if_msk.c revision 1.103 1 /* $NetBSD: if_msk.c,v 1.103 2020/04/28 17:26:01 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.103 2020/04/28 17:26:01 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
199 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 { 0, 0 }
202 };
203
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 return CSR_READ_4(sc, reg);
208 }
209
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 return CSR_READ_2(sc, reg);
214 }
215
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 return CSR_READ_1(sc, reg);
220 }
221
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 CSR_WRITE_4(sc, reg, x);
226 }
227
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 CSR_WRITE_2(sc, reg, x);
232 }
233
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 CSR_WRITE_1(sc, reg, x);
238 }
239
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 struct sk_if_softc *sc_if = device_private(dev);
244 uint16_t data;
245 int i;
246
247 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249
250 for (i = 0; i < SK_TIMEOUT; i++) {
251 DELAY(1);
252 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 if (data & YU_SMICR_READ_VALID)
254 break;
255 }
256
257 if (i == SK_TIMEOUT) {
258 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
259 return ETIMEDOUT;
260 }
261
262 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263
264 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265
266 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 phy, reg, *val));
268
269 return 0;
270 }
271
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 struct sk_if_softc *sc_if = device_private(dev);
276 int i;
277
278 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 phy, reg, val));
280
281 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284
285 for (i = 0; i < SK_TIMEOUT; i++) {
286 DELAY(1);
287 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 break;
289 }
290
291 if (i == SK_TIMEOUT) {
292 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
293 return ETIMEDOUT;
294 }
295
296 return 0;
297 }
298
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 struct sk_if_softc *sc_if = ifp->if_softc;
303 struct mii_data *mii = &sc_if->sk_mii;
304 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 int gpcr;
306
307 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309
310 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 /* Set speed. */
313 gpcr |= YU_GPCR_SPEED_DIS;
314 switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 case IFM_1000_SX:
316 case IFM_1000_LX:
317 case IFM_1000_CX:
318 case IFM_1000_T:
319 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 break;
321 case IFM_100_TX:
322 gpcr |= YU_GPCR_SPEED;
323 break;
324 }
325
326 /* Set duplex. */
327 gpcr |= YU_GPCR_DPLX_DIS;
328 if ((mii->mii_media_active & IFM_FDX) != 0)
329 gpcr |= YU_GPCR_DUPLEX;
330
331 /* Disable flow control. */
332 gpcr |= YU_GPCR_FCTL_DIS;
333 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 }
335
336 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337
338 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 uint32_t hashes[2] = { 0, 0 };
347 int h;
348 struct ethercom *ec = &sc_if->sk_ethercom;
349 struct ether_multi *enm;
350 struct ether_multistep step;
351 uint16_t reg;
352
353 /* First, zot all the existing filters. */
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358
359
360 /* Now program new ones. */
361 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 reg |= YU_RCR_UFLEN;
363 allmulti:
364 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 if ((ifp->if_flags & IFF_PROMISC) != 0)
366 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 hashes[0] = 0xFFFFFFFF;
369 hashes[1] = 0xFFFFFFFF;
370 }
371 } else {
372 /* First find the tail of the list. */
373 ETHER_LOCK(ec);
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 ETHER_UNLOCK(ec);
380 goto allmulti;
381 }
382 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 ((1 << SK_HASH_BITS) - 1);
384 if (h < 32)
385 hashes[0] |= (1 << h);
386 else
387 hashes[1] |= (1 << (h - 32));
388
389 ETHER_NEXT_MULTI(step, enm);
390 }
391 ETHER_UNLOCK(ec);
392 reg |= YU_RCR_MUFLEN;
393 }
394
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406
407 if (ifp->if_flags & IFF_PROMISC)
408 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 else
411 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 struct msk_chain_data *cd = &sc_if->sk_cdata;
419 struct msk_ring_data *rd = sc_if->sk_rdata;
420 struct msk_rx_desc *r;
421 int i;
422
423 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
424
425 for (i = 0; i < MSK_RX_RING_CNT; i++) {
426 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = 0;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431 sc_if->sk_cdata.sk_rx_cnt = 0;
432 sc_if->sk_cdata.sk_rx_hiaddr = 0;
433
434 /* Mark the first ring element to initialize the high address. */
435 sc_if->sk_cdata.sk_rx_hiaddr = 0;
436 r = &rd->sk_rx_ring[cd->sk_rx_prod];
437 r->sk_addr = htole32(cd->sk_rx_hiaddr);
438 r->sk_len = 0;
439 r->sk_ctl = 0;
440 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
441 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
442 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
443 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
444 sc_if->sk_cdata.sk_rx_cnt++;
445
446 msk_fill_rx_ring(sc_if);
447 return 0;
448 }
449
450 static int
451 msk_init_tx_ring(struct sk_if_softc *sc_if)
452 {
453 struct msk_chain_data *cd = &sc_if->sk_cdata;
454 struct msk_ring_data *rd = sc_if->sk_rdata;
455 struct msk_tx_desc *t;
456 int i;
457
458 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
459
460 for (i = 0; i < MSK_TX_RING_CNT; i++) {
461 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
462 }
463
464 sc_if->sk_cdata.sk_tx_prod = 0;
465 sc_if->sk_cdata.sk_tx_cons = 0;
466 sc_if->sk_cdata.sk_tx_cnt = 0;
467 sc_if->sk_cdata.sk_tx_hiaddr = 0;
468
469 /* Mark the first ring element to initialize the high address. */
470 sc_if->sk_cdata.sk_tx_hiaddr = 0;
471 t = &rd->sk_tx_ring[cd->sk_tx_prod];
472 t->sk_addr = htole32(cd->sk_tx_hiaddr);
473 t->sk_len = 0;
474 t->sk_ctl = 0;
475 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
476 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
477 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
478 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
479 sc_if->sk_cdata.sk_tx_cnt++;
480
481 return 0;
482 }
483
484 static int
485 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
486 {
487 struct mbuf *m_new = NULL;
488 struct sk_chain *c;
489 struct msk_rx_desc *r;
490 void *buf = NULL;
491 bus_addr_t addr;
492
493 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
494 if (m_new == NULL)
495 return ENOBUFS;
496
497 /* Allocate the jumbo buffer */
498 buf = msk_jalloc(sc_if);
499 if (buf == NULL) {
500 m_freem(m_new);
501 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
502 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
503 return ENOBUFS;
504 }
505
506 /* Attach the buffer to the mbuf */
507 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
508 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
509
510 m_adj(m_new, ETHER_ALIGN);
511
512 addr = dmamap->dm_segs[0].ds_addr +
513 ((vaddr_t)m_new->m_data -
514 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
515
516 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
517 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
518 r = c->sk_le;
519 c->sk_mbuf = NULL;
520 r->sk_addr = htole32(MSK_ADDR_HI(addr));
521 r->sk_len = 0;
522 r->sk_ctl = 0;
523 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
524 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
525
526 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
527 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
528
529 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
530 sc_if->sk_cdata.sk_rx_cnt++;
531
532 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
533 sc_if->sk_ethercom.ec_if.if_xname,
534 (unsigned)MSK_ADDR_HI(addr)));
535 }
536
537 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
538 r = c->sk_le;
539 c->sk_mbuf = m_new;
540 r->sk_addr = htole32(MSK_ADDR_LO(addr));
541 r->sk_len = htole16(SK_JLEN);
542 r->sk_ctl = 0;
543 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
544
545 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
546 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
547
548 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
549 sc_if->sk_cdata.sk_rx_cnt++;
550
551 return 0;
552 }
553
554 /*
555 * Memory management for jumbo frames.
556 */
557
558 static int
559 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
560 {
561 struct sk_softc *sc = sc_if->sk_softc;
562 char *ptr, *kva;
563 int i, state, error;
564 struct sk_jpool_entry *entry;
565
566 state = error = 0;
567
568 /* Grab a big chunk o' storage. */
569 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
570 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
571 BUS_DMA_NOWAIT)) {
572 aprint_error(": can't alloc rx buffers");
573 return ENOBUFS;
574 }
575
576 state = 1;
577 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
578 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
579 BUS_DMA_NOWAIT)) {
580 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
581 error = ENOBUFS;
582 goto out;
583 }
584
585 state = 2;
586 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
587 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
588 aprint_error(": can't create dma map");
589 error = ENOBUFS;
590 goto out;
591 }
592
593 state = 3;
594 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
595 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
596 aprint_error(": can't load dma map");
597 error = ENOBUFS;
598 goto out;
599 }
600
601 state = 4;
602 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
603 DPRINTFN(1,("msk_jumbo_buf = %p\n",
604 (void *)sc_if->sk_cdata.sk_jumbo_buf));
605
606 LIST_INIT(&sc_if->sk_jfree_listhead);
607 LIST_INIT(&sc_if->sk_jinuse_listhead);
608 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
609
610 /*
611 * Now divide it up into 9K pieces and save the addresses
612 * in an array.
613 */
614 ptr = sc_if->sk_cdata.sk_jumbo_buf;
615 for (i = 0; i < MSK_JSLOTS; i++) {
616 sc_if->sk_cdata.sk_jslots[i] = ptr;
617 ptr += SK_JLEN;
618 entry = malloc(sizeof(struct sk_jpool_entry),
619 M_DEVBUF, M_WAITOK);
620 entry->slot = i;
621 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
622 entry, jpool_entries);
623 }
624 out:
625 if (error != 0) {
626 switch (state) {
627 case 4:
628 bus_dmamap_unload(sc->sc_dmatag,
629 sc_if->sk_cdata.sk_rx_jumbo_map);
630 /* FALLTHROUGH */
631 case 3:
632 bus_dmamap_destroy(sc->sc_dmatag,
633 sc_if->sk_cdata.sk_rx_jumbo_map);
634 /* FALLTHROUGH */
635 case 2:
636 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
637 /* FALLTHROUGH */
638 case 1:
639 bus_dmamem_free(sc->sc_dmatag,
640 &sc_if->sk_cdata.sk_jumbo_seg,
641 sc_if->sk_cdata.sk_jumbo_nseg);
642 break;
643 default:
644 break;
645 }
646 }
647
648 return error;
649 }
650
651 static void
652 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
653 {
654 struct sk_softc *sc = sc_if->sk_softc;
655
656 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
657 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
658 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
659 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
660 sc_if->sk_cdata.sk_jumbo_nseg);
661 }
662
663 /*
664 * Allocate a jumbo buffer.
665 */
666 static void *
667 msk_jalloc(struct sk_if_softc *sc_if)
668 {
669 struct sk_jpool_entry *entry;
670
671 mutex_enter(&sc_if->sk_jpool_mtx);
672 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
673
674 if (entry == NULL) {
675 mutex_exit(&sc_if->sk_jpool_mtx);
676 return NULL;
677 }
678
679 LIST_REMOVE(entry, jpool_entries);
680 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
681 mutex_exit(&sc_if->sk_jpool_mtx);
682 return sc_if->sk_cdata.sk_jslots[entry->slot];
683 }
684
685 /*
686 * Release a jumbo buffer.
687 */
688 static void
689 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
690 {
691 struct sk_jpool_entry *entry;
692 struct sk_if_softc *sc;
693 int i;
694
695 /* Extract the softc struct pointer. */
696 sc = (struct sk_if_softc *)arg;
697
698 if (sc == NULL)
699 panic("msk_jfree: can't find softc pointer!");
700
701 /* calculate the slot this buffer belongs to */
702 i = ((vaddr_t)buf
703 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
704
705 if ((i < 0) || (i >= MSK_JSLOTS))
706 panic("msk_jfree: asked to free buffer that we don't manage!");
707
708 mutex_enter(&sc->sk_jpool_mtx);
709 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
710 if (entry == NULL)
711 panic("msk_jfree: buffer not in use!");
712 entry->slot = i;
713 LIST_REMOVE(entry, jpool_entries);
714 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
715 mutex_exit(&sc->sk_jpool_mtx);
716
717 if (__predict_true(m != NULL))
718 pool_cache_put(mb_cache, m);
719
720 /* Now that we know we have a free RX buffer, refill if running out */
721 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
722 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
723 callout_schedule(&sc->sk_tick_rx, 0);
724 }
725
726 static int
727 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
728 {
729 struct sk_if_softc *sc = ifp->if_softc;
730 int s, error;
731
732 s = splnet();
733
734 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
735 switch (cmd) {
736 case SIOCSIFFLAGS:
737 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
738 break;
739
740 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
741 case IFF_RUNNING:
742 msk_stop(ifp, 1);
743 break;
744 case IFF_UP:
745 msk_init(ifp);
746 break;
747 case IFF_UP | IFF_RUNNING:
748 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
749 msk_setpromisc(sc);
750 msk_setmulti(sc);
751 } else
752 msk_init(ifp);
753 break;
754 }
755 sc->sk_if_flags = ifp->if_flags;
756 break;
757 default:
758 error = ether_ioctl(ifp, cmd, data);
759 if (error == ENETRESET) {
760 error = 0;
761 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
762 ;
763 else if (ifp->if_flags & IFF_RUNNING) {
764 /*
765 * Multicast list has changed; set the hardware
766 * filter accordingly.
767 */
768 msk_setmulti(sc);
769 }
770 }
771 break;
772 }
773
774 splx(s);
775 return error;
776 }
777
778 static void
779 msk_update_int_mod(struct sk_softc *sc, int verbose)
780 {
781 uint32_t imtimer_ticks;
782
783 /*
784 * Configure interrupt moderation. The moderation timer
785 * defers interrupts specified in the interrupt moderation
786 * timer mask based on the timeout specified in the interrupt
787 * moderation timer init register. Each bit in the timer
788 * register represents one tick, so to specify a timeout in
789 * microseconds, we have to multiply by the correct number of
790 * ticks-per-microsecond.
791 */
792 switch (sc->sk_type) {
793 case SK_YUKON_EC:
794 case SK_YUKON_EC_U:
795 case SK_YUKON_EX:
796 case SK_YUKON_SUPR:
797 case SK_YUKON_ULTRA2:
798 case SK_YUKON_OPTIMA:
799 case SK_YUKON_PRM:
800 case SK_YUKON_OPTIMA2:
801 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
802 break;
803 case SK_YUKON_FE:
804 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
805 break;
806 case SK_YUKON_FE_P:
807 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
808 break;
809 case SK_YUKON_XL:
810 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
811 break;
812 default:
813 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
814 }
815 if (verbose)
816 aprint_verbose_dev(sc->sk_dev,
817 "interrupt moderation is %d us\n", sc->sk_int_mod);
818 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
819 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
820 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
821 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
822 sc->sk_int_mod_pending = 0;
823 }
824
825 static int
826 msk_lookup(const struct pci_attach_args *pa)
827 {
828 const struct msk_product *pmsk;
829
830 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
831 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
832 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
833 return 1;
834 }
835 return 0;
836 }
837
838 /*
839 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
840 * IDs against our list and return a device name if we find a match.
841 */
842 static int
843 mskc_probe(device_t parent, cfdata_t match, void *aux)
844 {
845 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
846
847 return msk_lookup(pa);
848 }
849
850 /*
851 * Force the GEnesis into reset, then bring it out of reset.
852 */
853 static void
854 mskc_reset(struct sk_softc *sc)
855 {
856 uint32_t imtimer_ticks, reg1;
857 uint16_t status;
858 int reg;
859
860 DPRINTFN(2, ("mskc_reset\n"));
861
862 /* Disable ASF */
863 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
864 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
865 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
866 /* Clear AHB bridge & microcontroller reset. */
867 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
868 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
869 /* Clear ASF microcontroller state. */
870 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
871 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
872 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
873 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
874 } else
875 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
876 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
877
878 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
879 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
880
881 DELAY(1000);
882 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
883 DELAY(2);
884 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
885 sk_win_write_1(sc, SK_TESTCTL1, 2);
886
887 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
888 sc->sk_type >= SK_YUKON_FE_P) {
889 uint32_t our;
890
891 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
892
893 /* enable all clocks. */
894 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
895 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
896 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
897 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
898 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
899 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
900 /* Set all bits to 0 except bits 15..12 */
901 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
902 /* Set to default value */
903 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
904
905 /*
906 * Disable status race, workaround for Yukon EC Ultra &
907 * Yukon EX.
908 */
909 reg1 = sk_win_read_4(sc, SK_GPIO);
910 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
911 sk_win_write_4(sc, SK_GPIO, reg1);
912 sk_win_read_4(sc, SK_GPIO);
913 }
914
915 /* release PHY from PowerDown/Coma mode. */
916 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
917 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
918 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
919 else
920 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
921 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
922
923 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
924 sk_win_write_1(sc, SK_Y2_CLKGATE,
925 SK_Y2_CLKGATE_LINK1_GATE_DIS |
926 SK_Y2_CLKGATE_LINK2_GATE_DIS |
927 SK_Y2_CLKGATE_LINK1_CORE_DIS |
928 SK_Y2_CLKGATE_LINK2_CORE_DIS |
929 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
930 else
931 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
932
933 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
934 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
935 DELAY(1000);
936 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
937 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
938
939 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
940 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
941 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
942 }
943
944 sk_win_write_1(sc, SK_TESTCTL1, 1);
945
946 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
947 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
948 CSR_READ_2(sc, SK_LINK_CTRL)));
949
950 /* Clear I2C IRQ noise */
951 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
952
953 /* Disable hardware timer */
954 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
955 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
956
957 /* Disable descriptor polling */
958 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
959
960 /* Disable time stamps */
961 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
962 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
963
964 /* Enable RAM interface */
965 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
966 for (reg = SK_TO0;reg <= SK_TO11; reg++)
967 sk_win_write_1(sc, reg, 36);
968 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
969 for (reg = SK_TO0;reg <= SK_TO11; reg++)
970 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
971
972 /*
973 * Configure interrupt moderation. The moderation timer
974 * defers interrupts specified in the interrupt moderation
975 * timer mask based on the timeout specified in the interrupt
976 * moderation timer init register. Each bit in the timer
977 * register represents one tick, so to specify a timeout in
978 * microseconds, we have to multiply by the correct number of
979 * ticks-per-microsecond.
980 */
981 switch (sc->sk_type) {
982 case SK_YUKON_EC:
983 case SK_YUKON_EC_U:
984 case SK_YUKON_EX:
985 case SK_YUKON_SUPR:
986 case SK_YUKON_ULTRA2:
987 case SK_YUKON_OPTIMA:
988 case SK_YUKON_PRM:
989 case SK_YUKON_OPTIMA2:
990 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
991 break;
992 case SK_YUKON_FE:
993 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
994 break;
995 case SK_YUKON_FE_P:
996 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
997 break;
998 case SK_YUKON_XL:
999 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1000 break;
1001 default:
1002 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1003 break;
1004 }
1005
1006 /* Reset status ring. */
1007 memset(sc->sk_status_ring, 0,
1008 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1009 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1010 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1011 sc->sk_status_idx = 0;
1012
1013 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1014 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1015
1016 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1017 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1018 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1019 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1020 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1021 if (sc->sk_type == SK_YUKON_EC &&
1022 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1023 /* WA for dev. #4.3 */
1024 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1025 SK_STAT_BMU_TXTHIDX_MSK);
1026 /* WA for dev. #4.18 */
1027 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1028 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1029 } else {
1030 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1031 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1032 if (sc->sk_type == SK_YUKON_XL)
1033 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1034 else
1035 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1036 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1037 }
1038
1039 #if 0
1040 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1041 #endif
1042 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1043
1044 /* Enable status unit. */
1045 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1046
1047 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1048 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1049 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1050
1051 msk_update_int_mod(sc, 0);
1052 }
1053
1054 static int
1055 msk_probe(device_t parent, cfdata_t match, void *aux)
1056 {
1057 struct skc_attach_args *sa = aux;
1058
1059 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1060 return 0;
1061
1062 switch (sa->skc_type) {
1063 case SK_YUKON_XL:
1064 case SK_YUKON_EC_U:
1065 case SK_YUKON_EX:
1066 case SK_YUKON_EC:
1067 case SK_YUKON_FE:
1068 case SK_YUKON_FE_P:
1069 case SK_YUKON_SUPR:
1070 case SK_YUKON_ULTRA2:
1071 case SK_YUKON_OPTIMA:
1072 case SK_YUKON_PRM:
1073 case SK_YUKON_OPTIMA2:
1074 return 1;
1075 }
1076
1077 return 0;
1078 }
1079
1080 static void
1081 msk_reset(struct sk_if_softc *sc_if)
1082 {
1083 /* GMAC and GPHY Reset */
1084 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1085 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1086 DELAY(1000);
1087 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1088 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1089 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1090 }
1091
1092 static bool
1093 msk_resume(device_t dv, const pmf_qual_t *qual)
1094 {
1095 struct sk_if_softc *sc_if = device_private(dv);
1096
1097 msk_init_yukon(sc_if);
1098 return true;
1099 }
1100
1101 /*
1102 * Each XMAC chip is attached as a separate logical IP interface.
1103 * Single port cards will have only one logical interface of course.
1104 */
1105 static void
1106 msk_attach(device_t parent, device_t self, void *aux)
1107 {
1108 struct sk_if_softc *sc_if = device_private(self);
1109 struct sk_softc *sc = device_private(parent);
1110 struct skc_attach_args *sa = aux;
1111 bus_dmamap_t dmamap;
1112 struct sk_txmap_entry *entry;
1113 struct ifnet *ifp;
1114 struct mii_data * const mii = &sc_if->sk_mii;
1115 void *kva;
1116 int i;
1117 uint32_t chunk;
1118 int mii_flags;
1119
1120 sc_if->sk_dev = self;
1121 sc_if->sk_port = sa->skc_port;
1122 sc_if->sk_softc = sc;
1123 sc->sk_if[sa->skc_port] = sc_if;
1124
1125 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1126
1127 /*
1128 * Get station address for this interface. Note that
1129 * dual port cards actually come with three station
1130 * addresses: one for each port, plus an extra. The
1131 * extra one is used by the SysKonnect driver software
1132 * as a 'virtual' station address for when both ports
1133 * are operating in failover mode. Currently we don't
1134 * use this extra address.
1135 */
1136 for (i = 0; i < ETHER_ADDR_LEN; i++)
1137 sc_if->sk_enaddr[i] =
1138 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1139
1140 aprint_normal(": Ethernet address %s\n",
1141 ether_sprintf(sc_if->sk_enaddr));
1142
1143 /*
1144 * Set up RAM buffer addresses. The Yukon2 has a small amount
1145 * of SRAM on it, somewhere between 4K and 48K. We need to
1146 * divide this up between the transmitter and receiver. We
1147 * give the receiver 2/3 of the memory (rounded down), and the
1148 * transmitter whatever remains.
1149 */
1150 if (sc->sk_ramsize) {
1151 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1152 sc_if->sk_rx_ramstart = 0;
1153 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1154 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1155 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1156 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1157
1158 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1159 " tx_ramstart=%#x tx_ramend=%#x\n",
1160 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1161 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1162 }
1163
1164 /* Allocate the descriptor queues. */
1165 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1166 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1167 BUS_DMA_NOWAIT)) {
1168 aprint_error(": can't alloc rx buffers\n");
1169 goto fail;
1170 }
1171 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1172 sc_if->sk_ring_nseg,
1173 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1174 aprint_error(": can't map dma buffers (%zu bytes)\n",
1175 sizeof(struct msk_ring_data));
1176 goto fail_1;
1177 }
1178 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1179 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1180 &sc_if->sk_ring_map)) {
1181 aprint_error(": can't create dma map\n");
1182 goto fail_2;
1183 }
1184 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1185 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1186 aprint_error(": can't load dma map\n");
1187 goto fail_3;
1188 }
1189
1190 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1191 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1192 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1193
1194 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1195 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1196 aprint_error_dev(sc_if->sk_dev,
1197 "Can't create TX dmamap\n");
1198 goto fail_3;
1199 }
1200
1201 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1202 entry->dmamap = dmamap;
1203 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1204 }
1205
1206 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1207 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1208
1209 if (sc->sk_type != SK_YUKON_FE &&
1210 sc->sk_type != SK_YUKON_FE_P)
1211 sc_if->sk_pktlen = SK_JLEN;
1212 else
1213 sc_if->sk_pktlen = MCLBYTES;
1214
1215 /* Try to allocate memory for jumbo buffers. */
1216 if (msk_alloc_jumbo_mem(sc_if)) {
1217 aprint_error(": jumbo buffer allocation failed\n");
1218 goto fail_3;
1219 }
1220
1221 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1222 if (sc->sk_type != SK_YUKON_FE &&
1223 sc->sk_type != SK_YUKON_FE_P)
1224 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1225
1226 ifp = &sc_if->sk_ethercom.ec_if;
1227 ifp->if_softc = sc_if;
1228 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1229 ifp->if_ioctl = msk_ioctl;
1230 ifp->if_start = msk_start;
1231 ifp->if_stop = msk_stop;
1232 ifp->if_init = msk_init;
1233 ifp->if_watchdog = msk_watchdog;
1234 ifp->if_baudrate = 1000000000;
1235 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1236 IFQ_SET_READY(&ifp->if_snd);
1237 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1238
1239 msk_reset(sc_if);
1240
1241 /*
1242 * Do miibus setup.
1243 */
1244 DPRINTFN(2, ("msk_attach: 1\n"));
1245
1246 mii->mii_ifp = ifp;
1247 mii->mii_readreg = msk_miibus_readreg;
1248 mii->mii_writereg = msk_miibus_writereg;
1249 mii->mii_statchg = msk_miibus_statchg;
1250
1251 sc_if->sk_ethercom.ec_mii = mii;
1252 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1253 mii_flags = MIIF_DOPAUSE;
1254 if (sc->sk_fibertype)
1255 mii_flags |= MIIF_HAVEFIBER;
1256 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1257 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1258 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1259 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1260 0, NULL);
1261 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1262 } else
1263 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1264
1265 callout_init(&sc_if->sk_tick_ch, 0);
1266 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1267 callout_schedule(&sc_if->sk_tick_ch, hz);
1268
1269 callout_init(&sc_if->sk_tick_rx, 0);
1270 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1271
1272 /*
1273 * Call MI attach routines.
1274 */
1275 if_attach(ifp);
1276 if_deferred_start_init(ifp, NULL);
1277 ether_ifattach(ifp, sc_if->sk_enaddr);
1278
1279 if (pmf_device_register(self, NULL, msk_resume))
1280 pmf_class_network_register(self, ifp);
1281 else
1282 aprint_error_dev(self, "couldn't establish power handler\n");
1283
1284 if (sc->rnd_attached++ == 0) {
1285 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1286 RND_TYPE_NET, RND_FLAG_DEFAULT);
1287 }
1288
1289 DPRINTFN(2, ("msk_attach: end\n"));
1290 return;
1291
1292 fail_3:
1293 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1294 fail_2:
1295 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1296 fail_1:
1297 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1298 fail:
1299 sc->sk_if[sa->skc_port] = NULL;
1300 }
1301
1302 static int
1303 msk_detach(device_t self, int flags)
1304 {
1305 struct sk_if_softc *sc_if = device_private(self);
1306 struct sk_softc *sc = sc_if->sk_softc;
1307 struct sk_txmap_entry *entry;
1308 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1309
1310 if (sc->sk_if[sc_if->sk_port] == NULL)
1311 return 0;
1312
1313 msk_stop(ifp, 1);
1314
1315 while ((entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
1316 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1317 bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
1318 free(entry, M_DEVBUF);
1319 }
1320
1321 if (--sc->rnd_attached == 0)
1322 rnd_detach_source(&sc->rnd_source);
1323
1324 callout_halt(&sc_if->sk_tick_ch, NULL);
1325 callout_destroy(&sc_if->sk_tick_ch);
1326
1327 callout_halt(&sc_if->sk_tick_rx, NULL);
1328 callout_destroy(&sc_if->sk_tick_rx);
1329
1330 /* Detach any PHYs we might have. */
1331 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1332 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1333
1334 pmf_device_deregister(self);
1335
1336 ether_ifdetach(ifp);
1337 if_detach(ifp);
1338
1339 /* Delete any remaining media. */
1340 ifmedia_fini(&sc_if->sk_mii.mii_media);
1341
1342 msk_free_jumbo_mem(sc_if);
1343
1344 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1345 sizeof(struct msk_ring_data));
1346 bus_dmamem_free(sc->sc_dmatag,
1347 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1348 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 sc->sk_if[sc_if->sk_port] = NULL;
1350
1351 return 0;
1352 }
1353
1354 static int
1355 mskcprint(void *aux, const char *pnp)
1356 {
1357 struct skc_attach_args *sa = aux;
1358
1359 if (pnp)
1360 aprint_normal("msk port %c at %s",
1361 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1362 else
1363 aprint_normal(" port %c",
1364 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1365 return UNCONF;
1366 }
1367
1368 /*
1369 * Attach the interface. Allocate softc structures, do ifmedia
1370 * setup and ethernet/BPF attach.
1371 */
1372 static void
1373 mskc_attach(device_t parent, device_t self, void *aux)
1374 {
1375 struct sk_softc *sc = device_private(self);
1376 struct pci_attach_args *pa = aux;
1377 struct skc_attach_args skca;
1378 pci_chipset_tag_t pc = pa->pa_pc;
1379 pcireg_t command, memtype;
1380 const char *intrstr = NULL;
1381 int rc, sk_nodenum;
1382 uint8_t hw, pmd;
1383 const char *revstr = NULL;
1384 const struct sysctlnode *node;
1385 void *kva;
1386 char intrbuf[PCI_INTRSTR_LEN];
1387
1388 DPRINTFN(2, ("begin mskc_attach\n"));
1389
1390 sc->sk_dev = self;
1391 /*
1392 * Handle power management nonsense.
1393 */
1394 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1395
1396 if (command == 0x01) {
1397 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1398 if (command & SK_PSTATE_MASK) {
1399 uint32_t iobase, membase, irq;
1400
1401 /* Save important PCI config data. */
1402 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1403 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1404 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1405
1406 /* Reset the power state. */
1407 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1408 "mode -- setting to D0\n",
1409 command & SK_PSTATE_MASK);
1410 command &= 0xFFFFFFFC;
1411 pci_conf_write(pc, pa->pa_tag,
1412 SK_PCI_PWRMGMTCTRL, command);
1413
1414 /* Restore PCI config data. */
1415 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1416 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1417 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1418 }
1419 }
1420
1421 /*
1422 * Map control/status registers.
1423 */
1424 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1425 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1426 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1427 aprint_error(": can't map mem space\n");
1428 return;
1429 }
1430
1431 if (pci_dma64_available(pa))
1432 sc->sc_dmatag = pa->pa_dmat64;
1433 else
1434 sc->sc_dmatag = pa->pa_dmat;
1435
1436 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1437 command |= PCI_COMMAND_MASTER_ENABLE;
1438 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1439
1440 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1441 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1442
1443 /* bail out here if chip is not recognized */
1444 if (!(SK_IS_YUKON2(sc))) {
1445 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1446 goto fail_1;
1447 }
1448 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1449
1450 /* Allocate interrupt */
1451 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1452 aprint_error(": couldn't map interrupt\n");
1453 goto fail_1;
1454 }
1455
1456 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1457 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1458 msk_intr, sc, device_xname(sc->sk_dev));
1459 if (sc->sk_intrhand == NULL) {
1460 aprint_error(": couldn't establish interrupt");
1461 if (intrstr != NULL)
1462 aprint_error(" at %s", intrstr);
1463 aprint_error("\n");
1464 goto fail_1;
1465 }
1466 sc->sk_pc = pc;
1467
1468 if (bus_dmamem_alloc(sc->sc_dmatag,
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1470 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1471 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1472 aprint_error(": can't alloc status buffers\n");
1473 goto fail_2;
1474 }
1475
1476 if (bus_dmamem_map(sc->sc_dmatag,
1477 &sc->sk_status_seg, sc->sk_status_nseg,
1478 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1479 &kva, BUS_DMA_NOWAIT)) {
1480 aprint_error(": can't map dma buffers (%zu bytes)\n",
1481 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1482 goto fail_3;
1483 }
1484 if (bus_dmamap_create(sc->sc_dmatag,
1485 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1486 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1487 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1488 aprint_error(": can't create dma map\n");
1489 goto fail_4;
1490 }
1491 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1492 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1493 NULL, BUS_DMA_NOWAIT)) {
1494 aprint_error(": can't load dma map\n");
1495 goto fail_5;
1496 }
1497 sc->sk_status_ring = (struct msk_status_desc *)kva;
1498
1499 sc->sk_int_mod = SK_IM_DEFAULT;
1500 sc->sk_int_mod_pending = 0;
1501
1502 /* Reset the adapter. */
1503 mskc_reset(sc);
1504
1505 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1506 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1507
1508 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1509 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1510 sc->sk_fibertype = 1;
1511
1512 switch (sc->sk_type) {
1513 case SK_YUKON_XL:
1514 sc->sk_name = "Yukon-2 XL";
1515 break;
1516 case SK_YUKON_EC_U:
1517 sc->sk_name = "Yukon-2 EC Ultra";
1518 break;
1519 case SK_YUKON_EX:
1520 sc->sk_name = "Yukon-2 Extreme";
1521 break;
1522 case SK_YUKON_EC:
1523 sc->sk_name = "Yukon-2 EC";
1524 break;
1525 case SK_YUKON_FE:
1526 sc->sk_name = "Yukon-2 FE";
1527 break;
1528 case SK_YUKON_FE_P:
1529 sc->sk_name = "Yukon-2 FE+";
1530 break;
1531 case SK_YUKON_SUPR:
1532 sc->sk_name = "Yukon-2 Supreme";
1533 break;
1534 case SK_YUKON_ULTRA2:
1535 sc->sk_name = "Yukon-2 Ultra 2";
1536 break;
1537 case SK_YUKON_OPTIMA:
1538 sc->sk_name = "Yukon-2 Optima";
1539 break;
1540 case SK_YUKON_PRM:
1541 sc->sk_name = "Yukon-2 Optima Prime";
1542 break;
1543 case SK_YUKON_OPTIMA2:
1544 sc->sk_name = "Yukon-2 Optima 2";
1545 break;
1546 default:
1547 sc->sk_name = "Yukon (Unknown)";
1548 }
1549
1550 if (sc->sk_type == SK_YUKON_XL) {
1551 switch (sc->sk_rev) {
1552 case SK_YUKON_XL_REV_A0:
1553 revstr = "A0";
1554 break;
1555 case SK_YUKON_XL_REV_A1:
1556 revstr = "A1";
1557 break;
1558 case SK_YUKON_XL_REV_A2:
1559 revstr = "A2";
1560 break;
1561 case SK_YUKON_XL_REV_A3:
1562 revstr = "A3";
1563 break;
1564 default:
1565 break;
1566 }
1567 }
1568
1569 if (sc->sk_type == SK_YUKON_EC) {
1570 switch (sc->sk_rev) {
1571 case SK_YUKON_EC_REV_A1:
1572 revstr = "A1";
1573 break;
1574 case SK_YUKON_EC_REV_A2:
1575 revstr = "A2";
1576 break;
1577 case SK_YUKON_EC_REV_A3:
1578 revstr = "A3";
1579 break;
1580 default:
1581 break;
1582 }
1583 }
1584
1585 if (sc->sk_type == SK_YUKON_FE) {
1586 switch (sc->sk_rev) {
1587 case SK_YUKON_FE_REV_A1:
1588 revstr = "A1";
1589 break;
1590 case SK_YUKON_FE_REV_A2:
1591 revstr = "A2";
1592 break;
1593 default:
1594 break;
1595 }
1596 }
1597
1598 if (sc->sk_type == SK_YUKON_EC_U) {
1599 switch (sc->sk_rev) {
1600 case SK_YUKON_EC_U_REV_A0:
1601 revstr = "A0";
1602 break;
1603 case SK_YUKON_EC_U_REV_A1:
1604 revstr = "A1";
1605 break;
1606 case SK_YUKON_EC_U_REV_B0:
1607 revstr = "B0";
1608 break;
1609 case SK_YUKON_EC_U_REV_B1:
1610 revstr = "B1";
1611 break;
1612 default:
1613 break;
1614 }
1615 }
1616
1617 if (sc->sk_type == SK_YUKON_FE) {
1618 switch (sc->sk_rev) {
1619 case SK_YUKON_FE_REV_A1:
1620 revstr = "A1";
1621 break;
1622 case SK_YUKON_FE_REV_A2:
1623 revstr = "A2";
1624 break;
1625 default:
1626 ;
1627 }
1628 }
1629
1630 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1631 revstr = "A0";
1632
1633 if (sc->sk_type == SK_YUKON_EX) {
1634 switch (sc->sk_rev) {
1635 case SK_YUKON_EX_REV_A0:
1636 revstr = "A0";
1637 break;
1638 case SK_YUKON_EX_REV_B0:
1639 revstr = "B0";
1640 break;
1641 default:
1642 ;
1643 }
1644 }
1645
1646 if (sc->sk_type == SK_YUKON_SUPR) {
1647 switch (sc->sk_rev) {
1648 case SK_YUKON_SUPR_REV_A0:
1649 revstr = "A0";
1650 break;
1651 case SK_YUKON_SUPR_REV_B0:
1652 revstr = "B0";
1653 break;
1654 case SK_YUKON_SUPR_REV_B1:
1655 revstr = "B1";
1656 break;
1657 default:
1658 ;
1659 }
1660 }
1661
1662 if (sc->sk_type == SK_YUKON_PRM) {
1663 switch (sc->sk_rev) {
1664 case SK_YUKON_PRM_REV_Z1:
1665 revstr = "Z1";
1666 break;
1667 case SK_YUKON_PRM_REV_A0:
1668 revstr = "A0";
1669 break;
1670 default:
1671 ;
1672 }
1673 }
1674
1675 /* Announce the product name. */
1676 aprint_normal(", %s", sc->sk_name);
1677 if (revstr != NULL)
1678 aprint_normal(" rev. %s", revstr);
1679 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1680
1681 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1682
1683 sc->sk_macs = 1;
1684
1685 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1686 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1687 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1688 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1689 sc->sk_macs++;
1690 }
1691
1692 skca.skc_port = SK_PORT_A;
1693 skca.skc_type = sc->sk_type;
1694 skca.skc_rev = sc->sk_rev;
1695 (void)config_found(sc->sk_dev, &skca, mskcprint);
1696
1697 if (sc->sk_macs > 1) {
1698 skca.skc_port = SK_PORT_B;
1699 skca.skc_type = sc->sk_type;
1700 skca.skc_rev = sc->sk_rev;
1701 (void)config_found(sc->sk_dev, &skca, mskcprint);
1702 }
1703
1704 /* Turn on the 'driver is loaded' LED. */
1705 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1706
1707 /* skc sysctl setup */
1708
1709 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1710 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1711 SYSCTL_DESCR("mskc per-controller controls"),
1712 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1713 CTL_EOL)) != 0) {
1714 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1715 goto fail_6;
1716 }
1717
1718 sk_nodenum = node->sysctl_num;
1719
1720 /* interrupt moderation time in usecs */
1721 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1722 CTLFLAG_READWRITE,
1723 CTLTYPE_INT, "int_mod",
1724 SYSCTL_DESCR("msk interrupt moderation timer"),
1725 msk_sysctl_handler, 0, (void *)sc,
1726 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1727 CTL_EOL)) != 0) {
1728 aprint_normal_dev(sc->sk_dev,
1729 "couldn't create int_mod sysctl node\n");
1730 goto fail_6;
1731 }
1732
1733 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1734 aprint_error_dev(self, "couldn't establish power handler\n");
1735
1736 return;
1737
1738 fail_6:
1739 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1740 fail_4:
1741 bus_dmamem_unmap(sc->sc_dmatag, kva,
1742 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1743 fail_3:
1744 bus_dmamem_free(sc->sc_dmatag,
1745 &sc->sk_status_seg, sc->sk_status_nseg);
1746 sc->sk_status_nseg = 0;
1747 fail_5:
1748 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1749 fail_2:
1750 pci_intr_disestablish(pc, sc->sk_intrhand);
1751 sc->sk_intrhand = NULL;
1752 fail_1:
1753 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1754 sc->sk_bsize = 0;
1755 }
1756
1757 static int
1758 mskc_detach(device_t self, int flags)
1759 {
1760 struct sk_softc *sc = device_private(self);
1761 int rv;
1762
1763 if (sc->sk_intrhand) {
1764 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1765 sc->sk_intrhand = NULL;
1766 }
1767
1768 if (sc->sk_pihp != NULL) {
1769 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1770 sc->sk_pihp = NULL;
1771 }
1772
1773 rv = config_detach_children(self, flags);
1774 if (rv != 0)
1775 return rv;
1776
1777 if (sc->sk_status_nseg > 0) {
1778 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1779 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1780 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1781 bus_dmamem_free(sc->sc_dmatag,
1782 &sc->sk_status_seg, sc->sk_status_nseg);
1783 }
1784
1785 if (sc->sk_bsize > 0)
1786 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1787
1788 return 0;
1789 }
1790
1791 static int
1792 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1793 {
1794 struct sk_softc *sc = sc_if->sk_softc;
1795 struct msk_tx_desc *f = NULL;
1796 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1797 uint32_t entries = 0;
1798 size_t i;
1799 struct sk_txmap_entry *entry;
1800 bus_dmamap_t txmap;
1801 bus_addr_t addr;
1802
1803 DPRINTFN(2, ("msk_encap\n"));
1804
1805 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1806 if (entry == NULL) {
1807 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1808 return ENOBUFS;
1809 }
1810 txmap = entry->dmamap;
1811
1812 cur = frag = *txidx;
1813
1814 #ifdef MSK_DEBUG
1815 if (mskdebug >= 2)
1816 msk_dump_mbuf(m_head);
1817 #endif
1818
1819 /*
1820 * Start packing the mbufs in this chain into
1821 * the fragment pointers. Stop when we run out
1822 * of fragments or hit the end of the mbuf chain.
1823 */
1824 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1825 BUS_DMA_NOWAIT)) {
1826 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1827 return ENOBUFS;
1828 }
1829
1830 /* Count how many tx descriptors needed. */
1831 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1832 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1833 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1834 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1835 total++;
1836 }
1837 total++;
1838 }
1839
1840 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1841 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1842 bus_dmamap_unload(sc->sc_dmatag, txmap);
1843 return ENOBUFS;
1844 }
1845
1846 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1847 txmap->dm_nsegs, total));
1848
1849 /* Sync the DMA map. */
1850 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1851 BUS_DMASYNC_PREWRITE);
1852
1853 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1854 for (i = 0; i < txmap->dm_nsegs; i++) {
1855 addr = txmap->dm_segs[i].ds_addr;
1856 DPRINTFN(2, ("msk_encap: addr %llx\n",
1857 (unsigned long long)addr));
1858 hiaddr = MSK_ADDR_HI(addr);
1859
1860 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1861 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1862 f->sk_addr = htole32(hiaddr);
1863 f->sk_len = 0;
1864 f->sk_ctl = 0;
1865 if (i == 0)
1866 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1867 else
1868 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1869 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1870 SK_INC(frag, MSK_TX_RING_CNT);
1871 entries++;
1872 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1873 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1874 }
1875
1876 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1877 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1878 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1879 f->sk_ctl = 0;
1880 if (i == 0) {
1881 if (hiaddr != old_hiaddr)
1882 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1883 else
1884 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1885 } else
1886 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1887 cur = frag;
1888 SK_INC(frag, MSK_TX_RING_CNT);
1889 entries++;
1890 }
1891 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1892
1893 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1894 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1895
1896 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1897 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1898
1899 /* Sync descriptors before handing to chip */
1900 MSK_CDTXSYNC(sc_if, *txidx, entries,
1901 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1902
1903 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1904
1905 /* Sync first descriptor to hand it off */
1906 MSK_CDTXSYNC(sc_if, *txidx, 1,
1907 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1908
1909 sc_if->sk_cdata.sk_tx_cnt += entries;
1910
1911 #ifdef MSK_DEBUG
1912 if (mskdebug >= 2) {
1913 struct msk_tx_desc *le;
1914 uint32_t idx;
1915 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1916 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1917 msk_dump_txdesc(le, idx);
1918 }
1919 }
1920 #endif
1921
1922 *txidx = frag;
1923
1924 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1925
1926 return 0;
1927 }
1928
1929 static void
1930 msk_start(struct ifnet *ifp)
1931 {
1932 struct sk_if_softc *sc_if = ifp->if_softc;
1933 struct mbuf *m_head = NULL;
1934 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1935 int pkts = 0;
1936
1937 DPRINTFN(2, ("msk_start\n"));
1938
1939 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1940 IFQ_POLL(&ifp->if_snd, m_head);
1941 if (m_head == NULL)
1942 break;
1943
1944 /*
1945 * Pack the data into the transmit ring. If we
1946 * don't have room, set the OACTIVE flag and wait
1947 * for the NIC to drain the ring.
1948 */
1949 if (msk_encap(sc_if, m_head, &idx)) {
1950 ifp->if_flags |= IFF_OACTIVE;
1951 break;
1952 }
1953
1954 /* now we are committed to transmit the packet */
1955 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1956 pkts++;
1957
1958 /*
1959 * If there's a BPF listener, bounce a copy of this frame
1960 * to him.
1961 */
1962 bpf_mtap(ifp, m_head, BPF_D_OUT);
1963 }
1964 if (pkts == 0)
1965 return;
1966
1967 /* Transmit */
1968 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1969 sc_if->sk_cdata.sk_tx_prod = idx;
1970 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1971
1972 /* Set a timeout in case the chip goes out to lunch. */
1973 ifp->if_timer = 5;
1974 }
1975 }
1976
1977 static void
1978 msk_watchdog(struct ifnet *ifp)
1979 {
1980 struct sk_if_softc *sc_if = ifp->if_softc;
1981
1982 /*
1983 * Reclaim first as there is a possibility of losing Tx completion
1984 * interrupts.
1985 */
1986 msk_txeof(sc_if);
1987 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1988 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1989
1990 if_statinc(ifp, if_oerrors);
1991
1992 /* XXX Resets both ports; we shouldn't do that. */
1993 mskc_reset(sc_if->sk_softc);
1994 msk_reset(sc_if);
1995 msk_init(ifp);
1996 }
1997 }
1998
1999 static bool
2000 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2001 {
2002 struct sk_softc *sc = device_private(dv);
2003
2004 DPRINTFN(2, ("mskc_suspend\n"));
2005
2006 /* Turn off the 'driver is loaded' LED. */
2007 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2008
2009 return true;
2010 }
2011
2012 static bool
2013 mskc_resume(device_t dv, const pmf_qual_t *qual)
2014 {
2015 struct sk_softc *sc = device_private(dv);
2016
2017 DPRINTFN(2, ("mskc_resume\n"));
2018
2019 mskc_reset(sc);
2020 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2021
2022 return true;
2023 }
2024
2025 static __inline int
2026 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2027 {
2028 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2029 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2030 YU_RXSTAT_JABBER)) != 0 ||
2031 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2032 YU_RXSTAT_BYTES(stat) != len)
2033 return 0;
2034
2035 return 1;
2036 }
2037
2038 static void
2039 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2040 {
2041 struct sk_softc *sc = sc_if->sk_softc;
2042 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2043 struct mbuf *m;
2044 unsigned cur, prod, tail, total_len = len;
2045 bus_dmamap_t dmamap;
2046
2047 cur = sc_if->sk_cdata.sk_rx_cons;
2048 prod = sc_if->sk_cdata.sk_rx_prod;
2049
2050 /* Sync the descriptor */
2051 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2052
2053 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2054 sc_if->sk_cdata.sk_rx_cnt));
2055
2056 while (prod != cur) {
2057 tail = cur;
2058 SK_INC(cur, MSK_RX_RING_CNT);
2059
2060 sc_if->sk_cdata.sk_rx_cnt--;
2061 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2062 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2063 if (m != NULL)
2064 break; /* found it */
2065 }
2066 sc_if->sk_cdata.sk_rx_cons = cur;
2067 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2068 sc_if->sk_cdata.sk_rx_cnt, m));
2069
2070 if (m == NULL)
2071 return;
2072
2073 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2074
2075 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2076 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2077
2078 if (total_len < SK_MIN_FRAMELEN ||
2079 total_len > ETHER_MAX_LEN_JUMBO ||
2080 msk_rxvalid(sc, rxstat, total_len) == 0) {
2081 if_statinc(ifp, if_ierrors);
2082 m_freem(m);
2083 return;
2084 }
2085
2086 m_set_rcvif(m, ifp);
2087 m->m_pkthdr.len = m->m_len = total_len;
2088
2089 /* pass it on. */
2090 if_percpuq_enqueue(ifp->if_percpuq, m);
2091 }
2092
2093 static void
2094 msk_txeof(struct sk_if_softc *sc_if)
2095 {
2096 struct sk_softc *sc = sc_if->sk_softc;
2097 struct msk_tx_desc *cur_tx;
2098 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2099 uint32_t idx, reg, sk_ctl;
2100 struct sk_txmap_entry *entry;
2101
2102 DPRINTFN(2, ("msk_txeof\n"));
2103
2104 if (sc_if->sk_port == SK_PORT_A)
2105 reg = SK_STAT_BMU_TXA1_RIDX;
2106 else
2107 reg = SK_STAT_BMU_TXA2_RIDX;
2108
2109 /*
2110 * Go through our tx ring and free mbufs for those
2111 * frames that have been sent.
2112 */
2113 idx = sc_if->sk_cdata.sk_tx_cons;
2114 while (idx != sk_win_read_2(sc, reg)) {
2115 MSK_CDTXSYNC(sc_if, idx, 1,
2116 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2117
2118 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2119 sk_ctl = cur_tx->sk_ctl;
2120 #ifdef MSK_DEBUG
2121 if (mskdebug >= 2)
2122 msk_dump_txdesc(cur_tx, idx);
2123 #endif
2124 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2125 if_statinc(ifp, if_opackets);
2126 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2127 entry = sc_if->sk_cdata.sk_tx_map[idx];
2128
2129 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2130 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2131
2132 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2133 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2134 link);
2135 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2136 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2137 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2138 }
2139 sc_if->sk_cdata.sk_tx_cnt--;
2140 SK_INC(idx, MSK_TX_RING_CNT);
2141 }
2142 if (idx == sc_if->sk_cdata.sk_tx_cons)
2143 return;
2144
2145 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2146
2147 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2148 ifp->if_flags &= ~IFF_OACTIVE;
2149
2150 sc_if->sk_cdata.sk_tx_cons = idx;
2151 }
2152
2153 static void
2154 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2155 {
2156 /* Make sure to not completely wrap around */
2157 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2158 if (msk_newbuf(sc_if,
2159 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2160 goto schedretry;
2161 }
2162 }
2163
2164 return;
2165
2166 schedretry:
2167 /* Try later */
2168 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2169 }
2170
2171 static void
2172 msk_fill_rx_tick(void *xsc_if)
2173 {
2174 struct sk_if_softc *sc_if = xsc_if;
2175 int s, rx_prod;
2176
2177 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2178
2179 s = splnet();
2180 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2181 msk_fill_rx_ring(sc_if);
2182 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2183 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2184 sc_if->sk_cdata.sk_rx_prod);
2185 }
2186 splx(s);
2187 }
2188
2189 static void
2190 msk_tick(void *xsc_if)
2191 {
2192 struct sk_if_softc *sc_if = xsc_if;
2193 struct mii_data *mii = &sc_if->sk_mii;
2194 int s;
2195
2196 s = splnet();
2197 mii_tick(mii);
2198 splx(s);
2199
2200 callout_schedule(&sc_if->sk_tick_ch, hz);
2201 }
2202
2203 static void
2204 msk_intr_yukon(struct sk_if_softc *sc_if)
2205 {
2206 uint8_t status;
2207
2208 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2209 /* RX overrun */
2210 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2211 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2212 SK_RFCTL_RX_FIFO_OVER);
2213 }
2214 /* TX underrun */
2215 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2216 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2217 SK_TFCTL_TX_FIFO_UNDER);
2218 }
2219
2220 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2221 }
2222
2223 static int
2224 msk_intr(void *xsc)
2225 {
2226 struct sk_softc *sc = xsc;
2227 struct sk_if_softc *sc_if;
2228 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2229 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2230 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2231 int claimed = 0;
2232 uint32_t status;
2233 struct msk_status_desc *cur_st;
2234
2235 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2236 if (status == 0xffffffff)
2237 return 0;
2238 if (status == 0) {
2239 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2240 return 0;
2241 }
2242
2243 status = CSR_READ_4(sc, SK_ISR);
2244
2245 if (sc_if0 != NULL)
2246 ifp0 = &sc_if0->sk_ethercom.ec_if;
2247 if (sc_if1 != NULL)
2248 ifp1 = &sc_if1->sk_ethercom.ec_if;
2249
2250 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2251 (ifp0->if_flags & IFF_RUNNING)) {
2252 msk_intr_yukon(sc_if0);
2253 }
2254
2255 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2256 (ifp1->if_flags & IFF_RUNNING)) {
2257 msk_intr_yukon(sc_if1);
2258 }
2259
2260 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2261 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2262 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2263
2264 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2265 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2266 switch (cur_st->sk_opcode) {
2267 case SK_Y2_STOPC_RXSTAT:
2268 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2269 if (sc_if) {
2270 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2271 letoh32(cur_st->sk_status));
2272 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2273 msk_fill_rx_tick(sc_if);
2274 }
2275 break;
2276 case SK_Y2_STOPC_TXSTAT:
2277 if (sc_if0)
2278 msk_txeof(sc_if0);
2279 if (sc_if1)
2280 msk_txeof(sc_if1);
2281 break;
2282 default:
2283 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2284 break;
2285 }
2286 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2287
2288 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2289 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2290 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2291 }
2292
2293 if (status & SK_Y2_IMR_BMU) {
2294 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2295 claimed = 1;
2296 }
2297
2298 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2299
2300 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2301 if_schedule_deferred_start(ifp0);
2302 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2303 if_schedule_deferred_start(ifp1);
2304
2305 KASSERT(sc->rnd_attached > 0);
2306 rnd_add_uint32(&sc->rnd_source, status);
2307
2308 if (sc->sk_int_mod_pending)
2309 msk_update_int_mod(sc, 1);
2310
2311 return claimed;
2312 }
2313
2314 static void
2315 msk_init_yukon(struct sk_if_softc *sc_if)
2316 {
2317 uint32_t v;
2318 uint16_t reg;
2319 struct sk_softc *sc;
2320 int i;
2321
2322 sc = sc_if->sk_softc;
2323
2324 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2325 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2326
2327 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2328
2329 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2330 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2331
2332 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2333
2334 /* unused read of the interrupt source register */
2335 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2336 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2337
2338 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2339 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2340 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2341
2342 /* MIB Counter Clear Mode set */
2343 reg |= YU_PAR_MIB_CLR;
2344 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2345 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2346 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2347
2348 /* MIB Counter Clear Mode clear */
2349 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2350 reg &= ~YU_PAR_MIB_CLR;
2351 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2352
2353 /* receive control reg */
2354 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2355 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2356
2357 /* transmit control register */
2358 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2359
2360 /* transmit flow control register */
2361 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2362
2363 /* transmit parameter register */
2364 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2365 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2366 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2367
2368 /* serial mode register */
2369 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2370 reg = YU_SMR_DATA_BLIND(0x1c) |
2371 YU_SMR_MFL_VLAN |
2372 YU_SMR_IPG_DATA(0x1e);
2373
2374 if (sc->sk_type != SK_YUKON_FE &&
2375 sc->sk_type != SK_YUKON_FE_P)
2376 reg |= YU_SMR_MFL_JUMBO;
2377
2378 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2379
2380 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2381 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2382 /* msk_attach calls me before ether_ifattach so check null */
2383 if (ifp != NULL && ifp->if_sadl != NULL)
2384 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2385 sizeof(sc_if->sk_enaddr));
2386 /* Setup Yukon's address */
2387 for (i = 0; i < 3; i++) {
2388 /* Write Source Address 1 (unicast filter) */
2389 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2390 sc_if->sk_enaddr[i * 2] |
2391 sc_if->sk_enaddr[i * 2 + 1] << 8);
2392 }
2393
2394 for (i = 0; i < 3; i++) {
2395 reg = sk_win_read_2(sc_if->sk_softc,
2396 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2397 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2398 }
2399
2400 /* Set promiscuous mode */
2401 msk_setpromisc(sc_if);
2402
2403 /* Set multicast filter */
2404 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2405 msk_setmulti(sc_if);
2406
2407 /* enable interrupt mask for counter overflows */
2408 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2409 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2410 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2411 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2412
2413 /* Configure RX MAC FIFO Flush Mask */
2414 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2415 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2416 YU_RXSTAT_JABBER;
2417 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2418
2419 /* Configure RX MAC FIFO */
2420 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2421 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2422 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2423 v |= SK_RFCTL_RX_OVER_ON;
2424 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2425
2426 if ((sc->sk_type == SK_YUKON_FE_P) &&
2427 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2428 v = 0x178; /* Magic value */
2429 else {
2430 /* Increase flush threshold to 64 bytes */
2431 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2432 }
2433 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2434
2435 /* Configure TX MAC FIFO */
2436 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2437 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2438
2439 if ((sc->sk_type == SK_YUKON_FE_P) &&
2440 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2441 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2442 v &= ~SK_TXEND_WM_ON;
2443 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2444 }
2445
2446 #if 1
2447 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2448 #endif
2449 DPRINTFN(6, ("msk_init_yukon: end\n"));
2450 }
2451
2452 /*
2453 * Note that to properly initialize any part of the GEnesis chip,
2454 * you first have to take it out of reset mode.
2455 */
2456 static int
2457 msk_init(struct ifnet *ifp)
2458 {
2459 struct sk_if_softc *sc_if = ifp->if_softc;
2460 struct sk_softc *sc = sc_if->sk_softc;
2461 int rc = 0, s;
2462 uint32_t imr, imtimer_ticks;
2463
2464
2465 DPRINTFN(2, ("msk_init\n"));
2466
2467 s = splnet();
2468
2469 /* Cancel pending I/O and free all RX/TX buffers. */
2470 msk_stop(ifp, 1);
2471
2472 /* Configure I2C registers */
2473
2474 /* Configure XMAC(s) */
2475 msk_init_yukon(sc_if);
2476 if ((rc = ether_mediachange(ifp)) != 0)
2477 goto out;
2478
2479 /* Configure transmit arbiter(s) */
2480 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2481 #if 0
2482 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2483 #endif
2484
2485 if (sc->sk_ramsize) {
2486 /* Configure RAMbuffers */
2487 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2488 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2489 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2490 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2491 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2492 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2493
2494 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2495 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2496 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2497 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2498 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2499 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2500 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2501 }
2502
2503 /* Configure BMUs */
2504 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2505 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2506 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2507 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2508
2509 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2510 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2511 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2512 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2513
2514 /* Make sure the sync transmit queue is disabled. */
2515 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2516
2517 /* Init descriptors */
2518 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2519 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2520 "memory for rx buffers\n");
2521 msk_stop(ifp, 1);
2522 splx(s);
2523 return ENOBUFS;
2524 }
2525
2526 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2527 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2528 "memory for tx buffers\n");
2529 msk_stop(ifp, 1);
2530 splx(s);
2531 return ENOBUFS;
2532 }
2533
2534 /* Set interrupt moderation if changed via sysctl. */
2535 switch (sc->sk_type) {
2536 case SK_YUKON_EC:
2537 case SK_YUKON_EC_U:
2538 case SK_YUKON_EX:
2539 case SK_YUKON_SUPR:
2540 case SK_YUKON_ULTRA2:
2541 case SK_YUKON_OPTIMA:
2542 case SK_YUKON_PRM:
2543 case SK_YUKON_OPTIMA2:
2544 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2545 break;
2546 case SK_YUKON_FE:
2547 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2548 break;
2549 case SK_YUKON_FE_P:
2550 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2551 break;
2552 case SK_YUKON_XL:
2553 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2554 break;
2555 default:
2556 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2557 }
2558 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2559 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2560 sk_win_write_4(sc, SK_IMTIMERINIT,
2561 SK_IM_USECS(sc->sk_int_mod));
2562 aprint_verbose_dev(sc->sk_dev,
2563 "interrupt moderation is %d us\n", sc->sk_int_mod);
2564 }
2565
2566 /* Initialize prefetch engine. */
2567 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2568 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2569 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2570 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2571 MSK_RX_RING_ADDR(sc_if, 0));
2572 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2573 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2574 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2575 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2576
2577 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2578 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2579 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2580 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2581 MSK_TX_RING_ADDR(sc_if, 0));
2582 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2583 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2584 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2585 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2586
2587 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2588 sc_if->sk_cdata.sk_rx_prod);
2589
2590
2591 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2592 /* Disable flushing of non-ASF packets. */
2593 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2594 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2595 }
2596
2597 /* Configure interrupt handling */
2598 if (sc_if->sk_port == SK_PORT_A)
2599 sc->sk_intrmask |= SK_Y2_INTRS1;
2600 else
2601 sc->sk_intrmask |= SK_Y2_INTRS2;
2602 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2603 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2604
2605 ifp->if_flags |= IFF_RUNNING;
2606 ifp->if_flags &= ~IFF_OACTIVE;
2607
2608 callout_schedule(&sc_if->sk_tick_ch, hz);
2609
2610 out:
2611 splx(s);
2612 return rc;
2613 }
2614
2615 /*
2616 * Note: the logic of second parameter is inverted compared to OpenBSD
2617 * code, since this code uses the function as if_stop hook too.
2618 */
2619 static void
2620 msk_stop(struct ifnet *ifp, int disable)
2621 {
2622 struct sk_if_softc *sc_if = ifp->if_softc;
2623 struct sk_softc *sc = sc_if->sk_softc;
2624 struct sk_txmap_entry *dma;
2625 int i;
2626
2627 DPRINTFN(2, ("msk_stop\n"));
2628
2629 callout_stop(&sc_if->sk_tick_ch);
2630 callout_stop(&sc_if->sk_tick_rx);
2631
2632 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2633
2634 /* Stop transfer of Tx descriptors */
2635
2636 /* Stop transfer of Rx descriptors */
2637
2638 if (disable) {
2639 /* Turn off various components of this interface. */
2640 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2641 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2642 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2643 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2644 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2645 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2646 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2647 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2648 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2649 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2650 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2651
2652 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2653 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2654
2655 /* Disable interrupts */
2656 if (sc_if->sk_port == SK_PORT_A)
2657 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2658 else
2659 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2660 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2661 }
2662
2663 /* Free RX and TX mbufs still in the queues. */
2664 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2665 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2666 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2667 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2668 }
2669 }
2670
2671 sc_if->sk_cdata.sk_rx_prod = 0;
2672 sc_if->sk_cdata.sk_rx_cons = 0;
2673 sc_if->sk_cdata.sk_rx_cnt = 0;
2674
2675 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2676 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2677 dma = sc_if->sk_cdata.sk_tx_map[i];
2678
2679 bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2680 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2681
2682 bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2683
2684 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2685 sc_if->sk_cdata.sk_tx_map[i], link);
2686 sc_if->sk_cdata.sk_tx_map[i] = 0;
2687
2688 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2689 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2690 }
2691 }
2692 }
2693
2694 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2695 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2696
2697 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2698 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2699
2700 #ifdef MSK_DEBUG
2701 static void
2702 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2703 {
2704 #define DESC_PRINT(X) \
2705 if (X) \
2706 printf("txdesc[%d]." #X "=%#x\n", \
2707 idx, X);
2708
2709 DESC_PRINT(letoh32(le->sk_addr));
2710 DESC_PRINT(letoh16(le->sk_len));
2711 DESC_PRINT(le->sk_ctl);
2712 DESC_PRINT(le->sk_opcode);
2713 #undef DESC_PRINT
2714 }
2715
2716 static void
2717 msk_dump_bytes(const char *data, int len)
2718 {
2719 int c, i, j;
2720
2721 for (i = 0; i < len; i += 16) {
2722 printf("%08x ", i);
2723 c = len - i;
2724 if (c > 16) c = 16;
2725
2726 for (j = 0; j < c; j++) {
2727 printf("%02x ", data[i + j] & 0xff);
2728 if ((j & 0xf) == 7 && j > 0)
2729 printf(" ");
2730 }
2731
2732 for (; j < 16; j++)
2733 printf(" ");
2734 printf(" ");
2735
2736 for (j = 0; j < c; j++) {
2737 int ch = data[i + j] & 0xff;
2738 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2739 }
2740
2741 printf("\n");
2742
2743 if (c < 16)
2744 break;
2745 }
2746 }
2747
2748 static void
2749 msk_dump_mbuf(struct mbuf *m)
2750 {
2751 int count = m->m_pkthdr.len;
2752
2753 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2754
2755 while (count > 0 && m) {
2756 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2757 m, m->m_data, m->m_len);
2758 if (mskdebug >= 4)
2759 msk_dump_bytes(mtod(m, char *), m->m_len);
2760
2761 count -= m->m_len;
2762 m = m->m_next;
2763 }
2764 }
2765 #endif
2766
2767 static int
2768 msk_sysctl_handler(SYSCTLFN_ARGS)
2769 {
2770 int error, t;
2771 struct sysctlnode node;
2772 struct sk_softc *sc;
2773
2774 node = *rnode;
2775 sc = node.sysctl_data;
2776 t = sc->sk_int_mod;
2777 node.sysctl_data = &t;
2778 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2779 if (error || newp == NULL)
2780 return error;
2781
2782 if (t < SK_IM_MIN || t > SK_IM_MAX)
2783 return EINVAL;
2784
2785 /* update the softc with sysctl-changed value, and mark
2786 for hardware update */
2787 sc->sk_int_mod = t;
2788 sc->sk_int_mod_pending = 1;
2789 return 0;
2790 }
2791
2792 /*
2793 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2794 * set up in mskc_attach()
2795 */
2796 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2797 {
2798 int rc;
2799 const struct sysctlnode *node;
2800
2801 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2802 0, CTLTYPE_NODE, "msk",
2803 SYSCTL_DESCR("msk interface controls"),
2804 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2805 goto err;
2806 }
2807
2808 msk_root_num = node->sysctl_num;
2809 return;
2810
2811 err:
2812 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2813 }
2814