if_kse.c revision 1.6 1 /* $NetBSD: if_kse.c,v 1.6 2007/10/14 11:49:39 nisimura Exp $ */
2
3 /*
4 * Copyright (c) 2006 Tohru Nishimura
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Tohru Nishimura.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.6 2007/10/14 11:49:39 nisimura Exp $");
34
35 #include "bpfilter.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47
48 #include <machine/endian.h>
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define INTEN 0x028 /* interrupt enable */
81 #define INTST 0x02c /* interrupt status */
82 #define MTR0 0x100 /* multicast table 31:0 */
83 #define MTR1 0x104 /* multicast table 63:32 */
84 #define MARL 0x200 /* MAC address low */
85 #define MARM 0x202 /* MAC address middle */
86 #define MARH 0x204 /* MAC address high */
87 #define GRR 0x216 /* global reset */
88 #define CIDR 0x400 /* chip ID and enable */
89 #define CGCR 0x40a /* chip global control */
90 #define P1CR4 0x512 /* port 1 control 4 */
91 #define P1SR 0x514 /* port 1 status */
92
93 #define TXC_BS_MSK 0x3f000000 /* burst size */
94 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
95 #define TXC_UCG (1U<<18) /* generate UDP checksum */
96 #define TXC_TCG (1U<<17) /* generate TCP checksum */
97 #define TXC_ICG (1U<<16) /* generate IP checksum */
98 #define TXC_FCE (1U<<9) /* enable flowcontrol */
99 #define TXC_EP (1U<<2) /* enable automatic padding */
100 #define TXC_AC (1U<<1) /* add CRC to frame */
101 #define TXC_TEN (1) /* enable DMA to run */
102
103 #define RXC_BS_MSK 0x3f000000 /* burst size */
104 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
105 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
106 #define RXC_UCC (1U<<18) /* run UDP checksum */
107 #define RXC_TCC (1U<<17) /* run TDP checksum */
108 #define RXC_ICC (1U<<16) /* run IP checksum */
109 #define RXC_FCE (1U<<9) /* enable flowcontrol */
110 #define RXC_RB (1U<<6) /* receive broadcast frame */
111 #define RXC_RM (1U<<5) /* receive multicast frame */
112 #define RXC_RU (1U<<4) /* receive unicast frame */
113 #define RXC_RE (1U<<3) /* accept error frame */
114 #define RXC_RA (1U<<2) /* receive all frame */
115 #define RXC_MHTE (1U<<1) /* use multicast hash table */
116 #define RXC_REN (1) /* enable DMA to run */
117
118 #define INT_DMLCS (1U<<31) /* link status change */
119 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
120 #define INT_DMRS (1U<<29) /* frame was received */
121 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
122
123 #define T0_OWN (1U<<31) /* desc is ready to Tx */
124
125 #define R0_OWN (1U<<31) /* desc is empty */
126 #define R0_FS (1U<<30) /* first segment of frame */
127 #define R0_LS (1U<<29) /* last segment of frame */
128 #define R0_IPE (1U<<28) /* IP checksum error */
129 #define R0_TCPE (1U<<27) /* TCP checksum error */
130 #define R0_UDPE (1U<<26) /* UDP checksum error */
131 #define R0_ES (1U<<25) /* error summary */
132 #define R0_MF (1U<<24) /* multicast frame */
133 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
134 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
135 #define R0_RE (1U<<19) /* MII reported error */
136 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
137 #define R0_RF (1U<<17) /* damaged runt frame */
138 #define R0_CE (1U<<16) /* CRC error */
139 #define R0_FT (1U<<15) /* frame type */
140 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
141
142 #define T1_IC (1U<<31) /* post interrupt on complete */
143 #define T1_FS (1U<<30) /* first segment of frame */
144 #define T1_LS (1U<<29) /* last segment of frame */
145 #define T1_IPCKG (1U<<28) /* generate IP checksum */
146 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
147 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
148 #define T1_TER (1U<<25) /* end of ring */
149 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
150 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
151
152 #define R1_RER (1U<<25) /* end of ring */
153 #define R1_RBS_MASK 0x7fd /* segment size 10:0 */
154
155 #define KSE_NTXSEGS 16
156 #define KSE_TXQUEUELEN 64
157 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
158 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
159 #define KSE_NTXDESC 256
160 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
161 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
162 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
163
164 #define KSE_NRXDESC 64
165 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
166 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
167
168 struct tdes {
169 uint32_t t0, t1, t2, t3;
170 };
171
172 struct rdes {
173 uint32_t r0, r1, r2, r3;
174 };
175
176 struct kse_control_data {
177 struct tdes kcd_txdescs[KSE_NTXDESC];
178 struct rdes kcd_rxdescs[KSE_NRXDESC];
179 };
180 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
181 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
182 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
183
184 struct kse_txsoft {
185 struct mbuf *txs_mbuf; /* head of our mbuf chain */
186 bus_dmamap_t txs_dmamap; /* our DMA map */
187 int txs_firstdesc; /* first descriptor in packet */
188 int txs_lastdesc; /* last descriptor in packet */
189 int txs_ndesc; /* # of descriptors used */
190 };
191
192 struct kse_rxsoft {
193 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
194 bus_dmamap_t rxs_dmamap; /* our DMA map */
195 };
196
197 struct kse_softc {
198 struct device sc_dev; /* generic device information */
199 bus_space_tag_t sc_st; /* bus space tag */
200 bus_space_handle_t sc_sh; /* bus space handle */
201 bus_dma_tag_t sc_dmat; /* bus DMA tag */
202 struct ethercom sc_ethercom; /* Ethernet common data */
203 void *sc_ih; /* interrupt cookie */
204
205 struct ifmedia sc_media; /* ifmedia information */
206 int sc_media_status; /* PHY */
207 int sc_media_active; /* PHY */
208 callout_t sc_callout; /* tick callout */
209
210 bus_dmamap_t sc_cddmamap; /* control data DMA map */
211 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
212
213 struct kse_control_data *sc_control_data;
214 #define sc_txdescs sc_control_data->kcd_txdescs
215 #define sc_rxdescs sc_control_data->kcd_rxdescs
216
217 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
218 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
219 int sc_txfree; /* number of free Tx descriptors */
220 int sc_txnext; /* next ready Tx descriptor */
221 int sc_txsfree; /* number of free Tx jobs */
222 int sc_txsnext; /* next ready Tx job */
223 int sc_txsdirty; /* dirty Tx jobs */
224 int sc_rxptr; /* next ready Rx descriptor/descsoft */
225
226 uint32_t sc_txc, sc_rxc;
227 uint32_t sc_t1csum;
228 int sc_mcsum;
229 uint32_t sc_chip;
230 };
231
232 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
233 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
234
235 #define KSE_CDTXSYNC(sc, x, n, ops) \
236 do { \
237 int __x, __n; \
238 \
239 __x = (x); \
240 __n = (n); \
241 \
242 /* If it will wrap around, sync to the end of the ring. */ \
243 if ((__x + __n) > KSE_NTXDESC) { \
244 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
245 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
246 (KSE_NTXDESC - __x), (ops)); \
247 __n -= (KSE_NTXDESC - __x); \
248 __x = 0; \
249 } \
250 \
251 /* Now sync whatever is left. */ \
252 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
253 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
254 } while (/*CONSTCOND*/0)
255
256 #define KSE_CDRXSYNC(sc, x, ops) \
257 do { \
258 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
259 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
260 } while (/*CONSTCOND*/0)
261
262 #define KSE_INIT_RXDESC(sc, x) \
263 do { \
264 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
265 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
266 struct mbuf *__m = __rxs->rxs_mbuf; \
267 \
268 __m->m_data = __m->m_ext.ext_buf; \
269 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
270 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
271 __rxd->r0 = R0_OWN; \
272 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (/*CONSTCOND*/0)
274
275 u_int kse_burstsize = 16; /* DMA burst length tuning knob */
276
277 #ifdef KSEDIAGNOSTIC
278 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
279 #endif
280
281 static int kse_match(struct device *, struct cfdata *, void *);
282 static void kse_attach(struct device *, struct device *, void *);
283
284 CFATTACH_DECL(kse, sizeof(struct kse_softc),
285 kse_match, kse_attach, NULL, NULL);
286
287 static int kse_ioctl(struct ifnet *, u_long, void *);
288 static void kse_start(struct ifnet *);
289 static void kse_watchdog(struct ifnet *);
290 static int kse_init(struct ifnet *);
291 static void kse_stop(struct ifnet *, int);
292 static void kse_reset(struct kse_softc *);
293 static void kse_set_filter(struct kse_softc *);
294 static int add_rxbuf(struct kse_softc *, int);
295 static void rxdrain(struct kse_softc *);
296 static int kse_intr(void *);
297 static void rxintr(struct kse_softc *);
298 static void txreap(struct kse_softc *);
299 static void lnkchg(struct kse_softc *);
300 static int ifmedia_upd(struct ifnet *);
301 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
302 static void phy_tick(void *);
303
304 static int
305 kse_match(struct device *parent, struct cfdata *match, void *aux)
306 {
307 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
308
309 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
310 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
311 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
312 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
313 return 1;
314
315 return 0;
316 }
317
318 static void
319 kse_attach(struct device *parent, struct device *self, void *aux)
320 {
321 struct kse_softc *sc = (struct kse_softc *)self;
322 struct pci_attach_args *pa = aux;
323 pci_chipset_tag_t pc = pa->pa_pc;
324 pci_intr_handle_t ih;
325 const char *intrstr;
326 struct ifnet *ifp;
327 uint8_t enaddr[ETHER_ADDR_LEN];
328 bus_dma_segment_t seg;
329 int error, i, nseg;
330 pcireg_t pmode;
331 int pmreg;
332
333 if (pci_mapreg_map(pa, 0x10,
334 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
335 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
336 printf(": unable to map device registers\n");
337 return;
338 }
339
340 sc->sc_dmat = pa->pa_dmat;
341
342 /* Make sure bus mastering is enabled. */
343 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
344 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
345 PCI_COMMAND_MASTER_ENABLE);
346
347 /* Get it out of power save mode, if needed. */
348 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
349 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
350 PCI_PMCSR_STATE_MASK;
351 if (pmode == PCI_PMCSR_STATE_D3) {
352 /*
353 * The card has lost all configuration data in
354 * this state, so punt.
355 */
356 printf("%s: unable to wake from power state D3\n",
357 sc->sc_dev.dv_xname);
358 return;
359 }
360 if (pmode != PCI_PMCSR_STATE_D0) {
361 printf("%s: waking up from power date D%d\n",
362 sc->sc_dev.dv_xname, pmode);
363 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
364 PCI_PMCSR_STATE_D0);
365 }
366 }
367
368 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
369 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
370 sc->sc_chip, PCI_REVISION(pa->pa_class));
371
372 /*
373 * Read the Ethernet address from the EEPROM.
374 */
375 i = CSR_READ_2(sc, MARL);
376 enaddr[5] = i; enaddr[4] = i >> 8;
377 i = CSR_READ_2(sc, MARM);
378 enaddr[3] = i; enaddr[2] = i >> 8;
379 i = CSR_READ_2(sc, MARH);
380 enaddr[1] = i; enaddr[0] = i >> 8;
381 printf("%s: Ethernet address: %s\n",
382 sc->sc_dev.dv_xname, ether_sprintf(enaddr));
383
384 /*
385 * Enable chip function.
386 */
387 CSR_WRITE_2(sc, CIDR, 1);
388
389 /*
390 * Map and establish our interrupt.
391 */
392 if (pci_intr_map(pa, &ih)) {
393 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
394 return;
395 }
396 intrstr = pci_intr_string(pc, ih);
397 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
398 if (sc->sc_ih == NULL) {
399 printf("%s: unable to establish interrupt",
400 sc->sc_dev.dv_xname);
401 if (intrstr != NULL)
402 printf(" at %s", intrstr);
403 printf("\n");
404 return;
405 }
406 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
407
408 /*
409 * Allocate the control data structures, and create and load the
410 * DMA map for it.
411 */
412 error = bus_dmamem_alloc(sc->sc_dmat,
413 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
414 if (error != 0) {
415 printf("%s: unable to allocate control data, error = %d\n",
416 sc->sc_dev.dv_xname, error);
417 goto fail_0;
418 }
419 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
420 sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
421 BUS_DMA_COHERENT);
422 if (error != 0) {
423 printf("%s: unable to map control data, error = %d\n",
424 sc->sc_dev.dv_xname, error);
425 goto fail_1;
426 }
427 error = bus_dmamap_create(sc->sc_dmat,
428 sizeof(struct kse_control_data), 1,
429 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
430 if (error != 0) {
431 printf("%s: unable to create control data DMA map, "
432 "error = %d\n", sc->sc_dev.dv_xname, error);
433 goto fail_2;
434 }
435 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
436 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
437 if (error != 0) {
438 printf("%s: unable to load control data DMA map, error = %d\n",
439 sc->sc_dev.dv_xname, error);
440 goto fail_3;
441 }
442 for (i = 0; i < KSE_TXQUEUELEN; i++) {
443 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
444 KSE_NTXSEGS, MCLBYTES, 0, 0,
445 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
446 printf("%s: unable to create tx DMA map %d, "
447 "error = %d\n", sc->sc_dev.dv_xname, i, error);
448 goto fail_4;
449 }
450 }
451 for (i = 0; i < KSE_NRXDESC; i++) {
452 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
453 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
454 printf("%s: unable to create rx DMA map %d, "
455 "error = %d\n", sc->sc_dev.dv_xname, i, error);
456 goto fail_5;
457 }
458 sc->sc_rxsoft[i].rxs_mbuf = NULL;
459 }
460
461 callout_init(&sc->sc_callout, 0);
462
463 ifmedia_init(&sc->sc_media, 0, ifmedia_upd, ifmedia_sts);
464 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
465 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
466 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
467 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
468 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
469 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
470
471 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
472 sc->sc_dev.dv_xname);
473
474 ifp = &sc->sc_ethercom.ec_if;
475 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
476 ifp->if_softc = sc;
477 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478 ifp->if_ioctl = kse_ioctl;
479 ifp->if_start = kse_start;
480 ifp->if_watchdog = kse_watchdog;
481 ifp->if_init = kse_init;
482 ifp->if_stop = kse_stop;
483 IFQ_SET_READY(&ifp->if_snd);
484
485 /*
486 * KSZ8842 can handle 802.1Q VLAN-sized frames,
487 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
488 */
489 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
490 ifp->if_capabilities |=
491 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
492 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
493 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
494
495 if_attach(ifp);
496 ether_ifattach(ifp, enaddr);
497 return;
498
499 fail_5:
500 for (i = 0; i < KSE_NRXDESC; i++) {
501 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
502 bus_dmamap_destroy(sc->sc_dmat,
503 sc->sc_rxsoft[i].rxs_dmamap);
504 }
505 fail_4:
506 for (i = 0; i < KSE_TXQUEUELEN; i++) {
507 if (sc->sc_txsoft[i].txs_dmamap != NULL)
508 bus_dmamap_destroy(sc->sc_dmat,
509 sc->sc_txsoft[i].txs_dmamap);
510 }
511 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
512 fail_3:
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 fail_2:
515 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
516 sizeof(struct kse_control_data));
517 fail_1:
518 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
519 fail_0:
520 return;
521 }
522
523 static int
524 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
525 {
526 struct kse_softc *sc = ifp->if_softc;
527 struct ifreq *ifr = (struct ifreq *)data;
528 int s, error;
529
530 s = splnet();
531
532 switch (cmd) {
533 case SIOCSIFMEDIA:
534 case SIOCGIFMEDIA:
535 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
536 break;
537
538 default:
539 error = ether_ioctl(ifp, cmd, data);
540 if (cmd == ENETRESET) {
541 /*
542 * Multicast list has changed; set the hardware filter
543 * accordingly.
544 */
545 if (ifp->if_flags & IFF_RUNNING)
546 kse_set_filter(sc);
547 error = 0;
548 }
549 break;
550 }
551
552 kse_start(ifp);
553
554 splx(s);
555 return error;
556 }
557
558 #define KSE_INTRS (INT_DMLCS|INT_DMTS|INT_DMRS|INT_DMRBUS)
559
560 static int
561 kse_init(struct ifnet *ifp)
562 {
563 struct kse_softc *sc = ifp->if_softc;
564 uint32_t paddr;
565 int i, error = 0;
566
567 /* cancel pending I/O */
568 kse_stop(ifp, 0);
569
570 /* reset all registers but PCI configuration */
571 kse_reset(sc);
572
573 /* craft Tx descriptor ring */
574 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
575 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
576 sc->sc_txdescs[i].t3 = paddr;
577 paddr += sizeof(struct tdes);
578 }
579 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
580 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
581 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
582 sc->sc_txfree = KSE_NTXDESC;
583 sc->sc_txnext = 0;
584
585 for (i = 0; i < KSE_TXQUEUELEN; i++)
586 sc->sc_txsoft[i].txs_mbuf = NULL;
587 sc->sc_txsfree = KSE_TXQUEUELEN;
588 sc->sc_txsnext = 0;
589 sc->sc_txsdirty = 0;
590
591 /* craft Rx descriptor ring */
592 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
593 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
594 sc->sc_rxdescs[i].r3 = paddr;
595 paddr += sizeof(struct rdes);
596 }
597 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
598 for (i = 0; i < KSE_NRXDESC; i++) {
599 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
600 if ((error = add_rxbuf(sc, i)) != 0) {
601 printf("%s: unable to allocate or map rx "
602 "buffer %d, error = %d\n",
603 sc->sc_dev.dv_xname, i, error);
604 rxdrain(sc);
605 goto out;
606 }
607 }
608 else
609 KSE_INIT_RXDESC(sc, i);
610 }
611 sc->sc_rxptr = 0;
612
613 /* hand Tx/Rx rings to HW */
614 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
615 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
616
617 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
618 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
619 if (ifp->if_flags & IFF_PROMISC)
620 sc->sc_rxc |= RXC_RA;
621 if (ifp->if_flags & IFF_BROADCAST)
622 sc->sc_rxc |= RXC_RB;
623 sc->sc_t1csum = sc->sc_mcsum = 0;
624 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
625 sc->sc_rxc |= RXC_ICC;
626 sc->sc_mcsum |= M_CSUM_IPv4;
627 }
628 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
629 sc->sc_txc |= TXC_ICG;
630 sc->sc_t1csum |= T1_IPCKG;
631 }
632 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
633 sc->sc_rxc |= RXC_TCC;
634 sc->sc_mcsum |= M_CSUM_TCPv4;
635 }
636 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
637 sc->sc_txc |= TXC_TCG;
638 sc->sc_t1csum |= T1_TCPCKG;
639 }
640 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
641 sc->sc_rxc |= RXC_UCC;
642 sc->sc_mcsum |= M_CSUM_UDPv4;
643 }
644 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
645 sc->sc_txc |= TXC_UCG;
646 sc->sc_t1csum |= T1_UDPCKG;
647 }
648 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
649 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
650
651 /* build multicast hash filter if necessary */
652 kse_set_filter(sc);
653
654 /* set current media */
655 (void)ifmedia_upd(ifp);
656
657 /* enable transmitter and receiver */
658 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
659 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
660 CSR_WRITE_4(sc, MDRSC, 1);
661
662 /* enable interrupts */
663 CSR_WRITE_4(sc, INTST, ~0);
664 CSR_WRITE_4(sc, INTEN, KSE_INTRS);
665
666 ifp->if_flags |= IFF_RUNNING;
667 ifp->if_flags &= ~IFF_OACTIVE;
668
669 /* start one second timer */
670 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
671
672 out:
673 if (error) {
674 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
675 ifp->if_timer = 0;
676 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
677 }
678 return error;
679 }
680
681 static void
682 kse_stop(struct ifnet *ifp, int disable)
683 {
684 struct kse_softc *sc = ifp->if_softc;
685 struct kse_txsoft *txs;
686 int i;
687
688 callout_stop(&sc->sc_callout);
689
690 sc->sc_txc &= ~TXC_TEN;
691 sc->sc_rxc &= ~RXC_REN;
692 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
693 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
694
695 for (i = 0; i < KSE_TXQUEUELEN; i++) {
696 txs = &sc->sc_txsoft[i];
697 if (txs->txs_mbuf != NULL) {
698 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
699 m_freem(txs->txs_mbuf);
700 txs->txs_mbuf = NULL;
701 }
702 }
703
704 if (disable)
705 rxdrain(sc);
706
707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
708 ifp->if_timer = 0;
709 }
710
711 static void
712 kse_reset(struct kse_softc *sc)
713 {
714
715 CSR_WRITE_2(sc, GRR, 1);
716 delay(1000); /* PDF does not mention the delay amount */
717 CSR_WRITE_2(sc, GRR, 0);
718
719 CSR_WRITE_2(sc, CIDR, 1);
720 }
721
722 static void
723 kse_watchdog(struct ifnet *ifp)
724 {
725 struct kse_softc *sc = ifp->if_softc;
726
727 /*
728 * Since we're not interrupting every packet, sweep
729 * up before we report an error.
730 */
731 txreap(sc);
732
733 if (sc->sc_txfree != KSE_NTXDESC) {
734 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
735 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
736 sc->sc_txnext);
737 ifp->if_oerrors++;
738
739 /* Reset the interface. */
740 kse_init(ifp);
741 }
742 else if (ifp->if_flags & IFF_DEBUG)
743 printf("%s: recovered from device timeout\n",
744 sc->sc_dev.dv_xname);
745
746 /* Try to get more packets going. */
747 kse_start(ifp);
748 }
749
750 static void
751 kse_start(struct ifnet *ifp)
752 {
753 struct kse_softc *sc = ifp->if_softc;
754 struct mbuf *m0;
755 struct kse_txsoft *txs;
756 bus_dmamap_t dmamap;
757 int error, nexttx, lasttx, ofree, seg;
758 uint32_t tdes0;
759
760 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
761 return;
762
763 /*
764 * Remember the previous number of free descriptors.
765 */
766 ofree = sc->sc_txfree;
767
768 /*
769 * Loop through the send queue, setting up transmit descriptors
770 * until we drain the queue, or use up all available transmit
771 * descriptors.
772 */
773 for (;;) {
774 IFQ_POLL(&ifp->if_snd, m0);
775 if (m0 == NULL)
776 break;
777
778 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
779 txreap(sc);
780 if (sc->sc_txsfree == 0)
781 break;
782 }
783 txs = &sc->sc_txsoft[sc->sc_txsnext];
784 dmamap = txs->txs_dmamap;
785
786 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
787 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
788 if (error) {
789 if (error == EFBIG) {
790 printf("%s: Tx packet consumes too many "
791 "DMA segments, dropping...\n",
792 sc->sc_dev.dv_xname);
793 IFQ_DEQUEUE(&ifp->if_snd, m0);
794 m_freem(m0);
795 continue;
796 }
797 /* Short on resources, just stop for now. */
798 break;
799 }
800
801 if (dmamap->dm_nsegs > sc->sc_txfree) {
802 /*
803 * Not enough free descriptors to transmit this
804 * packet. We haven't committed anything yet,
805 * so just unload the DMA map, put the packet
806 * back on the queue, and punt. Notify the upper
807 * layer that there are not more slots left.
808 */
809 ifp->if_flags |= IFF_OACTIVE;
810 bus_dmamap_unload(sc->sc_dmat, dmamap);
811 break;
812 }
813
814 IFQ_DEQUEUE(&ifp->if_snd, m0);
815
816 /*
817 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
818 */
819
820 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
821 BUS_DMASYNC_PREWRITE);
822
823 lasttx = -1; tdes0 = 0;
824 for (nexttx = sc->sc_txnext, seg = 0;
825 seg < dmamap->dm_nsegs;
826 seg++, nexttx = KSE_NEXTTX(nexttx)) {
827 struct tdes *tdes = &sc->sc_txdescs[nexttx];
828 /*
829 * If this is the first descriptor we're
830 * enqueueing, don't set the OWN bit just
831 * yet. That could cause a race condition.
832 * We'll do it below.
833 */
834 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
835 tdes->t1 = sc->sc_t1csum
836 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
837 tdes->t0 = tdes0;
838 tdes0 |= T0_OWN;
839 lasttx = nexttx;
840 }
841 #if 0
842 /*
843 * T1_IC bit could schedule Tx frame done interrupt here,
844 * but this driver takes a "shoot away" Tx strategy.
845 */
846 #else
847 {
848 /*
849 * Outgoing NFS mbuf must be unloaded when Tx completed.
850 * Without T1_IC NFS mbuf is left unack'ed for excessive
851 * time and NFS stops to proceed until kse_watchdog()
852 * calls txreap() to reclaim the unack'ed mbuf.
853 * It's painful to traverse every mbuf chain to determine
854 * whether someone is waiting for Tx completion.
855 */
856 struct mbuf *m = m0;
857 do {
858 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
859 sc->sc_txdescs[lasttx].t1 |= T1_IC;
860 break;
861 }
862 } while ((m = m->m_next) != NULL);
863 }
864 #endif
865
866 /* write last T0_OWN bit of the 1st segment */
867 sc->sc_txdescs[lasttx].t1 |= T1_LS;
868 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
869 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
870 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
871 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
872
873 /* tell DMA start transmit */
874 CSR_WRITE_4(sc, MDTSC, 1);
875
876 txs->txs_mbuf = m0;
877 txs->txs_firstdesc = sc->sc_txnext;
878 txs->txs_lastdesc = lasttx;
879 txs->txs_ndesc = dmamap->dm_nsegs;
880
881 sc->sc_txfree -= txs->txs_ndesc;
882 sc->sc_txnext = nexttx;
883 sc->sc_txsfree--;
884 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
885 #if NBPFILTER > 0
886 /*
887 * Pass the packet to any BPF listeners.
888 */
889 if (ifp->if_bpf)
890 bpf_mtap(ifp->if_bpf, m0);
891 #endif /* NBPFILTER > 0 */
892 }
893
894 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
895 /* No more slots left; notify upper layer. */
896 ifp->if_flags |= IFF_OACTIVE;
897 }
898 if (sc->sc_txfree != ofree) {
899 /* Set a watchdog timer in case the chip flakes out. */
900 ifp->if_timer = 5;
901 }
902 }
903
904 static void
905 kse_set_filter(struct kse_softc *sc)
906 {
907 struct ether_multistep step;
908 struct ether_multi *enm;
909 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
910 uint32_t h, hashes[2];
911
912 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
913 ifp->if_flags &= ~IFF_ALLMULTI;
914 if (ifp->if_flags & IFF_PROMISC)
915 return;
916
917 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
918 if (enm == NULL)
919 return;
920 hashes[0] = hashes[1] = 0;
921 do {
922 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
923 /*
924 * We must listen to a range of multicast addresses.
925 * For now, just accept all multicasts, rather than
926 * trying to set only those filter bits needed to match
927 * the range. (At this time, the only use of address
928 * ranges is for IP multicast routing, for which the
929 * range is big enough to require all bits set.)
930 */
931 goto allmulti;
932 }
933 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
934 hashes[h >> 5] |= 1 << (h & 0x1f);
935 ETHER_NEXT_MULTI(step, enm);
936 } while (enm != NULL);
937 sc->sc_rxc |= RXC_MHTE;
938 CSR_WRITE_4(sc, MTR0, hashes[0]);
939 CSR_WRITE_4(sc, MTR1, hashes[1]);
940 return;
941 allmulti:
942 sc->sc_rxc |= RXC_RM;
943 ifp->if_flags |= IFF_ALLMULTI;
944 }
945
946 static int
947 add_rxbuf(struct kse_softc *sc, int idx)
948 {
949 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
950 struct mbuf *m;
951 int error;
952
953 MGETHDR(m, M_DONTWAIT, MT_DATA);
954 if (m == NULL)
955 return ENOBUFS;
956
957 MCLGET(m, M_DONTWAIT);
958 if ((m->m_flags & M_EXT) == 0) {
959 m_freem(m);
960 return ENOBUFS;
961 }
962
963 if (rxs->rxs_mbuf != NULL)
964 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
965
966 rxs->rxs_mbuf = m;
967
968 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
969 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
970 if (error) {
971 printf("%s: can't load rx DMA map %d, error = %d\n",
972 sc->sc_dev.dv_xname, idx, error);
973 panic("kse_add_rxbuf");
974 }
975
976 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
977 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
978
979 KSE_INIT_RXDESC(sc, idx);
980
981 return 0;
982 }
983
984 static void
985 rxdrain(struct kse_softc *sc)
986 {
987 struct kse_rxsoft *rxs;
988 int i;
989
990 for (i = 0; i < KSE_NRXDESC; i++) {
991 rxs = &sc->sc_rxsoft[i];
992 if (rxs->rxs_mbuf != NULL) {
993 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
994 m_freem(rxs->rxs_mbuf);
995 rxs->rxs_mbuf = NULL;
996 }
997 }
998 }
999
1000 static int
1001 kse_intr(void *arg)
1002 {
1003 struct kse_softc *sc = arg;
1004 uint32_t isr;
1005
1006 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1007 return 0;
1008
1009 if (isr & INT_DMRS)
1010 rxintr(sc);
1011 if (isr & INT_DMTS)
1012 txreap(sc);
1013 if (isr & INT_DMLCS)
1014 lnkchg(sc);
1015 if (isr & INT_DMRBUS)
1016 printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
1017
1018 CSR_WRITE_4(sc, INTST, isr);
1019 return 1;
1020 }
1021
1022 static void
1023 rxintr(struct kse_softc *sc)
1024 {
1025 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1026 struct kse_rxsoft *rxs;
1027 struct mbuf *m;
1028 uint32_t rxstat;
1029 int i, len;
1030
1031 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1032 rxs = &sc->sc_rxsoft[i];
1033
1034 KSE_CDRXSYNC(sc, i,
1035 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1036
1037 rxstat = sc->sc_rxdescs[i].r0;
1038
1039 if (rxstat & R0_OWN) /* desc is left empty */
1040 break;
1041
1042 /* R0_FS|R0_LS must have been marked for this desc */
1043
1044 if (rxstat & R0_ES) {
1045 ifp->if_ierrors++;
1046 #define PRINTERR(bit, str) \
1047 if (rxstat & (bit)) \
1048 printf("%s: receive error: %s\n", \
1049 sc->sc_dev.dv_xname, str)
1050 PRINTERR(R0_TL, "frame too long");
1051 PRINTERR(R0_RF, "runt frame");
1052 PRINTERR(R0_CE, "bad FCS");
1053 #undef PRINTERR
1054 KSE_INIT_RXDESC(sc, i);
1055 continue;
1056 }
1057
1058 /* HW errata; frame might be too small or too large */
1059
1060 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1061 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1062
1063 len = rxstat & R0_FL_MASK;
1064 len -= ETHER_CRC_LEN; /* trim CRC off */
1065 m = rxs->rxs_mbuf;
1066
1067 if (add_rxbuf(sc, i) != 0) {
1068 ifp->if_ierrors++;
1069 KSE_INIT_RXDESC(sc, i);
1070 bus_dmamap_sync(sc->sc_dmat,
1071 rxs->rxs_dmamap, 0,
1072 rxs->rxs_dmamap->dm_mapsize,
1073 BUS_DMASYNC_PREREAD);
1074 continue;
1075 }
1076
1077 ifp->if_ipackets++;
1078 m->m_pkthdr.rcvif = ifp;
1079 m->m_pkthdr.len = m->m_len = len;
1080
1081 if (sc->sc_mcsum) {
1082 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1083 if (rxstat & R0_IPE)
1084 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1085 if (rxstat & (R0_TCPE | R0_UDPE))
1086 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1087 }
1088 #if NBPFILTER > 0
1089 if (ifp->if_bpf)
1090 bpf_mtap(ifp->if_bpf, m);
1091 #endif /* NBPFILTER > 0 */
1092 (*ifp->if_input)(ifp, m);
1093 #ifdef KSEDIAGNOSTIC
1094 if (kse_monitor_rxintr > 0) {
1095 printf("m stat %x data %p len %d\n",
1096 rxstat, m->m_data, m->m_len);
1097 }
1098 #endif
1099 }
1100 sc->sc_rxptr = i;
1101 }
1102
1103 static void
1104 txreap(struct kse_softc *sc)
1105 {
1106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1107 struct kse_txsoft *txs;
1108 uint32_t txstat;
1109 int i;
1110
1111 ifp->if_flags &= ~IFF_OACTIVE;
1112
1113 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1114 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1115 txs = &sc->sc_txsoft[i];
1116
1117 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1118 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1119
1120 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1121
1122 if (txstat & T0_OWN) /* desc is still in use */
1123 break;
1124
1125 /* there is no way to tell transmission status per frame */
1126
1127 ifp->if_opackets++;
1128
1129 sc->sc_txfree += txs->txs_ndesc;
1130 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1131 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1132 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1133 m_freem(txs->txs_mbuf);
1134 txs->txs_mbuf = NULL;
1135 }
1136 sc->sc_txsdirty = i;
1137 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1138 ifp->if_timer = 0;
1139 }
1140
1141 static void
1142 lnkchg(struct kse_softc *sc)
1143 {
1144 struct ifmediareq ifmr;
1145
1146 #if 0 /* rambling link status */
1147 printf("%s: link %s\n", sc->sc_dev.dv_xname,
1148 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1149 #endif
1150 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1151 }
1152
1153 static int
1154 ifmedia_upd(struct ifnet *ifp)
1155 {
1156 struct kse_softc *sc = ifp->if_softc;
1157 struct ifmedia *ifm = &sc->sc_media;
1158 uint16_t ctl;
1159
1160 ctl = 0;
1161 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1162 ctl |= (1U << 13); /* restart AN */
1163 ctl |= (1U << 7); /* enable AN */
1164 ctl |= (1U << 4); /* advertise flow control pause */
1165 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1166 }
1167 else {
1168 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1169 ctl |= (1U << 6);
1170 if (ifm->ifm_media & IFM_FDX)
1171 ctl |= (1U << 5);
1172 }
1173 CSR_WRITE_2(sc, P1CR4, ctl);
1174
1175 sc->sc_media_active = IFM_NONE;
1176 sc->sc_media_status = IFM_AVALID;
1177
1178 return 0;
1179 }
1180
1181 static void
1182 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1183 {
1184 struct kse_softc *sc = ifp->if_softc;
1185 struct ifmedia *ifm = &sc->sc_media;
1186 uint16_t ctl, sts, result;
1187
1188 ifmr->ifm_status = IFM_AVALID;
1189 ifmr->ifm_active = IFM_ETHER;
1190
1191 ctl = CSR_READ_2(sc, P1CR4);
1192 sts = CSR_READ_2(sc, P1SR);
1193 if ((sts & (1U << 5)) == 0) {
1194 ifmr->ifm_active |= IFM_NONE;
1195 goto out; /* link is down */
1196 }
1197 ifmr->ifm_status |= IFM_ACTIVE;
1198 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1199 if ((sts & (1U << 6)) == 0) {
1200 ifmr->ifm_active |= IFM_NONE;
1201 goto out; /* negotiation in progress */
1202 }
1203 result = ctl & sts & 017;
1204 if (result & (1U << 3))
1205 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1206 else if (result & (1U << 2))
1207 ifmr->ifm_active |= IFM_100_TX;
1208 else if (result & (1U << 1))
1209 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1210 else if (result & (1U << 0))
1211 ifmr->ifm_active |= IFM_10_T;
1212 else
1213 ifmr->ifm_active |= IFM_NONE;
1214 if (ctl & (1U << 4))
1215 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1216 if (sts & (1U << 4))
1217 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1218 }
1219 else {
1220 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1221 if (sts & (1U << 9))
1222 ifmr->ifm_active |= IFM_FDX;
1223 if (sts & (1U << 12))
1224 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1225 if (sts & (1U << 11))
1226 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1227 }
1228
1229 out:
1230 sc->sc_media_status = ifmr->ifm_status;
1231 sc->sc_media_active = ifmr->ifm_active;
1232 }
1233
1234 static void
1235 phy_tick(void *arg)
1236 {
1237 struct kse_softc *sc = arg;
1238 struct ifmediareq ifmr;
1239 int s;
1240
1241 s = splnet();
1242 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1243 splx(s);
1244
1245 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1246 }
1247