if_kse.c revision 1.52 1 /* $NetBSD: if_kse.c,v 1.52 2020/04/01 00:07:04 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Micrel 8841/8842 10/100 PCI ethernet driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.52 2020/04/01 00:07:04 nisimura Exp $");
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/intr.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/ioctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <dev/mii/mii.h>
56 #include <dev/mii/miivar.h>
57 #include <net/bpf.h>
58
59 #include <dev/pci/pcivar.h>
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcidevs.h>
62
63 #define KSE_LINKDEBUG 0
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define MTR0 0x020 /* multicast table 31:0 */
81 #define MTR1 0x024 /* multicast table 63:32 */
82 #define INTEN 0x028 /* interrupt enable */
83 #define INTST 0x02c /* interrupt status */
84 #define MAAL0 0x080 /* additional MAC address 0 low */
85 #define MAAH0 0x084 /* additional MAC address 0 high */
86 #define MARL 0x200 /* MAC address low */
87 #define MARM 0x202 /* MAC address middle */
88 #define MARH 0x204 /* MAC address high */
89 #define GRR 0x216 /* global reset */
90 #define SIDER 0x400 /* switch ID and function enable */
91 #define SGCR3 0x406 /* switch function control 3 */
92 #define CR3_USEHDX (1U<<6) /* use half-duplex 8842 host port */
93 #define CR3_USEFC (1U<<5) /* use flowcontrol 8842 host port */
94 #define IACR 0x4a0 /* indirect access control */
95 #define IADR1 0x4a2 /* indirect access data 66:63 */
96 #define IADR2 0x4a4 /* indirect access data 47:32 */
97 #define IADR3 0x4a6 /* indirect access data 63:48 */
98 #define IADR4 0x4a8 /* indirect access data 15:0 */
99 #define IADR5 0x4aa /* indirect access data 31:16 */
100 #define P1CR4 0x512 /* port 1 control 4 */
101 #define P1SR 0x514 /* port 1 status */
102 #define P2CR4 0x532 /* port 2 control 4 */
103 #define P2SR 0x534 /* port 2 status */
104 #define PxCR_STARTNEG (1U<<9) /* restart auto negotiation */
105 #define PxCR_AUTOEN (1U<<7) /* auto negotiation enable */
106 #define PxCR_SPD100 (1U<<6) /* force speed 100 */
107 #define PxCR_USEFDX (1U<<5) /* force full duplex */
108 #define PxCR_USEFC (1U<<4) /* advertise pause flow control */
109 #define PxSR_ACOMP (1U<<6) /* auto negotiation completed */
110 #define PxSR_SPD100 (1U<<10) /* speed is 100Mbps */
111 #define PxSR_FDX (1U<<9) /* full duplex */
112 #define PxSR_LINKUP (1U<<5) /* link is good */
113 #define PxSR_RXFLOW (1U<<12) /* receive flow control active */
114 #define PxSR_TXFLOW (1U<<11) /* transmit flow control active */
115 #define P1VIDCR 0x504 /* port 1 vtag */
116 #define P2VIDCR 0x524 /* port 2 vtag */
117 #define P3VIDCR 0x544 /* 8842 host vtag */
118
119 #define TXC_BS_MSK 0x3f000000 /* burst size */
120 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
121 #define TXC_UCG (1U<<18) /* generate UDP checksum */
122 #define TXC_TCG (1U<<17) /* generate TCP checksum */
123 #define TXC_ICG (1U<<16) /* generate IP checksum */
124 #define TXC_FCE (1U<<9) /* generate PAUSE to moderate Rx lvl */
125 #define TXC_EP (1U<<2) /* enable automatic padding */
126 #define TXC_AC (1U<<1) /* add CRC to frame */
127 #define TXC_TEN (1) /* enable DMA to run */
128
129 #define RXC_BS_MSK 0x3f000000 /* burst size */
130 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
131 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
132 #define RXC_UCC (1U<<18) /* run UDP checksum */
133 #define RXC_TCC (1U<<17) /* run TDP checksum */
134 #define RXC_ICC (1U<<16) /* run IP checksum */
135 #define RXC_FCE (1U<<9) /* accept PAUSE to throttle Tx */
136 #define RXC_RB (1U<<6) /* receive broadcast frame */
137 #define RXC_RM (1U<<5) /* receive all multicast (inc. RB) */
138 #define RXC_RU (1U<<4) /* receive 16 additional unicasts */
139 #define RXC_RE (1U<<3) /* accept error frame */
140 #define RXC_RA (1U<<2) /* receive all frame */
141 #define RXC_MHTE (1U<<1) /* use multicast hash table */
142 #define RXC_REN (1) /* enable DMA to run */
143
144 #define INT_DMLCS (1U<<31) /* link status change */
145 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
146 #define INT_DMRS (1U<<29) /* frame was received */
147 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
148 #define INT_DMxPSS (3U<<25) /* 26:25 DMA Tx/Rx have stopped */
149
150 #define T0_OWN (1U<<31) /* desc is ready to Tx */
151
152 #define R0_OWN (1U<<31) /* desc is empty */
153 #define R0_FS (1U<<30) /* first segment of frame */
154 #define R0_LS (1U<<29) /* last segment of frame */
155 #define R0_IPE (1U<<28) /* IP checksum error */
156 #define R0_TCPE (1U<<27) /* TCP checksum error */
157 #define R0_UDPE (1U<<26) /* UDP checksum error */
158 #define R0_ES (1U<<25) /* error summary */
159 #define R0_MF (1U<<24) /* multicast frame */
160 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
161 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
162 #define R0_RE (1U<<19) /* MII reported error */
163 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
164 #define R0_RF (1U<<17) /* damaged runt frame */
165 #define R0_CE (1U<<16) /* CRC error */
166 #define R0_FT (1U<<15) /* frame type */
167 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
168
169 #define T1_IC (1U<<31) /* post interrupt on complete */
170 #define T1_FS (1U<<30) /* first segment of frame */
171 #define T1_LS (1U<<29) /* last segment of frame */
172 #define T1_IPCKG (1U<<28) /* generate IP checksum */
173 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
174 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
175 #define T1_TER (1U<<25) /* end of ring */
176 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
177 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
178
179 #define R1_RER (1U<<25) /* end of ring */
180 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
181
182 #define KSE_NTXSEGS 16
183 #define KSE_TXQUEUELEN 64
184 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
185 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
186 #define KSE_NTXDESC 256
187 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
188 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
189 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
190
191 #define KSE_NRXDESC 64
192 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
193 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
194
195 struct tdes {
196 uint32_t t0, t1, t2, t3;
197 };
198
199 struct rdes {
200 uint32_t r0, r1, r2, r3;
201 };
202
203 struct kse_control_data {
204 struct tdes kcd_txdescs[KSE_NTXDESC];
205 struct rdes kcd_rxdescs[KSE_NRXDESC];
206 };
207 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
208 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
209 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
210
211 struct kse_txsoft {
212 struct mbuf *txs_mbuf; /* head of our mbuf chain */
213 bus_dmamap_t txs_dmamap; /* our DMA map */
214 int txs_firstdesc; /* first descriptor in packet */
215 int txs_lastdesc; /* last descriptor in packet */
216 int txs_ndesc; /* # of descriptors used */
217 };
218
219 struct kse_rxsoft {
220 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
221 bus_dmamap_t rxs_dmamap; /* our DMA map */
222 };
223
224 struct kse_softc {
225 device_t sc_dev; /* generic device information */
226 bus_space_tag_t sc_st; /* bus space tag */
227 bus_space_handle_t sc_sh; /* bus space handle */
228 bus_size_t sc_memsize; /* csr map size */
229 bus_dma_tag_t sc_dmat; /* bus DMA tag */
230 pci_chipset_tag_t sc_pc; /* PCI chipset tag */
231 struct ethercom sc_ethercom; /* Ethernet common data */
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* mii 8841 */
235 struct ifmedia sc_media; /* ifmedia 8842 */
236 int sc_flowflags; /* 802.3x PAUSE flow control */
237
238 callout_t sc_tick_ch; /* MII tick callout */
239 callout_t sc_stat_ch; /* statistics counter callout */
240
241 bus_dmamap_t sc_cddmamap; /* control data DMA map */
242 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
243
244 struct kse_control_data *sc_control_data;
245 #define sc_txdescs sc_control_data->kcd_txdescs
246 #define sc_rxdescs sc_control_data->kcd_rxdescs
247
248 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
249 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
250 int sc_txfree; /* number of free Tx descriptors */
251 int sc_txnext; /* next ready Tx descriptor */
252 int sc_txsfree; /* number of free Tx jobs */
253 int sc_txsnext; /* next ready Tx job */
254 int sc_txsdirty; /* dirty Tx jobs */
255 int sc_rxptr; /* next ready Rx descriptor/descsoft */
256
257 uint32_t sc_txc, sc_rxc;
258 uint32_t sc_t1csum;
259 int sc_mcsum;
260 uint32_t sc_inten;
261
262 uint32_t sc_chip;
263 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
264 uint16_t sc_vlan[16];
265
266 #ifdef KSE_EVENT_COUNTERS
267 struct ksext {
268 char evcntname[3][8];
269 struct evcnt pev[3][34];
270 } sc_ext; /* switch statistics */
271 #endif
272 };
273
274 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
275 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
276
277 #define KSE_CDTXSYNC(sc, x, n, ops) \
278 do { \
279 int __x, __n; \
280 \
281 __x = (x); \
282 __n = (n); \
283 \
284 /* If it will wrap around, sync to the end of the ring. */ \
285 if ((__x + __n) > KSE_NTXDESC) { \
286 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
287 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
288 (KSE_NTXDESC - __x), (ops)); \
289 __n -= (KSE_NTXDESC - __x); \
290 __x = 0; \
291 } \
292 \
293 /* Now sync whatever is left. */ \
294 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
295 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
296 } while (/*CONSTCOND*/0)
297
298 #define KSE_CDRXSYNC(sc, x, ops) \
299 do { \
300 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
301 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
302 } while (/*CONSTCOND*/0)
303
304 #define KSE_INIT_RXDESC(sc, x) \
305 do { \
306 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
307 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
308 struct mbuf *__m = __rxs->rxs_mbuf; \
309 \
310 __m->m_data = __m->m_ext.ext_buf; \
311 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
312 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
313 __rxd->r0 = R0_OWN; \
314 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
315 } while (/*CONSTCOND*/0)
316
317 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
318
319 #ifdef KSEDIAGNOSTIC
320 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
321 #endif
322
323 static int kse_match(device_t, cfdata_t, void *);
324 static void kse_attach(device_t, device_t, void *);
325
326 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
327 kse_match, kse_attach, NULL, NULL);
328
329 static int kse_ioctl(struct ifnet *, u_long, void *);
330 static void kse_start(struct ifnet *);
331 static void kse_watchdog(struct ifnet *);
332 static int kse_init(struct ifnet *);
333 static void kse_stop(struct ifnet *, int);
334 static void kse_reset(struct kse_softc *);
335 static void kse_set_filter(struct kse_softc *);
336 static int add_rxbuf(struct kse_softc *, int);
337 static void rxdrain(struct kse_softc *);
338 static int kse_intr(void *);
339 static void rxintr(struct kse_softc *);
340 static void txreap(struct kse_softc *);
341 static void lnkchg(struct kse_softc *);
342 static int kse_ifmedia_upd(struct ifnet *);
343 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
344 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
345 static void phy_tick(void *);
346 int kse_mii_readreg(device_t, int, int, uint16_t *);
347 int kse_mii_writereg(device_t, int, int, uint16_t);
348 void kse_mii_statchg(struct ifnet *);
349 #ifdef KSE_EVENT_COUNTERS
350 static void stat_tick(void *);
351 static void zerostats(struct kse_softc *);
352 #endif
353
354 static int
355 kse_match(device_t parent, cfdata_t match, void *aux)
356 {
357 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
358
359 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
360 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
361 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
362 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
363 return 1;
364
365 return 0;
366 }
367
368 static void
369 kse_attach(device_t parent, device_t self, void *aux)
370 {
371 struct kse_softc *sc = device_private(self);
372 struct pci_attach_args *pa = aux;
373 pci_chipset_tag_t pc = pa->pa_pc;
374 pci_intr_handle_t ih;
375 const char *intrstr;
376 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
377 struct mii_data * const mii = &sc->sc_mii;
378 struct ifmedia *ifm;
379 uint8_t enaddr[ETHER_ADDR_LEN];
380 bus_dma_segment_t seg;
381 int i, error, nseg;
382 char intrbuf[PCI_INTRSTR_LEN];
383
384 aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
385 PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
386
387 if (pci_mapreg_map(pa, 0x10,
388 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
389 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
390 aprint_error_dev(self, "unable to map device registers\n");
391 return;
392 }
393
394 /* Make sure bus mastering is enabled. */
395 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
396 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
397 PCI_COMMAND_MASTER_ENABLE);
398
399 /* Power up chip if necessary. */
400 if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
401 && error != EOPNOTSUPP) {
402 aprint_error_dev(self, "cannot activate %d\n", error);
403 return;
404 }
405
406 /* Map and establish our interrupt. */
407 if (pci_intr_map(pa, &ih)) {
408 aprint_error_dev(self, "unable to map interrupt\n");
409 return;
410 }
411 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
412 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
413 device_xname(self));
414 if (sc->sc_ih == NULL) {
415 aprint_error_dev(self, "unable to establish interrupt");
416 if (intrstr != NULL)
417 aprint_error(" at %s", intrstr);
418 aprint_error("\n");
419 return;
420 }
421 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
422
423 sc->sc_dev = self;
424 sc->sc_dmat = pa->pa_dmat;
425 sc->sc_pc = pa->pa_pc;
426 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
427
428 /*
429 * Read the Ethernet address from the EEPROM.
430 */
431 i = CSR_READ_2(sc, MARL);
432 enaddr[5] = i;
433 enaddr[4] = i >> 8;
434 i = CSR_READ_2(sc, MARM);
435 enaddr[3] = i;
436 enaddr[2] = i >> 8;
437 i = CSR_READ_2(sc, MARH);
438 enaddr[1] = i;
439 enaddr[0] = i >> 8;
440 aprint_normal_dev(self,
441 "Ethernet address %s\n", ether_sprintf(enaddr));
442
443 /*
444 * Enable chip function.
445 */
446 CSR_WRITE_2(sc, SIDER, 1);
447
448 /*
449 * Allocate the control data structures, and create and load the
450 * DMA map for it.
451 */
452 error = bus_dmamem_alloc(sc->sc_dmat,
453 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
454 if (error != 0) {
455 aprint_error_dev(self,
456 "unable to allocate control data, error = %d\n", error);
457 goto fail_0;
458 }
459 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
460 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
461 BUS_DMA_COHERENT);
462 if (error != 0) {
463 aprint_error_dev(self,
464 "unable to map control data, error = %d\n", error);
465 goto fail_1;
466 }
467 error = bus_dmamap_create(sc->sc_dmat,
468 sizeof(struct kse_control_data), 1,
469 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
470 if (error != 0) {
471 aprint_error_dev(self,
472 "unable to create control data DMA map, "
473 "error = %d\n", error);
474 goto fail_2;
475 }
476 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
477 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
478 if (error != 0) {
479 aprint_error_dev(self,
480 "unable to load control data DMA map, error = %d\n",
481 error);
482 goto fail_3;
483 }
484 for (i = 0; i < KSE_TXQUEUELEN; i++) {
485 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
486 KSE_NTXSEGS, MCLBYTES, 0, 0,
487 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
488 aprint_error_dev(self,
489 "unable to create tx DMA map %d, error = %d\n",
490 i, error);
491 goto fail_4;
492 }
493 }
494 for (i = 0; i < KSE_NRXDESC; i++) {
495 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
496 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
497 aprint_error_dev(self,
498 "unable to create rx DMA map %d, error = %d\n",
499 i, error);
500 goto fail_5;
501 }
502 sc->sc_rxsoft[i].rxs_mbuf = NULL;
503 }
504
505 callout_init(&sc->sc_tick_ch, 0);
506 callout_init(&sc->sc_stat_ch, 0);
507 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
508 #ifdef KSE_EVENT_COUNTERS
509 callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
510 #endif
511
512 mii->mii_ifp = ifp;
513 mii->mii_readreg = kse_mii_readreg;
514 mii->mii_writereg = kse_mii_writereg;
515 mii->mii_statchg = kse_mii_statchg;
516
517 /* Initialize ifmedia structures. */
518 sc->sc_flowflags = 0;
519 if (sc->sc_chip == 0x8841) {
520 /* use port 1 builtin PHY as index 1 device */
521 sc->sc_ethercom.ec_mii = mii;
522 ifm = &mii->mii_media;
523 ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
524 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
525 MII_OFFSET_ANY, MIIF_DOPAUSE);
526 if (LIST_FIRST(&mii->mii_phys) == NULL) {
527 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
528 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
529 } else
530 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
531 } else {
532 /*
533 * pretend 100FDX w/ no alternative media selection.
534 * 8842 MAC is tied with a builtin 3 port switch. It can do
535 * 4 degree priotised rate control over either of tx/rx
536 * direction for any of ports, respectively. Tough, this
537 * driver leaves the rate unlimited intending 100Mbps maximum.
538 * 2 external ports behave in AN mode and this driver provides
539 * no mean to manipulate and see their operational details.
540 */
541 sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
542 ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
543 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
544 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
545
546 aprint_normal_dev(self,
547 "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
548 }
549 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
550
551
552 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
553 ifp->if_softc = sc;
554 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
555 ifp->if_ioctl = kse_ioctl;
556 ifp->if_start = kse_start;
557 ifp->if_watchdog = kse_watchdog;
558 ifp->if_init = kse_init;
559 ifp->if_stop = kse_stop;
560 IFQ_SET_READY(&ifp->if_snd);
561
562 /*
563 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
564 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
565 */
566 sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
567 ifp->if_capabilities =
568 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
569 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
570 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
571
572 if_attach(ifp);
573 if_deferred_start_init(ifp, NULL);
574 ether_ifattach(ifp, enaddr);
575
576 #ifdef KSE_EVENT_COUNTERS
577 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
578 for (i = 0; i < p; i++) {
579 struct ksext *ee = &sc->sc_ext;
580 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
581 "%s.%d", device_xname(sc->sc_dev), i+1);
582 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "RxLoPriotyByte");
584 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "RxHiPriotyByte");
586 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "RxUndersizePkt");
588 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "RxFragments");
590 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "RxOversize");
592 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "RxJabbers");
594 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "RxSymbolError");
596 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "RxCRCError");
598 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "RxAlignmentError");
600 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "RxControl8808Pkts");
602 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "RxPausePkts");
604 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
605 NULL, ee->evcntname[i], "RxBroadcast");
606 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
607 NULL, ee->evcntname[i], "RxMulticast");
608 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
609 NULL, ee->evcntname[i], "RxUnicast");
610 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
611 NULL, ee->evcntname[i], "Rx64Octets");
612 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
613 NULL, ee->evcntname[i], "Rx65To127Octets");
614 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
615 NULL, ee->evcntname[i], "Rx128To255Octets");
616 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
617 NULL, ee->evcntname[i], "Rx255To511Octets");
618 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
619 NULL, ee->evcntname[i], "Rx512To1023Octets");
620 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
621 NULL, ee->evcntname[i], "Rx1024To1522Octets");
622 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
623 NULL, ee->evcntname[i], "TxLoPriotyByte");
624 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
625 NULL, ee->evcntname[i], "TxHiPriotyByte");
626 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
627 NULL, ee->evcntname[i], "TxLateCollision");
628 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
629 NULL, ee->evcntname[i], "TxPausePkts");
630 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
631 NULL, ee->evcntname[i], "TxBroadcastPkts");
632 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
633 NULL, ee->evcntname[i], "TxMulticastPkts");
634 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
635 NULL, ee->evcntname[i], "TxUnicastPkts");
636 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
637 NULL, ee->evcntname[i], "TxDeferred");
638 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
639 NULL, ee->evcntname[i], "TxTotalCollision");
640 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
641 NULL, ee->evcntname[i], "TxExcessiveCollision");
642 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
643 NULL, ee->evcntname[i], "TxSingleCollision");
644 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
645 NULL, ee->evcntname[i], "TxMultipleCollision");
646 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
647 NULL, ee->evcntname[i], "TxDropPkts");
648 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
649 NULL, ee->evcntname[i], "RxDropPkts");
650 }
651 #endif
652 return;
653
654 fail_5:
655 for (i = 0; i < KSE_NRXDESC; i++) {
656 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
657 bus_dmamap_destroy(sc->sc_dmat,
658 sc->sc_rxsoft[i].rxs_dmamap);
659 }
660 fail_4:
661 for (i = 0; i < KSE_TXQUEUELEN; i++) {
662 if (sc->sc_txsoft[i].txs_dmamap != NULL)
663 bus_dmamap_destroy(sc->sc_dmat,
664 sc->sc_txsoft[i].txs_dmamap);
665 }
666 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
667 fail_3:
668 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
669 fail_2:
670 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
671 sizeof(struct kse_control_data));
672 fail_1:
673 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
674 fail_0:
675 if (sc->sc_ih != NULL) {
676 pci_intr_disestablish(pc, sc->sc_ih);
677 sc->sc_ih = NULL;
678 }
679 if (sc->sc_memsize) {
680 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
681 sc->sc_memsize = 0;
682 }
683 return;
684 }
685
686 static int
687 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
688 {
689 struct kse_softc *sc = ifp->if_softc;
690 struct ifreq *ifr = (struct ifreq *)data;
691 struct ifmedia *ifm;
692 int s, error;
693
694 s = splnet();
695
696 switch (cmd) {
697 case SIOCSIFMEDIA:
698 /* Flow control requires full-duplex mode. */
699 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
700 (ifr->ifr_media & IFM_FDX) == 0)
701 ifr->ifr_media &= ~IFM_ETH_FMASK;
702 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
703 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
704 /* We can do both TXPAUSE and RXPAUSE. */
705 ifr->ifr_media |=
706 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
707 }
708 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
709 }
710 ifm = (sc->sc_chip == 0x8841)
711 ? &sc->sc_mii.mii_media : &sc->sc_media;
712 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
713 break;
714 default:
715 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
716 break;
717
718 error = 0;
719
720 if (cmd == SIOCSIFCAP)
721 error = (*ifp->if_init)(ifp);
722 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
723 ;
724 else if (ifp->if_flags & IFF_RUNNING) {
725 /*
726 * Multicast list has changed; set the hardware filter
727 * accordingly.
728 */
729 kse_set_filter(sc);
730 }
731 break;
732 }
733
734 splx(s);
735 return error;
736 }
737
738 static int
739 kse_init(struct ifnet *ifp)
740 {
741 struct kse_softc *sc = ifp->if_softc;
742 uint32_t paddr;
743 int i, error = 0;
744
745 /* cancel pending I/O */
746 kse_stop(ifp, 0);
747
748 /* reset all registers but PCI configuration */
749 kse_reset(sc);
750
751 /* craft Tx descriptor ring */
752 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
753 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
754 sc->sc_txdescs[i].t3 = paddr;
755 paddr += sizeof(struct tdes);
756 }
757 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
758 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
759 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
760 sc->sc_txfree = KSE_NTXDESC;
761 sc->sc_txnext = 0;
762
763 for (i = 0; i < KSE_TXQUEUELEN; i++)
764 sc->sc_txsoft[i].txs_mbuf = NULL;
765 sc->sc_txsfree = KSE_TXQUEUELEN;
766 sc->sc_txsnext = 0;
767 sc->sc_txsdirty = 0;
768
769 /* craft Rx descriptor ring */
770 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
771 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
772 sc->sc_rxdescs[i].r3 = paddr;
773 paddr += sizeof(struct rdes);
774 }
775 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
776 for (i = 0; i < KSE_NRXDESC; i++) {
777 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
778 if ((error = add_rxbuf(sc, i)) != 0) {
779 aprint_error_dev(sc->sc_dev,
780 "unable to allocate or map rx "
781 "buffer %d, error = %d\n",
782 i, error);
783 rxdrain(sc);
784 goto out;
785 }
786 }
787 else
788 KSE_INIT_RXDESC(sc, i);
789 }
790 sc->sc_rxptr = 0;
791
792 /* hand Tx/Rx rings to HW */
793 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
794 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
795
796 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
797 sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
798 sc->sc_t1csum = sc->sc_mcsum = 0;
799 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
800 sc->sc_rxc |= RXC_ICC;
801 sc->sc_mcsum |= M_CSUM_IPv4;
802 }
803 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
804 sc->sc_txc |= TXC_ICG;
805 sc->sc_t1csum |= T1_IPCKG;
806 }
807 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
808 sc->sc_rxc |= RXC_TCC;
809 sc->sc_mcsum |= M_CSUM_TCPv4;
810 }
811 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
812 sc->sc_txc |= TXC_TCG;
813 sc->sc_t1csum |= T1_TCPCKG;
814 }
815 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
816 sc->sc_rxc |= RXC_UCC;
817 sc->sc_mcsum |= M_CSUM_UDPv4;
818 }
819 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
820 sc->sc_txc |= TXC_UCG;
821 sc->sc_t1csum |= T1_UDPCKG;
822 }
823 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
824 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
825
826 if (sc->sc_chip == 0x8842) {
827 sc->sc_txc |= TXC_FCE;
828 sc->sc_rxc |= RXC_FCE;
829 CSR_WRITE_2(sc, SGCR3,
830 CSR_READ_2(sc, SGCR3) | CR3_USEFC);
831 }
832
833 /* accept multicast frame or run promisc mode */
834 kse_set_filter(sc);
835
836 /* set current media */
837 if (sc->sc_chip == 0x8841)
838 (void)kse_ifmedia_upd(ifp);
839
840 /* enable transmitter and receiver */
841 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
842 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
843 CSR_WRITE_4(sc, MDRSC, 1);
844
845 /* enable interrupts */
846 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
847 if (sc->sc_chip == 0x8841)
848 sc->sc_inten |= INT_DMLCS;
849 CSR_WRITE_4(sc, INTST, ~0);
850 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
851
852 ifp->if_flags |= IFF_RUNNING;
853 ifp->if_flags &= ~IFF_OACTIVE;
854
855 if (sc->sc_chip == 0x8841) {
856 /* start one second timer */
857 callout_schedule(&sc->sc_tick_ch, hz);
858 }
859 #ifdef KSE_EVENT_COUNTERS
860 /* start statistics gather 1 minute timer. should be tunable */
861 zerostats(sc);
862 callout_schedule(&sc->sc_stat_ch, hz * 60);
863 #endif
864
865 out:
866 if (error) {
867 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
868 ifp->if_timer = 0;
869 aprint_error_dev(sc->sc_dev, "interface not running\n");
870 }
871 return error;
872 }
873
874 static void
875 kse_stop(struct ifnet *ifp, int disable)
876 {
877 struct kse_softc *sc = ifp->if_softc;
878 struct kse_txsoft *txs;
879 int i;
880
881 if (sc->sc_chip == 0x8841)
882 callout_stop(&sc->sc_tick_ch);
883 callout_stop(&sc->sc_stat_ch);
884
885 sc->sc_txc &= ~TXC_TEN;
886 sc->sc_rxc &= ~RXC_REN;
887 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
888 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
889
890 for (i = 0; i < KSE_TXQUEUELEN; i++) {
891 txs = &sc->sc_txsoft[i];
892 if (txs->txs_mbuf != NULL) {
893 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
894 m_freem(txs->txs_mbuf);
895 txs->txs_mbuf = NULL;
896 }
897 }
898
899 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
900 ifp->if_timer = 0;
901
902 if (disable)
903 rxdrain(sc);
904 }
905
906 static void
907 kse_reset(struct kse_softc *sc)
908 {
909
910 /* software reset */
911 CSR_WRITE_2(sc, GRR, 1);
912 delay(1000); /* PDF does not mention the delay amount */
913 CSR_WRITE_2(sc, GRR, 0);
914
915 /* enable switch function */
916 CSR_WRITE_2(sc, SIDER, 1);
917 }
918
919 static void
920 kse_watchdog(struct ifnet *ifp)
921 {
922 struct kse_softc *sc = ifp->if_softc;
923
924 /*
925 * Since we're not interrupting every packet, sweep
926 * up before we report an error.
927 */
928 txreap(sc);
929
930 if (sc->sc_txfree != KSE_NTXDESC) {
931 aprint_error_dev(sc->sc_dev,
932 "device timeout (txfree %d txsfree %d txnext %d)\n",
933 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
934 if_statinc(ifp, if_oerrors);
935
936 /* Reset the interface. */
937 kse_init(ifp);
938 }
939 else if (ifp->if_flags & IFF_DEBUG)
940 aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
941
942 /* Try to get more packets going. */
943 kse_start(ifp);
944 }
945
946 static void
947 kse_start(struct ifnet *ifp)
948 {
949 struct kse_softc *sc = ifp->if_softc;
950 struct mbuf *m0, *m;
951 struct kse_txsoft *txs;
952 bus_dmamap_t dmamap;
953 int error, nexttx, lasttx, ofree, seg;
954 uint32_t tdes0;
955
956 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
957 return;
958
959 /* Remember the previous number of free descriptors. */
960 ofree = sc->sc_txfree;
961
962 /*
963 * Loop through the send queue, setting up transmit descriptors
964 * until we drain the queue, or use up all available transmit
965 * descriptors.
966 */
967 for (;;) {
968 IFQ_POLL(&ifp->if_snd, m0);
969 if (m0 == NULL)
970 break;
971
972 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
973 txreap(sc);
974 if (sc->sc_txsfree == 0)
975 break;
976 }
977 txs = &sc->sc_txsoft[sc->sc_txsnext];
978 dmamap = txs->txs_dmamap;
979
980 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
981 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
982 if (error) {
983 if (error == EFBIG) {
984 aprint_error_dev(sc->sc_dev,
985 "Tx packet consumes too many "
986 "DMA segments, dropping...\n");
987 IFQ_DEQUEUE(&ifp->if_snd, m0);
988 m_freem(m0);
989 continue;
990 }
991 /* Short on resources, just stop for now. */
992 break;
993 }
994
995 if (dmamap->dm_nsegs > sc->sc_txfree) {
996 /*
997 * Not enough free descriptors to transmit this
998 * packet. We haven't committed anything yet,
999 * so just unload the DMA map, put the packet
1000 * back on the queue, and punt. Notify the upper
1001 * layer that there are not more slots left.
1002 */
1003 ifp->if_flags |= IFF_OACTIVE;
1004 bus_dmamap_unload(sc->sc_dmat, dmamap);
1005 break;
1006 }
1007
1008 IFQ_DEQUEUE(&ifp->if_snd, m0);
1009
1010 /*
1011 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1012 */
1013
1014 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1015 BUS_DMASYNC_PREWRITE);
1016
1017 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1018 lasttx = -1;
1019 for (nexttx = sc->sc_txnext, seg = 0;
1020 seg < dmamap->dm_nsegs;
1021 seg++, nexttx = KSE_NEXTTX(nexttx)) {
1022 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1023 /*
1024 * If this is the first descriptor we're
1025 * enqueueing, don't set the OWN bit just
1026 * yet. That could cause a race condition.
1027 * We'll do it below.
1028 */
1029 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1030 tdes->t1 = sc->sc_t1csum
1031 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1032 tdes->t0 = tdes0;
1033 tdes0 = T0_OWN; /* 2nd and other segments */
1034 lasttx = nexttx;
1035 }
1036 /*
1037 * Outgoing NFS mbuf must be unloaded when Tx completed.
1038 * Without T1_IC NFS mbuf is left unack'ed for excessive
1039 * time and NFS stops to proceed until kse_watchdog()
1040 * calls txreap() to reclaim the unack'ed mbuf.
1041 * It's painful to traverse every mbuf chain to determine
1042 * whether someone is waiting for Tx completion.
1043 */
1044 m = m0;
1045 do {
1046 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1047 sc->sc_txdescs[lasttx].t1 |= T1_IC;
1048 break;
1049 }
1050 } while ((m = m->m_next) != NULL);
1051
1052 /* Write deferred 1st segment T0_OWN at the final stage */
1053 sc->sc_txdescs[lasttx].t1 |= T1_LS;
1054 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1055 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1056 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1057 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1058
1059 /* Tell DMA start transmit */
1060 CSR_WRITE_4(sc, MDTSC, 1);
1061
1062 txs->txs_mbuf = m0;
1063 txs->txs_firstdesc = sc->sc_txnext;
1064 txs->txs_lastdesc = lasttx;
1065 txs->txs_ndesc = dmamap->dm_nsegs;
1066
1067 sc->sc_txfree -= txs->txs_ndesc;
1068 sc->sc_txnext = nexttx;
1069 sc->sc_txsfree--;
1070 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1071 /*
1072 * Pass the packet to any BPF listeners.
1073 */
1074 bpf_mtap(ifp, m0, BPF_D_OUT);
1075 }
1076
1077 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1078 /* No more slots left; notify upper layer. */
1079 ifp->if_flags |= IFF_OACTIVE;
1080 }
1081 if (sc->sc_txfree != ofree) {
1082 /* Set a watchdog timer in case the chip flakes out. */
1083 ifp->if_timer = 5;
1084 }
1085 }
1086
1087 static void
1088 kse_set_filter(struct kse_softc *sc)
1089 {
1090 struct ether_multistep step;
1091 struct ether_multi *enm;
1092 struct ethercom *ec = &sc->sc_ethercom;
1093 struct ifnet *ifp = &ec->ec_if;
1094 uint32_t crc, mchash[2];
1095 int i;
1096
1097 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1098
1099 /* clear perfect match filter and prepare mcast hash table */
1100 for (i = 0; i < 16; i++)
1101 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1102 crc = mchash[0] = mchash[1] = 0;
1103
1104 ETHER_LOCK(ec);
1105 if (ifp->if_flags & IFF_PROMISC) {
1106 ec->ec_flags |= ETHER_F_ALLMULTI;
1107 /* run promisc. mode */
1108 sc->sc_rxc |= RXC_RA;
1109 goto update;
1110 }
1111 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1112 ETHER_FIRST_MULTI(step, ec, enm);
1113 i = 0;
1114 while (enm != NULL) {
1115 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1116 /*
1117 * We must listen to a range of multicast addresses.
1118 * For now, just accept all multicasts, rather than
1119 * trying to set only those filter bits needed to match
1120 * the range. (At this time, the only use of address
1121 * ranges is for IP multicast routing, for which the
1122 * range is big enough to require all bits set.)
1123 */
1124 ec->ec_flags |= ETHER_F_ALLMULTI;
1125 ETHER_UNLOCK(ec);
1126 /* accept all multicast */
1127 sc->sc_rxc |= RXC_RM;
1128 goto update;
1129 }
1130 #if KSE_MCASTDEBUG == 1
1131 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1132 #endif
1133 if (i < 16) {
1134 /* use 16 additional MAC addr to accept mcast */
1135 uint32_t addr;
1136 uint8_t *ep = enm->enm_addrlo;
1137 addr = (ep[3] << 24) | (ep[2] << 16)
1138 | (ep[1] << 8) | ep[0];
1139 CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1140 addr = (ep[5] << 8) | ep[4];
1141 CSR_WRITE_4(sc, MAAH0 + i*8, addr | (1U << 31));
1142 } else {
1143 /* use hash table when too many */
1144 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1145 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1146 }
1147 ETHER_NEXT_MULTI(step, enm);
1148 i++;
1149 }
1150 ETHER_UNLOCK(ec);
1151
1152 if (crc)
1153 sc->sc_rxc |= RXC_MHTE;
1154 CSR_WRITE_4(sc, MTR0, mchash[0]);
1155 CSR_WRITE_4(sc, MTR1, mchash[1]);
1156 update:
1157 /* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1158 return;
1159 }
1160
1161 static int
1162 add_rxbuf(struct kse_softc *sc, int idx)
1163 {
1164 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1165 struct mbuf *m;
1166 int error;
1167
1168 MGETHDR(m, M_DONTWAIT, MT_DATA);
1169 if (m == NULL)
1170 return ENOBUFS;
1171
1172 MCLGET(m, M_DONTWAIT);
1173 if ((m->m_flags & M_EXT) == 0) {
1174 m_freem(m);
1175 return ENOBUFS;
1176 }
1177
1178 if (rxs->rxs_mbuf != NULL)
1179 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1180
1181 rxs->rxs_mbuf = m;
1182
1183 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1184 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1185 if (error) {
1186 aprint_error_dev(sc->sc_dev,
1187 "can't load rx DMA map %d, error = %d\n", idx, error);
1188 panic("kse_add_rxbuf");
1189 }
1190
1191 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1192 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1193
1194 KSE_INIT_RXDESC(sc, idx);
1195
1196 return 0;
1197 }
1198
1199 static void
1200 rxdrain(struct kse_softc *sc)
1201 {
1202 struct kse_rxsoft *rxs;
1203 int i;
1204
1205 for (i = 0; i < KSE_NRXDESC; i++) {
1206 rxs = &sc->sc_rxsoft[i];
1207 if (rxs->rxs_mbuf != NULL) {
1208 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1209 m_freem(rxs->rxs_mbuf);
1210 rxs->rxs_mbuf = NULL;
1211 }
1212 }
1213 }
1214
1215 static int
1216 kse_intr(void *arg)
1217 {
1218 struct kse_softc *sc = arg;
1219 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1220 uint32_t isr;
1221
1222 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1223 return 0;
1224
1225 if (isr & INT_DMRS)
1226 rxintr(sc);
1227 if (isr & INT_DMTS)
1228 txreap(sc);
1229 if (isr & INT_DMLCS)
1230 lnkchg(sc);
1231 if (isr & INT_DMRBUS)
1232 aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1233
1234 CSR_WRITE_4(sc, INTST, isr);
1235
1236 if (ifp->if_flags & IFF_RUNNING)
1237 if_schedule_deferred_start(ifp);
1238
1239 return 1;
1240 }
1241
1242 static void
1243 rxintr(struct kse_softc *sc)
1244 {
1245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246 struct kse_rxsoft *rxs;
1247 struct mbuf *m;
1248 uint32_t rxstat;
1249 int i, len;
1250
1251 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1252 rxs = &sc->sc_rxsoft[i];
1253
1254 KSE_CDRXSYNC(sc, i,
1255 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1256
1257 rxstat = sc->sc_rxdescs[i].r0;
1258
1259 if (rxstat & R0_OWN) /* desc is left empty */
1260 break;
1261
1262 /* R0_FS | R0_LS must have been marked for this desc */
1263
1264 if (rxstat & R0_ES) {
1265 if_statinc(ifp, if_ierrors);
1266 #define PRINTERR(bit, str) \
1267 if (rxstat & (bit)) \
1268 aprint_error_dev(sc->sc_dev, \
1269 "%s\n", str)
1270 PRINTERR(R0_TL, "frame too long");
1271 PRINTERR(R0_RF, "runt frame");
1272 PRINTERR(R0_CE, "bad FCS");
1273 #undef PRINTERR
1274 KSE_INIT_RXDESC(sc, i);
1275 continue;
1276 }
1277
1278 /* HW errata; frame might be too small or too large */
1279
1280 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1281 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1282
1283 len = rxstat & R0_FL_MASK;
1284 len -= ETHER_CRC_LEN; /* Trim CRC off */
1285 m = rxs->rxs_mbuf;
1286
1287 if (add_rxbuf(sc, i) != 0) {
1288 if_statinc(ifp, if_ierrors);
1289 KSE_INIT_RXDESC(sc, i);
1290 bus_dmamap_sync(sc->sc_dmat,
1291 rxs->rxs_dmamap, 0,
1292 rxs->rxs_dmamap->dm_mapsize,
1293 BUS_DMASYNC_PREREAD);
1294 continue;
1295 }
1296
1297 m_set_rcvif(m, ifp);
1298 m->m_pkthdr.len = m->m_len = len;
1299
1300 if (sc->sc_mcsum) {
1301 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1302 if (rxstat & R0_IPE)
1303 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1304 if (rxstat & (R0_TCPE | R0_UDPE))
1305 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1306 }
1307 if_percpuq_enqueue(ifp->if_percpuq, m);
1308 #ifdef KSEDIAGNOSTIC
1309 if (kse_monitor_rxintr > 0) {
1310 aprint_error_dev(sc->sc_dev,
1311 "m stat %x data %p len %d\n",
1312 rxstat, m->m_data, m->m_len);
1313 }
1314 #endif
1315 }
1316 sc->sc_rxptr = i;
1317 }
1318
1319 static void
1320 txreap(struct kse_softc *sc)
1321 {
1322 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1323 struct kse_txsoft *txs;
1324 uint32_t txstat;
1325 int i;
1326
1327 ifp->if_flags &= ~IFF_OACTIVE;
1328
1329 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1330 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1331 txs = &sc->sc_txsoft[i];
1332
1333 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1334 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1335
1336 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1337
1338 if (txstat & T0_OWN) /* desc is still in use */
1339 break;
1340
1341 /* There is no way to tell transmission status per frame */
1342
1343 if_statinc(ifp, if_opackets);
1344
1345 sc->sc_txfree += txs->txs_ndesc;
1346 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1347 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1348 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1349 m_freem(txs->txs_mbuf);
1350 txs->txs_mbuf = NULL;
1351 }
1352 sc->sc_txsdirty = i;
1353 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1354 ifp->if_timer = 0;
1355 }
1356
1357 static void
1358 lnkchg(struct kse_softc *sc)
1359 {
1360 struct ifmediareq ifmr;
1361
1362 #if KSE_LINKDEBUG == 1
1363 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1364 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1365 #endif
1366 kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1367 }
1368
1369 static int
1370 kse_ifmedia_upd(struct ifnet *ifp)
1371 {
1372 struct kse_softc *sc = ifp->if_softc;
1373 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1374 uint16_t p1cr4;
1375
1376 p1cr4 = 0;
1377 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1378 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1379 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1380 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1381 p1cr4 |= 0xf; /* adv. 100FDX,100HDX,10FDX,10HDX */
1382 } else {
1383 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1384 p1cr4 |= PxCR_SPD100;
1385 if (ifm->ifm_media & IFM_FDX)
1386 p1cr4 |= PxCR_USEFDX;
1387 }
1388 CSR_WRITE_2(sc, P1CR4, p1cr4);
1389 #if KSE_LINKDEBUG == 1
1390 printf("P1CR4: %04x\n", p1cr4);
1391 #endif
1392 return 0;
1393 }
1394
1395 static void
1396 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1397 {
1398 struct kse_softc *sc = ifp->if_softc;
1399 struct mii_data *mii = &sc->sc_mii;
1400
1401 mii_pollstat(mii);
1402 ifmr->ifm_status = mii->mii_media_status;
1403 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1404 sc->sc_flowflags;
1405 }
1406
1407 static void
1408 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1409 {
1410 struct kse_softc *sc = ifp->if_softc;
1411 struct ifmedia *ifm = &sc->sc_media;
1412
1413 #if KSE_LINKDEBUG == 2
1414 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1415 #endif
1416
1417 /* 8842 MAC pretends 100FDX all the time */
1418 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1419 ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1420 IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1421 }
1422
1423 static void
1424 phy_tick(void *arg)
1425 {
1426 struct kse_softc *sc = arg;
1427 struct mii_data *mii = &sc->sc_mii;
1428 int s;
1429
1430 s = splnet();
1431 mii_tick(mii);
1432 splx(s);
1433
1434 callout_schedule(&sc->sc_tick_ch, hz);
1435 }
1436
1437 static const uint16_t phy1csr[] = {
1438 /* 0 BMCR */ 0x4d0,
1439 /* 1 BMSR */ 0x4d2,
1440 /* 2 PHYID1 */ 0x4d6, /* 0x0022 - PHY1HR */
1441 /* 3 PHYID2 */ 0x4d4, /* 0x1430 - PHY1LR */
1442 /* 4 ANAR */ 0x4d8,
1443 /* 5 ANLPAR */ 0x4da,
1444 };
1445
1446 int
1447 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1448 {
1449 struct kse_softc *sc = device_private(self);
1450
1451 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1452 return EINVAL;
1453 *val = CSR_READ_2(sc, phy1csr[reg]);
1454 return 0;
1455 }
1456
1457 int
1458 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1459 {
1460 struct kse_softc *sc = device_private(self);
1461
1462 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1463 return EINVAL;
1464 CSR_WRITE_2(sc, phy1csr[reg], val);
1465 return 0;
1466 }
1467
1468 void
1469 kse_mii_statchg(struct ifnet *ifp)
1470 {
1471 struct kse_softc *sc = ifp->if_softc;
1472 struct mii_data *mii = &sc->sc_mii;
1473
1474 #if KSE_LINKDEBUG == 1
1475 /* decode P1SR register value */
1476 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1477 printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1478 if (p1sr & PxSR_FDX)
1479 printf(",full-duplex");
1480 if (p1sr & PxSR_RXFLOW)
1481 printf(",rxpause");
1482 if (p1sr & PxSR_TXFLOW)
1483 printf(",txpause");
1484 printf("\n");
1485 /* show resolved mii(4) parameters to compare against above */
1486 printf("MII spd%d",
1487 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1488 if (mii->mii_media_active & IFM_FDX)
1489 printf(",full-duplex");
1490 if (mii->mii_media_active & IFM_FLOW) {
1491 printf(",flowcontrol");
1492 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1493 printf(",rxpause");
1494 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1495 printf(",txpause");
1496 }
1497 printf("\n");
1498 #endif
1499 /* Get flow control negotiation result. */
1500 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1501 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1502 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1503
1504 /* Adjust MAC PAUSE flow control. */
1505 if ((mii->mii_media_active & IFM_FDX)
1506 && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1507 sc->sc_txc |= TXC_FCE;
1508 else
1509 sc->sc_txc &= ~TXC_FCE;
1510 if ((mii->mii_media_active & IFM_FDX)
1511 && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1512 sc->sc_rxc |= RXC_FCE;
1513 else
1514 sc->sc_rxc &= ~RXC_FCE;
1515 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1516 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1517 #if KSE_LINKDEBUG == 1
1518 printf("%ctxfce, %crxfce\n",
1519 (sc->sc_txc & TXC_FCE) ? '+' : '-',
1520 (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1521 #endif
1522 }
1523
1524 #ifdef KSE_EVENT_COUNTERS
1525 static void
1526 stat_tick(void *arg)
1527 {
1528 struct kse_softc *sc = arg;
1529 struct ksext *ee = &sc->sc_ext;
1530 int nport, p, i, val;
1531
1532 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1533 for (p = 0; p < nport; p++) {
1534 for (i = 0; i < 32; i++) {
1535 val = 0x1c00 | (p * 0x20 + i);
1536 CSR_WRITE_2(sc, IACR, val);
1537 do {
1538 val = CSR_READ_2(sc, IADR5) << 16;
1539 } while ((val & (1U << 30)) == 0);
1540 if (val & (1U << 31)) {
1541 (void)CSR_READ_2(sc, IADR4);
1542 val = 0x3fffffff; /* has made overflow */
1543 }
1544 else {
1545 val &= 0x3fff0000; /* 29:16 */
1546 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1547 }
1548 ee->pev[p][i].ev_count += val; /* i (0-31) */
1549 }
1550 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1551 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1552 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1553 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1554 }
1555 callout_schedule(&sc->sc_stat_ch, hz * 60);
1556 }
1557
1558 static void
1559 zerostats(struct kse_softc *sc)
1560 {
1561 struct ksext *ee = &sc->sc_ext;
1562 int nport, p, i, val;
1563
1564 /* Make sure all the HW counters get zero */
1565 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1566 for (p = 0; p < nport; p++) {
1567 for (i = 0; i < 31; i++) {
1568 val = 0x1c00 | (p * 0x20 + i);
1569 CSR_WRITE_2(sc, IACR, val);
1570 do {
1571 val = CSR_READ_2(sc, IADR5) << 16;
1572 } while ((val & (1U << 30)) == 0);
1573 (void)CSR_READ_2(sc, IADR4);
1574 ee->pev[p][i].ev_count = 0;
1575 }
1576 }
1577 }
1578 #endif
1579