if_msk.c revision 1.108 1 /* $NetBSD: if_msk.c,v 1.108 2020/04/30 14:04:54 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.108 2020/04/30 14:04:54 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
199 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 { 0, 0 }
202 };
203
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 return CSR_READ_4(sc, reg);
208 }
209
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 return CSR_READ_2(sc, reg);
214 }
215
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 return CSR_READ_1(sc, reg);
220 }
221
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 CSR_WRITE_4(sc, reg, x);
226 }
227
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 CSR_WRITE_2(sc, reg, x);
232 }
233
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 CSR_WRITE_1(sc, reg, x);
238 }
239
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 struct sk_if_softc *sc_if = device_private(dev);
244 uint16_t data;
245 int i;
246
247 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249
250 for (i = 0; i < SK_TIMEOUT; i++) {
251 DELAY(1);
252 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 if (data & YU_SMICR_READ_VALID)
254 break;
255 }
256
257 if (i == SK_TIMEOUT) {
258 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
259 return ETIMEDOUT;
260 }
261
262 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263
264 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265
266 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 phy, reg, *val));
268
269 return 0;
270 }
271
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 struct sk_if_softc *sc_if = device_private(dev);
276 int i;
277
278 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 phy, reg, val));
280
281 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284
285 for (i = 0; i < SK_TIMEOUT; i++) {
286 DELAY(1);
287 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 break;
289 }
290
291 if (i == SK_TIMEOUT) {
292 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
293 return ETIMEDOUT;
294 }
295
296 return 0;
297 }
298
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 struct sk_if_softc *sc_if = ifp->if_softc;
303 struct mii_data *mii = &sc_if->sk_mii;
304 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 int gpcr;
306
307 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309
310 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 /* Set speed. */
313 gpcr |= YU_GPCR_SPEED_DIS;
314 switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 case IFM_1000_SX:
316 case IFM_1000_LX:
317 case IFM_1000_CX:
318 case IFM_1000_T:
319 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 break;
321 case IFM_100_TX:
322 gpcr |= YU_GPCR_SPEED;
323 break;
324 }
325
326 /* Set duplex. */
327 gpcr |= YU_GPCR_DPLX_DIS;
328 if ((mii->mii_media_active & IFM_FDX) != 0)
329 gpcr |= YU_GPCR_DUPLEX;
330
331 /* Disable flow control. */
332 gpcr |= YU_GPCR_FCTL_DIS;
333 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 }
335
336 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337
338 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 uint32_t hashes[2] = { 0, 0 };
347 int h;
348 struct ethercom *ec = &sc_if->sk_ethercom;
349 struct ether_multi *enm;
350 struct ether_multistep step;
351 uint16_t reg;
352
353 /* First, zot all the existing filters. */
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358
359
360 /* Now program new ones. */
361 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 reg |= YU_RCR_UFLEN;
363 allmulti:
364 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 if ((ifp->if_flags & IFF_PROMISC) != 0)
366 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 hashes[0] = 0xFFFFFFFF;
369 hashes[1] = 0xFFFFFFFF;
370 }
371 } else {
372 /* First find the tail of the list. */
373 ETHER_LOCK(ec);
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 ETHER_UNLOCK(ec);
380 goto allmulti;
381 }
382 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 ((1 << SK_HASH_BITS) - 1);
384 if (h < 32)
385 hashes[0] |= (1 << h);
386 else
387 hashes[1] |= (1 << (h - 32));
388
389 ETHER_NEXT_MULTI(step, enm);
390 }
391 ETHER_UNLOCK(ec);
392 reg |= YU_RCR_MUFLEN;
393 }
394
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406
407 if (ifp->if_flags & IFF_PROMISC)
408 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 else
411 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 struct msk_chain_data *cd = &sc_if->sk_cdata;
419 struct msk_ring_data *rd = sc_if->sk_rdata;
420 struct msk_rx_desc *r;
421
422 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
423
424 sc_if->sk_cdata.sk_rx_prod = 0;
425 sc_if->sk_cdata.sk_rx_cons = 0;
426 sc_if->sk_cdata.sk_rx_cnt = 0;
427 sc_if->sk_cdata.sk_rx_hiaddr = 0;
428
429 /* Mark the first ring element to initialize the high address. */
430 sc_if->sk_cdata.sk_rx_hiaddr = 0;
431 r = &rd->sk_rx_ring[cd->sk_rx_prod];
432 r->sk_addr = htole32(cd->sk_rx_hiaddr);
433 r->sk_len = 0;
434 r->sk_ctl = 0;
435 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
436 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
437 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
438 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
439 sc_if->sk_cdata.sk_rx_cnt++;
440
441 msk_fill_rx_ring(sc_if);
442 return 0;
443 }
444
445 static int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct msk_chain_data *cd = &sc_if->sk_cdata;
449 struct msk_ring_data *rd = sc_if->sk_rdata;
450 struct msk_tx_desc *t;
451
452 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 sc_if->sk_cdata.sk_tx_prod = 0;
455 sc_if->sk_cdata.sk_tx_cons = 0;
456 sc_if->sk_cdata.sk_tx_cnt = 0;
457 sc_if->sk_cdata.sk_tx_hiaddr = 0;
458
459 /* Mark the first ring element to initialize the high address. */
460 sc_if->sk_cdata.sk_tx_hiaddr = 0;
461 t = &rd->sk_tx_ring[cd->sk_tx_prod];
462 t->sk_addr = htole32(cd->sk_tx_hiaddr);
463 t->sk_len = 0;
464 t->sk_ctl = 0;
465 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
466 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
467 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
468 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
469 sc_if->sk_cdata.sk_tx_cnt++;
470
471 return 0;
472 }
473
474 static int
475 msk_newbuf(struct sk_if_softc *sc_if)
476 {
477 struct sk_softc *sc = sc_if->sk_softc;
478 struct mbuf *m_new = NULL;
479 struct sk_chain *c;
480 struct msk_rx_desc *r;
481 void *buf = NULL;
482 bus_addr_t addr;
483 bus_dmamap_t rxmap;
484 size_t i;
485 uint32_t rxidx, frag, cur, hiaddr, old_hiaddr, total;
486 uint32_t entries = 0;
487
488 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
489 if (m_new == NULL)
490 return ENOBUFS;
491
492 /* Allocate the jumbo buffer */
493 buf = msk_jalloc(sc_if);
494 if (buf == NULL) {
495 m_freem(m_new);
496 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
497 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
498 return ENOBUFS;
499 }
500
501 /* Attach the buffer to the mbuf */
502 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
503 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
504
505 m_adj(m_new, ETHER_ALIGN);
506
507 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
508 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
509
510 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
511 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
512 m_freem(m_new);
513 return ENOBUFS;
514 }
515
516 /* Count how many rx descriptors needed. */
517 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
518 for (total = i = 0; i < rxmap->dm_nsegs; i++) {
519 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
520 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
521 total++;
522 }
523 total++;
524 }
525
526 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
527 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
528 bus_dmamap_unload(sc->sc_dmatag, rxmap);
529 m_freem(m_new);
530 return ENOBUFS;
531 }
532
533 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
534 rxmap->dm_nsegs, total));
535
536 /* Sync the DMA map. */
537 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
538 BUS_DMASYNC_PREREAD);
539
540 old_hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
541 for (i = 0; i < rxmap->dm_nsegs; i++) {
542 addr = rxmap->dm_segs[i].ds_addr;
543 DPRINTFN(2, ("msk_newbuf: addr %llx\n",
544 (unsigned long long)addr));
545 hiaddr = MSK_ADDR_HI(addr);
546
547 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
548 c = &sc_if->sk_cdata.sk_rx_chain[frag];
549 c->sk_mbuf = NULL;
550 r = &sc_if->sk_rdata->sk_rx_ring[frag];
551 r->sk_addr = htole32(hiaddr);
552 r->sk_len = 0;
553 r->sk_ctl = 0;
554 if (i == 0)
555 r->sk_opcode = SK_Y2_BMUOPC_ADDR64;
556 else
557 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 |
558 SK_Y2_RXOPC_OWN;
559 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
560 MSK_CDRXSYNC(sc_if, frag,
561 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
562 SK_INC(frag, MSK_RX_RING_CNT);
563 entries++;
564 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
565 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
566 }
567
568 c = &sc_if->sk_cdata.sk_rx_chain[frag];
569 r = &sc_if->sk_rdata->sk_rx_ring[frag];
570 r->sk_addr = htole32(MSK_ADDR_LO(addr));
571 r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
572 r->sk_ctl = 0;
573 if (i == 0) {
574 if (hiaddr != old_hiaddr)
575 r->sk_opcode = SK_Y2_RXOPC_PACKET |
576 SK_Y2_RXOPC_OWN;
577 else
578 r->sk_opcode = SK_Y2_RXOPC_PACKET;
579 } else
580 r->sk_opcode = SK_Y2_RXOPC_BUFFER | SK_Y2_RXOPC_OWN;
581 MSK_CDRXSYNC(sc_if, frag,
582 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
583 cur = frag;
584 SK_INC(frag, MSK_RX_RING_CNT);
585 entries++;
586 }
587 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
588
589 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
590 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
591 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
592 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
593
594 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
595 MSK_CDRXSYNC(sc_if, rxidx,
596 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
597
598 sc_if->sk_cdata.sk_rx_cnt += entries;
599 sc_if->sk_cdata.sk_rx_prod = frag;
600
601 return 0;
602 }
603
604 /*
605 * Memory management for jumbo frames.
606 */
607
608 static int
609 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
610 {
611 struct sk_softc *sc = sc_if->sk_softc;
612 char *ptr, *kva;
613 int i, state, error;
614 struct sk_jpool_entry *entry;
615
616 state = error = 0;
617
618 /* Grab a big chunk o' storage. */
619 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
620 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
621 BUS_DMA_NOWAIT)) {
622 aprint_error(": can't alloc rx buffers");
623 return ENOBUFS;
624 }
625
626 state = 1;
627 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
628 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
629 BUS_DMA_NOWAIT)) {
630 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
631 error = ENOBUFS;
632 goto out;
633 }
634
635 state = 2;
636 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
637 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
638 aprint_error(": can't create dma map");
639 error = ENOBUFS;
640 goto out;
641 }
642
643 state = 3;
644 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
645 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
646 aprint_error(": can't load dma map");
647 error = ENOBUFS;
648 goto out;
649 }
650
651 state = 4;
652 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
653 DPRINTFN(1,("msk_jumbo_buf = %p\n",
654 (void *)sc_if->sk_cdata.sk_jumbo_buf));
655
656 LIST_INIT(&sc_if->sk_jfree_listhead);
657 LIST_INIT(&sc_if->sk_jinuse_listhead);
658 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
659
660 /*
661 * Now divide it up into 9K pieces and save the addresses
662 * in an array.
663 */
664 ptr = sc_if->sk_cdata.sk_jumbo_buf;
665 for (i = 0; i < MSK_JSLOTS; i++) {
666 sc_if->sk_cdata.sk_jslots[i] = ptr;
667 ptr += SK_JLEN;
668 entry = malloc(sizeof(struct sk_jpool_entry),
669 M_DEVBUF, M_WAITOK);
670 entry->slot = i;
671 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
672 entry, jpool_entries);
673 }
674 out:
675 if (error != 0) {
676 switch (state) {
677 case 4:
678 bus_dmamap_unload(sc->sc_dmatag,
679 sc_if->sk_cdata.sk_rx_jumbo_map);
680 /* FALLTHROUGH */
681 case 3:
682 bus_dmamap_destroy(sc->sc_dmatag,
683 sc_if->sk_cdata.sk_rx_jumbo_map);
684 /* FALLTHROUGH */
685 case 2:
686 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
687 /* FALLTHROUGH */
688 case 1:
689 bus_dmamem_free(sc->sc_dmatag,
690 &sc_if->sk_cdata.sk_jumbo_seg,
691 sc_if->sk_cdata.sk_jumbo_nseg);
692 break;
693 default:
694 break;
695 }
696 }
697
698 return error;
699 }
700
701 static void
702 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
703 {
704 struct sk_softc *sc = sc_if->sk_softc;
705
706 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
707 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
708 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
709 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
710 sc_if->sk_cdata.sk_jumbo_nseg);
711 }
712
713 /*
714 * Allocate a jumbo buffer.
715 */
716 static void *
717 msk_jalloc(struct sk_if_softc *sc_if)
718 {
719 struct sk_jpool_entry *entry;
720
721 mutex_enter(&sc_if->sk_jpool_mtx);
722 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
723
724 if (entry == NULL) {
725 mutex_exit(&sc_if->sk_jpool_mtx);
726 return NULL;
727 }
728
729 LIST_REMOVE(entry, jpool_entries);
730 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
731 mutex_exit(&sc_if->sk_jpool_mtx);
732 return sc_if->sk_cdata.sk_jslots[entry->slot];
733 }
734
735 /*
736 * Release a jumbo buffer.
737 */
738 static void
739 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
740 {
741 struct sk_jpool_entry *entry;
742 struct sk_if_softc *sc;
743 int i;
744
745 /* Extract the softc struct pointer. */
746 sc = (struct sk_if_softc *)arg;
747
748 if (sc == NULL)
749 panic("msk_jfree: can't find softc pointer!");
750
751 /* calculate the slot this buffer belongs to */
752 i = ((vaddr_t)buf
753 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
754
755 if ((i < 0) || (i >= MSK_JSLOTS))
756 panic("msk_jfree: asked to free buffer that we don't manage!");
757
758 mutex_enter(&sc->sk_jpool_mtx);
759 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
760 if (entry == NULL)
761 panic("msk_jfree: buffer not in use!");
762 entry->slot = i;
763 LIST_REMOVE(entry, jpool_entries);
764 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
765 mutex_exit(&sc->sk_jpool_mtx);
766
767 if (__predict_true(m != NULL))
768 pool_cache_put(mb_cache, m);
769
770 /* Now that we know we have a free RX buffer, refill if running out */
771 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
772 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
773 callout_schedule(&sc->sk_tick_rx, 0);
774 }
775
776 static int
777 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
778 {
779 struct sk_if_softc *sc = ifp->if_softc;
780 int s, error;
781
782 s = splnet();
783
784 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
785 switch (cmd) {
786 case SIOCSIFFLAGS:
787 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
788 break;
789
790 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
791 case IFF_RUNNING:
792 msk_stop(ifp, 1);
793 break;
794 case IFF_UP:
795 msk_init(ifp);
796 break;
797 case IFF_UP | IFF_RUNNING:
798 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
799 msk_setpromisc(sc);
800 msk_setmulti(sc);
801 } else
802 msk_init(ifp);
803 break;
804 }
805 sc->sk_if_flags = ifp->if_flags;
806 break;
807 default:
808 error = ether_ioctl(ifp, cmd, data);
809 if (error == ENETRESET) {
810 error = 0;
811 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
812 ;
813 else if (ifp->if_flags & IFF_RUNNING) {
814 /*
815 * Multicast list has changed; set the hardware
816 * filter accordingly.
817 */
818 msk_setmulti(sc);
819 }
820 }
821 break;
822 }
823
824 splx(s);
825 return error;
826 }
827
828 static void
829 msk_update_int_mod(struct sk_softc *sc, int verbose)
830 {
831 uint32_t imtimer_ticks;
832
833 /*
834 * Configure interrupt moderation. The moderation timer
835 * defers interrupts specified in the interrupt moderation
836 * timer mask based on the timeout specified in the interrupt
837 * moderation timer init register. Each bit in the timer
838 * register represents one tick, so to specify a timeout in
839 * microseconds, we have to multiply by the correct number of
840 * ticks-per-microsecond.
841 */
842 switch (sc->sk_type) {
843 case SK_YUKON_EC:
844 case SK_YUKON_EC_U:
845 case SK_YUKON_EX:
846 case SK_YUKON_SUPR:
847 case SK_YUKON_ULTRA2:
848 case SK_YUKON_OPTIMA:
849 case SK_YUKON_PRM:
850 case SK_YUKON_OPTIMA2:
851 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
852 break;
853 case SK_YUKON_FE:
854 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
855 break;
856 case SK_YUKON_FE_P:
857 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
858 break;
859 case SK_YUKON_XL:
860 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
861 break;
862 default:
863 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
864 }
865 if (verbose)
866 aprint_verbose_dev(sc->sk_dev,
867 "interrupt moderation is %d us\n", sc->sk_int_mod);
868 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
869 sk_win_write_4(sc, SK_IMMR, SK_Y2_IMR_BMU);
870 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
871 sc->sk_int_mod_pending = 0;
872 }
873
874 static int
875 msk_lookup(const struct pci_attach_args *pa)
876 {
877 const struct msk_product *pmsk;
878
879 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
880 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
881 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
882 return 1;
883 }
884 return 0;
885 }
886
887 /*
888 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
889 * IDs against our list and return a device name if we find a match.
890 */
891 static int
892 mskc_probe(device_t parent, cfdata_t match, void *aux)
893 {
894 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
895
896 return msk_lookup(pa);
897 }
898
899 /*
900 * Force the GEnesis into reset, then bring it out of reset.
901 */
902 static void
903 mskc_reset(struct sk_softc *sc)
904 {
905 uint32_t imtimer_ticks, reg1;
906 uint16_t status;
907 int reg;
908
909 DPRINTFN(2, ("mskc_reset\n"));
910
911 /* Disable ASF */
912 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
913 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
914 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
915 /* Clear AHB bridge & microcontroller reset. */
916 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
917 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
918 /* Clear ASF microcontroller state. */
919 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
920 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
921 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
922 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
923 } else
924 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
925 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
926
927 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
928 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
929
930 DELAY(1000);
931 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
932 DELAY(2);
933 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
934 sk_win_write_1(sc, SK_TESTCTL1, 2);
935
936 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
937 sc->sk_type >= SK_YUKON_FE_P) {
938 uint32_t our;
939
940 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
941
942 /* enable all clocks. */
943 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
944 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
945 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
946 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
947 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
948 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
949 /* Set all bits to 0 except bits 15..12 */
950 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
951 /* Set to default value */
952 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
953
954 /*
955 * Disable status race, workaround for Yukon EC Ultra &
956 * Yukon EX.
957 */
958 reg1 = sk_win_read_4(sc, SK_GPIO);
959 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
960 sk_win_write_4(sc, SK_GPIO, reg1);
961 sk_win_read_4(sc, SK_GPIO);
962 }
963
964 /* release PHY from PowerDown/Coma mode. */
965 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
966 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
967 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
968 else
969 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
970 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
971
972 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
973 sk_win_write_1(sc, SK_Y2_CLKGATE,
974 SK_Y2_CLKGATE_LINK1_GATE_DIS |
975 SK_Y2_CLKGATE_LINK2_GATE_DIS |
976 SK_Y2_CLKGATE_LINK1_CORE_DIS |
977 SK_Y2_CLKGATE_LINK2_CORE_DIS |
978 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
979 else
980 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
981
982 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
983 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
984 DELAY(1000);
985 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
986 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
987
988 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
989 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
990 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
991 }
992
993 sk_win_write_1(sc, SK_TESTCTL1, 1);
994
995 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
996 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
997 CSR_READ_2(sc, SK_LINK_CTRL)));
998
999 /* Clear I2C IRQ noise */
1000 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
1001
1002 /* Disable hardware timer */
1003 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
1004 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
1005
1006 /* Disable descriptor polling */
1007 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1008
1009 /* Disable time stamps */
1010 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1011 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1012
1013 /* Enable RAM interface */
1014 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1015 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1016 sk_win_write_1(sc, reg, 36);
1017 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1018 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1019 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1020
1021 /*
1022 * Configure interrupt moderation. The moderation timer
1023 * defers interrupts specified in the interrupt moderation
1024 * timer mask based on the timeout specified in the interrupt
1025 * moderation timer init register. Each bit in the timer
1026 * register represents one tick, so to specify a timeout in
1027 * microseconds, we have to multiply by the correct number of
1028 * ticks-per-microsecond.
1029 */
1030 switch (sc->sk_type) {
1031 case SK_YUKON_EC:
1032 case SK_YUKON_EC_U:
1033 case SK_YUKON_EX:
1034 case SK_YUKON_SUPR:
1035 case SK_YUKON_ULTRA2:
1036 case SK_YUKON_OPTIMA:
1037 case SK_YUKON_PRM:
1038 case SK_YUKON_OPTIMA2:
1039 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1040 break;
1041 case SK_YUKON_FE:
1042 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1043 break;
1044 case SK_YUKON_FE_P:
1045 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1046 break;
1047 case SK_YUKON_XL:
1048 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1049 break;
1050 default:
1051 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1052 break;
1053 }
1054
1055 /* Reset status ring. */
1056 memset(sc->sk_status_ring, 0,
1057 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1058 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1059 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1060 sc->sk_status_idx = 0;
1061
1062 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1063 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1064
1065 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1066 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1067 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1068 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1069 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1070 if (sc->sk_type == SK_YUKON_EC &&
1071 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1072 /* WA for dev. #4.3 */
1073 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1074 SK_STAT_BMU_TXTHIDX_MSK);
1075 /* WA for dev. #4.18 */
1076 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1077 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1078 } else {
1079 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1080 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1081 if (sc->sk_type == SK_YUKON_XL)
1082 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1083 else
1084 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1085 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1086 }
1087
1088 #if 0
1089 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1090 #endif
1091 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1092
1093 /* Enable status unit. */
1094 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1095
1096 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1097 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1098 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1099
1100 msk_update_int_mod(sc, 0);
1101 }
1102
1103 static int
1104 msk_probe(device_t parent, cfdata_t match, void *aux)
1105 {
1106 struct skc_attach_args *sa = aux;
1107
1108 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1109 return 0;
1110
1111 switch (sa->skc_type) {
1112 case SK_YUKON_XL:
1113 case SK_YUKON_EC_U:
1114 case SK_YUKON_EX:
1115 case SK_YUKON_EC:
1116 case SK_YUKON_FE:
1117 case SK_YUKON_FE_P:
1118 case SK_YUKON_SUPR:
1119 case SK_YUKON_ULTRA2:
1120 case SK_YUKON_OPTIMA:
1121 case SK_YUKON_PRM:
1122 case SK_YUKON_OPTIMA2:
1123 return 1;
1124 }
1125
1126 return 0;
1127 }
1128
1129 static void
1130 msk_reset(struct sk_if_softc *sc_if)
1131 {
1132 /* GMAC and GPHY Reset */
1133 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1134 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1135 DELAY(1000);
1136 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1137 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1138 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1139 }
1140
1141 static bool
1142 msk_resume(device_t dv, const pmf_qual_t *qual)
1143 {
1144 struct sk_if_softc *sc_if = device_private(dv);
1145
1146 msk_init_yukon(sc_if);
1147 return true;
1148 }
1149
1150 /*
1151 * Each XMAC chip is attached as a separate logical IP interface.
1152 * Single port cards will have only one logical interface of course.
1153 */
1154 static void
1155 msk_attach(device_t parent, device_t self, void *aux)
1156 {
1157 struct sk_if_softc *sc_if = device_private(self);
1158 struct sk_softc *sc = device_private(parent);
1159 struct skc_attach_args *sa = aux;
1160 bus_dmamap_t dmamap;
1161 struct ifnet *ifp;
1162 struct mii_data * const mii = &sc_if->sk_mii;
1163 void *kva;
1164 int i;
1165 uint32_t chunk;
1166 int mii_flags;
1167
1168 sc_if->sk_dev = self;
1169 sc_if->sk_port = sa->skc_port;
1170 sc_if->sk_softc = sc;
1171 sc->sk_if[sa->skc_port] = sc_if;
1172
1173 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1174
1175 /*
1176 * Get station address for this interface. Note that
1177 * dual port cards actually come with three station
1178 * addresses: one for each port, plus an extra. The
1179 * extra one is used by the SysKonnect driver software
1180 * as a 'virtual' station address for when both ports
1181 * are operating in failover mode. Currently we don't
1182 * use this extra address.
1183 */
1184 for (i = 0; i < ETHER_ADDR_LEN; i++)
1185 sc_if->sk_enaddr[i] =
1186 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1187
1188 aprint_normal(": Ethernet address %s\n",
1189 ether_sprintf(sc_if->sk_enaddr));
1190
1191 /*
1192 * Set up RAM buffer addresses. The Yukon2 has a small amount
1193 * of SRAM on it, somewhere between 4K and 48K. We need to
1194 * divide this up between the transmitter and receiver. We
1195 * give the receiver 2/3 of the memory (rounded down), and the
1196 * transmitter whatever remains.
1197 */
1198 if (sc->sk_ramsize) {
1199 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1200 sc_if->sk_rx_ramstart = 0;
1201 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1202 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1203 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1204 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1205
1206 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1207 " tx_ramstart=%#x tx_ramend=%#x\n",
1208 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1209 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1210 }
1211
1212 /* Allocate the descriptor queues. */
1213 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1214 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1215 BUS_DMA_NOWAIT)) {
1216 aprint_error(": can't alloc rx buffers\n");
1217 goto fail;
1218 }
1219 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1220 sc_if->sk_ring_nseg,
1221 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1222 aprint_error(": can't map dma buffers (%zu bytes)\n",
1223 sizeof(struct msk_ring_data));
1224 goto fail_1;
1225 }
1226 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1227 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1228 &sc_if->sk_ring_map)) {
1229 aprint_error(": can't create dma map\n");
1230 goto fail_2;
1231 }
1232 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1233 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1234 aprint_error(": can't load dma map\n");
1235 goto fail_3;
1236 }
1237
1238 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1239 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1240
1241 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1242 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1243 aprint_error_dev(sc_if->sk_dev,
1244 "Can't create TX dmamap\n");
1245 goto fail_3;
1246 }
1247
1248 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1249 }
1250
1251 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1252 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1253
1254 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1255 howmany(SK_JLEN + 1, NBPG),
1256 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1257 aprint_error_dev(sc_if->sk_dev,
1258 "Can't create RX dmamap\n");
1259 goto fail_3;
1260 }
1261
1262 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1263 }
1264
1265 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1266 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1267
1268 if (sc->sk_type != SK_YUKON_FE &&
1269 sc->sk_type != SK_YUKON_FE_P)
1270 sc_if->sk_pktlen = SK_JLEN;
1271 else
1272 sc_if->sk_pktlen = MCLBYTES;
1273
1274 /* Try to allocate memory for jumbo buffers. */
1275 if (msk_alloc_jumbo_mem(sc_if)) {
1276 aprint_error(": jumbo buffer allocation failed\n");
1277 goto fail_3;
1278 }
1279
1280 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1281 if (sc->sk_type != SK_YUKON_FE &&
1282 sc->sk_type != SK_YUKON_FE_P)
1283 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1284
1285 ifp = &sc_if->sk_ethercom.ec_if;
1286 ifp->if_softc = sc_if;
1287 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1288 ifp->if_ioctl = msk_ioctl;
1289 ifp->if_start = msk_start;
1290 ifp->if_stop = msk_stop;
1291 ifp->if_init = msk_init;
1292 ifp->if_watchdog = msk_watchdog;
1293 ifp->if_baudrate = 1000000000;
1294 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1295 IFQ_SET_READY(&ifp->if_snd);
1296 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1297
1298 msk_reset(sc_if);
1299
1300 /*
1301 * Do miibus setup.
1302 */
1303 DPRINTFN(2, ("msk_attach: 1\n"));
1304
1305 mii->mii_ifp = ifp;
1306 mii->mii_readreg = msk_miibus_readreg;
1307 mii->mii_writereg = msk_miibus_writereg;
1308 mii->mii_statchg = msk_miibus_statchg;
1309
1310 sc_if->sk_ethercom.ec_mii = mii;
1311 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1312 mii_flags = MIIF_DOPAUSE;
1313 if (sc->sk_fibertype)
1314 mii_flags |= MIIF_HAVEFIBER;
1315 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1316 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1317 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1318 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1319 0, NULL);
1320 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1321 } else
1322 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1323
1324 callout_init(&sc_if->sk_tick_ch, 0);
1325 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1326 callout_schedule(&sc_if->sk_tick_ch, hz);
1327
1328 callout_init(&sc_if->sk_tick_rx, 0);
1329 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1330
1331 /*
1332 * Call MI attach routines.
1333 */
1334 if_attach(ifp);
1335 if_deferred_start_init(ifp, NULL);
1336 ether_ifattach(ifp, sc_if->sk_enaddr);
1337
1338 if (pmf_device_register(self, NULL, msk_resume))
1339 pmf_class_network_register(self, ifp);
1340 else
1341 aprint_error_dev(self, "couldn't establish power handler\n");
1342
1343 if (sc->rnd_attached++ == 0) {
1344 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1345 RND_TYPE_NET, RND_FLAG_DEFAULT);
1346 }
1347
1348 DPRINTFN(2, ("msk_attach: end\n"));
1349 return;
1350
1351 fail_3:
1352 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1353 fail_2:
1354 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1355 fail_1:
1356 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1357 fail:
1358 sc->sk_if[sa->skc_port] = NULL;
1359 }
1360
1361 static int
1362 msk_detach(device_t self, int flags)
1363 {
1364 struct sk_if_softc *sc_if = device_private(self);
1365 struct sk_softc *sc = sc_if->sk_softc;
1366 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1367 int i;
1368
1369 if (sc->sk_if[sc_if->sk_port] == NULL)
1370 return 0;
1371
1372 msk_stop(ifp, 1);
1373
1374 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1375 bus_dmamap_destroy(sc->sc_dmatag,
1376 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1377 }
1378
1379 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1380 bus_dmamap_destroy(sc->sc_dmatag,
1381 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1382 }
1383
1384 if (--sc->rnd_attached == 0)
1385 rnd_detach_source(&sc->rnd_source);
1386
1387 callout_halt(&sc_if->sk_tick_ch, NULL);
1388 callout_destroy(&sc_if->sk_tick_ch);
1389
1390 callout_halt(&sc_if->sk_tick_rx, NULL);
1391 callout_destroy(&sc_if->sk_tick_rx);
1392
1393 /* Detach any PHYs we might have. */
1394 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1395 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1396
1397 pmf_device_deregister(self);
1398
1399 ether_ifdetach(ifp);
1400 if_detach(ifp);
1401
1402 /* Delete any remaining media. */
1403 ifmedia_fini(&sc_if->sk_mii.mii_media);
1404
1405 msk_free_jumbo_mem(sc_if);
1406
1407 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1408 sizeof(struct msk_ring_data));
1409 bus_dmamem_free(sc->sc_dmatag,
1410 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1411 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1412 sc->sk_if[sc_if->sk_port] = NULL;
1413
1414 return 0;
1415 }
1416
1417 static int
1418 mskcprint(void *aux, const char *pnp)
1419 {
1420 struct skc_attach_args *sa = aux;
1421
1422 if (pnp)
1423 aprint_normal("msk port %c at %s",
1424 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1425 else
1426 aprint_normal(" port %c",
1427 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1428 return UNCONF;
1429 }
1430
1431 /*
1432 * Attach the interface. Allocate softc structures, do ifmedia
1433 * setup and ethernet/BPF attach.
1434 */
1435 static void
1436 mskc_attach(device_t parent, device_t self, void *aux)
1437 {
1438 struct sk_softc *sc = device_private(self);
1439 struct pci_attach_args *pa = aux;
1440 struct skc_attach_args skca;
1441 pci_chipset_tag_t pc = pa->pa_pc;
1442 pcireg_t command, memtype;
1443 const char *intrstr = NULL;
1444 int rc, sk_nodenum;
1445 uint8_t hw, pmd;
1446 const char *revstr = NULL;
1447 const struct sysctlnode *node;
1448 void *kva;
1449 char intrbuf[PCI_INTRSTR_LEN];
1450
1451 DPRINTFN(2, ("begin mskc_attach\n"));
1452
1453 sc->sk_dev = self;
1454 /*
1455 * Handle power management nonsense.
1456 */
1457 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1458
1459 if (command == 0x01) {
1460 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1461 if (command & SK_PSTATE_MASK) {
1462 uint32_t iobase, membase, irq;
1463
1464 /* Save important PCI config data. */
1465 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1466 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1467 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1468
1469 /* Reset the power state. */
1470 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1471 "mode -- setting to D0\n",
1472 command & SK_PSTATE_MASK);
1473 command &= 0xFFFFFFFC;
1474 pci_conf_write(pc, pa->pa_tag,
1475 SK_PCI_PWRMGMTCTRL, command);
1476
1477 /* Restore PCI config data. */
1478 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1479 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1480 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1481 }
1482 }
1483
1484 /*
1485 * Map control/status registers.
1486 */
1487 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1488 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1489 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1490 aprint_error(": can't map mem space\n");
1491 return;
1492 }
1493
1494 if (pci_dma64_available(pa))
1495 sc->sc_dmatag = pa->pa_dmat64;
1496 else
1497 sc->sc_dmatag = pa->pa_dmat;
1498
1499 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1500 command |= PCI_COMMAND_MASTER_ENABLE;
1501 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1502
1503 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1504 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1505
1506 /* bail out here if chip is not recognized */
1507 if (!(SK_IS_YUKON2(sc))) {
1508 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1509 goto fail_1;
1510 }
1511 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1512
1513 /* Allocate interrupt */
1514 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1515 aprint_error(": couldn't map interrupt\n");
1516 goto fail_1;
1517 }
1518
1519 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1520 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1521 msk_intr, sc, device_xname(sc->sk_dev));
1522 if (sc->sk_intrhand == NULL) {
1523 aprint_error(": couldn't establish interrupt");
1524 if (intrstr != NULL)
1525 aprint_error(" at %s", intrstr);
1526 aprint_error("\n");
1527 goto fail_1;
1528 }
1529 sc->sk_pc = pc;
1530
1531 if (bus_dmamem_alloc(sc->sc_dmatag,
1532 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1533 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1534 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1535 aprint_error(": can't alloc status buffers\n");
1536 goto fail_2;
1537 }
1538
1539 if (bus_dmamem_map(sc->sc_dmatag,
1540 &sc->sk_status_seg, sc->sk_status_nseg,
1541 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1542 &kva, BUS_DMA_NOWAIT)) {
1543 aprint_error(": can't map dma buffers (%zu bytes)\n",
1544 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1545 goto fail_3;
1546 }
1547 if (bus_dmamap_create(sc->sc_dmatag,
1548 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1549 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1550 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1551 aprint_error(": can't create dma map\n");
1552 goto fail_4;
1553 }
1554 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1555 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1556 NULL, BUS_DMA_NOWAIT)) {
1557 aprint_error(": can't load dma map\n");
1558 goto fail_5;
1559 }
1560 sc->sk_status_ring = (struct msk_status_desc *)kva;
1561
1562 sc->sk_int_mod = SK_IM_DEFAULT;
1563 sc->sk_int_mod_pending = 0;
1564
1565 /* Reset the adapter. */
1566 mskc_reset(sc);
1567
1568 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1569 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1570
1571 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1572 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1573 sc->sk_fibertype = 1;
1574
1575 switch (sc->sk_type) {
1576 case SK_YUKON_XL:
1577 sc->sk_name = "Yukon-2 XL";
1578 break;
1579 case SK_YUKON_EC_U:
1580 sc->sk_name = "Yukon-2 EC Ultra";
1581 break;
1582 case SK_YUKON_EX:
1583 sc->sk_name = "Yukon-2 Extreme";
1584 break;
1585 case SK_YUKON_EC:
1586 sc->sk_name = "Yukon-2 EC";
1587 break;
1588 case SK_YUKON_FE:
1589 sc->sk_name = "Yukon-2 FE";
1590 break;
1591 case SK_YUKON_FE_P:
1592 sc->sk_name = "Yukon-2 FE+";
1593 break;
1594 case SK_YUKON_SUPR:
1595 sc->sk_name = "Yukon-2 Supreme";
1596 break;
1597 case SK_YUKON_ULTRA2:
1598 sc->sk_name = "Yukon-2 Ultra 2";
1599 break;
1600 case SK_YUKON_OPTIMA:
1601 sc->sk_name = "Yukon-2 Optima";
1602 break;
1603 case SK_YUKON_PRM:
1604 sc->sk_name = "Yukon-2 Optima Prime";
1605 break;
1606 case SK_YUKON_OPTIMA2:
1607 sc->sk_name = "Yukon-2 Optima 2";
1608 break;
1609 default:
1610 sc->sk_name = "Yukon (Unknown)";
1611 }
1612
1613 if (sc->sk_type == SK_YUKON_XL) {
1614 switch (sc->sk_rev) {
1615 case SK_YUKON_XL_REV_A0:
1616 revstr = "A0";
1617 break;
1618 case SK_YUKON_XL_REV_A1:
1619 revstr = "A1";
1620 break;
1621 case SK_YUKON_XL_REV_A2:
1622 revstr = "A2";
1623 break;
1624 case SK_YUKON_XL_REV_A3:
1625 revstr = "A3";
1626 break;
1627 default:
1628 break;
1629 }
1630 }
1631
1632 if (sc->sk_type == SK_YUKON_EC) {
1633 switch (sc->sk_rev) {
1634 case SK_YUKON_EC_REV_A1:
1635 revstr = "A1";
1636 break;
1637 case SK_YUKON_EC_REV_A2:
1638 revstr = "A2";
1639 break;
1640 case SK_YUKON_EC_REV_A3:
1641 revstr = "A3";
1642 break;
1643 default:
1644 break;
1645 }
1646 }
1647
1648 if (sc->sk_type == SK_YUKON_FE) {
1649 switch (sc->sk_rev) {
1650 case SK_YUKON_FE_REV_A1:
1651 revstr = "A1";
1652 break;
1653 case SK_YUKON_FE_REV_A2:
1654 revstr = "A2";
1655 break;
1656 default:
1657 break;
1658 }
1659 }
1660
1661 if (sc->sk_type == SK_YUKON_EC_U) {
1662 switch (sc->sk_rev) {
1663 case SK_YUKON_EC_U_REV_A0:
1664 revstr = "A0";
1665 break;
1666 case SK_YUKON_EC_U_REV_A1:
1667 revstr = "A1";
1668 break;
1669 case SK_YUKON_EC_U_REV_B0:
1670 revstr = "B0";
1671 break;
1672 case SK_YUKON_EC_U_REV_B1:
1673 revstr = "B1";
1674 break;
1675 default:
1676 break;
1677 }
1678 }
1679
1680 if (sc->sk_type == SK_YUKON_FE) {
1681 switch (sc->sk_rev) {
1682 case SK_YUKON_FE_REV_A1:
1683 revstr = "A1";
1684 break;
1685 case SK_YUKON_FE_REV_A2:
1686 revstr = "A2";
1687 break;
1688 default:
1689 ;
1690 }
1691 }
1692
1693 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1694 revstr = "A0";
1695
1696 if (sc->sk_type == SK_YUKON_EX) {
1697 switch (sc->sk_rev) {
1698 case SK_YUKON_EX_REV_A0:
1699 revstr = "A0";
1700 break;
1701 case SK_YUKON_EX_REV_B0:
1702 revstr = "B0";
1703 break;
1704 default:
1705 ;
1706 }
1707 }
1708
1709 if (sc->sk_type == SK_YUKON_SUPR) {
1710 switch (sc->sk_rev) {
1711 case SK_YUKON_SUPR_REV_A0:
1712 revstr = "A0";
1713 break;
1714 case SK_YUKON_SUPR_REV_B0:
1715 revstr = "B0";
1716 break;
1717 case SK_YUKON_SUPR_REV_B1:
1718 revstr = "B1";
1719 break;
1720 default:
1721 ;
1722 }
1723 }
1724
1725 if (sc->sk_type == SK_YUKON_PRM) {
1726 switch (sc->sk_rev) {
1727 case SK_YUKON_PRM_REV_Z1:
1728 revstr = "Z1";
1729 break;
1730 case SK_YUKON_PRM_REV_A0:
1731 revstr = "A0";
1732 break;
1733 default:
1734 ;
1735 }
1736 }
1737
1738 /* Announce the product name. */
1739 aprint_normal(", %s", sc->sk_name);
1740 if (revstr != NULL)
1741 aprint_normal(" rev. %s", revstr);
1742 aprint_normal(" (0x%x)\n", sc->sk_rev);
1743
1744 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1745
1746 sc->sk_macs = 1;
1747
1748 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1749 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1750 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1751 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1752 sc->sk_macs++;
1753 }
1754
1755 skca.skc_port = SK_PORT_A;
1756 skca.skc_type = sc->sk_type;
1757 skca.skc_rev = sc->sk_rev;
1758 (void)config_found(sc->sk_dev, &skca, mskcprint);
1759
1760 if (sc->sk_macs > 1) {
1761 skca.skc_port = SK_PORT_B;
1762 skca.skc_type = sc->sk_type;
1763 skca.skc_rev = sc->sk_rev;
1764 (void)config_found(sc->sk_dev, &skca, mskcprint);
1765 }
1766
1767 /* Turn on the 'driver is loaded' LED. */
1768 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1769
1770 /* skc sysctl setup */
1771
1772 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1773 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1774 SYSCTL_DESCR("mskc per-controller controls"),
1775 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1776 CTL_EOL)) != 0) {
1777 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1778 goto fail_6;
1779 }
1780
1781 sk_nodenum = node->sysctl_num;
1782
1783 /* interrupt moderation time in usecs */
1784 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1785 CTLFLAG_READWRITE,
1786 CTLTYPE_INT, "int_mod",
1787 SYSCTL_DESCR("msk interrupt moderation timer"),
1788 msk_sysctl_handler, 0, (void *)sc,
1789 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1790 CTL_EOL)) != 0) {
1791 aprint_normal_dev(sc->sk_dev,
1792 "couldn't create int_mod sysctl node\n");
1793 goto fail_6;
1794 }
1795
1796 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1797 aprint_error_dev(self, "couldn't establish power handler\n");
1798
1799 return;
1800
1801 fail_6:
1802 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1803 fail_4:
1804 bus_dmamem_unmap(sc->sc_dmatag, kva,
1805 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1806 fail_3:
1807 bus_dmamem_free(sc->sc_dmatag,
1808 &sc->sk_status_seg, sc->sk_status_nseg);
1809 sc->sk_status_nseg = 0;
1810 fail_5:
1811 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1812 fail_2:
1813 pci_intr_disestablish(pc, sc->sk_intrhand);
1814 sc->sk_intrhand = NULL;
1815 fail_1:
1816 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1817 sc->sk_bsize = 0;
1818 }
1819
1820 static int
1821 mskc_detach(device_t self, int flags)
1822 {
1823 struct sk_softc *sc = device_private(self);
1824 int rv;
1825
1826 if (sc->sk_intrhand) {
1827 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1828 sc->sk_intrhand = NULL;
1829 }
1830
1831 if (sc->sk_pihp != NULL) {
1832 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1833 sc->sk_pihp = NULL;
1834 }
1835
1836 rv = config_detach_children(self, flags);
1837 if (rv != 0)
1838 return rv;
1839
1840 if (sc->sk_status_nseg > 0) {
1841 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1842 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1843 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1844 bus_dmamem_free(sc->sc_dmatag,
1845 &sc->sk_status_seg, sc->sk_status_nseg);
1846 }
1847
1848 if (sc->sk_bsize > 0)
1849 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1850
1851 return 0;
1852 }
1853
1854 static int
1855 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1856 {
1857 struct sk_softc *sc = sc_if->sk_softc;
1858 struct msk_tx_desc *f = NULL;
1859 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1860 uint32_t entries = 0;
1861 size_t i;
1862 bus_dmamap_t txmap;
1863 bus_addr_t addr;
1864
1865 DPRINTFN(2, ("msk_encap\n"));
1866
1867 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1868
1869 cur = frag = *txidx;
1870
1871 #ifdef MSK_DEBUG
1872 if (mskdebug >= 2)
1873 msk_dump_mbuf(m_head);
1874 #endif
1875
1876 /*
1877 * Start packing the mbufs in this chain into
1878 * the fragment pointers. Stop when we run out
1879 * of fragments or hit the end of the mbuf chain.
1880 */
1881 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1882 BUS_DMA_NOWAIT)) {
1883 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1884 return ENOBUFS;
1885 }
1886
1887 /* Count how many tx descriptors needed. */
1888 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1889 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1890 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1891 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1892 total++;
1893 }
1894 total++;
1895 }
1896
1897 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1898 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1899 bus_dmamap_unload(sc->sc_dmatag, txmap);
1900 return ENOBUFS;
1901 }
1902
1903 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1904 txmap->dm_nsegs, total));
1905
1906 /* Sync the DMA map. */
1907 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1908 BUS_DMASYNC_PREWRITE);
1909
1910 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1911 for (i = 0; i < txmap->dm_nsegs; i++) {
1912 addr = txmap->dm_segs[i].ds_addr;
1913 DPRINTFN(2, ("msk_encap: addr %llx\n",
1914 (unsigned long long)addr));
1915 hiaddr = MSK_ADDR_HI(addr);
1916
1917 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1918 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1919 f->sk_addr = htole32(hiaddr);
1920 f->sk_len = 0;
1921 f->sk_ctl = 0;
1922 if (i == 0)
1923 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1924 else
1925 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1926 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1927 SK_INC(frag, MSK_TX_RING_CNT);
1928 entries++;
1929 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1930 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1931 }
1932
1933 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1934 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1935 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1936 f->sk_ctl = 0;
1937 if (i == 0) {
1938 if (hiaddr != old_hiaddr)
1939 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1940 else
1941 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1942 } else
1943 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1944 cur = frag;
1945 SK_INC(frag, MSK_TX_RING_CNT);
1946 entries++;
1947 }
1948 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1949
1950 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1951 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1952 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1953 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1954
1955 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1956
1957 /* Sync descriptors before handing to chip */
1958 MSK_CDTXSYNC(sc_if, *txidx, entries,
1959 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1960
1961 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1962
1963 /* Sync first descriptor to hand it off */
1964 MSK_CDTXSYNC(sc_if, *txidx, 1,
1965 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1966
1967 sc_if->sk_cdata.sk_tx_cnt += entries;
1968
1969 #ifdef MSK_DEBUG
1970 if (mskdebug >= 2) {
1971 struct msk_tx_desc *le;
1972 uint32_t idx;
1973 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1974 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1975 msk_dump_txdesc(le, idx);
1976 }
1977 }
1978 #endif
1979
1980 *txidx = frag;
1981
1982 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1983
1984 return 0;
1985 }
1986
1987 static void
1988 msk_start(struct ifnet *ifp)
1989 {
1990 struct sk_if_softc *sc_if = ifp->if_softc;
1991 struct mbuf *m_head = NULL;
1992 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1993 int pkts = 0;
1994
1995 DPRINTFN(2, ("msk_start\n"));
1996
1997 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1998 IFQ_POLL(&ifp->if_snd, m_head);
1999 if (m_head == NULL)
2000 break;
2001
2002 /*
2003 * Pack the data into the transmit ring. If we
2004 * don't have room, set the OACTIVE flag and wait
2005 * for the NIC to drain the ring.
2006 */
2007 if (msk_encap(sc_if, m_head, &idx)) {
2008 ifp->if_flags |= IFF_OACTIVE;
2009 break;
2010 }
2011
2012 /* now we are committed to transmit the packet */
2013 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2014 pkts++;
2015
2016 /*
2017 * If there's a BPF listener, bounce a copy of this frame
2018 * to him.
2019 */
2020 bpf_mtap(ifp, m_head, BPF_D_OUT);
2021 }
2022 if (pkts == 0)
2023 return;
2024
2025 /* Transmit */
2026 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2027 sc_if->sk_cdata.sk_tx_prod = idx;
2028 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2029
2030 /* Set a timeout in case the chip goes out to lunch. */
2031 ifp->if_timer = 5;
2032 }
2033 }
2034
2035 static void
2036 msk_watchdog(struct ifnet *ifp)
2037 {
2038 struct sk_if_softc *sc_if = ifp->if_softc;
2039
2040 /*
2041 * Reclaim first as there is a possibility of losing Tx completion
2042 * interrupts.
2043 */
2044 msk_txeof(sc_if);
2045 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2046 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2047
2048 if_statinc(ifp, if_oerrors);
2049
2050 /* XXX Resets both ports; we shouldn't do that. */
2051 mskc_reset(sc_if->sk_softc);
2052 msk_reset(sc_if);
2053 msk_init(ifp);
2054 }
2055 }
2056
2057 static bool
2058 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2059 {
2060 struct sk_softc *sc = device_private(dv);
2061
2062 DPRINTFN(2, ("mskc_suspend\n"));
2063
2064 /* Turn off the 'driver is loaded' LED. */
2065 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2066
2067 return true;
2068 }
2069
2070 static bool
2071 mskc_resume(device_t dv, const pmf_qual_t *qual)
2072 {
2073 struct sk_softc *sc = device_private(dv);
2074
2075 DPRINTFN(2, ("mskc_resume\n"));
2076
2077 mskc_reset(sc);
2078 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2079
2080 return true;
2081 }
2082
2083 static __inline int
2084 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2085 {
2086 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2087 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2088 YU_RXSTAT_JABBER)) != 0 ||
2089 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2090 YU_RXSTAT_BYTES(stat) != len)
2091 return 0;
2092
2093 return 1;
2094 }
2095
2096 static void
2097 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2098 {
2099 struct sk_softc *sc = sc_if->sk_softc;
2100 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2101 struct mbuf *m;
2102 unsigned cur, prod, tail, total_len = len;
2103 bus_dmamap_t dmamap;
2104
2105 cur = sc_if->sk_cdata.sk_rx_cons;
2106 prod = sc_if->sk_cdata.sk_rx_prod;
2107
2108 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2109 sc_if->sk_cdata.sk_rx_cnt));
2110
2111 while (prod != cur) {
2112 MSK_CDRXSYNC(sc_if, cur,
2113 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2114
2115 tail = cur;
2116 SK_INC(cur, MSK_RX_RING_CNT);
2117
2118 sc_if->sk_cdata.sk_rx_cnt--;
2119 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2120 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2121 if (m != NULL)
2122 break; /* found it */
2123 }
2124 sc_if->sk_cdata.sk_rx_cons = cur;
2125 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2126 sc_if->sk_cdata.sk_rx_cnt, m));
2127
2128 if (m == NULL)
2129 return;
2130
2131 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2132
2133 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2134 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2135 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2136
2137 if (total_len < SK_MIN_FRAMELEN ||
2138 total_len > ETHER_MAX_LEN_JUMBO ||
2139 msk_rxvalid(sc, rxstat, total_len) == 0) {
2140 if_statinc(ifp, if_ierrors);
2141 m_freem(m);
2142 return;
2143 }
2144
2145 m_set_rcvif(m, ifp);
2146 m->m_pkthdr.len = m->m_len = total_len;
2147
2148 /* pass it on. */
2149 if_percpuq_enqueue(ifp->if_percpuq, m);
2150 }
2151
2152 static void
2153 msk_txeof(struct sk_if_softc *sc_if)
2154 {
2155 struct sk_softc *sc = sc_if->sk_softc;
2156 struct msk_tx_desc *cur_tx;
2157 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2158 uint32_t idx, reg, sk_ctl;
2159 bus_dmamap_t dmamap;
2160
2161 DPRINTFN(2, ("msk_txeof\n"));
2162
2163 if (sc_if->sk_port == SK_PORT_A)
2164 reg = SK_STAT_BMU_TXA1_RIDX;
2165 else
2166 reg = SK_STAT_BMU_TXA2_RIDX;
2167
2168 /*
2169 * Go through our tx ring and free mbufs for those
2170 * frames that have been sent.
2171 */
2172 idx = sc_if->sk_cdata.sk_tx_cons;
2173 while (idx != sk_win_read_2(sc, reg)) {
2174 MSK_CDTXSYNC(sc_if, idx, 1,
2175 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2176
2177 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2178 sk_ctl = cur_tx->sk_ctl;
2179 #ifdef MSK_DEBUG
2180 if (mskdebug >= 2)
2181 msk_dump_txdesc(cur_tx, idx);
2182 #endif
2183 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2184 if_statinc(ifp, if_opackets);
2185 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2186 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2187
2188 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2189 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2190
2191 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2192 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2193 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2194 }
2195 sc_if->sk_cdata.sk_tx_cnt--;
2196 SK_INC(idx, MSK_TX_RING_CNT);
2197 }
2198 if (idx == sc_if->sk_cdata.sk_tx_cons)
2199 return;
2200
2201 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2202
2203 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2204 ifp->if_flags &= ~IFF_OACTIVE;
2205
2206 sc_if->sk_cdata.sk_tx_cons = idx;
2207 }
2208
2209 static void
2210 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2211 {
2212 /* Make sure to not completely wrap around */
2213 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2214 if (msk_newbuf(sc_if) == ENOBUFS) {
2215 goto schedretry;
2216 }
2217 }
2218
2219 return;
2220
2221 schedretry:
2222 /* Try later */
2223 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2224 }
2225
2226 static void
2227 msk_fill_rx_tick(void *xsc_if)
2228 {
2229 struct sk_if_softc *sc_if = xsc_if;
2230 int s, rx_prod;
2231
2232 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2233
2234 s = splnet();
2235 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2236 msk_fill_rx_ring(sc_if);
2237 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2238 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2239 sc_if->sk_cdata.sk_rx_prod);
2240 }
2241 splx(s);
2242 }
2243
2244 static void
2245 msk_tick(void *xsc_if)
2246 {
2247 struct sk_if_softc *sc_if = xsc_if;
2248 struct mii_data *mii = &sc_if->sk_mii;
2249 int s;
2250
2251 s = splnet();
2252 mii_tick(mii);
2253 splx(s);
2254
2255 callout_schedule(&sc_if->sk_tick_ch, hz);
2256 }
2257
2258 static void
2259 msk_intr_yukon(struct sk_if_softc *sc_if)
2260 {
2261 uint8_t status;
2262
2263 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2264 /* RX overrun */
2265 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2266 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2267 SK_RFCTL_RX_FIFO_OVER);
2268 }
2269 /* TX underrun */
2270 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2271 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2272 SK_TFCTL_TX_FIFO_UNDER);
2273 }
2274
2275 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2276 }
2277
2278 static int
2279 msk_intr(void *xsc)
2280 {
2281 struct sk_softc *sc = xsc;
2282 struct sk_if_softc *sc_if;
2283 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2284 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2285 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2286 int claimed = 0;
2287 uint32_t status;
2288 struct msk_status_desc *cur_st;
2289
2290 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2291 if (status == 0xffffffff)
2292 return 0;
2293 if (status == 0) {
2294 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2295 return 0;
2296 }
2297
2298 status = CSR_READ_4(sc, SK_ISR);
2299
2300 if (sc_if0 != NULL)
2301 ifp0 = &sc_if0->sk_ethercom.ec_if;
2302 if (sc_if1 != NULL)
2303 ifp1 = &sc_if1->sk_ethercom.ec_if;
2304
2305 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2306 (ifp0->if_flags & IFF_RUNNING)) {
2307 msk_intr_yukon(sc_if0);
2308 }
2309
2310 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2311 (ifp1->if_flags & IFF_RUNNING)) {
2312 msk_intr_yukon(sc_if1);
2313 }
2314
2315 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2316 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2317 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2318
2319 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2320 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2321 switch (cur_st->sk_opcode) {
2322 case SK_Y2_STOPC_RXSTAT:
2323 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2324 if (sc_if) {
2325 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2326 letoh32(cur_st->sk_status));
2327 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2328 msk_fill_rx_tick(sc_if);
2329 }
2330 break;
2331 case SK_Y2_STOPC_TXSTAT:
2332 if (sc_if0)
2333 msk_txeof(sc_if0);
2334 if (sc_if1)
2335 msk_txeof(sc_if1);
2336 break;
2337 default:
2338 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2339 break;
2340 }
2341 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2342
2343 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2344 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2345 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2346 }
2347
2348 if (status & SK_Y2_IMR_BMU) {
2349 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2350 claimed = 1;
2351 }
2352
2353 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2354
2355 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2356 if_schedule_deferred_start(ifp0);
2357 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2358 if_schedule_deferred_start(ifp1);
2359
2360 KASSERT(sc->rnd_attached > 0);
2361 rnd_add_uint32(&sc->rnd_source, status);
2362
2363 if (sc->sk_int_mod_pending)
2364 msk_update_int_mod(sc, 1);
2365
2366 return claimed;
2367 }
2368
2369 static void
2370 msk_init_yukon(struct sk_if_softc *sc_if)
2371 {
2372 uint32_t v;
2373 uint16_t reg;
2374 struct sk_softc *sc;
2375 int i;
2376
2377 sc = sc_if->sk_softc;
2378
2379 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2380 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2381
2382 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2383
2384 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2385 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2386
2387 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2388
2389 /* unused read of the interrupt source register */
2390 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2391 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2392
2393 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2394 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2395 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2396
2397 /* MIB Counter Clear Mode set */
2398 reg |= YU_PAR_MIB_CLR;
2399 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2400 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2401 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2402
2403 /* MIB Counter Clear Mode clear */
2404 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2405 reg &= ~YU_PAR_MIB_CLR;
2406 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2407
2408 /* receive control reg */
2409 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2410 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2411
2412 /* transmit control register */
2413 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2414
2415 /* transmit flow control register */
2416 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2417
2418 /* transmit parameter register */
2419 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2420 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2421 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2422
2423 /* serial mode register */
2424 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2425 reg = YU_SMR_DATA_BLIND(0x1c) |
2426 YU_SMR_MFL_VLAN |
2427 YU_SMR_IPG_DATA(0x1e);
2428
2429 if (sc->sk_type != SK_YUKON_FE &&
2430 sc->sk_type != SK_YUKON_FE_P)
2431 reg |= YU_SMR_MFL_JUMBO;
2432
2433 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2434
2435 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2436 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2437 /* msk_attach calls me before ether_ifattach so check null */
2438 if (ifp != NULL && ifp->if_sadl != NULL)
2439 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2440 sizeof(sc_if->sk_enaddr));
2441 /* Setup Yukon's address */
2442 for (i = 0; i < 3; i++) {
2443 /* Write Source Address 1 (unicast filter) */
2444 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2445 sc_if->sk_enaddr[i * 2] |
2446 sc_if->sk_enaddr[i * 2 + 1] << 8);
2447 }
2448
2449 for (i = 0; i < 3; i++) {
2450 reg = sk_win_read_2(sc_if->sk_softc,
2451 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2452 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2453 }
2454
2455 /* Set promiscuous mode */
2456 msk_setpromisc(sc_if);
2457
2458 /* Set multicast filter */
2459 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2460 msk_setmulti(sc_if);
2461
2462 /* enable interrupt mask for counter overflows */
2463 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2464 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2465 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2466 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2467
2468 /* Configure RX MAC FIFO Flush Mask */
2469 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2470 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2471 YU_RXSTAT_JABBER;
2472 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2473
2474 /* Configure RX MAC FIFO */
2475 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2476 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2477 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2478 v |= SK_RFCTL_RX_OVER_ON;
2479 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2480
2481 if ((sc->sk_type == SK_YUKON_FE_P) &&
2482 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2483 v = 0x178; /* Magic value */
2484 else {
2485 /* Increase flush threshold to 64 bytes */
2486 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2487 }
2488 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2489
2490 /* Configure TX MAC FIFO */
2491 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2492 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2493
2494 if ((sc->sk_type == SK_YUKON_FE_P) &&
2495 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2496 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2497 v &= ~SK_TXEND_WM_ON;
2498 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2499 }
2500
2501 #if 1
2502 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2503 #endif
2504 DPRINTFN(6, ("msk_init_yukon: end\n"));
2505 }
2506
2507 /*
2508 * Note that to properly initialize any part of the GEnesis chip,
2509 * you first have to take it out of reset mode.
2510 */
2511 static int
2512 msk_init(struct ifnet *ifp)
2513 {
2514 struct sk_if_softc *sc_if = ifp->if_softc;
2515 struct sk_softc *sc = sc_if->sk_softc;
2516 int rc = 0, s;
2517 uint32_t imr, imtimer_ticks;
2518
2519
2520 DPRINTFN(2, ("msk_init\n"));
2521
2522 s = splnet();
2523
2524 /* Cancel pending I/O and free all RX/TX buffers. */
2525 msk_stop(ifp, 1);
2526
2527 /* Configure I2C registers */
2528
2529 /* Configure XMAC(s) */
2530 msk_init_yukon(sc_if);
2531 if ((rc = ether_mediachange(ifp)) != 0)
2532 goto out;
2533
2534 /* Configure transmit arbiter(s) */
2535 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2536 #if 0
2537 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2538 #endif
2539
2540 if (sc->sk_ramsize) {
2541 /* Configure RAMbuffers */
2542 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2543 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2544 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2545 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2546 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2547 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2548
2549 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2551 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2552 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2553 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2554 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2555 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2556 }
2557
2558 /* Configure BMUs */
2559 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2560 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2561 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2562 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2563
2564 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2565 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2566 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2567 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2568
2569 /* Make sure the sync transmit queue is disabled. */
2570 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2571
2572 /* Init descriptors */
2573 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2574 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2575 "memory for rx buffers\n");
2576 msk_stop(ifp, 1);
2577 splx(s);
2578 return ENOBUFS;
2579 }
2580
2581 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2582 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2583 "memory for tx buffers\n");
2584 msk_stop(ifp, 1);
2585 splx(s);
2586 return ENOBUFS;
2587 }
2588
2589 /* Set interrupt moderation if changed via sysctl. */
2590 switch (sc->sk_type) {
2591 case SK_YUKON_EC:
2592 case SK_YUKON_EC_U:
2593 case SK_YUKON_EX:
2594 case SK_YUKON_SUPR:
2595 case SK_YUKON_ULTRA2:
2596 case SK_YUKON_OPTIMA:
2597 case SK_YUKON_PRM:
2598 case SK_YUKON_OPTIMA2:
2599 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2600 break;
2601 case SK_YUKON_FE:
2602 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2603 break;
2604 case SK_YUKON_FE_P:
2605 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2606 break;
2607 case SK_YUKON_XL:
2608 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2609 break;
2610 default:
2611 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2612 }
2613 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2614 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2615 sk_win_write_4(sc, SK_IMTIMERINIT,
2616 SK_IM_USECS(sc->sk_int_mod));
2617 aprint_verbose_dev(sc->sk_dev,
2618 "interrupt moderation is %d us\n", sc->sk_int_mod);
2619 }
2620
2621 /* Initialize prefetch engine. */
2622 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2623 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2624 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2625 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2626 MSK_RX_RING_ADDR(sc_if, 0));
2627 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2628 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2629 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2630 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2631
2632 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2633 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2634 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2635 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2636 MSK_TX_RING_ADDR(sc_if, 0));
2637 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2638 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2639 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2640 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2641
2642 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2643 sc_if->sk_cdata.sk_rx_prod);
2644
2645
2646 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2647 /* Disable flushing of non-ASF packets. */
2648 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2649 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2650 }
2651
2652 /* Configure interrupt handling */
2653 if (sc_if->sk_port == SK_PORT_A)
2654 sc->sk_intrmask |= SK_Y2_INTRS1;
2655 else
2656 sc->sk_intrmask |= SK_Y2_INTRS2;
2657 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2658 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2659
2660 ifp->if_flags |= IFF_RUNNING;
2661 ifp->if_flags &= ~IFF_OACTIVE;
2662
2663 callout_schedule(&sc_if->sk_tick_ch, hz);
2664
2665 out:
2666 splx(s);
2667 return rc;
2668 }
2669
2670 /*
2671 * Note: the logic of second parameter is inverted compared to OpenBSD
2672 * code, since this code uses the function as if_stop hook too.
2673 */
2674 static void
2675 msk_stop(struct ifnet *ifp, int disable)
2676 {
2677 struct sk_if_softc *sc_if = ifp->if_softc;
2678 struct sk_softc *sc = sc_if->sk_softc;
2679 bus_dmamap_t dmamap;
2680 int i;
2681
2682 DPRINTFN(2, ("msk_stop\n"));
2683
2684 callout_stop(&sc_if->sk_tick_ch);
2685 callout_stop(&sc_if->sk_tick_rx);
2686
2687 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2688
2689 /* Stop transfer of Tx descriptors */
2690
2691 /* Stop transfer of Rx descriptors */
2692
2693 if (disable) {
2694 /* Turn off various components of this interface. */
2695 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2696 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2697 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2698 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2699 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2700 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2701 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2702 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2703 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2704 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2705 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2706
2707 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2708 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2709
2710 /* Disable interrupts */
2711 if (sc_if->sk_port == SK_PORT_A)
2712 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2713 else
2714 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2715 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2716 }
2717
2718 /* Free RX and TX mbufs still in the queues. */
2719 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2720 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2721 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2722
2723 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2724 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2725
2726 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2727
2728 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2729 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2730 }
2731 }
2732
2733 sc_if->sk_cdata.sk_rx_prod = 0;
2734 sc_if->sk_cdata.sk_rx_cons = 0;
2735 sc_if->sk_cdata.sk_rx_cnt = 0;
2736
2737 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2738 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2739 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2740
2741 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2742 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2743
2744 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2745
2746 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2747 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2748 }
2749 }
2750 }
2751
2752 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2753 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2754
2755 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2756 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2757
2758 #ifdef MSK_DEBUG
2759 static void
2760 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2761 {
2762 #define DESC_PRINT(X) \
2763 if (X) \
2764 printf("txdesc[%d]." #X "=%#x\n", \
2765 idx, X);
2766
2767 DESC_PRINT(letoh32(le->sk_addr));
2768 DESC_PRINT(letoh16(le->sk_len));
2769 DESC_PRINT(le->sk_ctl);
2770 DESC_PRINT(le->sk_opcode);
2771 #undef DESC_PRINT
2772 }
2773
2774 static void
2775 msk_dump_bytes(const char *data, int len)
2776 {
2777 int c, i, j;
2778
2779 for (i = 0; i < len; i += 16) {
2780 printf("%08x ", i);
2781 c = len - i;
2782 if (c > 16) c = 16;
2783
2784 for (j = 0; j < c; j++) {
2785 printf("%02x ", data[i + j] & 0xff);
2786 if ((j & 0xf) == 7 && j > 0)
2787 printf(" ");
2788 }
2789
2790 for (; j < 16; j++)
2791 printf(" ");
2792 printf(" ");
2793
2794 for (j = 0; j < c; j++) {
2795 int ch = data[i + j] & 0xff;
2796 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2797 }
2798
2799 printf("\n");
2800
2801 if (c < 16)
2802 break;
2803 }
2804 }
2805
2806 static void
2807 msk_dump_mbuf(struct mbuf *m)
2808 {
2809 int count = m->m_pkthdr.len;
2810
2811 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2812
2813 while (count > 0 && m) {
2814 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2815 m, m->m_data, m->m_len);
2816 if (mskdebug >= 4)
2817 msk_dump_bytes(mtod(m, char *), m->m_len);
2818
2819 count -= m->m_len;
2820 m = m->m_next;
2821 }
2822 }
2823 #endif
2824
2825 static int
2826 msk_sysctl_handler(SYSCTLFN_ARGS)
2827 {
2828 int error, t;
2829 struct sysctlnode node;
2830 struct sk_softc *sc;
2831
2832 node = *rnode;
2833 sc = node.sysctl_data;
2834 t = sc->sk_int_mod;
2835 node.sysctl_data = &t;
2836 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2837 if (error || newp == NULL)
2838 return error;
2839
2840 if (t < SK_IM_MIN || t > SK_IM_MAX)
2841 return EINVAL;
2842
2843 /* update the softc with sysctl-changed value, and mark
2844 for hardware update */
2845 sc->sk_int_mod = t;
2846 sc->sk_int_mod_pending = 1;
2847 return 0;
2848 }
2849
2850 /*
2851 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2852 * set up in mskc_attach()
2853 */
2854 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2855 {
2856 int rc;
2857 const struct sysctlnode *node;
2858
2859 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2860 0, CTLTYPE_NODE, "msk",
2861 SYSCTL_DESCR("msk interface controls"),
2862 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2863 goto err;
2864 }
2865
2866 msk_root_num = node->sysctl_num;
2867 return;
2868
2869 err:
2870 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2871 }
2872