if_msk.c revision 1.104 1 /* $NetBSD: if_msk.c,v 1.104 2020/04/29 18:52:03 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.104 2020/04/29 18:52:03 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
199 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 { 0, 0 }
202 };
203
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 return CSR_READ_4(sc, reg);
208 }
209
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 return CSR_READ_2(sc, reg);
214 }
215
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 return CSR_READ_1(sc, reg);
220 }
221
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 CSR_WRITE_4(sc, reg, x);
226 }
227
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 CSR_WRITE_2(sc, reg, x);
232 }
233
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 CSR_WRITE_1(sc, reg, x);
238 }
239
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 struct sk_if_softc *sc_if = device_private(dev);
244 uint16_t data;
245 int i;
246
247 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249
250 for (i = 0; i < SK_TIMEOUT; i++) {
251 DELAY(1);
252 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 if (data & YU_SMICR_READ_VALID)
254 break;
255 }
256
257 if (i == SK_TIMEOUT) {
258 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
259 return ETIMEDOUT;
260 }
261
262 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263
264 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265
266 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 phy, reg, *val));
268
269 return 0;
270 }
271
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 struct sk_if_softc *sc_if = device_private(dev);
276 int i;
277
278 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 phy, reg, val));
280
281 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284
285 for (i = 0; i < SK_TIMEOUT; i++) {
286 DELAY(1);
287 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 break;
289 }
290
291 if (i == SK_TIMEOUT) {
292 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
293 return ETIMEDOUT;
294 }
295
296 return 0;
297 }
298
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 struct sk_if_softc *sc_if = ifp->if_softc;
303 struct mii_data *mii = &sc_if->sk_mii;
304 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 int gpcr;
306
307 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309
310 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 /* Set speed. */
313 gpcr |= YU_GPCR_SPEED_DIS;
314 switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 case IFM_1000_SX:
316 case IFM_1000_LX:
317 case IFM_1000_CX:
318 case IFM_1000_T:
319 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 break;
321 case IFM_100_TX:
322 gpcr |= YU_GPCR_SPEED;
323 break;
324 }
325
326 /* Set duplex. */
327 gpcr |= YU_GPCR_DPLX_DIS;
328 if ((mii->mii_media_active & IFM_FDX) != 0)
329 gpcr |= YU_GPCR_DUPLEX;
330
331 /* Disable flow control. */
332 gpcr |= YU_GPCR_FCTL_DIS;
333 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 }
335
336 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337
338 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 uint32_t hashes[2] = { 0, 0 };
347 int h;
348 struct ethercom *ec = &sc_if->sk_ethercom;
349 struct ether_multi *enm;
350 struct ether_multistep step;
351 uint16_t reg;
352
353 /* First, zot all the existing filters. */
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358
359
360 /* Now program new ones. */
361 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 reg |= YU_RCR_UFLEN;
363 allmulti:
364 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 if ((ifp->if_flags & IFF_PROMISC) != 0)
366 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 hashes[0] = 0xFFFFFFFF;
369 hashes[1] = 0xFFFFFFFF;
370 }
371 } else {
372 /* First find the tail of the list. */
373 ETHER_LOCK(ec);
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 ETHER_UNLOCK(ec);
380 goto allmulti;
381 }
382 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 ((1 << SK_HASH_BITS) - 1);
384 if (h < 32)
385 hashes[0] |= (1 << h);
386 else
387 hashes[1] |= (1 << (h - 32));
388
389 ETHER_NEXT_MULTI(step, enm);
390 }
391 ETHER_UNLOCK(ec);
392 reg |= YU_RCR_MUFLEN;
393 }
394
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406
407 if (ifp->if_flags & IFF_PROMISC)
408 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 else
411 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 struct msk_chain_data *cd = &sc_if->sk_cdata;
419 struct msk_ring_data *rd = sc_if->sk_rdata;
420 struct msk_rx_desc *r;
421
422 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
423
424 sc_if->sk_cdata.sk_rx_prod = 0;
425 sc_if->sk_cdata.sk_rx_cons = 0;
426 sc_if->sk_cdata.sk_rx_cnt = 0;
427 sc_if->sk_cdata.sk_rx_hiaddr = 0;
428
429 /* Mark the first ring element to initialize the high address. */
430 sc_if->sk_cdata.sk_rx_hiaddr = 0;
431 r = &rd->sk_rx_ring[cd->sk_rx_prod];
432 r->sk_addr = htole32(cd->sk_rx_hiaddr);
433 r->sk_len = 0;
434 r->sk_ctl = 0;
435 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
436 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
437 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
438 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
439 sc_if->sk_cdata.sk_rx_cnt++;
440
441 msk_fill_rx_ring(sc_if);
442 return 0;
443 }
444
445 static int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct msk_chain_data *cd = &sc_if->sk_cdata;
449 struct msk_ring_data *rd = sc_if->sk_rdata;
450 struct msk_tx_desc *t;
451
452 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 sc_if->sk_cdata.sk_tx_prod = 0;
455 sc_if->sk_cdata.sk_tx_cons = 0;
456 sc_if->sk_cdata.sk_tx_cnt = 0;
457 sc_if->sk_cdata.sk_tx_hiaddr = 0;
458
459 /* Mark the first ring element to initialize the high address. */
460 sc_if->sk_cdata.sk_tx_hiaddr = 0;
461 t = &rd->sk_tx_ring[cd->sk_tx_prod];
462 t->sk_addr = htole32(cd->sk_tx_hiaddr);
463 t->sk_len = 0;
464 t->sk_ctl = 0;
465 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
466 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
467 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
468 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
469 sc_if->sk_cdata.sk_tx_cnt++;
470
471 return 0;
472 }
473
474 static int
475 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
476 {
477 struct mbuf *m_new = NULL;
478 struct sk_chain *c;
479 struct msk_rx_desc *r;
480 void *buf = NULL;
481 bus_addr_t addr;
482
483 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
484 if (m_new == NULL)
485 return ENOBUFS;
486
487 /* Allocate the jumbo buffer */
488 buf = msk_jalloc(sc_if);
489 if (buf == NULL) {
490 m_freem(m_new);
491 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
492 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
493 return ENOBUFS;
494 }
495
496 /* Attach the buffer to the mbuf */
497 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
498 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
499
500 m_adj(m_new, ETHER_ALIGN);
501
502 addr = dmamap->dm_segs[0].ds_addr +
503 ((vaddr_t)m_new->m_data -
504 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
505
506 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
507 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
508 r = &sc_if->sk_rdata->sk_rx_ring[sc_if->sk_cdata.sk_rx_prod];
509 c->sk_mbuf = NULL;
510 r->sk_addr = htole32(MSK_ADDR_HI(addr));
511 r->sk_len = 0;
512 r->sk_ctl = 0;
513 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
514 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
515
516 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
517 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
518
519 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
520 sc_if->sk_cdata.sk_rx_cnt++;
521
522 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
523 sc_if->sk_ethercom.ec_if.if_xname,
524 (unsigned)MSK_ADDR_HI(addr)));
525 }
526
527 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
528 r = &sc_if->sk_rdata->sk_rx_ring[sc_if->sk_cdata.sk_rx_prod];
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(MSK_ADDR_LO(addr));
531 r->sk_len = htole16(SK_JLEN);
532 r->sk_ctl = 0;
533 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
534
535 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
536 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
537
538 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
539 sc_if->sk_cdata.sk_rx_cnt++;
540
541 return 0;
542 }
543
544 /*
545 * Memory management for jumbo frames.
546 */
547
548 static int
549 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
550 {
551 struct sk_softc *sc = sc_if->sk_softc;
552 char *ptr, *kva;
553 int i, state, error;
554 struct sk_jpool_entry *entry;
555
556 state = error = 0;
557
558 /* Grab a big chunk o' storage. */
559 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
560 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
561 BUS_DMA_NOWAIT)) {
562 aprint_error(": can't alloc rx buffers");
563 return ENOBUFS;
564 }
565
566 state = 1;
567 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
568 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
569 BUS_DMA_NOWAIT)) {
570 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
571 error = ENOBUFS;
572 goto out;
573 }
574
575 state = 2;
576 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
577 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
578 aprint_error(": can't create dma map");
579 error = ENOBUFS;
580 goto out;
581 }
582
583 state = 3;
584 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
585 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
586 aprint_error(": can't load dma map");
587 error = ENOBUFS;
588 goto out;
589 }
590
591 state = 4;
592 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
593 DPRINTFN(1,("msk_jumbo_buf = %p\n",
594 (void *)sc_if->sk_cdata.sk_jumbo_buf));
595
596 LIST_INIT(&sc_if->sk_jfree_listhead);
597 LIST_INIT(&sc_if->sk_jinuse_listhead);
598 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
599
600 /*
601 * Now divide it up into 9K pieces and save the addresses
602 * in an array.
603 */
604 ptr = sc_if->sk_cdata.sk_jumbo_buf;
605 for (i = 0; i < MSK_JSLOTS; i++) {
606 sc_if->sk_cdata.sk_jslots[i] = ptr;
607 ptr += SK_JLEN;
608 entry = malloc(sizeof(struct sk_jpool_entry),
609 M_DEVBUF, M_WAITOK);
610 entry->slot = i;
611 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
612 entry, jpool_entries);
613 }
614 out:
615 if (error != 0) {
616 switch (state) {
617 case 4:
618 bus_dmamap_unload(sc->sc_dmatag,
619 sc_if->sk_cdata.sk_rx_jumbo_map);
620 /* FALLTHROUGH */
621 case 3:
622 bus_dmamap_destroy(sc->sc_dmatag,
623 sc_if->sk_cdata.sk_rx_jumbo_map);
624 /* FALLTHROUGH */
625 case 2:
626 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 /* FALLTHROUGH */
628 case 1:
629 bus_dmamem_free(sc->sc_dmatag,
630 &sc_if->sk_cdata.sk_jumbo_seg,
631 sc_if->sk_cdata.sk_jumbo_nseg);
632 break;
633 default:
634 break;
635 }
636 }
637
638 return error;
639 }
640
641 static void
642 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
643 {
644 struct sk_softc *sc = sc_if->sk_softc;
645
646 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
647 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
648 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
649 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
650 sc_if->sk_cdata.sk_jumbo_nseg);
651 }
652
653 /*
654 * Allocate a jumbo buffer.
655 */
656 static void *
657 msk_jalloc(struct sk_if_softc *sc_if)
658 {
659 struct sk_jpool_entry *entry;
660
661 mutex_enter(&sc_if->sk_jpool_mtx);
662 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
663
664 if (entry == NULL) {
665 mutex_exit(&sc_if->sk_jpool_mtx);
666 return NULL;
667 }
668
669 LIST_REMOVE(entry, jpool_entries);
670 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
671 mutex_exit(&sc_if->sk_jpool_mtx);
672 return sc_if->sk_cdata.sk_jslots[entry->slot];
673 }
674
675 /*
676 * Release a jumbo buffer.
677 */
678 static void
679 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
680 {
681 struct sk_jpool_entry *entry;
682 struct sk_if_softc *sc;
683 int i;
684
685 /* Extract the softc struct pointer. */
686 sc = (struct sk_if_softc *)arg;
687
688 if (sc == NULL)
689 panic("msk_jfree: can't find softc pointer!");
690
691 /* calculate the slot this buffer belongs to */
692 i = ((vaddr_t)buf
693 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
694
695 if ((i < 0) || (i >= MSK_JSLOTS))
696 panic("msk_jfree: asked to free buffer that we don't manage!");
697
698 mutex_enter(&sc->sk_jpool_mtx);
699 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
700 if (entry == NULL)
701 panic("msk_jfree: buffer not in use!");
702 entry->slot = i;
703 LIST_REMOVE(entry, jpool_entries);
704 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
705 mutex_exit(&sc->sk_jpool_mtx);
706
707 if (__predict_true(m != NULL))
708 pool_cache_put(mb_cache, m);
709
710 /* Now that we know we have a free RX buffer, refill if running out */
711 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
712 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
713 callout_schedule(&sc->sk_tick_rx, 0);
714 }
715
716 static int
717 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
718 {
719 struct sk_if_softc *sc = ifp->if_softc;
720 int s, error;
721
722 s = splnet();
723
724 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
725 switch (cmd) {
726 case SIOCSIFFLAGS:
727 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
728 break;
729
730 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
731 case IFF_RUNNING:
732 msk_stop(ifp, 1);
733 break;
734 case IFF_UP:
735 msk_init(ifp);
736 break;
737 case IFF_UP | IFF_RUNNING:
738 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
739 msk_setpromisc(sc);
740 msk_setmulti(sc);
741 } else
742 msk_init(ifp);
743 break;
744 }
745 sc->sk_if_flags = ifp->if_flags;
746 break;
747 default:
748 error = ether_ioctl(ifp, cmd, data);
749 if (error == ENETRESET) {
750 error = 0;
751 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
752 ;
753 else if (ifp->if_flags & IFF_RUNNING) {
754 /*
755 * Multicast list has changed; set the hardware
756 * filter accordingly.
757 */
758 msk_setmulti(sc);
759 }
760 }
761 break;
762 }
763
764 splx(s);
765 return error;
766 }
767
768 static void
769 msk_update_int_mod(struct sk_softc *sc, int verbose)
770 {
771 uint32_t imtimer_ticks;
772
773 /*
774 * Configure interrupt moderation. The moderation timer
775 * defers interrupts specified in the interrupt moderation
776 * timer mask based on the timeout specified in the interrupt
777 * moderation timer init register. Each bit in the timer
778 * register represents one tick, so to specify a timeout in
779 * microseconds, we have to multiply by the correct number of
780 * ticks-per-microsecond.
781 */
782 switch (sc->sk_type) {
783 case SK_YUKON_EC:
784 case SK_YUKON_EC_U:
785 case SK_YUKON_EX:
786 case SK_YUKON_SUPR:
787 case SK_YUKON_ULTRA2:
788 case SK_YUKON_OPTIMA:
789 case SK_YUKON_PRM:
790 case SK_YUKON_OPTIMA2:
791 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
792 break;
793 case SK_YUKON_FE:
794 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
795 break;
796 case SK_YUKON_FE_P:
797 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
798 break;
799 case SK_YUKON_XL:
800 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
801 break;
802 default:
803 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
804 }
805 if (verbose)
806 aprint_verbose_dev(sc->sk_dev,
807 "interrupt moderation is %d us\n", sc->sk_int_mod);
808 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
809 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
810 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
811 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
812 sc->sk_int_mod_pending = 0;
813 }
814
815 static int
816 msk_lookup(const struct pci_attach_args *pa)
817 {
818 const struct msk_product *pmsk;
819
820 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
821 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
822 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
823 return 1;
824 }
825 return 0;
826 }
827
828 /*
829 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
830 * IDs against our list and return a device name if we find a match.
831 */
832 static int
833 mskc_probe(device_t parent, cfdata_t match, void *aux)
834 {
835 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
836
837 return msk_lookup(pa);
838 }
839
840 /*
841 * Force the GEnesis into reset, then bring it out of reset.
842 */
843 static void
844 mskc_reset(struct sk_softc *sc)
845 {
846 uint32_t imtimer_ticks, reg1;
847 uint16_t status;
848 int reg;
849
850 DPRINTFN(2, ("mskc_reset\n"));
851
852 /* Disable ASF */
853 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
854 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
855 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
856 /* Clear AHB bridge & microcontroller reset. */
857 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
858 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
859 /* Clear ASF microcontroller state. */
860 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
861 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
862 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
863 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
864 } else
865 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
866 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
867
868 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
869 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
870
871 DELAY(1000);
872 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
873 DELAY(2);
874 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
875 sk_win_write_1(sc, SK_TESTCTL1, 2);
876
877 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
878 sc->sk_type >= SK_YUKON_FE_P) {
879 uint32_t our;
880
881 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
882
883 /* enable all clocks. */
884 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
885 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
886 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
887 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
888 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
889 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
890 /* Set all bits to 0 except bits 15..12 */
891 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
892 /* Set to default value */
893 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
894
895 /*
896 * Disable status race, workaround for Yukon EC Ultra &
897 * Yukon EX.
898 */
899 reg1 = sk_win_read_4(sc, SK_GPIO);
900 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
901 sk_win_write_4(sc, SK_GPIO, reg1);
902 sk_win_read_4(sc, SK_GPIO);
903 }
904
905 /* release PHY from PowerDown/Coma mode. */
906 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
907 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
908 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
909 else
910 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
911 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
912
913 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
914 sk_win_write_1(sc, SK_Y2_CLKGATE,
915 SK_Y2_CLKGATE_LINK1_GATE_DIS |
916 SK_Y2_CLKGATE_LINK2_GATE_DIS |
917 SK_Y2_CLKGATE_LINK1_CORE_DIS |
918 SK_Y2_CLKGATE_LINK2_CORE_DIS |
919 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
920 else
921 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
922
923 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
924 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
925 DELAY(1000);
926 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
927 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
928
929 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
930 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
931 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
932 }
933
934 sk_win_write_1(sc, SK_TESTCTL1, 1);
935
936 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
937 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
938 CSR_READ_2(sc, SK_LINK_CTRL)));
939
940 /* Clear I2C IRQ noise */
941 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
942
943 /* Disable hardware timer */
944 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
945 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
946
947 /* Disable descriptor polling */
948 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
949
950 /* Disable time stamps */
951 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
952 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
953
954 /* Enable RAM interface */
955 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
956 for (reg = SK_TO0;reg <= SK_TO11; reg++)
957 sk_win_write_1(sc, reg, 36);
958 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
959 for (reg = SK_TO0;reg <= SK_TO11; reg++)
960 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
961
962 /*
963 * Configure interrupt moderation. The moderation timer
964 * defers interrupts specified in the interrupt moderation
965 * timer mask based on the timeout specified in the interrupt
966 * moderation timer init register. Each bit in the timer
967 * register represents one tick, so to specify a timeout in
968 * microseconds, we have to multiply by the correct number of
969 * ticks-per-microsecond.
970 */
971 switch (sc->sk_type) {
972 case SK_YUKON_EC:
973 case SK_YUKON_EC_U:
974 case SK_YUKON_EX:
975 case SK_YUKON_SUPR:
976 case SK_YUKON_ULTRA2:
977 case SK_YUKON_OPTIMA:
978 case SK_YUKON_PRM:
979 case SK_YUKON_OPTIMA2:
980 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
981 break;
982 case SK_YUKON_FE:
983 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
984 break;
985 case SK_YUKON_FE_P:
986 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
987 break;
988 case SK_YUKON_XL:
989 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
990 break;
991 default:
992 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
993 break;
994 }
995
996 /* Reset status ring. */
997 memset(sc->sk_status_ring, 0,
998 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
999 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1000 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1001 sc->sk_status_idx = 0;
1002
1003 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1004 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1005
1006 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1007 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1008 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1009 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1010 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1011 if (sc->sk_type == SK_YUKON_EC &&
1012 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1013 /* WA for dev. #4.3 */
1014 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1015 SK_STAT_BMU_TXTHIDX_MSK);
1016 /* WA for dev. #4.18 */
1017 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1018 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1019 } else {
1020 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1021 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1022 if (sc->sk_type == SK_YUKON_XL)
1023 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1024 else
1025 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1026 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1027 }
1028
1029 #if 0
1030 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1031 #endif
1032 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1033
1034 /* Enable status unit. */
1035 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1036
1037 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1038 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1039 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1040
1041 msk_update_int_mod(sc, 0);
1042 }
1043
1044 static int
1045 msk_probe(device_t parent, cfdata_t match, void *aux)
1046 {
1047 struct skc_attach_args *sa = aux;
1048
1049 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1050 return 0;
1051
1052 switch (sa->skc_type) {
1053 case SK_YUKON_XL:
1054 case SK_YUKON_EC_U:
1055 case SK_YUKON_EX:
1056 case SK_YUKON_EC:
1057 case SK_YUKON_FE:
1058 case SK_YUKON_FE_P:
1059 case SK_YUKON_SUPR:
1060 case SK_YUKON_ULTRA2:
1061 case SK_YUKON_OPTIMA:
1062 case SK_YUKON_PRM:
1063 case SK_YUKON_OPTIMA2:
1064 return 1;
1065 }
1066
1067 return 0;
1068 }
1069
1070 static void
1071 msk_reset(struct sk_if_softc *sc_if)
1072 {
1073 /* GMAC and GPHY Reset */
1074 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1075 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1076 DELAY(1000);
1077 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1078 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1079 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1080 }
1081
1082 static bool
1083 msk_resume(device_t dv, const pmf_qual_t *qual)
1084 {
1085 struct sk_if_softc *sc_if = device_private(dv);
1086
1087 msk_init_yukon(sc_if);
1088 return true;
1089 }
1090
1091 /*
1092 * Each XMAC chip is attached as a separate logical IP interface.
1093 * Single port cards will have only one logical interface of course.
1094 */
1095 static void
1096 msk_attach(device_t parent, device_t self, void *aux)
1097 {
1098 struct sk_if_softc *sc_if = device_private(self);
1099 struct sk_softc *sc = device_private(parent);
1100 struct skc_attach_args *sa = aux;
1101 bus_dmamap_t dmamap;
1102 struct sk_txmap_entry *entry;
1103 struct ifnet *ifp;
1104 struct mii_data * const mii = &sc_if->sk_mii;
1105 void *kva;
1106 int i;
1107 uint32_t chunk;
1108 int mii_flags;
1109
1110 sc_if->sk_dev = self;
1111 sc_if->sk_port = sa->skc_port;
1112 sc_if->sk_softc = sc;
1113 sc->sk_if[sa->skc_port] = sc_if;
1114
1115 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1116
1117 /*
1118 * Get station address for this interface. Note that
1119 * dual port cards actually come with three station
1120 * addresses: one for each port, plus an extra. The
1121 * extra one is used by the SysKonnect driver software
1122 * as a 'virtual' station address for when both ports
1123 * are operating in failover mode. Currently we don't
1124 * use this extra address.
1125 */
1126 for (i = 0; i < ETHER_ADDR_LEN; i++)
1127 sc_if->sk_enaddr[i] =
1128 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1129
1130 aprint_normal(": Ethernet address %s\n",
1131 ether_sprintf(sc_if->sk_enaddr));
1132
1133 /*
1134 * Set up RAM buffer addresses. The Yukon2 has a small amount
1135 * of SRAM on it, somewhere between 4K and 48K. We need to
1136 * divide this up between the transmitter and receiver. We
1137 * give the receiver 2/3 of the memory (rounded down), and the
1138 * transmitter whatever remains.
1139 */
1140 if (sc->sk_ramsize) {
1141 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1142 sc_if->sk_rx_ramstart = 0;
1143 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1144 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1145 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1146 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1147
1148 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1149 " tx_ramstart=%#x tx_ramend=%#x\n",
1150 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1151 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1152 }
1153
1154 /* Allocate the descriptor queues. */
1155 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1156 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1157 BUS_DMA_NOWAIT)) {
1158 aprint_error(": can't alloc rx buffers\n");
1159 goto fail;
1160 }
1161 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1162 sc_if->sk_ring_nseg,
1163 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1164 aprint_error(": can't map dma buffers (%zu bytes)\n",
1165 sizeof(struct msk_ring_data));
1166 goto fail_1;
1167 }
1168 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1169 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1170 &sc_if->sk_ring_map)) {
1171 aprint_error(": can't create dma map\n");
1172 goto fail_2;
1173 }
1174 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1175 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1176 aprint_error(": can't load dma map\n");
1177 goto fail_3;
1178 }
1179
1180 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1181 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1182 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1183
1184 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1185 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1186 aprint_error_dev(sc_if->sk_dev,
1187 "Can't create TX dmamap\n");
1188 goto fail_3;
1189 }
1190
1191 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1192 entry->dmamap = dmamap;
1193 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1194 }
1195
1196 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1197 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1198
1199 if (sc->sk_type != SK_YUKON_FE &&
1200 sc->sk_type != SK_YUKON_FE_P)
1201 sc_if->sk_pktlen = SK_JLEN;
1202 else
1203 sc_if->sk_pktlen = MCLBYTES;
1204
1205 /* Try to allocate memory for jumbo buffers. */
1206 if (msk_alloc_jumbo_mem(sc_if)) {
1207 aprint_error(": jumbo buffer allocation failed\n");
1208 goto fail_3;
1209 }
1210
1211 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1212 if (sc->sk_type != SK_YUKON_FE &&
1213 sc->sk_type != SK_YUKON_FE_P)
1214 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1215
1216 ifp = &sc_if->sk_ethercom.ec_if;
1217 ifp->if_softc = sc_if;
1218 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1219 ifp->if_ioctl = msk_ioctl;
1220 ifp->if_start = msk_start;
1221 ifp->if_stop = msk_stop;
1222 ifp->if_init = msk_init;
1223 ifp->if_watchdog = msk_watchdog;
1224 ifp->if_baudrate = 1000000000;
1225 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1226 IFQ_SET_READY(&ifp->if_snd);
1227 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1228
1229 msk_reset(sc_if);
1230
1231 /*
1232 * Do miibus setup.
1233 */
1234 DPRINTFN(2, ("msk_attach: 1\n"));
1235
1236 mii->mii_ifp = ifp;
1237 mii->mii_readreg = msk_miibus_readreg;
1238 mii->mii_writereg = msk_miibus_writereg;
1239 mii->mii_statchg = msk_miibus_statchg;
1240
1241 sc_if->sk_ethercom.ec_mii = mii;
1242 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1243 mii_flags = MIIF_DOPAUSE;
1244 if (sc->sk_fibertype)
1245 mii_flags |= MIIF_HAVEFIBER;
1246 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1247 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1248 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1249 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1250 0, NULL);
1251 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1252 } else
1253 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1254
1255 callout_init(&sc_if->sk_tick_ch, 0);
1256 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1257 callout_schedule(&sc_if->sk_tick_ch, hz);
1258
1259 callout_init(&sc_if->sk_tick_rx, 0);
1260 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1261
1262 /*
1263 * Call MI attach routines.
1264 */
1265 if_attach(ifp);
1266 if_deferred_start_init(ifp, NULL);
1267 ether_ifattach(ifp, sc_if->sk_enaddr);
1268
1269 if (pmf_device_register(self, NULL, msk_resume))
1270 pmf_class_network_register(self, ifp);
1271 else
1272 aprint_error_dev(self, "couldn't establish power handler\n");
1273
1274 if (sc->rnd_attached++ == 0) {
1275 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1276 RND_TYPE_NET, RND_FLAG_DEFAULT);
1277 }
1278
1279 DPRINTFN(2, ("msk_attach: end\n"));
1280 return;
1281
1282 fail_3:
1283 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1284 fail_2:
1285 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1286 fail_1:
1287 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1288 fail:
1289 sc->sk_if[sa->skc_port] = NULL;
1290 }
1291
1292 static int
1293 msk_detach(device_t self, int flags)
1294 {
1295 struct sk_if_softc *sc_if = device_private(self);
1296 struct sk_softc *sc = sc_if->sk_softc;
1297 struct sk_txmap_entry *entry;
1298 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1299
1300 if (sc->sk_if[sc_if->sk_port] == NULL)
1301 return 0;
1302
1303 msk_stop(ifp, 1);
1304
1305 while ((entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
1306 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1307 bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
1308 free(entry, M_DEVBUF);
1309 }
1310
1311 if (--sc->rnd_attached == 0)
1312 rnd_detach_source(&sc->rnd_source);
1313
1314 callout_halt(&sc_if->sk_tick_ch, NULL);
1315 callout_destroy(&sc_if->sk_tick_ch);
1316
1317 callout_halt(&sc_if->sk_tick_rx, NULL);
1318 callout_destroy(&sc_if->sk_tick_rx);
1319
1320 /* Detach any PHYs we might have. */
1321 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1322 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1323
1324 pmf_device_deregister(self);
1325
1326 ether_ifdetach(ifp);
1327 if_detach(ifp);
1328
1329 /* Delete any remaining media. */
1330 ifmedia_fini(&sc_if->sk_mii.mii_media);
1331
1332 msk_free_jumbo_mem(sc_if);
1333
1334 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1335 sizeof(struct msk_ring_data));
1336 bus_dmamem_free(sc->sc_dmatag,
1337 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1338 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1339 sc->sk_if[sc_if->sk_port] = NULL;
1340
1341 return 0;
1342 }
1343
1344 static int
1345 mskcprint(void *aux, const char *pnp)
1346 {
1347 struct skc_attach_args *sa = aux;
1348
1349 if (pnp)
1350 aprint_normal("msk port %c at %s",
1351 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1352 else
1353 aprint_normal(" port %c",
1354 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1355 return UNCONF;
1356 }
1357
1358 /*
1359 * Attach the interface. Allocate softc structures, do ifmedia
1360 * setup and ethernet/BPF attach.
1361 */
1362 static void
1363 mskc_attach(device_t parent, device_t self, void *aux)
1364 {
1365 struct sk_softc *sc = device_private(self);
1366 struct pci_attach_args *pa = aux;
1367 struct skc_attach_args skca;
1368 pci_chipset_tag_t pc = pa->pa_pc;
1369 pcireg_t command, memtype;
1370 const char *intrstr = NULL;
1371 int rc, sk_nodenum;
1372 uint8_t hw, pmd;
1373 const char *revstr = NULL;
1374 const struct sysctlnode *node;
1375 void *kva;
1376 char intrbuf[PCI_INTRSTR_LEN];
1377
1378 DPRINTFN(2, ("begin mskc_attach\n"));
1379
1380 sc->sk_dev = self;
1381 /*
1382 * Handle power management nonsense.
1383 */
1384 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1385
1386 if (command == 0x01) {
1387 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1388 if (command & SK_PSTATE_MASK) {
1389 uint32_t iobase, membase, irq;
1390
1391 /* Save important PCI config data. */
1392 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1393 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1394 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1395
1396 /* Reset the power state. */
1397 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1398 "mode -- setting to D0\n",
1399 command & SK_PSTATE_MASK);
1400 command &= 0xFFFFFFFC;
1401 pci_conf_write(pc, pa->pa_tag,
1402 SK_PCI_PWRMGMTCTRL, command);
1403
1404 /* Restore PCI config data. */
1405 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1406 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1407 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1408 }
1409 }
1410
1411 /*
1412 * Map control/status registers.
1413 */
1414 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1415 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1416 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1417 aprint_error(": can't map mem space\n");
1418 return;
1419 }
1420
1421 if (pci_dma64_available(pa))
1422 sc->sc_dmatag = pa->pa_dmat64;
1423 else
1424 sc->sc_dmatag = pa->pa_dmat;
1425
1426 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1427 command |= PCI_COMMAND_MASTER_ENABLE;
1428 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1429
1430 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1431 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1432
1433 /* bail out here if chip is not recognized */
1434 if (!(SK_IS_YUKON2(sc))) {
1435 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1436 goto fail_1;
1437 }
1438 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1439
1440 /* Allocate interrupt */
1441 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1442 aprint_error(": couldn't map interrupt\n");
1443 goto fail_1;
1444 }
1445
1446 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1447 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1448 msk_intr, sc, device_xname(sc->sk_dev));
1449 if (sc->sk_intrhand == NULL) {
1450 aprint_error(": couldn't establish interrupt");
1451 if (intrstr != NULL)
1452 aprint_error(" at %s", intrstr);
1453 aprint_error("\n");
1454 goto fail_1;
1455 }
1456 sc->sk_pc = pc;
1457
1458 if (bus_dmamem_alloc(sc->sc_dmatag,
1459 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1460 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1461 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1462 aprint_error(": can't alloc status buffers\n");
1463 goto fail_2;
1464 }
1465
1466 if (bus_dmamem_map(sc->sc_dmatag,
1467 &sc->sk_status_seg, sc->sk_status_nseg,
1468 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1469 &kva, BUS_DMA_NOWAIT)) {
1470 aprint_error(": can't map dma buffers (%zu bytes)\n",
1471 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1472 goto fail_3;
1473 }
1474 if (bus_dmamap_create(sc->sc_dmatag,
1475 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1476 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1477 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1478 aprint_error(": can't create dma map\n");
1479 goto fail_4;
1480 }
1481 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1482 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1483 NULL, BUS_DMA_NOWAIT)) {
1484 aprint_error(": can't load dma map\n");
1485 goto fail_5;
1486 }
1487 sc->sk_status_ring = (struct msk_status_desc *)kva;
1488
1489 sc->sk_int_mod = SK_IM_DEFAULT;
1490 sc->sk_int_mod_pending = 0;
1491
1492 /* Reset the adapter. */
1493 mskc_reset(sc);
1494
1495 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1496 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1497
1498 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1499 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1500 sc->sk_fibertype = 1;
1501
1502 switch (sc->sk_type) {
1503 case SK_YUKON_XL:
1504 sc->sk_name = "Yukon-2 XL";
1505 break;
1506 case SK_YUKON_EC_U:
1507 sc->sk_name = "Yukon-2 EC Ultra";
1508 break;
1509 case SK_YUKON_EX:
1510 sc->sk_name = "Yukon-2 Extreme";
1511 break;
1512 case SK_YUKON_EC:
1513 sc->sk_name = "Yukon-2 EC";
1514 break;
1515 case SK_YUKON_FE:
1516 sc->sk_name = "Yukon-2 FE";
1517 break;
1518 case SK_YUKON_FE_P:
1519 sc->sk_name = "Yukon-2 FE+";
1520 break;
1521 case SK_YUKON_SUPR:
1522 sc->sk_name = "Yukon-2 Supreme";
1523 break;
1524 case SK_YUKON_ULTRA2:
1525 sc->sk_name = "Yukon-2 Ultra 2";
1526 break;
1527 case SK_YUKON_OPTIMA:
1528 sc->sk_name = "Yukon-2 Optima";
1529 break;
1530 case SK_YUKON_PRM:
1531 sc->sk_name = "Yukon-2 Optima Prime";
1532 break;
1533 case SK_YUKON_OPTIMA2:
1534 sc->sk_name = "Yukon-2 Optima 2";
1535 break;
1536 default:
1537 sc->sk_name = "Yukon (Unknown)";
1538 }
1539
1540 if (sc->sk_type == SK_YUKON_XL) {
1541 switch (sc->sk_rev) {
1542 case SK_YUKON_XL_REV_A0:
1543 revstr = "A0";
1544 break;
1545 case SK_YUKON_XL_REV_A1:
1546 revstr = "A1";
1547 break;
1548 case SK_YUKON_XL_REV_A2:
1549 revstr = "A2";
1550 break;
1551 case SK_YUKON_XL_REV_A3:
1552 revstr = "A3";
1553 break;
1554 default:
1555 break;
1556 }
1557 }
1558
1559 if (sc->sk_type == SK_YUKON_EC) {
1560 switch (sc->sk_rev) {
1561 case SK_YUKON_EC_REV_A1:
1562 revstr = "A1";
1563 break;
1564 case SK_YUKON_EC_REV_A2:
1565 revstr = "A2";
1566 break;
1567 case SK_YUKON_EC_REV_A3:
1568 revstr = "A3";
1569 break;
1570 default:
1571 break;
1572 }
1573 }
1574
1575 if (sc->sk_type == SK_YUKON_FE) {
1576 switch (sc->sk_rev) {
1577 case SK_YUKON_FE_REV_A1:
1578 revstr = "A1";
1579 break;
1580 case SK_YUKON_FE_REV_A2:
1581 revstr = "A2";
1582 break;
1583 default:
1584 break;
1585 }
1586 }
1587
1588 if (sc->sk_type == SK_YUKON_EC_U) {
1589 switch (sc->sk_rev) {
1590 case SK_YUKON_EC_U_REV_A0:
1591 revstr = "A0";
1592 break;
1593 case SK_YUKON_EC_U_REV_A1:
1594 revstr = "A1";
1595 break;
1596 case SK_YUKON_EC_U_REV_B0:
1597 revstr = "B0";
1598 break;
1599 case SK_YUKON_EC_U_REV_B1:
1600 revstr = "B1";
1601 break;
1602 default:
1603 break;
1604 }
1605 }
1606
1607 if (sc->sk_type == SK_YUKON_FE) {
1608 switch (sc->sk_rev) {
1609 case SK_YUKON_FE_REV_A1:
1610 revstr = "A1";
1611 break;
1612 case SK_YUKON_FE_REV_A2:
1613 revstr = "A2";
1614 break;
1615 default:
1616 ;
1617 }
1618 }
1619
1620 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1621 revstr = "A0";
1622
1623 if (sc->sk_type == SK_YUKON_EX) {
1624 switch (sc->sk_rev) {
1625 case SK_YUKON_EX_REV_A0:
1626 revstr = "A0";
1627 break;
1628 case SK_YUKON_EX_REV_B0:
1629 revstr = "B0";
1630 break;
1631 default:
1632 ;
1633 }
1634 }
1635
1636 if (sc->sk_type == SK_YUKON_SUPR) {
1637 switch (sc->sk_rev) {
1638 case SK_YUKON_SUPR_REV_A0:
1639 revstr = "A0";
1640 break;
1641 case SK_YUKON_SUPR_REV_B0:
1642 revstr = "B0";
1643 break;
1644 case SK_YUKON_SUPR_REV_B1:
1645 revstr = "B1";
1646 break;
1647 default:
1648 ;
1649 }
1650 }
1651
1652 if (sc->sk_type == SK_YUKON_PRM) {
1653 switch (sc->sk_rev) {
1654 case SK_YUKON_PRM_REV_Z1:
1655 revstr = "Z1";
1656 break;
1657 case SK_YUKON_PRM_REV_A0:
1658 revstr = "A0";
1659 break;
1660 default:
1661 ;
1662 }
1663 }
1664
1665 /* Announce the product name. */
1666 aprint_normal(", %s", sc->sk_name);
1667 if (revstr != NULL)
1668 aprint_normal(" rev. %s", revstr);
1669 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1670
1671 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1672
1673 sc->sk_macs = 1;
1674
1675 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1676 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1677 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1678 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1679 sc->sk_macs++;
1680 }
1681
1682 skca.skc_port = SK_PORT_A;
1683 skca.skc_type = sc->sk_type;
1684 skca.skc_rev = sc->sk_rev;
1685 (void)config_found(sc->sk_dev, &skca, mskcprint);
1686
1687 if (sc->sk_macs > 1) {
1688 skca.skc_port = SK_PORT_B;
1689 skca.skc_type = sc->sk_type;
1690 skca.skc_rev = sc->sk_rev;
1691 (void)config_found(sc->sk_dev, &skca, mskcprint);
1692 }
1693
1694 /* Turn on the 'driver is loaded' LED. */
1695 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1696
1697 /* skc sysctl setup */
1698
1699 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1700 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1701 SYSCTL_DESCR("mskc per-controller controls"),
1702 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1703 CTL_EOL)) != 0) {
1704 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1705 goto fail_6;
1706 }
1707
1708 sk_nodenum = node->sysctl_num;
1709
1710 /* interrupt moderation time in usecs */
1711 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1712 CTLFLAG_READWRITE,
1713 CTLTYPE_INT, "int_mod",
1714 SYSCTL_DESCR("msk interrupt moderation timer"),
1715 msk_sysctl_handler, 0, (void *)sc,
1716 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1717 CTL_EOL)) != 0) {
1718 aprint_normal_dev(sc->sk_dev,
1719 "couldn't create int_mod sysctl node\n");
1720 goto fail_6;
1721 }
1722
1723 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1724 aprint_error_dev(self, "couldn't establish power handler\n");
1725
1726 return;
1727
1728 fail_6:
1729 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1730 fail_4:
1731 bus_dmamem_unmap(sc->sc_dmatag, kva,
1732 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1733 fail_3:
1734 bus_dmamem_free(sc->sc_dmatag,
1735 &sc->sk_status_seg, sc->sk_status_nseg);
1736 sc->sk_status_nseg = 0;
1737 fail_5:
1738 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1739 fail_2:
1740 pci_intr_disestablish(pc, sc->sk_intrhand);
1741 sc->sk_intrhand = NULL;
1742 fail_1:
1743 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1744 sc->sk_bsize = 0;
1745 }
1746
1747 static int
1748 mskc_detach(device_t self, int flags)
1749 {
1750 struct sk_softc *sc = device_private(self);
1751 int rv;
1752
1753 if (sc->sk_intrhand) {
1754 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1755 sc->sk_intrhand = NULL;
1756 }
1757
1758 if (sc->sk_pihp != NULL) {
1759 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1760 sc->sk_pihp = NULL;
1761 }
1762
1763 rv = config_detach_children(self, flags);
1764 if (rv != 0)
1765 return rv;
1766
1767 if (sc->sk_status_nseg > 0) {
1768 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1769 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1770 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1771 bus_dmamem_free(sc->sc_dmatag,
1772 &sc->sk_status_seg, sc->sk_status_nseg);
1773 }
1774
1775 if (sc->sk_bsize > 0)
1776 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1777
1778 return 0;
1779 }
1780
1781 static int
1782 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1783 {
1784 struct sk_softc *sc = sc_if->sk_softc;
1785 struct msk_tx_desc *f = NULL;
1786 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1787 uint32_t entries = 0;
1788 size_t i;
1789 struct sk_txmap_entry *entry;
1790 bus_dmamap_t txmap;
1791 bus_addr_t addr;
1792
1793 DPRINTFN(2, ("msk_encap\n"));
1794
1795 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1796 if (entry == NULL) {
1797 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1798 return ENOBUFS;
1799 }
1800 txmap = entry->dmamap;
1801
1802 cur = frag = *txidx;
1803
1804 #ifdef MSK_DEBUG
1805 if (mskdebug >= 2)
1806 msk_dump_mbuf(m_head);
1807 #endif
1808
1809 /*
1810 * Start packing the mbufs in this chain into
1811 * the fragment pointers. Stop when we run out
1812 * of fragments or hit the end of the mbuf chain.
1813 */
1814 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1815 BUS_DMA_NOWAIT)) {
1816 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1817 return ENOBUFS;
1818 }
1819
1820 /* Count how many tx descriptors needed. */
1821 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1822 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1823 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1824 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1825 total++;
1826 }
1827 total++;
1828 }
1829
1830 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1831 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1832 bus_dmamap_unload(sc->sc_dmatag, txmap);
1833 return ENOBUFS;
1834 }
1835
1836 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1837 txmap->dm_nsegs, total));
1838
1839 /* Sync the DMA map. */
1840 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1841 BUS_DMASYNC_PREWRITE);
1842
1843 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1844 for (i = 0; i < txmap->dm_nsegs; i++) {
1845 addr = txmap->dm_segs[i].ds_addr;
1846 DPRINTFN(2, ("msk_encap: addr %llx\n",
1847 (unsigned long long)addr));
1848 hiaddr = MSK_ADDR_HI(addr);
1849
1850 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1851 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1852 f->sk_addr = htole32(hiaddr);
1853 f->sk_len = 0;
1854 f->sk_ctl = 0;
1855 if (i == 0)
1856 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1857 else
1858 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1859 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1860 SK_INC(frag, MSK_TX_RING_CNT);
1861 entries++;
1862 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1863 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1864 }
1865
1866 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1867 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1868 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1869 f->sk_ctl = 0;
1870 if (i == 0) {
1871 if (hiaddr != old_hiaddr)
1872 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1873 else
1874 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1875 } else
1876 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1877 cur = frag;
1878 SK_INC(frag, MSK_TX_RING_CNT);
1879 entries++;
1880 }
1881 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1882
1883 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1884 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1885
1886 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1887 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1888
1889 /* Sync descriptors before handing to chip */
1890 MSK_CDTXSYNC(sc_if, *txidx, entries,
1891 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1892
1893 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1894
1895 /* Sync first descriptor to hand it off */
1896 MSK_CDTXSYNC(sc_if, *txidx, 1,
1897 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1898
1899 sc_if->sk_cdata.sk_tx_cnt += entries;
1900
1901 #ifdef MSK_DEBUG
1902 if (mskdebug >= 2) {
1903 struct msk_tx_desc *le;
1904 uint32_t idx;
1905 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1906 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1907 msk_dump_txdesc(le, idx);
1908 }
1909 }
1910 #endif
1911
1912 *txidx = frag;
1913
1914 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1915
1916 return 0;
1917 }
1918
1919 static void
1920 msk_start(struct ifnet *ifp)
1921 {
1922 struct sk_if_softc *sc_if = ifp->if_softc;
1923 struct mbuf *m_head = NULL;
1924 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1925 int pkts = 0;
1926
1927 DPRINTFN(2, ("msk_start\n"));
1928
1929 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1930 IFQ_POLL(&ifp->if_snd, m_head);
1931 if (m_head == NULL)
1932 break;
1933
1934 /*
1935 * Pack the data into the transmit ring. If we
1936 * don't have room, set the OACTIVE flag and wait
1937 * for the NIC to drain the ring.
1938 */
1939 if (msk_encap(sc_if, m_head, &idx)) {
1940 ifp->if_flags |= IFF_OACTIVE;
1941 break;
1942 }
1943
1944 /* now we are committed to transmit the packet */
1945 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1946 pkts++;
1947
1948 /*
1949 * If there's a BPF listener, bounce a copy of this frame
1950 * to him.
1951 */
1952 bpf_mtap(ifp, m_head, BPF_D_OUT);
1953 }
1954 if (pkts == 0)
1955 return;
1956
1957 /* Transmit */
1958 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1959 sc_if->sk_cdata.sk_tx_prod = idx;
1960 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1961
1962 /* Set a timeout in case the chip goes out to lunch. */
1963 ifp->if_timer = 5;
1964 }
1965 }
1966
1967 static void
1968 msk_watchdog(struct ifnet *ifp)
1969 {
1970 struct sk_if_softc *sc_if = ifp->if_softc;
1971
1972 /*
1973 * Reclaim first as there is a possibility of losing Tx completion
1974 * interrupts.
1975 */
1976 msk_txeof(sc_if);
1977 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1978 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1979
1980 if_statinc(ifp, if_oerrors);
1981
1982 /* XXX Resets both ports; we shouldn't do that. */
1983 mskc_reset(sc_if->sk_softc);
1984 msk_reset(sc_if);
1985 msk_init(ifp);
1986 }
1987 }
1988
1989 static bool
1990 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1991 {
1992 struct sk_softc *sc = device_private(dv);
1993
1994 DPRINTFN(2, ("mskc_suspend\n"));
1995
1996 /* Turn off the 'driver is loaded' LED. */
1997 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1998
1999 return true;
2000 }
2001
2002 static bool
2003 mskc_resume(device_t dv, const pmf_qual_t *qual)
2004 {
2005 struct sk_softc *sc = device_private(dv);
2006
2007 DPRINTFN(2, ("mskc_resume\n"));
2008
2009 mskc_reset(sc);
2010 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2011
2012 return true;
2013 }
2014
2015 static __inline int
2016 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2017 {
2018 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2019 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2020 YU_RXSTAT_JABBER)) != 0 ||
2021 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2022 YU_RXSTAT_BYTES(stat) != len)
2023 return 0;
2024
2025 return 1;
2026 }
2027
2028 static void
2029 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2030 {
2031 struct sk_softc *sc = sc_if->sk_softc;
2032 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2033 struct mbuf *m;
2034 unsigned cur, prod, tail, total_len = len;
2035 bus_dmamap_t dmamap;
2036
2037 cur = sc_if->sk_cdata.sk_rx_cons;
2038 prod = sc_if->sk_cdata.sk_rx_prod;
2039
2040 /* Sync the descriptor */
2041 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2042
2043 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2044 sc_if->sk_cdata.sk_rx_cnt));
2045
2046 while (prod != cur) {
2047 tail = cur;
2048 SK_INC(cur, MSK_RX_RING_CNT);
2049
2050 sc_if->sk_cdata.sk_rx_cnt--;
2051 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2052 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2053 if (m != NULL)
2054 break; /* found it */
2055 }
2056 sc_if->sk_cdata.sk_rx_cons = cur;
2057 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2058 sc_if->sk_cdata.sk_rx_cnt, m));
2059
2060 if (m == NULL)
2061 return;
2062
2063 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2064
2065 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2066 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2067
2068 if (total_len < SK_MIN_FRAMELEN ||
2069 total_len > ETHER_MAX_LEN_JUMBO ||
2070 msk_rxvalid(sc, rxstat, total_len) == 0) {
2071 if_statinc(ifp, if_ierrors);
2072 m_freem(m);
2073 return;
2074 }
2075
2076 m_set_rcvif(m, ifp);
2077 m->m_pkthdr.len = m->m_len = total_len;
2078
2079 /* pass it on. */
2080 if_percpuq_enqueue(ifp->if_percpuq, m);
2081 }
2082
2083 static void
2084 msk_txeof(struct sk_if_softc *sc_if)
2085 {
2086 struct sk_softc *sc = sc_if->sk_softc;
2087 struct msk_tx_desc *cur_tx;
2088 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2089 uint32_t idx, reg, sk_ctl;
2090 struct sk_txmap_entry *entry;
2091
2092 DPRINTFN(2, ("msk_txeof\n"));
2093
2094 if (sc_if->sk_port == SK_PORT_A)
2095 reg = SK_STAT_BMU_TXA1_RIDX;
2096 else
2097 reg = SK_STAT_BMU_TXA2_RIDX;
2098
2099 /*
2100 * Go through our tx ring and free mbufs for those
2101 * frames that have been sent.
2102 */
2103 idx = sc_if->sk_cdata.sk_tx_cons;
2104 while (idx != sk_win_read_2(sc, reg)) {
2105 MSK_CDTXSYNC(sc_if, idx, 1,
2106 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2107
2108 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2109 sk_ctl = cur_tx->sk_ctl;
2110 #ifdef MSK_DEBUG
2111 if (mskdebug >= 2)
2112 msk_dump_txdesc(cur_tx, idx);
2113 #endif
2114 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2115 if_statinc(ifp, if_opackets);
2116 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2117 entry = sc_if->sk_cdata.sk_tx_map[idx];
2118
2119 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2120 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2121
2122 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2123 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2124 link);
2125 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2126 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2127 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2128 }
2129 sc_if->sk_cdata.sk_tx_cnt--;
2130 SK_INC(idx, MSK_TX_RING_CNT);
2131 }
2132 if (idx == sc_if->sk_cdata.sk_tx_cons)
2133 return;
2134
2135 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2136
2137 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2138 ifp->if_flags &= ~IFF_OACTIVE;
2139
2140 sc_if->sk_cdata.sk_tx_cons = idx;
2141 }
2142
2143 static void
2144 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2145 {
2146 /* Make sure to not completely wrap around */
2147 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2148 if (msk_newbuf(sc_if,
2149 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2150 goto schedretry;
2151 }
2152 }
2153
2154 return;
2155
2156 schedretry:
2157 /* Try later */
2158 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2159 }
2160
2161 static void
2162 msk_fill_rx_tick(void *xsc_if)
2163 {
2164 struct sk_if_softc *sc_if = xsc_if;
2165 int s, rx_prod;
2166
2167 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2168
2169 s = splnet();
2170 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2171 msk_fill_rx_ring(sc_if);
2172 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2173 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2174 sc_if->sk_cdata.sk_rx_prod);
2175 }
2176 splx(s);
2177 }
2178
2179 static void
2180 msk_tick(void *xsc_if)
2181 {
2182 struct sk_if_softc *sc_if = xsc_if;
2183 struct mii_data *mii = &sc_if->sk_mii;
2184 int s;
2185
2186 s = splnet();
2187 mii_tick(mii);
2188 splx(s);
2189
2190 callout_schedule(&sc_if->sk_tick_ch, hz);
2191 }
2192
2193 static void
2194 msk_intr_yukon(struct sk_if_softc *sc_if)
2195 {
2196 uint8_t status;
2197
2198 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2199 /* RX overrun */
2200 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2201 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2202 SK_RFCTL_RX_FIFO_OVER);
2203 }
2204 /* TX underrun */
2205 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2206 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2207 SK_TFCTL_TX_FIFO_UNDER);
2208 }
2209
2210 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2211 }
2212
2213 static int
2214 msk_intr(void *xsc)
2215 {
2216 struct sk_softc *sc = xsc;
2217 struct sk_if_softc *sc_if;
2218 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2219 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2220 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2221 int claimed = 0;
2222 uint32_t status;
2223 struct msk_status_desc *cur_st;
2224
2225 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2226 if (status == 0xffffffff)
2227 return 0;
2228 if (status == 0) {
2229 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2230 return 0;
2231 }
2232
2233 status = CSR_READ_4(sc, SK_ISR);
2234
2235 if (sc_if0 != NULL)
2236 ifp0 = &sc_if0->sk_ethercom.ec_if;
2237 if (sc_if1 != NULL)
2238 ifp1 = &sc_if1->sk_ethercom.ec_if;
2239
2240 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2241 (ifp0->if_flags & IFF_RUNNING)) {
2242 msk_intr_yukon(sc_if0);
2243 }
2244
2245 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2246 (ifp1->if_flags & IFF_RUNNING)) {
2247 msk_intr_yukon(sc_if1);
2248 }
2249
2250 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2251 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2252 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2253
2254 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2255 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2256 switch (cur_st->sk_opcode) {
2257 case SK_Y2_STOPC_RXSTAT:
2258 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2259 if (sc_if) {
2260 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2261 letoh32(cur_st->sk_status));
2262 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2263 msk_fill_rx_tick(sc_if);
2264 }
2265 break;
2266 case SK_Y2_STOPC_TXSTAT:
2267 if (sc_if0)
2268 msk_txeof(sc_if0);
2269 if (sc_if1)
2270 msk_txeof(sc_if1);
2271 break;
2272 default:
2273 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2274 break;
2275 }
2276 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2277
2278 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2280 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2281 }
2282
2283 if (status & SK_Y2_IMR_BMU) {
2284 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2285 claimed = 1;
2286 }
2287
2288 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2289
2290 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2291 if_schedule_deferred_start(ifp0);
2292 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2293 if_schedule_deferred_start(ifp1);
2294
2295 KASSERT(sc->rnd_attached > 0);
2296 rnd_add_uint32(&sc->rnd_source, status);
2297
2298 if (sc->sk_int_mod_pending)
2299 msk_update_int_mod(sc, 1);
2300
2301 return claimed;
2302 }
2303
2304 static void
2305 msk_init_yukon(struct sk_if_softc *sc_if)
2306 {
2307 uint32_t v;
2308 uint16_t reg;
2309 struct sk_softc *sc;
2310 int i;
2311
2312 sc = sc_if->sk_softc;
2313
2314 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2315 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2316
2317 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2318
2319 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2320 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2321
2322 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2323
2324 /* unused read of the interrupt source register */
2325 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2326 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2327
2328 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2329 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2330 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2331
2332 /* MIB Counter Clear Mode set */
2333 reg |= YU_PAR_MIB_CLR;
2334 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2335 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2336 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2337
2338 /* MIB Counter Clear Mode clear */
2339 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2340 reg &= ~YU_PAR_MIB_CLR;
2341 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2342
2343 /* receive control reg */
2344 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2345 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2346
2347 /* transmit control register */
2348 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2349
2350 /* transmit flow control register */
2351 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2352
2353 /* transmit parameter register */
2354 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2355 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2356 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2357
2358 /* serial mode register */
2359 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2360 reg = YU_SMR_DATA_BLIND(0x1c) |
2361 YU_SMR_MFL_VLAN |
2362 YU_SMR_IPG_DATA(0x1e);
2363
2364 if (sc->sk_type != SK_YUKON_FE &&
2365 sc->sk_type != SK_YUKON_FE_P)
2366 reg |= YU_SMR_MFL_JUMBO;
2367
2368 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2369
2370 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2371 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2372 /* msk_attach calls me before ether_ifattach so check null */
2373 if (ifp != NULL && ifp->if_sadl != NULL)
2374 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2375 sizeof(sc_if->sk_enaddr));
2376 /* Setup Yukon's address */
2377 for (i = 0; i < 3; i++) {
2378 /* Write Source Address 1 (unicast filter) */
2379 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2380 sc_if->sk_enaddr[i * 2] |
2381 sc_if->sk_enaddr[i * 2 + 1] << 8);
2382 }
2383
2384 for (i = 0; i < 3; i++) {
2385 reg = sk_win_read_2(sc_if->sk_softc,
2386 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2387 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2388 }
2389
2390 /* Set promiscuous mode */
2391 msk_setpromisc(sc_if);
2392
2393 /* Set multicast filter */
2394 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2395 msk_setmulti(sc_if);
2396
2397 /* enable interrupt mask for counter overflows */
2398 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2399 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2400 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2401 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2402
2403 /* Configure RX MAC FIFO Flush Mask */
2404 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2405 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2406 YU_RXSTAT_JABBER;
2407 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2408
2409 /* Configure RX MAC FIFO */
2410 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2411 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2412 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2413 v |= SK_RFCTL_RX_OVER_ON;
2414 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2415
2416 if ((sc->sk_type == SK_YUKON_FE_P) &&
2417 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2418 v = 0x178; /* Magic value */
2419 else {
2420 /* Increase flush threshold to 64 bytes */
2421 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2422 }
2423 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2424
2425 /* Configure TX MAC FIFO */
2426 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2427 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2428
2429 if ((sc->sk_type == SK_YUKON_FE_P) &&
2430 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2431 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2432 v &= ~SK_TXEND_WM_ON;
2433 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2434 }
2435
2436 #if 1
2437 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2438 #endif
2439 DPRINTFN(6, ("msk_init_yukon: end\n"));
2440 }
2441
2442 /*
2443 * Note that to properly initialize any part of the GEnesis chip,
2444 * you first have to take it out of reset mode.
2445 */
2446 static int
2447 msk_init(struct ifnet *ifp)
2448 {
2449 struct sk_if_softc *sc_if = ifp->if_softc;
2450 struct sk_softc *sc = sc_if->sk_softc;
2451 int rc = 0, s;
2452 uint32_t imr, imtimer_ticks;
2453
2454
2455 DPRINTFN(2, ("msk_init\n"));
2456
2457 s = splnet();
2458
2459 /* Cancel pending I/O and free all RX/TX buffers. */
2460 msk_stop(ifp, 1);
2461
2462 /* Configure I2C registers */
2463
2464 /* Configure XMAC(s) */
2465 msk_init_yukon(sc_if);
2466 if ((rc = ether_mediachange(ifp)) != 0)
2467 goto out;
2468
2469 /* Configure transmit arbiter(s) */
2470 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2471 #if 0
2472 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2473 #endif
2474
2475 if (sc->sk_ramsize) {
2476 /* Configure RAMbuffers */
2477 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2478 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2479 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2480 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2481 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2482 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2483
2484 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2485 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2486 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2488 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2489 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2490 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2491 }
2492
2493 /* Configure BMUs */
2494 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2495 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2496 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2497 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2498
2499 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2500 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2501 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2502 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2503
2504 /* Make sure the sync transmit queue is disabled. */
2505 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2506
2507 /* Init descriptors */
2508 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2509 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2510 "memory for rx buffers\n");
2511 msk_stop(ifp, 1);
2512 splx(s);
2513 return ENOBUFS;
2514 }
2515
2516 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2517 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2518 "memory for tx buffers\n");
2519 msk_stop(ifp, 1);
2520 splx(s);
2521 return ENOBUFS;
2522 }
2523
2524 /* Set interrupt moderation if changed via sysctl. */
2525 switch (sc->sk_type) {
2526 case SK_YUKON_EC:
2527 case SK_YUKON_EC_U:
2528 case SK_YUKON_EX:
2529 case SK_YUKON_SUPR:
2530 case SK_YUKON_ULTRA2:
2531 case SK_YUKON_OPTIMA:
2532 case SK_YUKON_PRM:
2533 case SK_YUKON_OPTIMA2:
2534 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2535 break;
2536 case SK_YUKON_FE:
2537 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2538 break;
2539 case SK_YUKON_FE_P:
2540 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2541 break;
2542 case SK_YUKON_XL:
2543 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2544 break;
2545 default:
2546 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2547 }
2548 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2549 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2550 sk_win_write_4(sc, SK_IMTIMERINIT,
2551 SK_IM_USECS(sc->sk_int_mod));
2552 aprint_verbose_dev(sc->sk_dev,
2553 "interrupt moderation is %d us\n", sc->sk_int_mod);
2554 }
2555
2556 /* Initialize prefetch engine. */
2557 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2558 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2559 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2560 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2561 MSK_RX_RING_ADDR(sc_if, 0));
2562 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2563 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2564 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2565 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2566
2567 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2568 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2569 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2570 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2571 MSK_TX_RING_ADDR(sc_if, 0));
2572 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2573 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2574 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2575 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2576
2577 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2578 sc_if->sk_cdata.sk_rx_prod);
2579
2580
2581 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2582 /* Disable flushing of non-ASF packets. */
2583 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2584 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2585 }
2586
2587 /* Configure interrupt handling */
2588 if (sc_if->sk_port == SK_PORT_A)
2589 sc->sk_intrmask |= SK_Y2_INTRS1;
2590 else
2591 sc->sk_intrmask |= SK_Y2_INTRS2;
2592 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2593 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2594
2595 ifp->if_flags |= IFF_RUNNING;
2596 ifp->if_flags &= ~IFF_OACTIVE;
2597
2598 callout_schedule(&sc_if->sk_tick_ch, hz);
2599
2600 out:
2601 splx(s);
2602 return rc;
2603 }
2604
2605 /*
2606 * Note: the logic of second parameter is inverted compared to OpenBSD
2607 * code, since this code uses the function as if_stop hook too.
2608 */
2609 static void
2610 msk_stop(struct ifnet *ifp, int disable)
2611 {
2612 struct sk_if_softc *sc_if = ifp->if_softc;
2613 struct sk_softc *sc = sc_if->sk_softc;
2614 struct sk_txmap_entry *dma;
2615 int i;
2616
2617 DPRINTFN(2, ("msk_stop\n"));
2618
2619 callout_stop(&sc_if->sk_tick_ch);
2620 callout_stop(&sc_if->sk_tick_rx);
2621
2622 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2623
2624 /* Stop transfer of Tx descriptors */
2625
2626 /* Stop transfer of Rx descriptors */
2627
2628 if (disable) {
2629 /* Turn off various components of this interface. */
2630 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2631 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2632 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2633 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2634 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2635 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2636 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2637 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2638 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2639 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2640 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2641
2642 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2643 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2644
2645 /* Disable interrupts */
2646 if (sc_if->sk_port == SK_PORT_A)
2647 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2648 else
2649 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2650 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2651 }
2652
2653 /* Free RX and TX mbufs still in the queues. */
2654 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2655 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2656 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2657 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2658 }
2659 }
2660
2661 sc_if->sk_cdata.sk_rx_prod = 0;
2662 sc_if->sk_cdata.sk_rx_cons = 0;
2663 sc_if->sk_cdata.sk_rx_cnt = 0;
2664
2665 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2666 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2667 dma = sc_if->sk_cdata.sk_tx_map[i];
2668
2669 bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2670 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2671
2672 bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2673
2674 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2675 sc_if->sk_cdata.sk_tx_map[i], link);
2676 sc_if->sk_cdata.sk_tx_map[i] = 0;
2677
2678 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2679 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2680 }
2681 }
2682 }
2683
2684 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2685 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2686
2687 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2688 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2689
2690 #ifdef MSK_DEBUG
2691 static void
2692 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2693 {
2694 #define DESC_PRINT(X) \
2695 if (X) \
2696 printf("txdesc[%d]." #X "=%#x\n", \
2697 idx, X);
2698
2699 DESC_PRINT(letoh32(le->sk_addr));
2700 DESC_PRINT(letoh16(le->sk_len));
2701 DESC_PRINT(le->sk_ctl);
2702 DESC_PRINT(le->sk_opcode);
2703 #undef DESC_PRINT
2704 }
2705
2706 static void
2707 msk_dump_bytes(const char *data, int len)
2708 {
2709 int c, i, j;
2710
2711 for (i = 0; i < len; i += 16) {
2712 printf("%08x ", i);
2713 c = len - i;
2714 if (c > 16) c = 16;
2715
2716 for (j = 0; j < c; j++) {
2717 printf("%02x ", data[i + j] & 0xff);
2718 if ((j & 0xf) == 7 && j > 0)
2719 printf(" ");
2720 }
2721
2722 for (; j < 16; j++)
2723 printf(" ");
2724 printf(" ");
2725
2726 for (j = 0; j < c; j++) {
2727 int ch = data[i + j] & 0xff;
2728 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2729 }
2730
2731 printf("\n");
2732
2733 if (c < 16)
2734 break;
2735 }
2736 }
2737
2738 static void
2739 msk_dump_mbuf(struct mbuf *m)
2740 {
2741 int count = m->m_pkthdr.len;
2742
2743 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2744
2745 while (count > 0 && m) {
2746 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2747 m, m->m_data, m->m_len);
2748 if (mskdebug >= 4)
2749 msk_dump_bytes(mtod(m, char *), m->m_len);
2750
2751 count -= m->m_len;
2752 m = m->m_next;
2753 }
2754 }
2755 #endif
2756
2757 static int
2758 msk_sysctl_handler(SYSCTLFN_ARGS)
2759 {
2760 int error, t;
2761 struct sysctlnode node;
2762 struct sk_softc *sc;
2763
2764 node = *rnode;
2765 sc = node.sysctl_data;
2766 t = sc->sk_int_mod;
2767 node.sysctl_data = &t;
2768 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2769 if (error || newp == NULL)
2770 return error;
2771
2772 if (t < SK_IM_MIN || t > SK_IM_MAX)
2773 return EINVAL;
2774
2775 /* update the softc with sysctl-changed value, and mark
2776 for hardware update */
2777 sc->sk_int_mod = t;
2778 sc->sk_int_mod_pending = 1;
2779 return 0;
2780 }
2781
2782 /*
2783 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2784 * set up in mskc_attach()
2785 */
2786 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2787 {
2788 int rc;
2789 const struct sysctlnode *node;
2790
2791 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2792 0, CTLTYPE_NODE, "msk",
2793 SYSCTL_DESCR("msk interface controls"),
2794 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2795 goto err;
2796 }
2797
2798 msk_root_num = node->sysctl_num;
2799 return;
2800
2801 err:
2802 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2803 }
2804