Home | History | Annotate | Line # | Download | only in pci
if_kse.c revision 1.5
      1 /*	$NetBSD: if_kse.c,v 1.5 2007/10/07 07:23:56 nisimura Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2006 Tohru Nishimura
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by Tohru Nishimura.
     17  * 4. The name of the author may not be used to endorse or promote products
     18  *    derived from this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.5 2007/10/07 07:23:56 nisimura Exp $");
     34 
     35 #include "bpfilter.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/callout.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/malloc.h>
     42 #include <sys/kernel.h>
     43 #include <sys/ioctl.h>
     44 #include <sys/errno.h>
     45 #include <sys/device.h>
     46 #include <sys/queue.h>
     47 
     48 #include <machine/endian.h>
     49 #include <machine/bus.h>
     50 #include <machine/intr.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_media.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 
     57 #if NBPFILTER > 0
     58 #include <net/bpf.h>
     59 #endif
     60 
     61 #include <dev/pci/pcivar.h>
     62 #include <dev/pci/pcireg.h>
     63 #include <dev/pci/pcidevs.h>
     64 
     65 #define CSR_READ_4(sc, off) \
     66 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
     67 #define CSR_WRITE_4(sc, off, val) \
     68 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
     69 #define CSR_READ_2(sc, off) \
     70 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
     71 #define CSR_WRITE_2(sc, off, val) \
     72 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
     73 
     74 #define MDTXC	0x000	/* DMA transmit control */
     75 #define MDRXC	0x004	/* DMA receive control */
     76 #define MDTSC	0x008	/* DMA transmit start */
     77 #define MDRSC	0x00c	/* DMA receive start */
     78 #define TDLB	0x010	/* transmit descriptor list base */
     79 #define RDLB	0x014	/* receive descriptor list base */
     80 #define INTEN	0x028	/* interrupt enable */
     81 #define INTST	0x02c	/* interrupt status */
     82 #define MARL	0x200	/* MAC address low */
     83 #define MARM	0x202	/* MAC address middle */
     84 #define MARH	0x204	/* MAC address high */
     85 #define GRR	0x216	/* global reset */
     86 #define CIDR	0x400	/* chip ID and enable */
     87 #define CGCR	0x40a	/* chip global control */
     88 #define P1CR4	0x512	/* port 1 control 4 */
     89 #define P1SR	0x514	/* port 1 status */
     90 
     91 #define TXC_BS_MSK	0x3f000000	/* burst size */
     92 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
     93 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
     94 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
     95 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
     96 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
     97 #define TXC_EP		(1U<<2)		/* enable automatic padding */
     98 #define TXC_AC		(1U<<1)		/* add CRC to frame */
     99 #define TXC_TEN		(1)		/* enable DMA to run */
    100 
    101 #define RXC_BS_MSK	0x3f000000	/* burst size */
    102 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
    103 #define RXC_IHAE	(1U<<19)	/* align IP frame XXX poor document */
    104 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
    105 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
    106 #define RXC_ICC		(1U<<16)	/* run IP checksum */
    107 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
    108 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
    109 #define RXC_RM		(1U<<5)		/* receive multicast frame */
    110 #define RXC_RU		(1U<<4)		/* receive unicast frame */
    111 #define RXC_RE		(1U<<3)		/* accept error frame */
    112 #define RXC_RA		(1U<<2)		/* receive all frame */
    113 #define RXC_MA		(1U<<1)		/* receive through hash filter */
    114 #define RXC_REN		(1)		/* enable DMA to run */
    115 
    116 #define INT_DMLCS	(1U<<31)	/* link status change */
    117 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
    118 #define INT_DMRS	(1U<<29)	/* frame was received */
    119 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
    120 
    121 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
    122 
    123 #define R0_OWN		(1U<<31)	/* desc is empty */
    124 #define R0_FS		(1U<<30)	/* first segment of frame */
    125 #define R0_LS		(1U<<29)	/* last segment of frame */
    126 #define R0_IPE		(1U<<28)	/* IP checksum error */
    127 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
    128 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
    129 #define R0_ES		(1U<<25)	/* error summary */
    130 #define R0_MF		(1U<<24)	/* multicast frame */
    131 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
    132 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
    133 #define R0_RE		(1U<<19)	/* MII reported error */
    134 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
    135 #define R0_RF		(1U<<17)	/* damaged runt frame */
    136 #define R0_CE		(1U<<16)	/* CRC error */
    137 #define R0_FT		(1U<<15)	/* frame type */
    138 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
    139 
    140 #define T1_IC		(1U<<31)	/* post interrupt on complete */
    141 #define T1_FS		(1U<<30)	/* first segment of frame */
    142 #define T1_LS		(1U<<29)	/* last segment of frame */
    143 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
    144 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
    145 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
    146 #define T1_TER		(1U<<25)	/* end of ring */
    147 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
    148 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
    149 
    150 #define R1_RER		(1U<<25)	/* end of ring */
    151 #define R1_RBS_MASK	0x7ff		/* segment size 10:0 */
    152 
    153 #define KSE_NTXSEGS		16
    154 #define KSE_TXQUEUELEN		64
    155 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
    156 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
    157 #define KSE_NTXDESC		256
    158 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
    159 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
    160 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
    161 
    162 #define KSE_NRXDESC		64
    163 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
    164 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
    165 
    166 struct tdes {
    167 	uint32_t t0, t1, t2, t3;
    168 };
    169 
    170 struct rdes {
    171 	uint32_t r0, r1, r2, r3;
    172 };
    173 
    174 struct kse_control_data {
    175 	struct tdes kcd_txdescs[KSE_NTXDESC];
    176 	struct rdes kcd_rxdescs[KSE_NRXDESC];
    177 };
    178 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
    179 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
    180 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
    181 
    182 struct kse_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	int txs_ndesc;			/* # of descriptors used */
    188 };
    189 
    190 struct kse_rxsoft {
    191 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    192 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    193 };
    194 
    195 struct kse_softc {
    196 	struct device sc_dev;		/* generic device information */
    197 	bus_space_tag_t sc_st;		/* bus space tag */
    198 	bus_space_handle_t sc_sh;	/* bus space handle */
    199 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    200 	struct ethercom sc_ethercom;	/* Ethernet common data */
    201 	void *sc_ih;			/* interrupt cookie */
    202 
    203 	struct ifmedia sc_media;	/* ifmedia information */
    204 	int sc_media_status;		/* PHY */
    205 	int sc_media_active;		/* PHY */
    206 	callout_t sc_callout;		/* tick callout */
    207 
    208 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    209 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    210 
    211 	struct kse_control_data *sc_control_data;
    212 #define sc_txdescs      sc_control_data->kcd_txdescs
    213 #define sc_rxdescs      sc_control_data->kcd_rxdescs
    214 
    215 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
    216 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
    217 	int sc_txfree;			/* number of free Tx descriptors */
    218 	int sc_txnext;			/* next ready Tx descriptor */
    219 	int sc_txsfree;			/* number of free Tx jobs */
    220 	int sc_txsnext;			/* next ready Tx job */
    221 	int sc_txsdirty;		/* dirty Tx jobs */
    222 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    223 
    224 	uint32_t sc_txc, sc_rxc;
    225 	uint32_t sc_t1csum;
    226 	int sc_mcsum;
    227 	uint32_t sc_chip;
    228 };
    229 
    230 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
    231 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
    232 
    233 #define KSE_CDTXSYNC(sc, x, n, ops)					\
    234 do {									\
    235 	int __x, __n;							\
    236 									\
    237 	__x = (x);							\
    238 	__n = (n);							\
    239 									\
    240 	/* If it will wrap around, sync to the end of the ring. */	\
    241 	if ((__x + __n) > KSE_NTXDESC) {				\
    242 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    243 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
    244 		    (KSE_NTXDESC - __x), (ops));			\
    245 		__n -= (KSE_NTXDESC - __x);				\
    246 		__x = 0;						\
    247 	}								\
    248 									\
    249 	/* Now sync whatever is left. */				\
    250 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    251 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    252 } while (/*CONSTCOND*/0)
    253 
    254 #define KSE_CDRXSYNC(sc, x, ops)					\
    255 do {									\
    256 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    257 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    258 } while (/*CONSTCOND*/0)
    259 
    260 #define KSE_INIT_RXDESC(sc, x)						\
    261 do {									\
    262 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    263 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    264 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    265 									\
    266 	__m->m_data = __m->m_ext.ext_buf;				\
    267 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    268 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
    269 	__rxd->r0 = R0_OWN;						\
    270 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    271 } while (/*CONSTCOND*/0)
    272 
    273 u_int kse_burstsize = 16;	/* DMA burst length tuning knob */
    274 
    275 #ifdef KSEDIAGNOSTIC
    276 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
    277 #endif
    278 
    279 static int kse_match(struct device *, struct cfdata *, void *);
    280 static void kse_attach(struct device *, struct device *, void *);
    281 
    282 CFATTACH_DECL(kse, sizeof(struct kse_softc),
    283     kse_match, kse_attach, NULL, NULL);
    284 
    285 static int kse_ioctl(struct ifnet *, u_long, void *);
    286 static void kse_start(struct ifnet *);
    287 static void kse_watchdog(struct ifnet *);
    288 static int kse_init(struct ifnet *);
    289 static void kse_stop(struct ifnet *, int);
    290 static void kse_reset(struct kse_softc *);
    291 static void kse_set_filter(struct kse_softc *);
    292 static int add_rxbuf(struct kse_softc *, int);
    293 static void rxdrain(struct kse_softc *);
    294 static int kse_intr(void *);
    295 static void rxintr(struct kse_softc *);
    296 static void txreap(struct kse_softc *);
    297 static void lnkchg(struct kse_softc *);
    298 static int ifmedia_upd(struct ifnet *);
    299 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
    300 static void phy_tick(void *);
    301 
    302 static int
    303 kse_match(struct device *parent, struct cfdata *match, void *aux)
    304 {
    305 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    306 
    307 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
    308 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
    309 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
    310 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    311 		return 1;
    312 
    313 	return 0;
    314 }
    315 
    316 static void
    317 kse_attach(struct device *parent, struct device *self, void *aux)
    318 {
    319 	struct kse_softc *sc = (struct kse_softc *)self;
    320 	struct pci_attach_args *pa = aux;
    321 	pci_chipset_tag_t pc = pa->pa_pc;
    322 	pci_intr_handle_t ih;
    323 	const char *intrstr;
    324 	struct ifnet *ifp;
    325 	uint8_t enaddr[ETHER_ADDR_LEN];
    326 	bus_dma_segment_t seg;
    327 	int error, i, nseg;
    328 	pcireg_t pmode;
    329 	int pmreg;
    330 
    331 	if (pci_mapreg_map(pa, 0x10,
    332 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    333 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
    334 		printf(": unable to map device registers\n");
    335 		return;
    336 	}
    337 
    338 	sc->sc_dmat = pa->pa_dmat;
    339 
    340 	/* Make sure bus mastering is enabled. */
    341 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    342 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    343 	    PCI_COMMAND_MASTER_ENABLE);
    344 
    345 	/* Get it out of power save mode, if needed. */
    346 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    347 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    348 		    PCI_PMCSR_STATE_MASK;
    349 		if (pmode == PCI_PMCSR_STATE_D3) {
    350 			/*
    351 			 * The card has lost all configuration data in
    352 			 * this state, so punt.
    353 			 */
    354 			printf("%s: unable to wake from power state D3\n",
    355 			    sc->sc_dev.dv_xname);
    356 			return;
    357 		}
    358 		if (pmode != PCI_PMCSR_STATE_D0) {
    359 			printf("%s: waking up from power date D%d\n",
    360 			    sc->sc_dev.dv_xname, pmode);
    361 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    362 			    PCI_PMCSR_STATE_D0);
    363 		}
    364 	}
    365 
    366 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
    367 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
    368 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
    369 
    370 	/*
    371 	 * Read the Ethernet address from the EEPROM.
    372 	 */
    373 	i = CSR_READ_2(sc, MARL);
    374 	enaddr[5] = i; enaddr[4] = i >> 8;
    375 	i = CSR_READ_2(sc, MARM);
    376 	enaddr[3] = i; enaddr[2] = i >> 8;
    377 	i = CSR_READ_2(sc, MARH);
    378 	enaddr[1] = i; enaddr[0] = i >> 8;
    379 	printf("%s: Ethernet address: %s\n",
    380 		sc->sc_dev.dv_xname, ether_sprintf(enaddr));
    381 
    382 	/*
    383 	 * Enable chip function.
    384 	 */
    385 	CSR_WRITE_2(sc, CIDR, 1);
    386 
    387 	/*
    388 	 * Map and establish our interrupt.
    389 	 */
    390 	if (pci_intr_map(pa, &ih)) {
    391 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    392 		return;
    393 	}
    394 	intrstr = pci_intr_string(pc, ih);
    395 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
    396 	if (sc->sc_ih == NULL) {
    397 		printf("%s: unable to establish interrupt",
    398 		    sc->sc_dev.dv_xname);
    399 		if (intrstr != NULL)
    400 			printf(" at %s", intrstr);
    401 		printf("\n");
    402 		return;
    403 	}
    404 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    405 
    406 	/*
    407 	 * Allocate the control data structures, and create and load the
    408 	 * DMA map for it.
    409 	 */
    410 	error = bus_dmamem_alloc(sc->sc_dmat,
    411 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    412 	if (error != 0) {
    413 		printf("%s: unable to allocate control data, error = %d\n",
    414 		    sc->sc_dev.dv_xname, error);
    415 		goto fail_0;
    416 	}
    417 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    418 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
    419 	    BUS_DMA_COHERENT);
    420 	if (error != 0) {
    421 		printf("%s: unable to map control data, error = %d\n",
    422 		    sc->sc_dev.dv_xname, error);
    423 		goto fail_1;
    424 	}
    425 	error = bus_dmamap_create(sc->sc_dmat,
    426 	    sizeof(struct kse_control_data), 1,
    427 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
    428 	if (error != 0) {
    429 		printf("%s: unable to create control data DMA map, "
    430 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    431 		goto fail_2;
    432 	}
    433 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    434 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
    435 	if (error != 0) {
    436 		printf("%s: unable to load control data DMA map, error = %d\n",
    437 		    sc->sc_dev.dv_xname, error);
    438 		goto fail_3;
    439 	}
    440 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    441 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    442 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
    443 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    444 			printf("%s: unable to create tx DMA map %d, "
    445 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    446 			goto fail_4;
    447 		}
    448 	}
    449 	for (i = 0; i < KSE_NRXDESC; i++) {
    450 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    451 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    452 			printf("%s: unable to create rx DMA map %d, "
    453 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    454 			goto fail_5;
    455 		}
    456 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    457 	}
    458 
    459 	callout_init(&sc->sc_callout, 0);
    460 
    461 	ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
    462 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
    463 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    464 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
    465 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    466 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    467 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    468 
    469 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
    470 	    sc->sc_dev.dv_xname);
    471 
    472 	ifp = &sc->sc_ethercom.ec_if;
    473 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    474 	ifp->if_softc = sc;
    475 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    476 	ifp->if_ioctl = kse_ioctl;
    477 	ifp->if_start = kse_start;
    478 	ifp->if_watchdog = kse_watchdog;
    479 	ifp->if_init = kse_init;
    480 	ifp->if_stop = kse_stop;
    481 	IFQ_SET_READY(&ifp->if_snd);
    482 
    483 	/*
    484 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
    485 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
    486 	 */
    487 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    488 	ifp->if_capabilities |=
    489 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    490 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    491 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    492 
    493 	if_attach(ifp);
    494 	ether_ifattach(ifp, enaddr);
    495 	return;
    496 
    497  fail_5:
    498 	for (i = 0; i < KSE_NRXDESC; i++) {
    499 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    500 			bus_dmamap_destroy(sc->sc_dmat,
    501 			    sc->sc_rxsoft[i].rxs_dmamap);
    502 	}
    503  fail_4:
    504 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    505 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    506 			bus_dmamap_destroy(sc->sc_dmat,
    507 			    sc->sc_txsoft[i].txs_dmamap);
    508 	}
    509 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    510  fail_3:
    511 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    512  fail_2:
    513 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    514 	    sizeof(struct kse_control_data));
    515  fail_1:
    516 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    517  fail_0:
    518 	return;
    519 }
    520 
    521 static int
    522 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    523 {
    524 	struct kse_softc *sc = ifp->if_softc;
    525 	struct ifreq *ifr = (struct ifreq *)data;
    526 	int s, error;
    527 
    528 	s = splnet();
    529 
    530 	switch (cmd) {
    531 	case SIOCSIFMEDIA:
    532 	case SIOCGIFMEDIA:
    533 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    534 		break;
    535 
    536 	default:
    537 		error = ether_ioctl(ifp, cmd, data);
    538 		if (cmd == ENETRESET) {
    539 			/*
    540 			 * Multicast list has changed; set the hardware filter
    541 			 * accordingly.
    542 			 */
    543 			kse_set_filter(sc);
    544 			error = 0;
    545 		}
    546 		break;
    547 	}
    548 
    549 	kse_start(ifp);
    550 
    551 	splx(s);
    552 	return error;
    553 }
    554 
    555 #define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
    556 
    557 static int
    558 kse_init(struct ifnet *ifp)
    559 {
    560 	struct kse_softc *sc = ifp->if_softc;
    561 	uint32_t paddr;
    562 	int i, error = 0;
    563 
    564 	/* cancel pending I/O */
    565 	kse_stop(ifp, 0);
    566 
    567 	/* reset all registers but PCI configuration */
    568 	kse_reset(sc);
    569 
    570 	/* craft Tx descriptor ring */
    571 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    572 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
    573 		sc->sc_txdescs[i].t3 = paddr;
    574 		paddr += sizeof(struct tdes);
    575 	}
    576 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
    577 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
    578 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    579 	sc->sc_txfree = KSE_NTXDESC;
    580 	sc->sc_txnext = 0;
    581 
    582 	for (i = 0; i < KSE_TXQUEUELEN; i++)
    583 		sc->sc_txsoft[i].txs_mbuf = NULL;
    584 	sc->sc_txsfree = KSE_TXQUEUELEN;
    585 	sc->sc_txsnext = 0;
    586 	sc->sc_txsdirty = 0;
    587 
    588 	/* craft Rx descriptor ring */
    589 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
    590 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
    591 		sc->sc_rxdescs[i].r3 = paddr;
    592 		paddr += sizeof(struct rdes);
    593 	}
    594 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
    595 	for (i = 0; i < KSE_NRXDESC; i++) {
    596 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
    597 			if ((error = add_rxbuf(sc, i)) != 0) {
    598 				printf("%s: unable to allocate or map rx "
    599 				    "buffer %d, error = %d\n",
    600 				     sc->sc_dev.dv_xname, i, error);
    601 				rxdrain(sc);
    602 				goto out;
    603 			}
    604 		}
    605 		else
    606 			KSE_INIT_RXDESC(sc, i);
    607 	}
    608 	sc->sc_rxptr = 0;
    609 
    610 	/* hand Tx/Rx rings to HW */
    611 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
    612 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
    613 
    614 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
    615 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
    616 	if (ifp->if_flags & IFF_PROMISC)
    617 		sc->sc_rxc |= RXC_RA;
    618 	if (ifp->if_flags & IFF_BROADCAST)
    619 		sc->sc_rxc |= RXC_RB;
    620 
    621 	sc->sc_t1csum = sc->sc_mcsum = 0;
    622 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
    623 		sc->sc_rxc |= RXC_ICC;
    624 		sc->sc_mcsum |= M_CSUM_IPv4;
    625 	}
    626 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
    627 		sc->sc_txc |= TXC_ICG;
    628 		sc->sc_t1csum |= T1_IPCKG;
    629 	}
    630 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
    631 		sc->sc_rxc |= RXC_TCC;
    632 		sc->sc_mcsum |= M_CSUM_TCPv4;
    633 	}
    634 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
    635 		sc->sc_txc |= TXC_TCG;
    636 		sc->sc_t1csum |= T1_TCPCKG;
    637 	}
    638 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
    639 		sc->sc_rxc |= RXC_UCC;
    640 		sc->sc_mcsum |= M_CSUM_UDPv4;
    641 	}
    642 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
    643 		sc->sc_txc |= TXC_UCG;
    644 		sc->sc_t1csum |= T1_UDPCKG;
    645 	}
    646 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
    647 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
    648 
    649 	/* set current media */
    650 	(void)ifmedia_upd(ifp);
    651 
    652 	/* enable transmitter and receiver */
    653 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    654 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    655 	CSR_WRITE_4(sc, MDRSC, 1);
    656 
    657 	/* enable interrupts */
    658 	CSR_WRITE_4(sc, INTST, ~0);
    659 	CSR_WRITE_4(sc, INTEN, KSE_INTRS);
    660 
    661 	ifp->if_flags |= IFF_RUNNING;
    662 	ifp->if_flags &= ~IFF_OACTIVE;
    663 
    664 	/* start one second timer */
    665 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
    666 
    667  out:
    668 	if (error) {
    669 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    670 		ifp->if_timer = 0;
    671 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
    672 	}
    673 	return error;
    674 }
    675 
    676 static void
    677 kse_stop(struct ifnet *ifp, int disable)
    678 {
    679 	struct kse_softc *sc = ifp->if_softc;
    680 	struct kse_txsoft *txs;
    681 	int i;
    682 
    683 	callout_stop(&sc->sc_callout);
    684 
    685 	sc->sc_txc &= ~TXC_TEN;
    686 	sc->sc_rxc &= ~RXC_REN;
    687 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
    688 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
    689 
    690 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
    691 		txs = &sc->sc_txsoft[i];
    692 		if (txs->txs_mbuf != NULL) {
    693 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    694 			m_freem(txs->txs_mbuf);
    695 			txs->txs_mbuf = NULL;
    696 		}
    697 	}
    698 
    699 	if (disable)
    700 		rxdrain(sc);
    701 
    702 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    703 	ifp->if_timer = 0;
    704 }
    705 
    706 static void
    707 kse_reset(struct kse_softc *sc)
    708 {
    709 
    710 	CSR_WRITE_2(sc, GRR, 1);
    711 	delay(1000); /* PDF does not mention the delay amount */
    712 	CSR_WRITE_2(sc, GRR, 0);
    713 
    714 	CSR_WRITE_2(sc, CIDR, 1);
    715 }
    716 
    717 static void
    718 kse_watchdog(struct ifnet *ifp)
    719 {
    720 	struct kse_softc *sc = ifp->if_softc;
    721 
    722 	/*
    723 	 * Since we're not interrupting every packet, sweep
    724 	 * up before we report an error.
    725 	 */
    726 	txreap(sc);
    727 
    728 	if (sc->sc_txfree != KSE_NTXDESC) {
    729 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
    730 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
    731 		    sc->sc_txnext);
    732 		ifp->if_oerrors++;
    733 
    734 		/* Reset the interface. */
    735 		kse_init(ifp);
    736 	}
    737 	else if (ifp->if_flags & IFF_DEBUG)
    738 		printf("%s: recovered from device timeout\n",
    739 		    sc->sc_dev.dv_xname);
    740 
    741 	/* Try to get more packets going. */
    742 	kse_start(ifp);
    743 }
    744 
    745 static void
    746 kse_start(struct ifnet *ifp)
    747 {
    748 	struct kse_softc *sc = ifp->if_softc;
    749 	struct mbuf *m0;
    750 	struct kse_txsoft *txs;
    751 	bus_dmamap_t dmamap;
    752 	int error, nexttx, lasttx, ofree, seg;
    753 
    754 	lasttx = -1;
    755 
    756 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    757 		return;
    758 
    759 	/*
    760 	 * Remember the previous number of free descriptors.
    761 	 */
    762 	ofree = sc->sc_txfree;
    763 
    764 	/*
    765 	 * Loop through the send queue, setting up transmit descriptors
    766 	 * until we drain the queue, or use up all available transmit
    767 	 * descriptors.
    768 	 */
    769 	for (;;) {
    770 		IFQ_POLL(&ifp->if_snd, m0);
    771 		if (m0 == NULL)
    772 			break;
    773 
    774 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
    775 			txreap(sc);
    776 			if (sc->sc_txsfree == 0)
    777 				break;
    778 		}
    779 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    780 		dmamap = txs->txs_dmamap;
    781 
    782 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    783 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    784 		if (error) {
    785 			if (error == EFBIG) {
    786 				printf("%s: Tx packet consumes too many "
    787 				    "DMA segments, dropping...\n",
    788 				    sc->sc_dev.dv_xname);
    789 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    790 				    m_freem(m0);
    791 				    continue;
    792 			}
    793 			/* Short on resources, just stop for now. */
    794 			break;
    795 		}
    796 
    797 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    798 			/*
    799 			 * Not enough free descriptors to transmit this
    800 			 * packet.  We haven't committed anything yet,
    801 			 * so just unload the DMA map, put the packet
    802 			 * back on the queue, and punt.	 Notify the upper
    803 			 * layer that there are not more slots left.
    804 			 */
    805 			ifp->if_flags |= IFF_OACTIVE;
    806 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    807 			break;
    808 		}
    809 
    810 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    811 
    812 		/*
    813 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    814 		 */
    815 
    816 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    817 		    BUS_DMASYNC_PREWRITE);
    818 
    819 		for (nexttx = sc->sc_txnext, seg = 0;
    820 		     seg < dmamap->dm_nsegs;
    821 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
    822 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
    823 			/*
    824 			 * If this is the first descriptor we're
    825 			 * enqueueing, don't set the OWN bit just
    826 			 * yet.	 That could cause a race condition.
    827 			 * We'll do it below.
    828 			 */
    829 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
    830 			tdes->t1 = sc->sc_t1csum
    831 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
    832 			if (nexttx != sc->sc_txnext)
    833 				tdes->t0 = T0_OWN;
    834 			lasttx = nexttx;
    835 		}
    836 #if 0
    837 		/*
    838 		 * T1_IC bit could schedule Tx frame done interrupt here,
    839 		 * but this driver takes a "shoot away" Tx strategy.
    840 		 */
    841 #else
    842     {
    843 		/*
    844 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
    845 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
    846 		 * time and NFS stops to proceed until kse_watchdog()
    847 		 * calls txreap() to reclaim the unack'ed mbuf.
    848 		 * It's painful to traverse every mbuf chain to determine
    849 		 * whether someone is waiting for Tx completion.
    850 		 */
    851 		struct mbuf *m = m0;
    852 		do {
    853 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
    854 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
    855 				break;
    856 			}
    857 		} while ((m = m->m_next) != NULL);
    858     }
    859 #endif
    860 
    861 		/* write last T0_OWN bit of the 1st segment */
    862 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
    863 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
    864 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
    865 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    866 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    867 
    868 		/* tell DMA start transmit */
    869 		CSR_WRITE_4(sc, MDTSC, 1);
    870 
    871 		txs->txs_mbuf = m0;
    872 		txs->txs_firstdesc = sc->sc_txnext;
    873 		txs->txs_lastdesc = lasttx;
    874 		txs->txs_ndesc = dmamap->dm_nsegs;
    875 
    876 		sc->sc_txfree -= txs->txs_ndesc;
    877 		sc->sc_txnext = nexttx;
    878 		sc->sc_txsfree--;
    879 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
    880 #if NBPFILTER > 0
    881 		/*
    882 		 * Pass the packet to any BPF listeners.
    883 		 */
    884 		if (ifp->if_bpf)
    885 			bpf_mtap(ifp->if_bpf, m0);
    886 #endif /* NBPFILTER > 0 */
    887 	}
    888 
    889 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
    890 		/* No more slots left; notify upper layer. */
    891 		ifp->if_flags |= IFF_OACTIVE;
    892 	}
    893 	if (sc->sc_txfree != ofree) {
    894 		/* Set a watchdog timer in case the chip flakes out. */
    895 		ifp->if_timer = 5;
    896 	}
    897 }
    898 
    899 static void
    900 kse_set_filter(struct kse_softc *sc)
    901 {
    902 #if 0 /* later */
    903 	struct ether_multistep step;
    904 	struct ether_multi *enm;
    905 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    906 	int cnt = 0;
    907 
    908 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    909 	while (enm != NULL) {
    910 		if (memcmp(enm->enm_addrlo,
    911 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
    912 			;
    913 		}
    914 		ETHER_NEXT_MULTI(step, enm);
    915 		cnt++;
    916 	}
    917 	return;
    918 #endif
    919 }
    920 
    921 static int
    922 add_rxbuf(struct kse_softc *sc, int idx)
    923 {
    924 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
    925 	struct mbuf *m;
    926 	int error;
    927 
    928 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    929 	if (m == NULL)
    930 		return ENOBUFS;
    931 
    932 	MCLGET(m, M_DONTWAIT);
    933 	if ((m->m_flags & M_EXT) == 0) {
    934 		m_freem(m);
    935 		return ENOBUFS;
    936 	}
    937 
    938 	if (rxs->rxs_mbuf != NULL)
    939 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
    940 
    941 	rxs->rxs_mbuf = m;
    942 
    943 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
    944 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    945 	if (error) {
    946 		printf("%s: can't load rx DMA map %d, error = %d\n",
    947 		    sc->sc_dev.dv_xname, idx, error);
    948 		panic("kse_add_rxbuf");
    949 	}
    950 
    951 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
    952 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    953 
    954 	KSE_INIT_RXDESC(sc, idx);
    955 
    956 	return 0;
    957 }
    958 
    959 static void
    960 rxdrain(struct kse_softc *sc)
    961 {
    962 	struct kse_rxsoft *rxs;
    963 	int i;
    964 
    965 	for (i = 0; i < KSE_NRXDESC; i++) {
    966 		rxs = &sc->sc_rxsoft[i];
    967 		if (rxs->rxs_mbuf != NULL) {
    968 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
    969 			m_freem(rxs->rxs_mbuf);
    970 			rxs->rxs_mbuf = NULL;
    971 		}
    972 	}
    973 }
    974 
    975 static int
    976 kse_intr(void *arg)
    977 {
    978 	struct kse_softc *sc = arg;
    979 	uint32_t isr;
    980 
    981 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
    982 		return 0;
    983 
    984 	if (isr & INT_DMRS)
    985 		rxintr(sc);
    986 	if (isr & INT_DMTS)
    987 		txreap(sc);
    988 	if (isr & INT_DMLCS)
    989 		lnkchg(sc);
    990 	if (isr & INT_DMRBUS)
    991 		printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
    992 
    993 	CSR_WRITE_4(sc, INTST, isr);
    994 	return 1;
    995 }
    996 
    997 static void
    998 rxintr(struct kse_softc *sc)
    999 {
   1000 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1001 	struct kse_rxsoft *rxs;
   1002 	struct mbuf *m;
   1003 	uint32_t rxstat;
   1004 	int i, len;
   1005 
   1006 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
   1007 		rxs = &sc->sc_rxsoft[i];
   1008 
   1009 		KSE_CDRXSYNC(sc, i,
   1010 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1011 
   1012 		rxstat = sc->sc_rxdescs[i].r0;
   1013 
   1014 		if (rxstat & R0_OWN) /* desc is left empty */
   1015 			break;
   1016 
   1017 		/* R0_FS|R0_LS must have been marked for this desc */
   1018 
   1019 		if (rxstat & R0_ES) {
   1020 			ifp->if_ierrors++;
   1021 #define PRINTERR(bit, str)						\
   1022 			if (rxstat & (bit))				\
   1023 				printf("%s: receive error: %s\n",	\
   1024 				    sc->sc_dev.dv_xname, str)
   1025 			PRINTERR(R0_TL, "frame too long");
   1026 			PRINTERR(R0_RF, "runt frame");
   1027 			PRINTERR(R0_CE, "bad FCS");
   1028 #undef PRINTERR
   1029 			KSE_INIT_RXDESC(sc, i);
   1030 			continue;
   1031 		}
   1032 
   1033 		/* HW errata; frame might be too small or too large */
   1034 
   1035 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1036 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1037 
   1038 		len = rxstat & R0_FL_MASK;
   1039 		len -= ETHER_CRC_LEN;	/* trim CRC off */
   1040 		m = rxs->rxs_mbuf;
   1041 
   1042 		if (add_rxbuf(sc, i) != 0) {
   1043 			ifp->if_ierrors++;
   1044 			KSE_INIT_RXDESC(sc, i);
   1045 			bus_dmamap_sync(sc->sc_dmat,
   1046 			    rxs->rxs_dmamap, 0,
   1047 			    rxs->rxs_dmamap->dm_mapsize,
   1048 			    BUS_DMASYNC_PREREAD);
   1049 			continue;
   1050 		}
   1051 
   1052 		ifp->if_ipackets++;
   1053 		m->m_pkthdr.rcvif = ifp;
   1054 		m->m_pkthdr.len = m->m_len = len;
   1055 
   1056 		if (sc->sc_mcsum) {
   1057 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
   1058 			if (rxstat & R0_IPE)
   1059 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1060 			if (rxstat & (R0_TCPE | R0_UDPE))
   1061 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1062 		}
   1063 #if NBPFILTER > 0
   1064 		if (ifp->if_bpf)
   1065 			bpf_mtap(ifp->if_bpf, m);
   1066 #endif /* NBPFILTER > 0 */
   1067 		(*ifp->if_input)(ifp, m);
   1068 #ifdef KSEDIAGNOSTIC
   1069 		if (kse_monitor_rxintr > 0) {
   1070 			printf("m stat %x data %p len %d\n",
   1071 			    rxstat, m->m_data, m->m_len);
   1072 		}
   1073 #endif
   1074 	}
   1075 	sc->sc_rxptr = i;
   1076 }
   1077 
   1078 static void
   1079 txreap(struct kse_softc *sc)
   1080 {
   1081 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1082 	struct kse_txsoft *txs;
   1083 	uint32_t txstat;
   1084 	int i;
   1085 
   1086 	ifp->if_flags &= ~IFF_OACTIVE;
   1087 
   1088 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
   1089 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
   1090 		txs = &sc->sc_txsoft[i];
   1091 
   1092 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1093 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1094 
   1095 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
   1096 
   1097 		if (txstat & T0_OWN) /* desc is still in use */
   1098 			break;
   1099 
   1100 		/* there is no way to tell transmission status per frame */
   1101 
   1102 		ifp->if_opackets++;
   1103 
   1104 		sc->sc_txfree += txs->txs_ndesc;
   1105 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1106 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1107 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1108 		m_freem(txs->txs_mbuf);
   1109 		txs->txs_mbuf = NULL;
   1110 	}
   1111 	sc->sc_txsdirty = i;
   1112 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
   1113 		ifp->if_timer = 0;
   1114 }
   1115 
   1116 static void
   1117 lnkchg(struct kse_softc *sc)
   1118 {
   1119 	struct ifmediareq ifmr;
   1120 
   1121 #if 0 /* rambling link status */
   1122 	printf("%s: link %s\n", sc->sc_dev.dv_xname,
   1123 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
   1124 #endif
   1125 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1126 }
   1127 
   1128 static int
   1129 ifmedia_upd(struct ifnet *ifp)
   1130 {
   1131 	struct kse_softc *sc = ifp->if_softc;
   1132 	struct ifmedia *ifm = &sc->sc_media;
   1133 	uint16_t ctl;
   1134 
   1135 	ctl = 0;
   1136 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1137 		ctl |= (1U << 13); /* restart AN */
   1138 		ctl |= (1U << 7);  /* enable AN */
   1139 		ctl |= (1U << 4);  /* advertise flow control pause */
   1140 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
   1141 	}
   1142 	else {
   1143 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
   1144 			ctl |= (1U << 6);
   1145 		if (ifm->ifm_media & IFM_FDX)
   1146 			ctl |= (1U << 5);
   1147 	}
   1148 	CSR_WRITE_2(sc, P1CR4, ctl);
   1149 
   1150 	sc->sc_media_active = IFM_NONE;
   1151 	sc->sc_media_status = IFM_AVALID;
   1152 
   1153 	return 0;
   1154 }
   1155 
   1156 static void
   1157 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1158 {
   1159 	struct kse_softc *sc = ifp->if_softc;
   1160 	struct ifmedia *ifm = &sc->sc_media;
   1161 	uint16_t ctl, sts, result;
   1162 
   1163 	ifmr->ifm_status = IFM_AVALID;
   1164 	ifmr->ifm_active = IFM_ETHER;
   1165 
   1166 	ctl = CSR_READ_2(sc, P1CR4);
   1167 	sts = CSR_READ_2(sc, P1SR);
   1168 	if ((sts & (1U << 5)) == 0) {
   1169 		ifmr->ifm_active |= IFM_NONE;
   1170 		goto out; /* link is down */
   1171 	}
   1172 	ifmr->ifm_status |= IFM_ACTIVE;
   1173 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
   1174 		if ((sts & (1U << 6)) == 0) {
   1175 			ifmr->ifm_active |= IFM_NONE;
   1176 			goto out; /* negotiation in progress */
   1177 		}
   1178 		result = ctl & sts & 017;
   1179 		if (result & (1U << 3))
   1180 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
   1181 		else if (result & (1U << 2))
   1182 			ifmr->ifm_active |= IFM_100_TX;
   1183 		else if (result & (1U << 1))
   1184 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
   1185 		else if (result & (1U << 0))
   1186 			ifmr->ifm_active |= IFM_10_T;
   1187 		else
   1188 			ifmr->ifm_active |= IFM_NONE;
   1189 		if (ctl & (1U << 4))
   1190 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1191 		if (sts & (1U << 4))
   1192 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1193 	}
   1194 	else {
   1195 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
   1196 		if (sts & (1U << 9))
   1197 			ifmr->ifm_active |= IFM_FDX;
   1198 		if (sts & (1U << 12))
   1199 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   1200 		if (sts & (1U << 11))
   1201 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   1202 	}
   1203 
   1204   out:
   1205 	sc->sc_media_status = ifmr->ifm_status;
   1206 	sc->sc_media_active = ifmr->ifm_active;
   1207 }
   1208 
   1209 static void
   1210 phy_tick(void *arg)
   1211 {
   1212 	struct kse_softc *sc = arg;
   1213 	struct ifmediareq ifmr;
   1214 	int s;
   1215 
   1216 	s = splnet();
   1217 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
   1218 	splx(s);
   1219 
   1220 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
   1221 }
   1222