if_msk.c revision 1.1.4.1 1 /* $NetBSD: if_msk.c,v 1.1.4.1 2006/09/15 11:55:40 tron Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.11 2006/08/17 22:07:40 brad Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include "bpfilter.h"
55 #include "rnd.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/callout.h>
67 #include <sys/sysctl.h>
68 #include <sys/endian.h>
69 #ifdef __NetBSD__
70 #define letoh16 htole16
71 #define letoh32 htole32
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77
78 #include <net/if_media.h>
79
80 #if NBPFILTER > 0
81 #include <net/bpf.h>
82 #endif
83 #if NRND > 0
84 #include <sys/rnd.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/brgphyreg.h>
90
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcidevs.h>
94
95 #include <dev/pci/if_skreg.h>
96 #include <dev/pci/if_mskvar.h>
97
98 int mskc_probe(struct device *, struct cfdata *, void *);
99 void mskc_attach(struct device *, struct device *self, void *aux);
100 void mskc_shutdown(void *);
101 int msk_probe(struct device *, struct cfdata *, void *);
102 void msk_attach(struct device *, struct device *self, void *aux);
103 int mskcprint(void *, const char *);
104 int msk_intr(void *);
105 void msk_intr_yukon(struct sk_if_softc *);
106 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
107 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
108 void msk_txeof(struct sk_if_softc *);
109 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
110 void msk_start(struct ifnet *);
111 int msk_ioctl(struct ifnet *, u_long, caddr_t);
112 int msk_init(struct ifnet *);
113 void msk_init_yukon(struct sk_if_softc *);
114 void msk_stop(struct ifnet *, int);
115 void msk_watchdog(struct ifnet *);
116 int msk_ifmedia_upd(struct ifnet *);
117 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 void msk_reset(struct sk_softc *);
119 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
120 int msk_alloc_jumbo_mem(struct sk_if_softc *);
121 void *msk_jalloc(struct sk_if_softc *);
122 void msk_jfree(struct mbuf *, caddr_t, size_t, void *);
123 int msk_init_rx_ring(struct sk_if_softc *);
124 int msk_init_tx_ring(struct sk_if_softc *);
125
126 void msk_update_int_mod(struct sk_softc *);
127
128 int msk_marv_miibus_readreg(struct device *, int, int);
129 void msk_marv_miibus_writereg(struct device *, int, int, int);
130 void msk_marv_miibus_statchg(struct device *);
131
132 u_int32_t msk_yukon_hash(caddr_t);
133 void msk_setfilt(struct sk_if_softc *, caddr_t, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_yukon_tick(void *);
137
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x) if (mskdebug) printf x
141 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 int mskdebug = MSK_DEBUG;
143
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_3 },
175 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
176 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
177 };
178
179 static inline u_int32_t
180 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
181 {
182 return CSR_READ_4(sc, reg);
183 }
184
185 static inline u_int16_t
186 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
187 {
188 return CSR_READ_2(sc, reg);
189 }
190
191 static inline u_int8_t
192 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
193 {
194 return CSR_READ_1(sc, reg);
195 }
196
197 static inline void
198 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
199 {
200 CSR_WRITE_4(sc, reg, x);
201 }
202
203 static inline void
204 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
205 {
206 CSR_WRITE_2(sc, reg, x);
207 }
208
209 static inline void
210 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
211 {
212 CSR_WRITE_1(sc, reg, x);
213 }
214
215 int
216 msk_marv_miibus_readreg(struct device *dev, int phy, int reg)
217 {
218 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
219 u_int16_t val;
220 int i;
221
222 if (phy != 0 ||
223 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
224 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
225 DPRINTFN(9, ("msk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
226 phy, reg));
227 return (0);
228 }
229
230 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
231 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
232
233 for (i = 0; i < SK_TIMEOUT; i++) {
234 DELAY(1);
235 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
236 if (val & YU_SMICR_READ_VALID)
237 break;
238 }
239
240 if (i == SK_TIMEOUT) {
241 aprint_error("%s: phy failed to come ready\n",
242 sc_if->sk_dev.dv_xname);
243 return (0);
244 }
245
246 DPRINTFN(9, ("msk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
247 SK_TIMEOUT));
248
249 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
250
251 DPRINTFN(9, ("msk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
252 phy, reg, val));
253
254 return (val);
255 }
256
257 void
258 msk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
259 {
260 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
261 int i;
262
263 DPRINTFN(9, ("msk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
264 phy, reg, val));
265
266 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
267 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
268 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
269
270 for (i = 0; i < SK_TIMEOUT; i++) {
271 DELAY(1);
272 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
273 break;
274 }
275
276 if (i == SK_TIMEOUT)
277 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
278 }
279
280 void
281 msk_marv_miibus_statchg(struct device *dev)
282 {
283 DPRINTFN(9, ("msk_marv_miibus_statchg: gpcr=%x\n",
284 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
285 }
286
287 #define HASH_BITS 6
288
289 u_int32_t
290 msk_yukon_hash(caddr_t addr)
291 {
292 u_int32_t crc;
293
294 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
295 return (crc & ((1 << HASH_BITS) - 1));
296 }
297
298 void
299 msk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
300 {
301 int base = XM_RXFILT_ENTRY(slot);
302
303 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
304 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
305 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
306 }
307
308 void
309 msk_setmulti(struct sk_if_softc *sc_if)
310 {
311 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
312 u_int32_t hashes[2] = { 0, 0 };
313 int h;
314 struct ethercom *ec = &sc_if->sk_ethercom;
315 struct ether_multi *enm;
316 struct ether_multistep step;
317
318 /* First, zot all the existing filters. */
319 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
320 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
321 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
322 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
323
324
325 /* Now program new ones. */
326 allmulti:
327 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 hashes[0] = 0xFFFFFFFF;
329 hashes[1] = 0xFFFFFFFF;
330 } else {
331 /* First find the tail of the list. */
332 ETHER_FIRST_MULTI(step, ec, enm);
333 while (enm != NULL) {
334 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
335 ETHER_ADDR_LEN)) {
336 ifp->if_flags |= IFF_ALLMULTI;
337 goto allmulti;
338 }
339 h = msk_yukon_hash(enm->enm_addrlo);
340 if (h < 32)
341 hashes[0] |= (1 << h);
342 else
343 hashes[1] |= (1 << (h - 32));
344
345 ETHER_NEXT_MULTI(step, enm);
346 }
347 }
348
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
353 }
354
355 void
356 msk_setpromisc(struct sk_if_softc *sc_if)
357 {
358 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
359
360 if (ifp->if_flags & IFF_PROMISC)
361 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
362 YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 else
364 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
365 YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 }
367
368 int
369 msk_init_rx_ring(struct sk_if_softc *sc_if)
370 {
371 struct msk_chain_data *cd = &sc_if->sk_cdata;
372 struct msk_ring_data *rd = sc_if->sk_rdata;
373 int i, nexti;
374
375 bzero((char *)rd->sk_rx_ring,
376 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
377
378 for (i = 0; i < MSK_RX_RING_CNT; i++) {
379 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
380 if (i == (MSK_RX_RING_CNT - 1))
381 nexti = 0;
382 else
383 nexti = i + 1;
384 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
385 }
386
387 for (i = 0; i < MSK_RX_RING_CNT; i++) {
388 if (msk_newbuf(sc_if, i, NULL,
389 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
390 aprint_error("%s: failed alloc of %dth mbuf\n",
391 sc_if->sk_dev.dv_xname, i);
392 return (ENOBUFS);
393 }
394 }
395
396 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
397 sc_if->sk_cdata.sk_rx_cons = 0;
398
399 return (0);
400 }
401
402 int
403 msk_init_tx_ring(struct sk_if_softc *sc_if)
404 {
405 struct sk_softc *sc = sc_if->sk_softc;
406 struct msk_chain_data *cd = &sc_if->sk_cdata;
407 struct msk_ring_data *rd = sc_if->sk_rdata;
408 bus_dmamap_t dmamap;
409 struct sk_txmap_entry *entry;
410 int i, nexti;
411
412 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
413 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
414
415 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
416 for (i = 0; i < MSK_TX_RING_CNT; i++) {
417 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
418 if (i == (MSK_TX_RING_CNT - 1))
419 nexti = 0;
420 else
421 nexti = i + 1;
422 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
423
424 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
425 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
426 return (ENOBUFS);
427
428 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
429 if (!entry) {
430 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
431 return (ENOBUFS);
432 }
433 entry->dmamap = dmamap;
434 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
435 }
436
437 sc_if->sk_cdata.sk_tx_prod = 0;
438 sc_if->sk_cdata.sk_tx_cons = 0;
439 sc_if->sk_cdata.sk_tx_cnt = 0;
440
441 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
442 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
443
444 return (0);
445 }
446
447 int
448 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
449 bus_dmamap_t dmamap)
450 {
451 struct mbuf *m_new = NULL;
452 struct sk_chain *c;
453 struct msk_rx_desc *r;
454
455 if (m == NULL) {
456 caddr_t buf = NULL;
457
458 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
459 if (m_new == NULL)
460 return (ENOBUFS);
461
462 /* Allocate the jumbo buffer */
463 buf = msk_jalloc(sc_if);
464 if (buf == NULL) {
465 m_freem(m_new);
466 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
467 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
468 return (ENOBUFS);
469 }
470
471 /* Attach the buffer to the mbuf */
472 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
473 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
474 } else {
475 /*
476 * We're re-using a previously allocated mbuf;
477 * be sure to re-init pointers and lengths to
478 * default values.
479 */
480 m_new = m;
481 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
482 m_new->m_data = m_new->m_ext.ext_buf;
483 }
484 m_adj(m_new, ETHER_ALIGN);
485
486 c = &sc_if->sk_cdata.sk_rx_chain[i];
487 r = c->sk_le;
488 c->sk_mbuf = m_new;
489 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
490 (((vaddr_t)m_new->m_data
491 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
492 r->sk_len = htole16(SK_JLEN);
493 r->sk_ctl = 0;
494 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
495
496 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
497
498 return (0);
499 }
500
501 /*
502 * Memory management for jumbo frames.
503 */
504
505 int
506 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
507 {
508 struct sk_softc *sc = sc_if->sk_softc;
509 caddr_t ptr, kva;
510 bus_dma_segment_t seg;
511 int i, rseg, state, error;
512 struct sk_jpool_entry *entry;
513
514 state = error = 0;
515
516 /* Grab a big chunk o' storage. */
517 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
518 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
519 aprint_error(": can't alloc rx buffers");
520 return (ENOBUFS);
521 }
522
523 state = 1;
524 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, &kva,
525 BUS_DMA_NOWAIT)) {
526 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
527 error = ENOBUFS;
528 goto out;
529 }
530
531 state = 2;
532 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
533 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
534 aprint_error(": can't create dma map");
535 error = ENOBUFS;
536 goto out;
537 }
538
539 state = 3;
540 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
541 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
542 aprint_error(": can't load dma map");
543 error = ENOBUFS;
544 goto out;
545 }
546
547 state = 4;
548 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
549 DPRINTFN(1,("msk_jumbo_buf = %p\n", (caddr_t)sc_if->sk_cdata.sk_jumbo_buf));
550
551 LIST_INIT(&sc_if->sk_jfree_listhead);
552 LIST_INIT(&sc_if->sk_jinuse_listhead);
553
554 /*
555 * Now divide it up into 9K pieces and save the addresses
556 * in an array.
557 */
558 ptr = sc_if->sk_cdata.sk_jumbo_buf;
559 for (i = 0; i < MSK_JSLOTS; i++) {
560 sc_if->sk_cdata.sk_jslots[i] = ptr;
561 ptr += SK_JLEN;
562 entry = malloc(sizeof(struct sk_jpool_entry),
563 M_DEVBUF, M_NOWAIT);
564 if (entry == NULL) {
565 aprint_error(": no memory for jumbo buffer queue!");
566 error = ENOBUFS;
567 goto out;
568 }
569 entry->slot = i;
570 if (i)
571 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
572 entry, jpool_entries);
573 else
574 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
575 entry, jpool_entries);
576 }
577 out:
578 if (error != 0) {
579 switch (state) {
580 case 4:
581 bus_dmamap_unload(sc->sc_dmatag,
582 sc_if->sk_cdata.sk_rx_jumbo_map);
583 case 3:
584 bus_dmamap_destroy(sc->sc_dmatag,
585 sc_if->sk_cdata.sk_rx_jumbo_map);
586 case 2:
587 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
588 case 1:
589 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
590 break;
591 default:
592 break;
593 }
594 }
595
596 return (error);
597 }
598
599 /*
600 * Allocate a jumbo buffer.
601 */
602 void *
603 msk_jalloc(struct sk_if_softc *sc_if)
604 {
605 struct sk_jpool_entry *entry;
606
607 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
608
609 if (entry == NULL)
610 return (NULL);
611
612 LIST_REMOVE(entry, jpool_entries);
613 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
614 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
615 }
616
617 /*
618 * Release a jumbo buffer.
619 */
620 void
621 msk_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
622 {
623 struct sk_jpool_entry *entry;
624 struct sk_if_softc *sc;
625 int i, s;
626
627 /* Extract the softc struct pointer. */
628 sc = (struct sk_if_softc *)arg;
629
630 if (sc == NULL)
631 panic("msk_jfree: can't find softc pointer!");
632
633 /* calculate the slot this buffer belongs to */
634
635 i = ((vaddr_t)buf
636 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
637
638 if ((i < 0) || (i >= MSK_JSLOTS))
639 panic("sk_jfree: asked to free buffer that we don't manage!");
640
641 s = splvm();
642 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
643 if (entry == NULL)
644 panic("msk_jfree: buffer not in use!");
645 entry->slot = i;
646 LIST_REMOVE(entry, jpool_entries);
647 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
648
649 if (__predict_true(m != NULL))
650 pool_cache_put(&mbpool_cache, m);
651 splx(s);
652 }
653
654 /*
655 * Set media options.
656 */
657 int
658 msk_ifmedia_upd(struct ifnet *ifp)
659 {
660 struct sk_if_softc *sc_if = ifp->if_softc;
661
662 msk_init(ifp);
663 mii_mediachg(&sc_if->sk_mii);
664 return (0);
665 }
666
667 /*
668 * Report current media status.
669 */
670 void
671 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
672 {
673 struct sk_if_softc *sc_if = ifp->if_softc;
674
675 mii_pollstat(&sc_if->sk_mii);
676 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
677 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
678 }
679
680 int
681 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
682 {
683 struct sk_if_softc *sc_if = ifp->if_softc;
684 struct ifreq *ifr = (struct ifreq *) data;
685 struct mii_data *mii;
686 int s, error = 0;
687
688 s = splnet();
689
690 switch(command) {
691 case SIOCGIFMEDIA:
692 case SIOCSIFMEDIA:
693 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA\n"));
694 mii = &sc_if->sk_mii;
695 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
696 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA done\n"));
697 break;
698 default:
699 DPRINTFN(2, ("msk_ioctl ETHER\n"));
700 error = ether_ioctl(ifp, command, data);
701
702 if (error == ENETRESET) {
703 /*
704 * Multicast list has changed; set the hardware
705 * filter accordingly.
706 */
707 if (ifp->if_flags & IFF_RUNNING)
708 msk_setmulti(sc_if);
709 error = 0;
710 }
711 break;
712 }
713
714 splx(s);
715 return (error);
716 }
717
718 void
719 msk_update_int_mod(struct sk_softc *sc)
720 {
721 u_int32_t sk_imtimer_ticks;
722
723 /*
724 * Configure interrupt moderation. The moderation timer
725 * defers interrupts specified in the interrupt moderation
726 * timer mask based on the timeout specified in the interrupt
727 * moderation timer init register. Each bit in the timer
728 * register represents one tick, so to specify a timeout in
729 * microseconds, we have to multiply by the correct number of
730 * ticks-per-microsecond.
731 */
732 switch (sc->sk_type) {
733 case SK_YUKON_EC:
734 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
735 break;
736 default:
737 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
738 }
739 aprint_verbose("%s: interrupt moderation is %d us\n",
740 sc->sk_dev.dv_xname, sc->sk_int_mod);
741 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
742 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
743 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
744 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
745 sc->sk_int_mod_pending = 0;
746 }
747
748 static int
749 msk_lookup(const struct pci_attach_args *pa)
750 {
751 const struct msk_product *pmsk;
752
753 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
754 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
755 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
763 * IDs against our list and return a device name if we find a match.
764 */
765 int
766 mskc_probe(struct device *parent, struct cfdata *match, void *aux)
767 {
768 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
769
770 return msk_lookup(pa);
771 }
772
773 /*
774 * Force the GEnesis into reset, then bring it out of reset.
775 */
776 void msk_reset(struct sk_softc *sc)
777 {
778 u_int32_t sk_imtimer_ticks;
779 int reg;
780
781 DPRINTFN(2, ("msk_reset\n"));
782
783 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
784 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
785 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
786
787 DELAY(1000);
788 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
789 DELAY(2);
790 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
791 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
792
793 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
794 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
795 CSR_READ_2(sc, SK_LINK_CTRL)));
796
797 /* Disable ASF */
798 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
799 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
800
801 /* Clear I2C IRQ noise */
802 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
803
804 /* Disable hardware timer */
805 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
806 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
807
808 /* Disable descriptor polling */
809 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
810
811 /* Disable time stamps */
812 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
813 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
814
815 /* Enable RAM interface */
816 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
817 for (reg = SK_TO0;reg <= SK_TO11; reg++)
818 sk_win_write_1(sc, reg, 36);
819
820 /*
821 * Configure interrupt moderation. The moderation timer
822 * defers interrupts specified in the interrupt moderation
823 * timer mask based on the timeout specified in the interrupt
824 * moderation timer init register. Each bit in the timer
825 * register represents one tick, so to specify a timeout in
826 * microseconds, we have to multiply by the correct number of
827 * ticks-per-microsecond.
828 */
829 switch (sc->sk_type) {
830 case SK_YUKON_EC:
831 case SK_YUKON_XL:
832 case SK_YUKON_FE:
833 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
834 break;
835 default:
836 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
837 }
838
839 /* Reset status ring. */
840 bzero((char *)sc->sk_status_ring,
841 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
842 sc->sk_status_idx = 0;
843
844 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
845 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
846
847 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
848 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
849 sc->sk_status_map->dm_segs[0].ds_addr);
850 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
851 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
852 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
853 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
854 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
855
856 #if 0
857 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
858 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
859
860 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
861 #else
862 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
863 #endif
864
865 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
866
867 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
868 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
869 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
870
871 msk_update_int_mod(sc);
872 }
873
874 int
875 msk_probe(struct device *parent, struct cfdata *match, void *aux)
876 {
877 struct skc_attach_args *sa = aux;
878
879 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
880 return (0);
881
882 switch (sa->skc_type) {
883 case SK_YUKON_XL:
884 case SK_YUKON_EC_U:
885 case SK_YUKON_EC:
886 case SK_YUKON_FE:
887 return (1);
888 }
889
890 return (0);
891 }
892
893 /*
894 * Each XMAC chip is attached as a separate logical IP interface.
895 * Single port cards will have only one logical interface of course.
896 */
897 void
898 msk_attach(struct device *parent, struct device *self, void *aux)
899 {
900 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
901 struct sk_softc *sc = (struct sk_softc *)parent;
902 struct skc_attach_args *sa = aux;
903 struct ifnet *ifp;
904 caddr_t kva;
905 bus_dma_segment_t seg;
906 int i, rseg;
907 u_int32_t chunk, val;
908
909 sc_if->sk_port = sa->skc_port;
910 sc_if->sk_softc = sc;
911 sc->sk_if[sa->skc_port] = sc_if;
912
913 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
914
915 /*
916 * Get station address for this interface. Note that
917 * dual port cards actually come with three station
918 * addresses: one for each port, plus an extra. The
919 * extra one is used by the SysKonnect driver software
920 * as a 'virtual' station address for when both ports
921 * are operating in failover mode. Currently we don't
922 * use this extra address.
923 */
924 for (i = 0; i < ETHER_ADDR_LEN; i++)
925 sc_if->sk_enaddr[i] =
926 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
927
928 aprint_normal(": Ethernet address %s\n",
929 ether_sprintf(sc_if->sk_enaddr));
930
931 /*
932 * Set up RAM buffer addresses. The NIC will have a certain
933 * amount of SRAM on it, somewhere between 512K and 2MB. We
934 * need to divide this up a) between the transmitter and
935 * receiver and b) between the two XMACs, if this is a
936 * dual port NIC. Our algorithm is to divide up the memory
937 * evenly so that everyone gets a fair share.
938 *
939 * Just to be contrary, Yukon2 appears to have separate memory
940 * for each MAC.
941 */
942 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
943 val = sc->sk_rboff / sizeof(u_int64_t);
944 sc_if->sk_rx_ramstart = val;
945 val += (chunk / sizeof(u_int64_t));
946 sc_if->sk_rx_ramend = val - 1;
947 chunk = sc->sk_ramsize - chunk;
948 sc_if->sk_tx_ramstart = val;
949 val += (chunk / sizeof(u_int64_t));
950 sc_if->sk_tx_ramend = val - 1;
951
952 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
953 " tx_ramstart=%#x tx_ramend=%#x\n",
954 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
955 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
956
957 /* Read and save PHY type */
958 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
959
960 /* Set PHY address */
961 if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
962 sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
963 /* not initialized, punt */
964 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
965
966 sc->sk_coppertype = 1;
967 }
968
969 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
970
971 if (!(sc->sk_coppertype))
972 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
973
974 /* Allocate the descriptor queues. */
975 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
976 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
977 aprint_error(": can't alloc rx buffers\n");
978 goto fail;
979 }
980 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
981 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
982 aprint_error(": can't map dma buffers (%zu bytes)\n",
983 sizeof(struct msk_ring_data));
984 goto fail_1;
985 }
986 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
987 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
988 &sc_if->sk_ring_map)) {
989 aprint_error(": can't create dma map\n");
990 goto fail_2;
991 }
992 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
993 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
994 aprint_error(": can't load dma map\n");
995 goto fail_3;
996 }
997 sc_if->sk_rdata = (struct msk_ring_data *)kva;
998 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
999
1000 ifp = &sc_if->sk_ethercom.ec_if;
1001 /* Try to allocate memory for jumbo buffers. */
1002 if (msk_alloc_jumbo_mem(sc_if)) {
1003 aprint_error(": jumbo buffer allocation failed\n");
1004 goto fail_3;
1005 }
1006 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1007 | ETHERCAP_JUMBO_MTU;
1008
1009 ifp->if_softc = sc_if;
1010 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1011 ifp->if_ioctl = msk_ioctl;
1012 ifp->if_start = msk_start;
1013 ifp->if_stop = msk_stop;
1014 ifp->if_init = msk_init;
1015 ifp->if_watchdog = msk_watchdog;
1016 ifp->if_baudrate = 1000000000;
1017 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1018 IFQ_SET_READY(&ifp->if_snd);
1019 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1020
1021 /*
1022 * Do miibus setup.
1023 */
1024 msk_init_yukon(sc_if);
1025
1026 DPRINTFN(2, ("msk_attach: 1\n"));
1027
1028 sc_if->sk_mii.mii_ifp = ifp;
1029 sc_if->sk_mii.mii_readreg = msk_marv_miibus_readreg;
1030 sc_if->sk_mii.mii_writereg = msk_marv_miibus_writereg;
1031 sc_if->sk_mii.mii_statchg = msk_marv_miibus_statchg;
1032
1033 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1034 msk_ifmedia_upd, msk_ifmedia_sts);
1035 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1036 MII_OFFSET_ANY, 0);
1037 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1038 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1039 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1040 0, NULL);
1041 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1042 } else
1043 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1044
1045 callout_init(&sc_if->sk_tick_ch);
1046 callout_setfunc(&sc_if->sk_tick_ch, msk_yukon_tick, sc_if);
1047 callout_schedule(&sc_if->sk_tick_ch, hz);
1048
1049 /*
1050 * Call MI attach routines.
1051 */
1052 if_attach(ifp);
1053 ether_ifattach(ifp, sc_if->sk_enaddr);
1054
1055 shutdownhook_establish(mskc_shutdown, sc);
1056
1057 #if NRND > 0
1058 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1059 RND_TYPE_NET, 0);
1060 #endif
1061
1062 DPRINTFN(2, ("msk_attach: end\n"));
1063 return;
1064
1065 fail_3:
1066 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1067 fail_2:
1068 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1069 fail_1:
1070 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1071 fail:
1072 sc->sk_if[sa->skc_port] = NULL;
1073 }
1074
1075 int
1076 mskcprint(void *aux, const char *pnp)
1077 {
1078 struct skc_attach_args *sa = aux;
1079
1080 if (pnp)
1081 aprint_normal("sk port %c at %s",
1082 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1083 else
1084 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1085 return (UNCONF);
1086 }
1087
1088 /*
1089 * Attach the interface. Allocate softc structures, do ifmedia
1090 * setup and ethernet/BPF attach.
1091 */
1092 void
1093 mskc_attach(struct device *parent, struct device *self, void *aux)
1094 {
1095 struct sk_softc *sc = (struct sk_softc *)self;
1096 struct pci_attach_args *pa = aux;
1097 struct skc_attach_args skca;
1098 pci_chipset_tag_t pc = pa->pa_pc;
1099 pcireg_t command, memtype;
1100 pci_intr_handle_t ih;
1101 const char *intrstr = NULL;
1102 bus_size_t size;
1103 int rc, sk_nodenum;
1104 u_int8_t hw, skrs;
1105 const char *revstr = NULL;
1106 const struct sysctlnode *node;
1107 caddr_t kva;
1108 bus_dma_segment_t seg;
1109 int rseg;
1110
1111 DPRINTFN(2, ("begin mskc_attach\n"));
1112
1113 /*
1114 * Handle power management nonsense.
1115 */
1116 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1117
1118 if (command == 0x01) {
1119 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1120 if (command & SK_PSTATE_MASK) {
1121 u_int32_t iobase, membase, irq;
1122
1123 /* Save important PCI config data. */
1124 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1125 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1126 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1127
1128 /* Reset the power state. */
1129 aprint_normal("%s chip is in D%d power mode "
1130 "-- setting to D0\n", sc->sk_dev.dv_xname,
1131 command & SK_PSTATE_MASK);
1132 command &= 0xFFFFFFFC;
1133 pci_conf_write(pc, pa->pa_tag,
1134 SK_PCI_PWRMGMTCTRL, command);
1135
1136 /* Restore PCI config data. */
1137 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1138 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1139 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1140 }
1141 }
1142
1143 /*
1144 * Map control/status registers.
1145 */
1146
1147 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1148 switch (memtype) {
1149 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1150 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1151 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1152 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1153 NULL, &size) == 0)
1154 break;
1155 default:
1156 aprint_error(": can't map mem space\n");
1157 return;
1158 }
1159
1160 sc->sc_dmatag = pa->pa_dmat;
1161
1162 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1163 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1164
1165 /* bail out here if chip is not recognized */
1166 if (!(SK_IS_YUKON(sc))) {
1167 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1168 goto fail_1;
1169 }
1170 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1171
1172 /* Allocate interrupt */
1173 if (pci_intr_map(pa, &ih)) {
1174 aprint_error(": couldn't map interrupt\n");
1175 goto fail_1;
1176 }
1177
1178 intrstr = pci_intr_string(pc, ih);
1179 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1180 if (sc->sk_intrhand == NULL) {
1181 aprint_error(": couldn't establish interrupt");
1182 if (intrstr != NULL)
1183 aprint_error(" at %s", intrstr);
1184 aprint_error("\n");
1185 goto fail_1;
1186 }
1187
1188 if (bus_dmamem_alloc(sc->sc_dmatag,
1189 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1190 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1191 aprint_error(": can't alloc status buffers\n");
1192 goto fail_2;
1193 }
1194
1195 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1196 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1197 &kva, BUS_DMA_NOWAIT)) {
1198 aprint_error(": can't map dma buffers (%zu bytes)\n",
1199 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1200 goto fail_3;
1201 }
1202 if (bus_dmamap_create(sc->sc_dmatag,
1203 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1204 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1205 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1206 aprint_error(": can't create dma map\n");
1207 goto fail_4;
1208 }
1209 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1210 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1211 NULL, BUS_DMA_NOWAIT)) {
1212 aprint_error(": can't load dma map\n");
1213 goto fail_5;
1214 }
1215 sc->sk_status_ring = (struct msk_status_desc *)kva;
1216 bzero(sc->sk_status_ring,
1217 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1218
1219 /* Reset the adapter. */
1220 msk_reset(sc);
1221
1222 skrs = sk_win_read_1(sc, SK_EPROM0);
1223 if (skrs == 0x00)
1224 sc->sk_ramsize = 0x20000;
1225 else
1226 sc->sk_ramsize = skrs * (1<<12);
1227 sc->sk_rboff = SK_RBOFF_0;
1228
1229 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1230 sc->sk_ramsize, sc->sk_ramsize / 1024,
1231 sc->sk_rboff));
1232
1233 /* Read and save physical media type */
1234 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1235
1236 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1' ||
1237 (SK_IS_YUKON2(sc) && !(sc->sk_pmd == 'L' ||
1238 sc->sk_pmd == 'S')))
1239 sc->sk_coppertype = 1;
1240 else
1241 sc->sk_coppertype = 0;
1242
1243 switch (sc->sk_type) {
1244 case SK_YUKON_XL:
1245 sc->sk_name = "Marvell Yukon-2 XL";
1246 break;
1247 case SK_YUKON_EC_U:
1248 sc->sk_name = "Marvell Yukon-2 EC Ultra";
1249 break;
1250 case SK_YUKON_EC:
1251 sc->sk_name = "Marvell Yukon-2 EC";
1252 break;
1253 case SK_YUKON_FE:
1254 sc->sk_name = "Marvell Yukon-2 FE";
1255 break;
1256 default:
1257 sc->sk_name = "Marvell Yukon (Unknown)";
1258 }
1259
1260 if (sc->sk_type == SK_YUKON_XL) {
1261 switch (sc->sk_rev) {
1262 case SK_YUKON_XL_REV_A0:
1263 revstr = "A0";
1264 break;
1265 case SK_YUKON_XL_REV_A1:
1266 revstr = "A1";
1267 break;
1268 case SK_YUKON_XL_REV_A2:
1269 revstr = "A2";
1270 break;
1271 case SK_YUKON_XL_REV_A3:
1272 revstr = "A3";
1273 break;
1274 default:
1275 ;
1276 }
1277 }
1278
1279 if (sc->sk_type == SK_YUKON_EC) {
1280 switch (sc->sk_rev) {
1281 case SK_YUKON_EC_REV_A1:
1282 revstr = "A1";
1283 break;
1284 case SK_YUKON_EC_REV_A2:
1285 revstr = "A2";
1286 break;
1287 case SK_YUKON_EC_REV_A3:
1288 revstr = "A3";
1289 break;
1290 default:
1291 ;
1292 }
1293 }
1294
1295 if (sc->sk_type == SK_YUKON_EC_U) {
1296 switch (sc->sk_rev) {
1297 case SK_YUKON_EC_U_REV_A0:
1298 revstr = "A0";
1299 break;
1300 case SK_YUKON_EC_U_REV_A1:
1301 revstr = "A1";
1302 break;
1303 default:
1304 ;
1305 }
1306 }
1307
1308 /* Announce the product name. */
1309 aprint_normal(", %s", sc->sk_name);
1310 if (revstr != NULL)
1311 aprint_normal(" rev. %s", revstr);
1312 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1313
1314
1315 sc->sk_macs = 1;
1316
1317 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1318 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1319 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1320 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1321 sc->sk_macs++;
1322 }
1323
1324 skca.skc_port = SK_PORT_A;
1325 skca.skc_type = sc->sk_type;
1326 skca.skc_rev = sc->sk_rev;
1327 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1328
1329 if (sc->sk_macs > 1) {
1330 skca.skc_port = SK_PORT_B;
1331 skca.skc_type = sc->sk_type;
1332 skca.skc_rev = sc->sk_rev;
1333 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1334 }
1335
1336 /* Turn on the 'driver is loaded' LED. */
1337 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1338
1339 /* skc sysctl setup */
1340
1341 sc->sk_int_mod = SK_IM_DEFAULT;
1342 sc->sk_int_mod_pending = 0;
1343
1344 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1345 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1346 SYSCTL_DESCR("mskc per-controller controls"),
1347 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1348 CTL_EOL)) != 0) {
1349 aprint_normal("%s: couldn't create sysctl node\n",
1350 sc->sk_dev.dv_xname);
1351 goto fail_6;
1352 }
1353
1354 sk_nodenum = node->sysctl_num;
1355
1356 /* interrupt moderation time in usecs */
1357 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1358 CTLFLAG_READWRITE,
1359 CTLTYPE_INT, "int_mod",
1360 SYSCTL_DESCR("msk interrupt moderation timer"),
1361 msk_sysctl_handler, 0, sc,
1362 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1363 CTL_EOL)) != 0) {
1364 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1365 sc->sk_dev.dv_xname);
1366 goto fail_6;
1367 }
1368
1369 return;
1370
1371 fail_6:
1372 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1373 fail_5:
1374 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1375 fail_4:
1376 bus_dmamem_unmap(sc->sc_dmatag, kva,
1377 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1378 fail_3:
1379 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1380 fail_2:
1381 pci_intr_disestablish(pc, sc->sk_intrhand);
1382 fail_1:
1383 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1384 }
1385
1386 int
1387 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1388 {
1389 struct sk_softc *sc = sc_if->sk_softc;
1390 struct msk_tx_desc *f = NULL;
1391 u_int32_t frag, cur, cnt = 0;
1392 int i;
1393 struct sk_txmap_entry *entry;
1394 bus_dmamap_t txmap;
1395
1396 DPRINTFN(2, ("msk_encap\n"));
1397
1398 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1399 if (entry == NULL) {
1400 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1401 return (ENOBUFS);
1402 }
1403 txmap = entry->dmamap;
1404
1405 cur = frag = *txidx;
1406
1407 #ifdef MSK_DEBUG
1408 if (mskdebug >= 2)
1409 msk_dump_mbuf(m_head);
1410 #endif
1411
1412 /*
1413 * Start packing the mbufs in this chain into
1414 * the fragment pointers. Stop when we run out
1415 * of fragments or hit the end of the mbuf chain.
1416 */
1417 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1418 BUS_DMA_NOWAIT)) {
1419 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1420 return (ENOBUFS);
1421 }
1422
1423 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1424
1425 /* Sync the DMA map. */
1426 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1427 BUS_DMASYNC_PREWRITE);
1428
1429 for (i = 0; i < txmap->dm_nsegs; i++) {
1430 if ((MSK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1431 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1432 return (ENOBUFS);
1433 }
1434 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1435 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1436 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1437 f->sk_ctl = 0;
1438 if (cnt == 0)
1439 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1440 else
1441 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1442 cur = frag;
1443 SK_INC(frag, MSK_TX_RING_CNT);
1444 cnt++;
1445 }
1446
1447 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1448 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1449
1450 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1451 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1452
1453 /* Sync descriptors before handing to chip */
1454 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1455 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1456
1457 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1458
1459 /* Sync first descriptor to hand it off */
1460 MSK_CDTXSYNC(sc_if, *txidx, 1,
1461 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1462
1463 sc_if->sk_cdata.sk_tx_cnt += cnt;
1464
1465 #ifdef MSK_DEBUG
1466 if (mskdebug >= 2) {
1467 struct msk_tx_desc *le;
1468 u_int32_t idx;
1469 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1470 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1471 msk_dump_txdesc(le, idx);
1472 }
1473 }
1474 #endif
1475
1476 *txidx = frag;
1477
1478 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1479
1480 return (0);
1481 }
1482
1483 void
1484 msk_start(struct ifnet *ifp)
1485 {
1486 struct sk_if_softc *sc_if = ifp->if_softc;
1487 struct mbuf *m_head = NULL;
1488 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1489 int pkts = 0;
1490
1491 DPRINTFN(2, ("msk_start\n"));
1492
1493 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1494 IFQ_POLL(&ifp->if_snd, m_head);
1495 if (m_head == NULL)
1496 break;
1497
1498 /*
1499 * Pack the data into the transmit ring. If we
1500 * don't have room, set the OACTIVE flag and wait
1501 * for the NIC to drain the ring.
1502 */
1503 if (msk_encap(sc_if, m_head, &idx)) {
1504 ifp->if_flags |= IFF_OACTIVE;
1505 break;
1506 }
1507
1508 /* now we are committed to transmit the packet */
1509 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1510 pkts++;
1511
1512 /*
1513 * If there's a BPF listener, bounce a copy of this frame
1514 * to him.
1515 */
1516 #if NBPFILTER > 0
1517 if (ifp->if_bpf)
1518 bpf_mtap(ifp->if_bpf, m_head);
1519 #endif
1520 }
1521 if (pkts == 0)
1522 return;
1523
1524 /* Transmit */
1525 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1526 sc_if->sk_cdata.sk_tx_prod = idx;
1527 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1528
1529 /* Set a timeout in case the chip goes out to lunch. */
1530 ifp->if_timer = 5;
1531 }
1532 }
1533
1534 void
1535 msk_watchdog(struct ifnet *ifp)
1536 {
1537 struct sk_if_softc *sc_if = ifp->if_softc;
1538
1539 /*
1540 * Reclaim first as there is a possibility of losing Tx completion
1541 * interrupts.
1542 */
1543 msk_txeof(sc_if);
1544 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1545 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1546
1547 ifp->if_oerrors++;
1548
1549 /* XXX Resets both ports; we shouldn't do that. */
1550 msk_reset(sc_if->sk_softc);
1551 msk_init(ifp);
1552 }
1553 }
1554
1555 void
1556 mskc_shutdown(void *v)
1557 {
1558 struct sk_softc *sc = v;
1559
1560 DPRINTFN(2, ("msk_shutdown\n"));
1561
1562 /* Turn off the 'driver is loaded' LED. */
1563 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1564
1565 msk_reset(sc);
1566 }
1567
1568 __inline int
1569 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1570 {
1571 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1572 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1573 YU_RXSTAT_JABBER)) != 0 ||
1574 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1575 YU_RXSTAT_BYTES(stat) != len)
1576 return (0);
1577
1578 return (1);
1579 }
1580
1581 void
1582 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1583 {
1584 struct sk_softc *sc = sc_if->sk_softc;
1585 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1586 struct mbuf *m;
1587 struct sk_chain *cur_rx;
1588 int cur, total_len = len;
1589 bus_dmamap_t dmamap;
1590
1591 DPRINTFN(2, ("msk_rxeof\n"));
1592
1593 cur = sc_if->sk_cdata.sk_rx_cons;
1594 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1595 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1596
1597 /* Sync the descriptor */
1598 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1599
1600 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1601 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1602
1603 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1604 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1605
1606 m = cur_rx->sk_mbuf;
1607 cur_rx->sk_mbuf = NULL;
1608
1609 if (total_len < SK_MIN_FRAMELEN ||
1610 total_len > SK_JUMBO_FRAMELEN ||
1611 msk_rxvalid(sc, rxstat, total_len) == 0) {
1612 ifp->if_ierrors++;
1613 msk_newbuf(sc_if, cur, m, dmamap);
1614 return;
1615 }
1616
1617 /*
1618 * Try to allocate a new jumbo buffer. If that fails, copy the
1619 * packet to mbufs and put the jumbo buffer back in the ring
1620 * so it can be re-used. If allocating mbufs fails, then we
1621 * have to drop the packet.
1622 */
1623 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1624 struct mbuf *m0;
1625 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1626 total_len + ETHER_ALIGN, 0, ifp, NULL);
1627 msk_newbuf(sc_if, cur, m, dmamap);
1628 if (m0 == NULL) {
1629 ifp->if_ierrors++;
1630 return;
1631 }
1632 m_adj(m0, ETHER_ALIGN);
1633 m = m0;
1634 } else {
1635 m->m_pkthdr.rcvif = ifp;
1636 m->m_pkthdr.len = m->m_len = total_len;
1637 }
1638
1639 ifp->if_ipackets++;
1640
1641 #if NBPFILTER > 0
1642 if (ifp->if_bpf)
1643 bpf_mtap(ifp->if_bpf, m);
1644 #endif
1645
1646 /* pass it on. */
1647 (*ifp->if_input)(ifp, m);
1648 }
1649
1650 void
1651 msk_txeof(struct sk_if_softc *sc_if)
1652 {
1653 struct sk_softc *sc = sc_if->sk_softc;
1654 struct msk_tx_desc *cur_tx;
1655 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1656 u_int32_t idx, sk_ctl;
1657 struct sk_txmap_entry *entry;
1658
1659 DPRINTFN(2, ("msk_txeof\n"));
1660
1661 /*
1662 * Go through our tx ring and free mbufs for those
1663 * frames that have been sent.
1664 */
1665 idx = sc_if->sk_cdata.sk_tx_cons;
1666 while (idx != sk_win_read_2(sc, SK_STAT_BMU_TXA1_RIDX)) {
1667 MSK_CDTXSYNC(sc_if, idx, 1,
1668 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1669
1670 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1671 sk_ctl = letoh32(cur_tx->sk_ctl);
1672 #ifdef MSK_DEBUG
1673 if (mskdebug >= 2)
1674 msk_dump_txdesc(cur_tx, idx);
1675 #endif
1676 if (sk_ctl & SK_TXCTL_LASTFRAG)
1677 ifp->if_opackets++;
1678 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1679 entry = sc_if->sk_cdata.sk_tx_map[idx];
1680
1681 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1682 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1683
1684 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1685 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1686
1687 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1688 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1689 link);
1690 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1691 }
1692 sc_if->sk_cdata.sk_tx_cnt--;
1693 SK_INC(idx, MSK_TX_RING_CNT);
1694 }
1695 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1696
1697 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1698 ifp->if_flags &= ~IFF_OACTIVE;
1699
1700 sc_if->sk_cdata.sk_tx_cons = idx;
1701 }
1702
1703 void
1704 msk_yukon_tick(void *xsc_if)
1705 {
1706 struct sk_if_softc *sc_if = xsc_if;
1707 struct mii_data *mii = &sc_if->sk_mii;
1708
1709 mii_tick(mii);
1710 callout_schedule(&sc_if->sk_tick_ch, hz);
1711 }
1712
1713 void
1714 msk_intr_yukon(struct sk_if_softc *sc_if)
1715 {
1716 u_int8_t status;
1717
1718 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1719 /* RX overrun */
1720 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1721 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1722 SK_RFCTL_RX_FIFO_OVER);
1723 }
1724 /* TX underrun */
1725 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1726 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1727 SK_TFCTL_TX_FIFO_UNDER);
1728 }
1729
1730 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1731 }
1732
1733 int
1734 msk_intr(void *xsc)
1735 {
1736 struct sk_softc *sc = xsc;
1737 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1738 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1739 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1740 int claimed = 0;
1741 u_int32_t status;
1742 u_int16_t idx;
1743 struct msk_status_desc *cur_st;
1744
1745 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1746 if (status == 0) {
1747 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1748 return (0);
1749 }
1750
1751 status = CSR_READ_4(sc, SK_ISR);
1752
1753 if (sc_if0 != NULL)
1754 ifp0 = &sc_if0->sk_ethercom.ec_if;
1755 if (sc_if1 != NULL)
1756 ifp1 = &sc_if1->sk_ethercom.ec_if;
1757
1758 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1759 (ifp0->if_flags & IFF_RUNNING)) {
1760 msk_intr_yukon(sc_if0);
1761 }
1762
1763 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1764 (ifp1->if_flags & IFF_RUNNING)) {
1765 msk_intr_yukon(sc_if1);
1766 }
1767
1768 idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1769 while (sc->sk_status_idx != idx) {
1770 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1771 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1772
1773 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1774 switch (cur_st->sk_opcode & ~SK_Y2_STOPC_OWN) {
1775 case SK_Y2_STOPC_RXSTAT:
1776 msk_rxeof(sc->sk_if[cur_st->sk_link],
1777 letoh16(cur_st->sk_len),
1778 letoh32(cur_st->sk_status));
1779 SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1780 SK_RXQ1_Y2_PREF_PUTIDX,
1781 sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1782 break;
1783 case SK_Y2_STOPC_TXSTAT:
1784 msk_txeof(sc->sk_if[cur_st->sk_link]);
1785 break;
1786 default:
1787 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1788 break;
1789 }
1790 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1791 idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1792 }
1793
1794 if (status & SK_Y2_IMR_BMU) {
1795 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1796 claimed = 1;
1797 }
1798
1799 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1800
1801 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1802 msk_start(ifp0);
1803 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1804 msk_start(ifp1);
1805
1806 #if NRND > 0
1807 if (RND_ENABLED(&sc->rnd_source))
1808 rnd_add_uint32(&sc->rnd_source, status);
1809 #endif
1810
1811 if (sc->sk_int_mod_pending)
1812 msk_update_int_mod(sc);
1813
1814 return claimed;
1815 }
1816
1817 void
1818 msk_init_yukon(struct sk_if_softc *sc_if)
1819 {
1820 u_int32_t phy, v;
1821 u_int16_t reg;
1822 struct sk_softc *sc;
1823 int i;
1824
1825 sc = sc_if->sk_softc;
1826
1827 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1828 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1829
1830 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1831
1832 /* GMAC and GPHY Reset */
1833 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1834 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1835 DELAY(1000);
1836
1837 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1838
1839 #if 0
1840 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
1841 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
1842 #else
1843 phy = SK_GPHY_ENA_PAUSE;
1844 #endif
1845
1846 if (sc->sk_coppertype)
1847 phy |= SK_GPHY_COPPER;
1848 else
1849 phy |= SK_GPHY_FIBER;
1850
1851 DPRINTFN(3, ("msk_init_yukon: phy=%#x\n", phy));
1852
1853 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
1854 DELAY(1000);
1855 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
1856 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1857 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1858
1859 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1860 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1861
1862 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1863
1864 /* unused read of the interrupt source register */
1865 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1866 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1867
1868 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1869 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1870 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1871
1872 /* MIB Counter Clear Mode set */
1873 reg |= YU_PAR_MIB_CLR;
1874 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1875 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1876 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1877
1878 /* MIB Counter Clear Mode clear */
1879 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1880 reg &= ~YU_PAR_MIB_CLR;
1881 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1882
1883 /* receive control reg */
1884 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1885 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1886
1887 /* transmit parameter register */
1888 DPRINTFN(6, ("msk_init_yukon: 8\n"));
1889 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1890 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1891
1892 /* serial mode register */
1893 DPRINTFN(6, ("msk_init_yukon: 9\n"));
1894 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
1895 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
1896 YU_SMR_IPG_DATA(0x1e));
1897
1898 DPRINTFN(6, ("msk_init_yukon: 10\n"));
1899 /* Setup Yukon's address */
1900 for (i = 0; i < 3; i++) {
1901 /* Write Source Address 1 (unicast filter) */
1902 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1903 sc_if->sk_enaddr[i * 2] |
1904 sc_if->sk_enaddr[i * 2 + 1] << 8);
1905 }
1906
1907 for (i = 0; i < 3; i++) {
1908 reg = sk_win_read_2(sc_if->sk_softc,
1909 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1910 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1911 }
1912
1913 /* Set promiscuous mode */
1914 msk_setpromisc(sc_if);
1915
1916 /* Set multicast filter */
1917 DPRINTFN(6, ("msk_init_yukon: 11\n"));
1918 msk_setmulti(sc_if);
1919
1920 /* enable interrupt mask for counter overflows */
1921 DPRINTFN(6, ("msk_init_yukon: 12\n"));
1922 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1923 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1924 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1925
1926 /* Configure RX MAC FIFO Flush Mask */
1927 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1928 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1929 YU_RXSTAT_JABBER;
1930 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1931
1932 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
1933 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
1934 v = SK_TFCTL_OPERATION_ON;
1935 else
1936 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
1937 /* Configure RX MAC FIFO */
1938 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1939 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
1940
1941 /* Increase flush threshould to 64 bytes */
1942 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1943 SK_RFCTL_FIFO_THRESHOLD + 1);
1944
1945 /* Configure TX MAC FIFO */
1946 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1947 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1948
1949 #if 1
1950 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1951 #endif
1952 DPRINTFN(6, ("msk_init_yukon: end\n"));
1953 }
1954
1955 /*
1956 * Note that to properly initialize any part of the GEnesis chip,
1957 * you first have to take it out of reset mode.
1958 */
1959 int
1960 msk_init(struct ifnet *ifp)
1961 {
1962 struct sk_if_softc *sc_if = ifp->if_softc;
1963 struct sk_softc *sc = sc_if->sk_softc;
1964 struct mii_data *mii = &sc_if->sk_mii;
1965 int s;
1966 uint32_t imr, sk_imtimer_ticks;
1967
1968
1969 DPRINTFN(2, ("msk_init\n"));
1970
1971 s = splnet();
1972
1973 /* Cancel pending I/O and free all RX/TX buffers. */
1974 msk_stop(ifp,0);
1975
1976 /* Configure I2C registers */
1977
1978 /* Configure XMAC(s) */
1979 msk_init_yukon(sc_if);
1980 mii_mediachg(mii);
1981
1982 /* Configure transmit arbiter(s) */
1983 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1984 #if 0
1985 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1986 #endif
1987
1988 /* Configure RAMbuffers */
1989 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1990 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1991 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1992 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1993 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1994 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1995
1996 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
1997 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
1998 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
1999 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2000 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2001 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2002 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2003
2004 /* Configure BMUs */
2005 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2006 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2007 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2008 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2009
2010 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2011 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2012 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2013 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2014
2015 /* Make sure the sync transmit queue is disabled. */
2016 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2017
2018 /* Init descriptors */
2019 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2020 aprint_error("%s: initialization failed: no "
2021 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2022 msk_stop(ifp,0);
2023 splx(s);
2024 return ENOBUFS;
2025 }
2026
2027 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2028 aprint_error("%s: initialization failed: no "
2029 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2030 msk_stop(ifp,0);
2031 splx(s);
2032 return ENOBUFS;
2033 }
2034
2035 /* Set interrupt moderation if changed via sysctl. */
2036 switch (sc->sk_type) {
2037 case SK_YUKON_EC:
2038 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2039 break;
2040 default:
2041 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2042 }
2043 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2044 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2045 sk_win_write_4(sc, SK_IMTIMERINIT,
2046 SK_IM_USECS(sc->sk_int_mod));
2047 aprint_verbose("%s: interrupt moderation is %d us\n",
2048 sc->sk_dev.dv_xname, sc->sk_int_mod);
2049 }
2050
2051 /* Initialize prefetch engine. */
2052 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2053 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2054 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2055 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2056 MSK_RX_RING_ADDR(sc_if, 0));
2057 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2058 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2059 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2060 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2061
2062 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2063 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2064 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2065 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2066 MSK_TX_RING_ADDR(sc_if, 0));
2067 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2068 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2069 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2070 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2071
2072 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2073 sc_if->sk_cdata.sk_rx_prod);
2074
2075 /* Configure interrupt handling */
2076 if (sc_if->sk_port == SK_PORT_A)
2077 sc->sk_intrmask |= SK_Y2_INTRS1;
2078 else
2079 sc->sk_intrmask |= SK_Y2_INTRS2;
2080 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2081 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2082
2083 ifp->if_flags |= IFF_RUNNING;
2084 ifp->if_flags &= ~IFF_OACTIVE;
2085
2086 callout_schedule(&sc_if->sk_tick_ch, hz);
2087
2088 splx(s);
2089 return 0;
2090 }
2091
2092 void
2093 msk_stop(struct ifnet *ifp, int disable)
2094 {
2095 struct sk_if_softc *sc_if = ifp->if_softc;
2096 struct sk_softc *sc = sc_if->sk_softc;
2097 struct sk_txmap_entry *dma;
2098 int i;
2099
2100 DPRINTFN(2, ("msk_stop\n"));
2101
2102 callout_stop(&sc_if->sk_tick_ch);
2103
2104 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2105
2106 /* Stop transfer of Tx descriptors */
2107
2108 /* Stop transfer of Rx descriptors */
2109
2110 /* Turn off various components of this interface. */
2111 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2112 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2113 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2114 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2115 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2116 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2117 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2118 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2119 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2120 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2121 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2122 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2123
2124 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2125 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2126
2127 /* Disable interrupts */
2128 if (sc_if->sk_port == SK_PORT_A)
2129 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2130 else
2131 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2132 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2133
2134 SK_XM_READ_2(sc_if, XM_ISR);
2135 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2136
2137 /* Free RX and TX mbufs still in the queues. */
2138 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2139 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2140 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2141 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2142 }
2143 }
2144
2145 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2146 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2147 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2148 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2149 #if 1
2150 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2151 sc_if->sk_cdata.sk_tx_map[i], link);
2152 sc_if->sk_cdata.sk_tx_map[i] = 0;
2153 #endif
2154 }
2155 }
2156
2157 #if 1
2158 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2159 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2160 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2161 free(dma, M_DEVBUF);
2162 }
2163 #endif
2164 }
2165
2166 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2167 NULL, NULL);
2168
2169 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2170 NULL, NULL);
2171
2172 #ifdef MSK_DEBUG
2173 void
2174 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2175 {
2176 #define DESC_PRINT(X) \
2177 if (X) \
2178 printf("txdesc[%d]." #X "=%#x\n", \
2179 idx, X);
2180
2181 DESC_PRINT(letoh32(le->sk_addr));
2182 DESC_PRINT(letoh16(le->sk_len));
2183 DESC_PRINT(le->sk_ctl);
2184 DESC_PRINT(le->sk_opcode);
2185 #undef DESC_PRINT
2186 }
2187
2188 void
2189 msk_dump_bytes(const char *data, int len)
2190 {
2191 int c, i, j;
2192
2193 for (i = 0; i < len; i += 16) {
2194 printf("%08x ", i);
2195 c = len - i;
2196 if (c > 16) c = 16;
2197
2198 for (j = 0; j < c; j++) {
2199 printf("%02x ", data[i + j] & 0xff);
2200 if ((j & 0xf) == 7 && j > 0)
2201 printf(" ");
2202 }
2203
2204 for (; j < 16; j++)
2205 printf(" ");
2206 printf(" ");
2207
2208 for (j = 0; j < c; j++) {
2209 int ch = data[i + j] & 0xff;
2210 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2211 }
2212
2213 printf("\n");
2214
2215 if (c < 16)
2216 break;
2217 }
2218 }
2219
2220 void
2221 msk_dump_mbuf(struct mbuf *m)
2222 {
2223 int count = m->m_pkthdr.len;
2224
2225 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2226
2227 while (count > 0 && m) {
2228 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2229 m, m->m_data, m->m_len);
2230 msk_dump_bytes(mtod(m, char *), m->m_len);
2231
2232 count -= m->m_len;
2233 m = m->m_next;
2234 }
2235 }
2236 #endif
2237
2238 static int
2239 msk_sysctl_handler(SYSCTLFN_ARGS)
2240 {
2241 int error, t;
2242 struct sysctlnode node;
2243 struct sk_softc *sc;
2244
2245 node = *rnode;
2246 sc = node.sysctl_data;
2247 t = sc->sk_int_mod;
2248 node.sysctl_data = &t;
2249 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2250 if (error || newp == NULL)
2251 return error;
2252
2253 if (t < SK_IM_MIN || t > SK_IM_MAX)
2254 return EINVAL;
2255
2256 /* update the softc with sysctl-changed value, and mark
2257 for hardware update */
2258 sc->sk_int_mod = t;
2259 sc->sk_int_mod_pending = 1;
2260 return 0;
2261 }
2262
2263 /*
2264 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2265 * set up in skc_attach()
2266 */
2267 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2268 {
2269 int rc;
2270 const struct sysctlnode *node;
2271
2272 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2273 0, CTLTYPE_NODE, "hw", NULL,
2274 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2275 goto err;
2276 }
2277
2278 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2279 0, CTLTYPE_NODE, "msk",
2280 SYSCTL_DESCR("msk interface controls"),
2281 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2282 goto err;
2283 }
2284
2285 msk_root_num = node->sysctl_num;
2286 return;
2287
2288 err:
2289 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2290 }
2291