if_msk.c revision 1.106 1 /* $NetBSD: if_msk.c,v 1.106 2020/04/30 01:52:08 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.106 2020/04/30 01:52:08 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
199 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 { 0, 0 }
202 };
203
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 return CSR_READ_4(sc, reg);
208 }
209
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 return CSR_READ_2(sc, reg);
214 }
215
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 return CSR_READ_1(sc, reg);
220 }
221
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 CSR_WRITE_4(sc, reg, x);
226 }
227
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 CSR_WRITE_2(sc, reg, x);
232 }
233
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 CSR_WRITE_1(sc, reg, x);
238 }
239
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 struct sk_if_softc *sc_if = device_private(dev);
244 uint16_t data;
245 int i;
246
247 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249
250 for (i = 0; i < SK_TIMEOUT; i++) {
251 DELAY(1);
252 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 if (data & YU_SMICR_READ_VALID)
254 break;
255 }
256
257 if (i == SK_TIMEOUT) {
258 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
259 return ETIMEDOUT;
260 }
261
262 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263
264 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265
266 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 phy, reg, *val));
268
269 return 0;
270 }
271
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 struct sk_if_softc *sc_if = device_private(dev);
276 int i;
277
278 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 phy, reg, val));
280
281 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284
285 for (i = 0; i < SK_TIMEOUT; i++) {
286 DELAY(1);
287 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 break;
289 }
290
291 if (i == SK_TIMEOUT) {
292 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
293 return ETIMEDOUT;
294 }
295
296 return 0;
297 }
298
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 struct sk_if_softc *sc_if = ifp->if_softc;
303 struct mii_data *mii = &sc_if->sk_mii;
304 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 int gpcr;
306
307 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309
310 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 /* Set speed. */
313 gpcr |= YU_GPCR_SPEED_DIS;
314 switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 case IFM_1000_SX:
316 case IFM_1000_LX:
317 case IFM_1000_CX:
318 case IFM_1000_T:
319 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 break;
321 case IFM_100_TX:
322 gpcr |= YU_GPCR_SPEED;
323 break;
324 }
325
326 /* Set duplex. */
327 gpcr |= YU_GPCR_DPLX_DIS;
328 if ((mii->mii_media_active & IFM_FDX) != 0)
329 gpcr |= YU_GPCR_DUPLEX;
330
331 /* Disable flow control. */
332 gpcr |= YU_GPCR_FCTL_DIS;
333 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 }
335
336 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337
338 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 uint32_t hashes[2] = { 0, 0 };
347 int h;
348 struct ethercom *ec = &sc_if->sk_ethercom;
349 struct ether_multi *enm;
350 struct ether_multistep step;
351 uint16_t reg;
352
353 /* First, zot all the existing filters. */
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358
359
360 /* Now program new ones. */
361 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 reg |= YU_RCR_UFLEN;
363 allmulti:
364 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 if ((ifp->if_flags & IFF_PROMISC) != 0)
366 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 hashes[0] = 0xFFFFFFFF;
369 hashes[1] = 0xFFFFFFFF;
370 }
371 } else {
372 /* First find the tail of the list. */
373 ETHER_LOCK(ec);
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 ETHER_UNLOCK(ec);
380 goto allmulti;
381 }
382 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 ((1 << SK_HASH_BITS) - 1);
384 if (h < 32)
385 hashes[0] |= (1 << h);
386 else
387 hashes[1] |= (1 << (h - 32));
388
389 ETHER_NEXT_MULTI(step, enm);
390 }
391 ETHER_UNLOCK(ec);
392 reg |= YU_RCR_MUFLEN;
393 }
394
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406
407 if (ifp->if_flags & IFF_PROMISC)
408 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 else
411 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 struct msk_chain_data *cd = &sc_if->sk_cdata;
419 struct msk_ring_data *rd = sc_if->sk_rdata;
420 struct msk_rx_desc *r;
421
422 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
423
424 sc_if->sk_cdata.sk_rx_prod = 0;
425 sc_if->sk_cdata.sk_rx_cons = 0;
426 sc_if->sk_cdata.sk_rx_cnt = 0;
427 sc_if->sk_cdata.sk_rx_hiaddr = 0;
428
429 /* Mark the first ring element to initialize the high address. */
430 sc_if->sk_cdata.sk_rx_hiaddr = 0;
431 r = &rd->sk_rx_ring[cd->sk_rx_prod];
432 r->sk_addr = htole32(cd->sk_rx_hiaddr);
433 r->sk_len = 0;
434 r->sk_ctl = 0;
435 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
436 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
437 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
438 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
439 sc_if->sk_cdata.sk_rx_cnt++;
440
441 msk_fill_rx_ring(sc_if);
442 return 0;
443 }
444
445 static int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct msk_chain_data *cd = &sc_if->sk_cdata;
449 struct msk_ring_data *rd = sc_if->sk_rdata;
450 struct msk_tx_desc *t;
451
452 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 sc_if->sk_cdata.sk_tx_prod = 0;
455 sc_if->sk_cdata.sk_tx_cons = 0;
456 sc_if->sk_cdata.sk_tx_cnt = 0;
457 sc_if->sk_cdata.sk_tx_hiaddr = 0;
458
459 /* Mark the first ring element to initialize the high address. */
460 sc_if->sk_cdata.sk_tx_hiaddr = 0;
461 t = &rd->sk_tx_ring[cd->sk_tx_prod];
462 t->sk_addr = htole32(cd->sk_tx_hiaddr);
463 t->sk_len = 0;
464 t->sk_ctl = 0;
465 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
466 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
467 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
468 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
469 sc_if->sk_cdata.sk_tx_cnt++;
470
471 return 0;
472 }
473
474 static int
475 msk_newbuf(struct sk_if_softc *sc_if)
476 {
477 struct sk_softc *sc = sc_if->sk_softc;
478 struct mbuf *m_new = NULL;
479 struct sk_chain *c;
480 struct msk_rx_desc *r;
481 void *buf = NULL;
482 bus_addr_t addr;
483 bus_dmamap_t rxmap;
484 size_t i;
485 uint32_t rxidx, frag, cur, hiaddr, old_hiaddr, total;
486 uint32_t entries = 0;
487
488 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
489 if (m_new == NULL)
490 return ENOBUFS;
491
492 /* Allocate the jumbo buffer */
493 buf = msk_jalloc(sc_if);
494 if (buf == NULL) {
495 m_freem(m_new);
496 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
497 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
498 return ENOBUFS;
499 }
500
501 /* Attach the buffer to the mbuf */
502 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
503 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
504
505 m_adj(m_new, ETHER_ALIGN);
506
507 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
508 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
509
510 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
511 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
512 m_freem(m_new);
513 return ENOBUFS;
514 }
515
516 /* Count how many rx descriptors needed. */
517 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
518 for (total = i = 0; i < rxmap->dm_nsegs; i++) {
519 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
520 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
521 total++;
522 }
523 total++;
524 }
525
526 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
527 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
528 bus_dmamap_unload(sc->sc_dmatag, rxmap);
529 m_freem(m_new);
530 return ENOBUFS;
531 }
532
533 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
534 rxmap->dm_nsegs, total));
535
536 /* Sync the DMA map. */
537 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
538 BUS_DMASYNC_PREREAD);
539
540 old_hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
541 for (i = 0; i < rxmap->dm_nsegs; i++) {
542 addr = rxmap->dm_segs[i].ds_addr;
543 DPRINTFN(2, ("msk_newbuf: addr %llx\n",
544 (unsigned long long)addr));
545 hiaddr = MSK_ADDR_HI(addr);
546
547 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
548 c = &sc_if->sk_cdata.sk_rx_chain[frag];
549 c->sk_mbuf = NULL;
550 r = &sc_if->sk_rdata->sk_rx_ring[frag];
551 r->sk_addr = htole32(hiaddr);
552 r->sk_len = 0;
553 r->sk_ctl = 0;
554 if (i == 0)
555 r->sk_opcode = SK_Y2_BMUOPC_ADDR64;
556 else
557 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 |
558 SK_Y2_RXOPC_OWN;
559 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
560 MSK_CDRXSYNC(sc_if, frag,
561 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
562 SK_INC(frag, MSK_RX_RING_CNT);
563 entries++;
564 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
565 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
566 }
567
568 c = &sc_if->sk_cdata.sk_rx_chain[frag];
569 r = &sc_if->sk_rdata->sk_rx_ring[frag];
570 r->sk_addr = htole32(MSK_ADDR_LO(addr));
571 r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
572 r->sk_ctl = 0;
573 if (i == 0) {
574 if (hiaddr != old_hiaddr)
575 r->sk_opcode = SK_Y2_RXOPC_PACKET |
576 SK_Y2_RXOPC_OWN;
577 else
578 r->sk_opcode = SK_Y2_RXOPC_PACKET;
579 } else
580 r->sk_opcode = SK_Y2_RXOPC_BUFFER | SK_Y2_RXOPC_OWN;
581 MSK_CDRXSYNC(sc_if, frag,
582 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
583 cur = frag;
584 SK_INC(frag, MSK_RX_RING_CNT);
585 entries++;
586 }
587 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
588
589 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
590 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
591 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
592 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
593
594 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
595 MSK_CDRXSYNC(sc_if, rxidx,
596 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
597
598 sc_if->sk_cdata.sk_rx_cnt += entries;
599 sc_if->sk_cdata.sk_rx_prod = frag;
600
601 return 0;
602 }
603
604 /*
605 * Memory management for jumbo frames.
606 */
607
608 static int
609 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
610 {
611 struct sk_softc *sc = sc_if->sk_softc;
612 char *ptr, *kva;
613 int i, state, error;
614 struct sk_jpool_entry *entry;
615
616 state = error = 0;
617
618 /* Grab a big chunk o' storage. */
619 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
620 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
621 BUS_DMA_NOWAIT)) {
622 aprint_error(": can't alloc rx buffers");
623 return ENOBUFS;
624 }
625
626 state = 1;
627 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
628 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
629 BUS_DMA_NOWAIT)) {
630 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
631 error = ENOBUFS;
632 goto out;
633 }
634
635 state = 2;
636 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
637 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
638 aprint_error(": can't create dma map");
639 error = ENOBUFS;
640 goto out;
641 }
642
643 state = 3;
644 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
645 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
646 aprint_error(": can't load dma map");
647 error = ENOBUFS;
648 goto out;
649 }
650
651 state = 4;
652 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
653 DPRINTFN(1,("msk_jumbo_buf = %p\n",
654 (void *)sc_if->sk_cdata.sk_jumbo_buf));
655
656 LIST_INIT(&sc_if->sk_jfree_listhead);
657 LIST_INIT(&sc_if->sk_jinuse_listhead);
658 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
659
660 /*
661 * Now divide it up into 9K pieces and save the addresses
662 * in an array.
663 */
664 ptr = sc_if->sk_cdata.sk_jumbo_buf;
665 for (i = 0; i < MSK_JSLOTS; i++) {
666 sc_if->sk_cdata.sk_jslots[i] = ptr;
667 ptr += SK_JLEN;
668 entry = malloc(sizeof(struct sk_jpool_entry),
669 M_DEVBUF, M_WAITOK);
670 entry->slot = i;
671 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
672 entry, jpool_entries);
673 }
674 out:
675 if (error != 0) {
676 switch (state) {
677 case 4:
678 bus_dmamap_unload(sc->sc_dmatag,
679 sc_if->sk_cdata.sk_rx_jumbo_map);
680 /* FALLTHROUGH */
681 case 3:
682 bus_dmamap_destroy(sc->sc_dmatag,
683 sc_if->sk_cdata.sk_rx_jumbo_map);
684 /* FALLTHROUGH */
685 case 2:
686 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
687 /* FALLTHROUGH */
688 case 1:
689 bus_dmamem_free(sc->sc_dmatag,
690 &sc_if->sk_cdata.sk_jumbo_seg,
691 sc_if->sk_cdata.sk_jumbo_nseg);
692 break;
693 default:
694 break;
695 }
696 }
697
698 return error;
699 }
700
701 static void
702 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
703 {
704 struct sk_softc *sc = sc_if->sk_softc;
705
706 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
707 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
708 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
709 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
710 sc_if->sk_cdata.sk_jumbo_nseg);
711 }
712
713 /*
714 * Allocate a jumbo buffer.
715 */
716 static void *
717 msk_jalloc(struct sk_if_softc *sc_if)
718 {
719 struct sk_jpool_entry *entry;
720
721 mutex_enter(&sc_if->sk_jpool_mtx);
722 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
723
724 if (entry == NULL) {
725 mutex_exit(&sc_if->sk_jpool_mtx);
726 return NULL;
727 }
728
729 LIST_REMOVE(entry, jpool_entries);
730 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
731 mutex_exit(&sc_if->sk_jpool_mtx);
732 return sc_if->sk_cdata.sk_jslots[entry->slot];
733 }
734
735 /*
736 * Release a jumbo buffer.
737 */
738 static void
739 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
740 {
741 struct sk_jpool_entry *entry;
742 struct sk_if_softc *sc;
743 int i;
744
745 /* Extract the softc struct pointer. */
746 sc = (struct sk_if_softc *)arg;
747
748 if (sc == NULL)
749 panic("msk_jfree: can't find softc pointer!");
750
751 /* calculate the slot this buffer belongs to */
752 i = ((vaddr_t)buf
753 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
754
755 if ((i < 0) || (i >= MSK_JSLOTS))
756 panic("msk_jfree: asked to free buffer that we don't manage!");
757
758 mutex_enter(&sc->sk_jpool_mtx);
759 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
760 if (entry == NULL)
761 panic("msk_jfree: buffer not in use!");
762 entry->slot = i;
763 LIST_REMOVE(entry, jpool_entries);
764 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
765 mutex_exit(&sc->sk_jpool_mtx);
766
767 if (__predict_true(m != NULL))
768 pool_cache_put(mb_cache, m);
769
770 /* Now that we know we have a free RX buffer, refill if running out */
771 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
772 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
773 callout_schedule(&sc->sk_tick_rx, 0);
774 }
775
776 static int
777 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
778 {
779 struct sk_if_softc *sc = ifp->if_softc;
780 int s, error;
781
782 s = splnet();
783
784 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
785 switch (cmd) {
786 case SIOCSIFFLAGS:
787 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
788 break;
789
790 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
791 case IFF_RUNNING:
792 msk_stop(ifp, 1);
793 break;
794 case IFF_UP:
795 msk_init(ifp);
796 break;
797 case IFF_UP | IFF_RUNNING:
798 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
799 msk_setpromisc(sc);
800 msk_setmulti(sc);
801 } else
802 msk_init(ifp);
803 break;
804 }
805 sc->sk_if_flags = ifp->if_flags;
806 break;
807 default:
808 error = ether_ioctl(ifp, cmd, data);
809 if (error == ENETRESET) {
810 error = 0;
811 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
812 ;
813 else if (ifp->if_flags & IFF_RUNNING) {
814 /*
815 * Multicast list has changed; set the hardware
816 * filter accordingly.
817 */
818 msk_setmulti(sc);
819 }
820 }
821 break;
822 }
823
824 splx(s);
825 return error;
826 }
827
828 static void
829 msk_update_int_mod(struct sk_softc *sc, int verbose)
830 {
831 uint32_t imtimer_ticks;
832
833 /*
834 * Configure interrupt moderation. The moderation timer
835 * defers interrupts specified in the interrupt moderation
836 * timer mask based on the timeout specified in the interrupt
837 * moderation timer init register. Each bit in the timer
838 * register represents one tick, so to specify a timeout in
839 * microseconds, we have to multiply by the correct number of
840 * ticks-per-microsecond.
841 */
842 switch (sc->sk_type) {
843 case SK_YUKON_EC:
844 case SK_YUKON_EC_U:
845 case SK_YUKON_EX:
846 case SK_YUKON_SUPR:
847 case SK_YUKON_ULTRA2:
848 case SK_YUKON_OPTIMA:
849 case SK_YUKON_PRM:
850 case SK_YUKON_OPTIMA2:
851 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
852 break;
853 case SK_YUKON_FE:
854 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
855 break;
856 case SK_YUKON_FE_P:
857 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
858 break;
859 case SK_YUKON_XL:
860 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
861 break;
862 default:
863 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
864 }
865 if (verbose)
866 aprint_verbose_dev(sc->sk_dev,
867 "interrupt moderation is %d us\n", sc->sk_int_mod);
868 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
869 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
870 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
871 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
872 sc->sk_int_mod_pending = 0;
873 }
874
875 static int
876 msk_lookup(const struct pci_attach_args *pa)
877 {
878 const struct msk_product *pmsk;
879
880 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
881 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
882 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
883 return 1;
884 }
885 return 0;
886 }
887
888 /*
889 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
890 * IDs against our list and return a device name if we find a match.
891 */
892 static int
893 mskc_probe(device_t parent, cfdata_t match, void *aux)
894 {
895 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
896
897 return msk_lookup(pa);
898 }
899
900 /*
901 * Force the GEnesis into reset, then bring it out of reset.
902 */
903 static void
904 mskc_reset(struct sk_softc *sc)
905 {
906 uint32_t imtimer_ticks, reg1;
907 uint16_t status;
908 int reg;
909
910 DPRINTFN(2, ("mskc_reset\n"));
911
912 /* Disable ASF */
913 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
914 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
915 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
916 /* Clear AHB bridge & microcontroller reset. */
917 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
918 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
919 /* Clear ASF microcontroller state. */
920 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
921 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
922 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
923 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
924 } else
925 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
926 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
927
928 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
929 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
930
931 DELAY(1000);
932 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
933 DELAY(2);
934 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
935 sk_win_write_1(sc, SK_TESTCTL1, 2);
936
937 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
938 sc->sk_type >= SK_YUKON_FE_P) {
939 uint32_t our;
940
941 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
942
943 /* enable all clocks. */
944 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
945 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
946 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
947 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
948 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
949 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
950 /* Set all bits to 0 except bits 15..12 */
951 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
952 /* Set to default value */
953 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
954
955 /*
956 * Disable status race, workaround for Yukon EC Ultra &
957 * Yukon EX.
958 */
959 reg1 = sk_win_read_4(sc, SK_GPIO);
960 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
961 sk_win_write_4(sc, SK_GPIO, reg1);
962 sk_win_read_4(sc, SK_GPIO);
963 }
964
965 /* release PHY from PowerDown/Coma mode. */
966 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
967 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
968 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
969 else
970 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
971 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
972
973 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
974 sk_win_write_1(sc, SK_Y2_CLKGATE,
975 SK_Y2_CLKGATE_LINK1_GATE_DIS |
976 SK_Y2_CLKGATE_LINK2_GATE_DIS |
977 SK_Y2_CLKGATE_LINK1_CORE_DIS |
978 SK_Y2_CLKGATE_LINK2_CORE_DIS |
979 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
980 else
981 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
982
983 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
984 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
985 DELAY(1000);
986 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
987 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
988
989 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
990 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
991 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
992 }
993
994 sk_win_write_1(sc, SK_TESTCTL1, 1);
995
996 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
997 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
998 CSR_READ_2(sc, SK_LINK_CTRL)));
999
1000 /* Clear I2C IRQ noise */
1001 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
1002
1003 /* Disable hardware timer */
1004 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
1005 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
1006
1007 /* Disable descriptor polling */
1008 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1009
1010 /* Disable time stamps */
1011 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1012 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1013
1014 /* Enable RAM interface */
1015 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1016 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1017 sk_win_write_1(sc, reg, 36);
1018 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1019 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1020 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1021
1022 /*
1023 * Configure interrupt moderation. The moderation timer
1024 * defers interrupts specified in the interrupt moderation
1025 * timer mask based on the timeout specified in the interrupt
1026 * moderation timer init register. Each bit in the timer
1027 * register represents one tick, so to specify a timeout in
1028 * microseconds, we have to multiply by the correct number of
1029 * ticks-per-microsecond.
1030 */
1031 switch (sc->sk_type) {
1032 case SK_YUKON_EC:
1033 case SK_YUKON_EC_U:
1034 case SK_YUKON_EX:
1035 case SK_YUKON_SUPR:
1036 case SK_YUKON_ULTRA2:
1037 case SK_YUKON_OPTIMA:
1038 case SK_YUKON_PRM:
1039 case SK_YUKON_OPTIMA2:
1040 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1041 break;
1042 case SK_YUKON_FE:
1043 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1044 break;
1045 case SK_YUKON_FE_P:
1046 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1047 break;
1048 case SK_YUKON_XL:
1049 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1050 break;
1051 default:
1052 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1053 break;
1054 }
1055
1056 /* Reset status ring. */
1057 memset(sc->sk_status_ring, 0,
1058 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1059 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1060 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1061 sc->sk_status_idx = 0;
1062
1063 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1064 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1065
1066 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1067 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1068 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1069 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1070 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1071 if (sc->sk_type == SK_YUKON_EC &&
1072 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1073 /* WA for dev. #4.3 */
1074 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1075 SK_STAT_BMU_TXTHIDX_MSK);
1076 /* WA for dev. #4.18 */
1077 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1078 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1079 } else {
1080 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1081 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1082 if (sc->sk_type == SK_YUKON_XL)
1083 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1084 else
1085 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1086 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1087 }
1088
1089 #if 0
1090 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1091 #endif
1092 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1093
1094 /* Enable status unit. */
1095 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1096
1097 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1098 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1099 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1100
1101 msk_update_int_mod(sc, 0);
1102 }
1103
1104 static int
1105 msk_probe(device_t parent, cfdata_t match, void *aux)
1106 {
1107 struct skc_attach_args *sa = aux;
1108
1109 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1110 return 0;
1111
1112 switch (sa->skc_type) {
1113 case SK_YUKON_XL:
1114 case SK_YUKON_EC_U:
1115 case SK_YUKON_EX:
1116 case SK_YUKON_EC:
1117 case SK_YUKON_FE:
1118 case SK_YUKON_FE_P:
1119 case SK_YUKON_SUPR:
1120 case SK_YUKON_ULTRA2:
1121 case SK_YUKON_OPTIMA:
1122 case SK_YUKON_PRM:
1123 case SK_YUKON_OPTIMA2:
1124 return 1;
1125 }
1126
1127 return 0;
1128 }
1129
1130 static void
1131 msk_reset(struct sk_if_softc *sc_if)
1132 {
1133 /* GMAC and GPHY Reset */
1134 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1135 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1136 DELAY(1000);
1137 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1138 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1139 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1140 }
1141
1142 static bool
1143 msk_resume(device_t dv, const pmf_qual_t *qual)
1144 {
1145 struct sk_if_softc *sc_if = device_private(dv);
1146
1147 msk_init_yukon(sc_if);
1148 return true;
1149 }
1150
1151 /*
1152 * Each XMAC chip is attached as a separate logical IP interface.
1153 * Single port cards will have only one logical interface of course.
1154 */
1155 static void
1156 msk_attach(device_t parent, device_t self, void *aux)
1157 {
1158 struct sk_if_softc *sc_if = device_private(self);
1159 struct sk_softc *sc = device_private(parent);
1160 struct skc_attach_args *sa = aux;
1161 bus_dmamap_t dmamap;
1162 struct ifnet *ifp;
1163 struct mii_data * const mii = &sc_if->sk_mii;
1164 void *kva;
1165 int i;
1166 uint32_t chunk;
1167 int mii_flags;
1168
1169 sc_if->sk_dev = self;
1170 sc_if->sk_port = sa->skc_port;
1171 sc_if->sk_softc = sc;
1172 sc->sk_if[sa->skc_port] = sc_if;
1173
1174 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1175
1176 /*
1177 * Get station address for this interface. Note that
1178 * dual port cards actually come with three station
1179 * addresses: one for each port, plus an extra. The
1180 * extra one is used by the SysKonnect driver software
1181 * as a 'virtual' station address for when both ports
1182 * are operating in failover mode. Currently we don't
1183 * use this extra address.
1184 */
1185 for (i = 0; i < ETHER_ADDR_LEN; i++)
1186 sc_if->sk_enaddr[i] =
1187 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1188
1189 aprint_normal(": Ethernet address %s\n",
1190 ether_sprintf(sc_if->sk_enaddr));
1191
1192 /*
1193 * Set up RAM buffer addresses. The Yukon2 has a small amount
1194 * of SRAM on it, somewhere between 4K and 48K. We need to
1195 * divide this up between the transmitter and receiver. We
1196 * give the receiver 2/3 of the memory (rounded down), and the
1197 * transmitter whatever remains.
1198 */
1199 if (sc->sk_ramsize) {
1200 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1201 sc_if->sk_rx_ramstart = 0;
1202 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1203 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1204 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1205 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1206
1207 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1208 " tx_ramstart=%#x tx_ramend=%#x\n",
1209 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1210 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1211 }
1212
1213 /* Allocate the descriptor queues. */
1214 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1215 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1216 BUS_DMA_NOWAIT)) {
1217 aprint_error(": can't alloc rx buffers\n");
1218 goto fail;
1219 }
1220 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1221 sc_if->sk_ring_nseg,
1222 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1223 aprint_error(": can't map dma buffers (%zu bytes)\n",
1224 sizeof(struct msk_ring_data));
1225 goto fail_1;
1226 }
1227 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1228 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1229 &sc_if->sk_ring_map)) {
1230 aprint_error(": can't create dma map\n");
1231 goto fail_2;
1232 }
1233 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1234 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1235 aprint_error(": can't load dma map\n");
1236 goto fail_3;
1237 }
1238
1239 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1240 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1241
1242 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1243 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1244 aprint_error_dev(sc_if->sk_dev,
1245 "Can't create TX dmamap\n");
1246 goto fail_3;
1247 }
1248
1249 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1250 }
1251
1252 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1253 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1254
1255 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1256 howmany(SK_JLEN + 1, NBPG),
1257 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1258 aprint_error_dev(sc_if->sk_dev,
1259 "Can't create RX dmamap\n");
1260 goto fail_3;
1261 }
1262
1263 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1264 }
1265
1266 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1267 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1268
1269 if (sc->sk_type != SK_YUKON_FE &&
1270 sc->sk_type != SK_YUKON_FE_P)
1271 sc_if->sk_pktlen = SK_JLEN;
1272 else
1273 sc_if->sk_pktlen = MCLBYTES;
1274
1275 /* Try to allocate memory for jumbo buffers. */
1276 if (msk_alloc_jumbo_mem(sc_if)) {
1277 aprint_error(": jumbo buffer allocation failed\n");
1278 goto fail_3;
1279 }
1280
1281 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1282 if (sc->sk_type != SK_YUKON_FE &&
1283 sc->sk_type != SK_YUKON_FE_P)
1284 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1285
1286 ifp = &sc_if->sk_ethercom.ec_if;
1287 ifp->if_softc = sc_if;
1288 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1289 ifp->if_ioctl = msk_ioctl;
1290 ifp->if_start = msk_start;
1291 ifp->if_stop = msk_stop;
1292 ifp->if_init = msk_init;
1293 ifp->if_watchdog = msk_watchdog;
1294 ifp->if_baudrate = 1000000000;
1295 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1296 IFQ_SET_READY(&ifp->if_snd);
1297 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1298
1299 msk_reset(sc_if);
1300
1301 /*
1302 * Do miibus setup.
1303 */
1304 DPRINTFN(2, ("msk_attach: 1\n"));
1305
1306 mii->mii_ifp = ifp;
1307 mii->mii_readreg = msk_miibus_readreg;
1308 mii->mii_writereg = msk_miibus_writereg;
1309 mii->mii_statchg = msk_miibus_statchg;
1310
1311 sc_if->sk_ethercom.ec_mii = mii;
1312 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1313 mii_flags = MIIF_DOPAUSE;
1314 if (sc->sk_fibertype)
1315 mii_flags |= MIIF_HAVEFIBER;
1316 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1317 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1318 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1319 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1320 0, NULL);
1321 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1322 } else
1323 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1324
1325 callout_init(&sc_if->sk_tick_ch, 0);
1326 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1327 callout_schedule(&sc_if->sk_tick_ch, hz);
1328
1329 callout_init(&sc_if->sk_tick_rx, 0);
1330 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1331
1332 /*
1333 * Call MI attach routines.
1334 */
1335 if_attach(ifp);
1336 if_deferred_start_init(ifp, NULL);
1337 ether_ifattach(ifp, sc_if->sk_enaddr);
1338
1339 if (pmf_device_register(self, NULL, msk_resume))
1340 pmf_class_network_register(self, ifp);
1341 else
1342 aprint_error_dev(self, "couldn't establish power handler\n");
1343
1344 if (sc->rnd_attached++ == 0) {
1345 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1346 RND_TYPE_NET, RND_FLAG_DEFAULT);
1347 }
1348
1349 DPRINTFN(2, ("msk_attach: end\n"));
1350 return;
1351
1352 fail_3:
1353 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1354 fail_2:
1355 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1356 fail_1:
1357 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1358 fail:
1359 sc->sk_if[sa->skc_port] = NULL;
1360 }
1361
1362 static int
1363 msk_detach(device_t self, int flags)
1364 {
1365 struct sk_if_softc *sc_if = device_private(self);
1366 struct sk_softc *sc = sc_if->sk_softc;
1367 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1368 int i;
1369
1370 if (sc->sk_if[sc_if->sk_port] == NULL)
1371 return 0;
1372
1373 msk_stop(ifp, 1);
1374
1375 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1376 bus_dmamap_destroy(sc->sc_dmatag,
1377 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1378 }
1379
1380 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1381 bus_dmamap_destroy(sc->sc_dmatag,
1382 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1383 }
1384
1385 if (--sc->rnd_attached == 0)
1386 rnd_detach_source(&sc->rnd_source);
1387
1388 callout_halt(&sc_if->sk_tick_ch, NULL);
1389 callout_destroy(&sc_if->sk_tick_ch);
1390
1391 callout_halt(&sc_if->sk_tick_rx, NULL);
1392 callout_destroy(&sc_if->sk_tick_rx);
1393
1394 /* Detach any PHYs we might have. */
1395 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1396 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1397
1398 pmf_device_deregister(self);
1399
1400 ether_ifdetach(ifp);
1401 if_detach(ifp);
1402
1403 /* Delete any remaining media. */
1404 ifmedia_fini(&sc_if->sk_mii.mii_media);
1405
1406 msk_free_jumbo_mem(sc_if);
1407
1408 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1409 sizeof(struct msk_ring_data));
1410 bus_dmamem_free(sc->sc_dmatag,
1411 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1412 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1413 sc->sk_if[sc_if->sk_port] = NULL;
1414
1415 return 0;
1416 }
1417
1418 static int
1419 mskcprint(void *aux, const char *pnp)
1420 {
1421 struct skc_attach_args *sa = aux;
1422
1423 if (pnp)
1424 aprint_normal("msk port %c at %s",
1425 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1426 else
1427 aprint_normal(" port %c",
1428 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1429 return UNCONF;
1430 }
1431
1432 /*
1433 * Attach the interface. Allocate softc structures, do ifmedia
1434 * setup and ethernet/BPF attach.
1435 */
1436 static void
1437 mskc_attach(device_t parent, device_t self, void *aux)
1438 {
1439 struct sk_softc *sc = device_private(self);
1440 struct pci_attach_args *pa = aux;
1441 struct skc_attach_args skca;
1442 pci_chipset_tag_t pc = pa->pa_pc;
1443 pcireg_t command, memtype;
1444 const char *intrstr = NULL;
1445 int rc, sk_nodenum;
1446 uint8_t hw, pmd;
1447 const char *revstr = NULL;
1448 const struct sysctlnode *node;
1449 void *kva;
1450 char intrbuf[PCI_INTRSTR_LEN];
1451
1452 DPRINTFN(2, ("begin mskc_attach\n"));
1453
1454 sc->sk_dev = self;
1455 /*
1456 * Handle power management nonsense.
1457 */
1458 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1459
1460 if (command == 0x01) {
1461 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1462 if (command & SK_PSTATE_MASK) {
1463 uint32_t iobase, membase, irq;
1464
1465 /* Save important PCI config data. */
1466 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1467 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1468 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1469
1470 /* Reset the power state. */
1471 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1472 "mode -- setting to D0\n",
1473 command & SK_PSTATE_MASK);
1474 command &= 0xFFFFFFFC;
1475 pci_conf_write(pc, pa->pa_tag,
1476 SK_PCI_PWRMGMTCTRL, command);
1477
1478 /* Restore PCI config data. */
1479 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1480 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1481 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1482 }
1483 }
1484
1485 /*
1486 * Map control/status registers.
1487 */
1488 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1489 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1490 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1491 aprint_error(": can't map mem space\n");
1492 return;
1493 }
1494
1495 if (pci_dma64_available(pa))
1496 sc->sc_dmatag = pa->pa_dmat64;
1497 else
1498 sc->sc_dmatag = pa->pa_dmat;
1499
1500 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1501 command |= PCI_COMMAND_MASTER_ENABLE;
1502 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1503
1504 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1505 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1506
1507 /* bail out here if chip is not recognized */
1508 if (!(SK_IS_YUKON2(sc))) {
1509 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1510 goto fail_1;
1511 }
1512 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1513
1514 /* Allocate interrupt */
1515 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1516 aprint_error(": couldn't map interrupt\n");
1517 goto fail_1;
1518 }
1519
1520 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1521 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1522 msk_intr, sc, device_xname(sc->sk_dev));
1523 if (sc->sk_intrhand == NULL) {
1524 aprint_error(": couldn't establish interrupt");
1525 if (intrstr != NULL)
1526 aprint_error(" at %s", intrstr);
1527 aprint_error("\n");
1528 goto fail_1;
1529 }
1530 sc->sk_pc = pc;
1531
1532 if (bus_dmamem_alloc(sc->sc_dmatag,
1533 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1534 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1535 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1536 aprint_error(": can't alloc status buffers\n");
1537 goto fail_2;
1538 }
1539
1540 if (bus_dmamem_map(sc->sc_dmatag,
1541 &sc->sk_status_seg, sc->sk_status_nseg,
1542 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1543 &kva, BUS_DMA_NOWAIT)) {
1544 aprint_error(": can't map dma buffers (%zu bytes)\n",
1545 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1546 goto fail_3;
1547 }
1548 if (bus_dmamap_create(sc->sc_dmatag,
1549 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1550 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1551 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1552 aprint_error(": can't create dma map\n");
1553 goto fail_4;
1554 }
1555 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1556 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1557 NULL, BUS_DMA_NOWAIT)) {
1558 aprint_error(": can't load dma map\n");
1559 goto fail_5;
1560 }
1561 sc->sk_status_ring = (struct msk_status_desc *)kva;
1562
1563 sc->sk_int_mod = SK_IM_DEFAULT;
1564 sc->sk_int_mod_pending = 0;
1565
1566 /* Reset the adapter. */
1567 mskc_reset(sc);
1568
1569 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1570 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1571
1572 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1573 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1574 sc->sk_fibertype = 1;
1575
1576 switch (sc->sk_type) {
1577 case SK_YUKON_XL:
1578 sc->sk_name = "Yukon-2 XL";
1579 break;
1580 case SK_YUKON_EC_U:
1581 sc->sk_name = "Yukon-2 EC Ultra";
1582 break;
1583 case SK_YUKON_EX:
1584 sc->sk_name = "Yukon-2 Extreme";
1585 break;
1586 case SK_YUKON_EC:
1587 sc->sk_name = "Yukon-2 EC";
1588 break;
1589 case SK_YUKON_FE:
1590 sc->sk_name = "Yukon-2 FE";
1591 break;
1592 case SK_YUKON_FE_P:
1593 sc->sk_name = "Yukon-2 FE+";
1594 break;
1595 case SK_YUKON_SUPR:
1596 sc->sk_name = "Yukon-2 Supreme";
1597 break;
1598 case SK_YUKON_ULTRA2:
1599 sc->sk_name = "Yukon-2 Ultra 2";
1600 break;
1601 case SK_YUKON_OPTIMA:
1602 sc->sk_name = "Yukon-2 Optima";
1603 break;
1604 case SK_YUKON_PRM:
1605 sc->sk_name = "Yukon-2 Optima Prime";
1606 break;
1607 case SK_YUKON_OPTIMA2:
1608 sc->sk_name = "Yukon-2 Optima 2";
1609 break;
1610 default:
1611 sc->sk_name = "Yukon (Unknown)";
1612 }
1613
1614 if (sc->sk_type == SK_YUKON_XL) {
1615 switch (sc->sk_rev) {
1616 case SK_YUKON_XL_REV_A0:
1617 revstr = "A0";
1618 break;
1619 case SK_YUKON_XL_REV_A1:
1620 revstr = "A1";
1621 break;
1622 case SK_YUKON_XL_REV_A2:
1623 revstr = "A2";
1624 break;
1625 case SK_YUKON_XL_REV_A3:
1626 revstr = "A3";
1627 break;
1628 default:
1629 break;
1630 }
1631 }
1632
1633 if (sc->sk_type == SK_YUKON_EC) {
1634 switch (sc->sk_rev) {
1635 case SK_YUKON_EC_REV_A1:
1636 revstr = "A1";
1637 break;
1638 case SK_YUKON_EC_REV_A2:
1639 revstr = "A2";
1640 break;
1641 case SK_YUKON_EC_REV_A3:
1642 revstr = "A3";
1643 break;
1644 default:
1645 break;
1646 }
1647 }
1648
1649 if (sc->sk_type == SK_YUKON_FE) {
1650 switch (sc->sk_rev) {
1651 case SK_YUKON_FE_REV_A1:
1652 revstr = "A1";
1653 break;
1654 case SK_YUKON_FE_REV_A2:
1655 revstr = "A2";
1656 break;
1657 default:
1658 break;
1659 }
1660 }
1661
1662 if (sc->sk_type == SK_YUKON_EC_U) {
1663 switch (sc->sk_rev) {
1664 case SK_YUKON_EC_U_REV_A0:
1665 revstr = "A0";
1666 break;
1667 case SK_YUKON_EC_U_REV_A1:
1668 revstr = "A1";
1669 break;
1670 case SK_YUKON_EC_U_REV_B0:
1671 revstr = "B0";
1672 break;
1673 case SK_YUKON_EC_U_REV_B1:
1674 revstr = "B1";
1675 break;
1676 default:
1677 break;
1678 }
1679 }
1680
1681 if (sc->sk_type == SK_YUKON_FE) {
1682 switch (sc->sk_rev) {
1683 case SK_YUKON_FE_REV_A1:
1684 revstr = "A1";
1685 break;
1686 case SK_YUKON_FE_REV_A2:
1687 revstr = "A2";
1688 break;
1689 default:
1690 ;
1691 }
1692 }
1693
1694 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1695 revstr = "A0";
1696
1697 if (sc->sk_type == SK_YUKON_EX) {
1698 switch (sc->sk_rev) {
1699 case SK_YUKON_EX_REV_A0:
1700 revstr = "A0";
1701 break;
1702 case SK_YUKON_EX_REV_B0:
1703 revstr = "B0";
1704 break;
1705 default:
1706 ;
1707 }
1708 }
1709
1710 if (sc->sk_type == SK_YUKON_SUPR) {
1711 switch (sc->sk_rev) {
1712 case SK_YUKON_SUPR_REV_A0:
1713 revstr = "A0";
1714 break;
1715 case SK_YUKON_SUPR_REV_B0:
1716 revstr = "B0";
1717 break;
1718 case SK_YUKON_SUPR_REV_B1:
1719 revstr = "B1";
1720 break;
1721 default:
1722 ;
1723 }
1724 }
1725
1726 if (sc->sk_type == SK_YUKON_PRM) {
1727 switch (sc->sk_rev) {
1728 case SK_YUKON_PRM_REV_Z1:
1729 revstr = "Z1";
1730 break;
1731 case SK_YUKON_PRM_REV_A0:
1732 revstr = "A0";
1733 break;
1734 default:
1735 ;
1736 }
1737 }
1738
1739 /* Announce the product name. */
1740 aprint_normal(", %s", sc->sk_name);
1741 if (revstr != NULL)
1742 aprint_normal(" rev. %s", revstr);
1743 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1744
1745 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1746
1747 sc->sk_macs = 1;
1748
1749 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1750 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1751 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1752 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1753 sc->sk_macs++;
1754 }
1755
1756 skca.skc_port = SK_PORT_A;
1757 skca.skc_type = sc->sk_type;
1758 skca.skc_rev = sc->sk_rev;
1759 (void)config_found(sc->sk_dev, &skca, mskcprint);
1760
1761 if (sc->sk_macs > 1) {
1762 skca.skc_port = SK_PORT_B;
1763 skca.skc_type = sc->sk_type;
1764 skca.skc_rev = sc->sk_rev;
1765 (void)config_found(sc->sk_dev, &skca, mskcprint);
1766 }
1767
1768 /* Turn on the 'driver is loaded' LED. */
1769 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1770
1771 /* skc sysctl setup */
1772
1773 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1774 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1775 SYSCTL_DESCR("mskc per-controller controls"),
1776 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1777 CTL_EOL)) != 0) {
1778 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1779 goto fail_6;
1780 }
1781
1782 sk_nodenum = node->sysctl_num;
1783
1784 /* interrupt moderation time in usecs */
1785 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1786 CTLFLAG_READWRITE,
1787 CTLTYPE_INT, "int_mod",
1788 SYSCTL_DESCR("msk interrupt moderation timer"),
1789 msk_sysctl_handler, 0, (void *)sc,
1790 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1791 CTL_EOL)) != 0) {
1792 aprint_normal_dev(sc->sk_dev,
1793 "couldn't create int_mod sysctl node\n");
1794 goto fail_6;
1795 }
1796
1797 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1798 aprint_error_dev(self, "couldn't establish power handler\n");
1799
1800 return;
1801
1802 fail_6:
1803 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1804 fail_4:
1805 bus_dmamem_unmap(sc->sc_dmatag, kva,
1806 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1807 fail_3:
1808 bus_dmamem_free(sc->sc_dmatag,
1809 &sc->sk_status_seg, sc->sk_status_nseg);
1810 sc->sk_status_nseg = 0;
1811 fail_5:
1812 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1813 fail_2:
1814 pci_intr_disestablish(pc, sc->sk_intrhand);
1815 sc->sk_intrhand = NULL;
1816 fail_1:
1817 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1818 sc->sk_bsize = 0;
1819 }
1820
1821 static int
1822 mskc_detach(device_t self, int flags)
1823 {
1824 struct sk_softc *sc = device_private(self);
1825 int rv;
1826
1827 if (sc->sk_intrhand) {
1828 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1829 sc->sk_intrhand = NULL;
1830 }
1831
1832 if (sc->sk_pihp != NULL) {
1833 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1834 sc->sk_pihp = NULL;
1835 }
1836
1837 rv = config_detach_children(self, flags);
1838 if (rv != 0)
1839 return rv;
1840
1841 if (sc->sk_status_nseg > 0) {
1842 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1843 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1844 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1845 bus_dmamem_free(sc->sc_dmatag,
1846 &sc->sk_status_seg, sc->sk_status_nseg);
1847 }
1848
1849 if (sc->sk_bsize > 0)
1850 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1851
1852 return 0;
1853 }
1854
1855 static int
1856 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1857 {
1858 struct sk_softc *sc = sc_if->sk_softc;
1859 struct msk_tx_desc *f = NULL;
1860 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1861 uint32_t entries = 0;
1862 size_t i;
1863 bus_dmamap_t txmap;
1864 bus_addr_t addr;
1865
1866 DPRINTFN(2, ("msk_encap\n"));
1867
1868 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1869
1870 cur = frag = *txidx;
1871
1872 #ifdef MSK_DEBUG
1873 if (mskdebug >= 2)
1874 msk_dump_mbuf(m_head);
1875 #endif
1876
1877 /*
1878 * Start packing the mbufs in this chain into
1879 * the fragment pointers. Stop when we run out
1880 * of fragments or hit the end of the mbuf chain.
1881 */
1882 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1883 BUS_DMA_NOWAIT)) {
1884 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1885 return ENOBUFS;
1886 }
1887
1888 /* Count how many tx descriptors needed. */
1889 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1890 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1891 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1892 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1893 total++;
1894 }
1895 total++;
1896 }
1897
1898 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1899 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1900 bus_dmamap_unload(sc->sc_dmatag, txmap);
1901 return ENOBUFS;
1902 }
1903
1904 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1905 txmap->dm_nsegs, total));
1906
1907 /* Sync the DMA map. */
1908 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1909 BUS_DMASYNC_PREWRITE);
1910
1911 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1912 for (i = 0; i < txmap->dm_nsegs; i++) {
1913 addr = txmap->dm_segs[i].ds_addr;
1914 DPRINTFN(2, ("msk_encap: addr %llx\n",
1915 (unsigned long long)addr));
1916 hiaddr = MSK_ADDR_HI(addr);
1917
1918 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1919 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1920 f->sk_addr = htole32(hiaddr);
1921 f->sk_len = 0;
1922 f->sk_ctl = 0;
1923 if (i == 0)
1924 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1925 else
1926 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1927 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1928 SK_INC(frag, MSK_TX_RING_CNT);
1929 entries++;
1930 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1931 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1932 }
1933
1934 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1935 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1936 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1937 f->sk_ctl = 0;
1938 if (i == 0) {
1939 if (hiaddr != old_hiaddr)
1940 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1941 else
1942 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1943 } else
1944 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1945 cur = frag;
1946 SK_INC(frag, MSK_TX_RING_CNT);
1947 entries++;
1948 }
1949 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1950
1951 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1952 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1953 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1954 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1955
1956 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1957
1958 /* Sync descriptors before handing to chip */
1959 MSK_CDTXSYNC(sc_if, *txidx, entries,
1960 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1961
1962 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1963
1964 /* Sync first descriptor to hand it off */
1965 MSK_CDTXSYNC(sc_if, *txidx, 1,
1966 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1967
1968 sc_if->sk_cdata.sk_tx_cnt += entries;
1969
1970 #ifdef MSK_DEBUG
1971 if (mskdebug >= 2) {
1972 struct msk_tx_desc *le;
1973 uint32_t idx;
1974 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1975 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1976 msk_dump_txdesc(le, idx);
1977 }
1978 }
1979 #endif
1980
1981 *txidx = frag;
1982
1983 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1984
1985 return 0;
1986 }
1987
1988 static void
1989 msk_start(struct ifnet *ifp)
1990 {
1991 struct sk_if_softc *sc_if = ifp->if_softc;
1992 struct mbuf *m_head = NULL;
1993 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1994 int pkts = 0;
1995
1996 DPRINTFN(2, ("msk_start\n"));
1997
1998 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1999 IFQ_POLL(&ifp->if_snd, m_head);
2000 if (m_head == NULL)
2001 break;
2002
2003 /*
2004 * Pack the data into the transmit ring. If we
2005 * don't have room, set the OACTIVE flag and wait
2006 * for the NIC to drain the ring.
2007 */
2008 if (msk_encap(sc_if, m_head, &idx)) {
2009 ifp->if_flags |= IFF_OACTIVE;
2010 break;
2011 }
2012
2013 /* now we are committed to transmit the packet */
2014 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2015 pkts++;
2016
2017 /*
2018 * If there's a BPF listener, bounce a copy of this frame
2019 * to him.
2020 */
2021 bpf_mtap(ifp, m_head, BPF_D_OUT);
2022 }
2023 if (pkts == 0)
2024 return;
2025
2026 /* Transmit */
2027 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2028 sc_if->sk_cdata.sk_tx_prod = idx;
2029 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2030
2031 /* Set a timeout in case the chip goes out to lunch. */
2032 ifp->if_timer = 5;
2033 }
2034 }
2035
2036 static void
2037 msk_watchdog(struct ifnet *ifp)
2038 {
2039 struct sk_if_softc *sc_if = ifp->if_softc;
2040
2041 /*
2042 * Reclaim first as there is a possibility of losing Tx completion
2043 * interrupts.
2044 */
2045 msk_txeof(sc_if);
2046 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2047 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2048
2049 if_statinc(ifp, if_oerrors);
2050
2051 /* XXX Resets both ports; we shouldn't do that. */
2052 mskc_reset(sc_if->sk_softc);
2053 msk_reset(sc_if);
2054 msk_init(ifp);
2055 }
2056 }
2057
2058 static bool
2059 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2060 {
2061 struct sk_softc *sc = device_private(dv);
2062
2063 DPRINTFN(2, ("mskc_suspend\n"));
2064
2065 /* Turn off the 'driver is loaded' LED. */
2066 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2067
2068 return true;
2069 }
2070
2071 static bool
2072 mskc_resume(device_t dv, const pmf_qual_t *qual)
2073 {
2074 struct sk_softc *sc = device_private(dv);
2075
2076 DPRINTFN(2, ("mskc_resume\n"));
2077
2078 mskc_reset(sc);
2079 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2080
2081 return true;
2082 }
2083
2084 static __inline int
2085 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2086 {
2087 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2088 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2089 YU_RXSTAT_JABBER)) != 0 ||
2090 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2091 YU_RXSTAT_BYTES(stat) != len)
2092 return 0;
2093
2094 return 1;
2095 }
2096
2097 static void
2098 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2099 {
2100 struct sk_softc *sc = sc_if->sk_softc;
2101 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2102 struct mbuf *m;
2103 unsigned cur, prod, tail, total_len = len;
2104 bus_dmamap_t dmamap;
2105
2106 cur = sc_if->sk_cdata.sk_rx_cons;
2107 prod = sc_if->sk_cdata.sk_rx_prod;
2108
2109 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2110 sc_if->sk_cdata.sk_rx_cnt));
2111
2112 while (prod != cur) {
2113 MSK_CDRXSYNC(sc_if, cur,
2114 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2115
2116 tail = cur;
2117 SK_INC(cur, MSK_RX_RING_CNT);
2118
2119 sc_if->sk_cdata.sk_rx_cnt--;
2120 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2121 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2122 if (m != NULL)
2123 break; /* found it */
2124 }
2125 sc_if->sk_cdata.sk_rx_cons = cur;
2126 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2127 sc_if->sk_cdata.sk_rx_cnt, m));
2128
2129 if (m == NULL)
2130 return;
2131
2132 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2133
2134 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2135 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2136 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2137
2138 if (total_len < SK_MIN_FRAMELEN ||
2139 total_len > ETHER_MAX_LEN_JUMBO ||
2140 msk_rxvalid(sc, rxstat, total_len) == 0) {
2141 if_statinc(ifp, if_ierrors);
2142 m_freem(m);
2143 return;
2144 }
2145
2146 m_set_rcvif(m, ifp);
2147 m->m_pkthdr.len = m->m_len = total_len;
2148
2149 /* pass it on. */
2150 if_percpuq_enqueue(ifp->if_percpuq, m);
2151 }
2152
2153 static void
2154 msk_txeof(struct sk_if_softc *sc_if)
2155 {
2156 struct sk_softc *sc = sc_if->sk_softc;
2157 struct msk_tx_desc *cur_tx;
2158 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2159 uint32_t idx, reg, sk_ctl;
2160 bus_dmamap_t dmamap;
2161
2162 DPRINTFN(2, ("msk_txeof\n"));
2163
2164 if (sc_if->sk_port == SK_PORT_A)
2165 reg = SK_STAT_BMU_TXA1_RIDX;
2166 else
2167 reg = SK_STAT_BMU_TXA2_RIDX;
2168
2169 /*
2170 * Go through our tx ring and free mbufs for those
2171 * frames that have been sent.
2172 */
2173 idx = sc_if->sk_cdata.sk_tx_cons;
2174 while (idx != sk_win_read_2(sc, reg)) {
2175 MSK_CDTXSYNC(sc_if, idx, 1,
2176 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2177
2178 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2179 sk_ctl = cur_tx->sk_ctl;
2180 #ifdef MSK_DEBUG
2181 if (mskdebug >= 2)
2182 msk_dump_txdesc(cur_tx, idx);
2183 #endif
2184 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2185 if_statinc(ifp, if_opackets);
2186 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2187 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2188
2189 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2190 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2191
2192 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2193 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2194 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2195 }
2196 sc_if->sk_cdata.sk_tx_cnt--;
2197 SK_INC(idx, MSK_TX_RING_CNT);
2198 }
2199 if (idx == sc_if->sk_cdata.sk_tx_cons)
2200 return;
2201
2202 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2203
2204 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2205 ifp->if_flags &= ~IFF_OACTIVE;
2206
2207 sc_if->sk_cdata.sk_tx_cons = idx;
2208 }
2209
2210 static void
2211 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2212 {
2213 /* Make sure to not completely wrap around */
2214 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2215 if (msk_newbuf(sc_if) == ENOBUFS) {
2216 goto schedretry;
2217 }
2218 }
2219
2220 return;
2221
2222 schedretry:
2223 /* Try later */
2224 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2225 }
2226
2227 static void
2228 msk_fill_rx_tick(void *xsc_if)
2229 {
2230 struct sk_if_softc *sc_if = xsc_if;
2231 int s, rx_prod;
2232
2233 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2234
2235 s = splnet();
2236 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2237 msk_fill_rx_ring(sc_if);
2238 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2239 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2240 sc_if->sk_cdata.sk_rx_prod);
2241 }
2242 splx(s);
2243 }
2244
2245 static void
2246 msk_tick(void *xsc_if)
2247 {
2248 struct sk_if_softc *sc_if = xsc_if;
2249 struct mii_data *mii = &sc_if->sk_mii;
2250 int s;
2251
2252 s = splnet();
2253 mii_tick(mii);
2254 splx(s);
2255
2256 callout_schedule(&sc_if->sk_tick_ch, hz);
2257 }
2258
2259 static void
2260 msk_intr_yukon(struct sk_if_softc *sc_if)
2261 {
2262 uint8_t status;
2263
2264 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2265 /* RX overrun */
2266 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2267 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2268 SK_RFCTL_RX_FIFO_OVER);
2269 }
2270 /* TX underrun */
2271 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2272 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2273 SK_TFCTL_TX_FIFO_UNDER);
2274 }
2275
2276 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2277 }
2278
2279 static int
2280 msk_intr(void *xsc)
2281 {
2282 struct sk_softc *sc = xsc;
2283 struct sk_if_softc *sc_if;
2284 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2285 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2286 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2287 int claimed = 0;
2288 uint32_t status;
2289 struct msk_status_desc *cur_st;
2290
2291 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2292 if (status == 0xffffffff)
2293 return 0;
2294 if (status == 0) {
2295 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2296 return 0;
2297 }
2298
2299 status = CSR_READ_4(sc, SK_ISR);
2300
2301 if (sc_if0 != NULL)
2302 ifp0 = &sc_if0->sk_ethercom.ec_if;
2303 if (sc_if1 != NULL)
2304 ifp1 = &sc_if1->sk_ethercom.ec_if;
2305
2306 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2307 (ifp0->if_flags & IFF_RUNNING)) {
2308 msk_intr_yukon(sc_if0);
2309 }
2310
2311 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2312 (ifp1->if_flags & IFF_RUNNING)) {
2313 msk_intr_yukon(sc_if1);
2314 }
2315
2316 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2317 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2318 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2319
2320 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2321 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2322 switch (cur_st->sk_opcode) {
2323 case SK_Y2_STOPC_RXSTAT:
2324 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2325 if (sc_if) {
2326 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2327 letoh32(cur_st->sk_status));
2328 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2329 msk_fill_rx_tick(sc_if);
2330 }
2331 break;
2332 case SK_Y2_STOPC_TXSTAT:
2333 if (sc_if0)
2334 msk_txeof(sc_if0);
2335 if (sc_if1)
2336 msk_txeof(sc_if1);
2337 break;
2338 default:
2339 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2340 break;
2341 }
2342 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2343
2344 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2345 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2346 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2347 }
2348
2349 if (status & SK_Y2_IMR_BMU) {
2350 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2351 claimed = 1;
2352 }
2353
2354 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2355
2356 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2357 if_schedule_deferred_start(ifp0);
2358 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2359 if_schedule_deferred_start(ifp1);
2360
2361 KASSERT(sc->rnd_attached > 0);
2362 rnd_add_uint32(&sc->rnd_source, status);
2363
2364 if (sc->sk_int_mod_pending)
2365 msk_update_int_mod(sc, 1);
2366
2367 return claimed;
2368 }
2369
2370 static void
2371 msk_init_yukon(struct sk_if_softc *sc_if)
2372 {
2373 uint32_t v;
2374 uint16_t reg;
2375 struct sk_softc *sc;
2376 int i;
2377
2378 sc = sc_if->sk_softc;
2379
2380 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2381 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2382
2383 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2384
2385 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2386 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2387
2388 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2389
2390 /* unused read of the interrupt source register */
2391 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2392 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2393
2394 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2395 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2396 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2397
2398 /* MIB Counter Clear Mode set */
2399 reg |= YU_PAR_MIB_CLR;
2400 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2401 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2402 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2403
2404 /* MIB Counter Clear Mode clear */
2405 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2406 reg &= ~YU_PAR_MIB_CLR;
2407 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2408
2409 /* receive control reg */
2410 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2411 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2412
2413 /* transmit control register */
2414 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2415
2416 /* transmit flow control register */
2417 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2418
2419 /* transmit parameter register */
2420 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2421 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2422 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2423
2424 /* serial mode register */
2425 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2426 reg = YU_SMR_DATA_BLIND(0x1c) |
2427 YU_SMR_MFL_VLAN |
2428 YU_SMR_IPG_DATA(0x1e);
2429
2430 if (sc->sk_type != SK_YUKON_FE &&
2431 sc->sk_type != SK_YUKON_FE_P)
2432 reg |= YU_SMR_MFL_JUMBO;
2433
2434 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2435
2436 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2437 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2438 /* msk_attach calls me before ether_ifattach so check null */
2439 if (ifp != NULL && ifp->if_sadl != NULL)
2440 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2441 sizeof(sc_if->sk_enaddr));
2442 /* Setup Yukon's address */
2443 for (i = 0; i < 3; i++) {
2444 /* Write Source Address 1 (unicast filter) */
2445 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2446 sc_if->sk_enaddr[i * 2] |
2447 sc_if->sk_enaddr[i * 2 + 1] << 8);
2448 }
2449
2450 for (i = 0; i < 3; i++) {
2451 reg = sk_win_read_2(sc_if->sk_softc,
2452 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2453 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2454 }
2455
2456 /* Set promiscuous mode */
2457 msk_setpromisc(sc_if);
2458
2459 /* Set multicast filter */
2460 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2461 msk_setmulti(sc_if);
2462
2463 /* enable interrupt mask for counter overflows */
2464 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2465 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2466 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2467 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2468
2469 /* Configure RX MAC FIFO Flush Mask */
2470 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2471 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2472 YU_RXSTAT_JABBER;
2473 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2474
2475 /* Configure RX MAC FIFO */
2476 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2477 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2478 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2479 v |= SK_RFCTL_RX_OVER_ON;
2480 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2481
2482 if ((sc->sk_type == SK_YUKON_FE_P) &&
2483 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2484 v = 0x178; /* Magic value */
2485 else {
2486 /* Increase flush threshold to 64 bytes */
2487 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2488 }
2489 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2490
2491 /* Configure TX MAC FIFO */
2492 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2493 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2494
2495 if ((sc->sk_type == SK_YUKON_FE_P) &&
2496 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2497 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2498 v &= ~SK_TXEND_WM_ON;
2499 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2500 }
2501
2502 #if 1
2503 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2504 #endif
2505 DPRINTFN(6, ("msk_init_yukon: end\n"));
2506 }
2507
2508 /*
2509 * Note that to properly initialize any part of the GEnesis chip,
2510 * you first have to take it out of reset mode.
2511 */
2512 static int
2513 msk_init(struct ifnet *ifp)
2514 {
2515 struct sk_if_softc *sc_if = ifp->if_softc;
2516 struct sk_softc *sc = sc_if->sk_softc;
2517 int rc = 0, s;
2518 uint32_t imr, imtimer_ticks;
2519
2520
2521 DPRINTFN(2, ("msk_init\n"));
2522
2523 s = splnet();
2524
2525 /* Cancel pending I/O and free all RX/TX buffers. */
2526 msk_stop(ifp, 1);
2527
2528 /* Configure I2C registers */
2529
2530 /* Configure XMAC(s) */
2531 msk_init_yukon(sc_if);
2532 if ((rc = ether_mediachange(ifp)) != 0)
2533 goto out;
2534
2535 /* Configure transmit arbiter(s) */
2536 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2537 #if 0
2538 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2539 #endif
2540
2541 if (sc->sk_ramsize) {
2542 /* Configure RAMbuffers */
2543 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2544 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2545 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2546 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2547 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2548 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2549
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2551 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2552 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2553 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2554 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2555 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2556 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2557 }
2558
2559 /* Configure BMUs */
2560 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2561 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2562 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2563 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2564
2565 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2566 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2567 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2568 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2569
2570 /* Make sure the sync transmit queue is disabled. */
2571 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2572
2573 /* Init descriptors */
2574 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2575 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2576 "memory for rx buffers\n");
2577 msk_stop(ifp, 1);
2578 splx(s);
2579 return ENOBUFS;
2580 }
2581
2582 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2583 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2584 "memory for tx buffers\n");
2585 msk_stop(ifp, 1);
2586 splx(s);
2587 return ENOBUFS;
2588 }
2589
2590 /* Set interrupt moderation if changed via sysctl. */
2591 switch (sc->sk_type) {
2592 case SK_YUKON_EC:
2593 case SK_YUKON_EC_U:
2594 case SK_YUKON_EX:
2595 case SK_YUKON_SUPR:
2596 case SK_YUKON_ULTRA2:
2597 case SK_YUKON_OPTIMA:
2598 case SK_YUKON_PRM:
2599 case SK_YUKON_OPTIMA2:
2600 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2601 break;
2602 case SK_YUKON_FE:
2603 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2604 break;
2605 case SK_YUKON_FE_P:
2606 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2607 break;
2608 case SK_YUKON_XL:
2609 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2610 break;
2611 default:
2612 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2613 }
2614 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2615 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2616 sk_win_write_4(sc, SK_IMTIMERINIT,
2617 SK_IM_USECS(sc->sk_int_mod));
2618 aprint_verbose_dev(sc->sk_dev,
2619 "interrupt moderation is %d us\n", sc->sk_int_mod);
2620 }
2621
2622 /* Initialize prefetch engine. */
2623 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2624 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2625 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2626 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2627 MSK_RX_RING_ADDR(sc_if, 0));
2628 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2629 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2630 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2631 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2632
2633 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2634 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2635 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2636 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2637 MSK_TX_RING_ADDR(sc_if, 0));
2638 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2639 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2640 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2641 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2642
2643 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2644 sc_if->sk_cdata.sk_rx_prod);
2645
2646
2647 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2648 /* Disable flushing of non-ASF packets. */
2649 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2650 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2651 }
2652
2653 /* Configure interrupt handling */
2654 if (sc_if->sk_port == SK_PORT_A)
2655 sc->sk_intrmask |= SK_Y2_INTRS1;
2656 else
2657 sc->sk_intrmask |= SK_Y2_INTRS2;
2658 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2659 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2660
2661 ifp->if_flags |= IFF_RUNNING;
2662 ifp->if_flags &= ~IFF_OACTIVE;
2663
2664 callout_schedule(&sc_if->sk_tick_ch, hz);
2665
2666 out:
2667 splx(s);
2668 return rc;
2669 }
2670
2671 /*
2672 * Note: the logic of second parameter is inverted compared to OpenBSD
2673 * code, since this code uses the function as if_stop hook too.
2674 */
2675 static void
2676 msk_stop(struct ifnet *ifp, int disable)
2677 {
2678 struct sk_if_softc *sc_if = ifp->if_softc;
2679 struct sk_softc *sc = sc_if->sk_softc;
2680 bus_dmamap_t dmamap;
2681 int i;
2682
2683 DPRINTFN(2, ("msk_stop\n"));
2684
2685 callout_stop(&sc_if->sk_tick_ch);
2686 callout_stop(&sc_if->sk_tick_rx);
2687
2688 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2689
2690 /* Stop transfer of Tx descriptors */
2691
2692 /* Stop transfer of Rx descriptors */
2693
2694 if (disable) {
2695 /* Turn off various components of this interface. */
2696 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2697 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2698 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2699 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2700 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2701 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2702 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2703 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2704 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2705 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2706 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2707
2708 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2709 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2710
2711 /* Disable interrupts */
2712 if (sc_if->sk_port == SK_PORT_A)
2713 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2714 else
2715 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2716 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2717 }
2718
2719 /* Free RX and TX mbufs still in the queues. */
2720 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2721 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2722 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2723
2724 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2725 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2726
2727 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2728
2729 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2730 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2731 }
2732 }
2733
2734 sc_if->sk_cdata.sk_rx_prod = 0;
2735 sc_if->sk_cdata.sk_rx_cons = 0;
2736 sc_if->sk_cdata.sk_rx_cnt = 0;
2737
2738 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2739 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2740 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2741
2742 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2743 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2744
2745 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2746
2747 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2748 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2749 }
2750 }
2751 }
2752
2753 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2754 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2755
2756 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2757 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2758
2759 #ifdef MSK_DEBUG
2760 static void
2761 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2762 {
2763 #define DESC_PRINT(X) \
2764 if (X) \
2765 printf("txdesc[%d]." #X "=%#x\n", \
2766 idx, X);
2767
2768 DESC_PRINT(letoh32(le->sk_addr));
2769 DESC_PRINT(letoh16(le->sk_len));
2770 DESC_PRINT(le->sk_ctl);
2771 DESC_PRINT(le->sk_opcode);
2772 #undef DESC_PRINT
2773 }
2774
2775 static void
2776 msk_dump_bytes(const char *data, int len)
2777 {
2778 int c, i, j;
2779
2780 for (i = 0; i < len; i += 16) {
2781 printf("%08x ", i);
2782 c = len - i;
2783 if (c > 16) c = 16;
2784
2785 for (j = 0; j < c; j++) {
2786 printf("%02x ", data[i + j] & 0xff);
2787 if ((j & 0xf) == 7 && j > 0)
2788 printf(" ");
2789 }
2790
2791 for (; j < 16; j++)
2792 printf(" ");
2793 printf(" ");
2794
2795 for (j = 0; j < c; j++) {
2796 int ch = data[i + j] & 0xff;
2797 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2798 }
2799
2800 printf("\n");
2801
2802 if (c < 16)
2803 break;
2804 }
2805 }
2806
2807 static void
2808 msk_dump_mbuf(struct mbuf *m)
2809 {
2810 int count = m->m_pkthdr.len;
2811
2812 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2813
2814 while (count > 0 && m) {
2815 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2816 m, m->m_data, m->m_len);
2817 if (mskdebug >= 4)
2818 msk_dump_bytes(mtod(m, char *), m->m_len);
2819
2820 count -= m->m_len;
2821 m = m->m_next;
2822 }
2823 }
2824 #endif
2825
2826 static int
2827 msk_sysctl_handler(SYSCTLFN_ARGS)
2828 {
2829 int error, t;
2830 struct sysctlnode node;
2831 struct sk_softc *sc;
2832
2833 node = *rnode;
2834 sc = node.sysctl_data;
2835 t = sc->sk_int_mod;
2836 node.sysctl_data = &t;
2837 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2838 if (error || newp == NULL)
2839 return error;
2840
2841 if (t < SK_IM_MIN || t > SK_IM_MAX)
2842 return EINVAL;
2843
2844 /* update the softc with sysctl-changed value, and mark
2845 for hardware update */
2846 sc->sk_int_mod = t;
2847 sc->sk_int_mod_pending = 1;
2848 return 0;
2849 }
2850
2851 /*
2852 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2853 * set up in mskc_attach()
2854 */
2855 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2856 {
2857 int rc;
2858 const struct sysctlnode *node;
2859
2860 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2861 0, CTLTYPE_NODE, "msk",
2862 SYSCTL_DESCR("msk interface controls"),
2863 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2864 goto err;
2865 }
2866
2867 msk_root_num = node->sysctl_num;
2868 return;
2869
2870 err:
2871 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2872 }
2873