if_kse.c revision 1.8 1 /* $NetBSD: if_kse.c,v 1.8 2007/10/19 04:41:30 nisimura Exp $ */
2
3 /*
4 * Copyright (c) 2006 Tohru Nishimura
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Tohru Nishimura.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.8 2007/10/19 04:41:30 nisimura Exp $");
34
35 #include "bpfilter.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/device.h>
46 #include <sys/queue.h>
47
48 #include <machine/endian.h>
49 #include <machine/bus.h>
50 #include <machine/intr.h>
51
52 #include <net/if.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56
57 #if NBPFILTER > 0
58 #include <net/bpf.h>
59 #endif
60
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64
65 #define CSR_READ_4(sc, off) \
66 bus_space_read_4(sc->sc_st, sc->sc_sh, off)
67 #define CSR_WRITE_4(sc, off, val) \
68 bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
69 #define CSR_READ_2(sc, off) \
70 bus_space_read_2(sc->sc_st, sc->sc_sh, off)
71 #define CSR_WRITE_2(sc, off, val) \
72 bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
73
74 #define MDTXC 0x000 /* DMA transmit control */
75 #define MDRXC 0x004 /* DMA receive control */
76 #define MDTSC 0x008 /* DMA transmit start */
77 #define MDRSC 0x00c /* DMA receive start */
78 #define TDLB 0x010 /* transmit descriptor list base */
79 #define RDLB 0x014 /* receive descriptor list base */
80 #define MTR0 0x020 /* multicast table 31:0 */
81 #define MTR1 0x024 /* multicast table 63:32 */
82 #define INTEN 0x028 /* interrupt enable */
83 #define INTST 0x02c /* interrupt status */
84 #define MARL 0x200 /* MAC address low */
85 #define MARM 0x202 /* MAC address middle */
86 #define MARH 0x204 /* MAC address high */
87 #define GRR 0x216 /* global reset */
88 #define CIDR 0x400 /* chip ID and enable */
89 #define CGCR 0x40a /* chip global control */
90 #define IACR 0x4a0 /* indirect access control */
91 #define IADR1 0x4a2 /* indirect access data 66:63 */
92 #define IADR2 0x4a4 /* indirect access data 47:32 */
93 #define IADR3 0x4a6 /* indirect access data 63:48 */
94 #define IADR4 0x4a8 /* indirect access data 15:0 */
95 #define IADR5 0x4aa /* indirect access data 31:16 */
96 #define P1CR4 0x512 /* port 1 control 4 */
97 #define P1SR 0x514 /* port 1 status */
98 #define P2CR4 0x532 /* port 2 control 4 */
99 #define P2SR 0x534 /* port 2 status */
100
101 #define TXC_BS_MSK 0x3f000000 /* burst size */
102 #define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
103 #define TXC_UCG (1U<<18) /* generate UDP checksum */
104 #define TXC_TCG (1U<<17) /* generate TCP checksum */
105 #define TXC_ICG (1U<<16) /* generate IP checksum */
106 #define TXC_FCE (1U<<9) /* enable flowcontrol */
107 #define TXC_EP (1U<<2) /* enable automatic padding */
108 #define TXC_AC (1U<<1) /* add CRC to frame */
109 #define TXC_TEN (1) /* enable DMA to run */
110
111 #define RXC_BS_MSK 0x3f000000 /* burst size */
112 #define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
113 #define RXC_IHAE (1U<<19) /* IP header alignment enable */
114 #define RXC_UCC (1U<<18) /* run UDP checksum */
115 #define RXC_TCC (1U<<17) /* run TDP checksum */
116 #define RXC_ICC (1U<<16) /* run IP checksum */
117 #define RXC_FCE (1U<<9) /* enable flowcontrol */
118 #define RXC_RB (1U<<6) /* receive broadcast frame */
119 #define RXC_RM (1U<<5) /* receive multicast frame */
120 #define RXC_RU (1U<<4) /* receive unicast frame */
121 #define RXC_RE (1U<<3) /* accept error frame */
122 #define RXC_RA (1U<<2) /* receive all frame */
123 #define RXC_MHTE (1U<<1) /* use multicast hash table */
124 #define RXC_REN (1) /* enable DMA to run */
125
126 #define INT_DMLCS (1U<<31) /* link status change */
127 #define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
128 #define INT_DMRS (1U<<29) /* frame was received */
129 #define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
130
131 #define T0_OWN (1U<<31) /* desc is ready to Tx */
132
133 #define R0_OWN (1U<<31) /* desc is empty */
134 #define R0_FS (1U<<30) /* first segment of frame */
135 #define R0_LS (1U<<29) /* last segment of frame */
136 #define R0_IPE (1U<<28) /* IP checksum error */
137 #define R0_TCPE (1U<<27) /* TCP checksum error */
138 #define R0_UDPE (1U<<26) /* UDP checksum error */
139 #define R0_ES (1U<<25) /* error summary */
140 #define R0_MF (1U<<24) /* multicast frame */
141 #define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
142 #define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
143 #define R0_RE (1U<<19) /* MII reported error */
144 #define R0_TL (1U<<18) /* frame too long, beyond 1518 */
145 #define R0_RF (1U<<17) /* damaged runt frame */
146 #define R0_CE (1U<<16) /* CRC error */
147 #define R0_FT (1U<<15) /* frame type */
148 #define R0_FL_MASK 0x7ff /* frame length 10:0 */
149
150 #define T1_IC (1U<<31) /* post interrupt on complete */
151 #define T1_FS (1U<<30) /* first segment of frame */
152 #define T1_LS (1U<<29) /* last segment of frame */
153 #define T1_IPCKG (1U<<28) /* generate IP checksum */
154 #define T1_TCPCKG (1U<<27) /* generate TCP checksum */
155 #define T1_UDPCKG (1U<<26) /* generate UDP checksum */
156 #define T1_TER (1U<<25) /* end of ring */
157 #define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
158 #define T1_TBS_MASK 0x7ff /* segment size 10:0 */
159
160 #define R1_RER (1U<<25) /* end of ring */
161 #define R1_RBS_MASK 0x7fc /* segment size 10:0 */
162
163 #define KSE_NTXSEGS 16
164 #define KSE_TXQUEUELEN 64
165 #define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
166 #define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
167 #define KSE_NTXDESC 256
168 #define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
169 #define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
170 #define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
171
172 #define KSE_NRXDESC 64
173 #define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
174 #define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
175
176 struct tdes {
177 uint32_t t0, t1, t2, t3;
178 };
179
180 struct rdes {
181 uint32_t r0, r1, r2, r3;
182 };
183
184 struct kse_control_data {
185 struct tdes kcd_txdescs[KSE_NTXDESC];
186 struct rdes kcd_rxdescs[KSE_NRXDESC];
187 };
188 #define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
189 #define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
190 #define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
191
192 struct kse_txsoft {
193 struct mbuf *txs_mbuf; /* head of our mbuf chain */
194 bus_dmamap_t txs_dmamap; /* our DMA map */
195 int txs_firstdesc; /* first descriptor in packet */
196 int txs_lastdesc; /* last descriptor in packet */
197 int txs_ndesc; /* # of descriptors used */
198 };
199
200 struct kse_rxsoft {
201 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t rxs_dmamap; /* our DMA map */
203 };
204
205 struct kse_softc {
206 struct device sc_dev; /* generic device information */
207 bus_space_tag_t sc_st; /* bus space tag */
208 bus_space_handle_t sc_sh; /* bus space handle */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 struct ethercom sc_ethercom; /* Ethernet common data */
211 void *sc_ih; /* interrupt cookie */
212
213 struct ifmedia sc_media; /* ifmedia information */
214 int sc_media_status; /* PHY */
215 int sc_media_active; /* PHY */
216 callout_t sc_callout; /* MII tick callout */
217 callout_t sc_stat_ch; /* statistics counter callout */
218
219 bus_dmamap_t sc_cddmamap; /* control data DMA map */
220 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
221
222 struct kse_control_data *sc_control_data;
223 #define sc_txdescs sc_control_data->kcd_txdescs
224 #define sc_rxdescs sc_control_data->kcd_rxdescs
225
226 struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
227 struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
228 int sc_txfree; /* number of free Tx descriptors */
229 int sc_txnext; /* next ready Tx descriptor */
230 int sc_txsfree; /* number of free Tx jobs */
231 int sc_txsnext; /* next ready Tx job */
232 int sc_txsdirty; /* dirty Tx jobs */
233 int sc_rxptr; /* next ready Rx descriptor/descsoft */
234
235 uint32_t sc_txc, sc_rxc;
236 uint32_t sc_t1csum;
237 int sc_mcsum;
238 uint32_t sc_inten;
239
240 uint32_t sc_chip;
241 uint8_t sc_altmac[16][ETHER_ADDR_LEN];
242 uint16_t sc_vlan[16];
243
244 #ifdef KSE_EVENT_COUNTERS
245 struct ksext {
246 char evcntname[3][8];
247 struct evcnt pev[3][34];
248 struct evcnt lev[2];
249 } sc_ext; /* switch statistics */
250 #endif
251 };
252
253 #define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
254 #define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
255
256 #define KSE_CDTXSYNC(sc, x, n, ops) \
257 do { \
258 int __x, __n; \
259 \
260 __x = (x); \
261 __n = (n); \
262 \
263 /* If it will wrap around, sync to the end of the ring. */ \
264 if ((__x + __n) > KSE_NTXDESC) { \
265 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
266 KSE_CDTXOFF(__x), sizeof(struct tdes) * \
267 (KSE_NTXDESC - __x), (ops)); \
268 __n -= (KSE_NTXDESC - __x); \
269 __x = 0; \
270 } \
271 \
272 /* Now sync whatever is left. */ \
273 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
274 KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
275 } while (/*CONSTCOND*/0)
276
277 #define KSE_CDRXSYNC(sc, x, ops) \
278 do { \
279 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
280 KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
281 } while (/*CONSTCOND*/0)
282
283 #define KSE_INIT_RXDESC(sc, x) \
284 do { \
285 struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
286 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
287 struct mbuf *__m = __rxs->rxs_mbuf; \
288 \
289 __m->m_data = __m->m_ext.ext_buf; \
290 __rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
291 __rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
292 __rxd->r0 = R0_OWN; \
293 KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
294 } while (/*CONSTCOND*/0)
295
296 u_int kse_burstsize = 32; /* DMA burst length tuning knob */
297
298 #ifdef KSEDIAGNOSTIC
299 u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
300 #endif
301
302 static int kse_match(struct device *, struct cfdata *, void *);
303 static void kse_attach(struct device *, struct device *, void *);
304
305 CFATTACH_DECL(kse, sizeof(struct kse_softc),
306 kse_match, kse_attach, NULL, NULL);
307
308 static int kse_ioctl(struct ifnet *, u_long, void *);
309 static void kse_start(struct ifnet *);
310 static void kse_watchdog(struct ifnet *);
311 static int kse_init(struct ifnet *);
312 static void kse_stop(struct ifnet *, int);
313 static void kse_reset(struct kse_softc *);
314 static void kse_set_filter(struct kse_softc *);
315 static int add_rxbuf(struct kse_softc *, int);
316 static void rxdrain(struct kse_softc *);
317 static int kse_intr(void *);
318 static void rxintr(struct kse_softc *);
319 static void txreap(struct kse_softc *);
320 static void lnkchg(struct kse_softc *);
321 static int ifmedia_upd(struct ifnet *);
322 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
323 static void phy_tick(void *);
324 static int ifmedia2_upd(struct ifnet *);
325 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
326 #ifdef KSE_EVENT_COUNTERS
327 static void stat_tick(void *);
328 static void zerostats(struct kse_softc *);
329 #endif
330
331 static int
332 kse_match(struct device *parent, struct cfdata *match, void *aux)
333 {
334 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
335
336 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
337 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
338 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
339 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
340 return 1;
341
342 return 0;
343 }
344
345 static void
346 kse_attach(struct device *parent, struct device *self, void *aux)
347 {
348 struct kse_softc *sc = (struct kse_softc *)self;
349 struct pci_attach_args *pa = aux;
350 pci_chipset_tag_t pc = pa->pa_pc;
351 pci_intr_handle_t ih;
352 const char *intrstr;
353 struct ifnet *ifp;
354 struct ifmedia *ifm;
355 uint8_t enaddr[ETHER_ADDR_LEN];
356 bus_dma_segment_t seg;
357 int i, p, error, nseg;
358 pcireg_t pmode;
359 int pmreg;
360
361 if (pci_mapreg_map(pa, 0x10,
362 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
363 0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
364 printf(": unable to map device registers\n");
365 return;
366 }
367
368 sc->sc_dmat = pa->pa_dmat;
369
370 /* Make sure bus mastering is enabled. */
371 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
372 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
373 PCI_COMMAND_MASTER_ENABLE);
374
375 /* Get it out of power save mode, if needed. */
376 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
377 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
378 PCI_PMCSR_STATE_MASK;
379 if (pmode == PCI_PMCSR_STATE_D3) {
380 /*
381 * The card has lost all configuration data in
382 * this state, so punt.
383 */
384 printf("%s: unable to wake from power state D3\n",
385 sc->sc_dev.dv_xname);
386 return;
387 }
388 if (pmode != PCI_PMCSR_STATE_D0) {
389 printf("%s: waking up from power date D%d\n",
390 sc->sc_dev.dv_xname, pmode);
391 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
392 PCI_PMCSR_STATE_D0);
393 }
394 }
395
396 sc->sc_chip = PCI_PRODUCT(pa->pa_id);
397 printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
398 sc->sc_chip, PCI_REVISION(pa->pa_class));
399
400 /*
401 * Read the Ethernet address from the EEPROM.
402 */
403 i = CSR_READ_2(sc, MARL);
404 enaddr[5] = i; enaddr[4] = i >> 8;
405 i = CSR_READ_2(sc, MARM);
406 enaddr[3] = i; enaddr[2] = i >> 8;
407 i = CSR_READ_2(sc, MARH);
408 enaddr[1] = i; enaddr[0] = i >> 8;
409 printf("%s: Ethernet address: %s\n",
410 sc->sc_dev.dv_xname, ether_sprintf(enaddr));
411
412 /*
413 * Enable chip function.
414 */
415 CSR_WRITE_2(sc, CIDR, 1);
416
417 /*
418 * Map and establish our interrupt.
419 */
420 if (pci_intr_map(pa, &ih)) {
421 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
422 return;
423 }
424 intrstr = pci_intr_string(pc, ih);
425 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
426 if (sc->sc_ih == NULL) {
427 printf("%s: unable to establish interrupt",
428 sc->sc_dev.dv_xname);
429 if (intrstr != NULL)
430 printf(" at %s", intrstr);
431 printf("\n");
432 return;
433 }
434 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
435
436 /*
437 * Allocate the control data structures, and create and load the
438 * DMA map for it.
439 */
440 error = bus_dmamem_alloc(sc->sc_dmat,
441 sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
442 if (error != 0) {
443 printf("%s: unable to allocate control data, error = %d\n",
444 sc->sc_dev.dv_xname, error);
445 goto fail_0;
446 }
447 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
448 sizeof(struct kse_control_data), (void * *)&sc->sc_control_data,
449 BUS_DMA_COHERENT);
450 if (error != 0) {
451 printf("%s: unable to map control data, error = %d\n",
452 sc->sc_dev.dv_xname, error);
453 goto fail_1;
454 }
455 error = bus_dmamap_create(sc->sc_dmat,
456 sizeof(struct kse_control_data), 1,
457 sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
458 if (error != 0) {
459 printf("%s: unable to create control data DMA map, "
460 "error = %d\n", sc->sc_dev.dv_xname, error);
461 goto fail_2;
462 }
463 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
464 sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
465 if (error != 0) {
466 printf("%s: unable to load control data DMA map, error = %d\n",
467 sc->sc_dev.dv_xname, error);
468 goto fail_3;
469 }
470 for (i = 0; i < KSE_TXQUEUELEN; i++) {
471 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
472 KSE_NTXSEGS, MCLBYTES, 0, 0,
473 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
474 printf("%s: unable to create tx DMA map %d, "
475 "error = %d\n", sc->sc_dev.dv_xname, i, error);
476 goto fail_4;
477 }
478 }
479 for (i = 0; i < KSE_NRXDESC; i++) {
480 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
481 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
482 printf("%s: unable to create rx DMA map %d, "
483 "error = %d\n", sc->sc_dev.dv_xname, i, error);
484 goto fail_5;
485 }
486 sc->sc_rxsoft[i].rxs_mbuf = NULL;
487 }
488
489 callout_init(&sc->sc_callout, 0);
490 callout_init(&sc->sc_stat_ch, 0);
491
492 ifm = &sc->sc_media;
493 if (sc->sc_chip == 0x8841) {
494 ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
495 ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
496 ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
497 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
498 ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
499 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
500 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
501 }
502 else {
503 ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
504 ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
505 ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
506 }
507
508 printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
509 sc->sc_dev.dv_xname);
510
511 ifp = &sc->sc_ethercom.ec_if;
512 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
513 ifp->if_softc = sc;
514 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
515 ifp->if_ioctl = kse_ioctl;
516 ifp->if_start = kse_start;
517 ifp->if_watchdog = kse_watchdog;
518 ifp->if_init = kse_init;
519 ifp->if_stop = kse_stop;
520 IFQ_SET_READY(&ifp->if_snd);
521
522 /*
523 * KSZ8842 can handle 802.1Q VLAN-sized frames,
524 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
525 */
526 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
527 ifp->if_capabilities |=
528 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
529 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
530 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
531
532 if_attach(ifp);
533 ether_ifattach(ifp, enaddr);
534
535 p = (sc->sc_chip == 0x8842) ? 3 : 1;
536 #ifdef KSE_EVENT_COUNTERS
537 for (i = 0; i < p; i++) {
538 struct ksext *ee = &sc->sc_ext;
539 sprintf(ee->evcntname[i], "%s.%d", sc->sc_dev.dv_xname, i+1);
540 evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
541 NULL, ee->evcntname[i], "RxLoPriotyByte");
542 evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
543 NULL, ee->evcntname[i], "RxHiPriotyByte");
544 evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
545 NULL, ee->evcntname[i], "RxUndersizePkt");
546 evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
547 NULL, ee->evcntname[i], "RxFragments");
548 evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
549 NULL, ee->evcntname[i], "RxOversize");
550 evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
551 NULL, ee->evcntname[i], "RxJabbers");
552 evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
553 NULL, ee->evcntname[i], "RxSymbolError");
554 evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
555 NULL, ee->evcntname[i], "RxCRCError");
556 evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
557 NULL, ee->evcntname[i], "RxAlignmentError");
558 evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
559 NULL, ee->evcntname[i], "RxCtrol8808Pkts");
560 evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
561 NULL, ee->evcntname[i], "RxPausePkts");
562 evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
563 NULL, ee->evcntname[i], "RxBroadcast");
564 evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
565 NULL, ee->evcntname[i], "RxMulticast");
566 evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
567 NULL, ee->evcntname[i], "RxUnicast");
568 evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
569 NULL, ee->evcntname[i], "Rx64Octets");
570 evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
571 NULL, ee->evcntname[i], "Rx65To127Octets");
572 evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
573 NULL, ee->evcntname[i], "Rx128To255Octets");
574 evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
575 NULL, ee->evcntname[i], "Rx255To511Octets");
576 evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
577 NULL, ee->evcntname[i], "Rx512To1023Octets");
578 evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
579 NULL, ee->evcntname[i], "Rx1024To1522Octets");
580 evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
581 NULL, ee->evcntname[i], "TxLoPriotyByte");
582 evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
583 NULL, ee->evcntname[i], "TxHiPriotyByte");
584 evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
585 NULL, ee->evcntname[i], "TxLateCollision");
586 evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
587 NULL, ee->evcntname[i], "TxPausePkts");
588 evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
589 NULL, ee->evcntname[i], "TxBroadcastPkts");
590 evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
591 NULL, ee->evcntname[i], "TxMulticastPkts");
592 evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
593 NULL, ee->evcntname[i], "TxUnicastPkts");
594 evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
595 NULL, ee->evcntname[i], "TxDeferred");
596 evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
597 NULL, ee->evcntname[i], "TxTotalCollision");
598 evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
599 NULL, ee->evcntname[i], "TxExcessiveCollision");
600 evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
601 NULL, ee->evcntname[i], "TxSingleCollision");
602 evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
603 NULL, ee->evcntname[i], "TxMultipleCollision");
604 evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
605 NULL, ee->evcntname[i], "TxDropPkts");
606 evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
607 NULL, ee->evcntname[i], "RxDropPkts");
608 }
609 #endif
610 return;
611
612 fail_5:
613 for (i = 0; i < KSE_NRXDESC; i++) {
614 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
615 bus_dmamap_destroy(sc->sc_dmat,
616 sc->sc_rxsoft[i].rxs_dmamap);
617 }
618 fail_4:
619 for (i = 0; i < KSE_TXQUEUELEN; i++) {
620 if (sc->sc_txsoft[i].txs_dmamap != NULL)
621 bus_dmamap_destroy(sc->sc_dmat,
622 sc->sc_txsoft[i].txs_dmamap);
623 }
624 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
625 fail_3:
626 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
627 fail_2:
628 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
629 sizeof(struct kse_control_data));
630 fail_1:
631 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
632 fail_0:
633 return;
634 }
635
636 static int
637 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
638 {
639 struct kse_softc *sc = ifp->if_softc;
640 struct ifreq *ifr = (struct ifreq *)data;
641 int s, error;
642
643 s = splnet();
644
645 switch (cmd) {
646 case SIOCSIFMEDIA:
647 case SIOCGIFMEDIA:
648 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
649 break;
650
651 default:
652 error = ether_ioctl(ifp, cmd, data);
653 if (cmd == ENETRESET) {
654 /*
655 * Multicast list has changed; set the hardware filter
656 * accordingly.
657 */
658 if (ifp->if_flags & IFF_RUNNING)
659 kse_set_filter(sc);
660 error = 0;
661 }
662 break;
663 }
664
665 kse_start(ifp);
666
667 splx(s);
668 return error;
669 }
670
671 static int
672 kse_init(struct ifnet *ifp)
673 {
674 struct kse_softc *sc = ifp->if_softc;
675 uint32_t paddr;
676 int i, error = 0;
677
678 /* cancel pending I/O */
679 kse_stop(ifp, 0);
680
681 /* reset all registers but PCI configuration */
682 kse_reset(sc);
683
684 /* craft Tx descriptor ring */
685 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
686 for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
687 sc->sc_txdescs[i].t3 = paddr;
688 paddr += sizeof(struct tdes);
689 }
690 sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
691 KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
692 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
693 sc->sc_txfree = KSE_NTXDESC;
694 sc->sc_txnext = 0;
695
696 for (i = 0; i < KSE_TXQUEUELEN; i++)
697 sc->sc_txsoft[i].txs_mbuf = NULL;
698 sc->sc_txsfree = KSE_TXQUEUELEN;
699 sc->sc_txsnext = 0;
700 sc->sc_txsdirty = 0;
701
702 /* craft Rx descriptor ring */
703 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
704 for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
705 sc->sc_rxdescs[i].r3 = paddr;
706 paddr += sizeof(struct rdes);
707 }
708 sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
709 for (i = 0; i < KSE_NRXDESC; i++) {
710 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
711 if ((error = add_rxbuf(sc, i)) != 0) {
712 printf("%s: unable to allocate or map rx "
713 "buffer %d, error = %d\n",
714 sc->sc_dev.dv_xname, i, error);
715 rxdrain(sc);
716 goto out;
717 }
718 }
719 else
720 KSE_INIT_RXDESC(sc, i);
721 }
722 sc->sc_rxptr = 0;
723
724 /* hand Tx/Rx rings to HW */
725 CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
726 CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
727
728 sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
729 sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
730 if (ifp->if_flags & IFF_PROMISC)
731 sc->sc_rxc |= RXC_RA;
732 if (ifp->if_flags & IFF_BROADCAST)
733 sc->sc_rxc |= RXC_RB;
734 sc->sc_t1csum = sc->sc_mcsum = 0;
735 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
736 sc->sc_rxc |= RXC_ICC;
737 sc->sc_mcsum |= M_CSUM_IPv4;
738 }
739 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
740 sc->sc_txc |= TXC_ICG;
741 sc->sc_t1csum |= T1_IPCKG;
742 }
743 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
744 sc->sc_rxc |= RXC_TCC;
745 sc->sc_mcsum |= M_CSUM_TCPv4;
746 }
747 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
748 sc->sc_txc |= TXC_TCG;
749 sc->sc_t1csum |= T1_TCPCKG;
750 }
751 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
752 sc->sc_rxc |= RXC_UCC;
753 sc->sc_mcsum |= M_CSUM_UDPv4;
754 }
755 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
756 sc->sc_txc |= TXC_UCG;
757 sc->sc_t1csum |= T1_UDPCKG;
758 }
759 sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
760 sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
761
762 /* build multicast hash filter if necessary */
763 kse_set_filter(sc);
764
765 /* set current media */
766 (void)ifmedia_upd(ifp);
767
768 /* enable transmitter and receiver */
769 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
770 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
771 CSR_WRITE_4(sc, MDRSC, 1);
772
773 /* enable interrupts */
774 sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
775 if (sc->sc_chip == 0x8841)
776 sc->sc_inten |= INT_DMLCS;
777 CSR_WRITE_4(sc, INTST, ~0);
778 CSR_WRITE_4(sc, INTEN, sc->sc_inten);
779
780 ifp->if_flags |= IFF_RUNNING;
781 ifp->if_flags &= ~IFF_OACTIVE;
782
783 if (sc->sc_chip == 0x8841) {
784 /* start one second timer */
785 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
786 }
787 #ifdef KSE_EVENT_COUNTERS
788 /* start statistics gather 1 minute timer */
789 zerostats(sc);
790 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
791 #endif
792
793 out:
794 if (error) {
795 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
796 ifp->if_timer = 0;
797 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
798 }
799 return error;
800 }
801
802 static void
803 kse_stop(struct ifnet *ifp, int disable)
804 {
805 struct kse_softc *sc = ifp->if_softc;
806 struct kse_txsoft *txs;
807 int i;
808
809 if (sc->sc_chip == 0x8841)
810 callout_stop(&sc->sc_callout);
811 callout_stop(&sc->sc_stat_ch);
812
813 sc->sc_txc &= ~TXC_TEN;
814 sc->sc_rxc &= ~RXC_REN;
815 CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
816 CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
817
818 for (i = 0; i < KSE_TXQUEUELEN; i++) {
819 txs = &sc->sc_txsoft[i];
820 if (txs->txs_mbuf != NULL) {
821 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
822 m_freem(txs->txs_mbuf);
823 txs->txs_mbuf = NULL;
824 }
825 }
826
827 if (disable)
828 rxdrain(sc);
829
830 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831 ifp->if_timer = 0;
832 }
833
834 static void
835 kse_reset(struct kse_softc *sc)
836 {
837
838 CSR_WRITE_2(sc, GRR, 1);
839 delay(1000); /* PDF does not mention the delay amount */
840 CSR_WRITE_2(sc, GRR, 0);
841
842 CSR_WRITE_2(sc, CIDR, 1);
843 }
844
845 static void
846 kse_watchdog(struct ifnet *ifp)
847 {
848 struct kse_softc *sc = ifp->if_softc;
849
850 /*
851 * Since we're not interrupting every packet, sweep
852 * up before we report an error.
853 */
854 txreap(sc);
855
856 if (sc->sc_txfree != KSE_NTXDESC) {
857 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
858 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
859 sc->sc_txnext);
860 ifp->if_oerrors++;
861
862 /* Reset the interface. */
863 kse_init(ifp);
864 }
865 else if (ifp->if_flags & IFF_DEBUG)
866 printf("%s: recovered from device timeout\n",
867 sc->sc_dev.dv_xname);
868
869 /* Try to get more packets going. */
870 kse_start(ifp);
871 }
872
873 static void
874 kse_start(struct ifnet *ifp)
875 {
876 struct kse_softc *sc = ifp->if_softc;
877 struct mbuf *m0, *m;
878 struct kse_txsoft *txs;
879 bus_dmamap_t dmamap;
880 int error, nexttx, lasttx, ofree, seg;
881 uint32_t tdes0;
882
883 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
884 return;
885
886 /*
887 * Remember the previous number of free descriptors.
888 */
889 ofree = sc->sc_txfree;
890
891 /*
892 * Loop through the send queue, setting up transmit descriptors
893 * until we drain the queue, or use up all available transmit
894 * descriptors.
895 */
896 for (;;) {
897 IFQ_POLL(&ifp->if_snd, m0);
898 if (m0 == NULL)
899 break;
900
901 if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
902 txreap(sc);
903 if (sc->sc_txsfree == 0)
904 break;
905 }
906 txs = &sc->sc_txsoft[sc->sc_txsnext];
907 dmamap = txs->txs_dmamap;
908
909 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
910 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
911 if (error) {
912 if (error == EFBIG) {
913 printf("%s: Tx packet consumes too many "
914 "DMA segments, dropping...\n",
915 sc->sc_dev.dv_xname);
916 IFQ_DEQUEUE(&ifp->if_snd, m0);
917 m_freem(m0);
918 continue;
919 }
920 /* Short on resources, just stop for now. */
921 break;
922 }
923
924 if (dmamap->dm_nsegs > sc->sc_txfree) {
925 /*
926 * Not enough free descriptors to transmit this
927 * packet. We haven't committed anything yet,
928 * so just unload the DMA map, put the packet
929 * back on the queue, and punt. Notify the upper
930 * layer that there are not more slots left.
931 */
932 ifp->if_flags |= IFF_OACTIVE;
933 bus_dmamap_unload(sc->sc_dmat, dmamap);
934 break;
935 }
936
937 IFQ_DEQUEUE(&ifp->if_snd, m0);
938
939 /*
940 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
941 */
942
943 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
944 BUS_DMASYNC_PREWRITE);
945
946 lasttx = -1; tdes0 = 0;
947 for (nexttx = sc->sc_txnext, seg = 0;
948 seg < dmamap->dm_nsegs;
949 seg++, nexttx = KSE_NEXTTX(nexttx)) {
950 struct tdes *tdes = &sc->sc_txdescs[nexttx];
951 /*
952 * If this is the first descriptor we're
953 * enqueueing, don't set the OWN bit just
954 * yet. That could cause a race condition.
955 * We'll do it below.
956 */
957 tdes->t2 = dmamap->dm_segs[seg].ds_addr;
958 tdes->t1 = sc->sc_t1csum
959 | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
960 tdes->t0 = tdes0;
961 tdes0 |= T0_OWN;
962 lasttx = nexttx;
963 }
964
965 /*
966 * Outgoing NFS mbuf must be unloaded when Tx completed.
967 * Without T1_IC NFS mbuf is left unack'ed for excessive
968 * time and NFS stops to proceed until kse_watchdog()
969 * calls txreap() to reclaim the unack'ed mbuf.
970 * It's painful to traverse every mbuf chain to determine
971 * whether someone is waiting for Tx completion.
972 */
973 m = m0;
974 do {
975 if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
976 sc->sc_txdescs[lasttx].t1 |= T1_IC;
977 break;
978 }
979 } while ((m = m->m_next) != NULL);
980
981 /* write last T0_OWN bit of the 1st segment */
982 sc->sc_txdescs[lasttx].t1 |= T1_LS;
983 sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
984 sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
985 KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
986 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
987
988 /* tell DMA start transmit */
989 CSR_WRITE_4(sc, MDTSC, 1);
990
991 txs->txs_mbuf = m0;
992 txs->txs_firstdesc = sc->sc_txnext;
993 txs->txs_lastdesc = lasttx;
994 txs->txs_ndesc = dmamap->dm_nsegs;
995
996 sc->sc_txfree -= txs->txs_ndesc;
997 sc->sc_txnext = nexttx;
998 sc->sc_txsfree--;
999 sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1000 #if NBPFILTER > 0
1001 /*
1002 * Pass the packet to any BPF listeners.
1003 */
1004 if (ifp->if_bpf)
1005 bpf_mtap(ifp->if_bpf, m0);
1006 #endif /* NBPFILTER > 0 */
1007 }
1008
1009 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1010 /* No more slots left; notify upper layer. */
1011 ifp->if_flags |= IFF_OACTIVE;
1012 }
1013 if (sc->sc_txfree != ofree) {
1014 /* Set a watchdog timer in case the chip flakes out. */
1015 ifp->if_timer = 5;
1016 }
1017 }
1018
1019 static void
1020 kse_set_filter(struct kse_softc *sc)
1021 {
1022 struct ether_multistep step;
1023 struct ether_multi *enm;
1024 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1025 uint32_t h, hashes[2];
1026
1027 sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1028 ifp->if_flags &= ~IFF_ALLMULTI;
1029 if (ifp->if_flags & IFF_PROMISC)
1030 return;
1031
1032 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1033 if (enm == NULL)
1034 return;
1035 hashes[0] = hashes[1] = 0;
1036 do {
1037 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1038 /*
1039 * We must listen to a range of multicast addresses.
1040 * For now, just accept all multicasts, rather than
1041 * trying to set only those filter bits needed to match
1042 * the range. (At this time, the only use of address
1043 * ranges is for IP multicast routing, for which the
1044 * range is big enough to require all bits set.)
1045 */
1046 goto allmulti;
1047 }
1048 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1049 hashes[h >> 5] |= 1 << (h & 0x1f);
1050 ETHER_NEXT_MULTI(step, enm);
1051 } while (enm != NULL);
1052 sc->sc_rxc |= RXC_MHTE;
1053 CSR_WRITE_4(sc, MTR0, hashes[0]);
1054 CSR_WRITE_4(sc, MTR1, hashes[1]);
1055 return;
1056 allmulti:
1057 sc->sc_rxc |= RXC_RM;
1058 ifp->if_flags |= IFF_ALLMULTI;
1059 }
1060
1061 static int
1062 add_rxbuf(struct kse_softc *sc, int idx)
1063 {
1064 struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1065 struct mbuf *m;
1066 int error;
1067
1068 MGETHDR(m, M_DONTWAIT, MT_DATA);
1069 if (m == NULL)
1070 return ENOBUFS;
1071
1072 MCLGET(m, M_DONTWAIT);
1073 if ((m->m_flags & M_EXT) == 0) {
1074 m_freem(m);
1075 return ENOBUFS;
1076 }
1077
1078 if (rxs->rxs_mbuf != NULL)
1079 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1080
1081 rxs->rxs_mbuf = m;
1082
1083 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1084 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1085 if (error) {
1086 printf("%s: can't load rx DMA map %d, error = %d\n",
1087 sc->sc_dev.dv_xname, idx, error);
1088 panic("kse_add_rxbuf");
1089 }
1090
1091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1093
1094 KSE_INIT_RXDESC(sc, idx);
1095
1096 return 0;
1097 }
1098
1099 static void
1100 rxdrain(struct kse_softc *sc)
1101 {
1102 struct kse_rxsoft *rxs;
1103 int i;
1104
1105 for (i = 0; i < KSE_NRXDESC; i++) {
1106 rxs = &sc->sc_rxsoft[i];
1107 if (rxs->rxs_mbuf != NULL) {
1108 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1109 m_freem(rxs->rxs_mbuf);
1110 rxs->rxs_mbuf = NULL;
1111 }
1112 }
1113 }
1114
1115 static int
1116 kse_intr(void *arg)
1117 {
1118 struct kse_softc *sc = arg;
1119 uint32_t isr;
1120
1121 if ((isr = CSR_READ_4(sc, INTST)) == 0)
1122 return 0;
1123
1124 if (isr & INT_DMRS)
1125 rxintr(sc);
1126 if (isr & INT_DMTS)
1127 txreap(sc);
1128 if (isr & INT_DMLCS)
1129 lnkchg(sc);
1130 if (isr & INT_DMRBUS)
1131 printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
1132
1133 CSR_WRITE_4(sc, INTST, isr);
1134 return 1;
1135 }
1136
1137 static void
1138 rxintr(struct kse_softc *sc)
1139 {
1140 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1141 struct kse_rxsoft *rxs;
1142 struct mbuf *m;
1143 uint32_t rxstat;
1144 int i, len;
1145
1146 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1147 rxs = &sc->sc_rxsoft[i];
1148
1149 KSE_CDRXSYNC(sc, i,
1150 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1151
1152 rxstat = sc->sc_rxdescs[i].r0;
1153
1154 if (rxstat & R0_OWN) /* desc is left empty */
1155 break;
1156
1157 /* R0_FS|R0_LS must have been marked for this desc */
1158
1159 if (rxstat & R0_ES) {
1160 ifp->if_ierrors++;
1161 #define PRINTERR(bit, str) \
1162 if (rxstat & (bit)) \
1163 printf("%s: receive error: %s\n", \
1164 sc->sc_dev.dv_xname, str)
1165 PRINTERR(R0_TL, "frame too long");
1166 PRINTERR(R0_RF, "runt frame");
1167 PRINTERR(R0_CE, "bad FCS");
1168 #undef PRINTERR
1169 KSE_INIT_RXDESC(sc, i);
1170 continue;
1171 }
1172
1173 /* HW errata; frame might be too small or too large */
1174
1175 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1176 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1177
1178 len = rxstat & R0_FL_MASK;
1179 len -= ETHER_CRC_LEN; /* trim CRC off */
1180 m = rxs->rxs_mbuf;
1181
1182 if (add_rxbuf(sc, i) != 0) {
1183 ifp->if_ierrors++;
1184 KSE_INIT_RXDESC(sc, i);
1185 bus_dmamap_sync(sc->sc_dmat,
1186 rxs->rxs_dmamap, 0,
1187 rxs->rxs_dmamap->dm_mapsize,
1188 BUS_DMASYNC_PREREAD);
1189 continue;
1190 }
1191
1192 ifp->if_ipackets++;
1193 m->m_pkthdr.rcvif = ifp;
1194 m->m_pkthdr.len = m->m_len = len;
1195
1196 if (sc->sc_mcsum) {
1197 m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1198 if (rxstat & R0_IPE)
1199 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1200 if (rxstat & (R0_TCPE | R0_UDPE))
1201 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1202 }
1203 #if NBPFILTER > 0
1204 if (ifp->if_bpf)
1205 bpf_mtap(ifp->if_bpf, m);
1206 #endif /* NBPFILTER > 0 */
1207 (*ifp->if_input)(ifp, m);
1208 #ifdef KSEDIAGNOSTIC
1209 if (kse_monitor_rxintr > 0) {
1210 printf("m stat %x data %p len %d\n",
1211 rxstat, m->m_data, m->m_len);
1212 }
1213 #endif
1214 }
1215 sc->sc_rxptr = i;
1216 }
1217
1218 static void
1219 txreap(struct kse_softc *sc)
1220 {
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222 struct kse_txsoft *txs;
1223 uint32_t txstat;
1224 int i;
1225
1226 ifp->if_flags &= ~IFF_OACTIVE;
1227
1228 for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1229 i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1230 txs = &sc->sc_txsoft[i];
1231
1232 KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1233 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1234
1235 txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1236
1237 if (txstat & T0_OWN) /* desc is still in use */
1238 break;
1239
1240 /* there is no way to tell transmission status per frame */
1241
1242 ifp->if_opackets++;
1243
1244 sc->sc_txfree += txs->txs_ndesc;
1245 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1246 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1247 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1248 m_freem(txs->txs_mbuf);
1249 txs->txs_mbuf = NULL;
1250 }
1251 sc->sc_txsdirty = i;
1252 if (sc->sc_txsfree == KSE_TXQUEUELEN)
1253 ifp->if_timer = 0;
1254 }
1255
1256 static void
1257 lnkchg(struct kse_softc *sc)
1258 {
1259 struct ifmediareq ifmr;
1260
1261 #if 0 /* rambling link status */
1262 printf("%s: link %s\n", sc->sc_dev.dv_xname,
1263 (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1264 #endif
1265 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1266 }
1267
1268 static int
1269 ifmedia_upd(struct ifnet *ifp)
1270 {
1271 struct kse_softc *sc = ifp->if_softc;
1272 struct ifmedia *ifm = &sc->sc_media;
1273 uint16_t ctl;
1274
1275 ctl = 0;
1276 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1277 ctl |= (1U << 13); /* restart AN */
1278 ctl |= (1U << 7); /* enable AN */
1279 ctl |= (1U << 4); /* advertise flow control pause */
1280 ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1281 }
1282 else {
1283 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1284 ctl |= (1U << 6);
1285 if (ifm->ifm_media & IFM_FDX)
1286 ctl |= (1U << 5);
1287 }
1288 CSR_WRITE_2(sc, P1CR4, ctl);
1289
1290 sc->sc_media_active = IFM_NONE;
1291 sc->sc_media_status = IFM_AVALID;
1292
1293 return 0;
1294 }
1295
1296 static void
1297 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1298 {
1299 struct kse_softc *sc = ifp->if_softc;
1300 struct ifmedia *ifm = &sc->sc_media;
1301 uint16_t ctl, sts, result;
1302
1303 ifmr->ifm_status = IFM_AVALID;
1304 ifmr->ifm_active = IFM_ETHER;
1305
1306 ctl = CSR_READ_2(sc, P1CR4);
1307 sts = CSR_READ_2(sc, P1SR);
1308 if ((sts & (1U << 5)) == 0) {
1309 ifmr->ifm_active |= IFM_NONE;
1310 goto out; /* link is down */
1311 }
1312 ifmr->ifm_status |= IFM_ACTIVE;
1313 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1314 if ((sts & (1U << 6)) == 0) {
1315 ifmr->ifm_active |= IFM_NONE;
1316 goto out; /* negotiation in progress */
1317 }
1318 result = ctl & sts & 017;
1319 if (result & (1U << 3))
1320 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1321 else if (result & (1U << 2))
1322 ifmr->ifm_active |= IFM_100_TX;
1323 else if (result & (1U << 1))
1324 ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1325 else if (result & (1U << 0))
1326 ifmr->ifm_active |= IFM_10_T;
1327 else
1328 ifmr->ifm_active |= IFM_NONE;
1329 if (ctl & (1U << 4))
1330 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1331 if (sts & (1U << 4))
1332 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1333 }
1334 else {
1335 ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1336 if (sts & (1U << 9))
1337 ifmr->ifm_active |= IFM_FDX;
1338 if (sts & (1U << 12))
1339 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1340 if (sts & (1U << 11))
1341 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1342 }
1343
1344 out:
1345 sc->sc_media_status = ifmr->ifm_status;
1346 sc->sc_media_active = ifmr->ifm_active;
1347 }
1348
1349 static void
1350 phy_tick(void *arg)
1351 {
1352 struct kse_softc *sc = arg;
1353 struct ifmediareq ifmr;
1354 int s;
1355
1356 s = splnet();
1357 ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1358 splx(s);
1359
1360 callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1361 }
1362
1363 static int
1364 ifmedia2_upd(struct ifnet *ifp)
1365 {
1366 struct kse_softc *sc = ifp->if_softc;
1367
1368 sc->sc_media_status = IFM_AVALID;
1369 sc->sc_media_active = IFM_NONE;
1370 return 0;
1371 }
1372
1373 static void
1374 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1375 {
1376 struct kse_softc *sc = ifp->if_softc;
1377 int p1sts, p2sts;
1378
1379 ifmr->ifm_status = IFM_AVALID;
1380 ifmr->ifm_active = IFM_ETHER;
1381 p1sts = CSR_READ_2(sc, P1SR);
1382 p2sts = CSR_READ_2(sc, P2SR);
1383 if (((p1sts | p2sts) & (1U << 5)) == 0)
1384 ifmr->ifm_active |= IFM_NONE;
1385 else {
1386 ifmr->ifm_status |= IFM_ACTIVE;
1387 ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1388 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1389 }
1390 sc->sc_media_status = ifmr->ifm_status;
1391 sc->sc_media_active = ifmr->ifm_active;
1392 }
1393
1394 #ifdef KSE_EVENT_COUNTERS
1395 static void
1396 stat_tick(arg)
1397 void *arg;
1398 {
1399 struct kse_softc *sc = arg;
1400 struct ksext *ee = &sc->sc_ext;
1401 int nport, p, i, val;
1402
1403 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1404 for (p = 0; p < nport; p++) {
1405 for (i = 0; i < 27; i++) {
1406 val = 0x1c00 | (p * 0x20 + i);
1407 CSR_WRITE_2(sc, IACR, val);
1408 do {
1409 val = CSR_READ_2(sc, IADR5) << 16;
1410 } while ((val & (1U << 30)) == 0);
1411 if (val & (1U << 31))
1412 val = 0x3fffffff; /* has made overflow */
1413 val |= CSR_READ_2(sc, IADR4);
1414 ee->pev[p][i].ev_count += val; /* i (0-31) */
1415 }
1416 }
1417 nport = (sc->sc_chip == 0x8842) ? 2 : 1;
1418 for (p = 0; p < nport; p++) {
1419 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1420 ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1421 CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 2 + 1);
1422 ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1423 }
1424 callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1425 }
1426
1427 static void
1428 zerostats(struct kse_softc *sc)
1429 {
1430 struct ksext *ee = &sc->sc_ext;
1431 int nport, p, i, val;
1432
1433 /* make sure all the HW counters get zero */
1434 nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1435 for (p = 0; p < nport; p++) {
1436 for (i = 0; i < 31; i++) {
1437 val = 0x1c00 | (p * 0x20 + i);
1438 CSR_WRITE_2(sc, IACR, val);
1439 do {
1440 val = CSR_READ_2(sc, IADR5) << 16;
1441 } while ((val & (1U << 30)) == 0);
1442 if (val & (1U << 31))
1443 val = 0x3fffffff; /* has made overflow */
1444 val |= CSR_READ_2(sc, IADR4);
1445 ee->pev[p][i].ev_count = 0;
1446 }
1447 }
1448 }
1449 #endif
1450