if_msk.c revision 1.1.6.1 1 /* $NetBSD: if_msk.c,v 1.1.6.1 2006/10/22 06:06:17 yamt Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.11 2006/08/17 22:07:40 brad Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include "bpfilter.h"
55 #include "rnd.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/callout.h>
67 #include <sys/sysctl.h>
68 #include <sys/endian.h>
69 #ifdef __NetBSD__
70 #define letoh16 htole16
71 #define letoh32 htole32
72 #endif
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77
78 #include <net/if_media.h>
79
80 #if NBPFILTER > 0
81 #include <net/bpf.h>
82 #endif
83 #if NRND > 0
84 #include <sys/rnd.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/brgphyreg.h>
90
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcidevs.h>
94
95 #include <dev/pci/if_skreg.h>
96 #include <dev/pci/if_mskvar.h>
97
98 int mskc_probe(struct device *, struct cfdata *, void *);
99 void mskc_attach(struct device *, struct device *self, void *aux);
100 void mskc_shutdown(void *);
101 int msk_probe(struct device *, struct cfdata *, void *);
102 void msk_attach(struct device *, struct device *self, void *aux);
103 int mskcprint(void *, const char *);
104 int msk_intr(void *);
105 void msk_intr_yukon(struct sk_if_softc *);
106 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
107 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
108 void msk_txeof(struct sk_if_softc *);
109 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
110 void msk_start(struct ifnet *);
111 int msk_ioctl(struct ifnet *, u_long, caddr_t);
112 int msk_init(struct ifnet *);
113 void msk_init_yukon(struct sk_if_softc *);
114 void msk_stop(struct ifnet *, int);
115 void msk_watchdog(struct ifnet *);
116 int msk_ifmedia_upd(struct ifnet *);
117 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 void msk_reset(struct sk_softc *);
119 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
120 int msk_alloc_jumbo_mem(struct sk_if_softc *);
121 void *msk_jalloc(struct sk_if_softc *);
122 void msk_jfree(struct mbuf *, caddr_t, size_t, void *);
123 int msk_init_rx_ring(struct sk_if_softc *);
124 int msk_init_tx_ring(struct sk_if_softc *);
125
126 void msk_update_int_mod(struct sk_softc *);
127
128 int msk_marv_miibus_readreg(struct device *, int, int);
129 void msk_marv_miibus_writereg(struct device *, int, int, int);
130 void msk_marv_miibus_statchg(struct device *);
131
132 u_int32_t msk_yukon_hash(caddr_t);
133 void msk_setfilt(struct sk_if_softc *, caddr_t, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_yukon_tick(void *);
137
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x) if (mskdebug) printf x
141 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 int mskdebug = MSK_DEBUG;
143
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_3 },
175 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
176 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
177 };
178
179 static inline u_int32_t
180 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
181 {
182 return CSR_READ_4(sc, reg);
183 }
184
185 static inline u_int16_t
186 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
187 {
188 return CSR_READ_2(sc, reg);
189 }
190
191 static inline u_int8_t
192 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
193 {
194 return CSR_READ_1(sc, reg);
195 }
196
197 static inline void
198 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
199 {
200 CSR_WRITE_4(sc, reg, x);
201 }
202
203 static inline void
204 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
205 {
206 CSR_WRITE_2(sc, reg, x);
207 }
208
209 static inline void
210 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
211 {
212 CSR_WRITE_1(sc, reg, x);
213 }
214
215 int
216 msk_marv_miibus_readreg(struct device *dev, int phy, int reg)
217 {
218 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
219 u_int16_t val;
220 int i;
221
222 if (phy != 0 ||
223 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
224 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
225 DPRINTFN(9, ("msk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
226 phy, reg));
227 return (0);
228 }
229
230 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
231 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
232
233 for (i = 0; i < SK_TIMEOUT; i++) {
234 DELAY(1);
235 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
236 if (val & YU_SMICR_READ_VALID)
237 break;
238 }
239
240 if (i == SK_TIMEOUT) {
241 aprint_error("%s: phy failed to come ready\n",
242 sc_if->sk_dev.dv_xname);
243 return (0);
244 }
245
246 DPRINTFN(9, ("msk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
247 SK_TIMEOUT));
248
249 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
250
251 DPRINTFN(9, ("msk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
252 phy, reg, val));
253
254 return (val);
255 }
256
257 void
258 msk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
259 {
260 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
261 int i;
262
263 DPRINTFN(9, ("msk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
264 phy, reg, val));
265
266 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
267 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
268 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
269
270 for (i = 0; i < SK_TIMEOUT; i++) {
271 DELAY(1);
272 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
273 break;
274 }
275
276 if (i == SK_TIMEOUT)
277 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
278 }
279
280 void
281 msk_marv_miibus_statchg(struct device *dev __unused)
282 {
283 DPRINTFN(9, ("msk_marv_miibus_statchg: gpcr=%x\n",
284 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
285 }
286
287 #define HASH_BITS 6
288
289 u_int32_t
290 msk_yukon_hash(caddr_t addr)
291 {
292 u_int32_t crc;
293
294 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
295 return (crc & ((1 << HASH_BITS) - 1));
296 }
297
298 void
299 msk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
300 {
301 int base = XM_RXFILT_ENTRY(slot);
302
303 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
304 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
305 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
306 }
307
308 void
309 msk_setmulti(struct sk_if_softc *sc_if)
310 {
311 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
312 u_int32_t hashes[2] = { 0, 0 };
313 int h;
314 struct ethercom *ec = &sc_if->sk_ethercom;
315 struct ether_multi *enm;
316 struct ether_multistep step;
317
318 /* First, zot all the existing filters. */
319 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
320 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
321 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
322 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
323
324
325 /* Now program new ones. */
326 allmulti:
327 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 hashes[0] = 0xFFFFFFFF;
329 hashes[1] = 0xFFFFFFFF;
330 } else {
331 /* First find the tail of the list. */
332 ETHER_FIRST_MULTI(step, ec, enm);
333 while (enm != NULL) {
334 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
335 ETHER_ADDR_LEN)) {
336 ifp->if_flags |= IFF_ALLMULTI;
337 goto allmulti;
338 }
339 h = msk_yukon_hash(enm->enm_addrlo);
340 if (h < 32)
341 hashes[0] |= (1 << h);
342 else
343 hashes[1] |= (1 << (h - 32));
344
345 ETHER_NEXT_MULTI(step, enm);
346 }
347 }
348
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
353 }
354
355 void
356 msk_setpromisc(struct sk_if_softc *sc_if)
357 {
358 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
359
360 if (ifp->if_flags & IFF_PROMISC)
361 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
362 YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 else
364 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
365 YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 }
367
368 int
369 msk_init_rx_ring(struct sk_if_softc *sc_if)
370 {
371 struct msk_chain_data *cd = &sc_if->sk_cdata;
372 struct msk_ring_data *rd = sc_if->sk_rdata;
373 int i, nexti;
374
375 bzero((char *)rd->sk_rx_ring,
376 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
377
378 for (i = 0; i < MSK_RX_RING_CNT; i++) {
379 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
380 if (i == (MSK_RX_RING_CNT - 1))
381 nexti = 0;
382 else
383 nexti = i + 1;
384 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
385 }
386
387 for (i = 0; i < MSK_RX_RING_CNT; i++) {
388 if (msk_newbuf(sc_if, i, NULL,
389 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
390 aprint_error("%s: failed alloc of %dth mbuf\n",
391 sc_if->sk_dev.dv_xname, i);
392 return (ENOBUFS);
393 }
394 }
395
396 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
397 sc_if->sk_cdata.sk_rx_cons = 0;
398
399 return (0);
400 }
401
402 int
403 msk_init_tx_ring(struct sk_if_softc *sc_if)
404 {
405 struct sk_softc *sc = sc_if->sk_softc;
406 struct msk_chain_data *cd = &sc_if->sk_cdata;
407 struct msk_ring_data *rd = sc_if->sk_rdata;
408 bus_dmamap_t dmamap;
409 struct sk_txmap_entry *entry;
410 int i, nexti;
411
412 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
413 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
414
415 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
416 for (i = 0; i < MSK_TX_RING_CNT; i++) {
417 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
418 if (i == (MSK_TX_RING_CNT - 1))
419 nexti = 0;
420 else
421 nexti = i + 1;
422 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
423
424 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
425 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
426 return (ENOBUFS);
427
428 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
429 if (!entry) {
430 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
431 return (ENOBUFS);
432 }
433 entry->dmamap = dmamap;
434 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
435 }
436
437 sc_if->sk_cdata.sk_tx_prod = 0;
438 sc_if->sk_cdata.sk_tx_cons = 0;
439 sc_if->sk_cdata.sk_tx_cnt = 0;
440
441 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
442 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
443
444 return (0);
445 }
446
447 int
448 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
449 bus_dmamap_t dmamap)
450 {
451 struct mbuf *m_new = NULL;
452 struct sk_chain *c;
453 struct msk_rx_desc *r;
454
455 if (m == NULL) {
456 caddr_t buf = NULL;
457
458 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
459 if (m_new == NULL)
460 return (ENOBUFS);
461
462 /* Allocate the jumbo buffer */
463 buf = msk_jalloc(sc_if);
464 if (buf == NULL) {
465 m_freem(m_new);
466 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
467 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
468 return (ENOBUFS);
469 }
470
471 /* Attach the buffer to the mbuf */
472 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
473 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
474 } else {
475 /*
476 * We're re-using a previously allocated mbuf;
477 * be sure to re-init pointers and lengths to
478 * default values.
479 */
480 m_new = m;
481 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
482 m_new->m_data = m_new->m_ext.ext_buf;
483 }
484 m_adj(m_new, ETHER_ALIGN);
485
486 c = &sc_if->sk_cdata.sk_rx_chain[i];
487 r = c->sk_le;
488 c->sk_mbuf = m_new;
489 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
490 (((vaddr_t)m_new->m_data
491 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
492 r->sk_len = htole16(SK_JLEN);
493 r->sk_ctl = 0;
494 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
495
496 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
497
498 return (0);
499 }
500
501 /*
502 * Memory management for jumbo frames.
503 */
504
505 int
506 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
507 {
508 struct sk_softc *sc = sc_if->sk_softc;
509 caddr_t ptr, kva;
510 bus_dma_segment_t seg;
511 int i, rseg, state, error;
512 struct sk_jpool_entry *entry;
513
514 state = error = 0;
515
516 /* Grab a big chunk o' storage. */
517 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
518 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
519 aprint_error(": can't alloc rx buffers");
520 return (ENOBUFS);
521 }
522
523 state = 1;
524 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, &kva,
525 BUS_DMA_NOWAIT)) {
526 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
527 error = ENOBUFS;
528 goto out;
529 }
530
531 state = 2;
532 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
533 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
534 aprint_error(": can't create dma map");
535 error = ENOBUFS;
536 goto out;
537 }
538
539 state = 3;
540 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
541 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
542 aprint_error(": can't load dma map");
543 error = ENOBUFS;
544 goto out;
545 }
546
547 state = 4;
548 sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
549 DPRINTFN(1,("msk_jumbo_buf = %p\n", (caddr_t)sc_if->sk_cdata.sk_jumbo_buf));
550
551 LIST_INIT(&sc_if->sk_jfree_listhead);
552 LIST_INIT(&sc_if->sk_jinuse_listhead);
553
554 /*
555 * Now divide it up into 9K pieces and save the addresses
556 * in an array.
557 */
558 ptr = sc_if->sk_cdata.sk_jumbo_buf;
559 for (i = 0; i < MSK_JSLOTS; i++) {
560 sc_if->sk_cdata.sk_jslots[i] = ptr;
561 ptr += SK_JLEN;
562 entry = malloc(sizeof(struct sk_jpool_entry),
563 M_DEVBUF, M_NOWAIT);
564 if (entry == NULL) {
565 aprint_error(": no memory for jumbo buffer queue!");
566 error = ENOBUFS;
567 goto out;
568 }
569 entry->slot = i;
570 if (i)
571 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
572 entry, jpool_entries);
573 else
574 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
575 entry, jpool_entries);
576 }
577 out:
578 if (error != 0) {
579 switch (state) {
580 case 4:
581 bus_dmamap_unload(sc->sc_dmatag,
582 sc_if->sk_cdata.sk_rx_jumbo_map);
583 case 3:
584 bus_dmamap_destroy(sc->sc_dmatag,
585 sc_if->sk_cdata.sk_rx_jumbo_map);
586 case 2:
587 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
588 case 1:
589 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
590 break;
591 default:
592 break;
593 }
594 }
595
596 return (error);
597 }
598
599 /*
600 * Allocate a jumbo buffer.
601 */
602 void *
603 msk_jalloc(struct sk_if_softc *sc_if)
604 {
605 struct sk_jpool_entry *entry;
606
607 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
608
609 if (entry == NULL)
610 return (NULL);
611
612 LIST_REMOVE(entry, jpool_entries);
613 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
614 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
615 }
616
617 /*
618 * Release a jumbo buffer.
619 */
620 void
621 msk_jfree(struct mbuf *m, caddr_t buf, size_t size __unused, void *arg)
622 {
623 struct sk_jpool_entry *entry;
624 struct sk_if_softc *sc;
625 int i, s;
626
627 /* Extract the softc struct pointer. */
628 sc = (struct sk_if_softc *)arg;
629
630 if (sc == NULL)
631 panic("msk_jfree: can't find softc pointer!");
632
633 /* calculate the slot this buffer belongs to */
634
635 i = ((vaddr_t)buf
636 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
637
638 if ((i < 0) || (i >= MSK_JSLOTS))
639 panic("sk_jfree: asked to free buffer that we don't manage!");
640
641 s = splvm();
642 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
643 if (entry == NULL)
644 panic("msk_jfree: buffer not in use!");
645 entry->slot = i;
646 LIST_REMOVE(entry, jpool_entries);
647 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
648
649 if (__predict_true(m != NULL))
650 pool_cache_put(&mbpool_cache, m);
651 splx(s);
652 }
653
654 /*
655 * Set media options.
656 */
657 int
658 msk_ifmedia_upd(struct ifnet *ifp)
659 {
660 struct sk_if_softc *sc_if = ifp->if_softc;
661
662 msk_init(ifp);
663 mii_mediachg(&sc_if->sk_mii);
664 return (0);
665 }
666
667 /*
668 * Report current media status.
669 */
670 void
671 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
672 {
673 struct sk_if_softc *sc_if = ifp->if_softc;
674
675 mii_pollstat(&sc_if->sk_mii);
676 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
677 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
678 }
679
680 int
681 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
682 {
683 struct sk_if_softc *sc_if = ifp->if_softc;
684 struct ifreq *ifr = (struct ifreq *) data;
685 struct mii_data *mii;
686 int s, error = 0;
687
688 s = splnet();
689
690 switch(command) {
691 case SIOCGIFMEDIA:
692 case SIOCSIFMEDIA:
693 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA\n"));
694 mii = &sc_if->sk_mii;
695 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
696 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA done\n"));
697 break;
698 default:
699 DPRINTFN(2, ("msk_ioctl ETHER\n"));
700 error = ether_ioctl(ifp, command, data);
701
702 if (error == ENETRESET) {
703 /*
704 * Multicast list has changed; set the hardware
705 * filter accordingly.
706 */
707 if (ifp->if_flags & IFF_RUNNING)
708 msk_setmulti(sc_if);
709 error = 0;
710 }
711 break;
712 }
713
714 splx(s);
715 return (error);
716 }
717
718 void
719 msk_update_int_mod(struct sk_softc *sc)
720 {
721 u_int32_t sk_imtimer_ticks;
722
723 /*
724 * Configure interrupt moderation. The moderation timer
725 * defers interrupts specified in the interrupt moderation
726 * timer mask based on the timeout specified in the interrupt
727 * moderation timer init register. Each bit in the timer
728 * register represents one tick, so to specify a timeout in
729 * microseconds, we have to multiply by the correct number of
730 * ticks-per-microsecond.
731 */
732 switch (sc->sk_type) {
733 case SK_YUKON_EC:
734 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
735 break;
736 default:
737 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
738 }
739 aprint_verbose("%s: interrupt moderation is %d us\n",
740 sc->sk_dev.dv_xname, sc->sk_int_mod);
741 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
742 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
743 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
744 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
745 sc->sk_int_mod_pending = 0;
746 }
747
748 static int
749 msk_lookup(const struct pci_attach_args *pa)
750 {
751 const struct msk_product *pmsk;
752
753 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
754 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
755 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
763 * IDs against our list and return a device name if we find a match.
764 */
765 int
766 mskc_probe(struct device *parent __unused, struct cfdata *match __unused,
767 void *aux)
768 {
769 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
770
771 return msk_lookup(pa);
772 }
773
774 /*
775 * Force the GEnesis into reset, then bring it out of reset.
776 */
777 void msk_reset(struct sk_softc *sc)
778 {
779 u_int32_t sk_imtimer_ticks;
780 int reg;
781
782 DPRINTFN(2, ("msk_reset\n"));
783
784 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
785 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
786 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
787
788 DELAY(1000);
789 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
790 DELAY(2);
791 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
792 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
793
794 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
795 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
796 CSR_READ_2(sc, SK_LINK_CTRL)));
797
798 /* Disable ASF */
799 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
800 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
801
802 /* Clear I2C IRQ noise */
803 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
804
805 /* Disable hardware timer */
806 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
807 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
808
809 /* Disable descriptor polling */
810 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
811
812 /* Disable time stamps */
813 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
814 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
815
816 /* Enable RAM interface */
817 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
818 for (reg = SK_TO0;reg <= SK_TO11; reg++)
819 sk_win_write_1(sc, reg, 36);
820
821 /*
822 * Configure interrupt moderation. The moderation timer
823 * defers interrupts specified in the interrupt moderation
824 * timer mask based on the timeout specified in the interrupt
825 * moderation timer init register. Each bit in the timer
826 * register represents one tick, so to specify a timeout in
827 * microseconds, we have to multiply by the correct number of
828 * ticks-per-microsecond.
829 */
830 switch (sc->sk_type) {
831 case SK_YUKON_EC:
832 case SK_YUKON_XL:
833 case SK_YUKON_FE:
834 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
835 break;
836 default:
837 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
838 }
839
840 /* Reset status ring. */
841 bzero((char *)sc->sk_status_ring,
842 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
843 sc->sk_status_idx = 0;
844
845 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
846 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
847
848 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
849 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
850 sc->sk_status_map->dm_segs[0].ds_addr);
851 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
852 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
853 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
854 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
855 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
856
857 #if 0
858 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
859 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
860
861 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
862 #else
863 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
864 #endif
865
866 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
867
868 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
869 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
870 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
871
872 msk_update_int_mod(sc);
873 }
874
875 int
876 msk_probe(struct device *parent __unused, struct cfdata *match __unused,
877 void *aux)
878 {
879 struct skc_attach_args *sa = aux;
880
881 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
882 return (0);
883
884 switch (sa->skc_type) {
885 case SK_YUKON_XL:
886 case SK_YUKON_EC_U:
887 case SK_YUKON_EC:
888 case SK_YUKON_FE:
889 return (1);
890 }
891
892 return (0);
893 }
894
895 /*
896 * Each XMAC chip is attached as a separate logical IP interface.
897 * Single port cards will have only one logical interface of course.
898 */
899 void
900 msk_attach(struct device *parent, struct device *self, void *aux)
901 {
902 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
903 struct sk_softc *sc = (struct sk_softc *)parent;
904 struct skc_attach_args *sa = aux;
905 struct ifnet *ifp;
906 caddr_t kva;
907 bus_dma_segment_t seg;
908 int i, rseg;
909 u_int32_t chunk, val;
910
911 sc_if->sk_port = sa->skc_port;
912 sc_if->sk_softc = sc;
913 sc->sk_if[sa->skc_port] = sc_if;
914
915 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
916
917 /*
918 * Get station address for this interface. Note that
919 * dual port cards actually come with three station
920 * addresses: one for each port, plus an extra. The
921 * extra one is used by the SysKonnect driver software
922 * as a 'virtual' station address for when both ports
923 * are operating in failover mode. Currently we don't
924 * use this extra address.
925 */
926 for (i = 0; i < ETHER_ADDR_LEN; i++)
927 sc_if->sk_enaddr[i] =
928 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
929
930 aprint_normal(": Ethernet address %s\n",
931 ether_sprintf(sc_if->sk_enaddr));
932
933 /*
934 * Set up RAM buffer addresses. The NIC will have a certain
935 * amount of SRAM on it, somewhere between 512K and 2MB. We
936 * need to divide this up a) between the transmitter and
937 * receiver and b) between the two XMACs, if this is a
938 * dual port NIC. Our algorithm is to divide up the memory
939 * evenly so that everyone gets a fair share.
940 *
941 * Just to be contrary, Yukon2 appears to have separate memory
942 * for each MAC.
943 */
944 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
945 val = sc->sk_rboff / sizeof(u_int64_t);
946 sc_if->sk_rx_ramstart = val;
947 val += (chunk / sizeof(u_int64_t));
948 sc_if->sk_rx_ramend = val - 1;
949 chunk = sc->sk_ramsize - chunk;
950 sc_if->sk_tx_ramstart = val;
951 val += (chunk / sizeof(u_int64_t));
952 sc_if->sk_tx_ramend = val - 1;
953
954 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
955 " tx_ramstart=%#x tx_ramend=%#x\n",
956 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
957 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
958
959 /* Read and save PHY type */
960 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
961
962 /* Set PHY address */
963 if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
964 sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
965 /* not initialized, punt */
966 sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
967
968 sc->sk_coppertype = 1;
969 }
970
971 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
972
973 if (!(sc->sk_coppertype))
974 sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
975
976 /* Allocate the descriptor queues. */
977 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
978 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
979 aprint_error(": can't alloc rx buffers\n");
980 goto fail;
981 }
982 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
983 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
984 aprint_error(": can't map dma buffers (%zu bytes)\n",
985 sizeof(struct msk_ring_data));
986 goto fail_1;
987 }
988 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
989 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
990 &sc_if->sk_ring_map)) {
991 aprint_error(": can't create dma map\n");
992 goto fail_2;
993 }
994 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
995 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
996 aprint_error(": can't load dma map\n");
997 goto fail_3;
998 }
999 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1000 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1001
1002 ifp = &sc_if->sk_ethercom.ec_if;
1003 /* Try to allocate memory for jumbo buffers. */
1004 if (msk_alloc_jumbo_mem(sc_if)) {
1005 aprint_error(": jumbo buffer allocation failed\n");
1006 goto fail_3;
1007 }
1008 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1009 | ETHERCAP_JUMBO_MTU;
1010
1011 ifp->if_softc = sc_if;
1012 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1013 ifp->if_ioctl = msk_ioctl;
1014 ifp->if_start = msk_start;
1015 ifp->if_stop = msk_stop;
1016 ifp->if_init = msk_init;
1017 ifp->if_watchdog = msk_watchdog;
1018 ifp->if_baudrate = 1000000000;
1019 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1020 IFQ_SET_READY(&ifp->if_snd);
1021 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1022
1023 /*
1024 * Do miibus setup.
1025 */
1026 msk_init_yukon(sc_if);
1027
1028 DPRINTFN(2, ("msk_attach: 1\n"));
1029
1030 sc_if->sk_mii.mii_ifp = ifp;
1031 sc_if->sk_mii.mii_readreg = msk_marv_miibus_readreg;
1032 sc_if->sk_mii.mii_writereg = msk_marv_miibus_writereg;
1033 sc_if->sk_mii.mii_statchg = msk_marv_miibus_statchg;
1034
1035 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1036 msk_ifmedia_upd, msk_ifmedia_sts);
1037 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1038 MII_OFFSET_ANY, 0);
1039 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1040 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1041 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1042 0, NULL);
1043 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1044 } else
1045 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1046
1047 callout_init(&sc_if->sk_tick_ch);
1048 callout_setfunc(&sc_if->sk_tick_ch, msk_yukon_tick, sc_if);
1049 callout_schedule(&sc_if->sk_tick_ch, hz);
1050
1051 /*
1052 * Call MI attach routines.
1053 */
1054 if_attach(ifp);
1055 ether_ifattach(ifp, sc_if->sk_enaddr);
1056
1057 shutdownhook_establish(mskc_shutdown, sc);
1058
1059 #if NRND > 0
1060 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1061 RND_TYPE_NET, 0);
1062 #endif
1063
1064 DPRINTFN(2, ("msk_attach: end\n"));
1065 return;
1066
1067 fail_3:
1068 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1069 fail_2:
1070 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1071 fail_1:
1072 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1073 fail:
1074 sc->sk_if[sa->skc_port] = NULL;
1075 }
1076
1077 int
1078 mskcprint(void *aux, const char *pnp)
1079 {
1080 struct skc_attach_args *sa = aux;
1081
1082 if (pnp)
1083 aprint_normal("sk port %c at %s",
1084 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1085 else
1086 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1087 return (UNCONF);
1088 }
1089
1090 /*
1091 * Attach the interface. Allocate softc structures, do ifmedia
1092 * setup and ethernet/BPF attach.
1093 */
1094 void
1095 mskc_attach(struct device *parent __unused, struct device *self, void *aux)
1096 {
1097 struct sk_softc *sc = (struct sk_softc *)self;
1098 struct pci_attach_args *pa = aux;
1099 struct skc_attach_args skca;
1100 pci_chipset_tag_t pc = pa->pa_pc;
1101 pcireg_t command, memtype;
1102 pci_intr_handle_t ih;
1103 const char *intrstr = NULL;
1104 bus_size_t size;
1105 int rc, sk_nodenum;
1106 u_int8_t hw, skrs;
1107 const char *revstr = NULL;
1108 const struct sysctlnode *node;
1109 caddr_t kva;
1110 bus_dma_segment_t seg;
1111 int rseg;
1112
1113 DPRINTFN(2, ("begin mskc_attach\n"));
1114
1115 /*
1116 * Handle power management nonsense.
1117 */
1118 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1119
1120 if (command == 0x01) {
1121 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1122 if (command & SK_PSTATE_MASK) {
1123 u_int32_t iobase, membase, irq;
1124
1125 /* Save important PCI config data. */
1126 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1127 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1128 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1129
1130 /* Reset the power state. */
1131 aprint_normal("%s chip is in D%d power mode "
1132 "-- setting to D0\n", sc->sk_dev.dv_xname,
1133 command & SK_PSTATE_MASK);
1134 command &= 0xFFFFFFFC;
1135 pci_conf_write(pc, pa->pa_tag,
1136 SK_PCI_PWRMGMTCTRL, command);
1137
1138 /* Restore PCI config data. */
1139 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1140 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1141 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1142 }
1143 }
1144
1145 /*
1146 * Map control/status registers.
1147 */
1148
1149 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1150 switch (memtype) {
1151 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1152 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1153 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1154 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1155 NULL, &size) == 0)
1156 break;
1157 default:
1158 aprint_error(": can't map mem space\n");
1159 return;
1160 }
1161
1162 sc->sc_dmatag = pa->pa_dmat;
1163
1164 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1165 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1166
1167 /* bail out here if chip is not recognized */
1168 if (!(SK_IS_YUKON(sc))) {
1169 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1170 goto fail_1;
1171 }
1172 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1173
1174 /* Allocate interrupt */
1175 if (pci_intr_map(pa, &ih)) {
1176 aprint_error(": couldn't map interrupt\n");
1177 goto fail_1;
1178 }
1179
1180 intrstr = pci_intr_string(pc, ih);
1181 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1182 if (sc->sk_intrhand == NULL) {
1183 aprint_error(": couldn't establish interrupt");
1184 if (intrstr != NULL)
1185 aprint_error(" at %s", intrstr);
1186 aprint_error("\n");
1187 goto fail_1;
1188 }
1189
1190 if (bus_dmamem_alloc(sc->sc_dmatag,
1191 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1192 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1193 aprint_error(": can't alloc status buffers\n");
1194 goto fail_2;
1195 }
1196
1197 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1198 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1199 &kva, BUS_DMA_NOWAIT)) {
1200 aprint_error(": can't map dma buffers (%zu bytes)\n",
1201 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1202 goto fail_3;
1203 }
1204 if (bus_dmamap_create(sc->sc_dmatag,
1205 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1206 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1207 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1208 aprint_error(": can't create dma map\n");
1209 goto fail_4;
1210 }
1211 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1212 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1213 NULL, BUS_DMA_NOWAIT)) {
1214 aprint_error(": can't load dma map\n");
1215 goto fail_5;
1216 }
1217 sc->sk_status_ring = (struct msk_status_desc *)kva;
1218 bzero(sc->sk_status_ring,
1219 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1220
1221 /* Reset the adapter. */
1222 msk_reset(sc);
1223
1224 skrs = sk_win_read_1(sc, SK_EPROM0);
1225 if (skrs == 0x00)
1226 sc->sk_ramsize = 0x20000;
1227 else
1228 sc->sk_ramsize = skrs * (1<<12);
1229 sc->sk_rboff = SK_RBOFF_0;
1230
1231 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1232 sc->sk_ramsize, sc->sk_ramsize / 1024,
1233 sc->sk_rboff));
1234
1235 /* Read and save physical media type */
1236 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1237
1238 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1' ||
1239 (SK_IS_YUKON2(sc) && !(sc->sk_pmd == 'L' ||
1240 sc->sk_pmd == 'S')))
1241 sc->sk_coppertype = 1;
1242 else
1243 sc->sk_coppertype = 0;
1244
1245 switch (sc->sk_type) {
1246 case SK_YUKON_XL:
1247 sc->sk_name = "Marvell Yukon-2 XL";
1248 break;
1249 case SK_YUKON_EC_U:
1250 sc->sk_name = "Marvell Yukon-2 EC Ultra";
1251 break;
1252 case SK_YUKON_EC:
1253 sc->sk_name = "Marvell Yukon-2 EC";
1254 break;
1255 case SK_YUKON_FE:
1256 sc->sk_name = "Marvell Yukon-2 FE";
1257 break;
1258 default:
1259 sc->sk_name = "Marvell Yukon (Unknown)";
1260 }
1261
1262 if (sc->sk_type == SK_YUKON_XL) {
1263 switch (sc->sk_rev) {
1264 case SK_YUKON_XL_REV_A0:
1265 revstr = "A0";
1266 break;
1267 case SK_YUKON_XL_REV_A1:
1268 revstr = "A1";
1269 break;
1270 case SK_YUKON_XL_REV_A2:
1271 revstr = "A2";
1272 break;
1273 case SK_YUKON_XL_REV_A3:
1274 revstr = "A3";
1275 break;
1276 default:
1277 ;
1278 }
1279 }
1280
1281 if (sc->sk_type == SK_YUKON_EC) {
1282 switch (sc->sk_rev) {
1283 case SK_YUKON_EC_REV_A1:
1284 revstr = "A1";
1285 break;
1286 case SK_YUKON_EC_REV_A2:
1287 revstr = "A2";
1288 break;
1289 case SK_YUKON_EC_REV_A3:
1290 revstr = "A3";
1291 break;
1292 default:
1293 ;
1294 }
1295 }
1296
1297 if (sc->sk_type == SK_YUKON_EC_U) {
1298 switch (sc->sk_rev) {
1299 case SK_YUKON_EC_U_REV_A0:
1300 revstr = "A0";
1301 break;
1302 case SK_YUKON_EC_U_REV_A1:
1303 revstr = "A1";
1304 break;
1305 default:
1306 ;
1307 }
1308 }
1309
1310 /* Announce the product name. */
1311 aprint_normal(", %s", sc->sk_name);
1312 if (revstr != NULL)
1313 aprint_normal(" rev. %s", revstr);
1314 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1315
1316
1317 sc->sk_macs = 1;
1318
1319 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1320 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1321 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1322 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1323 sc->sk_macs++;
1324 }
1325
1326 skca.skc_port = SK_PORT_A;
1327 skca.skc_type = sc->sk_type;
1328 skca.skc_rev = sc->sk_rev;
1329 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1330
1331 if (sc->sk_macs > 1) {
1332 skca.skc_port = SK_PORT_B;
1333 skca.skc_type = sc->sk_type;
1334 skca.skc_rev = sc->sk_rev;
1335 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1336 }
1337
1338 /* Turn on the 'driver is loaded' LED. */
1339 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1340
1341 /* skc sysctl setup */
1342
1343 sc->sk_int_mod = SK_IM_DEFAULT;
1344 sc->sk_int_mod_pending = 0;
1345
1346 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1347 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1348 SYSCTL_DESCR("mskc per-controller controls"),
1349 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1350 CTL_EOL)) != 0) {
1351 aprint_normal("%s: couldn't create sysctl node\n",
1352 sc->sk_dev.dv_xname);
1353 goto fail_6;
1354 }
1355
1356 sk_nodenum = node->sysctl_num;
1357
1358 /* interrupt moderation time in usecs */
1359 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1360 CTLFLAG_READWRITE,
1361 CTLTYPE_INT, "int_mod",
1362 SYSCTL_DESCR("msk interrupt moderation timer"),
1363 msk_sysctl_handler, 0, sc,
1364 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1365 CTL_EOL)) != 0) {
1366 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1367 sc->sk_dev.dv_xname);
1368 goto fail_6;
1369 }
1370
1371 return;
1372
1373 fail_6:
1374 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1375 fail_5:
1376 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1377 fail_4:
1378 bus_dmamem_unmap(sc->sc_dmatag, kva,
1379 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1380 fail_3:
1381 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1382 fail_2:
1383 pci_intr_disestablish(pc, sc->sk_intrhand);
1384 fail_1:
1385 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1386 }
1387
1388 int
1389 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1390 {
1391 struct sk_softc *sc = sc_if->sk_softc;
1392 struct msk_tx_desc *f = NULL;
1393 u_int32_t frag, cur, cnt = 0;
1394 int i;
1395 struct sk_txmap_entry *entry;
1396 bus_dmamap_t txmap;
1397
1398 DPRINTFN(2, ("msk_encap\n"));
1399
1400 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1401 if (entry == NULL) {
1402 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1403 return (ENOBUFS);
1404 }
1405 txmap = entry->dmamap;
1406
1407 cur = frag = *txidx;
1408
1409 #ifdef MSK_DEBUG
1410 if (mskdebug >= 2)
1411 msk_dump_mbuf(m_head);
1412 #endif
1413
1414 /*
1415 * Start packing the mbufs in this chain into
1416 * the fragment pointers. Stop when we run out
1417 * of fragments or hit the end of the mbuf chain.
1418 */
1419 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1420 BUS_DMA_NOWAIT)) {
1421 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1422 return (ENOBUFS);
1423 }
1424
1425 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1426
1427 /* Sync the DMA map. */
1428 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1429 BUS_DMASYNC_PREWRITE);
1430
1431 for (i = 0; i < txmap->dm_nsegs; i++) {
1432 if ((MSK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1433 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1434 return (ENOBUFS);
1435 }
1436 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1437 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1438 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1439 f->sk_ctl = 0;
1440 if (cnt == 0)
1441 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1442 else
1443 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1444 cur = frag;
1445 SK_INC(frag, MSK_TX_RING_CNT);
1446 cnt++;
1447 }
1448
1449 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1450 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1451
1452 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1453 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1454
1455 /* Sync descriptors before handing to chip */
1456 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1457 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1458
1459 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1460
1461 /* Sync first descriptor to hand it off */
1462 MSK_CDTXSYNC(sc_if, *txidx, 1,
1463 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1464
1465 sc_if->sk_cdata.sk_tx_cnt += cnt;
1466
1467 #ifdef MSK_DEBUG
1468 if (mskdebug >= 2) {
1469 struct msk_tx_desc *le;
1470 u_int32_t idx;
1471 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1472 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1473 msk_dump_txdesc(le, idx);
1474 }
1475 }
1476 #endif
1477
1478 *txidx = frag;
1479
1480 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1481
1482 return (0);
1483 }
1484
1485 void
1486 msk_start(struct ifnet *ifp)
1487 {
1488 struct sk_if_softc *sc_if = ifp->if_softc;
1489 struct mbuf *m_head = NULL;
1490 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1491 int pkts = 0;
1492
1493 DPRINTFN(2, ("msk_start\n"));
1494
1495 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1496 IFQ_POLL(&ifp->if_snd, m_head);
1497 if (m_head == NULL)
1498 break;
1499
1500 /*
1501 * Pack the data into the transmit ring. If we
1502 * don't have room, set the OACTIVE flag and wait
1503 * for the NIC to drain the ring.
1504 */
1505 if (msk_encap(sc_if, m_head, &idx)) {
1506 ifp->if_flags |= IFF_OACTIVE;
1507 break;
1508 }
1509
1510 /* now we are committed to transmit the packet */
1511 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1512 pkts++;
1513
1514 /*
1515 * If there's a BPF listener, bounce a copy of this frame
1516 * to him.
1517 */
1518 #if NBPFILTER > 0
1519 if (ifp->if_bpf)
1520 bpf_mtap(ifp->if_bpf, m_head);
1521 #endif
1522 }
1523 if (pkts == 0)
1524 return;
1525
1526 /* Transmit */
1527 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1528 sc_if->sk_cdata.sk_tx_prod = idx;
1529 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1530
1531 /* Set a timeout in case the chip goes out to lunch. */
1532 ifp->if_timer = 5;
1533 }
1534 }
1535
1536 void
1537 msk_watchdog(struct ifnet *ifp)
1538 {
1539 struct sk_if_softc *sc_if = ifp->if_softc;
1540
1541 /*
1542 * Reclaim first as there is a possibility of losing Tx completion
1543 * interrupts.
1544 */
1545 msk_txeof(sc_if);
1546 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1547 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1548
1549 ifp->if_oerrors++;
1550
1551 /* XXX Resets both ports; we shouldn't do that. */
1552 msk_reset(sc_if->sk_softc);
1553 msk_init(ifp);
1554 }
1555 }
1556
1557 void
1558 mskc_shutdown(void *v)
1559 {
1560 struct sk_softc *sc = v;
1561
1562 DPRINTFN(2, ("msk_shutdown\n"));
1563
1564 /* Turn off the 'driver is loaded' LED. */
1565 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1566
1567 msk_reset(sc);
1568 }
1569
1570 __inline int
1571 msk_rxvalid(struct sk_softc *sc __unused, u_int32_t stat, u_int32_t len)
1572 {
1573 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1574 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1575 YU_RXSTAT_JABBER)) != 0 ||
1576 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1577 YU_RXSTAT_BYTES(stat) != len)
1578 return (0);
1579
1580 return (1);
1581 }
1582
1583 void
1584 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1585 {
1586 struct sk_softc *sc = sc_if->sk_softc;
1587 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1588 struct mbuf *m;
1589 struct sk_chain *cur_rx;
1590 int cur, total_len = len;
1591 bus_dmamap_t dmamap;
1592
1593 DPRINTFN(2, ("msk_rxeof\n"));
1594
1595 cur = sc_if->sk_cdata.sk_rx_cons;
1596 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1597 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1598
1599 /* Sync the descriptor */
1600 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1601
1602 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1603 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1604
1605 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1606 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1607
1608 m = cur_rx->sk_mbuf;
1609 cur_rx->sk_mbuf = NULL;
1610
1611 if (total_len < SK_MIN_FRAMELEN ||
1612 total_len > SK_JUMBO_FRAMELEN ||
1613 msk_rxvalid(sc, rxstat, total_len) == 0) {
1614 ifp->if_ierrors++;
1615 msk_newbuf(sc_if, cur, m, dmamap);
1616 return;
1617 }
1618
1619 /*
1620 * Try to allocate a new jumbo buffer. If that fails, copy the
1621 * packet to mbufs and put the jumbo buffer back in the ring
1622 * so it can be re-used. If allocating mbufs fails, then we
1623 * have to drop the packet.
1624 */
1625 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1626 struct mbuf *m0;
1627 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1628 total_len + ETHER_ALIGN, 0, ifp, NULL);
1629 msk_newbuf(sc_if, cur, m, dmamap);
1630 if (m0 == NULL) {
1631 ifp->if_ierrors++;
1632 return;
1633 }
1634 m_adj(m0, ETHER_ALIGN);
1635 m = m0;
1636 } else {
1637 m->m_pkthdr.rcvif = ifp;
1638 m->m_pkthdr.len = m->m_len = total_len;
1639 }
1640
1641 ifp->if_ipackets++;
1642
1643 #if NBPFILTER > 0
1644 if (ifp->if_bpf)
1645 bpf_mtap(ifp->if_bpf, m);
1646 #endif
1647
1648 /* pass it on. */
1649 (*ifp->if_input)(ifp, m);
1650 }
1651
1652 void
1653 msk_txeof(struct sk_if_softc *sc_if)
1654 {
1655 struct sk_softc *sc = sc_if->sk_softc;
1656 struct msk_tx_desc *cur_tx;
1657 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1658 u_int32_t idx, sk_ctl;
1659 struct sk_txmap_entry *entry;
1660
1661 DPRINTFN(2, ("msk_txeof\n"));
1662
1663 /*
1664 * Go through our tx ring and free mbufs for those
1665 * frames that have been sent.
1666 */
1667 idx = sc_if->sk_cdata.sk_tx_cons;
1668 while (idx != sk_win_read_2(sc, SK_STAT_BMU_TXA1_RIDX)) {
1669 MSK_CDTXSYNC(sc_if, idx, 1,
1670 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1671
1672 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1673 sk_ctl = letoh32(cur_tx->sk_ctl);
1674 #ifdef MSK_DEBUG
1675 if (mskdebug >= 2)
1676 msk_dump_txdesc(cur_tx, idx);
1677 #endif
1678 if (sk_ctl & SK_TXCTL_LASTFRAG)
1679 ifp->if_opackets++;
1680 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1681 entry = sc_if->sk_cdata.sk_tx_map[idx];
1682
1683 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1684 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1685
1686 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1687 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1688
1689 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1690 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1691 link);
1692 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1693 }
1694 sc_if->sk_cdata.sk_tx_cnt--;
1695 SK_INC(idx, MSK_TX_RING_CNT);
1696 }
1697 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1698
1699 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1700 ifp->if_flags &= ~IFF_OACTIVE;
1701
1702 sc_if->sk_cdata.sk_tx_cons = idx;
1703 }
1704
1705 void
1706 msk_yukon_tick(void *xsc_if)
1707 {
1708 struct sk_if_softc *sc_if = xsc_if;
1709 struct mii_data *mii = &sc_if->sk_mii;
1710
1711 mii_tick(mii);
1712 callout_schedule(&sc_if->sk_tick_ch, hz);
1713 }
1714
1715 void
1716 msk_intr_yukon(struct sk_if_softc *sc_if)
1717 {
1718 u_int8_t status;
1719
1720 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1721 /* RX overrun */
1722 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1723 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1724 SK_RFCTL_RX_FIFO_OVER);
1725 }
1726 /* TX underrun */
1727 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1728 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1729 SK_TFCTL_TX_FIFO_UNDER);
1730 }
1731
1732 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1733 }
1734
1735 int
1736 msk_intr(void *xsc)
1737 {
1738 struct sk_softc *sc = xsc;
1739 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1740 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1741 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1742 int claimed = 0;
1743 u_int32_t status;
1744 u_int16_t idx;
1745 struct msk_status_desc *cur_st;
1746
1747 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1748 if (status == 0) {
1749 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1750 return (0);
1751 }
1752
1753 status = CSR_READ_4(sc, SK_ISR);
1754
1755 if (sc_if0 != NULL)
1756 ifp0 = &sc_if0->sk_ethercom.ec_if;
1757 if (sc_if1 != NULL)
1758 ifp1 = &sc_if1->sk_ethercom.ec_if;
1759
1760 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1761 (ifp0->if_flags & IFF_RUNNING)) {
1762 msk_intr_yukon(sc_if0);
1763 }
1764
1765 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1766 (ifp1->if_flags & IFF_RUNNING)) {
1767 msk_intr_yukon(sc_if1);
1768 }
1769
1770 idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1771 while (sc->sk_status_idx != idx) {
1772 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1773 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1774
1775 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1776 switch (cur_st->sk_opcode & ~SK_Y2_STOPC_OWN) {
1777 case SK_Y2_STOPC_RXSTAT:
1778 msk_rxeof(sc->sk_if[cur_st->sk_link],
1779 letoh16(cur_st->sk_len),
1780 letoh32(cur_st->sk_status));
1781 SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1782 SK_RXQ1_Y2_PREF_PUTIDX,
1783 sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1784 break;
1785 case SK_Y2_STOPC_TXSTAT:
1786 msk_txeof(sc->sk_if[cur_st->sk_link]);
1787 break;
1788 default:
1789 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1790 break;
1791 }
1792 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1793 idx = CSR_READ_2(sc, SK_STAT_BMU_PUTIDX);
1794 }
1795
1796 if (status & SK_Y2_IMR_BMU) {
1797 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1798 claimed = 1;
1799 }
1800
1801 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1802
1803 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1804 msk_start(ifp0);
1805 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1806 msk_start(ifp1);
1807
1808 #if NRND > 0
1809 if (RND_ENABLED(&sc->rnd_source))
1810 rnd_add_uint32(&sc->rnd_source, status);
1811 #endif
1812
1813 if (sc->sk_int_mod_pending)
1814 msk_update_int_mod(sc);
1815
1816 return claimed;
1817 }
1818
1819 void
1820 msk_init_yukon(struct sk_if_softc *sc_if)
1821 {
1822 u_int32_t phy, v;
1823 u_int16_t reg;
1824 struct sk_softc *sc;
1825 int i;
1826
1827 sc = sc_if->sk_softc;
1828
1829 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1830 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1831
1832 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1833
1834 /* GMAC and GPHY Reset */
1835 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1836 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1837 DELAY(1000);
1838
1839 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1840
1841 #if 0
1842 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
1843 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
1844 #else
1845 phy = SK_GPHY_ENA_PAUSE;
1846 #endif
1847
1848 if (sc->sk_coppertype)
1849 phy |= SK_GPHY_COPPER;
1850 else
1851 phy |= SK_GPHY_FIBER;
1852
1853 DPRINTFN(3, ("msk_init_yukon: phy=%#x\n", phy));
1854
1855 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
1856 DELAY(1000);
1857 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
1858 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1859 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1860
1861 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1862 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1863
1864 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1865
1866 /* unused read of the interrupt source register */
1867 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1868 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1869
1870 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1871 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1872 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1873
1874 /* MIB Counter Clear Mode set */
1875 reg |= YU_PAR_MIB_CLR;
1876 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1877 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1878 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1879
1880 /* MIB Counter Clear Mode clear */
1881 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1882 reg &= ~YU_PAR_MIB_CLR;
1883 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1884
1885 /* receive control reg */
1886 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1887 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1888
1889 /* transmit parameter register */
1890 DPRINTFN(6, ("msk_init_yukon: 8\n"));
1891 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1892 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1893
1894 /* serial mode register */
1895 DPRINTFN(6, ("msk_init_yukon: 9\n"));
1896 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
1897 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
1898 YU_SMR_IPG_DATA(0x1e));
1899
1900 DPRINTFN(6, ("msk_init_yukon: 10\n"));
1901 /* Setup Yukon's address */
1902 for (i = 0; i < 3; i++) {
1903 /* Write Source Address 1 (unicast filter) */
1904 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1905 sc_if->sk_enaddr[i * 2] |
1906 sc_if->sk_enaddr[i * 2 + 1] << 8);
1907 }
1908
1909 for (i = 0; i < 3; i++) {
1910 reg = sk_win_read_2(sc_if->sk_softc,
1911 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1912 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1913 }
1914
1915 /* Set promiscuous mode */
1916 msk_setpromisc(sc_if);
1917
1918 /* Set multicast filter */
1919 DPRINTFN(6, ("msk_init_yukon: 11\n"));
1920 msk_setmulti(sc_if);
1921
1922 /* enable interrupt mask for counter overflows */
1923 DPRINTFN(6, ("msk_init_yukon: 12\n"));
1924 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1925 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1926 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1927
1928 /* Configure RX MAC FIFO Flush Mask */
1929 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1930 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1931 YU_RXSTAT_JABBER;
1932 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1933
1934 /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
1935 if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
1936 v = SK_TFCTL_OPERATION_ON;
1937 else
1938 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
1939 /* Configure RX MAC FIFO */
1940 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1941 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
1942
1943 /* Increase flush threshould to 64 bytes */
1944 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1945 SK_RFCTL_FIFO_THRESHOLD + 1);
1946
1947 /* Configure TX MAC FIFO */
1948 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1949 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1950
1951 #if 1
1952 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1953 #endif
1954 DPRINTFN(6, ("msk_init_yukon: end\n"));
1955 }
1956
1957 /*
1958 * Note that to properly initialize any part of the GEnesis chip,
1959 * you first have to take it out of reset mode.
1960 */
1961 int
1962 msk_init(struct ifnet *ifp)
1963 {
1964 struct sk_if_softc *sc_if = ifp->if_softc;
1965 struct sk_softc *sc = sc_if->sk_softc;
1966 struct mii_data *mii = &sc_if->sk_mii;
1967 int s;
1968 uint32_t imr, sk_imtimer_ticks;
1969
1970
1971 DPRINTFN(2, ("msk_init\n"));
1972
1973 s = splnet();
1974
1975 /* Cancel pending I/O and free all RX/TX buffers. */
1976 msk_stop(ifp,0);
1977
1978 /* Configure I2C registers */
1979
1980 /* Configure XMAC(s) */
1981 msk_init_yukon(sc_if);
1982 mii_mediachg(mii);
1983
1984 /* Configure transmit arbiter(s) */
1985 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1986 #if 0
1987 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1988 #endif
1989
1990 /* Configure RAMbuffers */
1991 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1992 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1993 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1994 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1995 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1996 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1997
1998 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
1999 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2000 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2001 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2002 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2003 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2004 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2005
2006 /* Configure BMUs */
2007 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2008 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2009 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2010 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2011
2012 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2013 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2014 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2015 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2016
2017 /* Make sure the sync transmit queue is disabled. */
2018 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2019
2020 /* Init descriptors */
2021 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2022 aprint_error("%s: initialization failed: no "
2023 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2024 msk_stop(ifp,0);
2025 splx(s);
2026 return ENOBUFS;
2027 }
2028
2029 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2030 aprint_error("%s: initialization failed: no "
2031 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2032 msk_stop(ifp,0);
2033 splx(s);
2034 return ENOBUFS;
2035 }
2036
2037 /* Set interrupt moderation if changed via sysctl. */
2038 switch (sc->sk_type) {
2039 case SK_YUKON_EC:
2040 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2041 break;
2042 default:
2043 sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2044 }
2045 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2046 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2047 sk_win_write_4(sc, SK_IMTIMERINIT,
2048 SK_IM_USECS(sc->sk_int_mod));
2049 aprint_verbose("%s: interrupt moderation is %d us\n",
2050 sc->sk_dev.dv_xname, sc->sk_int_mod);
2051 }
2052
2053 /* Initialize prefetch engine. */
2054 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2055 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2056 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2057 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2058 MSK_RX_RING_ADDR(sc_if, 0));
2059 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2060 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2061 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2062 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2063
2064 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2065 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2066 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2067 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2068 MSK_TX_RING_ADDR(sc_if, 0));
2069 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2070 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2071 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2072 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2073
2074 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2075 sc_if->sk_cdata.sk_rx_prod);
2076
2077 /* Configure interrupt handling */
2078 if (sc_if->sk_port == SK_PORT_A)
2079 sc->sk_intrmask |= SK_Y2_INTRS1;
2080 else
2081 sc->sk_intrmask |= SK_Y2_INTRS2;
2082 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2083 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2084
2085 ifp->if_flags |= IFF_RUNNING;
2086 ifp->if_flags &= ~IFF_OACTIVE;
2087
2088 callout_schedule(&sc_if->sk_tick_ch, hz);
2089
2090 splx(s);
2091 return 0;
2092 }
2093
2094 void
2095 msk_stop(struct ifnet *ifp, int disable __unused)
2096 {
2097 struct sk_if_softc *sc_if = ifp->if_softc;
2098 struct sk_softc *sc = sc_if->sk_softc;
2099 struct sk_txmap_entry *dma;
2100 int i;
2101
2102 DPRINTFN(2, ("msk_stop\n"));
2103
2104 callout_stop(&sc_if->sk_tick_ch);
2105
2106 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2107
2108 /* Stop transfer of Tx descriptors */
2109
2110 /* Stop transfer of Rx descriptors */
2111
2112 /* Turn off various components of this interface. */
2113 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2114 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2115 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2116 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2117 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2118 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2119 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2120 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2121 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2122 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2123 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2124 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2125
2126 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2127 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2128
2129 /* Disable interrupts */
2130 if (sc_if->sk_port == SK_PORT_A)
2131 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2132 else
2133 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2134 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2135
2136 SK_XM_READ_2(sc_if, XM_ISR);
2137 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2138
2139 /* Free RX and TX mbufs still in the queues. */
2140 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2141 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2142 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2143 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2144 }
2145 }
2146
2147 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2148 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2149 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2150 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2151 #if 1
2152 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2153 sc_if->sk_cdata.sk_tx_map[i], link);
2154 sc_if->sk_cdata.sk_tx_map[i] = 0;
2155 #endif
2156 }
2157 }
2158
2159 #if 1
2160 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2161 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2162 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2163 free(dma, M_DEVBUF);
2164 }
2165 #endif
2166 }
2167
2168 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2169 NULL, NULL);
2170
2171 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2172 NULL, NULL);
2173
2174 #ifdef MSK_DEBUG
2175 void
2176 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2177 {
2178 #define DESC_PRINT(X) \
2179 if (X) \
2180 printf("txdesc[%d]." #X "=%#x\n", \
2181 idx, X);
2182
2183 DESC_PRINT(letoh32(le->sk_addr));
2184 DESC_PRINT(letoh16(le->sk_len));
2185 DESC_PRINT(le->sk_ctl);
2186 DESC_PRINT(le->sk_opcode);
2187 #undef DESC_PRINT
2188 }
2189
2190 void
2191 msk_dump_bytes(const char *data, int len)
2192 {
2193 int c, i, j;
2194
2195 for (i = 0; i < len; i += 16) {
2196 printf("%08x ", i);
2197 c = len - i;
2198 if (c > 16) c = 16;
2199
2200 for (j = 0; j < c; j++) {
2201 printf("%02x ", data[i + j] & 0xff);
2202 if ((j & 0xf) == 7 && j > 0)
2203 printf(" ");
2204 }
2205
2206 for (; j < 16; j++)
2207 printf(" ");
2208 printf(" ");
2209
2210 for (j = 0; j < c; j++) {
2211 int ch = data[i + j] & 0xff;
2212 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2213 }
2214
2215 printf("\n");
2216
2217 if (c < 16)
2218 break;
2219 }
2220 }
2221
2222 void
2223 msk_dump_mbuf(struct mbuf *m)
2224 {
2225 int count = m->m_pkthdr.len;
2226
2227 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2228
2229 while (count > 0 && m) {
2230 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2231 m, m->m_data, m->m_len);
2232 msk_dump_bytes(mtod(m, char *), m->m_len);
2233
2234 count -= m->m_len;
2235 m = m->m_next;
2236 }
2237 }
2238 #endif
2239
2240 static int
2241 msk_sysctl_handler(SYSCTLFN_ARGS)
2242 {
2243 int error, t;
2244 struct sysctlnode node;
2245 struct sk_softc *sc;
2246
2247 node = *rnode;
2248 sc = node.sysctl_data;
2249 t = sc->sk_int_mod;
2250 node.sysctl_data = &t;
2251 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2252 if (error || newp == NULL)
2253 return error;
2254
2255 if (t < SK_IM_MIN || t > SK_IM_MAX)
2256 return EINVAL;
2257
2258 /* update the softc with sysctl-changed value, and mark
2259 for hardware update */
2260 sc->sk_int_mod = t;
2261 sc->sk_int_mod_pending = 1;
2262 return 0;
2263 }
2264
2265 /*
2266 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2267 * set up in skc_attach()
2268 */
2269 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2270 {
2271 int rc;
2272 const struct sysctlnode *node;
2273
2274 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2275 0, CTLTYPE_NODE, "hw", NULL,
2276 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2277 goto err;
2278 }
2279
2280 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2281 0, CTLTYPE_NODE, "msk",
2282 SYSCTL_DESCR("msk interface controls"),
2283 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2284 goto err;
2285 }
2286
2287 msk_root_num = node->sysctl_num;
2288 return;
2289
2290 err:
2291 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2292 }
2293