0_FS (1U<<30) /* first segment of frame */
153 #define R0_LS (1U<<29) /* last segment of frame */
154 #define R0_IPE (1U<<28) /* IP checksum error */
155 #define R0_TCPE (1U<<27) /* TCP checksum error */
156 #define R0_UDPE (1U<<26) /* UDP checksum error */
157 #define R0_ES (1U<<25) /* error summary */
158 #define R0_MF (1U<<24) /* multicast frame */
159 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
160 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
161 #define R0_RE (1U<<19) /* MII reported error */
162 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
163 #define R0_RF (1U<<17) /* damaged runt frame */
164 #define R0_CE (1U<<16) /* CRC error */
165 #define R0_FT (1U<<15) /* frame type */
166 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
167
168 #define T1_IC (1U<<31) /* post interrupt on complete */
169 #define T1_FS (1U<<30) /* first segment of frame */
170 #define T1_LS (1U<<29) /* last segment of frame */
171 #define T1_IPCKG (1U<<28) /* generate IP checksum */
172 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
173 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
174 #define T1_TER (1U<<25) /* end of ring */
175 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
176 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
177
178 #define R1_RER (1U<<25) /* end of ring */
179 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
180
181 #define KSE_NTXSEGS 16
182 #define KSE_TXQUEUELEN 64
183 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
184 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
185 #define KSE_NTXDESC 256
186 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
187 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
188 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
189
190 #define KSE_NRXDESC 64
191 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
192 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
193
194 struct tdes {
195 uint32_t t0, t1, t2, t3;
196 };
197
198 struct rdes {
199 uint32_t r0, r1, r2, r3;
200 };
201
202 struct kse_control_data {
203 struct tdes kcd_txdescs[KSE_NTXDESC];
204 struct rdes kcd_rxdescs[KSE_NRXDESC];
205 };
206 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
207 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
208 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
209
210 struct kse_txsoft {
211 struct mbuf *txs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t txs_dmamap; /* our DMA map */
213 int txs_firstdesc; /* first descriptor in packet */
214 int txs_lastdesc; /* last descriptor in packet */
215 int txs_ndesc; /* # of descriptors used */
216 };
217
218 struct kse_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 struct kse_softc {
224 device_t sc_dev; /* generic device information */
225 bus_space_tag_t sc_st; /* bus space tag */
226 bus_space_handle_t sc_sh; /* bus space handle */
227 bus_size_t sc_memsize; /* csr map size */
228 bus_dma_tag_t sc_dmat; /* bus DMA tag */
229 pci_chipset_tag_t sc_pc; /* PCI chipset tag */
230 struct ethercom sc_ethercom; /* Ethernet common data */
231 void *sc_ih; /* interrupt cookie */
232
233 struct mii_data sc_mii; /* mii 8841 */
234 struct ifmedia sc_media; /* ifmedia 8842 */
235 int sc_flowflags; /* 802.3x PAUSE flow control */
236
237 callout_t sc_tick_ch; /* MII tick callout */
238 callout_t sc_stat_ch; /* statistics counter callout */
239
240 bus_dmamap_t sc_cddmamap; /* control data DMA map */
241 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
242
243 struct kse_control_data *sc_control_data;
244 #define sc_txdescs sc_control_data->kcd_txdescs
245 #define sc_rxdescs sc_control_data->kcd_rxdescs
246
247 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
248 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
249 int sc_txfree; /* number of free Tx descriptors */
250 int sc_txnext; /* next ready Tx descriptor */
251 int sc_txsfree; /* number of free Tx jobs */
252 int sc_txsnext; /* next ready Tx job */
253 int sc_txsdirty; /* dirty Tx jobs */
254 int sc_rxptr; /* next ready Rx descriptor/descsoft */
255
256 uint32_t sc_txc, sc_rxc;
257 uint32_t sc_t1csum;
258 int sc_mcsum;
259 uint32_t sc_inten;
260
261 uint32_t sc_chip;
262 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
263 uint16_t sc_vlan[16];
264
265 #ifdef KSE_EVENT_COUNTERS
266 struct ksext {
267 char evcntname[3][8];
268 struct evcnt pev[3][34];
269 } sc_ext; /* switch statistics */
270 #endif
271 };
272
273 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
274 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
275
276 #define KSE_CDTXSYNC(sc, x, n, ops) \
277 do { \
278 int __x, __n; \
279 \
280 __x = (x); \
281 __n = (n); \
282 \
283 /* If it will wrap around, sync to the end of the ring. */ \
284 if ((__x + __n) > KSE_NTXDESC) { \
285 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
286 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
287 (KSE_NTXDESC - __x), (ops)); \
288 __n -= (KSE_NTXDESC - __x); \
289 __x = 0; \
290 } \
291 \
292 /* Now sync whatever is left. */ \
293 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
294 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
295 } while (/*CONSTCOND*/0)
296
297 #define KSE_CDRXSYNC(sc, x, ops) \
298 do { \
299 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
300 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
301 } while (/*CONSTCOND*/0)
302
303 #define KSE_INIT_RXDESC(sc, x) \
304 do { \
305 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
306 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
307 struct mbuf *__m = __rxs->rxs_mbuf; \
308 \
309 __m->m_data = __m->m_ext.ext_buf; \
310 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
311 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
312 __rxd->r0 = R0_OWN; \
313 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
314 } while (/*CONSTCOND*/0)
315
316 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
317
318 #ifdef KSEDIAGNOSTIC
319 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
320 #endif
321
322 static int kse_match(device_t, cfdata_t, void *);
323 static void kse_attach(device_t, device_t, void *);
324
325 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
326 kse_match, kse_attach, NULL, NULL);
327
328 static int kse_ioctl(struct ifnet *, u_long, void *);
329 static void kse_start(struct ifnet *);
330 static void kse_watchdog(struct ifnet *);
331 static int kse_init(struct ifnet *);
332 static void kse_stop(struct ifnet *, int);
333 static void kse_reset(struct kse_softc *);
334 static void kse_set_filter(struct kse_softc *);
335 static int add_rxbuf(struct kse_softc *, int);
336 static void rxdrain(struct kse_softc *);
337 static int kse_intr(void *);
338 static void rxintr(struct kse_softc *);
339 static void txreap(struct kse_softc *);
340 static void lnkchg(struct kse_softc *);
341 static int kse_ifmedia_upd(struct ifnet *);
342 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
343 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
344 static void phy_tick(void *);
345 int kse_mii_readreg(device_t, int, int, uint16_t *);
346 int kse_mii_writereg(device_t, int, int, uint16_t);
347 void kse_mii_statchg(struct ifnet *);
348 #ifdef KSE_EVENT_COUNTERS
349 static void stat_tick(void *);
350 static void zerostats(struct kse_softc *);
351 #endif
352
353 static int
354 kse_match(device_t parent, cfdata_t match, void *aux)
355 {
356 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
357
358 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
359 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
360 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
361 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
362 return 1;
363
364 return 0;
365 }
366
367 static void
368 kse_attach(device_t parent, device_t self, void *aux)
369 {
370 struct kse_softc *sc = device_private(self);
371 struct pci_attach_args *pa = aux;
372 pci_chipset_tag_t pc = pa->pa_pc;
373 pci_intr_handle_t ih;
374 const char *intrstr;
375 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
376 struct mii_data * const mii = &sc->sc_mii;
377 struct ifmedia *ifm;
378 uint8_t enaddr[ETHER_ADDR_LEN];
379 bus_dma_segment_t seg;
380 int i, error, nseg;
381 char intrbuf[PCI_INTRSTR_LEN];
382
383 aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
384 PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
385
386 if (pci_mapreg_map(pa, 0x10,
387 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
388 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
389 aprint_error_dev(self, "unable to map device registers\n");
390 return;
391 }
392
393 /* Make sure bus mastering is enabled. */
394 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
395 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
396 PCI_COMMAND_MASTER_ENABLE);
397
398 /* Power up chip if necessary. */
399 if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
400 && error != EOPNOTSUPP) {
401 aprint_error_dev(self, "cannot activate %d\n", error);
402 return;
403 }
404
405 /* Map and establish our interrupt. */
406 if (pci_intr_map(pa, &ih)) {
407 aprint_error_dev(self, "unable to map interrupt\n");
408 return;
409 }
410 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
411 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
412 device_xname(self));
413 if (sc->sc_ih == NULL) {
414 aprint_error_dev(self, "unable to establish interrupt");
415 if (intrstr != NULL)
416 aprint_error(" at %s", intrstr);
417 aprint_error("\n");
418 return;
419 }
420 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
421
422 sc->sc_dev = self;
423 sc->sc_dmat = pa->pa_dmat;
424 sc->sc_pc = pa->pa_pc;
425 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
426
427 /*
428 * Read the Ethernet address from the EEPROM.
429 */
430 i = CSR_READ_2(sc, MARL);
431 enaddr[5] = i;
432 enaddr[4] = i >> 8;
433 i = CSR_READ_2(sc, MARM);
434 enaddr[3] = i;
435 enaddr[2] = i >> 8;
436 i = CSR_READ_2(sc, MARH);
437 enaddr[1] = i;
438 enaddr[0] = i >> 8;
439 aprint_normal_dev(self,
440 "Ethernet address %s\n", ether_sprintf(enaddr));
441
442 /*
443 * Enable chip function.
444 */
445 CSR_WRITE_2(sc, SIDER, 1);
446
447 /*
448 * Allocate the control data structures, and create and load the
449 * DMA map for it.
450 */
451 error = bus_dmamem_alloc(sc->sc_dmat,
452 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
453 if (error != 0) {
454 aprint_error_dev(self,
455 "unable to allocate control data, error = %d\n", error);
456 goto fail_0;
457 }
458 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
459 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
460 BUS_DMA_COHERENT);
461 if (error != 0) {
462 aprint_error_dev(self,
463 "unable to map control data, error = %d\n", error);
464 goto fail_1;
465 }
466 error = bus_dmamap_create(sc->sc_dmat,
467 sizeof(struct kse_control_data), 1,
468 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
469 if (error != 0) {
470 aprint_error_dev(self,
471 "unable to create control data DMA map, "
472 "error = %d\n", error);
473 goto fail_2;
474 }
475 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
476 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
477 if (error != 0) {
478 aprint_error_dev(self,
479 "unable to load control data DMA map, error = %d\n",
480 error);
481 goto fail_3;
482 }
483 for (i = 0; i < KSE_TXQUEUELEN; i++) {
484 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
485 KSE_NTXSEGS, MCLBYTES, 0, 0,
486 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
487 aprint_error_dev(self,
488 "unable to create tx DMA map %d, error = %d\n",
489 i, error);
490 goto fail_4;
491 }
492 }
493 for (i = 0; i < KSE_NRXDESC; i++) {
494 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
495 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
496 aprint_error_dev(self,
497 "unable to create rx DMA map %d, error = %d\n",
498 i, error);
499 goto fail_5;
500 }
501 sc->sc_rxsoft[i].rxs_mbuf = NULL;
502 }
503
504 callout_init(&sc->sc_tick_ch, 0);
505 callout_init(&sc->sc_stat_ch, 0);
506 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
507 #ifdef KSE_EVENT_COUNTERS
508 callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
509 #endif
510
511 mii->mii_ifp = ifp;
512 mii->mii_readreg = kse_mii_readreg;
513 mii->mii_writereg = kse_mii_writereg;
514 mii->mii_statchg = kse_mii_statchg;
515
516 /* Initialize ifmedia structures. */
517 sc->sc_flowflags = 0;
518 if (sc->sc_chip == 0x8841) {
519 /* use port 1 builtin PHY as index 1 device */
520 sc->sc_ethercom.ec_mii = mii;
521 ifm = &mii->mii_media;
522 ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
523 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
524 MII_OFFSET_ANY, MIIF_DOPAUSE);
525 if (LIST_FIRST(&mii->mii_phys) == NULL) {
526 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
527 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
528 } else
529 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
530 } else {
531 /*
532 * pretend 100FDX w/ no alternative media selection.
533 * 8842 MAC is tied with a builtin 3 port switch. It can do
534 * 4 degree priotised rate control over either of tx/rx
535 * direction for any of ports, respectively. Tough, this
536 * driver leaves the rate unlimited intending 100Mbps maximum.
537 * 2 external ports behave in AN mode and this driver provides
538 * no mean to manipulate and see their operational details.
539 */
540 sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
541 ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
542 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
543 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
544
545 aprint_normal_dev(self,
546 "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
547 }
548 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
549
550
551 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
552 ifp->if_softc = sc;
553 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
554 ifp->if_ioctl = kse_ioctl;
555 ifp->if_start = kse_start;
556 ifp->if_watchdog = kse_watchdog;
557 ifp->if_init = kse_init;
558 ifp->if_stop = kse_stop;
559 IFQ_SET_READY(&ifp->if_snd);
560
561 /*
562 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
563 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
564 */
565 sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
566 ifp->if_capabilities =
567 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
568 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
569 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
570
571 if_attach(ifp);
572 if_deferred_start_init(ifp, NULL);
573 ether_ifattach(ifp, enaddr);
574
575 #ifdef KSE_EVENT_COUNTERS
576 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
577 for (i = 0; i < p; i++) {
578 struct ksext *ee = &sc->sc_ext;
579 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
580 "%s.%d", device_xname(sc->sc_dev), i+1);
581 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
582 NULL, ee->evcntname[i], "RxLoPriotyByte");
583 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
584 NULL, ee->evcntname[i], "RxHiPriotyByte");
585 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "RxUndersizePkt");
587 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "RxFragments");
589 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "RxOversize");
591 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "RxJabbers");
593 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "RxSymbolError");
595 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "RxCRCError");
597 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "RxAlignmentError");
599 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "RxControl8808Pkts");
601 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "RxPausePkts");
603 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "RxBroadcast");
605 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
606 NULL, ee->evcntname[i], "RxMulticast");
607 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
608 NULL, ee->evcntname[i], "RxUnicast");
609 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
610 NULL, ee->evcntname[i], "Rx64Octets");
611 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
612 NULL, ee->evcntname[i], "Rx65To127Octets");
613 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
614 NULL, ee->evcntname[i], "Rx128To255Octets");
615 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
616 NULL, ee->evcntname[i], "Rx255To511Octets");
617 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
618 NULL, ee->evcntname[i], "Rx512To1023Octets");
619 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
620 NULL, ee->evcntname[i], "Rx1024To1522Octets");
621 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
622 NULL, ee->evcntname[i], "TxLoPriotyByte");
623 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
624 NULL, ee->evcntname[i], "TxHiPriotyByte");
625 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
626 NULL, ee->evcntname[i], "TxLateCollision");
627 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
628 NULL, ee->evcntname[i], "TxPausePkts");
629 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
630 NULL, ee->evcntname[i], "TxBroadcastPkts");
631 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
632 NULL, ee->evcntname[i], "TxMulticastPkts");
633 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
634 NULL, ee->evcntname[i], "TxUnicastPkts");
635 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
636 NULL, ee->evcntname[i], "TxDeferred");
637 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
638 NULL, ee->evcntname[i], "TxTotalCollision");
639 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
640 NULL, ee->evcntname[i], "TxExcessiveCollision");
641 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
642 NULL, ee->evcntname[i], "TxSingleCollision");
643 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
644 NULL, ee->evcntname[i], "TxMultipleCollision");
645 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
646 NULL, ee->evcntname[i], "TxDropPkts");
647 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
648 NULL, ee->evcntname[i], "RxDropPkts");
649 }
650 #endif
651 return;
652
653 fail_5:
654 for (i = 0; i < KSE_NRXDESC; i++) {
655 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
656 bus_dmamap_destroy(sc->sc_dmat,
657 sc->sc_rxsoft[i].rxs_dmamap);
658 }
659 fail_4:
660 for (i = 0; i < KSE_TXQUEUELEN; i++) {
661 if (sc->sc_txsoft[i].txs_dmamap != NULL)
662 bus_dmamap_destroy(sc->sc_dmat,
663 sc->sc_txsoft[i].txs_dmamap);
664 }
665 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
666 fail_3:
667 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
668 fail_2:
669 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
670 sizeof(struct kse_control_data));
671 fail_1:
672 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
673 fail_0:
674 if (sc->sc_ih != NULL) {
675 pci_intr_disestablish(pc, sc->sc_ih);
676 sc->sc_ih = NULL;
677 }
678 if (sc->sc_memsize) {
679 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
680 sc->sc_memsize = 0;
681 }
682 return;
683 }
684
685 static int
686 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
687 {
688 struct kse_softc *sc = ifp->if_softc;
689 struct ifreq *ifr = (struct ifreq *)data;
690 struct ifmedia *ifm;
691 int s, error;
692
693 s = splnet();
694
695 switch (cmd) {
696 case SIOCSIFMEDIA:
697 /* Flow control requires full-duplex mode. */
698 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
699 (ifr->ifr_media & IFM_FDX) == 0)
700 ifr->ifr_media &= ~IFM_ETH_FMASK;
701 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
702 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
703 /* We can do both TXPAUSE and RXPAUSE. */
704 ifr->ifr_media |=
705 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
706 }
707 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
708 }
709 ifm = (sc->sc_chip == 0x8841)
710 ? &sc->sc_mii.mii_media : &sc->sc_media;
711 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
712 break;
713 default:
714 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
715 break;
716
717 error = 0;
718
719 if (cmd == SIOCSIFCAP)
720 error = (*ifp->if_init)(ifp);
721 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
722 ;
723 else if (ifp->if_flags & IFF_RUNNING) {
724 /*
725 * Multicast list has changed; set the hardware filter
726 * accordingly.
727 */
728 kse_set_filter(sc);
729 }
730 break;
731 }
732
733 splx(s);
734 return error;
735 }
736
737 static int
738 kse_init(struct ifnet *ifp)
739 {
740 struct kse_softc *sc = ifp->if_softc;
741 uint32_t paddr;
742 int i, error = 0;
743
744 /* cancel pending I/O */
745 kse_stop(ifp, 0);
746
747 /* reset all registers but PCI configuration */
748 kse_reset(sc);
749
750 /* craft Tx descriptor ring */
751 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
752 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
753 sc->sc_txdescs[i].t3 = paddr;
754 paddr += sizeof(struct tdes);
755 }
756 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
757 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
758 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
759 sc->sc_txfree = KSE_NTXDESC;
760 sc->sc_txnext = 0;
761
762 for (i = 0; i < KSE_TXQUEUELEN; i++)
763 sc->sc_txsoft[i].txs_mbuf = NULL;
764 sc->sc_txsfree = KSE_TXQUEUELEN;
765 sc->sc_txsnext = 0;
766 sc->sc_txsdirty = 0;
767
768 /* craft Rx descriptor ring */
769 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
770 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
771 sc->sc_rxdescs[i].r3 = paddr;
772 paddr += sizeof(struct rdes);
773 }
774 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
775 for (i = 0; i < KSE_NRXDESC; i++) {
776 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
777 if ((error = add_rxbuf(sc, i)) != 0) {
778 aprint_error_dev(sc->sc_dev,
779 "unable to allocate or map rx "
780 "buffer %d, error = %d\n",
781 i, error);
782 rxdrain(sc);
783 goto out;
784 }
785 }
786 else
787 KSE_INIT_RXDESC(sc, i);
788 }
789 sc->sc_rxptr = 0;
790
791 /* hand Tx/Rx rings to HW */
792 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
793 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
794
795 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
796 sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
797 sc->sc_t1csum = sc->sc_mcsum = 0;
798 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
799 sc->sc_rxc |= RXC_ICC;
800 sc->sc_mcsum |= M_CSUM_IPv4;
801 }
802 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
803 sc->sc_txc |= TXC_ICG;
804 sc->sc_t1csum |= T1_IPCKG;
805 }
806 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
807 sc->sc_rxc |= RXC_TCC;
808 sc->sc_mcsum |= M_CSUM_TCPv4;
809 }
810 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
811 sc->sc_txc |= TXC_TCG;
812 sc->sc_t1csum |= T1_TCPCKG;
813 }
814 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
815 sc->sc_rxc |= RXC_UCC;
816 sc->sc_mcsum |= M_CSUM_UDPv4;
817 }
818 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
819 sc->sc_txc |= TXC_UCG;
820 sc->sc_t1csum |= T1_UDPCKG;
821 }
822 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
823 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
824
825 if (sc->sc_chip == 0x8842) {
826 sc->sc_txc |= TXC_FCE;
827 sc->sc_rxc |= RXC_FCE;
828 }
829
830 /* build multicast hash filter if necessary */
831 kse_set_filter(sc);
832
833 /* set current media */
834 if (sc->sc_chip == 0x8841)
835 (void)kse_ifmedia_upd(ifp);
836
837 /* enable transmitter and receiver */
838 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
839 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
840 CSR_WRITE_4(sc, MDRSC, 1);
841
842 /* enable interrupts */
843 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
844 if (sc->sc_chip == 0x8841)
845 sc->sc_inten |= INT_DMLCS;
846 CSR_WRITE_4(sc, INTST, ~0);
847 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
848
849 ifp->if_flags |= IFF_RUNNING;
850 ifp->if_flags &= ~IFF_OACTIVE;
851
852 if (sc->sc_chip == 0x8841) {
853 /* start one second timer */
854 callout_schedule(&sc->sc_tick_ch, hz);
855 }
856 #ifdef KSE_EVENT_COUNTERS
857 /* start statistics gather 1 minute timer. should be tunable */
858 zerostats(sc);
859 callout_schedule(&sc->sc_stat_ch, hz * 60);
860 #endif
861
862 out:
863 if (error) {
864 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
865 ifp->if_timer = 0;
866 aprint_error_dev(sc->sc_dev, "interface not running\n");
867 }
868 return error;
869 }
870
871 static void
872 kse_stop(struct ifnet *ifp, int disable)
873 {
874 struct kse_softc *sc = ifp->if_softc;
875 struct kse_txsoft *txs;
876 int i;
877
878 if (sc->sc_chip == 0x8841)
879 callout_stop(&sc->sc_tick_ch);
880 callout_stop(&sc->sc_stat_ch);
881
882 sc->sc_txc &= ~TXC_TEN;
883 sc->sc_rxc &= ~RXC_REN;
884 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
885 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
886
887 for (i = 0; i < KSE_TXQUEUELEN; i++) {
888 txs = &sc->sc_txsoft[i];
889 if (txs->txs_mbuf != NULL) {
890 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
891 m_freem(txs->txs_mbuf);
892 txs->txs_mbuf = NULL;
893 }
894 }
895
896 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
897 ifp->if_timer = 0;
898
899 if (disable)
900 rxdrain(sc);
901 }
902
903 static void
904 kse_reset(struct kse_softc *sc)
905 {
906
907 /* software reset */
908 CSR_WRITE_2(sc, GRR, 1);
909 delay(1000); /* PDF does not mention the delay amount */
910 CSR_WRITE_2(sc, GRR, 0);
911
912 /* enable switch function */
913 CSR_WRITE_2(sc, SIDER, 1);
914 }
915
916 static void
917 kse_watchdog(struct ifnet *ifp)
918 {
919 struct kse_softc *sc = ifp->if_softc;
920
921 /*
922 * Since we're not interrupting every packet, sweep
923 * up before we report an error.
924 */
925 txreap(sc);
926
927 if (sc->sc_txfree != KSE_NTXDESC) {
928 aprint_error_dev(sc->sc_dev,
929 "device timeout (txfree %d txsfree %d txnext %d)\n",
930 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
931 ifp->if_oerrors++;
932
933 /* Reset the interface. */
934 kse_init(ifp);
935 }
936 else if (ifp->if_flags & IFF_DEBUG)
937 aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
938
939 /* Try to get more packets going. */
940 kse_start(ifp);
941 }
942
943 static void
944 kse_start(struct ifnet *ifp)
945 {
946 struct kse_softc *sc = ifp->if_softc;
947 struct mbuf *m0, *m;
948 struct kse_txsoft *txs;
949 bus_dmamap_t dmamap;
950 int error, nexttx, lasttx, ofree, seg;
951 uint32_t tdes0;
952
953 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
954 return;
955
956 /* Remember the previous number of free descriptors. */
957 ofree = sc->sc_txfree;
958
959 /*
960 * Loop through the send queue, setting up transmit descriptors
961 * until we drain the queue, or use up all available transmit
962 * descriptors.
963 */
964 for (;;) {
965 IFQ_POLL(&ifp->if_snd, m0);
966 if (m0 == NULL)
967 break;
968
969 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
970 txreap(sc);
971 if (sc->sc_txsfree == 0)
972 break;
973 }
974 txs = &sc->sc_txsoft[sc->sc_txsnext];
975 dmamap = txs->txs_dmamap;
976
977 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
978 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
979 if (error) {
980 if (error == EFBIG) {
981 aprint_error_dev(sc->sc_dev,
982 "Tx packet consumes too many "
983 "DMA segments, dropping...\n");
984 IFQ_DEQUEUE(&ifp->if_snd, m0);
985 m_freem(m0);
986 continue;
987 }
988 /* Short on resources, just stop for now. */
989 break;
990 }
991
992 if (dmamap->dm_nsegs > sc->sc_txfree) {
993 /*
994 * Not enough free descriptors to transmit this
995 * packet. We haven't committed anything yet,
996 * so just unload the DMA map, put the packet
997 * back on the queue, and punt. Notify the upper
998 * layer that there are not more slots left.
999 */
1000 ifp->if_flags |= IFF_OACTIVE;
1001 bus_dmamap_unload(sc->sc_dmat, dmamap);
1002 break;
1003 }
1004
1005 IFQ_DEQUEUE(&ifp->if_snd, m0);
1006
1007 /*
1008 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1009 */
1010
1011 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1012 BUS_DMASYNC_PREWRITE);
1013
1014 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1015 lasttx = -1;
1016 for (nexttx = sc->sc_txnext, seg = 0;
1017 seg < dmamap->dm_nsegs;
1018 seg++, nexttx = KSE_NEXTTX(nexttx)) {
1019 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1020 /*
1021 * If this is the first descriptor we're
1022 * enqueueing, don't set the OWN bit just
1023 * yet. That could cause a race condition.
1024 * We'll do it below.
1025 */
1026 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1027 tdes->t1 = sc->sc_t1csum
1028 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1029 tdes->t0 = tdes0;
1030 tdes0 = T0_OWN; /* 2nd and other segments */
1031 lasttx = nexttx;
1032 }
1033 /*
1034 * Outgoing NFS mbuf must be unloaded when Tx completed.
1035 * Without T1_IC NFS mbuf is left unack'ed for excessive
1036 * time and NFS stops to proceed until kse_watchdog()
1037 * calls txreap() to reclaim the unack'ed mbuf.
1038 * It's painful to traverse every mbuf chain to determine
1039 * whether someone is waiting for Tx completion.
1040 */
1041 m = m0;
1042 do {
1043 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1044 sc->sc_txdescs[lasttx].t1 |= T1_IC;
1045 break;
1046 }
1047 } while ((m = m->m_next) != NULL);
1048
1049 /* Write deferred 1st segment T0_OWN at the final stage */
1050 sc->sc_txdescs[lasttx].t1 |= T1_LS;
1051 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1052 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1053 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1054 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1055
1056 /* Tell DMA start transmit */
1057 CSR_WRITE_4(sc, MDTSC, 1);
1058
1059 txs->txs_mbuf = m0;
1060 txs->txs_firstdesc = sc->sc_txnext;
1061 txs->txs_lastdesc = lasttx;
1062 txs->txs_ndesc = dmamap->dm_nsegs;
1063
1064 sc->sc_txfree -= txs->txs_ndesc;
1065 sc->sc_txnext = nexttx;
1066 sc->sc_txsfree--;
1067 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1068 /*
1069 * Pass the packet to any BPF listeners.
1070 */
1071 bpf_mtap(ifp, m0, BPF_D_OUT);
1072 }
1073
1074 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1075 /* No more slots left; notify upper layer. */
1076 ifp->if_flags |= IFF_OACTIVE;
1077 }
1078 if (sc->sc_txfree != ofree) {
1079 /* Set a watchdog timer in case the chip flakes out. */
1080 ifp->if_timer = 5;
1081 }
1082 }
1083
1084 static void
1085 kse_set_filter(struct kse_softc *sc)
1086 {
1087 struct ether_multistep step;
1088 struct ether_multi *enm;
1089 struct ethercom *ec = &sc->sc_ethercom;
1090 struct ifnet *ifp = &ec->ec_if;
1091 uint32_t crc, mchash[2];
1092 int i;
1093
1094 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1095 ifp->if_flags &= ~IFF_ALLMULTI;
1096
1097 if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
1098 ifp->if_flags |= IFF_ALLMULTI;
1099 goto update;
1100 }
1101
1102 for (i = 0; i < 16; i++)
1103 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1104 crc = mchash[0] = mchash[1] = 0;
1105 ETHER_LOCK(ec);
1106 ETHER_FIRST_MULTI(step, ec, enm);
1107 i = 0;
1108 while (enm != NULL) {
1109 #if KSE_MCASTDEBUG == 1
1110 printf("%s: addrs %s %s\n", __func__,
1111 ether_sprintf(enm->enm_addrlo),
1112 ether_sprintf(enm->enm_addrhi));
1113 #endif
1114 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1115 /*
1116 * We must listen to a range of multicast addresses.
1117 * For now, just accept all multicasts, rather than
1118 * trying to set only those filter bits needed to match
1119 * the range. (At this time, the only use of address
1120 * ranges is for IP multicast routing, for which the
1121 * range is big enough to require all bits set.)
1122 */
1123 ETHER_UNLOCK(ec);
1124 ifp->if_flags |= IFF_ALLMULTI;
1125 goto update;
1126 }
1127 if (i < 16) {
1128 /* use 16 additional MAC addr to accept mcast */
1129 uint32_t addr;
1130 uint8_t *ep = enm->enm_addrlo;
1131 addr = (ep[3] << 24) | (ep[2] << 16)
1132 | (ep[1] << 8) | ep[0];
1133 CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1134 addr = (ep[5] << 8) | ep[4] | (1U<<31);
1135 CSR_WRITE_4(sc, MAAH0 + i*8, addr);
1136 } else {
1137 /* use hash table when too many */
1138 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1139 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1140 }
1141 ETHER_NEXT_MULTI(step, enm);
1142 i++;
1143 }
1144 ETHER_UNLOCK(ec);
1145
1146 if (crc) {
1147 CSR_WRITE_4(sc, MTR0, mchash[0]);
1148 CSR_WRITE_4(sc, MTR1, mchash[1]);
1149 sc->sc_rxc |= RXC_MHTE;
1150 }
1151 return;
1152
1153 update:
1154 /* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1155 if (ifp->if_flags & IFF_PROMISC)
1156 sc->sc_rxc |= RXC_RA;
1157 else
1158 sc->sc_rxc |= RXC_RM;
1159 return;
1160 }
1161
1162 static int
1163 add_rxbuf(struct kse_softc *sc, int idx)
1164 {
1165 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1166 struct mbuf *m;
1167 int error;
1168
1169 MGETHDR(m, M_DONTWAIT, MT_DATA);
1170 if (m == NULL)
1171 return ENOBUFS;
1172
1173 MCLGET(m, M_DONTWAIT);
1174 if ((m->m_flags & M_EXT) == 0) {
1175 m_freem(m);
1176 return ENOBUFS;
1177 }
1178
1179 if (rxs->rxs_mbuf != NULL)
1180 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1181
1182 rxs->rxs_mbuf = m;
1183
1184 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1185 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1186 if (error) {
1187 aprint_error_dev(sc->sc_dev,
1188 "can't load rx DMA map %d, error = %d\n", idx, error);
1189 panic("kse_add_rxbuf");
1190 }
1191
1192 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1193 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1194
1195 KSE_INIT_RXDESC(sc, idx);
1196
1197 return 0;
1198 }
1199
1200 static void
1201 rxdrain(struct kse_softc *sc)
1202 {
1203 struct kse_rxsoft *rxs;
1204 int i;
1205
1206 for (i = 0; i < KSE_NRXDESC; i++) {
1207 rxs = &sc->sc_rxsoft[i];
1208 if (rxs->rxs_mbuf != NULL) {
1209 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1210 m_freem(rxs->rxs_mbuf);
1211 rxs->rxs_mbuf = NULL;
1212 }
1213 }
1214 }
1215
1216 static int
1217 kse_intr(void *arg)
1218 {
1219 struct kse_softc *sc = arg;
1220 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 uint32_t isr;
1222
1223 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1224 return 0;
1225
1226 if (isr & INT_DMRS)
1227 rxintr(sc);
1228 if (isr & INT_DMTS)
1229 txreap(sc);
1230 if (isr & INT_DMLCS)
1231 lnkchg(sc);
1232 if (isr & INT_DMRBUS)
1233 aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1234
1235 CSR_WRITE_4(sc, INTST, isr);
1236
1237 if (ifp->if_flags & IFF_RUNNING)
1238 if_schedule_deferred_start(ifp);
1239
1240 return 1;
1241 }
1242
1243 static void
1244 rxintr(struct kse_softc *sc)
1245 {
1246 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1247 struct kse_rxsoft *rxs;
1248 struct mbuf *m;
1249 uint32_t rxstat;
1250 int i, len;
1251
1252 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1253 rxs = &sc->sc_rxsoft[i];
1254
1255 KSE_CDRXSYNC(sc, i,
1256 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1257
1258 rxstat = sc->sc_rxdescs[i].r0;
1259
1260 if (rxstat & R0_OWN) /* desc is left empty */
1261 break;
1262
1263 /* R0_FS | R0_LS must have been marked for this desc */
1264
1265 if (rxstat & R0_ES) {
1266 ifp->if_ierrors++;
1267 #define PRINTERR(bit, str) \
1268 if (rxstat & (bit)) \
1269 aprint_error_dev(sc->sc_dev, \
1270 "%s\n", str)
1271 PRINTERR(R0_TL, "frame too long");
1272 PRINTERR(R0_RF, "runt frame");
1273 PRINTERR(R0_CE, "bad FCS");
1274 #undef PRINTERR
1275 KSE_INIT_RXDESC(sc, i);
1276 continue;
1277 }
1278
1279 /* HW errata; frame might be too small or too large */
1280
1281 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1282 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1283
1284 len = rxstat & R0_FL_MASK;
1285 len -= ETHER_CRC_LEN; /* Trim CRC off */
1286 m = rxs->rxs_mbuf;
1287
1288 if (add_rxbuf(sc, i) != 0) {
1289 ifp->if_ierrors++;
1290 KSE_INIT_RXDESC(sc, i);
1291 bus_dmamap_sync(sc->sc_dmat,
1292 rxs->rxs_dmamap, 0,
1293 rxs->rxs_dmamap->dm_mapsize,
1294 BUS_DMASYNC_PREREAD);
1295 continue;
1296 }
1297
1298 m_set_rcvif(m, ifp);
1299 m->m_pkthdr.len = m->m_len = len;
1300
1301 if (sc->sc_mcsum) {
1302 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1303 if (rxstat & R0_IPE)
1304 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1305 if (rxstat & (R0_TCPE | R0_UDPE))
1306 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1307 }
1308 if_percpuq_enqueue(ifp->if_percpuq, m);
1309 #ifdef KSEDIAGNOSTIC
1310 if (kse_monitor_rxintr > 0) {
1311 aprint_error_dev(sc->sc_dev,
1312 "m stat %x data %p len %d\n",
1313 rxstat, m->m_data, m->m_len);
1314 }
1315 #endif
1316 }
1317 sc->sc_rxptr = i;
1318 }
1319
1320 static void
1321 txreap(struct kse_softc *sc)
1322 {
1323 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1324 struct kse_txsoft *txs;
1325 uint32_t txstat;
1326 int i;
1327
1328 ifp->if_flags &= ~IFF_OACTIVE;
1329
1330 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1331 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1332 txs = &sc->sc_txsoft[i];
1333
1334 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1335 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1336
1337 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1338
1339 if (txstat & T0_OWN) /* desc is still in use */
1340 break;
1341
1342 /* There is no way to tell transmission status per frame */
1343
1344 ifp->if_opackets++;
1345
1346 sc->sc_txfree += txs->txs_ndesc;
1347 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1348 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1349 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1350 m_freem(txs->txs_mbuf);
1351 txs->txs_mbuf = NULL;
1352 }
1353 sc->sc_txsdirty = i;
1354 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1355 ifp->if_timer = 0;
1356 }
1357
1358 static void
1359 lnkchg(struct kse_softc *sc)
1360 {
1361 struct ifmediareq ifmr;
1362
1363 #if KSE_LINKDEBUG == 1
1364 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1365 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1366 #endif
1367 kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1368 }
1369
1370 static int
1371 kse_ifmedia_upd(struct ifnet *ifp)
1372 {
1373 struct kse_softc *sc = ifp->if_softc;
1374 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1375 uint16_t p1cr4;
1376
1377 p1cr4 = 0;
1378 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1379 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1380 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1381 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1382 p1cr4 |= 0xf; /* adv. 100FDX,100HDX,10FDX,10HDX */
1383 } else {
1384 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1385 p1cr4 |= PxCR_SPD100;
1386 if (ifm->ifm_media & IFM_FDX)
1387 p1cr4 |= PxCR_USEFDX;
1388 }
1389 CSR_WRITE_2(sc, P1CR4, p1cr4);
1390 #if KSE_LINKDEBUG == 1
1391 printf("P1CR4: %04x\n", p1cr4);
1392 #endif
1393 return 0;
1394 }
1395
1396 static void
1397 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1398 {
1399 struct kse_softc *sc = ifp->if_softc;
1400 struct mii_data *mii = &sc->sc_mii;
1401
1402 mii_pollstat(mii);
1403 ifmr->ifm_status = mii->mii_media_status;
1404 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1405 sc->sc_flowflags;
1406 }
1407
1408 static void
1409 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1410 {
1411 struct kse_softc *sc = ifp->if_softc;
1412 struct ifmedia *ifm = &sc->sc_media;
1413
1414 #if KSE_LINKDEBUG == 2
1415 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1416 #endif
1417
1418 /* 8842 MAC pretends 100FDX all the time */
1419 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1420 ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1421 IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1422 }
1423
1424 static void
1425 phy_tick(void *arg)
1426 {
1427 struct kse_softc *sc = arg;
1428 struct mii_data *mii = &sc->sc_mii;
1429 int s;
1430
1431 s = splnet();
1432 mii_tick(mii);
1433 splx(s);
1434
1435 callout_schedule(&sc->sc_tick_ch, hz);
1436 }
1437
1438 static const uint16_t phy1csr[] = {
1439 /* 0 BMCR */ 0x4d0,
1440 /* 1 BMSR */ 0x4d2,
1441 /* 2 PHYID1 */ 0x4d6, /* 0x0022 - PHY1HR */
1442 /* 3 PHYID2 */ 0x4d4, /* 0x1430 - PHY1LR */
1443 /* 4 ANAR */ 0x4d8,
1444 /* 5 ANLPAR */ 0x4da,
1445 };
1446
1447 int
1448 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1449 {
1450 struct kse_softc *sc = device_private(self);
1451
1452 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1453 return EINVAL;
1454 *val = CSR_READ_2(sc, phy1csr[reg]);
1455 return 0;
1456 }
1457
1458 int
1459 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1460 {
1461 struct kse_softc *sc = device_private(self);
1462
1463 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1464 return EINVAL;
1465 CSR_WRITE_2(sc, phy1csr[reg], val);
1466 return 0;
1467 }
1468
1469 void
1470 kse_mii_statchg(struct ifnet *ifp)
1471 {
1472 struct kse_softc *sc = ifp->if_softc;
1473 struct mii_data *mii = &sc->sc_mii;
1474
1475 #if KSE_LINKDEBUG == 1
1476 /* decode P1SR register value */
1477 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1478 printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1479 if (p1sr & PxSR_FDX)
1480 printf(",full-duplex");
1481 if (p1sr & PxSR_RXFLOW)
1482 printf(",rxpause");
1483 if (p1sr & PxSR_TXFLOW)
1484 printf(",txpause");
1485 printf("\n");
1486 /* show resolved mii(4) parameters to compare against above */
1487 printf("MII spd%d",
1488 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1489 if (mii->mii_media_active & IFM_FDX)
1490 printf(",full-duplex");
1491 if (mii->mii_media_active & IFM_FLOW) {
1492 printf(",flowcontrol");
1493 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1494 printf(",rxpause");
1495 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1496 printf(",txpause");
1497 }
1498 printf("\n");
1499 #endif
1500 /* Get flow control negotiation result. */
1501 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1502 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1503 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1504
1505 /* Adjust MAC PAUSE flow control. */
1506 if ((mii->mii_media_active & IFM_FDX)
1507 && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1508 sc->sc_txc |= TXC_FCE;
1509 else
1510 sc->sc_txc &= ~TXC_FCE;
1511 if ((mii->mii_media_active & IFM_FDX)
1512 && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1513 sc->sc_rxc |= RXC_FCE;
1514 else
1515 sc->sc_rxc &= ~RXC_FCE;
1516 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1517 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1518 #if KSE_LINKDEBUG == 1
1519 printf("%ctxfce, %crxfce\n",
1520 (sc->sc_txc & TXC_FCE) ? '+' : '-',
1521 (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1522 #endif
1523 }
1524
1525 #ifdef KSE_EVENT_COUNTERS
1526 static void
1527 stat_tick(void *arg)
1528 {
1529 struct kse_softc *sc = arg;
1530 struct ksext *ee = &sc->sc_ext;
1531 int nport, p, i, val;
1532
1533 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1534 for (p = 0; p < nport; p++) {
1535 for (i = 0; i < 32; i++) {
1536 val = 0x1c00 | (p * 0x20 + i);
1537 CSR_WRITE_2(sc, IACR, val);
1538 do {
1539 val = CSR_READ_2(sc, IADR5) << 16;
1540 } while ((val & (1U << 30)) == 0);
1541 if (val & (1U << 31)) {
1542 (void)CSR_READ_2(sc, IADR4);
1543 val = 0x3fffffff; /* has made overflow */
1544 }
1545 else {
1546 val &= 0x3fff0000; /* 29:16 */
1547 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1548 }
1549 ee->pev[p][i].ev_count += val; /* i (0-31) */
1550 }
1551 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1552 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1553 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1554 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1555 }
1556 callout_schedule(&sc->sc_stat_ch, hz * 60);
1557 }
1558
1559 static void
1560 zerostats(struct kse_softc *sc)
1561 {
1562 struct ksext *ee = &sc->sc_ext;
1563 int nport, p, i, val;
1564
1565 /* Make sure all the HW counters get zero */
1566 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1567 for (p = 0; p < nport; p++) {
1568 for (i = 0; i < 31; i++) {
1569 val = 0x1c00 | (p * 0x20 + i);
1570 CSR_WRITE_2(sc, IACR, val);
1571 do {
1572 val = CSR_READ_2(sc, IADR5) << 16;
1573 } while ((val & (1U << 30)) == 0);
1574 (void)CSR_READ_2(sc, IADR4);
1575 ee->pev[p][i].ev_count = 0;
1576 }
1577 }
1578 }
1579 #endif
1580