if_msk.c revision 1.115 1 /* $NetBSD: if_msk.c,v 1.115 2021/04/24 23:36:57 thorpej Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.115 2021/04/24 23:36:57 thorpej Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
199 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
201 { 0, 0 }
202 };
203
204 static inline uint32_t
205 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
206 {
207 return CSR_READ_4(sc, reg);
208 }
209
210 static inline uint16_t
211 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
212 {
213 return CSR_READ_2(sc, reg);
214 }
215
216 static inline uint8_t
217 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
218 {
219 return CSR_READ_1(sc, reg);
220 }
221
222 static inline void
223 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
224 {
225 CSR_WRITE_4(sc, reg, x);
226 }
227
228 static inline void
229 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
230 {
231 CSR_WRITE_2(sc, reg, x);
232 }
233
234 static inline void
235 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
236 {
237 CSR_WRITE_1(sc, reg, x);
238 }
239
240 static int
241 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
242 {
243 struct sk_if_softc *sc_if = device_private(dev);
244 uint16_t data;
245 int i;
246
247 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
248 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
249
250 for (i = 0; i < SK_TIMEOUT; i++) {
251 DELAY(1);
252 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
253 if (data & YU_SMICR_READ_VALID)
254 break;
255 }
256
257 if (i == SK_TIMEOUT) {
258 device_printf(sc_if->sk_dev, "phy failed to come ready\n");
259 return ETIMEDOUT;
260 }
261
262 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
263
264 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
265
266 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
267 phy, reg, *val));
268
269 return 0;
270 }
271
272 static int
273 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
274 {
275 struct sk_if_softc *sc_if = device_private(dev);
276 int i;
277
278 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
279 phy, reg, val));
280
281 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
282 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
283 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
284
285 for (i = 0; i < SK_TIMEOUT; i++) {
286 DELAY(1);
287 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
288 break;
289 }
290
291 if (i == SK_TIMEOUT) {
292 device_printf(sc_if->sk_dev, "phy write timed out\n");
293 return ETIMEDOUT;
294 }
295
296 return 0;
297 }
298
299 static void
300 msk_miibus_statchg(struct ifnet *ifp)
301 {
302 struct sk_if_softc *sc_if = ifp->if_softc;
303 struct mii_data *mii = &sc_if->sk_mii;
304 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
305 int gpcr;
306
307 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
308 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
309
310 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
311 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
312 /* Set speed. */
313 gpcr |= YU_GPCR_SPEED_DIS;
314 switch (IFM_SUBTYPE(mii->mii_media_active)) {
315 case IFM_1000_SX:
316 case IFM_1000_LX:
317 case IFM_1000_CX:
318 case IFM_1000_T:
319 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
320 break;
321 case IFM_100_TX:
322 gpcr |= YU_GPCR_SPEED;
323 break;
324 }
325
326 /* Set duplex. */
327 gpcr |= YU_GPCR_DPLX_DIS;
328 if ((mii->mii_media_active & IFM_FDX) != 0)
329 gpcr |= YU_GPCR_DUPLEX;
330
331 /* Disable flow control. */
332 gpcr |= YU_GPCR_FCTL_DIS;
333 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
334 }
335
336 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
337
338 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
339 SK_YU_READ_2(sc_if, YUKON_GPCR)));
340 }
341
342 static void
343 msk_setmulti(struct sk_if_softc *sc_if)
344 {
345 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
346 uint32_t hashes[2] = { 0, 0 };
347 int h;
348 struct ethercom *ec = &sc_if->sk_ethercom;
349 struct ether_multi *enm;
350 struct ether_multistep step;
351 uint16_t reg;
352
353 /* First, zot all the existing filters. */
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
358
359
360 /* Now program new ones. */
361 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
362 reg |= YU_RCR_UFLEN;
363 allmulti:
364 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 if ((ifp->if_flags & IFF_PROMISC) != 0)
366 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
367 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
368 hashes[0] = 0xFFFFFFFF;
369 hashes[1] = 0xFFFFFFFF;
370 }
371 } else {
372 /* First find the tail of the list. */
373 ETHER_LOCK(ec);
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 ETHER_UNLOCK(ec);
380 goto allmulti;
381 }
382 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
383 ((1 << SK_HASH_BITS) - 1);
384 if (h < 32)
385 hashes[0] |= (1 << h);
386 else
387 hashes[1] |= (1 << (h - 32));
388
389 ETHER_NEXT_MULTI(step, enm);
390 }
391 ETHER_UNLOCK(ec);
392 reg |= YU_RCR_MUFLEN;
393 }
394
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
400 }
401
402 static void
403 msk_setpromisc(struct sk_if_softc *sc_if)
404 {
405 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
406
407 if (ifp->if_flags & IFF_PROMISC)
408 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
409 YU_RCR_UFLEN | YU_RCR_MUFLEN);
410 else
411 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
412 YU_RCR_UFLEN | YU_RCR_MUFLEN);
413 }
414
415 static int
416 msk_init_rx_ring(struct sk_if_softc *sc_if)
417 {
418 struct msk_chain_data *cd = &sc_if->sk_cdata;
419 struct msk_ring_data *rd = sc_if->sk_rdata;
420 struct msk_rx_desc *r;
421
422 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
423
424 sc_if->sk_cdata.sk_rx_prod = 0;
425 sc_if->sk_cdata.sk_rx_cons = 0;
426 sc_if->sk_cdata.sk_rx_cnt = 0;
427 sc_if->sk_cdata.sk_rx_hiaddr = 0;
428
429 /* Mark the first ring element to initialize the high address. */
430 sc_if->sk_cdata.sk_rx_hiaddr = 0;
431 r = &rd->sk_rx_ring[cd->sk_rx_prod];
432 r->sk_addr = htole32(cd->sk_rx_hiaddr);
433 r->sk_len = 0;
434 r->sk_ctl = 0;
435 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
436 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
437 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
438 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
439 sc_if->sk_cdata.sk_rx_cnt++;
440
441 msk_fill_rx_ring(sc_if);
442 return 0;
443 }
444
445 static int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct msk_chain_data *cd = &sc_if->sk_cdata;
449 struct msk_ring_data *rd = sc_if->sk_rdata;
450 struct msk_tx_desc *t;
451
452 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 sc_if->sk_cdata.sk_tx_prod = 0;
455 sc_if->sk_cdata.sk_tx_cons = 0;
456 sc_if->sk_cdata.sk_tx_cnt = 0;
457 sc_if->sk_cdata.sk_tx_hiaddr = 0;
458
459 /* Mark the first ring element to initialize the high address. */
460 sc_if->sk_cdata.sk_tx_hiaddr = 0;
461 t = &rd->sk_tx_ring[cd->sk_tx_prod];
462 t->sk_addr = htole32(cd->sk_tx_hiaddr);
463 t->sk_len = 0;
464 t->sk_ctl = 0;
465 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
466 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
467 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
468 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
469 sc_if->sk_cdata.sk_tx_cnt++;
470
471 return 0;
472 }
473
474 static int
475 msk_newbuf(struct sk_if_softc *sc_if)
476 {
477 struct sk_softc *sc = sc_if->sk_softc;
478 struct mbuf *m_new = NULL;
479 struct sk_chain *c;
480 struct msk_rx_desc *r;
481 void *buf = NULL;
482 bus_addr_t addr;
483 bus_dmamap_t rxmap;
484 size_t i;
485 uint32_t rxidx, frag, cur, hiaddr, total;
486 uint32_t entries = 0;
487 uint8_t own = 0;
488
489 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
490 if (m_new == NULL)
491 return ENOBUFS;
492
493 /* Allocate the jumbo buffer */
494 buf = msk_jalloc(sc_if);
495 if (buf == NULL) {
496 m_freem(m_new);
497 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
498 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
499 return ENOBUFS;
500 }
501
502 /* Attach the buffer to the mbuf */
503 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
504 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
505
506 m_adj(m_new, ETHER_ALIGN);
507
508 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
509 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
510
511 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
512 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
513 m_freem(m_new);
514 return ENOBUFS;
515 }
516
517 /* Count how many rx descriptors needed. */
518 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
519 for (total = i = 0; i < rxmap->dm_nsegs; i++) {
520 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
521 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
522 total++;
523 }
524 total++;
525 }
526
527 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
528 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
529 bus_dmamap_unload(sc->sc_dmatag, rxmap);
530 m_freem(m_new);
531 return ENOBUFS;
532 }
533
534 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
535 rxmap->dm_nsegs, total));
536
537 /* Sync the DMA map. */
538 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
539 BUS_DMASYNC_PREREAD);
540
541 for (i = 0; i < rxmap->dm_nsegs; i++) {
542 addr = rxmap->dm_segs[i].ds_addr;
543 DPRINTFN(2, ("msk_newbuf: addr %llx\n",
544 (unsigned long long)addr));
545 hiaddr = MSK_ADDR_HI(addr);
546
547 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
548 c = &sc_if->sk_cdata.sk_rx_chain[frag];
549 c->sk_mbuf = NULL;
550 r = &sc_if->sk_rdata->sk_rx_ring[frag];
551 r->sk_addr = htole32(hiaddr);
552 r->sk_len = 0;
553 r->sk_ctl = 0;
554 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
555 own = SK_Y2_RXOPC_OWN;
556 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
557 MSK_CDRXSYNC(sc_if, frag,
558 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
559 SK_INC(frag, MSK_RX_RING_CNT);
560 entries++;
561 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
562 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
563 }
564
565 c = &sc_if->sk_cdata.sk_rx_chain[frag];
566 r = &sc_if->sk_rdata->sk_rx_ring[frag];
567 r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
569 r->sk_ctl = 0;
570 if (i == 0) {
571 r->sk_opcode = SK_Y2_RXOPC_PACKET | own;
572 } else
573 r->sk_opcode = SK_Y2_RXOPC_BUFFER | own;
574 own = SK_Y2_RXOPC_OWN;
575 MSK_CDRXSYNC(sc_if, frag,
576 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
577 cur = frag;
578 SK_INC(frag, MSK_RX_RING_CNT);
579 entries++;
580 }
581 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
582
583 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
584 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
585 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
586 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
587
588 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
589 MSK_CDRXSYNC(sc_if, rxidx,
590 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
591
592 sc_if->sk_cdata.sk_rx_cnt += entries;
593 sc_if->sk_cdata.sk_rx_prod = frag;
594
595 return 0;
596 }
597
598 /*
599 * Memory management for jumbo frames.
600 */
601
602 static int
603 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
604 {
605 struct sk_softc *sc = sc_if->sk_softc;
606 char *ptr, *kva;
607 int i, state, error;
608 struct sk_jpool_entry *entry;
609
610 state = error = 0;
611
612 /* Grab a big chunk o' storage. */
613 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
614 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
615 BUS_DMA_NOWAIT)) {
616 aprint_error(": can't alloc rx buffers");
617 return ENOBUFS;
618 }
619
620 state = 1;
621 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
622 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
623 BUS_DMA_NOWAIT)) {
624 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
625 error = ENOBUFS;
626 goto out;
627 }
628
629 state = 2;
630 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
631 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
632 aprint_error(": can't create dma map");
633 error = ENOBUFS;
634 goto out;
635 }
636
637 state = 3;
638 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
639 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
640 aprint_error(": can't load dma map");
641 error = ENOBUFS;
642 goto out;
643 }
644
645 state = 4;
646 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
647 DPRINTFN(1,("msk_jumbo_buf = %p\n",
648 (void *)sc_if->sk_cdata.sk_jumbo_buf));
649
650 LIST_INIT(&sc_if->sk_jfree_listhead);
651 LIST_INIT(&sc_if->sk_jinuse_listhead);
652 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
653
654 /*
655 * Now divide it up into 9K pieces and save the addresses
656 * in an array.
657 */
658 ptr = sc_if->sk_cdata.sk_jumbo_buf;
659 for (i = 0; i < MSK_JSLOTS; i++) {
660 sc_if->sk_cdata.sk_jslots[i] = ptr;
661 ptr += SK_JLEN;
662 entry = malloc(sizeof(struct sk_jpool_entry),
663 M_DEVBUF, M_WAITOK);
664 entry->slot = i;
665 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
666 entry, jpool_entries);
667 }
668 out:
669 if (error != 0) {
670 switch (state) {
671 case 4:
672 bus_dmamap_unload(sc->sc_dmatag,
673 sc_if->sk_cdata.sk_rx_jumbo_map);
674 /* FALLTHROUGH */
675 case 3:
676 bus_dmamap_destroy(sc->sc_dmatag,
677 sc_if->sk_cdata.sk_rx_jumbo_map);
678 /* FALLTHROUGH */
679 case 2:
680 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
681 /* FALLTHROUGH */
682 case 1:
683 bus_dmamem_free(sc->sc_dmatag,
684 &sc_if->sk_cdata.sk_jumbo_seg,
685 sc_if->sk_cdata.sk_jumbo_nseg);
686 break;
687 default:
688 break;
689 }
690 }
691
692 return error;
693 }
694
695 static void
696 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
697 {
698 struct sk_softc *sc = sc_if->sk_softc;
699
700 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
701 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
702 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
703 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
704 sc_if->sk_cdata.sk_jumbo_nseg);
705 }
706
707 /*
708 * Allocate a jumbo buffer.
709 */
710 static void *
711 msk_jalloc(struct sk_if_softc *sc_if)
712 {
713 struct sk_jpool_entry *entry;
714
715 mutex_enter(&sc_if->sk_jpool_mtx);
716 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
717
718 if (entry == NULL) {
719 mutex_exit(&sc_if->sk_jpool_mtx);
720 return NULL;
721 }
722
723 LIST_REMOVE(entry, jpool_entries);
724 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
725 mutex_exit(&sc_if->sk_jpool_mtx);
726 return sc_if->sk_cdata.sk_jslots[entry->slot];
727 }
728
729 /*
730 * Release a jumbo buffer.
731 */
732 static void
733 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
734 {
735 struct sk_jpool_entry *entry;
736 struct sk_if_softc *sc;
737 int i;
738
739 /* Extract the softc struct pointer. */
740 sc = (struct sk_if_softc *)arg;
741
742 if (sc == NULL)
743 panic("msk_jfree: can't find softc pointer!");
744
745 /* calculate the slot this buffer belongs to */
746 i = ((vaddr_t)buf
747 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
748
749 if ((i < 0) || (i >= MSK_JSLOTS))
750 panic("msk_jfree: asked to free buffer that we don't manage!");
751
752 mutex_enter(&sc->sk_jpool_mtx);
753 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
754 if (entry == NULL)
755 panic("msk_jfree: buffer not in use!");
756 entry->slot = i;
757 LIST_REMOVE(entry, jpool_entries);
758 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
759 mutex_exit(&sc->sk_jpool_mtx);
760
761 if (__predict_true(m != NULL))
762 pool_cache_put(mb_cache, m);
763
764 /* Now that we know we have a free RX buffer, refill if running out */
765 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
766 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
767 callout_schedule(&sc->sk_tick_rx, 0);
768 }
769
770 static int
771 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
772 {
773 struct sk_if_softc *sc = ifp->if_softc;
774 int s, error;
775
776 s = splnet();
777
778 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
779 switch (cmd) {
780 case SIOCSIFFLAGS:
781 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
782 break;
783
784 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
785 case IFF_RUNNING:
786 msk_stop(ifp, 1);
787 break;
788 case IFF_UP:
789 msk_init(ifp);
790 break;
791 case IFF_UP | IFF_RUNNING:
792 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
793 msk_setpromisc(sc);
794 msk_setmulti(sc);
795 } else
796 msk_init(ifp);
797 break;
798 }
799 sc->sk_if_flags = ifp->if_flags;
800 break;
801 default:
802 error = ether_ioctl(ifp, cmd, data);
803 if (error == ENETRESET) {
804 error = 0;
805 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
806 ;
807 else if (ifp->if_flags & IFF_RUNNING) {
808 /*
809 * Multicast list has changed; set the hardware
810 * filter accordingly.
811 */
812 msk_setmulti(sc);
813 }
814 }
815 break;
816 }
817
818 splx(s);
819 return error;
820 }
821
822 static void
823 msk_update_int_mod(struct sk_softc *sc, int verbose)
824 {
825 uint32_t imtimer_ticks;
826
827 /*
828 * Configure interrupt moderation. The moderation timer
829 * defers interrupts specified in the interrupt moderation
830 * timer mask based on the timeout specified in the interrupt
831 * moderation timer init register. Each bit in the timer
832 * register represents one tick, so to specify a timeout in
833 * microseconds, we have to multiply by the correct number of
834 * ticks-per-microsecond.
835 */
836 switch (sc->sk_type) {
837 case SK_YUKON_EC:
838 case SK_YUKON_EC_U:
839 case SK_YUKON_EX:
840 case SK_YUKON_SUPR:
841 case SK_YUKON_ULTRA2:
842 case SK_YUKON_OPTIMA:
843 case SK_YUKON_PRM:
844 case SK_YUKON_OPTIMA2:
845 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
846 break;
847 case SK_YUKON_FE:
848 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
849 break;
850 case SK_YUKON_FE_P:
851 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
852 break;
853 case SK_YUKON_XL:
854 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
855 break;
856 default:
857 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
858 }
859 if (verbose)
860 aprint_verbose_dev(sc->sk_dev,
861 "interrupt moderation is %d us\n", sc->sk_int_mod);
862 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
863 sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */
864 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
865 sc->sk_int_mod_pending = 0;
866 }
867
868 static int
869 msk_lookup(const struct pci_attach_args *pa)
870 {
871 const struct msk_product *pmsk;
872
873 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
874 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
875 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
876 return 1;
877 }
878 return 0;
879 }
880
881 /*
882 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
883 * IDs against our list and return a device name if we find a match.
884 */
885 static int
886 mskc_probe(device_t parent, cfdata_t match, void *aux)
887 {
888 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
889
890 return msk_lookup(pa);
891 }
892
893 /*
894 * Force the GEnesis into reset, then bring it out of reset.
895 */
896 static void
897 mskc_reset(struct sk_softc *sc)
898 {
899 uint32_t imtimer_ticks, reg1;
900 uint16_t status;
901 int reg;
902
903 DPRINTFN(2, ("mskc_reset\n"));
904
905 /* Disable ASF */
906 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
907 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
908 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
909 /* Clear AHB bridge & microcontroller reset. */
910 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
911 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
912 /* Clear ASF microcontroller state. */
913 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
914 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
915 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
916 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
917 } else
918 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
919 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
920
921 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
922 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
923
924 DELAY(1000);
925 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
926 DELAY(2);
927 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
928 sk_win_write_1(sc, SK_TESTCTL1, 2);
929
930 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
931 sc->sk_type >= SK_YUKON_FE_P) {
932 uint32_t our;
933
934 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
935
936 /* enable all clocks. */
937 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
938 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
939 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
940 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
941 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
942 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
943 /* Set all bits to 0 except bits 15..12 */
944 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
945 /* Set to default value */
946 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
947
948 /*
949 * Disable status race, workaround for Yukon EC Ultra &
950 * Yukon EX.
951 */
952 reg1 = sk_win_read_4(sc, SK_GPIO);
953 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
954 sk_win_write_4(sc, SK_GPIO, reg1);
955 sk_win_read_4(sc, SK_GPIO);
956 }
957
958 /* release PHY from PowerDown/Coma mode. */
959 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
960 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
961 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
962 else
963 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
964 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
965
966 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
967 sk_win_write_1(sc, SK_Y2_CLKGATE,
968 SK_Y2_CLKGATE_LINK1_GATE_DIS |
969 SK_Y2_CLKGATE_LINK2_GATE_DIS |
970 SK_Y2_CLKGATE_LINK1_CORE_DIS |
971 SK_Y2_CLKGATE_LINK2_CORE_DIS |
972 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
973 else
974 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
975
976 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
977 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
978 DELAY(1000);
979 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
980 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
981
982 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
983 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
984 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
985 }
986
987 sk_win_write_1(sc, SK_TESTCTL1, 1);
988
989 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
990 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
991 CSR_READ_2(sc, SK_LINK_CTRL)));
992
993 /* Clear I2C IRQ noise */
994 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
995
996 /* Disable hardware timer */
997 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
998 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
999
1000 /* Disable descriptor polling */
1001 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1002
1003 /* Disable time stamps */
1004 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1005 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1006
1007 /* Enable RAM interface */
1008 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1009 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1010 sk_win_write_1(sc, reg, 36);
1011 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1012 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1013 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1014
1015 /*
1016 * Configure interrupt moderation. The moderation timer
1017 * defers interrupts specified in the interrupt moderation
1018 * timer mask based on the timeout specified in the interrupt
1019 * moderation timer init register. Each bit in the timer
1020 * register represents one tick, so to specify a timeout in
1021 * microseconds, we have to multiply by the correct number of
1022 * ticks-per-microsecond.
1023 */
1024 switch (sc->sk_type) {
1025 case SK_YUKON_EC:
1026 case SK_YUKON_EC_U:
1027 case SK_YUKON_EX:
1028 case SK_YUKON_SUPR:
1029 case SK_YUKON_ULTRA2:
1030 case SK_YUKON_OPTIMA:
1031 case SK_YUKON_PRM:
1032 case SK_YUKON_OPTIMA2:
1033 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1034 break;
1035 case SK_YUKON_FE:
1036 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1037 break;
1038 case SK_YUKON_FE_P:
1039 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1040 break;
1041 case SK_YUKON_XL:
1042 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1043 break;
1044 default:
1045 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1046 break;
1047 }
1048
1049 /* Reset status ring. */
1050 memset(sc->sk_status_ring, 0,
1051 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1052 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1053 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1054 sc->sk_status_idx = 0;
1055
1056 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1057 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1058
1059 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1060 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1061 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1062 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1063 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1064 if (sc->sk_type == SK_YUKON_EC &&
1065 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1066 /* WA for dev. #4.3 */
1067 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1068 SK_STAT_BMU_TXTHIDX_MSK);
1069 /* WA for dev. #4.18 */
1070 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1071 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1072 } else {
1073 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1074 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1075 if (sc->sk_type == SK_YUKON_XL)
1076 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1077 else
1078 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1079 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1080 }
1081
1082 #if 0
1083 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1084 #endif
1085 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1086
1087 /* Enable status unit. */
1088 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1089
1090 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1091 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1092 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1093
1094 msk_update_int_mod(sc, 0);
1095 }
1096
1097 static int
1098 msk_probe(device_t parent, cfdata_t match, void *aux)
1099 {
1100 struct skc_attach_args *sa = aux;
1101
1102 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1103 return 0;
1104
1105 switch (sa->skc_type) {
1106 case SK_YUKON_XL:
1107 case SK_YUKON_EC_U:
1108 case SK_YUKON_EX:
1109 case SK_YUKON_EC:
1110 case SK_YUKON_FE:
1111 case SK_YUKON_FE_P:
1112 case SK_YUKON_SUPR:
1113 case SK_YUKON_ULTRA2:
1114 case SK_YUKON_OPTIMA:
1115 case SK_YUKON_PRM:
1116 case SK_YUKON_OPTIMA2:
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122
1123 static void
1124 msk_reset(struct sk_if_softc *sc_if)
1125 {
1126 /* GMAC and GPHY Reset */
1127 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1128 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1129 DELAY(1000);
1130 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1131 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1132 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1133 }
1134
1135 static bool
1136 msk_resume(device_t dv, const pmf_qual_t *qual)
1137 {
1138 struct sk_if_softc *sc_if = device_private(dv);
1139
1140 msk_init_yukon(sc_if);
1141 return true;
1142 }
1143
1144 /*
1145 * Each XMAC chip is attached as a separate logical IP interface.
1146 * Single port cards will have only one logical interface of course.
1147 */
1148 static void
1149 msk_attach(device_t parent, device_t self, void *aux)
1150 {
1151 struct sk_if_softc *sc_if = device_private(self);
1152 struct sk_softc *sc = device_private(parent);
1153 struct skc_attach_args *sa = aux;
1154 bus_dmamap_t dmamap;
1155 struct ifnet *ifp;
1156 struct mii_data * const mii = &sc_if->sk_mii;
1157 void *kva;
1158 int i;
1159 uint32_t chunk;
1160 int mii_flags;
1161
1162 sc_if->sk_dev = self;
1163 sc_if->sk_port = sa->skc_port;
1164 sc_if->sk_softc = sc;
1165 sc->sk_if[sa->skc_port] = sc_if;
1166
1167 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1168
1169 /*
1170 * Get station address for this interface. Note that
1171 * dual port cards actually come with three station
1172 * addresses: one for each port, plus an extra. The
1173 * extra one is used by the SysKonnect driver software
1174 * as a 'virtual' station address for when both ports
1175 * are operating in failover mode. Currently we don't
1176 * use this extra address.
1177 */
1178 for (i = 0; i < ETHER_ADDR_LEN; i++)
1179 sc_if->sk_enaddr[i] =
1180 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1181
1182 aprint_normal(": Ethernet address %s\n",
1183 ether_sprintf(sc_if->sk_enaddr));
1184
1185 /*
1186 * Set up RAM buffer addresses. The Yukon2 has a small amount
1187 * of SRAM on it, somewhere between 4K and 48K. We need to
1188 * divide this up between the transmitter and receiver. We
1189 * give the receiver 2/3 of the memory (rounded down), and the
1190 * transmitter whatever remains.
1191 */
1192 if (sc->sk_ramsize) {
1193 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1194 sc_if->sk_rx_ramstart = 0;
1195 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1196 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1197 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1198 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1199
1200 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1201 " tx_ramstart=%#x tx_ramend=%#x\n",
1202 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1203 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1204 }
1205
1206 /* Allocate the descriptor queues. */
1207 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1208 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1209 BUS_DMA_NOWAIT)) {
1210 aprint_error(": can't alloc rx buffers\n");
1211 goto fail;
1212 }
1213 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1214 sc_if->sk_ring_nseg,
1215 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1216 aprint_error(": can't map dma buffers (%zu bytes)\n",
1217 sizeof(struct msk_ring_data));
1218 goto fail_1;
1219 }
1220 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1221 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1222 &sc_if->sk_ring_map)) {
1223 aprint_error(": can't create dma map\n");
1224 goto fail_2;
1225 }
1226 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1227 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1228 aprint_error(": can't load dma map\n");
1229 goto fail_3;
1230 }
1231
1232 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1233 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1234
1235 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1236 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1237 aprint_error_dev(sc_if->sk_dev,
1238 "Can't create TX dmamap\n");
1239 goto fail_3;
1240 }
1241
1242 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1243 }
1244
1245 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1246 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1247
1248 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1249 howmany(SK_JLEN + 1, NBPG),
1250 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1251 aprint_error_dev(sc_if->sk_dev,
1252 "Can't create RX dmamap\n");
1253 goto fail_3;
1254 }
1255
1256 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1257 }
1258
1259 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1260 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1261
1262 if (sc->sk_type != SK_YUKON_FE &&
1263 sc->sk_type != SK_YUKON_FE_P)
1264 sc_if->sk_pktlen = SK_JLEN;
1265 else
1266 sc_if->sk_pktlen = MCLBYTES;
1267
1268 /* Try to allocate memory for jumbo buffers. */
1269 if (msk_alloc_jumbo_mem(sc_if)) {
1270 aprint_error(": jumbo buffer allocation failed\n");
1271 goto fail_3;
1272 }
1273
1274 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1275 if (sc->sk_type != SK_YUKON_FE &&
1276 sc->sk_type != SK_YUKON_FE_P)
1277 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1278
1279 ifp = &sc_if->sk_ethercom.ec_if;
1280 ifp->if_softc = sc_if;
1281 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1282 ifp->if_ioctl = msk_ioctl;
1283 ifp->if_start = msk_start;
1284 ifp->if_stop = msk_stop;
1285 ifp->if_init = msk_init;
1286 ifp->if_watchdog = msk_watchdog;
1287 ifp->if_baudrate = 1000000000;
1288 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1289 IFQ_SET_READY(&ifp->if_snd);
1290 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1291
1292 msk_reset(sc_if);
1293
1294 /*
1295 * Do miibus setup.
1296 */
1297 DPRINTFN(2, ("msk_attach: 1\n"));
1298
1299 mii->mii_ifp = ifp;
1300 mii->mii_readreg = msk_miibus_readreg;
1301 mii->mii_writereg = msk_miibus_writereg;
1302 mii->mii_statchg = msk_miibus_statchg;
1303
1304 sc_if->sk_ethercom.ec_mii = mii;
1305 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1306 mii_flags = MIIF_DOPAUSE;
1307 if (sc->sk_fibertype)
1308 mii_flags |= MIIF_HAVEFIBER;
1309 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1310 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1311 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1312 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1313 0, NULL);
1314 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1315 } else
1316 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1317
1318 callout_init(&sc_if->sk_tick_ch, 0);
1319 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1320 callout_schedule(&sc_if->sk_tick_ch, hz);
1321
1322 callout_init(&sc_if->sk_tick_rx, 0);
1323 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1324
1325 /*
1326 * Call MI attach routines.
1327 */
1328 if_attach(ifp);
1329 if_deferred_start_init(ifp, NULL);
1330 ether_ifattach(ifp, sc_if->sk_enaddr);
1331
1332 if (pmf_device_register(self, NULL, msk_resume))
1333 pmf_class_network_register(self, ifp);
1334 else
1335 aprint_error_dev(self, "couldn't establish power handler\n");
1336
1337 if (sc->rnd_attached++ == 0) {
1338 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1339 RND_TYPE_NET, RND_FLAG_DEFAULT);
1340 }
1341
1342 DPRINTFN(2, ("msk_attach: end\n"));
1343 return;
1344
1345 fail_3:
1346 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 fail_2:
1348 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1349 fail_1:
1350 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1351 fail:
1352 sc->sk_if[sa->skc_port] = NULL;
1353 }
1354
1355 static int
1356 msk_detach(device_t self, int flags)
1357 {
1358 struct sk_if_softc *sc_if = device_private(self);
1359 struct sk_softc *sc = sc_if->sk_softc;
1360 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1361 int i;
1362
1363 if (sc->sk_if[sc_if->sk_port] == NULL)
1364 return 0;
1365
1366 msk_stop(ifp, 1);
1367
1368 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1369 bus_dmamap_destroy(sc->sc_dmatag,
1370 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1371 }
1372
1373 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1374 bus_dmamap_destroy(sc->sc_dmatag,
1375 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1376 }
1377
1378 if (--sc->rnd_attached == 0)
1379 rnd_detach_source(&sc->rnd_source);
1380
1381 callout_halt(&sc_if->sk_tick_ch, NULL);
1382 callout_destroy(&sc_if->sk_tick_ch);
1383
1384 callout_halt(&sc_if->sk_tick_rx, NULL);
1385 callout_destroy(&sc_if->sk_tick_rx);
1386
1387 /* Detach any PHYs we might have. */
1388 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1389 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1390
1391 pmf_device_deregister(self);
1392
1393 ether_ifdetach(ifp);
1394 if_detach(ifp);
1395
1396 /* Delete any remaining media. */
1397 ifmedia_fini(&sc_if->sk_mii.mii_media);
1398
1399 msk_free_jumbo_mem(sc_if);
1400
1401 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1402 sizeof(struct msk_ring_data));
1403 bus_dmamem_free(sc->sc_dmatag,
1404 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1405 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1406 sc->sk_if[sc_if->sk_port] = NULL;
1407
1408 return 0;
1409 }
1410
1411 static int
1412 mskcprint(void *aux, const char *pnp)
1413 {
1414 struct skc_attach_args *sa = aux;
1415
1416 if (pnp)
1417 aprint_normal("msk port %c at %s",
1418 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1419 else
1420 aprint_normal(" port %c",
1421 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1422 return UNCONF;
1423 }
1424
1425 /*
1426 * Attach the interface. Allocate softc structures, do ifmedia
1427 * setup and ethernet/BPF attach.
1428 */
1429 static void
1430 mskc_attach(device_t parent, device_t self, void *aux)
1431 {
1432 struct sk_softc *sc = device_private(self);
1433 struct pci_attach_args *pa = aux;
1434 struct skc_attach_args skca;
1435 pci_chipset_tag_t pc = pa->pa_pc;
1436 pcireg_t command, memtype;
1437 const char *intrstr = NULL;
1438 int rc, sk_nodenum;
1439 uint8_t hw, pmd;
1440 const char *revstr = NULL;
1441 const struct sysctlnode *node;
1442 void *kva;
1443 char intrbuf[PCI_INTRSTR_LEN];
1444
1445 DPRINTFN(2, ("begin mskc_attach\n"));
1446
1447 sc->sk_dev = self;
1448 /*
1449 * Handle power management nonsense.
1450 */
1451 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1452
1453 if (command == 0x01) {
1454 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1455 if (command & SK_PSTATE_MASK) {
1456 uint32_t iobase, membase, irq;
1457
1458 /* Save important PCI config data. */
1459 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1460 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1461 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1462
1463 /* Reset the power state. */
1464 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1465 "mode -- setting to D0\n",
1466 command & SK_PSTATE_MASK);
1467 command &= 0xFFFFFFFC;
1468 pci_conf_write(pc, pa->pa_tag,
1469 SK_PCI_PWRMGMTCTRL, command);
1470
1471 /* Restore PCI config data. */
1472 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1473 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1474 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1475 }
1476 }
1477
1478 /*
1479 * Map control/status registers.
1480 */
1481 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1482 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1483 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1484 aprint_error(": can't map mem space\n");
1485 return;
1486 }
1487
1488 if (pci_dma64_available(pa))
1489 sc->sc_dmatag = pa->pa_dmat64;
1490 else
1491 sc->sc_dmatag = pa->pa_dmat;
1492
1493 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1494 command |= PCI_COMMAND_MASTER_ENABLE;
1495 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1496
1497 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1498 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1499
1500 /* bail out here if chip is not recognized */
1501 if (!(SK_IS_YUKON2(sc))) {
1502 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1503 goto fail_1;
1504 }
1505 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1506
1507 /* Allocate interrupt */
1508 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1509 aprint_error(": couldn't map interrupt\n");
1510 goto fail_1;
1511 }
1512
1513 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1514 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1515 msk_intr, sc, device_xname(sc->sk_dev));
1516 if (sc->sk_intrhand == NULL) {
1517 aprint_error(": couldn't establish interrupt");
1518 if (intrstr != NULL)
1519 aprint_error(" at %s", intrstr);
1520 aprint_error("\n");
1521 goto fail_1;
1522 }
1523 sc->sk_pc = pc;
1524
1525 if (bus_dmamem_alloc(sc->sc_dmatag,
1526 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1527 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1528 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1529 aprint_error(": can't alloc status buffers\n");
1530 goto fail_2;
1531 }
1532
1533 if (bus_dmamem_map(sc->sc_dmatag,
1534 &sc->sk_status_seg, sc->sk_status_nseg,
1535 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1536 &kva, BUS_DMA_NOWAIT)) {
1537 aprint_error(": can't map dma buffers (%zu bytes)\n",
1538 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1539 goto fail_3;
1540 }
1541 if (bus_dmamap_create(sc->sc_dmatag,
1542 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1543 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1544 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1545 aprint_error(": can't create dma map\n");
1546 goto fail_4;
1547 }
1548 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1549 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1550 NULL, BUS_DMA_NOWAIT)) {
1551 aprint_error(": can't load dma map\n");
1552 goto fail_5;
1553 }
1554 sc->sk_status_ring = (struct msk_status_desc *)kva;
1555
1556 sc->sk_int_mod = SK_IM_DEFAULT;
1557 sc->sk_int_mod_pending = 0;
1558
1559 /* Reset the adapter. */
1560 mskc_reset(sc);
1561
1562 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1563 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1564
1565 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1566 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1567 sc->sk_fibertype = 1;
1568
1569 switch (sc->sk_type) {
1570 case SK_YUKON_XL:
1571 sc->sk_name = "Yukon-2 XL";
1572 break;
1573 case SK_YUKON_EC_U:
1574 sc->sk_name = "Yukon-2 EC Ultra";
1575 break;
1576 case SK_YUKON_EX:
1577 sc->sk_name = "Yukon-2 Extreme";
1578 break;
1579 case SK_YUKON_EC:
1580 sc->sk_name = "Yukon-2 EC";
1581 break;
1582 case SK_YUKON_FE:
1583 sc->sk_name = "Yukon-2 FE";
1584 break;
1585 case SK_YUKON_FE_P:
1586 sc->sk_name = "Yukon-2 FE+";
1587 break;
1588 case SK_YUKON_SUPR:
1589 sc->sk_name = "Yukon-2 Supreme";
1590 break;
1591 case SK_YUKON_ULTRA2:
1592 sc->sk_name = "Yukon-2 Ultra 2";
1593 break;
1594 case SK_YUKON_OPTIMA:
1595 sc->sk_name = "Yukon-2 Optima";
1596 break;
1597 case SK_YUKON_PRM:
1598 sc->sk_name = "Yukon-2 Optima Prime";
1599 break;
1600 case SK_YUKON_OPTIMA2:
1601 sc->sk_name = "Yukon-2 Optima 2";
1602 break;
1603 default:
1604 sc->sk_name = "Yukon (Unknown)";
1605 }
1606
1607 if (sc->sk_type == SK_YUKON_XL) {
1608 switch (sc->sk_rev) {
1609 case SK_YUKON_XL_REV_A0:
1610 revstr = "A0";
1611 break;
1612 case SK_YUKON_XL_REV_A1:
1613 revstr = "A1";
1614 break;
1615 case SK_YUKON_XL_REV_A2:
1616 revstr = "A2";
1617 break;
1618 case SK_YUKON_XL_REV_A3:
1619 revstr = "A3";
1620 break;
1621 default:
1622 break;
1623 }
1624 }
1625
1626 if (sc->sk_type == SK_YUKON_EC) {
1627 switch (sc->sk_rev) {
1628 case SK_YUKON_EC_REV_A1:
1629 revstr = "A1";
1630 break;
1631 case SK_YUKON_EC_REV_A2:
1632 revstr = "A2";
1633 break;
1634 case SK_YUKON_EC_REV_A3:
1635 revstr = "A3";
1636 break;
1637 default:
1638 break;
1639 }
1640 }
1641
1642 if (sc->sk_type == SK_YUKON_FE) {
1643 switch (sc->sk_rev) {
1644 case SK_YUKON_FE_REV_A1:
1645 revstr = "A1";
1646 break;
1647 case SK_YUKON_FE_REV_A2:
1648 revstr = "A2";
1649 break;
1650 default:
1651 break;
1652 }
1653 }
1654
1655 if (sc->sk_type == SK_YUKON_EC_U) {
1656 switch (sc->sk_rev) {
1657 case SK_YUKON_EC_U_REV_A0:
1658 revstr = "A0";
1659 break;
1660 case SK_YUKON_EC_U_REV_A1:
1661 revstr = "A1";
1662 break;
1663 case SK_YUKON_EC_U_REV_B0:
1664 revstr = "B0";
1665 break;
1666 case SK_YUKON_EC_U_REV_B1:
1667 revstr = "B1";
1668 break;
1669 default:
1670 break;
1671 }
1672 }
1673
1674 if (sc->sk_type == SK_YUKON_FE) {
1675 switch (sc->sk_rev) {
1676 case SK_YUKON_FE_REV_A1:
1677 revstr = "A1";
1678 break;
1679 case SK_YUKON_FE_REV_A2:
1680 revstr = "A2";
1681 break;
1682 default:
1683 ;
1684 }
1685 }
1686
1687 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1688 revstr = "A0";
1689
1690 if (sc->sk_type == SK_YUKON_EX) {
1691 switch (sc->sk_rev) {
1692 case SK_YUKON_EX_REV_A0:
1693 revstr = "A0";
1694 break;
1695 case SK_YUKON_EX_REV_B0:
1696 revstr = "B0";
1697 break;
1698 default:
1699 ;
1700 }
1701 }
1702
1703 if (sc->sk_type == SK_YUKON_SUPR) {
1704 switch (sc->sk_rev) {
1705 case SK_YUKON_SUPR_REV_A0:
1706 revstr = "A0";
1707 break;
1708 case SK_YUKON_SUPR_REV_B0:
1709 revstr = "B0";
1710 break;
1711 case SK_YUKON_SUPR_REV_B1:
1712 revstr = "B1";
1713 break;
1714 default:
1715 ;
1716 }
1717 }
1718
1719 if (sc->sk_type == SK_YUKON_PRM) {
1720 switch (sc->sk_rev) {
1721 case SK_YUKON_PRM_REV_Z1:
1722 revstr = "Z1";
1723 break;
1724 case SK_YUKON_PRM_REV_A0:
1725 revstr = "A0";
1726 break;
1727 default:
1728 ;
1729 }
1730 }
1731
1732 /* Announce the product name. */
1733 aprint_normal(", %s", sc->sk_name);
1734 if (revstr != NULL)
1735 aprint_normal(" rev. %s", revstr);
1736 aprint_normal(" (0x%x)\n", sc->sk_rev);
1737
1738 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1739
1740 sc->sk_macs = 1;
1741
1742 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1743 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1744 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1745 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1746 sc->sk_macs++;
1747 }
1748
1749 skca.skc_port = SK_PORT_A;
1750 skca.skc_type = sc->sk_type;
1751 skca.skc_rev = sc->sk_rev;
1752 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARG_EOL);
1753
1754 if (sc->sk_macs > 1) {
1755 skca.skc_port = SK_PORT_B;
1756 skca.skc_type = sc->sk_type;
1757 skca.skc_rev = sc->sk_rev;
1758 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARG_EOL);
1759 }
1760
1761 /* Turn on the 'driver is loaded' LED. */
1762 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1763
1764 /* skc sysctl setup */
1765
1766 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1767 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1768 SYSCTL_DESCR("mskc per-controller controls"),
1769 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1770 CTL_EOL)) != 0) {
1771 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1772 goto fail_6;
1773 }
1774
1775 sk_nodenum = node->sysctl_num;
1776
1777 /* interrupt moderation time in usecs */
1778 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1779 CTLFLAG_READWRITE,
1780 CTLTYPE_INT, "int_mod",
1781 SYSCTL_DESCR("msk interrupt moderation timer"),
1782 msk_sysctl_handler, 0, (void *)sc,
1783 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1784 CTL_EOL)) != 0) {
1785 aprint_normal_dev(sc->sk_dev,
1786 "couldn't create int_mod sysctl node\n");
1787 goto fail_6;
1788 }
1789
1790 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1791 aprint_error_dev(self, "couldn't establish power handler\n");
1792
1793 return;
1794
1795 fail_6:
1796 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1797 fail_4:
1798 bus_dmamem_unmap(sc->sc_dmatag, kva,
1799 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1800 fail_3:
1801 bus_dmamem_free(sc->sc_dmatag,
1802 &sc->sk_status_seg, sc->sk_status_nseg);
1803 sc->sk_status_nseg = 0;
1804 fail_5:
1805 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1806 fail_2:
1807 pci_intr_disestablish(pc, sc->sk_intrhand);
1808 sc->sk_intrhand = NULL;
1809 fail_1:
1810 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1811 sc->sk_bsize = 0;
1812 }
1813
1814 static int
1815 mskc_detach(device_t self, int flags)
1816 {
1817 struct sk_softc *sc = device_private(self);
1818 int rv;
1819
1820 if (sc->sk_intrhand) {
1821 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1822 sc->sk_intrhand = NULL;
1823 }
1824
1825 if (sc->sk_pihp != NULL) {
1826 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1827 sc->sk_pihp = NULL;
1828 }
1829
1830 rv = config_detach_children(self, flags);
1831 if (rv != 0)
1832 return rv;
1833
1834 sysctl_teardown(&sc->sk_clog);
1835
1836 if (sc->sk_status_nseg > 0) {
1837 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1838 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1839 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1840 bus_dmamem_free(sc->sc_dmatag,
1841 &sc->sk_status_seg, sc->sk_status_nseg);
1842 }
1843
1844 if (sc->sk_bsize > 0)
1845 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1846
1847 return 0;
1848 }
1849
1850 static int
1851 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1852 {
1853 struct sk_softc *sc = sc_if->sk_softc;
1854 struct msk_tx_desc *f = NULL;
1855 uint32_t frag, cur, hiaddr, total;
1856 uint32_t entries = 0;
1857 uint8_t own = 0;
1858 size_t i;
1859 bus_dmamap_t txmap;
1860 bus_addr_t addr;
1861
1862 DPRINTFN(2, ("msk_encap\n"));
1863
1864 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1865
1866 cur = frag = *txidx;
1867
1868 #ifdef MSK_DEBUG
1869 if (mskdebug >= 2)
1870 msk_dump_mbuf(m_head);
1871 #endif
1872
1873 /*
1874 * Start packing the mbufs in this chain into
1875 * the fragment pointers. Stop when we run out
1876 * of fragments or hit the end of the mbuf chain.
1877 */
1878 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1879 BUS_DMA_NOWAIT)) {
1880 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1881 return ENOBUFS;
1882 }
1883
1884 /* Count how many tx descriptors needed. */
1885 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1886 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1887 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1888 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1889 total++;
1890 }
1891 total++;
1892 }
1893
1894 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1895 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1896 bus_dmamap_unload(sc->sc_dmatag, txmap);
1897 return ENOBUFS;
1898 }
1899
1900 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1901 txmap->dm_nsegs, total));
1902
1903 /* Sync the DMA map. */
1904 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1905 BUS_DMASYNC_PREWRITE);
1906
1907 for (i = 0; i < txmap->dm_nsegs; i++) {
1908 addr = txmap->dm_segs[i].ds_addr;
1909 DPRINTFN(2, ("msk_encap: addr %llx\n",
1910 (unsigned long long)addr));
1911 hiaddr = MSK_ADDR_HI(addr);
1912
1913 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1914 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1915 f->sk_addr = htole32(hiaddr);
1916 f->sk_len = 0;
1917 f->sk_ctl = 0;
1918 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
1919 own = SK_Y2_TXOPC_OWN;
1920 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1921 SK_INC(frag, MSK_TX_RING_CNT);
1922 entries++;
1923 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1924 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1925 }
1926
1927 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1928 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1929 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1930 f->sk_ctl = 0;
1931 if (i == 0) {
1932 f->sk_opcode = SK_Y2_TXOPC_PACKET | own;
1933 } else
1934 f->sk_opcode = SK_Y2_TXOPC_BUFFER | own;
1935 own = SK_Y2_TXOPC_OWN;
1936 cur = frag;
1937 SK_INC(frag, MSK_TX_RING_CNT);
1938 entries++;
1939 }
1940 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1941
1942 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1943 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1944 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1945 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1946
1947 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1948
1949 /* Sync descriptors before handing to chip */
1950 MSK_CDTXSYNC(sc_if, *txidx, entries,
1951 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1952
1953 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1954
1955 /* Sync first descriptor to hand it off */
1956 MSK_CDTXSYNC(sc_if, *txidx, 1,
1957 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1958
1959 sc_if->sk_cdata.sk_tx_cnt += entries;
1960
1961 #ifdef MSK_DEBUG
1962 if (mskdebug >= 2) {
1963 struct msk_tx_desc *le;
1964 uint32_t idx;
1965 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1966 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1967 msk_dump_txdesc(le, idx);
1968 }
1969 }
1970 #endif
1971
1972 *txidx = frag;
1973
1974 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1975
1976 return 0;
1977 }
1978
1979 static void
1980 msk_start(struct ifnet *ifp)
1981 {
1982 struct sk_if_softc *sc_if = ifp->if_softc;
1983 struct mbuf *m_head = NULL;
1984 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1985 int pkts = 0;
1986
1987 DPRINTFN(2, ("msk_start\n"));
1988
1989 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1990 IFQ_POLL(&ifp->if_snd, m_head);
1991 if (m_head == NULL)
1992 break;
1993
1994 /*
1995 * Pack the data into the transmit ring. If we
1996 * don't have room, set the OACTIVE flag and wait
1997 * for the NIC to drain the ring.
1998 */
1999 if (msk_encap(sc_if, m_head, &idx)) {
2000 ifp->if_flags |= IFF_OACTIVE;
2001 break;
2002 }
2003
2004 /* now we are committed to transmit the packet */
2005 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2006 pkts++;
2007
2008 /*
2009 * If there's a BPF listener, bounce a copy of this frame
2010 * to him.
2011 */
2012 bpf_mtap(ifp, m_head, BPF_D_OUT);
2013 }
2014 if (pkts == 0)
2015 return;
2016
2017 /* Transmit */
2018 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2019 sc_if->sk_cdata.sk_tx_prod = idx;
2020 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2021
2022 /* Set a timeout in case the chip goes out to lunch. */
2023 ifp->if_timer = 5;
2024 }
2025 }
2026
2027 static void
2028 msk_watchdog(struct ifnet *ifp)
2029 {
2030 struct sk_if_softc *sc_if = ifp->if_softc;
2031
2032 /*
2033 * Reclaim first as there is a possibility of losing Tx completion
2034 * interrupts.
2035 */
2036 msk_txeof(sc_if);
2037 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2038 device_printf(sc_if->sk_dev, "watchdog timeout\n");
2039
2040 if_statinc(ifp, if_oerrors);
2041
2042 /* XXX Resets both ports; we shouldn't do that. */
2043 mskc_reset(sc_if->sk_softc);
2044 msk_reset(sc_if);
2045 msk_init(ifp);
2046 }
2047 }
2048
2049 static bool
2050 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2051 {
2052 struct sk_softc *sc = device_private(dv);
2053
2054 DPRINTFN(2, ("mskc_suspend\n"));
2055
2056 /* Turn off the 'driver is loaded' LED. */
2057 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2058
2059 return true;
2060 }
2061
2062 static bool
2063 mskc_resume(device_t dv, const pmf_qual_t *qual)
2064 {
2065 struct sk_softc *sc = device_private(dv);
2066
2067 DPRINTFN(2, ("mskc_resume\n"));
2068
2069 mskc_reset(sc);
2070 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2071
2072 return true;
2073 }
2074
2075 static __inline int
2076 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2077 {
2078 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2079 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2080 YU_RXSTAT_JABBER)) != 0 ||
2081 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2082 YU_RXSTAT_BYTES(stat) != len)
2083 return 0;
2084
2085 return 1;
2086 }
2087
2088 static void
2089 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2090 {
2091 struct sk_softc *sc = sc_if->sk_softc;
2092 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2093 struct mbuf *m;
2094 unsigned cur, prod, tail, total_len = len;
2095 bus_dmamap_t dmamap;
2096
2097 cur = sc_if->sk_cdata.sk_rx_cons;
2098 prod = sc_if->sk_cdata.sk_rx_prod;
2099
2100 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2101 sc_if->sk_cdata.sk_rx_cnt));
2102
2103 while (prod != cur) {
2104 MSK_CDRXSYNC(sc_if, cur,
2105 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2106
2107 tail = cur;
2108 SK_INC(cur, MSK_RX_RING_CNT);
2109
2110 sc_if->sk_cdata.sk_rx_cnt--;
2111 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2112 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2113 if (m != NULL)
2114 break; /* found it */
2115 }
2116 sc_if->sk_cdata.sk_rx_cons = cur;
2117 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2118 sc_if->sk_cdata.sk_rx_cnt, m));
2119
2120 if (m == NULL)
2121 return;
2122
2123 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2124
2125 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2126 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2127 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2128
2129 if (total_len < SK_MIN_FRAMELEN ||
2130 total_len > ETHER_MAX_LEN_JUMBO ||
2131 msk_rxvalid(sc, rxstat, total_len) == 0) {
2132 if_statinc(ifp, if_ierrors);
2133 m_freem(m);
2134 return;
2135 }
2136
2137 m_set_rcvif(m, ifp);
2138 m->m_pkthdr.len = m->m_len = total_len;
2139
2140 /* pass it on. */
2141 if_percpuq_enqueue(ifp->if_percpuq, m);
2142 }
2143
2144 static void
2145 msk_txeof(struct sk_if_softc *sc_if)
2146 {
2147 struct sk_softc *sc = sc_if->sk_softc;
2148 struct msk_tx_desc *cur_tx;
2149 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2150 uint32_t idx, reg, sk_ctl;
2151 bus_dmamap_t dmamap;
2152
2153 DPRINTFN(2, ("msk_txeof\n"));
2154
2155 if (sc_if->sk_port == SK_PORT_A)
2156 reg = SK_STAT_BMU_TXA1_RIDX;
2157 else
2158 reg = SK_STAT_BMU_TXA2_RIDX;
2159
2160 /*
2161 * Go through our tx ring and free mbufs for those
2162 * frames that have been sent.
2163 */
2164 idx = sc_if->sk_cdata.sk_tx_cons;
2165 while (idx != sk_win_read_2(sc, reg)) {
2166 MSK_CDTXSYNC(sc_if, idx, 1,
2167 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2168
2169 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2170 sk_ctl = cur_tx->sk_ctl;
2171 #ifdef MSK_DEBUG
2172 if (mskdebug >= 2)
2173 msk_dump_txdesc(cur_tx, idx);
2174 #endif
2175 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2176 if_statinc(ifp, if_opackets);
2177 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2178 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2179
2180 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2181 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2182
2183 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2184 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2185 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2186 }
2187 sc_if->sk_cdata.sk_tx_cnt--;
2188 SK_INC(idx, MSK_TX_RING_CNT);
2189 }
2190 if (idx == sc_if->sk_cdata.sk_tx_cons)
2191 return;
2192
2193 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2194
2195 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2196 ifp->if_flags &= ~IFF_OACTIVE;
2197
2198 sc_if->sk_cdata.sk_tx_cons = idx;
2199 }
2200
2201 static void
2202 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2203 {
2204 /* Make sure to not completely wrap around */
2205 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2206 if (msk_newbuf(sc_if) == ENOBUFS) {
2207 goto schedretry;
2208 }
2209 }
2210
2211 return;
2212
2213 schedretry:
2214 /* Try later */
2215 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2216 }
2217
2218 static void
2219 msk_fill_rx_tick(void *xsc_if)
2220 {
2221 struct sk_if_softc *sc_if = xsc_if;
2222 int s, rx_prod;
2223
2224 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2225
2226 s = splnet();
2227 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2228 msk_fill_rx_ring(sc_if);
2229 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2230 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2231 sc_if->sk_cdata.sk_rx_prod);
2232 }
2233 splx(s);
2234 }
2235
2236 static void
2237 msk_tick(void *xsc_if)
2238 {
2239 struct sk_if_softc *sc_if = xsc_if;
2240 struct mii_data *mii = &sc_if->sk_mii;
2241 int s;
2242
2243 s = splnet();
2244 mii_tick(mii);
2245 splx(s);
2246
2247 callout_schedule(&sc_if->sk_tick_ch, hz);
2248 }
2249
2250 static void
2251 msk_intr_yukon(struct sk_if_softc *sc_if)
2252 {
2253 uint8_t status;
2254
2255 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2256 /* RX overrun */
2257 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2258 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2259 SK_RFCTL_RX_FIFO_OVER);
2260 }
2261 /* TX underrun */
2262 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2263 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2264 SK_TFCTL_TX_FIFO_UNDER);
2265 }
2266
2267 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2268 }
2269
2270 static int
2271 msk_intr(void *xsc)
2272 {
2273 struct sk_softc *sc = xsc;
2274 struct sk_if_softc *sc_if;
2275 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2276 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2277 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2278 uint32_t status;
2279 struct msk_status_desc *cur_st;
2280 bool retried = false;
2281
2282 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2283 if (status == 0xffffffff)
2284 return 0;
2285 if (status == 0) {
2286 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2287 return 0;
2288 }
2289
2290 status = CSR_READ_4(sc, SK_ISR);
2291
2292 if (sc_if0 != NULL)
2293 ifp0 = &sc_if0->sk_ethercom.ec_if;
2294 if (sc_if1 != NULL)
2295 ifp1 = &sc_if1->sk_ethercom.ec_if;
2296
2297 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2298 (ifp0->if_flags & IFF_RUNNING)) {
2299 msk_intr_yukon(sc_if0);
2300 }
2301
2302 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2303 (ifp1->if_flags & IFF_RUNNING)) {
2304 msk_intr_yukon(sc_if1);
2305 }
2306
2307 again:
2308 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2309 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2310 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2311
2312 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2313 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2314 switch (cur_st->sk_opcode) {
2315 case SK_Y2_STOPC_RXSTAT:
2316 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2317 if (sc_if) {
2318 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2319 letoh32(cur_st->sk_status));
2320 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2321 msk_fill_rx_tick(sc_if);
2322 }
2323 break;
2324 case SK_Y2_STOPC_TXSTAT:
2325 if (sc_if0)
2326 msk_txeof(sc_if0);
2327 if (sc_if1)
2328 msk_txeof(sc_if1);
2329 break;
2330 default:
2331 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2332 break;
2333 }
2334 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2335
2336 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2337 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2338 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2339 }
2340
2341 if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) {
2342 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2343 } else if (!retried) {
2344 retried = true;
2345 goto again;
2346 }
2347
2348 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2349
2350 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2351 if_schedule_deferred_start(ifp0);
2352 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2353 if_schedule_deferred_start(ifp1);
2354
2355 KASSERT(sc->rnd_attached > 0);
2356 rnd_add_uint32(&sc->rnd_source, status);
2357
2358 if (sc->sk_int_mod_pending)
2359 msk_update_int_mod(sc, 1);
2360
2361 return (status & sc->sk_intrmask) != 0;
2362 }
2363
2364 static void
2365 msk_init_yukon(struct sk_if_softc *sc_if)
2366 {
2367 uint32_t v;
2368 uint16_t reg;
2369 struct sk_softc *sc;
2370 int i;
2371
2372 sc = sc_if->sk_softc;
2373
2374 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2375 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2376
2377 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2378
2379 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2380 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2381
2382 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2383
2384 /* unused read of the interrupt source register */
2385 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2386 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2387
2388 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2389 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2390 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2391
2392 /* MIB Counter Clear Mode set */
2393 reg |= YU_PAR_MIB_CLR;
2394 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2395 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2396 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2397
2398 /* MIB Counter Clear Mode clear */
2399 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2400 reg &= ~YU_PAR_MIB_CLR;
2401 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2402
2403 /* receive control reg */
2404 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2405 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2406
2407 /* transmit control register */
2408 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2409
2410 /* transmit flow control register */
2411 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2412
2413 /* transmit parameter register */
2414 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2415 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2416 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2417
2418 /* serial mode register */
2419 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2420 reg = YU_SMR_DATA_BLIND(0x1c) |
2421 YU_SMR_MFL_VLAN |
2422 YU_SMR_IPG_DATA(0x1e);
2423
2424 if (sc->sk_type != SK_YUKON_FE &&
2425 sc->sk_type != SK_YUKON_FE_P)
2426 reg |= YU_SMR_MFL_JUMBO;
2427
2428 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2429
2430 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2431 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2432 /* msk_attach calls me before ether_ifattach so check null */
2433 if (ifp != NULL && ifp->if_sadl != NULL)
2434 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2435 sizeof(sc_if->sk_enaddr));
2436 /* Setup Yukon's address */
2437 for (i = 0; i < 3; i++) {
2438 /* Write Source Address 1 (unicast filter) */
2439 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2440 sc_if->sk_enaddr[i * 2] |
2441 sc_if->sk_enaddr[i * 2 + 1] << 8);
2442 }
2443
2444 for (i = 0; i < 3; i++) {
2445 reg = sk_win_read_2(sc_if->sk_softc,
2446 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2447 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2448 }
2449
2450 /* Set promiscuous mode */
2451 msk_setpromisc(sc_if);
2452
2453 /* Set multicast filter */
2454 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2455 msk_setmulti(sc_if);
2456
2457 /* enable interrupt mask for counter overflows */
2458 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2459 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2460 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2461 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2462
2463 /* Configure RX MAC FIFO Flush Mask */
2464 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2465 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2466 YU_RXSTAT_JABBER;
2467 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2468
2469 /* Configure RX MAC FIFO */
2470 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2471 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2472 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2473 v |= SK_RFCTL_RX_OVER_ON;
2474 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2475
2476 if ((sc->sk_type == SK_YUKON_FE_P) &&
2477 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2478 v = 0x178; /* Magic value */
2479 else {
2480 /* Increase flush threshold to 64 bytes */
2481 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2482 }
2483 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2484
2485 /* Configure TX MAC FIFO */
2486 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2487 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2488
2489 if ((sc->sk_type == SK_YUKON_FE_P) &&
2490 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2491 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2492 v &= ~SK_TXEND_WM_ON;
2493 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2494 }
2495
2496 #if 1
2497 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2498 #endif
2499 DPRINTFN(6, ("msk_init_yukon: end\n"));
2500 }
2501
2502 /*
2503 * Note that to properly initialize any part of the GEnesis chip,
2504 * you first have to take it out of reset mode.
2505 */
2506 static int
2507 msk_init(struct ifnet *ifp)
2508 {
2509 struct sk_if_softc *sc_if = ifp->if_softc;
2510 struct sk_softc *sc = sc_if->sk_softc;
2511 int rc = 0, s;
2512 uint32_t imr, imtimer_ticks;
2513
2514
2515 DPRINTFN(2, ("msk_init\n"));
2516
2517 s = splnet();
2518
2519 /* Cancel pending I/O and free all RX/TX buffers. */
2520 msk_stop(ifp, 1);
2521
2522 /* Configure I2C registers */
2523
2524 /* Configure XMAC(s) */
2525 msk_init_yukon(sc_if);
2526 if ((rc = ether_mediachange(ifp)) != 0)
2527 goto out;
2528
2529 /* Configure transmit arbiter(s) */
2530 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2531 #if 0
2532 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2533 #endif
2534
2535 if (sc->sk_ramsize) {
2536 /* Configure RAMbuffers */
2537 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2538 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2539 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2540 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2541 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2542 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2543
2544 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2545 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2546 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2547 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2548 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2549 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2551 }
2552
2553 /* Configure BMUs */
2554 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2555 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2556 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2557 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2558
2559 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2560 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2561 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2562 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2563
2564 /* Make sure the sync transmit queue is disabled. */
2565 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2566
2567 /* Init descriptors */
2568 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2569 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2570 "memory for rx buffers\n");
2571 msk_stop(ifp, 1);
2572 splx(s);
2573 return ENOBUFS;
2574 }
2575
2576 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2577 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2578 "memory for tx buffers\n");
2579 msk_stop(ifp, 1);
2580 splx(s);
2581 return ENOBUFS;
2582 }
2583
2584 /* Set interrupt moderation if changed via sysctl. */
2585 switch (sc->sk_type) {
2586 case SK_YUKON_EC:
2587 case SK_YUKON_EC_U:
2588 case SK_YUKON_EX:
2589 case SK_YUKON_SUPR:
2590 case SK_YUKON_ULTRA2:
2591 case SK_YUKON_OPTIMA:
2592 case SK_YUKON_PRM:
2593 case SK_YUKON_OPTIMA2:
2594 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2595 break;
2596 case SK_YUKON_FE:
2597 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2598 break;
2599 case SK_YUKON_FE_P:
2600 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2601 break;
2602 case SK_YUKON_XL:
2603 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2604 break;
2605 default:
2606 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2607 }
2608 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2609 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2610 sk_win_write_4(sc, SK_IMTIMERINIT,
2611 SK_IM_USECS(sc->sk_int_mod));
2612 aprint_verbose_dev(sc->sk_dev,
2613 "interrupt moderation is %d us\n", sc->sk_int_mod);
2614 }
2615
2616 /* Initialize prefetch engine. */
2617 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2618 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2619 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2620 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2621 MSK_RX_RING_ADDR(sc_if, 0));
2622 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2623 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2624 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2625 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2626
2627 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2628 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2629 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2630 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2631 MSK_TX_RING_ADDR(sc_if, 0));
2632 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2633 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2634 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2635 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2636
2637 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2638 sc_if->sk_cdata.sk_rx_prod);
2639
2640
2641 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2642 /* Disable flushing of non-ASF packets. */
2643 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2644 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2645 }
2646
2647 /* Configure interrupt handling */
2648 if (sc_if->sk_port == SK_PORT_A)
2649 sc->sk_intrmask |= SK_Y2_INTRS1;
2650 else
2651 sc->sk_intrmask |= SK_Y2_INTRS2;
2652 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2653 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2654
2655 ifp->if_flags |= IFF_RUNNING;
2656 ifp->if_flags &= ~IFF_OACTIVE;
2657
2658 callout_schedule(&sc_if->sk_tick_ch, hz);
2659
2660 out:
2661 splx(s);
2662 return rc;
2663 }
2664
2665 /*
2666 * Note: the logic of second parameter is inverted compared to OpenBSD
2667 * code, since this code uses the function as if_stop hook too.
2668 */
2669 static void
2670 msk_stop(struct ifnet *ifp, int disable)
2671 {
2672 struct sk_if_softc *sc_if = ifp->if_softc;
2673 struct sk_softc *sc = sc_if->sk_softc;
2674 bus_dmamap_t dmamap;
2675 int i;
2676
2677 DPRINTFN(2, ("msk_stop\n"));
2678
2679 callout_stop(&sc_if->sk_tick_ch);
2680 callout_stop(&sc_if->sk_tick_rx);
2681
2682 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2683
2684 /* Stop transfer of Tx descriptors */
2685
2686 /* Stop transfer of Rx descriptors */
2687
2688 if (disable) {
2689 /* Turn off various components of this interface. */
2690 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2691 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2692 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2693 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2694 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2695 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2696 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2697 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2698 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2699 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2700 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2701
2702 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2703 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2704
2705 /* Disable interrupts */
2706 if (sc_if->sk_port == SK_PORT_A)
2707 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2708 else
2709 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2710 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2711 }
2712
2713 /* Free RX and TX mbufs still in the queues. */
2714 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2715 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2716 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2717
2718 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2719 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2720
2721 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2722
2723 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2724 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2725 }
2726 }
2727
2728 sc_if->sk_cdata.sk_rx_prod = 0;
2729 sc_if->sk_cdata.sk_rx_cons = 0;
2730 sc_if->sk_cdata.sk_rx_cnt = 0;
2731
2732 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2733 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2734 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2735
2736 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2737 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2738
2739 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2740
2741 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2742 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2743 }
2744 }
2745 }
2746
2747 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2748 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2749
2750 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2751 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2752
2753 #ifdef MSK_DEBUG
2754 static void
2755 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2756 {
2757 #define DESC_PRINT(X) \
2758 if (X) \
2759 printf("txdesc[%d]." #X "=%#x\n", \
2760 idx, X);
2761
2762 DESC_PRINT(letoh32(le->sk_addr));
2763 DESC_PRINT(letoh16(le->sk_len));
2764 DESC_PRINT(le->sk_ctl);
2765 DESC_PRINT(le->sk_opcode);
2766 #undef DESC_PRINT
2767 }
2768
2769 static void
2770 msk_dump_bytes(const char *data, int len)
2771 {
2772 int c, i, j;
2773
2774 for (i = 0; i < len; i += 16) {
2775 printf("%08x ", i);
2776 c = len - i;
2777 if (c > 16) c = 16;
2778
2779 for (j = 0; j < c; j++) {
2780 printf("%02x ", data[i + j] & 0xff);
2781 if ((j & 0xf) == 7 && j > 0)
2782 printf(" ");
2783 }
2784
2785 for (; j < 16; j++)
2786 printf(" ");
2787 printf(" ");
2788
2789 for (j = 0; j < c; j++) {
2790 int ch = data[i + j] & 0xff;
2791 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2792 }
2793
2794 printf("\n");
2795
2796 if (c < 16)
2797 break;
2798 }
2799 }
2800
2801 static void
2802 msk_dump_mbuf(struct mbuf *m)
2803 {
2804 int count = m->m_pkthdr.len;
2805
2806 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2807
2808 while (count > 0 && m) {
2809 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2810 m, m->m_data, m->m_len);
2811 if (mskdebug >= 4)
2812 msk_dump_bytes(mtod(m, char *), m->m_len);
2813
2814 count -= m->m_len;
2815 m = m->m_next;
2816 }
2817 }
2818 #endif
2819
2820 static int
2821 msk_sysctl_handler(SYSCTLFN_ARGS)
2822 {
2823 int error, t;
2824 struct sysctlnode node;
2825 struct sk_softc *sc;
2826
2827 node = *rnode;
2828 sc = node.sysctl_data;
2829 t = sc->sk_int_mod;
2830 node.sysctl_data = &t;
2831 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2832 if (error || newp == NULL)
2833 return error;
2834
2835 if (t < SK_IM_MIN || t > SK_IM_MAX)
2836 return EINVAL;
2837
2838 /* update the softc with sysctl-changed value, and mark
2839 for hardware update */
2840 sc->sk_int_mod = t;
2841 sc->sk_int_mod_pending = 1;
2842 return 0;
2843 }
2844
2845 /*
2846 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2847 * set up in mskc_attach()
2848 */
2849 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2850 {
2851 int rc;
2852 const struct sysctlnode *node;
2853
2854 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2855 0, CTLTYPE_NODE, "msk",
2856 SYSCTL_DESCR("msk interface controls"),
2857 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2858 goto err;
2859 }
2860
2861 msk_root_num = node->sysctl_num;
2862 return;
2863
2864 err:
2865 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2866 }
2867