if_kse.c revision 1.55 1 /* $NetBSD: if_kse.c,v 1.55 2020/09/20 20:15:11 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Micrel 8841/8842 10/100 PCI ethernet driver
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.55 2020/09/20 20:15:11 nisimura Exp $");
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/intr.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/ioctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <dev/mii/mii.h>
56 #include <dev/mii/miivar.h>
57 #include <net/bpf.h>
58
59 #include <dev/pci/pcivar.h>
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcidevs.h>
62
63 #define KSE_LINKDEBUG 0
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define MTR0 0x020 /* multicast table 31:0 */
81 #define MTR1 0x024 /* multicast table 63:32 */
82 #define INTEN 0x028 /* interrupt enable */
83 #define INTST 0x02c /* interrupt status */
84 #define MAAL0 0x080 /* additional MAC address 0 low */
85 #define MAAH0 0x084 /* additional MAC address 0 high */
86 #define MARL 0x200 /* MAC address low */
87 #define MARM 0x202 /* MAC address middle */
88 #define MARH 0x204 /* MAC address high */
89 #define GRR 0x216 /* global reset */
90 #define SIDER 0x400 /* switch ID and function enable */
91 #define SGCR3 0x406 /* switch function control 3 */
92 #define CR3_USEHDX (1U<<6) /* use half-duplex 8842 host port */
93 #define CR3_USEFC (1U<<5) /* use flowcontrol 8842 host port */
94 #define IACR 0x4a0 /* indirect access control */
95 #define IADR1 0x4a2 /* indirect access data 66:63 */
96 #define IADR2 0x4a4 /* indirect access data 47:32 */
97 #define IADR3 0x4a6 /* indirect access data 63:48 */
98 #define IADR4 0x4a8 /* indirect access data 15:0 */
99 #define IADR5 0x4aa /* indirect access data 31:16 */
100 #define P1CR4 0x512 /* port 1 control 4 */
101 #define P1SR 0x514 /* port 1 status */
102 #define P2CR4 0x532 /* port 2 control 4 */
103 #define P2SR 0x534 /* port 2 status */
104 #define PxCR_STARTNEG (1U<<9) /* restart auto negotiation */
105 #define PxCR_AUTOEN (1U<<7) /* auto negotiation enable */
106 #define PxCR_SPD100 (1U<<6) /* force speed 100 */
107 #define PxCR_USEFDX (1U<<5) /* force full duplex */
108 #define PxCR_USEFC (1U<<4) /* advertise pause flow control */
109 #define PxSR_ACOMP (1U<<6) /* auto negotiation completed */
110 #define PxSR_SPD100 (1U<<10) /* speed is 100Mbps */
111 #define PxSR_FDX (1U<<9) /* full duplex */
112 #define PxSR_LINKUP (1U<<5) /* link is good */
113 #define PxSR_RXFLOW (1U<<12) /* receive flow control active */
114 #define PxSR_TXFLOW (1U<<11) /* transmit flow control active */
115 #define P1VIDCR 0x504 /* port 1 vtag */
116 #define P2VIDCR 0x524 /* port 2 vtag */
117 #define P3VIDCR 0x544 /* 8842 host vtag */
118
119 #define TXC_BS_MSK 0x3f000000 /* burst size */
120 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
121 #define TXC_UCG (1U<<18) /* generate UDP checksum */
122 #define TXC_TCG (1U<<17) /* generate TCP checksum */
123 #define TXC_ICG (1U<<16) /* generate IP checksum */
124 #define TXC_FCE (1U<<9) /* generate PAUSE to moderate Rx lvl */
125 #define TXC_EP (1U<<2) /* enable automatic padding */
126 #define TXC_AC (1U<<1) /* add CRC to frame */
127 #define TXC_TEN (1) /* enable DMA to run */
128
129 #define RXC_BS_MSK 0x3f000000 /* burst size */
130 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
131 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
132 #define RXC_UCC (1U<<18) /* run UDP checksum */
133 #define RXC_TCC (1U<<17) /* run TDP checksum */
134 #define RXC_ICC (1U<<16) /* run IP checksum */
135 #define RXC_FCE (1U<<9) /* accept PAUSE to throttle Tx */
136 #define RXC_RB (1U<<6) /* receive broadcast frame */
137 #define RXC_RM (1U<<5) /* receive all multicast (inc. RB) */
138 #define RXC_RU (1U<<4) /* receive 16 additional unicasts */
139 #define RXC_RE (1U<<3) /* accept error frame */
140 #define RXC_RA (1U<<2) /* receive all frame */
141 #define RXC_MHTE (1U<<1) /* use multicast hash table */
142 #define RXC_REN (1) /* enable DMA to run */
143
144 #define INT_DMLCS (1U<<31) /* link status change */
145 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
146 #define INT_DMRS (1U<<29) /* frame was received */
147 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
148 #define INT_DMxPSS (3U<<25) /* 26:25 DMA Tx/Rx have stopped */
149
150 #define T0_OWN (1U<<31) /* desc is ready to Tx */
151
152 #define R0_OWN (1U<<31) /* desc is empty */
153 #define R0_FS (1U<<30) /* first segment of frame */
154 #define R0_LS (1U<<29) /* last segment of frame */
155 #define R0_IPE (1U<<28) /* IP checksum error */
156 #define R0_TCPE (1U<<27) /* TCP checksum error */
157 #define R0_UDPE (1U<<26) /* UDP checksum error */
158 #define R0_ES (1U<<25) /* error summary */
159 #define R0_MF (1U<<24) /* multicast frame */
160 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
161 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
162 #define R0_RE (1U<<19) /* MII reported error */
163 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
164 #define R0_RF (1U<<17) /* damaged runt frame */
165 #define R0_CE (1U<<16) /* CRC error */
166 #define R0_FT (1U<<15) /* frame type */
167 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
168
169 #define T1_IC (1U<<31) /* post interrupt on complete */
170 #define T1_FS (1U<<30) /* first segment of frame */
171 #define T1_LS (1U<<29) /* last segment of frame */
172 #define T1_IPCKG (1U<<28) /* generate IP checksum */
173 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
174 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
175 #define T1_TER (1U<<25) /* end of ring */
176 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
177 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
178
179 #define R1_RER (1U<<25) /* end of ring */
180 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
181
182 #define KSE_NTXSEGS 16
183 #define KSE_TXQUEUELEN 64
184 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
185 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
186 #define KSE_NTXDESC 256
187 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
188 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
189 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
190
191 #define KSE_NRXDESC 64
192 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
193 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
194
195 struct tdes {
196 uint32_t t0, t1, t2, t3;
197 };
198
199 struct rdes {
200 uint32_t r0, r1, r2, r3;
201 };
202
203 struct kse_control_data {
204 struct tdes kcd_txdescs[KSE_NTXDESC];
205 struct rdes kcd_rxdescs[KSE_NRXDESC];
206 };
207 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
208 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
209 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
210
211 struct kse_txsoft {
212 struct mbuf *txs_mbuf; /* head of our mbuf chain */
213 bus_dmamap_t txs_dmamap; /* our DMA map */
214 int txs_firstdesc; /* first descriptor in packet */
215 int txs_lastdesc; /* last descriptor in packet */
216 int txs_ndesc; /* # of descriptors used */
217 };
218
219 struct kse_rxsoft {
220 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
221 bus_dmamap_t rxs_dmamap; /* our DMA map */
222 };
223
224 struct kse_softc {
225 device_t sc_dev; /* generic device information */
226 bus_space_tag_t sc_st; /* bus space tag */
227 bus_space_handle_t sc_sh; /* bus space handle */
228 bus_size_t sc_memsize; /* csr map size */
229 bus_dma_tag_t sc_dmat; /* bus DMA tag */
230 pci_chipset_tag_t sc_pc; /* PCI chipset tag */
231 struct ethercom sc_ethercom; /* Ethernet common data */
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* mii 8841 */
235 struct ifmedia sc_media; /* ifmedia 8842 */
236 int sc_flowflags; /* 802.3x PAUSE flow control */
237
238 callout_t sc_tick_ch; /* MII tick callout */
239
240 bus_dmamap_t sc_cddmamap; /* control data DMA map */
241 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
242
243 struct kse_control_data *sc_control_data;
244 #define sc_txdescs sc_control_data->kcd_txdescs
245 #define sc_rxdescs sc_control_data->kcd_rxdescs
246
247 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
248 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
249 int sc_txfree; /* number of free Tx descriptors */
250 int sc_txnext; /* next ready Tx descriptor */
251 int sc_txsfree; /* number of free Tx jobs */
252 int sc_txsnext; /* next ready Tx job */
253 int sc_txsdirty; /* dirty Tx jobs */
254 int sc_rxptr; /* next ready Rx descriptor/descsoft */
255
256 uint32_t sc_txc, sc_rxc;
257 uint32_t sc_t1csum;
258 int sc_mcsum;
259 uint32_t sc_inten;
260 uint32_t sc_chip;
261
262 #ifdef KSE_EVENT_COUNTERS
263 callout_t sc_stat_ch; /* statistics counter callout */
264 struct ksext {
265 char evcntname[3][8];
266 struct evcnt pev[3][34];
267 } sc_ext; /* switch statistics */
268 #endif
269 };
270
271 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
272 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
273
274 #define KSE_CDTXSYNC(sc, x, n, ops) \
275 do { \
276 int __x, __n; \
277 \
278 __x = (x); \
279 __n = (n); \
280 \
281 /* If it will wrap around, sync to the end of the ring. */ \
282 if ((__x + __n) > KSE_NTXDESC) { \
283 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
284 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
285 (KSE_NTXDESC - __x), (ops)); \
286 __n -= (KSE_NTXDESC - __x); \
287 __x = 0; \
288 } \
289 \
290 /* Now sync whatever is left. */ \
291 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
292 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
293 } while (/*CONSTCOND*/0)
294
295 #define KSE_CDRXSYNC(sc, x, ops) \
296 do { \
297 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
298 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
299 } while (/*CONSTCOND*/0)
300
301 #define KSE_INIT_RXDESC(sc, x) \
302 do { \
303 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
304 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
305 struct mbuf *__m = __rxs->rxs_mbuf; \
306 \
307 __m->m_data = __m->m_ext.ext_buf; \
308 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
309 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
310 __rxd->r0 = R0_OWN; \
311 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
312 } while (/*CONSTCOND*/0)
313
314 u_int kse_burstsize = 8; /* DMA burst length tuning knob */
315
316 #ifdef KSEDIAGNOSTIC
317 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
318 #endif
319
320 static int kse_match(device_t, cfdata_t, void *);
321 static void kse_attach(device_t, device_t, void *);
322
323 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
324 kse_match, kse_attach, NULL, NULL);
325
326 static int kse_ioctl(struct ifnet *, u_long, void *);
327 static void kse_start(struct ifnet *);
328 static void kse_watchdog(struct ifnet *);
329 static int kse_init(struct ifnet *);
330 static void kse_stop(struct ifnet *, int);
331 static void kse_reset(struct kse_softc *);
332 static void kse_set_rcvfilt(struct kse_softc *);
333 static int add_rxbuf(struct kse_softc *, int);
334 static void rxdrain(struct kse_softc *);
335 static int kse_intr(void *);
336 static void rxintr(struct kse_softc *);
337 static void txreap(struct kse_softc *);
338 static void lnkchg(struct kse_softc *);
339 static int kse_ifmedia_upd(struct ifnet *);
340 static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
341 static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
342 static void phy_tick(void *);
343 int kse_mii_readreg(device_t, int, int, uint16_t *);
344 int kse_mii_writereg(device_t, int, int, uint16_t);
345 void kse_mii_statchg(struct ifnet *);
346 #ifdef KSE_EVENT_COUNTERS
347 static void stat_tick(void *);
348 static void zerostats(struct kse_softc *);
349 #endif
350
351 static int
352 kse_match(device_t parent, cfdata_t match, void *aux)
353 {
354 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
355
356 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
357 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
358 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
359 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
360 return 1;
361
362 return 0;
363 }
364
365 static void
366 kse_attach(device_t parent, device_t self, void *aux)
367 {
368 struct kse_softc *sc = device_private(self);
369 struct pci_attach_args *pa = aux;
370 pci_chipset_tag_t pc = pa->pa_pc;
371 pci_intr_handle_t ih;
372 const char *intrstr;
373 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
374 struct mii_data * const mii = &sc->sc_mii;
375 struct ifmedia *ifm;
376 uint8_t enaddr[ETHER_ADDR_LEN];
377 bus_dma_segment_t seg;
378 int i, error, nseg;
379 char intrbuf[PCI_INTRSTR_LEN];
380
381 aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
382 PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));
383
384 if (pci_mapreg_map(pa, 0x10,
385 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
386 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
387 aprint_error_dev(self, "unable to map device registers\n");
388 return;
389 }
390
391 /* Make sure bus mastering is enabled. */
392 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
393 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
394 PCI_COMMAND_MASTER_ENABLE);
395
396 /* Power up chip if necessary. */
397 if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
398 && error != EOPNOTSUPP) {
399 aprint_error_dev(self, "cannot activate %d\n", error);
400 return;
401 }
402
403 /* Map and establish our interrupt. */
404 if (pci_intr_map(pa, &ih)) {
405 aprint_error_dev(self, "unable to map interrupt\n");
406 goto fail;
407 }
408 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
409 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
410 device_xname(self));
411 if (sc->sc_ih == NULL) {
412 aprint_error_dev(self, "unable to establish interrupt");
413 if (intrstr != NULL)
414 aprint_error(" at %s", intrstr);
415 aprint_error("\n");
416 goto fail;
417 }
418 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
419
420 sc->sc_dev = self;
421 sc->sc_dmat = pa->pa_dmat;
422 sc->sc_pc = pa->pa_pc;
423 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
424
425 /*
426 * Read the Ethernet address from the EEPROM.
427 */
428 i = CSR_READ_2(sc, MARL);
429 enaddr[5] = i;
430 enaddr[4] = i >> 8;
431 i = CSR_READ_2(sc, MARM);
432 enaddr[3] = i;
433 enaddr[2] = i >> 8;
434 i = CSR_READ_2(sc, MARH);
435 enaddr[1] = i;
436 enaddr[0] = i >> 8;
437 aprint_normal_dev(self,
438 "Ethernet address %s\n", ether_sprintf(enaddr));
439
440 /*
441 * Enable chip function.
442 */
443 CSR_WRITE_2(sc, SIDER, 1);
444
445 /*
446 * Allocate the control data structures, and create and load the
447 * DMA map for it.
448 */
449 error = bus_dmamem_alloc(sc->sc_dmat,
450 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
451 if (error != 0) {
452 aprint_error_dev(self,
453 "unable to allocate control data, error = %d\n", error);
454 goto fail_0;
455 }
456 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
457 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
458 BUS_DMA_COHERENT);
459 if (error != 0) {
460 aprint_error_dev(self,
461 "unable to map control data, error = %d\n", error);
462 goto fail_1;
463 }
464 error = bus_dmamap_create(sc->sc_dmat,
465 sizeof(struct kse_control_data), 1,
466 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
467 if (error != 0) {
468 aprint_error_dev(self,
469 "unable to create control data DMA map, "
470 "error = %d\n", error);
471 goto fail_2;
472 }
473 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
474 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
475 if (error != 0) {
476 aprint_error_dev(self,
477 "unable to load control data DMA map, error = %d\n",
478 error);
479 goto fail_3;
480 }
481 for (i = 0; i < KSE_TXQUEUELEN; i++) {
482 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
483 KSE_NTXSEGS, MCLBYTES, 0, 0,
484 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
485 aprint_error_dev(self,
486 "unable to create tx DMA map %d, error = %d\n",
487 i, error);
488 goto fail_4;
489 }
490 }
491 for (i = 0; i < KSE_NRXDESC; i++) {
492 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
493 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
494 aprint_error_dev(self,
495 "unable to create rx DMA map %d, error = %d\n",
496 i, error);
497 goto fail_5;
498 }
499 sc->sc_rxsoft[i].rxs_mbuf = NULL;
500 }
501
502 mii->mii_ifp = ifp;
503 mii->mii_readreg = kse_mii_readreg;
504 mii->mii_writereg = kse_mii_writereg;
505 mii->mii_statchg = kse_mii_statchg;
506
507 /* Initialize ifmedia structures. */
508 sc->sc_flowflags = 0;
509 if (sc->sc_chip == 0x8841) {
510 /* use port 1 builtin PHY as index 1 device */
511 sc->sc_ethercom.ec_mii = mii;
512 ifm = &mii->mii_media;
513 ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
514 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
515 MII_OFFSET_ANY, MIIF_DOPAUSE);
516 if (LIST_FIRST(&mii->mii_phys) == NULL) {
517 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
518 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
519 } else
520 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
521 } else {
522 /*
523 * pretend 100FDX w/ no alternative media selection.
524 * 8842 MAC is tied with a builtin 3 port switch. It can do
525 * 4 degree priotised rate control over either of tx/rx
526 * direction for any of ports, respectively. Tough, this
527 * driver leaves the rate unlimited intending 100Mbps maximum.
528 * 2 external ports behave in AN mode and this driver provides
529 * no mean to manipulate and see their operational details.
530 */
531 sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
532 ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
533 ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
534 ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);
535
536 aprint_normal_dev(self,
537 "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
538 }
539 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
540
541 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
542 ifp->if_softc = sc;
543 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
544 ifp->if_ioctl = kse_ioctl;
545 ifp->if_start = kse_start;
546 ifp->if_watchdog = kse_watchdog;
547 ifp->if_init = kse_init;
548 ifp->if_stop = kse_stop;
549 IFQ_SET_READY(&ifp->if_snd);
550
551 /*
552 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
553 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
554 */
555 sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
556 ifp->if_capabilities =
557 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
558 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
559 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
560
561 if_attach(ifp);
562 if_deferred_start_init(ifp, NULL);
563 ether_ifattach(ifp, enaddr);
564
565 callout_init(&sc->sc_tick_ch, 0);
566 callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
567
568 #ifdef KSE_EVENT_COUNTERS
569 int p = (sc->sc_chip == 0x8842) ? 3 : 1;
570 for (i = 0; i < p; i++) {
571 struct ksext *ee = &sc->sc_ext;
572 snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
573 "%s.%d", device_xname(sc->sc_dev), i+1);
574 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
575 NULL, ee->evcntname[i], "RxLoPriotyByte");
576 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
577 NULL, ee->evcntname[i], "RxHiPriotyByte");
578 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
579 NULL, ee->evcntname[i], "RxUndersizePkt");
580 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
581 NULL, ee->evcntname[i], "RxFragments");
582 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "RxOversize");
584 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "RxJabbers");
586 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "RxSymbolError");
588 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "RxCRCError");
590 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "RxAlignmentError");
592 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "RxControl8808Pkts");
594 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "RxPausePkts");
596 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "RxBroadcast");
598 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "RxMulticast");
600 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "RxUnicast");
602 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "Rx64Octets");
604 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
605 NULL, ee->evcntname[i], "Rx65To127Octets");
606 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
607 NULL, ee->evcntname[i], "Rx128To255Octets");
608 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
609 NULL, ee->evcntname[i], "Rx255To511Octets");
610 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
611 NULL, ee->evcntname[i], "Rx512To1023Octets");
612 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
613 NULL, ee->evcntname[i], "Rx1024To1522Octets");
614 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
615 NULL, ee->evcntname[i], "TxLoPriotyByte");
616 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
617 NULL, ee->evcntname[i], "TxHiPriotyByte");
618 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
619 NULL, ee->evcntname[i], "TxLateCollision");
620 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
621 NULL, ee->evcntname[i], "TxPausePkts");
622 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
623 NULL, ee->evcntname[i], "TxBroadcastPkts");
624 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
625 NULL, ee->evcntname[i], "TxMulticastPkts");
626 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
627 NULL, ee->evcntname[i], "TxUnicastPkts");
628 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
629 NULL, ee->evcntname[i], "TxDeferred");
630 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
631 NULL, ee->evcntname[i], "TxTotalCollision");
632 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
633 NULL, ee->evcntname[i], "TxExcessiveCollision");
634 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
635 NULL, ee->evcntname[i], "TxSingleCollision");
636 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
637 NULL, ee->evcntname[i], "TxMultipleCollision");
638 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
639 NULL, ee->evcntname[i], "TxDropPkts");
640 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
641 NULL, ee->evcntname[i], "RxDropPkts");
642 }
643 callout_init(&sc->sc_stat_ch, 0);
644 callout_setfunc(&sc->sc_stat_ch, stat_tick, sc);
645 #endif
646 return;
647
648 fail_5:
649 for (i = 0; i < KSE_NRXDESC; i++) {
650 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
651 bus_dmamap_destroy(sc->sc_dmat,
652 sc->sc_rxsoft[i].rxs_dmamap);
653 }
654 fail_4:
655 for (i = 0; i < KSE_TXQUEUELEN; i++) {
656 if (sc->sc_txsoft[i].txs_dmamap != NULL)
657 bus_dmamap_destroy(sc->sc_dmat,
658 sc->sc_txsoft[i].txs_dmamap);
659 }
660 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
661 fail_3:
662 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
663 fail_2:
664 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
665 sizeof(struct kse_control_data));
666 fail_1:
667 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
668 fail_0:
669 pci_intr_disestablish(pc, sc->sc_ih);
670 fail:
671 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
672 return;
673 }
674
675 static int
676 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
677 {
678 struct kse_softc *sc = ifp->if_softc;
679 struct ifreq *ifr = (struct ifreq *)data;
680 struct ifmedia *ifm;
681 int s, error;
682
683 s = splnet();
684
685 switch (cmd) {
686 case SIOCSIFMEDIA:
687 /* Flow control requires full-duplex mode. */
688 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
689 (ifr->ifr_media & IFM_FDX) == 0)
690 ifr->ifr_media &= ~IFM_ETH_FMASK;
691 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
692 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
693 /* We can do both TXPAUSE and RXPAUSE. */
694 ifr->ifr_media |=
695 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
696 }
697 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
698 }
699 ifm = (sc->sc_chip == 0x8841)
700 ? &sc->sc_mii.mii_media : &sc->sc_media;
701 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
702 break;
703 default:
704 error = ether_ioctl(ifp, cmd, data);
705 if (error != ENETRESET)
706 break;
707 error = 0;
708 if (cmd == SIOCSIFCAP)
709 error = (*ifp->if_init)(ifp);
710 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
711 ;
712 else if (ifp->if_flags & IFF_RUNNING) {
713 /*
714 * Multicast list has changed; set the hardware filter
715 * accordingly.
716 */
717 kse_set_rcvfilt(sc);
718 }
719 break;
720 }
721
722 splx(s);
723
724 return error;
725 }
726
727 static int
728 kse_init(struct ifnet *ifp)
729 {
730 struct kse_softc *sc = ifp->if_softc;
731 uint32_t paddr;
732 int i, error = 0;
733
734 /* cancel pending I/O */
735 kse_stop(ifp, 0);
736
737 /* reset all registers but PCI configuration */
738 kse_reset(sc);
739
740 /* craft Tx descriptor ring */
741 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
742 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
743 sc->sc_txdescs[i].t3 = paddr;
744 paddr += sizeof(struct tdes);
745 }
746 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
747 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
748 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
749 sc->sc_txfree = KSE_NTXDESC;
750 sc->sc_txnext = 0;
751
752 for (i = 0; i < KSE_TXQUEUELEN; i++)
753 sc->sc_txsoft[i].txs_mbuf = NULL;
754 sc->sc_txsfree = KSE_TXQUEUELEN;
755 sc->sc_txsnext = 0;
756 sc->sc_txsdirty = 0;
757
758 /* craft Rx descriptor ring */
759 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
760 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
761 sc->sc_rxdescs[i].r3 = paddr;
762 paddr += sizeof(struct rdes);
763 }
764 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
765 for (i = 0; i < KSE_NRXDESC; i++) {
766 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
767 if ((error = add_rxbuf(sc, i)) != 0) {
768 aprint_error_dev(sc->sc_dev,
769 "unable to allocate or map rx "
770 "buffer %d, error = %d\n",
771 i, error);
772 rxdrain(sc);
773 goto out;
774 }
775 }
776 else
777 KSE_INIT_RXDESC(sc, i);
778 }
779 sc->sc_rxptr = 0;
780
781 /* hand Tx/Rx rings to HW */
782 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
783 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
784
785 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
786 sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
787 sc->sc_t1csum = sc->sc_mcsum = 0;
788 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
789 sc->sc_rxc |= RXC_ICC;
790 sc->sc_mcsum |= M_CSUM_IPv4;
791 }
792 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
793 sc->sc_txc |= TXC_ICG;
794 sc->sc_t1csum |= T1_IPCKG;
795 }
796 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
797 sc->sc_rxc |= RXC_TCC;
798 sc->sc_mcsum |= M_CSUM_TCPv4;
799 }
800 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
801 sc->sc_txc |= TXC_TCG;
802 sc->sc_t1csum |= T1_TCPCKG;
803 }
804 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
805 sc->sc_rxc |= RXC_UCC;
806 sc->sc_mcsum |= M_CSUM_UDPv4;
807 }
808 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
809 sc->sc_txc |= TXC_UCG;
810 sc->sc_t1csum |= T1_UDPCKG;
811 }
812 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
813 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
814
815 if (sc->sc_chip == 0x8842) {
816 sc->sc_txc |= TXC_FCE;
817 sc->sc_rxc |= RXC_FCE;
818 CSR_WRITE_2(sc, SGCR3,
819 CSR_READ_2(sc, SGCR3) | CR3_USEFC);
820 }
821
822 /* accept multicast frame or run promisc mode */
823 kse_set_rcvfilt(sc);
824
825 /* set current media */
826 if (sc->sc_chip == 0x8841)
827 (void)kse_ifmedia_upd(ifp);
828
829 /* enable transmitter and receiver */
830 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
831 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
832 CSR_WRITE_4(sc, MDRSC, 1);
833
834 /* enable interrupts */
835 sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
836 if (sc->sc_chip == 0x8841)
837 sc->sc_inten |= INT_DMLCS;
838 CSR_WRITE_4(sc, INTST, ~0);
839 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
840
841 ifp->if_flags |= IFF_RUNNING;
842 ifp->if_flags &= ~IFF_OACTIVE;
843
844 if (sc->sc_chip == 0x8841) {
845 /* start one second timer */
846 callout_schedule(&sc->sc_tick_ch, hz);
847 }
848 #ifdef KSE_EVENT_COUNTERS
849 /* start statistics gather 1 minute timer. should be tunable */
850 zerostats(sc);
851 callout_schedule(&sc->sc_stat_ch, hz * 60);
852 #endif
853
854 out:
855 if (error) {
856 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
857 ifp->if_timer = 0;
858 aprint_error_dev(sc->sc_dev, "interface not running\n");
859 }
860 return error;
861 }
862
863 static void
864 kse_stop(struct ifnet *ifp, int disable)
865 {
866 struct kse_softc *sc = ifp->if_softc;
867 struct kse_txsoft *txs;
868 int i;
869
870 if (sc->sc_chip == 0x8841)
871 callout_stop(&sc->sc_tick_ch);
872 #ifdef KSE_EVENT_COUNTERS
873 callout_stop(&sc->sc_stat_ch);
874 #endif
875 sc->sc_txc &= ~TXC_TEN;
876 sc->sc_rxc &= ~RXC_REN;
877 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
878 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
879
880 for (i = 0; i < KSE_TXQUEUELEN; i++) {
881 txs = &sc->sc_txsoft[i];
882 if (txs->txs_mbuf != NULL) {
883 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
884 m_freem(txs->txs_mbuf);
885 txs->txs_mbuf = NULL;
886 }
887 }
888
889 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
890 ifp->if_timer = 0;
891
892 if (disable)
893 rxdrain(sc);
894 }
895
896 static void
897 kse_reset(struct kse_softc *sc)
898 {
899
900 /* software reset */
901 CSR_WRITE_2(sc, GRR, 1);
902 delay(1000); /* PDF does not mention the delay amount */
903 CSR_WRITE_2(sc, GRR, 0);
904
905 /* enable switch function */
906 CSR_WRITE_2(sc, SIDER, 1);
907 }
908
909 static void
910 kse_watchdog(struct ifnet *ifp)
911 {
912 struct kse_softc *sc = ifp->if_softc;
913
914 /*
915 * Since we're not interrupting every packet, sweep
916 * up before we report an error.
917 */
918 txreap(sc);
919
920 if (sc->sc_txfree != KSE_NTXDESC) {
921 aprint_error_dev(sc->sc_dev,
922 "device timeout (txfree %d txsfree %d txnext %d)\n",
923 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
924 if_statinc(ifp, if_oerrors);
925
926 /* Reset the interface. */
927 kse_init(ifp);
928 }
929 else if (ifp->if_flags & IFF_DEBUG)
930 aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");
931
932 /* Try to get more packets going. */
933 kse_start(ifp);
934 }
935
936 static void
937 kse_start(struct ifnet *ifp)
938 {
939 struct kse_softc *sc = ifp->if_softc;
940 struct mbuf *m0, *m;
941 struct kse_txsoft *txs;
942 bus_dmamap_t dmamap;
943 int error, nexttx, lasttx, ofree, seg;
944 uint32_t tdes0;
945
946 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
947 return;
948
949 /* Remember the previous number of free descriptors. */
950 ofree = sc->sc_txfree;
951
952 /*
953 * Loop through the send queue, setting up transmit descriptors
954 * until we drain the queue, or use up all available transmit
955 * descriptors.
956 */
957 for (;;) {
958 IFQ_POLL(&ifp->if_snd, m0);
959 if (m0 == NULL)
960 break;
961
962 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
963 txreap(sc);
964 if (sc->sc_txsfree == 0)
965 break;
966 }
967 txs = &sc->sc_txsoft[sc->sc_txsnext];
968 dmamap = txs->txs_dmamap;
969
970 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
971 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
972 if (error) {
973 if (error == EFBIG) {
974 aprint_error_dev(sc->sc_dev,
975 "Tx packet consumes too many "
976 "DMA segments, dropping...\n");
977 IFQ_DEQUEUE(&ifp->if_snd, m0);
978 m_freem(m0);
979 continue;
980 }
981 /* Short on resources, just stop for now. */
982 break;
983 }
984
985 if (dmamap->dm_nsegs > sc->sc_txfree) {
986 /*
987 * Not enough free descriptors to transmit this
988 * packet. We haven't committed anything yet,
989 * so just unload the DMA map, put the packet
990 * back on the queue, and punt. Notify the upper
991 * layer that there are not more slots left.
992 */
993 ifp->if_flags |= IFF_OACTIVE;
994 bus_dmamap_unload(sc->sc_dmat, dmamap);
995 break;
996 }
997
998 IFQ_DEQUEUE(&ifp->if_snd, m0);
999
1000 /*
1001 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1002 */
1003
1004 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1005 BUS_DMASYNC_PREWRITE);
1006
1007 tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1008 lasttx = -1;
1009 for (nexttx = sc->sc_txnext, seg = 0;
1010 seg < dmamap->dm_nsegs;
1011 seg++, nexttx = KSE_NEXTTX(nexttx)) {
1012 struct tdes *tdes = &sc->sc_txdescs[nexttx];
1013 /*
1014 * If this is the first descriptor we're
1015 * enqueueing, don't set the OWN bit just
1016 * yet. That could cause a race condition.
1017 * We'll do it below.
1018 */
1019 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
1020 tdes->t1 = sc->sc_t1csum
1021 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
1022 tdes->t0 = tdes0;
1023 tdes0 = T0_OWN; /* 2nd and other segments */
1024 lasttx = nexttx;
1025 }
1026 /*
1027 * Outgoing NFS mbuf must be unloaded when Tx completed.
1028 * Without T1_IC NFS mbuf is left unack'ed for excessive
1029 * time and NFS stops to proceed until kse_watchdog()
1030 * calls txreap() to reclaim the unack'ed mbuf.
1031 * It's painful to traverse every mbuf chain to determine
1032 * whether someone is waiting for Tx completion.
1033 */
1034 m = m0;
1035 do {
1036 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1037 sc->sc_txdescs[lasttx].t1 |= T1_IC;
1038 break;
1039 }
1040 } while ((m = m->m_next) != NULL);
1041
1042 /* Write deferred 1st segment T0_OWN at the final stage */
1043 sc->sc_txdescs[lasttx].t1 |= T1_LS;
1044 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
1045 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
1046 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1047 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1048
1049 /* Tell DMA start transmit */
1050 CSR_WRITE_4(sc, MDTSC, 1);
1051
1052 txs->txs_mbuf = m0;
1053 txs->txs_firstdesc = sc->sc_txnext;
1054 txs->txs_lastdesc = lasttx;
1055 txs->txs_ndesc = dmamap->dm_nsegs;
1056
1057 sc->sc_txfree -= txs->txs_ndesc;
1058 sc->sc_txnext = nexttx;
1059 sc->sc_txsfree--;
1060 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1061 /*
1062 * Pass the packet to any BPF listeners.
1063 */
1064 bpf_mtap(ifp, m0, BPF_D_OUT);
1065 }
1066
1067 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1068 /* No more slots left; notify upper layer. */
1069 ifp->if_flags |= IFF_OACTIVE;
1070 }
1071 if (sc->sc_txfree != ofree) {
1072 /* Set a watchdog timer in case the chip flakes out. */
1073 ifp->if_timer = 5;
1074 }
1075 }
1076
1077 static void
1078 kse_set_rcvfilt(struct kse_softc *sc)
1079 {
1080 struct ether_multistep step;
1081 struct ether_multi *enm;
1082 struct ethercom *ec = &sc->sc_ethercom;
1083 struct ifnet *ifp = &ec->ec_if;
1084 uint32_t crc, mchash[2];
1085 int i;
1086
1087 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);
1088
1089 /* clear perfect match filter and prepare mcast hash table */
1090 for (i = 0; i < 16; i++)
1091 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
1092 crc = mchash[0] = mchash[1] = 0;
1093
1094 ETHER_LOCK(ec);
1095 if (ifp->if_flags & IFF_PROMISC) {
1096 ec->ec_flags |= ETHER_F_ALLMULTI;
1097 ETHER_UNLOCK(ec);
1098 /* run promisc. mode */
1099 sc->sc_rxc |= RXC_RA;
1100 goto update;
1101 }
1102 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1103 ETHER_FIRST_MULTI(step, ec, enm);
1104 i = 0;
1105 while (enm != NULL) {
1106 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1107 /*
1108 * We must listen to a range of multicast addresses.
1109 * For now, just accept all multicasts, rather than
1110 * trying to set only those filter bits needed to match
1111 * the range. (At this time, the only use of address
1112 * ranges is for IP multicast routing, for which the
1113 * range is big enough to require all bits set.)
1114 */
1115 ec->ec_flags |= ETHER_F_ALLMULTI;
1116 ETHER_UNLOCK(ec);
1117 /* accept all multicast */
1118 sc->sc_rxc |= RXC_RM;
1119 goto update;
1120 }
1121 #if KSE_MCASTDEBUG == 1
1122 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1123 #endif
1124 if (i < 16) {
1125 /* use 16 additional MAC addr to accept mcast */
1126 uint32_t addr;
1127 uint8_t *ep = enm->enm_addrlo;
1128 addr = (ep[3] << 24) | (ep[2] << 16)
1129 | (ep[1] << 8) | ep[0];
1130 CSR_WRITE_4(sc, MAAL0 + i*8, addr);
1131 addr = (ep[5] << 8) | ep[4];
1132 CSR_WRITE_4(sc, MAAH0 + i*8, addr | (1U << 31));
1133 } else {
1134 /* use hash table when too many */
1135 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1136 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1137 }
1138 ETHER_NEXT_MULTI(step, enm);
1139 i++;
1140 }
1141 ETHER_UNLOCK(ec);
1142
1143 if (crc)
1144 sc->sc_rxc |= RXC_MHTE;
1145 CSR_WRITE_4(sc, MTR0, mchash[0]);
1146 CSR_WRITE_4(sc, MTR1, mchash[1]);
1147 update:
1148 /* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
1149 return;
1150 }
1151
1152 static int
1153 add_rxbuf(struct kse_softc *sc, int idx)
1154 {
1155 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1156 struct mbuf *m;
1157 int error;
1158
1159 MGETHDR(m, M_DONTWAIT, MT_DATA);
1160 if (m == NULL)
1161 return ENOBUFS;
1162
1163 MCLGET(m, M_DONTWAIT);
1164 if ((m->m_flags & M_EXT) == 0) {
1165 m_freem(m);
1166 return ENOBUFS;
1167 }
1168
1169 if (rxs->rxs_mbuf != NULL)
1170 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1171
1172 rxs->rxs_mbuf = m;
1173
1174 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1175 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1176 if (error) {
1177 aprint_error_dev(sc->sc_dev,
1178 "can't load rx DMA map %d, error = %d\n", idx, error);
1179 panic("kse_add_rxbuf");
1180 }
1181
1182 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1183 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1184
1185 KSE_INIT_RXDESC(sc, idx);
1186
1187 return 0;
1188 }
1189
1190 static void
1191 rxdrain(struct kse_softc *sc)
1192 {
1193 struct kse_rxsoft *rxs;
1194 int i;
1195
1196 for (i = 0; i < KSE_NRXDESC; i++) {
1197 rxs = &sc->sc_rxsoft[i];
1198 if (rxs->rxs_mbuf != NULL) {
1199 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1200 m_freem(rxs->rxs_mbuf);
1201 rxs->rxs_mbuf = NULL;
1202 }
1203 }
1204 }
1205
1206 static int
1207 kse_intr(void *arg)
1208 {
1209 struct kse_softc *sc = arg;
1210 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1211 uint32_t isr;
1212
1213 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1214 return 0;
1215
1216 if (isr & INT_DMRS)
1217 rxintr(sc);
1218 if (isr & INT_DMTS)
1219 txreap(sc);
1220 if (isr & INT_DMLCS)
1221 lnkchg(sc);
1222 if (isr & INT_DMRBUS)
1223 aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");
1224
1225 CSR_WRITE_4(sc, INTST, isr);
1226
1227 if (ifp->if_flags & IFF_RUNNING)
1228 if_schedule_deferred_start(ifp);
1229
1230 return 1;
1231 }
1232
1233 static void
1234 rxintr(struct kse_softc *sc)
1235 {
1236 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 struct kse_rxsoft *rxs;
1238 struct mbuf *m;
1239 uint32_t rxstat;
1240 int i, len;
1241
1242 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1243 rxs = &sc->sc_rxsoft[i];
1244
1245 KSE_CDRXSYNC(sc, i,
1246 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1247
1248 rxstat = sc->sc_rxdescs[i].r0;
1249
1250 if (rxstat & R0_OWN) /* desc is left empty */
1251 break;
1252
1253 /* R0_FS | R0_LS must have been marked for this desc */
1254
1255 if (rxstat & R0_ES) {
1256 if_statinc(ifp, if_ierrors);
1257 #define PRINTERR(bit, str) \
1258 if (rxstat & (bit)) \
1259 aprint_error_dev(sc->sc_dev, \
1260 "%s\n", str)
1261 PRINTERR(R0_TL, "frame too long");
1262 PRINTERR(R0_RF, "runt frame");
1263 PRINTERR(R0_CE, "bad FCS");
1264 #undef PRINTERR
1265 KSE_INIT_RXDESC(sc, i);
1266 continue;
1267 }
1268
1269 /* HW errata; frame might be too small or too large */
1270
1271 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1272 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1273
1274 len = rxstat & R0_FL_MASK;
1275 len -= ETHER_CRC_LEN; /* Trim CRC off */
1276 m = rxs->rxs_mbuf;
1277
1278 if (add_rxbuf(sc, i) != 0) {
1279 if_statinc(ifp, if_ierrors);
1280 KSE_INIT_RXDESC(sc, i);
1281 bus_dmamap_sync(sc->sc_dmat,
1282 rxs->rxs_dmamap, 0,
1283 rxs->rxs_dmamap->dm_mapsize,
1284 BUS_DMASYNC_PREREAD);
1285 continue;
1286 }
1287
1288 m_set_rcvif(m, ifp);
1289 m->m_pkthdr.len = m->m_len = len;
1290
1291 if (sc->sc_mcsum) {
1292 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1293 if (rxstat & R0_IPE)
1294 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1295 if (rxstat & (R0_TCPE | R0_UDPE))
1296 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1297 }
1298 if_percpuq_enqueue(ifp->if_percpuq, m);
1299 #ifdef KSEDIAGNOSTIC
1300 if (kse_monitor_rxintr > 0) {
1301 aprint_error_dev(sc->sc_dev,
1302 "m stat %x data %p len %d\n",
1303 rxstat, m->m_data, m->m_len);
1304 }
1305 #endif
1306 }
1307 sc->sc_rxptr = i;
1308 }
1309
1310 static void
1311 txreap(struct kse_softc *sc)
1312 {
1313 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1314 struct kse_txsoft *txs;
1315 uint32_t txstat;
1316 int i;
1317
1318 ifp->if_flags &= ~IFF_OACTIVE;
1319
1320 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1321 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1322 txs = &sc->sc_txsoft[i];
1323
1324 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1325 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1326
1327 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1328
1329 if (txstat & T0_OWN) /* desc is still in use */
1330 break;
1331
1332 /* There is no way to tell transmission status per frame */
1333
1334 if_statinc(ifp, if_opackets);
1335
1336 sc->sc_txfree += txs->txs_ndesc;
1337 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1338 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1339 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1340 m_freem(txs->txs_mbuf);
1341 txs->txs_mbuf = NULL;
1342 }
1343 sc->sc_txsdirty = i;
1344 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1345 ifp->if_timer = 0;
1346 }
1347
1348 static void
1349 lnkchg(struct kse_softc *sc)
1350 {
1351 struct ifmediareq ifmr;
1352
1353 #if KSE_LINKDEBUG == 1
1354 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1355 printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
1356 #endif
1357 kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1358 }
1359
1360 static int
1361 kse_ifmedia_upd(struct ifnet *ifp)
1362 {
1363 struct kse_softc *sc = ifp->if_softc;
1364 struct ifmedia *ifm = &sc->sc_mii.mii_media;
1365 uint16_t p1cr4;
1366
1367 p1cr4 = 0;
1368 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
1369 p1cr4 |= PxCR_STARTNEG; /* restart AN */
1370 p1cr4 |= PxCR_AUTOEN; /* enable AN */
1371 p1cr4 |= PxCR_USEFC; /* advertise flow control pause */
1372 p1cr4 |= 0xf; /* adv. 100FDX,100HDX,10FDX,10HDX */
1373 } else {
1374 if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
1375 p1cr4 |= PxCR_SPD100;
1376 if (ifm->ifm_media & IFM_FDX)
1377 p1cr4 |= PxCR_USEFDX;
1378 }
1379 CSR_WRITE_2(sc, P1CR4, p1cr4);
1380 #if KSE_LINKDEBUG == 1
1381 printf("P1CR4: %04x\n", p1cr4);
1382 #endif
1383 return 0;
1384 }
1385
1386 static void
1387 kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1388 {
1389 struct kse_softc *sc = ifp->if_softc;
1390 struct mii_data *mii = &sc->sc_mii;
1391
1392 mii_pollstat(mii);
1393 ifmr->ifm_status = mii->mii_media_status;
1394 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
1395 sc->sc_flowflags;
1396 }
1397
1398 static void
1399 nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1400 {
1401 struct kse_softc *sc = ifp->if_softc;
1402 struct ifmedia *ifm = &sc->sc_media;
1403
1404 #if KSE_LINKDEBUG == 2
1405 printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
1406 #endif
1407
1408 /* 8842 MAC pretends 100FDX all the time */
1409 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
1410 ifmr->ifm_active = ifm->ifm_cur->ifm_media |
1411 IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
1412 }
1413
1414 static void
1415 phy_tick(void *arg)
1416 {
1417 struct kse_softc *sc = arg;
1418 struct mii_data *mii = &sc->sc_mii;
1419 int s;
1420
1421 s = splnet();
1422 mii_tick(mii);
1423 splx(s);
1424
1425 callout_schedule(&sc->sc_tick_ch, hz);
1426 }
1427
1428 static const uint16_t phy1csr[] = {
1429 /* 0 BMCR */ 0x4d0,
1430 /* 1 BMSR */ 0x4d2,
1431 /* 2 PHYID1 */ 0x4d6, /* 0x0022 - PHY1HR */
1432 /* 3 PHYID2 */ 0x4d4, /* 0x1430 - PHY1LR */
1433 /* 4 ANAR */ 0x4d8,
1434 /* 5 ANLPAR */ 0x4da,
1435 };
1436
1437 int
1438 kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1439 {
1440 struct kse_softc *sc = device_private(self);
1441
1442 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1443 return EINVAL;
1444 *val = CSR_READ_2(sc, phy1csr[reg]);
1445 return 0;
1446 }
1447
1448 int
1449 kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1450 {
1451 struct kse_softc *sc = device_private(self);
1452
1453 if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
1454 return EINVAL;
1455 CSR_WRITE_2(sc, phy1csr[reg], val);
1456 return 0;
1457 }
1458
1459 void
1460 kse_mii_statchg(struct ifnet *ifp)
1461 {
1462 struct kse_softc *sc = ifp->if_softc;
1463 struct mii_data *mii = &sc->sc_mii;
1464
1465 #if KSE_LINKDEBUG == 1
1466 /* decode P1SR register value */
1467 uint16_t p1sr = CSR_READ_2(sc, P1SR);
1468 printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
1469 if (p1sr & PxSR_FDX)
1470 printf(",full-duplex");
1471 if (p1sr & PxSR_RXFLOW)
1472 printf(",rxpause");
1473 if (p1sr & PxSR_TXFLOW)
1474 printf(",txpause");
1475 printf("\n");
1476 /* show resolved mii(4) parameters to compare against above */
1477 printf("MII spd%d",
1478 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
1479 if (mii->mii_media_active & IFM_FDX)
1480 printf(",full-duplex");
1481 if (mii->mii_media_active & IFM_FLOW) {
1482 printf(",flowcontrol");
1483 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
1484 printf(",rxpause");
1485 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
1486 printf(",txpause");
1487 }
1488 printf("\n");
1489 #endif
1490 /* Get flow control negotiation result. */
1491 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1492 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1493 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1494
1495 /* Adjust MAC PAUSE flow control. */
1496 if ((mii->mii_media_active & IFM_FDX)
1497 && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
1498 sc->sc_txc |= TXC_FCE;
1499 else
1500 sc->sc_txc &= ~TXC_FCE;
1501 if ((mii->mii_media_active & IFM_FDX)
1502 && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
1503 sc->sc_rxc |= RXC_FCE;
1504 else
1505 sc->sc_rxc &= ~RXC_FCE;
1506 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
1507 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
1508 #if KSE_LINKDEBUG == 1
1509 printf("%ctxfce, %crxfce\n",
1510 (sc->sc_txc & TXC_FCE) ? '+' : '-',
1511 (sc->sc_rxc & RXC_FCE) ? '+' : '-');
1512 #endif
1513 }
1514
1515 #ifdef KSE_EVENT_COUNTERS
1516 static void
1517 stat_tick(void *arg)
1518 {
1519 struct kse_softc *sc = arg;
1520 struct ksext *ee = &sc->sc_ext;
1521 int nport, p, i, val;
1522
1523 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1524 for (p = 0; p < nport; p++) {
1525 for (i = 0; i < 32; i++) {
1526 val = 0x1c00 | (p * 0x20 + i);
1527 CSR_WRITE_2(sc, IACR, val);
1528 do {
1529 val = CSR_READ_2(sc, IADR5) << 16;
1530 } while ((val & (1U << 30)) == 0);
1531 if (val & (1U << 31)) {
1532 (void)CSR_READ_2(sc, IADR4);
1533 val = 0x3fffffff; /* has made overflow */
1534 }
1535 else {
1536 val &= 0x3fff0000; /* 29:16 */
1537 val |= CSR_READ_2(sc, IADR4); /* 15:0 */
1538 }
1539 ee->pev[p][i].ev_count += val; /* i (0-31) */
1540 }
1541 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1542 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1543 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1544 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1545 }
1546 callout_schedule(&sc->sc_stat_ch, hz * 60);
1547 }
1548
1549 static void
1550 zerostats(struct kse_softc *sc)
1551 {
1552 struct ksext *ee = &sc->sc_ext;
1553 int nport, p, i, val;
1554
1555 /* Make sure all the HW counters get zero */
1556 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1557 for (p = 0; p < nport; p++) {
1558 for (i = 0; i < 31; i++) {
1559 val = 0x1c00 | (p * 0x20 + i);
1560 CSR_WRITE_2(sc, IACR, val);
1561 do {
1562 val = CSR_READ_2(sc, IADR5) << 16;
1563 } while ((val & (1U << 30)) == 0);
1564 (void)CSR_READ_2(sc, IADR4);
1565 ee->pev[p][i].ev_count = 0;
1566 }
1567 }
1568 }
1569 #endif
1570