if_kse.c revision 1.46 1 /* $NetBSD: if_kse.c,v 1.46 2019/12/14 04:12:49 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Micrel 8841/8842 10/100 PCI ethernet driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.46 2019/12/14 04:12:49 nisimura Exp $");
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/ioctl.h>
46 #include <sys/errno.h>
47 #include <sys/device.h>
48 #include <sys/queue.h>
49
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h>
53
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <net/bpf.h>
61
62 #include <dev/pci/pcivar.h>
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcidevs.h>
65
66 #define KSE_LINKDEBUG 1
67
68 #define CSR_READ_4(sc, off) \
69 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
70 #define CSR_WRITE_4(sc, off, val) \
71 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
72 #define CSR_READ_2(sc, off) \
73 bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
74 #define CSR_WRITE_2(sc, off, val) \
75 bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
76
77 #define MDTXC 0x000 /* DMA transmit control */
78 #define MDRXC 0x004 /* DMA receive control */
79 #define MDTSC 0x008 /* DMA transmit start */
80 #define MDRSC 0x00c /* DMA receive start */
81 #define TDLB 0x010 /* transmit descriptor list base */
82 #define RDLB 0x014 /* receive descriptor list base */
83 #define MTR0 0x020 /* multicast table 31:0 */
84 #define MTR1 0x024 /* multicast table 63:32 */
85 #define INTEN 0x028 /* interrupt enable */
86 #define INTST 0x02c /* interrupt status */
87 #define MAAL0 0x080 /* additional MAC address 0 low */
88 #define MAAH0 0x084 /* additional MAC address 0 high */
89 #define MARL 0x200 /* MAC address low */
90 #define MARM 0x202 /* MAC address middle */
91 #define MARH 0x204 /* MAC address high */
92 #define GRR 0x216 /* global reset */
93 #define SIDER 0x400 /* switch ID and function enable */
94 #define SGCR3 0x406 /* switch function control 3 */
95 #define CR3_USEHDX (1U<<6) /* use half-duplex 8842 host port */
96 #define CR3_USEFC (1U<<5) /* use flowcontrol 8842 host port */
97 #define IACR 0x4a0 /* indirect access control */
98 #define IADR1 0x4a2 /* indirect access data 66:63 */
99 #define IADR2 0x4a4 /* indirect access data 47:32 */
100 #define IADR3 0x4a6 /* indirect access data 63:48 */
101 #define IADR4 0x4a8 /* indirect access data 15:0 */
102 #define IADR5 0x4aa /* indirect access data 31:16 */
103 #define P1CR4 0x512 /* port 1 control 4 */
104 #define P1SR 0x514 /* port 1 status */
105 #define P2CR4 0x532 /* port 2 control 4 */
106 #define P2SR 0x534 /* port 2 status */
107 #define PxCR_STARTNEG (1U<<9) /* restart auto negotiation */
108 #define PxCR_AUTOEN (1U<<7) /* auto negotiation enable */
109 #define PxCR_SPD100 (1U<<6) /* force speed 100 */
110 #define PxCR_USEFDX (1U<<5) /* force full duplex */
111 #define PxCR_USEFC (1U<<4) /* advertise pause flow control */
112 #define PxSR_ACOMP (1U<<6) /* auto negotiation completed */
113 #define PxSR_SPD100 (1U<<10) /* speed is 100Mbps */
114 #define PxSR_FDX (1U<<9) /* full duplex */
115 #define PxSR_LINKUP (1U<<5) /* link is good */
116 #define PxSR_RXFLOW (1U<<12) /* receive flow control active */
117 #define PxSR_TXFLOW (1U<<11) /* transmit flow control active */
118 #define P1VIDCR 0x504 /* port 1 vtag */
119 #define P2VIDCR 0x524 /* port 2 vtag */
120 #define P3VIDCR 0x544 /* 8842 host vtag */
121
122 #define TXC_BS_MSK 0x3f000000 /* burst size */
123 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
124 #define TXC_UCG (1U<<18) /* generate UDP checksum */
125 #define TXC_TCG (1U<<17) /* generate TCP checksum */
126 #define TXC_ICG (1U<<16) /* generate IP checksum */
127 #define TXC_FCE (1U<<9) /* generate PAUSE to moderate Rx lvl */
128 #define TXC_EP (1U<<2) /* enable automatic padding */
129 #define TXC_AC (1U<<1) /* add CRC to frame */
130 #define TXC_TEN (1) /* enable DMA to run */
131
132 #define RXC_BS_MSK 0x3f000000 /* burst size */
133 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
134 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
135 #define RXC_UCC (1U<<18) /* run UDP checksum */
136 #define RXC_TCC (1U<<17) /* run TDP checksum */
137 #define RXC_ICC (1U<<16) /* run IP checksum */
138 #define RXC_FCE (1U<<9) /* accept PAUSE to throttle Tx */
139 #define RXC_RB (1U<<6) /* receive broadcast frame */
140 #define RXC_RM (1U<<5) /* receive all multicast (inc. RB) */
141 #define RXC_RU (1U<<4) /* receive 16 additional unicasts */
142 #define RXC_RE (1U<<3) /* accept error frame */
143 #define RXC_RA (1U<<2) /* receive all frame */
144 #define RXC_MHTE (1U<<1) /* use multicast hash table */
145 #define RXC_REN (1) /* enable DMA to run */
146
147 #define INT_DMLCS (1U<<31) /* link status change */
148 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
149 #define INT_DMRS (1U<<29) /* frame was received */
150 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
151 #define INT_DMxPSS (3U<<25) /* 26:25 DMA Tx/Rx have stopped */
152
153 #define T0_OWN (1U<<31) /* desc is ready to Tx */
154
155 #define R0_OWN (1U<<31) /* desc is empty */
156 #define R0_FS (1U<<30) /* first segment of frame */
157 #define R0_LS (1U<<29) /* last segment of frame */
158 #define R0_IPE (1U<<28) /* IP checksum error */
159 #define R0_TCPE (1U<<27) /* TCP checksum error */
160 #define R0_UDPE (1U<<26) /* UDP checksum error */
161 #define R0_ES (1U<<25) /* error summary */
162 #define R0_MF (1U<<24) /* multicast frame */
163 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
164 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
165 #define R0_RE (1U<<19) /* MII reported error */
166 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
167 #define R0_RF (1U<<17) /* damaged runt frame */
168 #define R0_CE (1U<<16) /* CRC error */
169 #define R0_FT (1U<<15) /* frame type */
170 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
171
172 #define T1_IC (1U<<31) /* post interrupt on complete */
173 #define T1_FS (1U<<30) /* first segment of frame */
174 #define T1_LS (1U<<29) /* last segment of frame */
175 #define T1_IPCKG (1U<<28) /* generate IP checksum */
176 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
177 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
178 #define T1_TER (1U<<25) /* end of ring */
179 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
180 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
181
182 #define R1_RER (1U<<25) /* end of ring */
183 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
184
185 #define KSE_NTXSEGS 16
186 #define KSE_TXQUEUELEN 64
187 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
188 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
189 #define KSE_NTXDESC 256
190 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
191 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
192 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
193
194 #define KSE_NRXDESC 64
195 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
196 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
197
198 struct tdes {
199 uint32_t t0, t1, t2, t3;
200 };
201
202 struct rdes {
203 uint32_t r0, r1, r2, r3;
204 };
205
206 struct kse_control_data {
207 struct tdes kcd_txdescs[KSE_NTXDESC];
208 struct rdes kcd_rxdescs[KSE_NRXDESC];
209 };
210 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
211 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
212 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
213
214 struct kse_txsoft {
215 struct mbuf *txs_mbuf; /* head of our mbuf chain */
216 bus_dmamap_t txs_dmamap; /* our DMA map */
217 int txs_firstdesc; /* first descriptor in packet */
218 int txs_lastdesc; /* last descriptor in packet */
219 int txs_ndesc; /* # of descriptors used */
220 };
221
222 struct kse_rxsoft {
223 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
224 bus_dmamap_t rxs_dmamap; /* our DMA map */
225 };
226
227 struct kse_softc {
228 device_t sc_dev; /* generic device information */
229 bus_space_tag_t sc_st; /* bus space tag */
230 bus_space_handle_t sc_sh; /* bus space handle */
231 bus_size_t sc_memsize; /* csr map size */
232 bus_dma_tag_t sc_dmat; /* bus DMA tag */
233 pci_chipset_tag_t sc_pc; /* PCI chipset tag */
234 struct ethercom sc_ethercom; /* Ethernet common data */
235 void *sc_ih; /* interrupt cookie */
236
237 struct mii_data sc_mii; /* mii 8841 */
238 struct ifmedia sc_media; /* ifmedia 8842 */
239 int sc_flowflags; /* 802.3x PAUSE flow control */
240
241 callout_t sc_tick_ch; /* MII tick callout */
242 callout_t sc_stat_ch; /* statistics counter callout */
243
244 bus_dmamap_t sc_cddmamap; /* control data DMA map */
245 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
246
247 struct kse_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->kcd_txdescs
249 #define sc_rxdescs sc_control_data->kcd_rxdescs
250
251 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
252 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
253 int sc_txfree; /* number of free Tx descriptors */
254 int sc_txnext; /* next ready Tx descriptor */
255 int sc_txsfree; /* number of free Tx jobs */
256 int sc_txsnext; /* next ready Tx job */
257 int sc_txsdirty; /* dirty Tx jobs */
258 int sc_rxptr; /* next ready Rx descriptor/descsoft */
259
260 uint32_t sc_txc, sc_rxc;
261 uint32_t sc_t1csum;
262 int sc_mcsum;
263 uint32_t sc_inten;
264
265 uint32_t sc_chip;
266 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
267 uint16_t sc_vlan[16];
268
269 #ifdef KSE_EVENT_COUNTERS
270 struct ksext {
271 char evcntname[3][8];
272 struct evcnt pev[3][34];
273 } sc_ext; /* switch statistics */
274 #endif
275 };
276
277 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
278 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
279
280 #define KSE_CDTXSYNC(sc, x, n, ops) \
281 do { \
282 int __x, __n; \
283 \
284 __x = (x); \
285 __n = (n); \
286 \
287 /* If it will wrap around, sync to the end of the ring. */ \
288 if ((__x + __n) > KSE_NTXDESC) { \
289 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
290 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
291 (KSE_NTXDESC - __x), (ops)); \
292 __n -= (KSE_NTXDESC - __x); \
293 __x = 0; \
294 } \
295 \
296 /* Now sync whatever is left. */ \
297 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
298 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
299 } while (/*CONSTCOND*/0)
300
301 #define KSE_CDRXSYNC(sc, x, ops) \
302 do { \
303 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
304 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
305 } while (/*CONSTCOND*/0)
306
307 #define KSE_INIT_RXDESC(sc, x) \
308 do { \
309 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
310 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
311 struct mbuf *__m = __rxs->rxs_mbuf; \
312 \
313 __m->m_data = __m->m_ext.ext_buf; \
314 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
315 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
316 __rxd->r0 = R0_OWN; \
317 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
318 } while (/*CONSTCOND*/0)
319
320 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
321
322 #ifdef KSEDIAGNOSTIC
323 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
324 #endif
325
326 static int kse_match(device_t, cfdata_t, void *);
327 static void kse_attach(device_t, device_t, void *);
328
329 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
330 kse_match, kse_attach, NULL, NULL);
331
332 static int kse_ioctl(struct ifnet *, u_long, void *);
333 static void kse_start(struct ifnet *);
334 static void kse_watchdog(struct ifnet *);
335 static int kse_init(struct ifnet *);
336 static void kse_stop(struct ifnet *, int);
337 static void kse_reset(struct kse_softc *);
338 static void kse_set_filter(struct kse_softc *);
339 static int add_rxbuf(struct kse_softc *, int);
340 static void rxdrain(struct kse_softc *);
341 static int kse_intr(void *);
342 static void rxintr(struct kse_softc *);
343 static void txreap(struct kse_softc *);
344 static void lnkchg(struct kse_softc *);
345 static int kse_ifmedia_upd(struct ifnet *);
346 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
347 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
348 static void phy_tick(void *);
349 int kse_mii_readreg(device_t, int, int, uint16_t *);
350 int kse_mii_writereg(device_t, int, int, uint16_t);
351 void kse_mii_statchg(struct ifnet *);
352 #ifdef KSE_EVENT_COUNTERS
353 static void stat_tick(void *);
354 static void zerostats(struct kse_softc *);
355 #endif
356
357 static int
358 kse_match(device_t parent, cfdata_t match, void *aux)
359 {
360 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
361
362 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
363 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
364 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
365 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
366 return 1;
367
368 return 0;
369 }
370
371 static void
372 kse_attach(device_t parent, device_t self, void *aux)
373 {
374 struct kse_softc *sc = device_private(self);
375 struct pci_attach_args *pa = aux;
376 pci_chipset_tag_t pc = pa->pa_pc;
377 pci_intr_handle_t ih;
378 const char *intrstr;
379 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
380 struct mii_data * const mii = &sc->sc_mii;
381 struct ifmedia *ifm;
382 uint8_t enaddr[ETHER_ADDR_LEN];
383 bus_dma_segment_t seg;
384 int i, error, nseg;
385 char intrbuf[PCI_INTRSTR_LEN];
386
387 aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
388 PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
389
390 if (pci_mapreg_map(pa, 0x10,
391 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
392 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
393 aprint_error_dev(self, "unable to map device registers\n");
394 return;
395 }
396
397 /* Make sure bus mastering is enabled. */
398 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
399 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
400 PCI_COMMAND_MASTER_ENABLE);
401
402 /* Power up chip if necessary. */
403 if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
404 && error != EOPNOTSUPP) {
405 aprint_error_dev(self, "cannot activate %d\n", error);
406 return;
407 }
408
409 /* Map and establish our interrupt. */
410 if (pci_intr_map(pa, &ih)) {
411 aprint_error_dev(self, "unable to map interrupt\n");
412 return;
413 }
414 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
415 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
416 device_xname(self));
417 if (sc->sc_ih == NULL) {
418 aprint_error_dev(self, "unable to establish interrupt");
419 if (intrstr != NULL)
420 aprint_error(" at %s", intrstr);
421 aprint_error("\n");
422 return;
423 }
424 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
425
426 sc->sc_dev = self;
427 sc->sc_dmat = pa->pa_dmat;
428 sc->sc_pc = pa->pa_pc;
429 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
430
431 /*
432 * Read the Ethernet address from the EEPROM.
433 */
434 i = CSR_READ_2(sc, MARL);
435 enaddr[5] = i;
436 enaddr[4] = i >> 8;
437 i = CSR_READ_2(sc, MARM);
438 enaddr[3] = i;
439 enaddr[2] = i >> 8;
440 i = CSR_READ_2(sc, MARH);
441 enaddr[1] = i;
442 enaddr[0] = i >> 8;
443 aprint_normal_dev(self,
444 "Ethernet address %s\n", ether_sprintf(enaddr));
445
446 /*
447 * Enable chip function.
448 */
449 CSR_WRITE_2(sc, SIDER, 1);
450
451 /*
452 * Allocate the control data structures, and create and load the
453 * DMA map for it.
454 */
455 error = bus_dmamem_alloc(sc->sc_dmat,
456 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
457 if (error != 0) {
458 aprint_error_dev(self,
459 "unable to allocate control data, error = %d\n", error);
460 goto fail_0;
461 }
462 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
463 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
464 BUS_DMA_COHERENT);
465 if (error != 0) {
466 aprint_error_dev(self,
467 "unable to map control data, error = %d\n", error);
468 goto fail_1;
469 }
470 error = bus_dmamap_create(sc->sc_dmat,
471 sizeof(struct kse_control_data), 1,
472 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
473 if (error != 0) {
474 aprint_error_dev(self,
475 "unable to create control data DMA map, "
476 "error = %d\n", error);
477 goto fail_2;
478 }
479 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
480 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
481 if (error != 0) {
482 aprint_error_dev(self,
483 "unable to load control data DMA map, error = %d\n",
484 error);
485 goto fail_3;
486 }
487 for (i = 0; i < KSE_TXQUEUELEN; i++) {
488 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
489 KSE_NTXSEGS, MCLBYTES, 0, 0,
490 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
491 aprint_error_dev(self,
492 "unable to create tx DMA map %d, error = %d\n",
493 i, error);
494 goto fail_4;
495 }
496 }
497 for (i = 0; i < KSE_NRXDESC; i++) {
498 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
499 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
500 aprint_error_dev(self,
501 "unable to create rx DMA map %d, error = %d\n",
502 i, error);
503 goto fail_5;
504 }
505 sc->sc_rxsoft[i].rxs_mbuf = NULL;
506 }
507
508 callout_init(&sc->sc_tick_ch, 0);
509 callout_init(&sc->sc_stat_ch, 0);
510 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
511 #ifdef KSE_EVENT_COUNTERS
512 callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
513 #endif
514
515 mii->mii_ifp = ifp;
516 mii->mii_readreg = kse_mii_readreg;
517 mii->mii_writereg = kse_mii_writereg;
518 mii->mii_statchg = kse_mii_statchg;
519
520 /* Initialize ifmedia structures. */
521 sc->sc_flowflags = 0;
522 if (sc->sc_chip == 0x8841) {
523 /* use port 1 builtin PHY as index 1 device */
524 sc->sc_ethercom.ec_mii = mii;
525 ifm = &mii->mii_media;
526 ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
527 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
528 MII_OFFSET_ANY, MIIF_DOPAUSE);
529 if (LIST_FIRST(&mii->mii_phys) == NULL) {
530 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
531 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
532 } else
533 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
534 } else {
535 /*
536 * pretend 100FDX w/ no alternative media selection.
537 * 8842 MAC is tied with a builtin 3 port switch. It can do
538 * 4 degree priotised rate control over either of tx/rx
539 * direction for any of ports, respectively. Tough, this
540 * driver leaves the rate unlimited intending 100Mbps maximum.
541 * 2 external ports behave in AN mode and this driver provides
542 * no mean to manipulate and see their operational details.
543 */
544 sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
545 ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
546 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
547 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
548
549 aprint_normal_dev(self,
550 "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
551 }
552 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
553
554
555 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
556 ifp->if_softc = sc;
557 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
558 ifp->if_ioctl = kse_ioctl;
559 ifp->if_start = kse_start;
560 ifp->if_watchdog = kse_watchdog;
561 ifp->if_init = kse_init;
562 ifp->if_stop = kse_stop;
563 IFQ_SET_READY(&ifp->if_snd);
564
565 /*
566 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
567 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
568 */
569 sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
570 ifp->if_capabilities =
571 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
572 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
573 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
574
575 if_attach(ifp);
576 if_deferred_start_init(ifp, NULL);
577 ether_ifattach(ifp, enaddr);
578
579 #ifdef KSE_EVENT_COUNTERS
580 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
581 for (i = 0; i < p; i++) {
582 struct ksext *ee = &sc->sc_ext;
583 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
584 "%s.%d", device_xname(sc->sc_dev), i+1);
585 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
586 NULL, ee->evcntname[i], "RxLoPriotyByte");
587 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
588 NULL, ee->evcntname[i], "RxHiPriotyByte");
589 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
590 NULL, ee->evcntname[i], "RxUndersizePkt");
591 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
592 NULL, ee->evcntname[i], "RxFragments");
593 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
594 NULL, ee->evcntname[i], "RxOversize");
595 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
596 NULL, ee->evcntname[i], "RxJabbers");
597 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
598 NULL, ee->evcntname[i], "RxSymbolError");
599 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
600 NULL, ee->evcntname[i], "RxCRCError");
601 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
602 NULL, ee->evcntname[i], "RxAlignmentError");
603 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
604 NULL, ee->evcntname[i], "RxControl8808Pkts");
605 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
606 NULL, ee->evcntname[i], "RxPausePkts");
607 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
608 NULL, ee->evcntname[i], "RxBroadcast");
609 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
610 NULL, ee->evcntname[i], "RxMulticast");
611 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
612 NULL, ee->evcntname[i], "RxUnicast");
613 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
614 NULL, ee->evcntname[i], "Rx64Octets");
615 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
616 NULL, ee->evcntname[i], "Rx65To127Octets");
617 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
618 NULL, ee->evcntname[i], "Rx128To255Octets");
619 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
620 NULL, ee->evcntname[i], "Rx255To511Octets");
621 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
622 NULL, ee->evcntname[i], "Rx512To1023Octets");
623 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
624 NULL, ee->evcntname[i], "Rx1024To1522Octets");
625 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
626 NULL, ee->evcntname[i], "TxLoPriotyByte");
627 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
628 NULL, ee->evcntname[i], "TxHiPriotyByte");
629 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
630 NULL, ee->evcntname[i], "TxLateCollision");
631 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
632 NULL, ee->evcntname[i], "TxPausePkts");
633 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
634 NULL, ee->evcntname[i], "TxBroadcastPkts");
635 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
636 NULL, ee->evcntname[i], "TxMulticastPkts");
637 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
638 NULL, ee->evcntname[i], "TxUnicastPkts");
639 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
640 NULL, ee->evcntname[i], "TxDeferred");
641 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
642 NULL, ee->evcntname[i], "TxTotalCollision");
643 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
644 NULL, ee->evcntname[i], "TxExcessiveCollision");
645 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
646 NULL, ee->evcntname[i], "TxSingleCollision");
647 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
648 NULL, ee->evcntname[i], "TxMultipleCollision");
649 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
650 NULL, ee->evcntname[i], "TxDropPkts");
651 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
652 NULL, ee->evcntname[i], "RxDropPkts");
653 }
654 #endif
655 return;
656
657 fail_5:
658 for (i = 0; i < KSE_NRXDESC; i++) {
659 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
660 bus_dmamap_destroy(sc->sc_dmat,
661 sc->sc_rxsoft[i].rxs_dmamap);
662 }
663 fail_4:
664 for (i = 0; i < KSE_TXQUEUELEN; i++) {
665 if (sc->sc_txsoft[i].txs_dmamap != NULL)
666 bus_dmamap_destroy(sc->sc_dmat,
667 sc->sc_txsoft[i].txs_dmamap);
668 }
669 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
670 fail_3:
671 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
672 fail_2:
673 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
674 sizeof(struct kse_control_data));
675 fail_1:
676 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
677 fail_0:
678 if (sc->sc_ih != NULL) {
679 pci_intr_disestablish(pc, sc->sc_ih);
680 sc->sc_ih = NULL;
681 }
682 if (sc->sc_memsize) {
683 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
684 sc->sc_memsize = 0;
685 }
686 return;
687 }
688
689 static int
690 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
691 {
692 struct kse_softc *sc = ifp->if_softc;
693 struct ifreq *ifr = (struct ifreq *)data;
694 struct ifmedia *ifm;
695 int s, error;
696
697 s = splnet();
698
699 switch (cmd) {
700 case SIOCSIFMEDIA:
701 /* Flow control requires full-duplex mode. */
702 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
703 (ifr->ifr_media & IFM_FDX) == 0)
704 ifr->ifr_media &= ~IFM_ETH_FMASK;
705 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
706 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
707 /* We can do both TXPAUSE and RXPAUSE. */
708 ifr->ifr_media |=
709 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
710 }
711 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
712 }
713 ifm = (sc->sc_chip == 0x8841)
714 ? &sc->sc_mii.mii_media : &sc->sc_media;
715 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
716 break;
717 default:
718 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
719 break;
720
721 error = 0;
722
723 if (cmd == SIOCSIFCAP)
724 error = (*ifp->if_init)(ifp);
725 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
726 ;
727 else if (ifp->if_flags & IFF_RUNNING) {
728 /*
729 * Multicast list has changed; set the hardware filter
730 * accordingly.
731 */
732 kse_set_filter(sc);
733 }
734 break;
735 }
736
737 splx(s);
738 return error;
739 }
740
741 static int
742 kse_init(struct ifnet *ifp)
743 {
744 struct kse_softc *sc = ifp->if_softc;
745 uint32_t paddr;
746 int i, error = 0;
747
748 /* cancel pending I/O */
749 kse_stop(ifp, 0);
750
751 /* reset all registers but PCI configuration */
752 kse_reset(sc);
753
754 /* craft Tx descriptor ring */
755 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
756 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
757 sc->sc_txdescs[i].t3 = paddr;
758 paddr += sizeof(struct tdes);
759 }
760 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
761 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
762 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
763 sc->sc_txfree = KSE_NTXDESC;
764 sc->sc_txnext = 0;
765
766 for (i = 0; i < KSE_TXQUEUELEN; i++)
767 sc->sc_txsoft[i].txs_mbuf = NULL;
768 sc->sc_txsfree = KSE_TXQUEUELEN;
769 sc->sc_txsnext = 0;
770 sc->sc_txsdirty = 0;
771
772 /* craft Rx descriptor ring */
773 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
774 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
775 sc->sc_rxdescs[i].r3 = paddr;
776 paddr += sizeof(struct rdes);
777 }
778 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
779 for (i = 0; i < KSE_NRXDESC; i++) {
780 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
781 if ((error = add_rxbuf(sc, i)) != 0) {
782 aprint_error_dev(sc->sc_dev,
783 "unable to allocate or map rx "
784 "buffer %d, error = %d\n",
785 i, error);
786 rxdrain(sc);
787 goto out;
788 }
789 }
790 else
791 KSE_INIT_RXDESC(sc, i);
792 }
793 sc->sc_rxptr = 0;
794
795 /* hand Tx/Rx rings to HW */
796 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
797 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
798
799 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
800 sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
801 sc->sc_t1csum = sc->sc_mcsum = 0;
802 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
803 sc->sc_rxc |= RXC_ICC;
804 sc->sc_mcsum |= M_CSUM_IPv4;
805 }
806 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
807 sc->sc_txc |= TXC_ICG;
808 sc->sc_t1csum |= T1_IPCKG;
809 }
810 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
811 sc->sc_rxc |= RXC_TCC;
812 sc->sc_mcsum |= M_CSUM_TCPv4;
813 }
814 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
815 sc->sc_txc |= TXC_TCG;
816 sc->sc_t1csum |= T1_TCPCKG;
817 }
818 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
819 sc->sc_rxc |= RXC_UCC;
820 sc->sc_mcsum |= M_CSUM_UDPv4;
821 }
822 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
823 sc->sc_txc |= TXC_UCG;
824 sc->sc_t1csum |= T1_UDPCKG;
825 }
826 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
827 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
828
829 if (sc->sc_chip == 0x8842) {
830 sc->sc_txc |= TXC_FCE;
831 sc->sc_rxc |= RXC_FCE;
832 CSR_WRITE_2(sc, SGCR3,
833 CSR_READ_2(sc, SGCR3) | CR3_USEFC);
834 }
835
836 /* build multicast hash filter if necessary */
837 kse_set_filter(sc);
838
839 /* set current media */
840 if (sc->sc_chip == 0x8841)
841 (void)kse_ifmedia_upd(ifp);
842
843 /* enable transmitter and receiver */
844 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
845 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
846 CSR_WRITE_4(sc, MDRSC, 1);
847
848 /* enable interrupts */
849 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
850 if (sc->sc_chip == 0x8841)
851 sc->sc_inten |= INT_DMLCS;
852 CSR_WRITE_4(sc, INTST, ~0);
853 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
854
855 ifp->if_flags |= IFF_RUNNING;
856 ifp->if_flags &= ~IFF_OACTIVE;
857
858 if (sc->sc_chip == 0x8841) {
859 /* start one second timer */
860 callout_schedule(&sc->sc_tick_ch, hz);
861 }
862 #ifdef KSE_EVENT_COUNTERS
863 /* start statistics gather 1 minute timer. should be tunable */
864 zerostats(sc);
865 callout_schedule(&sc->sc_stat_ch, hz * 60);
866 #endif
867
868 out:
869 if (error) {
870 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
871 ifp->if_timer = 0;
872 aprint_error_dev(sc->sc_dev, "interface not running\n");
873 }
874 return error;
875 }
876
877 static void
878 kse_stop(struct ifnet *ifp, int disable)
879 {
880 struct kse_softc *sc = ifp->if_softc;
881 struct kse_txsoft *txs;
882 int i;
883
884 if (sc->sc_chip == 0x8841)
885 callout_stop(&sc->sc_tick_ch);
886 callout_stop(&sc->sc_stat_ch);
887
888 sc->sc_txc &= ~TXC_TEN;
889 sc->sc_rxc &= ~RXC_REN;
890 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
891 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
892
893 for (i = 0; i < KSE_TXQUEUELEN; i++) {
894 txs = &sc->sc_txsoft[i];
895 if (txs->txs_mbuf != NULL) {
896 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
897 m_freem(txs->txs_mbuf);
898 txs->txs_mbuf = NULL;
899 }
900 }
901
902 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
903 ifp->if_timer = 0;
904
905 if (disable)
906 rxdrain(sc);
907 }
908
909 static void
910 kse_reset(struct kse_softc *sc)
911 {
912
913 /* software reset */
914 CSR_WRITE_2(sc, GRR, 1);
915 delay(1000); /* PDF does not mention the delay amount */
916 CSR_WRITE_2(sc, GRR, 0);
917
918 /* enable switch function */
919 CSR_WRITE_2(sc, SIDER, 1);
920 }
921
922 static void
923 kse_watchdog(struct ifnet *ifp)
924 {
925 struct kse_softc *sc = ifp->if_softc;
926
927 /*
928 * Since we're not interrupting every packet, sweep
929 * up before we report an error.
930 */
931 txreap(sc);
932
933 if (sc->sc_txfree != KSE_NTXDESC) {
934 aprint_error_dev(sc->sc_dev,
935 "device timeout (txfree %d txsfree %d txnext %d)\n",
936 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
937 ifp->if_oerrors++;
938
939 /* Reset the interface. */
940 kse_init(ifp);
941 }
942 else if (ifp->if_flags & IFF_DEBUG)
943 aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
944
945 /* Try to get more packets going. */
946 kse_start(ifp);
947 }
948
949 static void
950 kse_start(struct ifnet *ifp)
951 {
952 struct kse_softc *sc = ifp->if_softc;
953 struct mbuf *m0, *m;
954 struct kse_txsoft *txs;
955 bus_dmamap_t dmamap;
956 int error, nexttx, lasttx, ofree, seg;
957 uint32_t tdes0;
958
959 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
960 return;
961
962 /* Remember the previous number of free descriptors. */
963 ofree = sc->sc_txfree;
964
965 /*
966 * Loop through the send queue, setting up transmit descriptors
967 * until we drain the queue, or use up all available transmit
968 * descriptors.
969 */
970 for (;;) {
971 IFQ_POLL(&ifp->if_snd, m0);
972 if (m0 == NULL)
973 break;
974
975 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
976 txreap(sc);
977 if (sc->sc_txsfree == 0)
978 break;
979 }
980 txs = &sc->sc_txsoft[sc->sc_txsnext];
981 dmamap = txs->txs_dmamap;
982
983 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
984 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
985 if (error) {
986 if (error == EFBIG) {
987 aprint_error_dev(sc->sc_dev,
988 "Tx packet consumes too many "
989 "DMA segments, dropping...\n");
990 IFQ_DEQUEUE(&ifp->if_snd, m0);
991 m_freem(m0);
992 continue;
993 }
994 /* Short on resources, just stop for now. */
995 break;
996 }
997
998 if (dmamap->dm_nsegs > sc->sc_txfree) {
999 /*
1000 * Not enough free descriptors to transmit this
1001 * packet. We haven't committed anything yet,
1002 * so just unload the DMA map, put the packet
1003 * back on the queue, and punt. Notify the upper
1004 * layer that there are not more slots left.
1005 */
1006 ifp->if_flags |= IFF_OACTIVE;
1007 bus_dmamap_unload(sc->sc_dmat, dmamap);
1008 break;
1009 }
1010
1011 IFQ_DEQUEUE(&ifp->if_snd, m0);
1012
1013 /*
1014 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1015 */
1016
1017 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1018 BUS_DMASYNC_PREWRITE);
1019
1020 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1021 lasttx = -1;
1022 for (nexttx = sc->sc_txnext, seg = 0;
1023 seg < dmamap->dm_nsegs;
1024 seg++, nexttx = KSE_NEXTTX(nexttx)) {
1025 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1026 /*
1027 * If this is the first descriptor we're
1028 * enqueueing, don't set the OWN bit just
1029 * yet. That could cause a race condition.
1030 * We'll do it below.
1031 */
1032 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1033 tdes->t1 = sc->sc_t1csum
1034 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1035 tdes->t0 = tdes0;
1036 tdes0 = T0_OWN; /* 2nd and other segments */
1037 lasttx = nexttx;
1038 }
1039 /*
1040 * Outgoing NFS mbuf must be unloaded when Tx completed.
1041 * Without T1_IC NFS mbuf is left unack'ed for excessive
1042 * time and NFS stops to proceed until kse_watchdog()
1043 * calls txreap() to reclaim the unack'ed mbuf.
1044 * It's painful to traverse every mbuf chain to determine
1045 * whether someone is waiting for Tx completion.
1046 */
1047 m = m0;
1048 do {
1049 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1050 sc->sc_txdescs[lasttx].t1 |= T1_IC;
1051 break;
1052 }
1053 } while ((m = m->m_next) != NULL);
1054
1055 /* Write deferred 1st segment T0_OWN at the final stage */
1056 sc->sc_txdescs[lasttx].t1 |= T1_LS;
1057 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1058 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1059 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1060 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1061
1062 /* Tell DMA start transmit */
1063 CSR_WRITE_4(sc, MDTSC, 1);
1064
1065 txs->txs_mbuf = m0;
1066 txs->txs_firstdesc = sc->sc_txnext;
1067 txs->txs_lastdesc = lasttx;
1068 txs->txs_ndesc = dmamap->dm_nsegs;
1069
1070 sc->sc_txfree -= txs->txs_ndesc;
1071 sc->sc_txnext = nexttx;
1072 sc->sc_txsfree--;
1073 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1074 /*
1075 * Pass the packet to any BPF listeners.
1076 */
1077 bpf_mtap(ifp, m0, BPF_D_OUT);
1078 }
1079
1080 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1081 /* No more slots left; notify upper layer. */
1082 ifp->if_flags |= IFF_OACTIVE;
1083 }
1084 if (sc->sc_txfree != ofree) {
1085 /* Set a watchdog timer in case the chip flakes out. */
1086 ifp->if_timer = 5;
1087 }
1088 }
1089
1090 static void
1091 kse_set_filter(struct kse_softc *sc)
1092 {
1093 struct ether_multistep step;
1094 struct ether_multi *enm;
1095 struct ethercom *ec = &sc->sc_ethercom;
1096 struct ifnet *ifp = &ec->ec_if;
1097 uint32_t crc, mchash[2];
1098 int i;
1099
1100 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1101 ifp->if_flags &= ~IFF_ALLMULTI;
1102
1103 if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
1104 ifp->if_flags |= IFF_ALLMULTI;
1105 goto update;
1106 }
1107
1108 for (i = 0; i < 16; i++)
1109 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1110 crc = mchash[0] = mchash[1] = 0;
1111 ETHER_LOCK(ec);
1112 ETHER_FIRST_MULTI(step, ec, enm);
1113 i = 0;
1114 while (enm != NULL) {
1115 #if KSE_MCASTDEBUG == 1
1116 printf("%s: addrs %s %s\n", __func__,
1117 ether_sprintf(enm->enm_addrlo),
1118 ether_sprintf(enm->enm_addrhi));
1119 #endif
1120 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1121 /*
1122 * We must listen to a range of multicast addresses.
1123 * For now, just accept all multicasts, rather than
1124 * trying to set only those filter bits needed to match
1125 * the range. (At this time, the only use of address
1126 * ranges is for IP multicast routing, for which the
1127 * range is big enough to require all bits set.)
1128 */
1129 ETHER_UNLOCK(ec);
1130 ifp->if_flags |= IFF_ALLMULTI;
1131 goto update;
1132 }
1133 if (i < 16) {
1134 /* use 16 additional MAC addr to accept mcast */
1135 uint32_t addr;
1136 uint8_t *ep = enm->enm_addrlo;
1137 addr = (ep[3] << 24) | (ep[2] << 16)
1138 | (ep[1] << 8) | ep[0];
1139 CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1140 addr = (ep[5] << 8) | ep[4] | (1U<<31);
1141 CSR_WRITE_4(sc, MAAH0 + i*8, addr);
1142 } else {
1143 /* use hash table when too many */
1144 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1145 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1146 }
1147 ETHER_NEXT_MULTI(step, enm);
1148 i++;
1149 }
1150 ETHER_UNLOCK(ec);
1151
1152 if (crc) {
1153 CSR_WRITE_4(sc, MTR0, mchash[0]);
1154 CSR_WRITE_4(sc, MTR1, mchash[1]);
1155 sc->sc_rxc |= RXC_MHTE;
1156 }
1157 return;
1158
1159 update:
1160 /* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1161 if (ifp->if_flags & IFF_PROMISC)
1162 sc->sc_rxc |= RXC_RA;
1163 else
1164 sc->sc_rxc |= RXC_RM;
1165 return;
1166 }
1167
1168 static int
1169 add_rxbuf(struct kse_softc *sc, int idx)
1170 {
1171 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1172 struct mbuf *m;
1173 int error;
1174
1175 MGETHDR(m, M_DONTWAIT, MT_DATA);
1176 if (m == NULL)
1177 return ENOBUFS;
1178
1179 MCLGET(m, M_DONTWAIT);
1180 if ((m->m_flags & M_EXT) == 0) {
1181 m_freem(m);
1182 return ENOBUFS;
1183 }
1184
1185 if (rxs->rxs_mbuf != NULL)
1186 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1187
1188 rxs->rxs_mbuf = m;
1189
1190 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1191 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1192 if (error) {
1193 aprint_error_dev(sc->sc_dev,
1194 "can't load rx DMA map %d, error = %d\n", idx, error);
1195 panic("kse_add_rxbuf");
1196 }
1197
1198 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1199 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1200
1201 KSE_INIT_RXDESC(sc, idx);
1202
1203 return 0;
1204 }
1205
1206 static void
1207 rxdrain(struct kse_softc *sc)
1208 {
1209 struct kse_rxsoft *rxs;
1210 int i;
1211
1212 for (i = 0; i < KSE_NRXDESC; i++) {
1213 rxs = &sc->sc_rxsoft[i];
1214 if (rxs->rxs_mbuf != NULL) {
1215 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1216 m_freem(rxs->rxs_mbuf);
1217 rxs->rxs_mbuf = NULL;
1218 }
1219 }
1220 }
1221
1222 static int
1223 kse_intr(void *arg)
1224 {
1225 struct kse_softc *sc = arg;
1226 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1227 uint32_t isr;
1228
1229 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1230 return 0;
1231
1232 if (isr & INT_DMRS)
1233 rxintr(sc);
1234 if (isr & INT_DMTS)
1235 txreap(sc);
1236 if (isr & INT_DMLCS)
1237 lnkchg(sc);
1238 if (isr & INT_DMRBUS)
1239 aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1240
1241 CSR_WRITE_4(sc, INTST, isr);
1242
1243 if (ifp->if_flags & IFF_RUNNING)
1244 if_schedule_deferred_start(ifp);
1245
1246 return 1;
1247 }
1248
1249 static void
1250 rxintr(struct kse_softc *sc)
1251 {
1252 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1253 struct kse_rxsoft *rxs;
1254 struct mbuf *m;
1255 uint32_t rxstat;
1256 int i, len;
1257
1258 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1259 rxs = &sc->sc_rxsoft[i];
1260
1261 KSE_CDRXSYNC(sc, i,
1262 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1263
1264 rxstat = sc->sc_rxdescs[i].r0;
1265
1266 if (rxstat & R0_OWN) /* desc is left empty */
1267 break;
1268
1269 /* R0_FS | R0_LS must have been marked for this desc */
1270
1271 if (rxstat & R0_ES) {
1272 ifp->if_ierrors++;
1273 #define PRINTERR(bit, str) \
1274 if (rxstat & (bit)) \
1275 aprint_error_dev(sc->sc_dev, \
1276 "%s\n", str)
1277 PRINTERR(R0_TL, "frame too long");
1278 PRINTERR(R0_RF, "runt frame");
1279 PRINTERR(R0_CE, "bad FCS");
1280 #undef PRINTERR
1281 KSE_INIT_RXDESC(sc, i);
1282 continue;
1283 }
1284
1285 /* HW errata; frame might be too small or too large */
1286
1287 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289
1290 len = rxstat & R0_FL_MASK;
1291 len -= ETHER_CRC_LEN; /* Trim CRC off */
1292 m = rxs->rxs_mbuf;
1293
1294 if (add_rxbuf(sc, i) != 0) {
1295 ifp->if_ierrors++;
1296 KSE_INIT_RXDESC(sc, i);
1297 bus_dmamap_sync(sc->sc_dmat,
1298 rxs->rxs_dmamap, 0,
1299 rxs->rxs_dmamap->dm_mapsize,
1300 BUS_DMASYNC_PREREAD);
1301 continue;
1302 }
1303
1304 m_set_rcvif(m, ifp);
1305 m->m_pkthdr.len = m->m_len = len;
1306
1307 if (sc->sc_mcsum) {
1308 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1309 if (rxstat & R0_IPE)
1310 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1311 if (rxstat & (R0_TCPE | R0_UDPE))
1312 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1313 }
1314 if_percpuq_enqueue(ifp->if_percpuq, m);
1315 #ifdef KSEDIAGNOSTIC
1316 if (kse_monitor_rxintr > 0) {
1317 aprint_error_dev(sc->sc_dev,
1318 "m stat %x data %p len %d\n",
1319 rxstat, m->m_data, m->m_len);
1320 }
1321 #endif
1322 }
1323 sc->sc_rxptr = i;
1324 }
1325
1326 static void
1327 txreap(struct kse_softc *sc)
1328 {
1329 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1330 struct kse_txsoft *txs;
1331 uint32_t txstat;
1332 int i;
1333
1334 ifp->if_flags &= ~IFF_OACTIVE;
1335
1336 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1337 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1338 txs = &sc->sc_txsoft[i];
1339
1340 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1341 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1342
1343 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1344
1345 if (txstat & T0_OWN) /* desc is still in use */
1346 break;
1347
1348 /* There is no way to tell transmission status per frame */
1349
1350 ifp->if_opackets++;
1351
1352 sc->sc_txfree += txs->txs_ndesc;
1353 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1354 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1355 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1356 m_freem(txs->txs_mbuf);
1357 txs->txs_mbuf = NULL;
1358 }
1359 sc->sc_txsdirty = i;
1360 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1361 ifp->if_timer = 0;
1362 }
1363
1364 static void
1365 lnkchg(struct kse_softc *sc)
1366 {
1367 struct ifmediareq ifmr;
1368
1369 #if KSE_LINKDEBUG == 1
1370 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1371 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1372 #endif
1373 kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1374 }
1375
1376 static int
1377 kse_ifmedia_upd(struct ifnet *ifp)
1378 {
1379 struct kse_softc *sc = ifp->if_softc;
1380 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1381 uint16_t p1cr4;
1382
1383 p1cr4 = 0;
1384 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1385 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1386 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1387 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1388 p1cr4 |= 0xf; /* adv. 100FDX,100HDX,10FDX,10HDX */
1389 } else {
1390 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1391 p1cr4 |= PxCR_SPD100;
1392 if (ifm->ifm_media & IFM_FDX)
1393 p1cr4 |= PxCR_USEFDX;
1394 }
1395 CSR_WRITE_2(sc, P1CR4, p1cr4);
1396 #if KSE_LINKDEBUG == 1
1397 printf("P1CR4: %04x\n", p1cr4);
1398 #endif
1399 return 0;
1400 }
1401
1402 static void
1403 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1404 {
1405 struct kse_softc *sc = ifp->if_softc;
1406 struct mii_data *mii = &sc->sc_mii;
1407
1408 mii_pollstat(mii);
1409 ifmr->ifm_status = mii->mii_media_status;
1410 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1411 sc->sc_flowflags;
1412 }
1413
1414 static void
1415 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1416 {
1417 struct kse_softc *sc = ifp->if_softc;
1418 struct ifmedia *ifm = &sc->sc_media;
1419
1420 #if KSE_LINKDEBUG == 2
1421 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1422 #endif
1423
1424 /* 8842 MAC pretends 100FDX all the time */
1425 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1426 ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1427 IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1428 }
1429
1430 static void
1431 phy_tick(void *arg)
1432 {
1433 struct kse_softc *sc = arg;
1434 struct mii_data *mii = &sc->sc_mii;
1435 int s;
1436
1437 s = splnet();
1438 mii_tick(mii);
1439 splx(s);
1440
1441 callout_schedule(&sc->sc_tick_ch, hz);
1442 }
1443
1444 static const uint16_t phy1csr[] = {
1445 /* 0 BMCR */ 0x4d0,
1446 /* 1 BMSR */ 0x4d2,
1447 /* 2 PHYID1 */ 0x4d6, /* 0x0022 - PHY1HR */
1448 /* 3 PHYID2 */ 0x4d4, /* 0x1430 - PHY1LR */
1449 /* 4 ANAR */ 0x4d8,
1450 /* 5 ANLPAR */ 0x4da,
1451 };
1452
1453 int
1454 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1455 {
1456 struct kse_softc *sc = device_private(self);
1457
1458 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1459 return EINVAL;
1460 *val = CSR_READ_2(sc, phy1csr[reg]);
1461 return 0;
1462 }
1463
1464 int
1465 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1466 {
1467 struct kse_softc *sc = device_private(self);
1468
1469 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1470 return EINVAL;
1471 CSR_WRITE_2(sc, phy1csr[reg], val);
1472 return 0;
1473 }
1474
1475 void
1476 kse_mii_statchg(struct ifnet *ifp)
1477 {
1478 struct kse_softc *sc = ifp->if_softc;
1479 struct mii_data *mii = &sc->sc_mii;
1480
1481 #if KSE_LINKDEBUG == 1
1482 /* decode P1SR register value */
1483 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1484 printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1485 if (p1sr & PxSR_FDX)
1486 printf(",full-duplex");
1487 if (p1sr & PxSR_RXFLOW)
1488 printf(",rxpause");
1489 if (p1sr & PxSR_TXFLOW)
1490 printf(",txpause");
1491 printf("\n");
1492 /* show resolved mii(4) parameters to compare against above */
1493 printf("MII spd%d",
1494 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1495 if (mii->mii_media_active & IFM_FDX)
1496 printf(",full-duplex");
1497 if (mii->mii_media_active & IFM_FLOW) {
1498 printf(",flowcontrol");
1499 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1500 printf(",rxpause");
1501 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1502 printf(",txpause");
1503 }
1504 printf("\n");
1505 #endif
1506 /* Get flow control negotiation result. */
1507 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1508 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1509 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1510
1511 /* Adjust MAC PAUSE flow control. */
1512 if ((mii->mii_media_active & IFM_FDX)
1513 && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1514 sc->sc_txc |= TXC_FCE;
1515 else
1516 sc->sc_txc &= ~TXC_FCE;
1517 if ((mii->mii_media_active & IFM_FDX)
1518 && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1519 sc->sc_rxc |= RXC_FCE;
1520 else
1521 sc->sc_rxc &= ~RXC_FCE;
1522 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1523 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1524 #if KSE_LINKDEBUG == 1
1525 printf("%ctxfce, %crxfce\n",
1526 (sc->sc_txc & TXC_FCE) ? '+' : '-',
1527 (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1528 #endif
1529 }
1530
1531 #ifdef KSE_EVENT_COUNTERS
1532 static void
1533 stat_tick(void *arg)
1534 {
1535 struct kse_softc *sc = arg;
1536 struct ksext *ee = &sc->sc_ext;
1537 int nport, p, i, val;
1538
1539 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1540 for (p = 0; p < nport; p++) {
1541 for (i = 0; i < 32; i++) {
1542 val = 0x1c00 | (p * 0x20 + i);
1543 CSR_WRITE_2(sc, IACR, val);
1544 do {
1545 val = CSR_READ_2(sc, IADR5) << 16;
1546 } while ((val & (1U << 30)) == 0);
1547 if (val & (1U << 31)) {
1548 (void)CSR_READ_2(sc, IADR4);
1549 val = 0x3fffffff; /* has made overflow */
1550 }
1551 else {
1552 val &= 0x3fff0000; /* 29:16 */
1553 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1554 }
1555 ee->pev[p][i].ev_count += val; /* i (0-31) */
1556 }
1557 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1558 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1559 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1560 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1561 }
1562 callout_schedule(&sc->sc_stat_ch, hz * 60);
1563 }
1564
1565 static void
1566 zerostats(struct kse_softc *sc)
1567 {
1568 struct ksext *ee = &sc->sc_ext;
1569 int nport, p, i, val;
1570
1571 /* Make sure all the HW counters get zero */
1572 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1573 for (p = 0; p < nport; p++) {
1574 for (i = 0; i < 31; i++) {
1575 val = 0x1c00 | (p * 0x20 + i);
1576 CSR_WRITE_2(sc, IACR, val);
1577 do {
1578 val = CSR_READ_2(sc, IADR5) << 16;
1579 } while ((val & (1U << 30)) == 0);
1580 (void)CSR_READ_2(sc, IADR4);
1581 ee->pev[p][i].ev_count = 0;
1582 }
1583 }
1584 }
1585 #endif
1586