if_msk.c revision 1.3.2.2 1 1.3.2.2 ad /* $NetBSD: if_msk.c,v 1.3.2.2 2006/11/18 21:34:30 ad Exp $ */
2 1.3.2.2 ad /* $OpenBSD: if_msk.c,v 1.11 2006/08/17 22:07:40 brad Exp $ */
3 1.3.2.2 ad
4 1.3.2.2 ad /*
5 1.3.2.2 ad * Copyright (c) 1997, 1998, 1999, 2000
6 1.3.2.2 ad * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 1.3.2.2 ad *
8 1.3.2.2 ad * Redistribution and use in source and binary forms, with or without
9 1.3.2.2 ad * modification, are permitted provided that the following conditions
10 1.3.2.2 ad * are met:
11 1.3.2.2 ad * 1. Redistributions of source code must retain the above copyright
12 1.3.2.2 ad * notice, this list of conditions and the following disclaimer.
13 1.3.2.2 ad * 2. Redistributions in binary form must reproduce the above copyright
14 1.3.2.2 ad * notice, this list of conditions and the following disclaimer in the
15 1.3.2.2 ad * documentation and/or other materials provided with the distribution.
16 1.3.2.2 ad * 3. All advertising materials mentioning features or use of this software
17 1.3.2.2 ad * must display the following acknowledgement:
18 1.3.2.2 ad * This product includes software developed by Bill Paul.
19 1.3.2.2 ad * 4. Neither the name of the author nor the names of any co-contributors
20 1.3.2.2 ad * may be used to endorse or promote products derived from this software
21 1.3.2.2 ad * without specific prior written permission.
22 1.3.2.2 ad *
23 1.3.2.2 ad * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 1.3.2.2 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.3.2.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.3.2.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 1.3.2.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.3.2.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.3.2.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.3.2.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.3.2.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.3.2.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 1.3.2.2 ad * THE POSSIBILITY OF SUCH DAMAGE.
34 1.3.2.2 ad *
35 1.3.2.2 ad * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 1.3.2.2 ad */
37 1.3.2.2 ad
38 1.3.2.2 ad /*
39 1.3.2.2 ad * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 1.3.2.2 ad *
41 1.3.2.2 ad * Permission to use, copy, modify, and distribute this software for any
42 1.3.2.2 ad * purpose with or without fee is hereby granted, provided that the above
43 1.3.2.2 ad * copyright notice and this permission notice appear in all copies.
44 1.3.2.2 ad *
45 1.3.2.2 ad * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 1.3.2.2 ad * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 1.3.2.2 ad * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 1.3.2.2 ad * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 1.3.2.2 ad * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 1.3.2.2 ad * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 1.3.2.2 ad * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 1.3.2.2 ad */
53 1.3.2.2 ad
54 1.3.2.2 ad #include "bpfilter.h"
55 1.3.2.2 ad #include "rnd.h"
56 1.3.2.2 ad
57 1.3.2.2 ad #include <sys/param.h>
58 1.3.2.2 ad #include <sys/systm.h>
59 1.3.2.2 ad #include <sys/sockio.h>
60 1.3.2.2 ad #include <sys/mbuf.h>
61 1.3.2.2 ad #include <sys/malloc.h>
62 1.3.2.2 ad #include <sys/kernel.h>
63 1.3.2.2 ad #include <sys/socket.h>
64 1.3.2.2 ad #include <sys/device.h>
65 1.3.2.2 ad #include <sys/queue.h>
66 1.3.2.2 ad #include <sys/callout.h>
67 1.3.2.2 ad #include <sys/sysctl.h>
68 1.3.2.2 ad #include <sys/endian.h>
69 1.3.2.2 ad #ifdef __NetBSD__
70 1.3.2.2 ad #define letoh16 htole16
71 1.3.2.2 ad #define letoh32 htole32
72 1.3.2.2 ad #endif
73 1.3.2.2 ad
74 1.3.2.2 ad #include <net/if.h>
75 1.3.2.2 ad #include <net/if_dl.h>
76 1.3.2.2 ad #include <net/if_types.h>
77 1.3.2.2 ad
78 1.3.2.2 ad #include <net/if_media.h>
79 1.3.2.2 ad
80 1.3.2.2 ad #if NBPFILTER > 0
81 1.3.2.2 ad #include <net/bpf.h>
82 1.3.2.2 ad #endif
83 1.3.2.2 ad #if NRND > 0
84 1.3.2.2 ad #include <sys/rnd.h>
85 1.3.2.2 ad #endif
86 1.3.2.2 ad
87 1.3.2.2 ad #include <dev/mii/mii.h>
88 1.3.2.2 ad #include <dev/mii/miivar.h>
89 1.3.2.2 ad #include <dev/mii/brgphyreg.h>
90 1.3.2.2 ad
91 1.3.2.2 ad #include <dev/pci/pcireg.h>
92 1.3.2.2 ad #include <dev/pci/pcivar.h>
93 1.3.2.2 ad #include <dev/pci/pcidevs.h>
94 1.3.2.2 ad
95 1.3.2.2 ad #include <dev/pci/if_skreg.h>
96 1.3.2.2 ad #include <dev/pci/if_mskvar.h>
97 1.3.2.2 ad
98 1.3.2.2 ad int mskc_probe(struct device *, struct cfdata *, void *);
99 1.3.2.2 ad void mskc_attach(struct device *, struct device *self, void *aux);
100 1.3.2.2 ad void mskc_shutdown(void *);
101 1.3.2.2 ad int msk_probe(struct device *, struct cfdata *, void *);
102 1.3.2.2 ad void msk_attach(struct device *, struct device *self, void *aux);
103 1.3.2.2 ad int mskcprint(void *, const char *);
104 1.3.2.2 ad int msk_intr(void *);
105 1.3.2.2 ad void msk_intr_yukon(struct sk_if_softc *);
106 1.3.2.2 ad __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
107 1.3.2.2 ad void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
108 1.3.2.2 ad void msk_txeof(struct sk_if_softc *);
109 1.3.2.2 ad int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
110 1.3.2.2 ad void msk_start(struct ifnet *);
111 1.3.2.2 ad int msk_ioctl(struct ifnet *, u_long, caddr_t);
112 1.3.2.2 ad int msk_init(struct ifnet *);
113 1.3.2.2 ad void msk_init_yukon(struct sk_if_softc *);
114 1.3.2.2 ad void msk_stop(struct ifnet *, int);
115 1.3.2.2 ad void msk_watchdog(struct ifnet *);
116 1.3.2.2 ad int msk_ifmedia_upd(struct ifnet *);
117 1.3.2.2 ad void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 1.3.2.2 ad void msk_reset(struct sk_softc *);
119 1.3.2.2 ad int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
120 1.3.2.2 ad int msk_alloc_jumbo_mem(struct sk_if_softc *);
121 1.3.2.2 ad void *msk_jalloc(struct sk_if_softc *);
122 1.3.2.2 ad void msk_jfree(struct mbuf *, caddr_t, size_t, void *);
123 1.3.2.2 ad int msk_init_rx_ring(struct sk_if_softc *);
124 1.3.2.2 ad int msk_init_tx_ring(struct sk_if_softc *);
125 1.3.2.2 ad
126 1.3.2.2 ad void msk_update_int_mod(struct sk_softc *);
127 1.3.2.2 ad
128 1.3.2.2 ad int msk_marv_miibus_readreg(struct device *, int, int);
129 1.3.2.2 ad void msk_marv_miibus_writereg(struct device *, int, int, int);
130 1.3.2.2 ad void msk_marv_miibus_statchg(struct device *);
131 1.3.2.2 ad
132 1.3.2.2 ad u_int32_t msk_yukon_hash(caddr_t);
133 1.3.2.2 ad void msk_setfilt(struct sk_if_softc *, caddr_t, int);
134 1.3.2.2 ad void msk_setmulti(struct sk_if_softc *);
135 1.3.2.2 ad void msk_setpromisc(struct sk_if_softc *);
136 1.3.2.2 ad void msk_yukon_tick(void *);
137 1.3.2.2 ad
138 1.3.2.2 ad /* #define MSK_DEBUG 1 */
139 1.3.2.2 ad #ifdef MSK_DEBUG
140 1.3.2.2 ad #define DPRINTF(x) if (mskdebug) printf x
141 1.3.2.2 ad #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 1.3.2.2 ad int mskdebug = MSK_DEBUG;
143 1.3.2.2 ad
144 1.3.2.2 ad void msk_dump_txdesc(struct msk_tx_desc *, int);
145 1.3.2.2 ad void msk_dump_mbuf(struct mbuf *);
146 1.3.2.2 ad void msk_dump_bytes(const char *, int);
147 1.3.2.2 ad #else
148 1.3.2.2 ad #define DPRINTF(x)
149 1.3.2.2 ad #define DPRINTFN(n,x)
150 1.3.2.2 ad #endif
151 1.3.2.2 ad
152 1.3.2.2 ad static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 1.3.2.2 ad static int msk_root_num;
154 1.3.2.2 ad
155 1.3.2.2 ad /* supported device vendors */
156 1.3.2.2 ad static const struct msk_product {
157 1.3.2.2 ad pci_vendor_id_t msk_vendor;
158 1.3.2.2 ad pci_product_id_t msk_product;
159 1.3.2.2 ad } msk_products[] = {
160 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
161 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
162 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
163 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
164 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
165 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
166 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
167 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
169 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
170 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
171 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
172 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
173 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
174 1.3.2.2 ad { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_3 },
175 1.3.2.2 ad { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
176 1.3.2.2 ad { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
177 1.3.2.2 ad };
178 1.3.2.2 ad
179 1.3.2.2 ad static inline u_int32_t
180 1.3.2.2 ad sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
181 1.3.2.2 ad {
182 1.3.2.2 ad return CSR_READ_4(sc, reg);
183 1.3.2.2 ad }
184 1.3.2.2 ad
185 1.3.2.2 ad static inline u_int16_t
186 1.3.2.2 ad sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
187 1.3.2.2 ad {
188 1.3.2.2 ad return CSR_READ_2(sc, reg);
189 1.3.2.2 ad }
190 1.3.2.2 ad
191 1.3.2.2 ad static inline u_int8_t
192 1.3.2.2 ad sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
193 1.3.2.2 ad {
194 1.3.2.2 ad return CSR_READ_1(sc, reg);
195 1.3.2.2 ad }
196 1.3.2.2 ad
197 1.3.2.2 ad static inline void
198 1.3.2.2 ad sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
199 1.3.2.2 ad {
200 1.3.2.2 ad CSR_WRITE_4(sc, reg, x);
201 1.3.2.2 ad }
202 1.3.2.2 ad
203 1.3.2.2 ad static inline void
204 1.3.2.2 ad sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
205 1.3.2.2 ad {
206 1.3.2.2 ad CSR_WRITE_2(sc, reg, x);
207 1.3.2.2 ad }
208 1.3.2.2 ad
209 1.3.2.2 ad static inline void
210 1.3.2.2 ad sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
211 1.3.2.2 ad {
212 1.3.2.2 ad CSR_WRITE_1(sc, reg, x);
213 1.3.2.2 ad }
214 1.3.2.2 ad
215 1.3.2.2 ad int
216 1.3.2.2 ad msk_marv_miibus_readreg(struct device *dev, int phy, int reg)
217 1.3.2.2 ad {
218 1.3.2.2 ad struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
219 1.3.2.2 ad u_int16_t val;
220 1.3.2.2 ad int i;
221 1.3.2.2 ad
222 1.3.2.2 ad if (phy != 0 ||
223 1.3.2.2 ad (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
224 1.3.2.2 ad sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
225 1.3.2.2 ad DPRINTFN(9, ("msk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
226 1.3.2.2 ad phy, reg));
227 1.3.2.2 ad return (0);
228 1.3.2.2 ad }
229 1.3.2.2 ad
230 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
231 1.3.2.2 ad YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
232 1.3.2.2 ad
233 1.3.2.2 ad for (i = 0; i < SK_TIMEOUT; i++) {
234 1.3.2.2 ad DELAY(1);
235 1.3.2.2 ad val = SK_YU_READ_2(sc_if, YUKON_SMICR);
236 1.3.2.2 ad if (val & YU_SMICR_READ_VALID)
237 1.3.2.2 ad break;
238 1.3.2.2 ad }
239 1.3.2.2 ad
240 1.3.2.2 ad if (i == SK_TIMEOUT) {
241 1.3.2.2 ad aprint_error("%s: phy failed to come ready\n",
242 1.3.2.2 ad sc_if->sk_dev.dv_xname);
243 1.3.2.2 ad return (0);
244 1.3.2.2 ad }
245 1.3.2.2 ad
246 1.3.2.2 ad DPRINTFN(9, ("msk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
247 1.3.2.2 ad SK_TIMEOUT));
248 1.3.2.2 ad
249 1.3.2.2 ad val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
250 1.3.2.2 ad
251 1.3.2.2 ad DPRINTFN(9, ("msk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
252 1.3.2.2 ad phy, reg, val));
253 1.3.2.2 ad
254 1.3.2.2 ad return (val);
255 1.3.2.2 ad }
256 1.3.2.2 ad
257 1.3.2.2 ad void
258 1.3.2.2 ad msk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
259 1.3.2.2 ad {
260 1.3.2.2 ad struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
261 1.3.2.2 ad int i;
262 1.3.2.2 ad
263 1.3.2.2 ad DPRINTFN(9, ("msk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
264 1.3.2.2 ad phy, reg, val));
265 1.3.2.2 ad
266 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
267 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
268 1.3.2.2 ad YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
269 1.3.2.2 ad
270 1.3.2.2 ad for (i = 0; i < SK_TIMEOUT; i++) {
271 1.3.2.2 ad DELAY(1);
272 1.3.2.2 ad if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
273 1.3.2.2 ad break;
274 1.3.2.2 ad }
275 1.3.2.2 ad
276 1.3.2.2 ad if (i == SK_TIMEOUT)
277 1.3.2.2 ad aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
278 1.3.2.2 ad }
279 1.3.2.2 ad
280 1.3.2.2 ad void
281 1.3.2.2 ad msk_marv_miibus_statchg(struct device *dev)
282 1.3.2.2 ad {
283 1.3.2.2 ad DPRINTFN(9, ("msk_marv_miibus_statchg: gpcr=%x\n",
284 1.3.2.2 ad SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
285 1.3.2.2 ad }
286 1.3.2.2 ad
287 1.3.2.2 ad #define HASH_BITS 6
288 1.3.2.2 ad
289 1.3.2.2 ad u_int32_t
290 1.3.2.2 ad msk_yukon_hash(caddr_t addr)
291 1.3.2.2 ad {
292 1.3.2.2 ad u_int32_t crc;
293 1.3.2.2 ad
294 1.3.2.2 ad crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
295 1.3.2.2 ad return (crc & ((1 << HASH_BITS) - 1));
296 1.3.2.2 ad }
297 1.3.2.2 ad
298 1.3.2.2 ad void
299 1.3.2.2 ad msk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
300 1.3.2.2 ad {
301 1.3.2.2 ad int base = XM_RXFILT_ENTRY(slot);
302 1.3.2.2 ad
303 1.3.2.2 ad SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
304 1.3.2.2 ad SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
305 1.3.2.2 ad SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
306 1.3.2.2 ad }
307 1.3.2.2 ad
308 1.3.2.2 ad void
309 1.3.2.2 ad msk_setmulti(struct sk_if_softc *sc_if)
310 1.3.2.2 ad {
311 1.3.2.2 ad struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
312 1.3.2.2 ad u_int32_t hashes[2] = { 0, 0 };
313 1.3.2.2 ad int h;
314 1.3.2.2 ad struct ethercom *ec = &sc_if->sk_ethercom;
315 1.3.2.2 ad struct ether_multi *enm;
316 1.3.2.2 ad struct ether_multistep step;
317 1.3.2.2 ad
318 1.3.2.2 ad /* First, zot all the existing filters. */
319 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
320 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
321 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
322 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
323 1.3.2.2 ad
324 1.3.2.2 ad
325 1.3.2.2 ad /* Now program new ones. */
326 1.3.2.2 ad allmulti:
327 1.3.2.2 ad if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 1.3.2.2 ad hashes[0] = 0xFFFFFFFF;
329 1.3.2.2 ad hashes[1] = 0xFFFFFFFF;
330 1.3.2.2 ad } else {
331 1.3.2.2 ad /* First find the tail of the list. */
332 1.3.2.2 ad ETHER_FIRST_MULTI(step, ec, enm);
333 1.3.2.2 ad while (enm != NULL) {
334 1.3.2.2 ad if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
335 1.3.2.2 ad ETHER_ADDR_LEN)) {
336 1.3.2.2 ad ifp->if_flags |= IFF_ALLMULTI;
337 1.3.2.2 ad goto allmulti;
338 1.3.2.2 ad }
339 1.3.2.2 ad h = msk_yukon_hash(enm->enm_addrlo);
340 1.3.2.2 ad if (h < 32)
341 1.3.2.2 ad hashes[0] |= (1 << h);
342 1.3.2.2 ad else
343 1.3.2.2 ad hashes[1] |= (1 << (h - 32));
344 1.3.2.2 ad
345 1.3.2.2 ad ETHER_NEXT_MULTI(step, enm);
346 1.3.2.2 ad }
347 1.3.2.2 ad }
348 1.3.2.2 ad
349 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
350 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
351 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
352 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
353 1.3.2.2 ad }
354 1.3.2.2 ad
355 1.3.2.2 ad void
356 1.3.2.2 ad msk_setpromisc(struct sk_if_softc *sc_if)
357 1.3.2.2 ad {
358 1.3.2.2 ad struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
359 1.3.2.2 ad
360 1.3.2.2 ad if (ifp->if_flags & IFF_PROMISC)
361 1.3.2.2 ad SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
362 1.3.2.2 ad YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 1.3.2.2 ad else
364 1.3.2.2 ad SK_YU_SETBIT_2(sc_if, YUKON_RCR,
365 1.3.2.2 ad YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 1.3.2.2 ad }
367 1.3.2.2 ad
368 1.3.2.2 ad int
369 1.3.2.2 ad msk_init_rx_ring(struct sk_if_softc *sc_if)
370 1.3.2.2 ad {
371 1.3.2.2 ad struct msk_chain_data *cd = &sc_if->sk_cdata;
372 1.3.2.2 ad struct msk_ring_data *rd = sc_if->sk_rdata;
373 1.3.2.2 ad int i, nexti;
374 1.3.2.2 ad
375 1.3.2.2 ad bzero((char *)rd->sk_rx_ring,
376 1.3.2.2 ad sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
377 1.3.2.2 ad
378 1.3.2.2 ad for (i = 0; i < MSK_RX_RING_CNT; i++) {
379 1.3.2.2 ad cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
380 1.3.2.2 ad if (i == (MSK_RX_RING_CNT - 1))
381 1.3.2.2 ad nexti = 0;
382 1.3.2.2 ad else
383 1.3.2.2 ad nexti = i + 1;
384 1.3.2.2 ad cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
385 1.3.2.2 ad }
386 1.3.2.2 ad
387 1.3.2.2 ad for (i = 0; i < MSK_RX_RING_CNT; i++) {
388 1.3.2.2 ad if (msk_newbuf(sc_if, i, NULL,
389 1.3.2.2 ad sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
390 1.3.2.2 ad aprint_error("%s: failed alloc of %dth mbuf\n",
391 1.3.2.2 ad sc_if->sk_dev.dv_xname, i);
392 1.3.2.2 ad return (ENOBUFS);
393 1.3.2.2 ad }
394 1.3.2.2 ad }
395 1.3.2.2 ad
396 1.3.2.2 ad sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
397 1.3.2.2 ad sc_if->sk_cdata.sk_rx_cons = 0;
398 1.3.2.2 ad
399 1.3.2.2 ad return (0);
400 1.3.2.2 ad }
401 1.3.2.2 ad
402 1.3.2.2 ad int
403 1.3.2.2 ad msk_init_tx_ring(struct sk_if_softc *sc_if)
404 1.3.2.2 ad {
405 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
406 1.3.2.2 ad struct msk_chain_data *cd = &sc_if->sk_cdata;
407 1.3.2.2 ad struct msk_ring_data *rd = sc_if->sk_rdata;
408 1.3.2.2 ad bus_dmamap_t dmamap;
409 1.3.2.2 ad struct sk_txmap_entry *entry;
410 1.3.2.2 ad int i, nexti;
411 1.3.2.2 ad
412 1.3.2.2 ad bzero((char *)sc_if->sk_rdata->sk_tx_ring,
413 1.3.2.2 ad sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
414 1.3.2.2 ad
415 1.3.2.2 ad SIMPLEQ_INIT(&sc_if->sk_txmap_head);
416 1.3.2.2 ad for (i = 0; i < MSK_TX_RING_CNT; i++) {
417 1.3.2.2 ad cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
418 1.3.2.2 ad if (i == (MSK_TX_RING_CNT - 1))
419 1.3.2.2 ad nexti = 0;
420 1.3.2.2 ad else
421 1.3.2.2 ad nexti = i + 1;
422 1.3.2.2 ad cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
423 1.3.2.2 ad
424 1.3.2.2 ad if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
425 1.3.2.2 ad SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
426 1.3.2.2 ad return (ENOBUFS);
427 1.3.2.2 ad
428 1.3.2.2 ad entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
429 1.3.2.2 ad if (!entry) {
430 1.3.2.2 ad bus_dmamap_destroy(sc->sc_dmatag, dmamap);
431 1.3.2.2 ad return (ENOBUFS);
432 1.3.2.2 ad }
433 1.3.2.2 ad entry->dmamap = dmamap;
434 1.3.2.2 ad SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
435 1.3.2.2 ad }
436 1.3.2.2 ad
437 1.3.2.2 ad sc_if->sk_cdata.sk_tx_prod = 0;
438 1.3.2.2 ad sc_if->sk_cdata.sk_tx_cons = 0;
439 1.3.2.2 ad sc_if->sk_cdata.sk_tx_cnt = 0;
440 1.3.2.2 ad
441 1.3.2.2 ad MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
442 1.3.2.2 ad BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
443 1.3.2.2 ad
444 1.3.2.2 ad return (0);
445 1.3.2.2 ad }
446 1.3.2.2 ad
447 1.3.2.2 ad int
448 1.3.2.2 ad msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
449 1.3.2.2 ad bus_dmamap_t dmamap)
450 1.3.2.2 ad {
451 1.3.2.2 ad struct mbuf *m_new = NULL;
452 1.3.2.2 ad struct sk_chain *c;
453 1.3.2.2 ad struct msk_rx_desc *r;
454 1.3.2.2 ad
455 1.3.2.2 ad if (m == NULL) {
456 1.3.2.2 ad caddr_t buf = NULL;
457 1.3.2.2 ad
458 1.3.2.2 ad MGETHDR(m_new, M_DONTWAIT, MT_DATA);
459 1.3.2.2 ad if (m_new == NULL)
460 1.3.2.2 ad return (ENOBUFS);
461 1.3.2.2 ad
462 1.3.2.2 ad /* Allocate the jumbo buffer */
463 1.3.2.2 ad buf = msk_jalloc(sc_if);
464 1.3.2.2 ad if (buf == NULL) {
465 1.3.2.2 ad m_freem(m_new);
466 1.3.2.2 ad DPRINTFN(1, ("%s jumbo allocation failed -- packet "
467 1.3.2.2 ad "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
468 1.3.2.2 ad return (ENOBUFS);
469 1.3.2.2 ad }
470 1.3.2.2 ad
471 1.3.2.2 ad /* Attach the buffer to the mbuf */
472 1.3.2.2 ad m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
473 1.3.2.2 ad MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
474 1.3.2.2 ad } else {
475 1.3.2.2 ad /*
476 1.3.2.2 ad * We're re-using a previously allocated mbuf;
477 1.3.2.2 ad * be sure to re-init pointers and lengths to
478 1.3.2.2 ad * default values.
479 1.3.2.2 ad */
480 1.3.2.2 ad m_new = m;
481 1.3.2.2 ad m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
482 1.3.2.2 ad m_new->m_data = m_new->m_ext.ext_buf;
483 1.3.2.2 ad }
484 1.3.2.2 ad m_adj(m_new, ETHER_ALIGN);
485 1.3.2.2 ad
486 1.3.2.2 ad c = &sc_if->sk_cdata.sk_rx_chain[i];
487 1.3.2.2 ad r = c->sk_le;
488 1.3.2.2 ad c->sk_mbuf = m_new;
489 1.3.2.2 ad r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
490 1.3.2.2 ad (((vaddr_t)m_new->m_data
491 1.3.2.2 ad - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
492 1.3.2.2 ad r->sk_len = htole16(SK_JLEN);
493 1.3.2.2 ad r->sk_ctl = 0;
494 1.3.2.2 ad r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
495 1.3.2.2 ad
496 1.3.2.2 ad MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
497 1.3.2.2 ad
498 1.3.2.2 ad return (0);
499 1.3.2.2 ad }
500 1.3.2.2 ad
501 1.3.2.2 ad /*
502 1.3.2.2 ad * Memory management for jumbo frames.
503 1.3.2.2 ad */
504 1.3.2.2 ad
505 1.3.2.2 ad int
506 1.3.2.2 ad msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
507 1.3.2.2 ad {
508 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
509 1.3.2.2 ad caddr_t ptr, kva;
510 1.3.2.2 ad bus_dma_segment_t seg;
511 1.3.2.2 ad int i, rseg, state, error;
512 1.3.2.2 ad struct sk_jpool_entry *entry;
513 1.3.2.2 ad
514 1.3.2.2 ad state = error = 0;
515 1.3.2.2 ad
516 1.3.2.2 ad /* Grab a big chunk o' storage. */
517 1.3.2.2 ad if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
518 1.3.2.2 ad &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
519 1.3.2.2 ad aprint_error(": can't alloc rx buffers");
520 1.3.2.2 ad return (ENOBUFS);
521 1.3.2.2 ad }
522 1.3.2.2 ad
523 1.3.2.2 ad state = 1;
524 1.3.2.2 ad if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, &kva,
525 1.3.2.2 ad BUS_DMA_NOWAIT)) {
526 1.3.2.2 ad aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
527 1.3.2.2 ad error = ENOBUFS;
528 1.3.2.2 ad goto out;
529 1.3.2.2 ad }
530 1.3.2.2 ad
531 1.3.2.2 ad state = 2;
532 1.3.2.2 ad if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
533 1.3.2.2 ad BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
534 1.3.2.2 ad aprint_error(": can't create dma map");
535 1.3.2.2 ad error = ENOBUFS;
536 1.3.2.2 ad goto out;
537 1.3.2.2 ad }
538 1.3.2.2 ad
539 1.3.2.2 ad state = 3;
540 1.3.2.2 ad if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
541 1.3.2.2 ad kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
542 1.3.2.2 ad aprint_error(": can't load dma map");
543 1.3.2.2 ad error = ENOBUFS;
544 1.3.2.2 ad goto out;
545 1.3.2.2 ad }
546 1.3.2.2 ad
547 1.3.2.2 ad state = 4;
548 1.3.2.2 ad sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
549 1.3.2.2 ad DPRINTFN(1,("msk_jumbo_buf = %p\n", (caddr_t)sc_if->sk_cdata.sk_jumbo_buf));
550 1.3.2.2 ad
551 1.3.2.2 ad LIST_INIT(&sc_if->sk_jfree_listhead);
552 1.3.2.2 ad LIST_INIT(&sc_if->sk_jinuse_listhead);
553 1.3.2.2 ad
554 1.3.2.2 ad /*
555 1.3.2.2 ad * Now divide it up into 9K pieces and save the addresses
556 1.3.2.2 ad * in an array.
557 1.3.2.2 ad */
558 1.3.2.2 ad ptr = sc_if->sk_cdata.sk_jumbo_buf;
559 1.3.2.2 ad for (i = 0; i < MSK_JSLOTS; i++) {
560 1.3.2.2 ad sc_if->sk_cdata.sk_jslots[i] = ptr;
561 1.3.2.2 ad ptr += SK_JLEN;
562 1.3.2.2 ad entry = malloc(sizeof(struct sk_jpool_entry),
563 1.3.2.2 ad M_DEVBUF, M_NOWAIT);
564 1.3.2.2 ad if (entry == NULL) {
565 1.3.2.2 ad aprint_error(": no memory for jumbo buffer queue!");
566 1.3.2.2 ad error = ENOBUFS;
567 1.3.2.2 ad goto out;
568 1.3.2.2 ad }
569 1.3.2.2 ad entry->slot = i;
570 1.3.2.2 ad if (i)
571 1.3.2.2 ad LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
572 1.3.2.2 ad entry, jpool_entries);
573 1.3.2.2 ad else
574 1.3.2.2 ad LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
575 1.3.2.2 ad entry, jpool_entries);
576 1.3.2.2 ad }
577 1.3.2.2 ad out:
578 1.3.2.2 ad if (error != 0) {
579 1.3.2.2 ad switch (state) {
580 1.3.2.2 ad case 4:
581 1.3.2.2 ad bus_dmamap_unload(sc->sc_dmatag,
582 1.3.2.2 ad sc_if->sk_cdata.sk_rx_jumbo_map);
583 1.3.2.2 ad case 3:
584 1.3.2.2 ad bus_dmamap_destroy(sc->sc_dmatag,
585 1.3.2.2 ad sc_if->sk_cdata.sk_rx_jumbo_map);
586 1.3.2.2 ad case 2:
587 1.3.2.2 ad bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
588 1.3.2.2 ad case 1:
589 1.3.2.2 ad bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
590 1.3.2.2 ad break;
591 1.3.2.2 ad default:
592 1.3.2.2 ad break;
593 1.3.2.2 ad }
594 1.3.2.2 ad }
595 1.3.2.2 ad
596 1.3.2.2 ad return (error);
597 1.3.2.2 ad }
598 1.3.2.2 ad
599 1.3.2.2 ad /*
600 1.3.2.2 ad * Allocate a jumbo buffer.
601 1.3.2.2 ad */
602 1.3.2.2 ad void *
603 1.3.2.2 ad msk_jalloc(struct sk_if_softc *sc_if)
604 1.3.2.2 ad {
605 1.3.2.2 ad struct sk_jpool_entry *entry;
606 1.3.2.2 ad
607 1.3.2.2 ad entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
608 1.3.2.2 ad
609 1.3.2.2 ad if (entry == NULL)
610 1.3.2.2 ad return (NULL);
611 1.3.2.2 ad
612 1.3.2.2 ad LIST_REMOVE(entry, jpool_entries);
613 1.3.2.2 ad LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
614 1.3.2.2 ad return (sc_if->sk_cdata.sk_jslots[entry->slot]);
615 1.3.2.2 ad }
616 1.3.2.2 ad
617 1.3.2.2 ad /*
618 1.3.2.2 ad * Release a jumbo buffer.
619 1.3.2.2 ad */
620 1.3.2.2 ad void
621 1.3.2.2 ad msk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
622 1.3.2.2 ad {
623 1.3.2.2 ad struct sk_jpool_entry *entry;
624 1.3.2.2 ad struct sk_if_softc *sc;
625 1.3.2.2 ad int i, s;
626 1.3.2.2 ad
627 1.3.2.2 ad /* Extract the softc struct pointer. */
628 1.3.2.2 ad sc = (struct sk_if_softc *)arg;
629 1.3.2.2 ad
630 1.3.2.2 ad if (sc == NULL)
631 1.3.2.2 ad panic("msk_jfree: can't find softc pointer!");
632 1.3.2.2 ad
633 1.3.2.2 ad /* calculate the slot this buffer belongs to */
634 1.3.2.2 ad
635 1.3.2.2 ad i = ((vaddr_t)buf
636 1.3.2.2 ad - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
637 1.3.2.2 ad
638 1.3.2.2 ad if ((i < 0) || (i >= MSK_JSLOTS))
639 1.3.2.2 ad panic("sk_jfree: asked to free buffer that we don't manage!");
640 1.3.2.2 ad
641 1.3.2.2 ad s = splvm();
642 1.3.2.2 ad entry = LIST_FIRST(&sc->sk_jinuse_listhead);
643 1.3.2.2 ad if (entry == NULL)
644 1.3.2.2 ad panic("msk_jfree: buffer not in use!");
645 1.3.2.2 ad entry->slot = i;
646 1.3.2.2 ad LIST_REMOVE(entry, jpool_entries);
647 1.3.2.2 ad LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
648 1.3.2.2 ad
649 1.3.2.2 ad if (__predict_true(m != NULL))
650 1.3.2.2 ad pool_cache_put(&mbpool_cache, m);
651 1.3.2.2 ad splx(s);
652 1.3.2.2 ad }
653 1.3.2.2 ad
654 1.3.2.2 ad /*
655 1.3.2.2 ad * Set media options.
656 1.3.2.2 ad */
657 1.3.2.2 ad int
658 1.3.2.2 ad msk_ifmedia_upd(struct ifnet *ifp)
659 1.3.2.2 ad {
660 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
661 1.3.2.2 ad
662 1.3.2.2 ad msk_init(ifp);
663 1.3.2.2 ad mii_mediachg(&sc_if->sk_mii);
664 1.3.2.2 ad return (0);
665 1.3.2.2 ad }
666 1.3.2.2 ad
667 1.3.2.2 ad /*
668 1.3.2.2 ad * Report current media status.
669 1.3.2.2 ad */
670 1.3.2.2 ad void
671 1.3.2.2 ad msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
672 1.3.2.2 ad {
673 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
674 1.3.2.2 ad
675 1.3.2.2 ad mii_pollstat(&sc_if->sk_mii);
676 1.3.2.2 ad ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
677 1.3.2.2 ad ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
678 1.3.2.2 ad }
679 1.3.2.2 ad
680 1.3.2.2 ad int
681 1.3.2.2 ad msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
682 1.3.2.2 ad {
683 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
684 1.3.2.2 ad struct ifreq *ifr = (struct ifreq *) data;
685 1.3.2.2 ad struct mii_data *mii;
686 1.3.2.2 ad int s, error = 0;
687 1.3.2.2 ad
688 1.3.2.2 ad s = splnet();
689 1.3.2.2 ad
690 1.3.2.2 ad switch(command) {
691 1.3.2.2 ad case SIOCGIFMEDIA:
692 1.3.2.2 ad case SIOCSIFMEDIA:
693 1.3.2.2 ad DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA\n"));
694 1.3.2.2 ad mii = &sc_if->sk_mii;
695 1.3.2.2 ad error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
696 1.3.2.2 ad DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA done\n"));
697 1.3.2.2 ad break;
698 1.3.2.2 ad default:
699 1.3.2.2 ad DPRINTFN(2, ("msk_ioctl ETHER\n"));
700 1.3.2.2 ad error = ether_ioctl(ifp, command, data);
701 1.3.2.2 ad
702 1.3.2.2 ad if (error == ENETRESET) {
703 1.3.2.2 ad /*
704 1.3.2.2 ad * Multicast list has changed; set the hardware
705 1.3.2.2 ad * filter accordingly.
706 1.3.2.2 ad */
707 1.3.2.2 ad if (ifp->if_flags & IFF_RUNNING)
708 1.3.2.2 ad msk_setmulti(sc_if);
709 1.3.2.2 ad error = 0;
710 1.3.2.2 ad }
711 1.3.2.2 ad break;
712 1.3.2.2 ad }
713 1.3.2.2 ad
714 1.3.2.2 ad splx(s);
715 1.3.2.2 ad return (error);
716 1.3.2.2 ad }
717 1.3.2.2 ad
718 1.3.2.2 ad void
719 1.3.2.2 ad msk_update_int_mod(struct sk_softc *sc)
720 1.3.2.2 ad {
721 1.3.2.2 ad u_int32_t sk_imtimer_ticks;
722 1.3.2.2 ad
723 1.3.2.2 ad /*
724 1.3.2.2 ad * Configure interrupt moderation. The moderation timer
725 1.3.2.2 ad * defers interrupts specified in the interrupt moderation
726 1.3.2.2 ad * timer mask based on the timeout specified in the interrupt
727 1.3.2.2 ad * moderation timer init register. Each bit in the timer
728 1.3.2.2 ad * register represents one tick, so to specify a timeout in
729 1.3.2.2 ad * microseconds, we have to multiply by the correct number of
730 1.3.2.2 ad * ticks-per-microsecond.
731 1.3.2.2 ad */
732 1.3.2.2 ad switch (sc->sk_type) {
733 1.3.2.2 ad case SK_YUKON_EC:
734 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
735 1.3.2.2 ad break;
736 1.3.2.2 ad default:
737 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
738 1.3.2.2 ad }
739 1.3.2.2 ad aprint_verbose("%s: interrupt moderation is %d us\n",
740 1.3.2.2 ad sc->sk_dev.dv_xname, sc->sk_int_mod);
741 1.3.2.2 ad sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
742 1.3.2.2 ad sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
743 1.3.2.2 ad SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
744 1.3.2.2 ad sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
745 1.3.2.2 ad sc->sk_int_mod_pending = 0;
746 1.3.2.2 ad }
747 1.3.2.2 ad
748 1.3.2.2 ad static int
749 1.3.2.2 ad msk_lookup(const struct pci_attach_args *pa)
750 1.3.2.2 ad {
751 1.3.2.2 ad const struct msk_product *pmsk;
752 1.3.2.2 ad
753 1.3.2.2 ad for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
754 1.3.2.2 ad if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
755 1.3.2.2 ad PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
756 1.3.2.2 ad return 1;
757 1.3.2.2 ad }
758 1.3.2.2 ad return 0;
759 1.3.2.2 ad }
760 1.3.2.2 ad
761 1.3.2.2 ad /*
762 1.3.2.2 ad * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
763 1.3.2.2 ad * IDs against our list and return a device name if we find a match.
764 1.3.2.2 ad */
765 1.3.2.2 ad int
766 1.3.2.2 ad mskc_probe(struct device *parent, struct cfdata *match,
767 1.3.2.2 ad void *aux)
768 1.3.2.2 ad {
769 1.3.2.2 ad struct pci_attach_args *pa = (struct pci_attach_args *)aux;
770 1.3.2.2 ad
771 1.3.2.2 ad return msk_lookup(pa);
772 1.3.2.2 ad }
773 1.3.2.2 ad
774 1.3.2.2 ad /*
775 1.3.2.2 ad * Force the GEnesis into reset, then bring it out of reset.
776 1.3.2.2 ad */
777 1.3.2.2 ad void msk_reset(struct sk_softc *sc)
778 1.3.2.2 ad {
779 1.3.2.2 ad u_int32_t sk_imtimer_ticks;
780 1.3.2.2 ad int reg;
781 1.3.2.2 ad
782 1.3.2.2 ad DPRINTFN(2, ("msk_reset\n"));
783 1.3.2.2 ad
784 1.3.2.2 ad CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
785 1.3.2.2 ad CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
786 1.3.2.2 ad CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
787 1.3.2.2 ad
788 1.3.2.2 ad DELAY(1000);
789 1.3.2.2 ad CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
790 1.3.2.2 ad DELAY(2);
791 1.3.2.2 ad CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
792 1.3.2.2 ad CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
793 1.3.2.2 ad
794 1.3.2.2 ad DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
795 1.3.2.2 ad DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
796 1.3.2.2 ad CSR_READ_2(sc, SK_LINK_CTRL)));
797 1.3.2.2 ad
798 1.3.2.2 ad /* Disable ASF */
799 1.3.2.2 ad CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
800 1.3.2.2 ad CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
801 1.3.2.2 ad
802 1.3.2.2 ad /* Clear I2C IRQ noise */
803 1.3.2.2 ad CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
804 1.3.2.2 ad
805 1.3.2.2 ad /* Disable hardware timer */
806 1.3.2.2 ad CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
807 1.3.2.2 ad CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
808 1.3.2.2 ad
809 1.3.2.2 ad /* Disable descriptor polling */
810 1.3.2.2 ad CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
811 1.3.2.2 ad
812 1.3.2.2 ad /* Disable time stamps */
813 1.3.2.2 ad CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
814 1.3.2.2 ad CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
815 1.3.2.2 ad
816 1.3.2.2 ad /* Enable RAM interface */
817 1.3.2.2 ad sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
818 1.3.2.2 ad for (reg = SK_TO0;reg <= SK_TO11; reg++)
819 1.3.2.2 ad sk_win_write_1(sc, reg, 36);
820 1.3.2.2 ad
821 1.3.2.2 ad /*
822 1.3.2.2 ad * Configure interrupt moderation. The moderation timer
823 1.3.2.2 ad * defers interrupts specified in the interrupt moderation
824 1.3.2.2 ad * timer mask based on the timeout specified in the interrupt
825 1.3.2.2 ad * moderation timer init register. Each bit in the timer
826 1.3.2.2 ad * register represents one tick, so to specify a timeout in
827 1.3.2.2 ad * microseconds, we have to multiply by the correct number of
828 1.3.2.2 ad * ticks-per-microsecond.
829 1.3.2.2 ad */
830 1.3.2.2 ad switch (sc->sk_type) {
831 1.3.2.2 ad case SK_YUKON_EC:
832 1.3.2.2 ad case SK_YUKON_XL:
833 1.3.2.2 ad case SK_YUKON_FE:
834 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
835 1.3.2.2 ad break;
836 1.3.2.2 ad default:
837 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
838 1.3.2.2 ad }
839 1.3.2.2 ad
840 1.3.2.2 ad /* Reset status ring. */
841 1.3.2.2 ad bzero((char *)sc->sk_status_ring,
842 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
843 1.3.2.2 ad sc->sk_status_idx = 0;
844 1.3.2.2 ad
845 1.3.2.2 ad sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
846 1.3.2.2 ad sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
847 1.3.2.2 ad
848 1.3.2.2 ad sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
849 1.3.2.2 ad sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
850 1.3.2.2 ad sc->sk_status_map->dm_segs[0].ds_addr);
851 1.3.2.2 ad sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
852 1.3.2.2 ad (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
853 1.3.2.2 ad sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
854 1.3.2.2 ad sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
855 1.3.2.2 ad sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
856 1.3.2.2 ad
857 1.3.2.2 ad #if 0
858 1.3.2.2 ad sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
859 1.3.2.2 ad sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
860 1.3.2.2 ad
861 1.3.2.2 ad sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
862 1.3.2.2 ad #else
863 1.3.2.2 ad sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
864 1.3.2.2 ad #endif
865 1.3.2.2 ad
866 1.3.2.2 ad sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
867 1.3.2.2 ad
868 1.3.2.2 ad sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
869 1.3.2.2 ad sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
870 1.3.2.2 ad sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
871 1.3.2.2 ad
872 1.3.2.2 ad msk_update_int_mod(sc);
873 1.3.2.2 ad }
874 1.3.2.2 ad
875 1.3.2.2 ad int
876 1.3.2.2 ad msk_probe(struct device *parent, struct cfdata *match,
877 1.3.2.2 ad void *aux)
878 1.3.2.2 ad {
879 1.3.2.2 ad struct skc_attach_args *sa = aux;
880 1.3.2.2 ad
881 1.3.2.2 ad if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
882 1.3.2.2 ad return (0);
883 1.3.2.2 ad
884 1.3.2.2 ad switch (sa->skc_type) {
885 1.3.2.2 ad case SK_YUKON_XL:
886 1.3.2.2 ad case SK_YUKON_EC_U:
887 1.3.2.2 ad case SK_YUKON_EC:
888 1.3.2.2 ad case SK_YUKON_FE:
889 1.3.2.2 ad return (1);
890 1.3.2.2 ad }
891 1.3.2.2 ad
892 1.3.2.2 ad return (0);
893 1.3.2.2 ad }
894 1.3.2.2 ad
895 1.3.2.2 ad /*
896 1.3.2.2 ad * Each XMAC chip is attached as a separate logical IP interface.
897 1.3.2.2 ad * Single port cards will have only one logical interface of course.
898 1.3.2.2 ad */
899 1.3.2.2 ad void
900 1.3.2.2 ad msk_attach(struct device *parent, struct device *self, void *aux)
901 1.3.2.2 ad {
902 1.3.2.2 ad struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
903 1.3.2.2 ad struct sk_softc *sc = (struct sk_softc *)parent;
904 1.3.2.2 ad struct skc_attach_args *sa = aux;
905 1.3.2.2 ad struct ifnet *ifp;
906 1.3.2.2 ad caddr_t kva;
907 1.3.2.2 ad bus_dma_segment_t seg;
908 1.3.2.2 ad int i, rseg;
909 1.3.2.2 ad u_int32_t chunk, val;
910 1.3.2.2 ad
911 1.3.2.2 ad sc_if->sk_port = sa->skc_port;
912 1.3.2.2 ad sc_if->sk_softc = sc;
913 1.3.2.2 ad sc->sk_if[sa->skc_port] = sc_if;
914 1.3.2.2 ad
915 1.3.2.2 ad DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
916 1.3.2.2 ad
917 1.3.2.2 ad /*
918 1.3.2.2 ad * Get station address for this interface. Note that
919 1.3.2.2 ad * dual port cards actually come with three station
920 1.3.2.2 ad * addresses: one for each port, plus an extra. The
921 1.3.2.2 ad * extra one is used by the SysKonnect driver software
922 1.3.2.2 ad * as a 'virtual' station address for when both ports
923 1.3.2.2 ad * are operating in failover mode. Currently we don't
924 1.3.2.2 ad * use this extra address.
925 1.3.2.2 ad */
926 1.3.2.2 ad for (i = 0; i < ETHER_ADDR_LEN; i++)
927 1.3.2.2 ad sc_if->sk_enaddr[i] =
928 1.3.2.2 ad sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
929 1.3.2.2 ad
930 1.3.2.2 ad aprint_normal(": Ethernet address %s\n",
931 1.3.2.2 ad ether_sprintf(sc_if->sk_enaddr));
932 1.3.2.2 ad
933 1.3.2.2 ad /*
934 1.3.2.2 ad * Set up RAM buffer addresses. The NIC will have a certain
935 1.3.2.2 ad * amount of SRAM on it, somewhere between 512K and 2MB. We
936 1.3.2.2 ad * need to divide this up a) between the transmitter and
937 1.3.2.2 ad * receiver and b) between the two XMACs, if this is a
938 1.3.2.2 ad * dual port NIC. Our algorithm is to divide up the memory
939 1.3.2.2 ad * evenly so that everyone gets a fair share.
940 1.3.2.2 ad *
941 1.3.2.2 ad * Just to be contrary, Yukon2 appears to have separate memory
942 1.3.2.2 ad * for each MAC.
943 1.3.2.2 ad */
944 1.3.2.2 ad chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
945 1.3.2.2 ad val = sc->sk_rboff / sizeof(u_int64_t);
946 1.3.2.2 ad sc_if->sk_rx_ramstart = val;
947 1.3.2.2 ad val += (chunk / sizeof(u_int64_t));
948 1.3.2.2 ad sc_if->sk_rx_ramend = val - 1;
949 1.3.2.2 ad chunk = sc->sk_ramsize - chunk;
950 1.3.2.2 ad sc_if->sk_tx_ramstart = val;
951 1.3.2.2 ad val += (chunk / sizeof(u_int64_t));
952 1.3.2.2 ad sc_if->sk_tx_ramend = val - 1;
953 1.3.2.2 ad
954 1.3.2.2 ad DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
955 1.3.2.2 ad " tx_ramstart=%#x tx_ramend=%#x\n",
956 1.3.2.2 ad sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
957 1.3.2.2 ad sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
958 1.3.2.2 ad
959 1.3.2.2 ad /* Read and save PHY type */
960 1.3.2.2 ad sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
961 1.3.2.2 ad
962 1.3.2.2 ad /* Set PHY address */
963 1.3.2.2 ad if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
964 1.3.2.2 ad sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
965 1.3.2.2 ad /* not initialized, punt */
966 1.3.2.2 ad sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
967 1.3.2.2 ad
968 1.3.2.2 ad sc->sk_coppertype = 1;
969 1.3.2.2 ad }
970 1.3.2.2 ad
971 1.3.2.2 ad sc_if->sk_phyaddr = SK_PHYADDR_MARV;
972 1.3.2.2 ad
973 1.3.2.2 ad if (!(sc->sk_coppertype))
974 1.3.2.2 ad sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
975 1.3.2.2 ad
976 1.3.2.2 ad /* Allocate the descriptor queues. */
977 1.3.2.2 ad if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
978 1.3.2.2 ad PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
979 1.3.2.2 ad aprint_error(": can't alloc rx buffers\n");
980 1.3.2.2 ad goto fail;
981 1.3.2.2 ad }
982 1.3.2.2 ad if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
983 1.3.2.2 ad sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
984 1.3.2.2 ad aprint_error(": can't map dma buffers (%zu bytes)\n",
985 1.3.2.2 ad sizeof(struct msk_ring_data));
986 1.3.2.2 ad goto fail_1;
987 1.3.2.2 ad }
988 1.3.2.2 ad if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
989 1.3.2.2 ad sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
990 1.3.2.2 ad &sc_if->sk_ring_map)) {
991 1.3.2.2 ad aprint_error(": can't create dma map\n");
992 1.3.2.2 ad goto fail_2;
993 1.3.2.2 ad }
994 1.3.2.2 ad if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
995 1.3.2.2 ad sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
996 1.3.2.2 ad aprint_error(": can't load dma map\n");
997 1.3.2.2 ad goto fail_3;
998 1.3.2.2 ad }
999 1.3.2.2 ad sc_if->sk_rdata = (struct msk_ring_data *)kva;
1000 1.3.2.2 ad bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1001 1.3.2.2 ad
1002 1.3.2.2 ad ifp = &sc_if->sk_ethercom.ec_if;
1003 1.3.2.2 ad /* Try to allocate memory for jumbo buffers. */
1004 1.3.2.2 ad if (msk_alloc_jumbo_mem(sc_if)) {
1005 1.3.2.2 ad aprint_error(": jumbo buffer allocation failed\n");
1006 1.3.2.2 ad goto fail_3;
1007 1.3.2.2 ad }
1008 1.3.2.2 ad sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1009 1.3.2.2 ad | ETHERCAP_JUMBO_MTU;
1010 1.3.2.2 ad
1011 1.3.2.2 ad ifp->if_softc = sc_if;
1012 1.3.2.2 ad ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1013 1.3.2.2 ad ifp->if_ioctl = msk_ioctl;
1014 1.3.2.2 ad ifp->if_start = msk_start;
1015 1.3.2.2 ad ifp->if_stop = msk_stop;
1016 1.3.2.2 ad ifp->if_init = msk_init;
1017 1.3.2.2 ad ifp->if_watchdog = msk_watchdog;
1018 1.3.2.2 ad ifp->if_baudrate = 1000000000;
1019 1.3.2.2 ad IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1020 1.3.2.2 ad IFQ_SET_READY(&ifp->if_snd);
1021 1.3.2.2 ad strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1022 1.3.2.2 ad
1023 1.3.2.2 ad /*
1024 1.3.2.2 ad * Do miibus setup.
1025 1.3.2.2 ad */
1026 1.3.2.2 ad msk_init_yukon(sc_if);
1027 1.3.2.2 ad
1028 1.3.2.2 ad DPRINTFN(2, ("msk_attach: 1\n"));
1029 1.3.2.2 ad
1030 1.3.2.2 ad sc_if->sk_mii.mii_ifp = ifp;
1031 1.3.2.2 ad sc_if->sk_mii.mii_readreg = msk_marv_miibus_readreg;
1032 1.3.2.2 ad sc_if->sk_mii.mii_writereg = msk_marv_miibus_writereg;
1033 1.3.2.2 ad sc_if->sk_mii.mii_statchg = msk_marv_miibus_statchg;
1034 1.3.2.2 ad
1035 1.3.2.2 ad ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1036 1.3.2.2 ad msk_ifmedia_upd, msk_ifmedia_sts);
1037 1.3.2.2 ad mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1038 1.3.2.2 ad MII_OFFSET_ANY, 0);
1039 1.3.2.2 ad if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1040 1.3.2.2 ad aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1041 1.3.2.2 ad ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1042 1.3.2.2 ad 0, NULL);
1043 1.3.2.2 ad ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1044 1.3.2.2 ad } else
1045 1.3.2.2 ad ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1046 1.3.2.2 ad
1047 1.3.2.2 ad callout_init(&sc_if->sk_tick_ch);
1048 1.3.2.2 ad callout_setfunc(&sc_if->sk_tick_ch, msk_yukon_tick, sc_if);
1049 1.3.2.2 ad callout_schedule(&sc_if->sk_tick_ch, hz);
1050 1.3.2.2 ad
1051 1.3.2.2 ad /*
1052 1.3.2.2 ad * Call MI attach routines.
1053 1.3.2.2 ad */
1054 1.3.2.2 ad if_attach(ifp);
1055 1.3.2.2 ad ether_ifattach(ifp, sc_if->sk_enaddr);
1056 1.3.2.2 ad
1057 1.3.2.2 ad shutdownhook_establish(mskc_shutdown, sc);
1058 1.3.2.2 ad
1059 1.3.2.2 ad #if NRND > 0
1060 1.3.2.2 ad rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1061 1.3.2.2 ad RND_TYPE_NET, 0);
1062 1.3.2.2 ad #endif
1063 1.3.2.2 ad
1064 1.3.2.2 ad DPRINTFN(2, ("msk_attach: end\n"));
1065 1.3.2.2 ad return;
1066 1.3.2.2 ad
1067 1.3.2.2 ad fail_3:
1068 1.3.2.2 ad bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1069 1.3.2.2 ad fail_2:
1070 1.3.2.2 ad bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1071 1.3.2.2 ad fail_1:
1072 1.3.2.2 ad bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1073 1.3.2.2 ad fail:
1074 1.3.2.2 ad sc->sk_if[sa->skc_port] = NULL;
1075 1.3.2.2 ad }
1076 1.3.2.2 ad
1077 1.3.2.2 ad int
1078 1.3.2.2 ad mskcprint(void *aux, const char *pnp)
1079 1.3.2.2 ad {
1080 1.3.2.2 ad struct skc_attach_args *sa = aux;
1081 1.3.2.2 ad
1082 1.3.2.2 ad if (pnp)
1083 1.3.2.2 ad aprint_normal("sk port %c at %s",
1084 1.3.2.2 ad (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1085 1.3.2.2 ad else
1086 1.3.2.2 ad aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1087 1.3.2.2 ad return (UNCONF);
1088 1.3.2.2 ad }
1089 1.3.2.2 ad
1090 1.3.2.2 ad /*
1091 1.3.2.2 ad * Attach the interface. Allocate softc structures, do ifmedia
1092 1.3.2.2 ad * setup and ethernet/BPF attach.
1093 1.3.2.2 ad */
1094 1.3.2.2 ad void
1095 1.3.2.2 ad mskc_attach(struct device *parent, struct device *self, void *aux)
1096 1.3.2.2 ad {
1097 1.3.2.2 ad struct sk_softc *sc = (struct sk_softc *)self;
1098 1.3.2.2 ad struct pci_attach_args *pa = aux;
1099 1.3.2.2 ad struct skc_attach_args skca;
1100 1.3.2.2 ad pci_chipset_tag_t pc = pa->pa_pc;
1101 1.3.2.2 ad pcireg_t command, memtype;
1102 1.3.2.2 ad pci_intr_handle_t ih;
1103 1.3.2.2 ad const char *intrstr = NULL;
1104 1.3.2.2 ad bus_size_t size;
1105 1.3.2.2 ad int rc, sk_nodenum;
1106 1.3.2.2 ad u_int8_t hw, skrs;
1107 1.3.2.2 ad const char *revstr = NULL;
1108 1.3.2.2 ad const struct sysctlnode *node;
1109 1.3.2.2 ad caddr_t kva;
1110 1.3.2.2 ad bus_dma_segment_t seg;
1111 1.3.2.2 ad int rseg;
1112 1.3.2.2 ad
1113 1.3.2.2 ad DPRINTFN(2, ("begin mskc_attach\n"));
1114 1.3.2.2 ad
1115 1.3.2.2 ad /*
1116 1.3.2.2 ad * Handle power management nonsense.
1117 1.3.2.2 ad */
1118 1.3.2.2 ad command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1119 1.3.2.2 ad
1120 1.3.2.2 ad if (command == 0x01) {
1121 1.3.2.2 ad command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1122 1.3.2.2 ad if (command & SK_PSTATE_MASK) {
1123 1.3.2.2 ad u_int32_t iobase, membase, irq;
1124 1.3.2.2 ad
1125 1.3.2.2 ad /* Save important PCI config data. */
1126 1.3.2.2 ad iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1127 1.3.2.2 ad membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1128 1.3.2.2 ad irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1129 1.3.2.2 ad
1130 1.3.2.2 ad /* Reset the power state. */
1131 1.3.2.2 ad aprint_normal("%s chip is in D%d power mode "
1132 1.3.2.2 ad "-- setting to D0\n", sc->sk_dev.dv_xname,
1133 1.3.2.2 ad command & SK_PSTATE_MASK);
1134 1.3.2.2 ad command &= 0xFFFFFFFC;
1135 1.3.2.2 ad pci_conf_write(pc, pa->pa_tag,
1136 1.3.2.2 ad SK_PCI_PWRMGMTCTRL, command);
1137 1.3.2.2 ad
1138 1.3.2.2 ad /* Restore PCI config data. */
1139 1.3.2.2 ad pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1140 1.3.2.2 ad pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1141 1.3.2.2 ad pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1142 1.3.2.2 ad }
1143 1.3.2.2 ad }
1144 1.3.2.2 ad
1145 1.3.2.2 ad /*
1146 1.3.2.2 ad * Map control/status registers.
1147 1.3.2.2 ad */
1148 1.3.2.2 ad
1149 1.3.2.2 ad memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1150 1.3.2.2 ad switch (memtype) {
1151 1.3.2.2 ad case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1152 1.3.2.2 ad case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1153 1.3.2.2 ad if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1154 1.3.2.2 ad memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1155 1.3.2.2 ad NULL, &size) == 0)
1156 1.3.2.2 ad break;
1157 1.3.2.2 ad default:
1158 1.3.2.2 ad aprint_error(": can't map mem space\n");
1159 1.3.2.2 ad return;
1160 1.3.2.2 ad }
1161 1.3.2.2 ad
1162 1.3.2.2 ad sc->sc_dmatag = pa->pa_dmat;
1163 1.3.2.2 ad
1164 1.3.2.2 ad sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1165 1.3.2.2 ad sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1166 1.3.2.2 ad
1167 1.3.2.2 ad /* bail out here if chip is not recognized */
1168 1.3.2.2 ad if (!(SK_IS_YUKON(sc))) {
1169 1.3.2.2 ad aprint_error(": unknown chip type: %d\n", sc->sk_type);
1170 1.3.2.2 ad goto fail_1;
1171 1.3.2.2 ad }
1172 1.3.2.2 ad DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1173 1.3.2.2 ad
1174 1.3.2.2 ad /* Allocate interrupt */
1175 1.3.2.2 ad if (pci_intr_map(pa, &ih)) {
1176 1.3.2.2 ad aprint_error(": couldn't map interrupt\n");
1177 1.3.2.2 ad goto fail_1;
1178 1.3.2.2 ad }
1179 1.3.2.2 ad
1180 1.3.2.2 ad intrstr = pci_intr_string(pc, ih);
1181 1.3.2.2 ad sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1182 1.3.2.2 ad if (sc->sk_intrhand == NULL) {
1183 1.3.2.2 ad aprint_error(": couldn't establish interrupt");
1184 1.3.2.2 ad if (intrstr != NULL)
1185 1.3.2.2 ad aprint_error(" at %s", intrstr);
1186 1.3.2.2 ad aprint_error("\n");
1187 1.3.2.2 ad goto fail_1;
1188 1.3.2.2 ad }
1189 1.3.2.2 ad
1190 1.3.2.2 ad if (bus_dmamem_alloc(sc->sc_dmatag,
1191 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1192 1.3.2.2 ad PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1193 1.3.2.2 ad aprint_error(": can't alloc status buffers\n");
1194 1.3.2.2 ad goto fail_2;
1195 1.3.2.2 ad }
1196 1.3.2.2 ad
1197 1.3.2.2 ad if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1198 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1199 1.3.2.2 ad &kva, BUS_DMA_NOWAIT)) {
1200 1.3.2.2 ad aprint_error(": can't map dma buffers (%zu bytes)\n",
1201 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1202 1.3.2.2 ad goto fail_3;
1203 1.3.2.2 ad }
1204 1.3.2.2 ad if (bus_dmamap_create(sc->sc_dmatag,
1205 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1206 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1207 1.3.2.2 ad BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1208 1.3.2.2 ad aprint_error(": can't create dma map\n");
1209 1.3.2.2 ad goto fail_4;
1210 1.3.2.2 ad }
1211 1.3.2.2 ad if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1212 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1213 1.3.2.2 ad NULL, BUS_DMA_NOWAIT)) {
1214 1.3.2.2 ad aprint_error(": can't load dma map\n");
1215 1.3.2.2 ad goto fail_5;
1216 1.3.2.2 ad }
1217 1.3.2.2 ad sc->sk_status_ring = (struct msk_status_desc *)kva;
1218 1.3.2.2 ad bzero(sc->sk_status_ring,
1219 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1220 1.3.2.2 ad
1221 1.3.2.2 ad /* Reset the adapter. */
1222 1.3.2.2 ad msk_reset(sc);
1223 1.3.2.2 ad
1224 1.3.2.2 ad skrs = sk_win_read_1(sc, SK_EPROM0);
1225 1.3.2.2 ad if (skrs == 0x00)
1226 1.3.2.2 ad sc->sk_ramsize = 0x20000;
1227 1.3.2.2 ad else
1228 1.3.2.2 ad sc->sk_ramsize = skrs * (1<<12);
1229 1.3.2.2 ad sc->sk_rboff = SK_RBOFF_0;
1230 1.3.2.2 ad
1231 1.3.2.2 ad DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1232 1.3.2.2 ad sc->sk_ramsize, sc->sk_ramsize / 1024,
1233 1.3.2.2 ad sc->sk_rboff));
1234 1.3.2.2 ad
1235 1.3.2.2 ad /* Read and save physical media type */
1236 1.3.2.2 ad sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1237 1.3.2.2 ad
1238 1.3.2.2 ad if (sc->sk_pmd == 'T' || sc->sk_pmd == '1' ||
1239 1.3.2.2 ad (SK_IS_YUKON2(sc) && !(sc->sk_pmd == 'L' ||
1240 1.3.2.2 ad sc->sk_pmd == 'S')))
1241 1.3.2.2 ad sc->sk_coppertype = 1;
1242 1.3.2.2 ad else
1243 1.3.2.2 ad sc->sk_coppertype = 0;
1244 1.3.2.2 ad
1245 1.3.2.2 ad switch (sc->sk_type) {
1246 1.3.2.2 ad case SK_YUKON_XL:
1247 1.3.2.2 ad sc->sk_name = "Marvell Yukon-2 XL";
1248 1.3.2.2 ad break;
1249 1.3.2.2 ad case SK_YUKON_EC_U:
1250 1.3.2.2 ad sc->sk_name = "Marvell Yukon-2 EC Ultra";
1251 1.3.2.2 ad break;
1252 1.3.2.2 ad case SK_YUKON_EC:
1253 1.3.2.2 ad sc->sk_name = "Marvell Yukon-2 EC";
1254 1.3.2.2 ad break;
1255 1.3.2.2 ad case SK_YUKON_FE:
1256 1.3.2.2 ad sc->sk_name = "Marvell Yukon-2 FE";
1257 1.3.2.2 ad break;
1258 1.3.2.2 ad default:
1259 1.3.2.2 ad sc->sk_name = "Marvell Yukon (Unknown)";
1260 1.3.2.2 ad }
1261 1.3.2.2 ad
1262 1.3.2.2 ad if (sc->sk_type == SK_YUKON_XL) {
1263 1.3.2.2 ad switch (sc->sk_rev) {
1264 1.3.2.2 ad case SK_YUKON_XL_REV_A0:
1265 1.3.2.2 ad revstr = "A0";
1266 1.3.2.2 ad break;
1267 1.3.2.2 ad case SK_YUKON_XL_REV_A1:
1268 1.3.2.2 ad revstr = "A1";
1269 1.3.2.2 ad break;
1270 1.3.2.2 ad case SK_YUKON_XL_REV_A2:
1271 1.3.2.2 ad revstr = "A2";
1272 1.3.2.2 ad break;
1273 1.3.2.2 ad case SK_YUKON_XL_REV_A3:
1274 1.3.2.2 ad revstr = "A3";
1275 1.3.2.2 ad break;
1276 1.3.2.2 ad default:
1277 1.3.2.2 ad ;
1278 1.3.2.2 ad }
1279 1.3.2.2 ad }
1280 1.3.2.2 ad
1281 1.3.2.2 ad if (sc->sk_type == SK_YUKON_EC) {
1282 1.3.2.2 ad switch (sc->sk_rev) {
1283 1.3.2.2 ad case SK_YUKON_EC_REV_A1:
1284 1.3.2.2 ad revstr = "A1";
1285 1.3.2.2 ad break;
1286 1.3.2.2 ad case SK_YUKON_EC_REV_A2:
1287 1.3.2.2 ad revstr = "A2";
1288 1.3.2.2 ad break;
1289 1.3.2.2 ad case SK_YUKON_EC_REV_A3:
1290 1.3.2.2 ad revstr = "A3";
1291 1.3.2.2 ad break;
1292 1.3.2.2 ad default:
1293 1.3.2.2 ad ;
1294 1.3.2.2 ad }
1295 1.3.2.2 ad }
1296 1.3.2.2 ad
1297 1.3.2.2 ad if (sc->sk_type == SK_YUKON_EC_U) {
1298 1.3.2.2 ad switch (sc->sk_rev) {
1299 1.3.2.2 ad case SK_YUKON_EC_U_REV_A0:
1300 1.3.2.2 ad revstr = "A0";
1301 1.3.2.2 ad break;
1302 1.3.2.2 ad case SK_YUKON_EC_U_REV_A1:
1303 1.3.2.2 ad revstr = "A1";
1304 1.3.2.2 ad break;
1305 1.3.2.2 ad default:
1306 1.3.2.2 ad ;
1307 1.3.2.2 ad }
1308 1.3.2.2 ad }
1309 1.3.2.2 ad
1310 1.3.2.2 ad /* Announce the product name. */
1311 1.3.2.2 ad aprint_normal(", %s", sc->sk_name);
1312 1.3.2.2 ad if (revstr != NULL)
1313 1.3.2.2 ad aprint_normal(" rev. %s", revstr);
1314 1.3.2.2 ad aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1315 1.3.2.2 ad
1316 1.3.2.2 ad
1317 1.3.2.2 ad sc->sk_macs = 1;
1318 1.3.2.2 ad
1319 1.3.2.2 ad hw = sk_win_read_1(sc, SK_Y2_HWRES);
1320 1.3.2.2 ad if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1321 1.3.2.2 ad if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1322 1.3.2.2 ad SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1323 1.3.2.2 ad sc->sk_macs++;
1324 1.3.2.2 ad }
1325 1.3.2.2 ad
1326 1.3.2.2 ad skca.skc_port = SK_PORT_A;
1327 1.3.2.2 ad skca.skc_type = sc->sk_type;
1328 1.3.2.2 ad skca.skc_rev = sc->sk_rev;
1329 1.3.2.2 ad (void)config_found(&sc->sk_dev, &skca, mskcprint);
1330 1.3.2.2 ad
1331 1.3.2.2 ad if (sc->sk_macs > 1) {
1332 1.3.2.2 ad skca.skc_port = SK_PORT_B;
1333 1.3.2.2 ad skca.skc_type = sc->sk_type;
1334 1.3.2.2 ad skca.skc_rev = sc->sk_rev;
1335 1.3.2.2 ad (void)config_found(&sc->sk_dev, &skca, mskcprint);
1336 1.3.2.2 ad }
1337 1.3.2.2 ad
1338 1.3.2.2 ad /* Turn on the 'driver is loaded' LED. */
1339 1.3.2.2 ad CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1340 1.3.2.2 ad
1341 1.3.2.2 ad /* skc sysctl setup */
1342 1.3.2.2 ad
1343 1.3.2.2 ad sc->sk_int_mod = SK_IM_DEFAULT;
1344 1.3.2.2 ad sc->sk_int_mod_pending = 0;
1345 1.3.2.2 ad
1346 1.3.2.2 ad if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1347 1.3.2.2 ad 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1348 1.3.2.2 ad SYSCTL_DESCR("mskc per-controller controls"),
1349 1.3.2.2 ad NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1350 1.3.2.2 ad CTL_EOL)) != 0) {
1351 1.3.2.2 ad aprint_normal("%s: couldn't create sysctl node\n",
1352 1.3.2.2 ad sc->sk_dev.dv_xname);
1353 1.3.2.2 ad goto fail_6;
1354 1.3.2.2 ad }
1355 1.3.2.2 ad
1356 1.3.2.2 ad sk_nodenum = node->sysctl_num;
1357 1.3.2.2 ad
1358 1.3.2.2 ad /* interrupt moderation time in usecs */
1359 1.3.2.2 ad if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1360 1.3.2.2 ad CTLFLAG_READWRITE,
1361 1.3.2.2 ad CTLTYPE_INT, "int_mod",
1362 1.3.2.2 ad SYSCTL_DESCR("msk interrupt moderation timer"),
1363 1.3.2.2 ad msk_sysctl_handler, 0, sc,
1364 1.3.2.2 ad 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1365 1.3.2.2 ad CTL_EOL)) != 0) {
1366 1.3.2.2 ad aprint_normal("%s: couldn't create int_mod sysctl node\n",
1367 1.3.2.2 ad sc->sk_dev.dv_xname);
1368 1.3.2.2 ad goto fail_6;
1369 1.3.2.2 ad }
1370 1.3.2.2 ad
1371 1.3.2.2 ad return;
1372 1.3.2.2 ad
1373 1.3.2.2 ad fail_6:
1374 1.3.2.2 ad bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1375 1.3.2.2 ad fail_5:
1376 1.3.2.2 ad bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1377 1.3.2.2 ad fail_4:
1378 1.3.2.2 ad bus_dmamem_unmap(sc->sc_dmatag, kva,
1379 1.3.2.2 ad MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1380 1.3.2.2 ad fail_3:
1381 1.3.2.2 ad bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1382 1.3.2.2 ad fail_2:
1383 1.3.2.2 ad pci_intr_disestablish(pc, sc->sk_intrhand);
1384 1.3.2.2 ad fail_1:
1385 1.3.2.2 ad bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1386 1.3.2.2 ad }
1387 1.3.2.2 ad
1388 1.3.2.2 ad int
1389 1.3.2.2 ad msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1390 1.3.2.2 ad {
1391 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
1392 1.3.2.2 ad struct msk_tx_desc *f = NULL;
1393 1.3.2.2 ad u_int32_t frag, cur, cnt = 0;
1394 1.3.2.2 ad int i;
1395 1.3.2.2 ad struct sk_txmap_entry *entry;
1396 1.3.2.2 ad bus_dmamap_t txmap;
1397 1.3.2.2 ad
1398 1.3.2.2 ad DPRINTFN(2, ("msk_encap\n"));
1399 1.3.2.2 ad
1400 1.3.2.2 ad entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1401 1.3.2.2 ad if (entry == NULL) {
1402 1.3.2.2 ad DPRINTFN(2, ("msk_encap: no txmap available\n"));
1403 1.3.2.2 ad return (ENOBUFS);
1404 1.3.2.2 ad }
1405 1.3.2.2 ad txmap = entry->dmamap;
1406 1.3.2.2 ad
1407 1.3.2.2 ad cur = frag = *txidx;
1408 1.3.2.2 ad
1409 1.3.2.2 ad #ifdef MSK_DEBUG
1410 1.3.2.2 ad if (mskdebug >= 2)
1411 1.3.2.2 ad msk_dump_mbuf(m_head);
1412 1.3.2.2 ad #endif
1413 1.3.2.2 ad
1414 1.3.2.2 ad /*
1415 1.3.2.2 ad * Start packing the mbufs in this chain into
1416 1.3.2.2 ad * the fragment pointers. Stop when we run out
1417 1.3.2.2 ad * of fragments or hit the end of the mbuf chain.
1418 1.3.2.2 ad */
1419 1.3.2.2 ad if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1420 1.3.2.2 ad BUS_DMA_NOWAIT)) {
1421 1.3.2.2 ad DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1422 1.3.2.2 ad return (ENOBUFS);
1423 1.3.2.2 ad }
1424 1.3.2.2 ad
1425 1.3.2.2 ad DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1426 1.3.2.2 ad
1427 1.3.2.2 ad /* Sync the DMA map. */
1428 1.3.2.2 ad bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1429 1.3.2.2 ad BUS_DMASYNC_PREWRITE);
1430 1.3.2.2 ad
1431 1.3.2.2 ad for (i = 0; i < txmap->dm_nsegs; i++) {
1432 1.3.2.2 ad if ((MSK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1433 1.3.2.2 ad DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1434 1.3.2.2 ad return (ENOBUFS);
1435 1.3.2.2 ad }
1436 1.3.2.2 ad f = &sc_if->sk_rdata->sk_tx_ring[frag];
1437 1.3.2.2 ad f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1438 1.3.2.2 ad f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1439 1.3.2.2 ad f->sk_ctl = 0;
1440 1.3.2.2 ad if (cnt == 0)
1441 1.3.2.2 ad f->sk_opcode = SK_Y2_TXOPC_PACKET;
1442 1.3.2.2 ad else
1443 1.3.2.2 ad f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1444 1.3.2.2 ad cur = frag;
1445 1.3.2.2 ad SK_INC(frag, MSK_TX_RING_CNT);
1446 1.3.2.2 ad cnt++;
1447 1.3.2.2 ad }
1448 1.3.2.2 ad
1449 1.3.2.2 ad sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1450 1.3.2.2 ad SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1451 1.3.2.2 ad
1452 1.3.2.2 ad sc_if->sk_cdata.sk_tx_map[cur] = entry;
1453 1.3.2.2 ad sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1454 1.3.2.2 ad
1455 1.3.2.2 ad /* Sync descriptors before handing to chip */
1456 1.3.2.2 ad MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1457 1.3.2.2 ad BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1458 1.3.2.2 ad
1459 1.3.2.2 ad sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1460 1.3.2.2 ad
1461 1.3.2.2 ad /* Sync first descriptor to hand it off */
1462 1.3.2.2 ad MSK_CDTXSYNC(sc_if, *txidx, 1,
1463 1.3.2.2 ad BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1464 1.3.2.2 ad
1465 1.3.2.2 ad sc_if->sk_cdata.sk_tx_cnt += cnt;
1466 1.3.2.2 ad
1467 1.3.2.2 ad #ifdef MSK_DEBUG
1468 1.3.2.2 ad if (mskdebug >= 2) {
1469 1.3.2.2 ad struct msk_tx_desc *le;
1470 1.3.2.2 ad u_int32_t idx;
1471 1.3.2.2 ad for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1472 1.3.2.2 ad le = &sc_if->sk_rdata->sk_tx_ring[idx];
1473 1.3.2.2 ad msk_dump_txdesc(le, idx);
1474 1.3.2.2 ad }
1475 1.3.2.2 ad }
1476 1.3.2.2 ad #endif
1477 1.3.2.2 ad
1478 1.3.2.2 ad *txidx = frag;
1479 1.3.2.2 ad
1480 1.3.2.2 ad DPRINTFN(2, ("msk_encap: completed successfully\n"));
1481 1.3.2.2 ad
1482 1.3.2.2 ad return (0);
1483 1.3.2.2 ad }
1484 1.3.2.2 ad
1485 1.3.2.2 ad void
1486 1.3.2.2 ad msk_start(struct ifnet *ifp)
1487 1.3.2.2 ad {
1488 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
1489 1.3.2.2 ad struct mbuf *m_head = NULL;
1490 1.3.2.2 ad u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1491 1.3.2.2 ad int pkts = 0;
1492 1.3.2.2 ad
1493 1.3.2.2 ad DPRINTFN(2, ("msk_start\n"));
1494 1.3.2.2 ad
1495 1.3.2.2 ad while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1496 1.3.2.2 ad IFQ_POLL(&ifp->if_snd, m_head);
1497 1.3.2.2 ad if (m_head == NULL)
1498 1.3.2.2 ad break;
1499 1.3.2.2 ad
1500 1.3.2.2 ad /*
1501 1.3.2.2 ad * Pack the data into the transmit ring. If we
1502 1.3.2.2 ad * don't have room, set the OACTIVE flag and wait
1503 1.3.2.2 ad * for the NIC to drain the ring.
1504 1.3.2.2 ad */
1505 1.3.2.2 ad if (msk_encap(sc_if, m_head, &idx)) {
1506 1.3.2.2 ad ifp->if_flags |= IFF_OACTIVE;
1507 1.3.2.2 ad break;
1508 1.3.2.2 ad }
1509 1.3.2.2 ad
1510 1.3.2.2 ad /* now we are committed to transmit the packet */
1511 1.3.2.2 ad IFQ_DEQUEUE(&ifp->if_snd, m_head);
1512 1.3.2.2 ad pkts++;
1513 1.3.2.2 ad
1514 1.3.2.2 ad /*
1515 1.3.2.2 ad * If there's a BPF listener, bounce a copy of this frame
1516 1.3.2.2 ad * to him.
1517 1.3.2.2 ad */
1518 1.3.2.2 ad #if NBPFILTER > 0
1519 1.3.2.2 ad if (ifp->if_bpf)
1520 1.3.2.2 ad bpf_mtap(ifp->if_bpf, m_head);
1521 1.3.2.2 ad #endif
1522 1.3.2.2 ad }
1523 1.3.2.2 ad if (pkts == 0)
1524 1.3.2.2 ad return;
1525 1.3.2.2 ad
1526 1.3.2.2 ad /* Transmit */
1527 1.3.2.2 ad if (idx != sc_if->sk_cdata.sk_tx_prod) {
1528 1.3.2.2 ad sc_if->sk_cdata.sk_tx_prod = idx;
1529 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1530 1.3.2.2 ad
1531 1.3.2.2 ad /* Set a timeout in case the chip goes out to lunch. */
1532 1.3.2.2 ad ifp->if_timer = 5;
1533 1.3.2.2 ad }
1534 1.3.2.2 ad }
1535 1.3.2.2 ad
1536 1.3.2.2 ad void
1537 1.3.2.2 ad msk_watchdog(struct ifnet *ifp)
1538 1.3.2.2 ad {
1539 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
1540 1.3.2.2 ad
1541 1.3.2.2 ad /*
1542 1.3.2.2 ad * Reclaim first as there is a possibility of losing Tx completion
1543 1.3.2.2 ad * interrupts.
1544 1.3.2.2 ad */
1545 1.3.2.2 ad msk_txeof(sc_if);
1546 1.3.2.2 ad if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1547 1.3.2.2 ad aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1548 1.3.2.2 ad
1549 1.3.2.2 ad ifp->if_oerrors++;
1550 1.3.2.2 ad
1551 1.3.2.2 ad /* XXX Resets both ports; we shouldn't do that. */
1552 1.3.2.2 ad msk_reset(sc_if->sk_softc);
1553 1.3.2.2 ad msk_init(ifp);
1554 1.3.2.2 ad }
1555 1.3.2.2 ad }
1556 1.3.2.2 ad
1557 1.3.2.2 ad void
1558 1.3.2.2 ad mskc_shutdown(void *v)
1559 1.3.2.2 ad {
1560 1.3.2.2 ad struct sk_softc *sc = v;
1561 1.3.2.2 ad
1562 1.3.2.2 ad DPRINTFN(2, ("msk_shutdown\n"));
1563 1.3.2.2 ad
1564 1.3.2.2 ad /* Turn off the 'driver is loaded' LED. */
1565 1.3.2.2 ad CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1566 1.3.2.2 ad
1567 1.3.2.2 ad msk_reset(sc);
1568 1.3.2.2 ad }
1569 1.3.2.2 ad
1570 1.3.2.2 ad __inline int
1571 1.3.2.2 ad msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1572 1.3.2.2 ad {
1573 1.3.2.2 ad if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1574 1.3.2.2 ad YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1575 1.3.2.2 ad YU_RXSTAT_JABBER)) != 0 ||
1576 1.3.2.2 ad (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1577 1.3.2.2 ad YU_RXSTAT_BYTES(stat) != len)
1578 1.3.2.2 ad return (0);
1579 1.3.2.2 ad
1580 1.3.2.2 ad return (1);
1581 1.3.2.2 ad }
1582 1.3.2.2 ad
1583 1.3.2.2 ad void
1584 1.3.2.2 ad msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1585 1.3.2.2 ad {
1586 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
1587 1.3.2.2 ad struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1588 1.3.2.2 ad struct mbuf *m;
1589 1.3.2.2 ad struct sk_chain *cur_rx;
1590 1.3.2.2 ad int cur, total_len = len;
1591 1.3.2.2 ad bus_dmamap_t dmamap;
1592 1.3.2.2 ad
1593 1.3.2.2 ad DPRINTFN(2, ("msk_rxeof\n"));
1594 1.3.2.2 ad
1595 1.3.2.2 ad cur = sc_if->sk_cdata.sk_rx_cons;
1596 1.3.2.2 ad SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1597 1.3.2.2 ad SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1598 1.3.2.2 ad
1599 1.3.2.2 ad /* Sync the descriptor */
1600 1.3.2.2 ad MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1601 1.3.2.2 ad
1602 1.3.2.2 ad cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1603 1.3.2.2 ad dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1604 1.3.2.2 ad
1605 1.3.2.2 ad bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1606 1.3.2.2 ad dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1607 1.3.2.2 ad
1608 1.3.2.2 ad m = cur_rx->sk_mbuf;
1609 1.3.2.2 ad cur_rx->sk_mbuf = NULL;
1610 1.3.2.2 ad
1611 1.3.2.2 ad if (total_len < SK_MIN_FRAMELEN ||
1612 1.3.2.2 ad total_len > SK_JUMBO_FRAMELEN ||
1613 1.3.2.2 ad msk_rxvalid(sc, rxstat, total_len) == 0) {
1614 1.3.2.2 ad ifp->if_ierrors++;
1615 1.3.2.2 ad msk_newbuf(sc_if, cur, m, dmamap);
1616 1.3.2.2 ad return;
1617 1.3.2.2 ad }
1618 1.3.2.2 ad
1619 1.3.2.2 ad /*
1620 1.3.2.2 ad * Try to allocate a new jumbo buffer. If that fails, copy the
1621 1.3.2.2 ad * packet to mbufs and put the jumbo buffer back in the ring
1622 1.3.2.2 ad * so it can be re-used. If allocating mbufs fails, then we
1623 1.3.2.2 ad * have to drop the packet.
1624 1.3.2.2 ad */
1625 1.3.2.2 ad if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1626 1.3.2.2 ad struct mbuf *m0;
1627 1.3.2.2 ad m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1628 1.3.2.2 ad total_len + ETHER_ALIGN, 0, ifp, NULL);
1629 1.3.2.2 ad msk_newbuf(sc_if, cur, m, dmamap);
1630 1.3.2.2 ad if (m0 == NULL) {
1631 1.3.2.2 ad ifp->if_ierrors++;
1632 1.3.2.2 ad return;
1633 1.3.2.2 ad }
1634 1.3.2.2 ad m_adj(m0, ETHER_ALIGN);
1635 1.3.2.2 ad m = m0;
1636 1.3.2.2 ad } else {
1637 1.3.2.2 ad m->m_pkthdr.rcvif = ifp;
1638 1.3.2.2 ad m->m_pkthdr.len = m->m_len = total_len;
1639 1.3.2.2 ad }
1640 1.3.2.2 ad
1641 1.3.2.2 ad ifp->if_ipackets++;
1642 1.3.2.2 ad
1643 1.3.2.2 ad #if NBPFILTER > 0
1644 1.3.2.2 ad if (ifp->if_bpf)
1645 1.3.2.2 ad bpf_mtap(ifp->if_bpf, m);
1646 1.3.2.2 ad #endif
1647 1.3.2.2 ad
1648 1.3.2.2 ad /* pass it on. */
1649 1.3.2.2 ad (*ifp->if_input)(ifp, m);
1650 1.3.2.2 ad }
1651 1.3.2.2 ad
1652 1.3.2.2 ad void
1653 1.3.2.2 ad msk_txeof(struct sk_if_softc *sc_if)
1654 1.3.2.2 ad {
1655 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
1656 1.3.2.2 ad struct msk_tx_desc *cur_tx;
1657 1.3.2.2 ad struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1658 1.3.2.2 ad u_int32_t idx, sk_ctl;
1659 1.3.2.2 ad struct sk_txmap_entry *entry;
1660 1.3.2.2 ad
1661 1.3.2.2 ad DPRINTFN(2, ("msk_txeof\n"));
1662 1.3.2.2 ad
1663 1.3.2.2 ad /*
1664 1.3.2.2 ad * Go through our tx ring and free mbufs for those
1665 1.3.2.2 ad * frames that have been sent.
1666 1.3.2.2 ad */
1667 1.3.2.2 ad idx = sc_if->sk_cdata.sk_tx_cons;
1668 1.3.2.2 ad while (idx != sk_win_read_2(sc, SK_STAT_BMU_TXA1_RIDX)) {
1669 1.3.2.2 ad MSK_CDTXSYNC(sc_if, idx, 1,
1670 1.3.2.2 ad BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1671 1.3.2.2 ad
1672 1.3.2.2 ad cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1673 1.3.2.2 ad sk_ctl = letoh32(cur_tx->sk_ctl);
1674 1.3.2.2 ad #ifdef MSK_DEBUG
1675 1.3.2.2 ad if (mskdebug >= 2)
1676 1.3.2.2 ad msk_dump_txdesc(cur_tx, idx);
1677 1.3.2.2 ad #endif
1678 1.3.2.2 ad if (sk_ctl & SK_TXCTL_LASTFRAG)
1679 1.3.2.2 ad ifp->if_opackets++;
1680 1.3.2.2 ad if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1681 1.3.2.2 ad entry = sc_if->sk_cdata.sk_tx_map[idx];
1682 1.3.2.2 ad
1683 1.3.2.2 ad m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1684 1.3.2.2 ad sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1685 1.3.2.2 ad
1686 1.3.2.2 ad bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1687 1.3.2.2 ad entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1688 1.3.2.2 ad
1689 1.3.2.2 ad bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1690 1.3.2.2 ad SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1691 1.3.2.2 ad link);
1692 1.3.2.2 ad sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1693 1.3.2.2 ad }
1694 1.3.2.2 ad sc_if->sk_cdata.sk_tx_cnt--;
1695 1.3.2.2 ad SK_INC(idx, MSK_TX_RING_CNT);
1696 1.3.2.2 ad }
1697 1.3.2.2 ad ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1698 1.3.2.2 ad
1699 1.3.2.2 ad if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1700 1.3.2.2 ad ifp->if_flags &= ~IFF_OACTIVE;
1701 1.3.2.2 ad
1702 1.3.2.2 ad sc_if->sk_cdata.sk_tx_cons = idx;
1703 1.3.2.2 ad }
1704 1.3.2.2 ad
1705 1.3.2.2 ad void
1706 1.3.2.2 ad msk_yukon_tick(void *xsc_if)
1707 1.3.2.2 ad {
1708 1.3.2.2 ad struct sk_if_softc *sc_if = xsc_if;
1709 1.3.2.2 ad struct mii_data *mii = &sc_if->sk_mii;
1710 1.3.2.2 ad
1711 1.3.2.2 ad mii_tick(mii);
1712 1.3.2.2 ad callout_schedule(&sc_if->sk_tick_ch, hz);
1713 1.3.2.2 ad }
1714 1.3.2.2 ad
1715 1.3.2.2 ad void
1716 1.3.2.2 ad msk_intr_yukon(struct sk_if_softc *sc_if)
1717 1.3.2.2 ad {
1718 1.3.2.2 ad u_int8_t status;
1719 1.3.2.2 ad
1720 1.3.2.2 ad status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1721 1.3.2.2 ad /* RX overrun */
1722 1.3.2.2 ad if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1723 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1724 1.3.2.2 ad SK_RFCTL_RX_FIFO_OVER);
1725 1.3.2.2 ad }
1726 1.3.2.2 ad /* TX underrun */
1727 1.3.2.2 ad if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1728 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1729 1.3.2.2 ad SK_TFCTL_TX_FIFO_UNDER);
1730 1.3.2.2 ad }
1731 1.3.2.2 ad
1732 1.3.2.2 ad DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1733 1.3.2.2 ad }
1734 1.3.2.2 ad
1735 1.3.2.2 ad int
1736 1.3.2.2 ad msk_intr(void *xsc)
1737 1.3.2.2 ad {
1738 1.3.2.2 ad struct sk_softc *sc = xsc;
1739 1.3.2.2 ad struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1740 1.3.2.2 ad struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1741 1.3.2.2 ad struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1742 1.3.2.2 ad int claimed = 0;
1743 1.3.2.2 ad u_int32_t status;
1744 1.3.2.2 ad u_int16_t idx;
1745 1.3.2.2 ad struct msk_status_desc *cur_st;
1746 1.3.2.2 ad
1747 1.3.2.2 ad status = CSR_READ_4(sc, SK_Y2_ISSR2);
1748 1.3.2.2 ad if (status == 0) {
1749 1.3.2.2 ad CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1750 1.3.2.2 ad return (0);
1751 1.3.2.2 ad }
1752 1.3.2.2 ad
1753 1.3.2.2 ad status = CSR_READ_4(sc, SK_ISR);
1754 1.3.2.2 ad
1755 1.3.2.2 ad if (sc_if0 != NULL)
1756 1.3.2.2 ad ifp0 = &sc_if0->sk_ethercom.ec_if;
1757 1.3.2.2 ad if (sc_if1 != NULL)
1758 1.3.2.2 ad ifp1 = &sc_if1->sk_ethercom.ec_if;
1759 1.3.2.2 ad
1760 1.3.2.2 ad if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1761 1.3.2.2 ad (ifp0->if_flags & IFF_RUNNING)) {
1762 1.3.2.2 ad msk_intr_yukon(sc_if0);
1763 1.3.2.2 ad }
1764 1.3.2.2 ad
1765 1.3.2.2 ad if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1766 1.3.2.2 ad (ifp1->if_flags & IFF_RUNNING)) {
1767 1.3.2.2 ad msk_intr_yukon(sc_if1);
1768 1.3.2.2 ad }
1769 1.3.2.2 ad
1770 1.3.2.2 ad idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1771 1.3.2.2 ad while (sc->sk_status_idx != idx) {
1772 1.3.2.2 ad MSK_CDSTSYNC(sc, sc->sk_status_idx,
1773 1.3.2.2 ad BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1774 1.3.2.2 ad
1775 1.3.2.2 ad cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1776 1.3.2.2 ad switch (cur_st->sk_opcode & ~SK_Y2_STOPC_OWN) {
1777 1.3.2.2 ad case SK_Y2_STOPC_RXSTAT:
1778 1.3.2.2 ad msk_rxeof(sc->sk_if[cur_st->sk_link],
1779 1.3.2.2 ad letoh16(cur_st->sk_len),
1780 1.3.2.2 ad letoh32(cur_st->sk_status));
1781 1.3.2.2 ad SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1782 1.3.2.2 ad SK_RXQ1_Y2_PREF_PUTIDX,
1783 1.3.2.2 ad sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1784 1.3.2.2 ad break;
1785 1.3.2.2 ad case SK_Y2_STOPC_TXSTAT:
1786 1.3.2.2 ad msk_txeof(sc->sk_if[cur_st->sk_link]);
1787 1.3.2.2 ad break;
1788 1.3.2.2 ad default:
1789 1.3.2.2 ad aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1790 1.3.2.2 ad break;
1791 1.3.2.2 ad }
1792 1.3.2.2 ad SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1793 1.3.2.2 ad idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1794 1.3.2.2 ad }
1795 1.3.2.2 ad
1796 1.3.2.2 ad if (status & SK_Y2_IMR_BMU) {
1797 1.3.2.2 ad CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1798 1.3.2.2 ad claimed = 1;
1799 1.3.2.2 ad }
1800 1.3.2.2 ad
1801 1.3.2.2 ad CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1802 1.3.2.2 ad
1803 1.3.2.2 ad if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1804 1.3.2.2 ad msk_start(ifp0);
1805 1.3.2.2 ad if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1806 1.3.2.2 ad msk_start(ifp1);
1807 1.3.2.2 ad
1808 1.3.2.2 ad #if NRND > 0
1809 1.3.2.2 ad if (RND_ENABLED(&sc->rnd_source))
1810 1.3.2.2 ad rnd_add_uint32(&sc->rnd_source, status);
1811 1.3.2.2 ad #endif
1812 1.3.2.2 ad
1813 1.3.2.2 ad if (sc->sk_int_mod_pending)
1814 1.3.2.2 ad msk_update_int_mod(sc);
1815 1.3.2.2 ad
1816 1.3.2.2 ad return claimed;
1817 1.3.2.2 ad }
1818 1.3.2.2 ad
1819 1.3.2.2 ad void
1820 1.3.2.2 ad msk_init_yukon(struct sk_if_softc *sc_if)
1821 1.3.2.2 ad {
1822 1.3.2.2 ad u_int32_t phy, v;
1823 1.3.2.2 ad u_int16_t reg;
1824 1.3.2.2 ad struct sk_softc *sc;
1825 1.3.2.2 ad int i;
1826 1.3.2.2 ad
1827 1.3.2.2 ad sc = sc_if->sk_softc;
1828 1.3.2.2 ad
1829 1.3.2.2 ad DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1830 1.3.2.2 ad CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1831 1.3.2.2 ad
1832 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 1\n"));
1833 1.3.2.2 ad
1834 1.3.2.2 ad /* GMAC and GPHY Reset */
1835 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1836 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1837 1.3.2.2 ad DELAY(1000);
1838 1.3.2.2 ad
1839 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 2\n"));
1840 1.3.2.2 ad
1841 1.3.2.2 ad #if 0
1842 1.3.2.2 ad phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
1843 1.3.2.2 ad SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
1844 1.3.2.2 ad #else
1845 1.3.2.2 ad phy = SK_GPHY_ENA_PAUSE;
1846 1.3.2.2 ad #endif
1847 1.3.2.2 ad
1848 1.3.2.2 ad if (sc->sk_coppertype)
1849 1.3.2.2 ad phy |= SK_GPHY_COPPER;
1850 1.3.2.2 ad else
1851 1.3.2.2 ad phy |= SK_GPHY_FIBER;
1852 1.3.2.2 ad
1853 1.3.2.2 ad DPRINTFN(3, ("msk_init_yukon: phy=%#x\n", phy));
1854 1.3.2.2 ad
1855 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
1856 1.3.2.2 ad DELAY(1000);
1857 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
1858 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1859 1.3.2.2 ad SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1860 1.3.2.2 ad
1861 1.3.2.2 ad DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1862 1.3.2.2 ad SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1863 1.3.2.2 ad
1864 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 3\n"));
1865 1.3.2.2 ad
1866 1.3.2.2 ad /* unused read of the interrupt source register */
1867 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 4\n"));
1868 1.3.2.2 ad SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1869 1.3.2.2 ad
1870 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1871 1.3.2.2 ad reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1872 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1873 1.3.2.2 ad
1874 1.3.2.2 ad /* MIB Counter Clear Mode set */
1875 1.3.2.2 ad reg |= YU_PAR_MIB_CLR;
1876 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1877 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1878 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1879 1.3.2.2 ad
1880 1.3.2.2 ad /* MIB Counter Clear Mode clear */
1881 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 5\n"));
1882 1.3.2.2 ad reg &= ~YU_PAR_MIB_CLR;
1883 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1884 1.3.2.2 ad
1885 1.3.2.2 ad /* receive control reg */
1886 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 7\n"));
1887 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1888 1.3.2.2 ad
1889 1.3.2.2 ad /* transmit parameter register */
1890 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 8\n"));
1891 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1892 1.3.2.2 ad YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1893 1.3.2.2 ad
1894 1.3.2.2 ad /* serial mode register */
1895 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 9\n"));
1896 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
1897 1.3.2.2 ad YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
1898 1.3.2.2 ad YU_SMR_IPG_DATA(0x1e));
1899 1.3.2.2 ad
1900 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 10\n"));
1901 1.3.2.2 ad /* Setup Yukon's address */
1902 1.3.2.2 ad for (i = 0; i < 3; i++) {
1903 1.3.2.2 ad /* Write Source Address 1 (unicast filter) */
1904 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1905 1.3.2.2 ad sc_if->sk_enaddr[i * 2] |
1906 1.3.2.2 ad sc_if->sk_enaddr[i * 2 + 1] << 8);
1907 1.3.2.2 ad }
1908 1.3.2.2 ad
1909 1.3.2.2 ad for (i = 0; i < 3; i++) {
1910 1.3.2.2 ad reg = sk_win_read_2(sc_if->sk_softc,
1911 1.3.2.2 ad SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1912 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1913 1.3.2.2 ad }
1914 1.3.2.2 ad
1915 1.3.2.2 ad /* Set promiscuous mode */
1916 1.3.2.2 ad msk_setpromisc(sc_if);
1917 1.3.2.2 ad
1918 1.3.2.2 ad /* Set multicast filter */
1919 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 11\n"));
1920 1.3.2.2 ad msk_setmulti(sc_if);
1921 1.3.2.2 ad
1922 1.3.2.2 ad /* enable interrupt mask for counter overflows */
1923 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: 12\n"));
1924 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1925 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1926 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1927 1.3.2.2 ad
1928 1.3.2.2 ad /* Configure RX MAC FIFO Flush Mask */
1929 1.3.2.2 ad v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1930 1.3.2.2 ad YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1931 1.3.2.2 ad YU_RXSTAT_JABBER;
1932 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1933 1.3.2.2 ad
1934 1.3.2.2 ad /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
1935 1.3.2.2 ad if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
1936 1.3.2.2 ad v = SK_TFCTL_OPERATION_ON;
1937 1.3.2.2 ad else
1938 1.3.2.2 ad v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
1939 1.3.2.2 ad /* Configure RX MAC FIFO */
1940 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1941 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
1942 1.3.2.2 ad
1943 1.3.2.2 ad /* Increase flush threshould to 64 bytes */
1944 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1945 1.3.2.2 ad SK_RFCTL_FIFO_THRESHOLD + 1);
1946 1.3.2.2 ad
1947 1.3.2.2 ad /* Configure TX MAC FIFO */
1948 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1949 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1950 1.3.2.2 ad
1951 1.3.2.2 ad #if 1
1952 1.3.2.2 ad SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1953 1.3.2.2 ad #endif
1954 1.3.2.2 ad DPRINTFN(6, ("msk_init_yukon: end\n"));
1955 1.3.2.2 ad }
1956 1.3.2.2 ad
1957 1.3.2.2 ad /*
1958 1.3.2.2 ad * Note that to properly initialize any part of the GEnesis chip,
1959 1.3.2.2 ad * you first have to take it out of reset mode.
1960 1.3.2.2 ad */
1961 1.3.2.2 ad int
1962 1.3.2.2 ad msk_init(struct ifnet *ifp)
1963 1.3.2.2 ad {
1964 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
1965 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
1966 1.3.2.2 ad struct mii_data *mii = &sc_if->sk_mii;
1967 1.3.2.2 ad int s;
1968 1.3.2.2 ad uint32_t imr, sk_imtimer_ticks;
1969 1.3.2.2 ad
1970 1.3.2.2 ad
1971 1.3.2.2 ad DPRINTFN(2, ("msk_init\n"));
1972 1.3.2.2 ad
1973 1.3.2.2 ad s = splnet();
1974 1.3.2.2 ad
1975 1.3.2.2 ad /* Cancel pending I/O and free all RX/TX buffers. */
1976 1.3.2.2 ad msk_stop(ifp,0);
1977 1.3.2.2 ad
1978 1.3.2.2 ad /* Configure I2C registers */
1979 1.3.2.2 ad
1980 1.3.2.2 ad /* Configure XMAC(s) */
1981 1.3.2.2 ad msk_init_yukon(sc_if);
1982 1.3.2.2 ad mii_mediachg(mii);
1983 1.3.2.2 ad
1984 1.3.2.2 ad /* Configure transmit arbiter(s) */
1985 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1986 1.3.2.2 ad #if 0
1987 1.3.2.2 ad SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1988 1.3.2.2 ad #endif
1989 1.3.2.2 ad
1990 1.3.2.2 ad /* Configure RAMbuffers */
1991 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1992 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1993 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1994 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1995 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1996 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1997 1.3.2.2 ad
1998 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
1999 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2000 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2001 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2002 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2003 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2004 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2005 1.3.2.2 ad
2006 1.3.2.2 ad /* Configure BMUs */
2007 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2008 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2009 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2010 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2011 1.3.2.2 ad
2012 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2013 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2014 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2015 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2016 1.3.2.2 ad
2017 1.3.2.2 ad /* Make sure the sync transmit queue is disabled. */
2018 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2019 1.3.2.2 ad
2020 1.3.2.2 ad /* Init descriptors */
2021 1.3.2.2 ad if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2022 1.3.2.2 ad aprint_error("%s: initialization failed: no "
2023 1.3.2.2 ad "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2024 1.3.2.2 ad msk_stop(ifp,0);
2025 1.3.2.2 ad splx(s);
2026 1.3.2.2 ad return ENOBUFS;
2027 1.3.2.2 ad }
2028 1.3.2.2 ad
2029 1.3.2.2 ad if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2030 1.3.2.2 ad aprint_error("%s: initialization failed: no "
2031 1.3.2.2 ad "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2032 1.3.2.2 ad msk_stop(ifp,0);
2033 1.3.2.2 ad splx(s);
2034 1.3.2.2 ad return ENOBUFS;
2035 1.3.2.2 ad }
2036 1.3.2.2 ad
2037 1.3.2.2 ad /* Set interrupt moderation if changed via sysctl. */
2038 1.3.2.2 ad switch (sc->sk_type) {
2039 1.3.2.2 ad case SK_YUKON_EC:
2040 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2041 1.3.2.2 ad break;
2042 1.3.2.2 ad default:
2043 1.3.2.2 ad sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2044 1.3.2.2 ad }
2045 1.3.2.2 ad imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2046 1.3.2.2 ad if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2047 1.3.2.2 ad sk_win_write_4(sc, SK_IMTIMERINIT,
2048 1.3.2.2 ad SK_IM_USECS(sc->sk_int_mod));
2049 1.3.2.2 ad aprint_verbose("%s: interrupt moderation is %d us\n",
2050 1.3.2.2 ad sc->sk_dev.dv_xname, sc->sk_int_mod);
2051 1.3.2.2 ad }
2052 1.3.2.2 ad
2053 1.3.2.2 ad /* Initialize prefetch engine. */
2054 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2055 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2056 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2057 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2058 1.3.2.2 ad MSK_RX_RING_ADDR(sc_if, 0));
2059 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2060 1.3.2.2 ad (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2061 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2062 1.3.2.2 ad SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2063 1.3.2.2 ad
2064 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2065 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2066 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2067 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2068 1.3.2.2 ad MSK_TX_RING_ADDR(sc_if, 0));
2069 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2070 1.3.2.2 ad (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2071 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2072 1.3.2.2 ad SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2073 1.3.2.2 ad
2074 1.3.2.2 ad SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2075 1.3.2.2 ad sc_if->sk_cdata.sk_rx_prod);
2076 1.3.2.2 ad
2077 1.3.2.2 ad /* Configure interrupt handling */
2078 1.3.2.2 ad if (sc_if->sk_port == SK_PORT_A)
2079 1.3.2.2 ad sc->sk_intrmask |= SK_Y2_INTRS1;
2080 1.3.2.2 ad else
2081 1.3.2.2 ad sc->sk_intrmask |= SK_Y2_INTRS2;
2082 1.3.2.2 ad sc->sk_intrmask |= SK_Y2_IMR_BMU;
2083 1.3.2.2 ad CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2084 1.3.2.2 ad
2085 1.3.2.2 ad ifp->if_flags |= IFF_RUNNING;
2086 1.3.2.2 ad ifp->if_flags &= ~IFF_OACTIVE;
2087 1.3.2.2 ad
2088 1.3.2.2 ad callout_schedule(&sc_if->sk_tick_ch, hz);
2089 1.3.2.2 ad
2090 1.3.2.2 ad splx(s);
2091 1.3.2.2 ad return 0;
2092 1.3.2.2 ad }
2093 1.3.2.2 ad
2094 1.3.2.2 ad void
2095 1.3.2.2 ad msk_stop(struct ifnet *ifp, int disable)
2096 1.3.2.2 ad {
2097 1.3.2.2 ad struct sk_if_softc *sc_if = ifp->if_softc;
2098 1.3.2.2 ad struct sk_softc *sc = sc_if->sk_softc;
2099 1.3.2.2 ad struct sk_txmap_entry *dma;
2100 1.3.2.2 ad int i;
2101 1.3.2.2 ad
2102 1.3.2.2 ad DPRINTFN(2, ("msk_stop\n"));
2103 1.3.2.2 ad
2104 1.3.2.2 ad callout_stop(&sc_if->sk_tick_ch);
2105 1.3.2.2 ad
2106 1.3.2.2 ad ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2107 1.3.2.2 ad
2108 1.3.2.2 ad /* Stop transfer of Tx descriptors */
2109 1.3.2.2 ad
2110 1.3.2.2 ad /* Stop transfer of Rx descriptors */
2111 1.3.2.2 ad
2112 1.3.2.2 ad /* Turn off various components of this interface. */
2113 1.3.2.2 ad SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2114 1.3.2.2 ad SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2115 1.3.2.2 ad SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2116 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2117 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2118 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2119 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2120 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2121 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2122 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2123 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2124 1.3.2.2 ad SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2125 1.3.2.2 ad
2126 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2127 1.3.2.2 ad SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2128 1.3.2.2 ad
2129 1.3.2.2 ad /* Disable interrupts */
2130 1.3.2.2 ad if (sc_if->sk_port == SK_PORT_A)
2131 1.3.2.2 ad sc->sk_intrmask &= ~SK_Y2_INTRS1;
2132 1.3.2.2 ad else
2133 1.3.2.2 ad sc->sk_intrmask &= ~SK_Y2_INTRS2;
2134 1.3.2.2 ad CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2135 1.3.2.2 ad
2136 1.3.2.2 ad SK_XM_READ_2(sc_if, XM_ISR);
2137 1.3.2.2 ad SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2138 1.3.2.2 ad
2139 1.3.2.2 ad /* Free RX and TX mbufs still in the queues. */
2140 1.3.2.2 ad for (i = 0; i < MSK_RX_RING_CNT; i++) {
2141 1.3.2.2 ad if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2142 1.3.2.2 ad m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2143 1.3.2.2 ad sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2144 1.3.2.2 ad }
2145 1.3.2.2 ad }
2146 1.3.2.2 ad
2147 1.3.2.2 ad for (i = 0; i < MSK_TX_RING_CNT; i++) {
2148 1.3.2.2 ad if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2149 1.3.2.2 ad m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2150 1.3.2.2 ad sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2151 1.3.2.2 ad #if 1
2152 1.3.2.2 ad SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2153 1.3.2.2 ad sc_if->sk_cdata.sk_tx_map[i], link);
2154 1.3.2.2 ad sc_if->sk_cdata.sk_tx_map[i] = 0;
2155 1.3.2.2 ad #endif
2156 1.3.2.2 ad }
2157 1.3.2.2 ad }
2158 1.3.2.2 ad
2159 1.3.2.2 ad #if 1
2160 1.3.2.2 ad while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2161 1.3.2.2 ad SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2162 1.3.2.2 ad bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2163 1.3.2.2 ad free(dma, M_DEVBUF);
2164 1.3.2.2 ad }
2165 1.3.2.2 ad #endif
2166 1.3.2.2 ad }
2167 1.3.2.2 ad
2168 1.3.2.2 ad CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2169 1.3.2.2 ad NULL, NULL);
2170 1.3.2.2 ad
2171 1.3.2.2 ad CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2172 1.3.2.2 ad NULL, NULL);
2173 1.3.2.2 ad
2174 1.3.2.2 ad #ifdef MSK_DEBUG
2175 1.3.2.2 ad void
2176 1.3.2.2 ad msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2177 1.3.2.2 ad {
2178 1.3.2.2 ad #define DESC_PRINT(X) \
2179 1.3.2.2 ad if (X) \
2180 1.3.2.2 ad printf("txdesc[%d]." #X "=%#x\n", \
2181 1.3.2.2 ad idx, X);
2182 1.3.2.2 ad
2183 1.3.2.2 ad DESC_PRINT(letoh32(le->sk_addr));
2184 1.3.2.2 ad DESC_PRINT(letoh16(le->sk_len));
2185 1.3.2.2 ad DESC_PRINT(le->sk_ctl);
2186 1.3.2.2 ad DESC_PRINT(le->sk_opcode);
2187 1.3.2.2 ad #undef DESC_PRINT
2188 1.3.2.2 ad }
2189 1.3.2.2 ad
2190 1.3.2.2 ad void
2191 1.3.2.2 ad msk_dump_bytes(const char *data, int len)
2192 1.3.2.2 ad {
2193 1.3.2.2 ad int c, i, j;
2194 1.3.2.2 ad
2195 1.3.2.2 ad for (i = 0; i < len; i += 16) {
2196 1.3.2.2 ad printf("%08x ", i);
2197 1.3.2.2 ad c = len - i;
2198 1.3.2.2 ad if (c > 16) c = 16;
2199 1.3.2.2 ad
2200 1.3.2.2 ad for (j = 0; j < c; j++) {
2201 1.3.2.2 ad printf("%02x ", data[i + j] & 0xff);
2202 1.3.2.2 ad if ((j & 0xf) == 7 && j > 0)
2203 1.3.2.2 ad printf(" ");
2204 1.3.2.2 ad }
2205 1.3.2.2 ad
2206 1.3.2.2 ad for (; j < 16; j++)
2207 1.3.2.2 ad printf(" ");
2208 1.3.2.2 ad printf(" ");
2209 1.3.2.2 ad
2210 1.3.2.2 ad for (j = 0; j < c; j++) {
2211 1.3.2.2 ad int ch = data[i + j] & 0xff;
2212 1.3.2.2 ad printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2213 1.3.2.2 ad }
2214 1.3.2.2 ad
2215 1.3.2.2 ad printf("\n");
2216 1.3.2.2 ad
2217 1.3.2.2 ad if (c < 16)
2218 1.3.2.2 ad break;
2219 1.3.2.2 ad }
2220 1.3.2.2 ad }
2221 1.3.2.2 ad
2222 1.3.2.2 ad void
2223 1.3.2.2 ad msk_dump_mbuf(struct mbuf *m)
2224 1.3.2.2 ad {
2225 1.3.2.2 ad int count = m->m_pkthdr.len;
2226 1.3.2.2 ad
2227 1.3.2.2 ad printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2228 1.3.2.2 ad
2229 1.3.2.2 ad while (count > 0 && m) {
2230 1.3.2.2 ad printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2231 1.3.2.2 ad m, m->m_data, m->m_len);
2232 1.3.2.2 ad msk_dump_bytes(mtod(m, char *), m->m_len);
2233 1.3.2.2 ad
2234 1.3.2.2 ad count -= m->m_len;
2235 1.3.2.2 ad m = m->m_next;
2236 1.3.2.2 ad }
2237 1.3.2.2 ad }
2238 1.3.2.2 ad #endif
2239 1.3.2.2 ad
2240 1.3.2.2 ad static int
2241 1.3.2.2 ad msk_sysctl_handler(SYSCTLFN_ARGS)
2242 1.3.2.2 ad {
2243 1.3.2.2 ad int error, t;
2244 1.3.2.2 ad struct sysctlnode node;
2245 1.3.2.2 ad struct sk_softc *sc;
2246 1.3.2.2 ad
2247 1.3.2.2 ad node = *rnode;
2248 1.3.2.2 ad sc = node.sysctl_data;
2249 1.3.2.2 ad t = sc->sk_int_mod;
2250 1.3.2.2 ad node.sysctl_data = &t;
2251 1.3.2.2 ad error = sysctl_lookup(SYSCTLFN_CALL(&node));
2252 1.3.2.2 ad if (error || newp == NULL)
2253 1.3.2.2 ad return error;
2254 1.3.2.2 ad
2255 1.3.2.2 ad if (t < SK_IM_MIN || t > SK_IM_MAX)
2256 1.3.2.2 ad return EINVAL;
2257 1.3.2.2 ad
2258 1.3.2.2 ad /* update the softc with sysctl-changed value, and mark
2259 1.3.2.2 ad for hardware update */
2260 1.3.2.2 ad sc->sk_int_mod = t;
2261 1.3.2.2 ad sc->sk_int_mod_pending = 1;
2262 1.3.2.2 ad return 0;
2263 1.3.2.2 ad }
2264 1.3.2.2 ad
2265 1.3.2.2 ad /*
2266 1.3.2.2 ad * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2267 1.3.2.2 ad * set up in skc_attach()
2268 1.3.2.2 ad */
2269 1.3.2.2 ad SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2270 1.3.2.2 ad {
2271 1.3.2.2 ad int rc;
2272 1.3.2.2 ad const struct sysctlnode *node;
2273 1.3.2.2 ad
2274 1.3.2.2 ad if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2275 1.3.2.2 ad 0, CTLTYPE_NODE, "hw", NULL,
2276 1.3.2.2 ad NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2277 1.3.2.2 ad goto err;
2278 1.3.2.2 ad }
2279 1.3.2.2 ad
2280 1.3.2.2 ad if ((rc = sysctl_createv(clog, 0, NULL, &node,
2281 1.3.2.2 ad 0, CTLTYPE_NODE, "msk",
2282 1.3.2.2 ad SYSCTL_DESCR("msk interface controls"),
2283 1.3.2.2 ad NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2284 1.3.2.2 ad goto err;
2285 1.3.2.2 ad }
2286 1.3.2.2 ad
2287 1.3.2.2 ad msk_root_num = node->sysctl_num;
2288 1.3.2.2 ad return;
2289 1.3.2.2 ad
2290 1.3.2.2 ad err:
2291 1.3.2.2 ad aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2292 1.3.2.2 ad }
2293