if_msk.c revision 1.118 1 /* $NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.118 2021/09/20 11:27:30 jmcneill Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 le16toh
72 #define letoh32 le32toh
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86
87 #include <dev/pci/pcireg.h>
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcidevs.h>
90
91 #include <dev/pci/if_skreg.h>
92 #include <dev/pci/if_mskvar.h>
93
94 static int mskc_probe(device_t, cfdata_t, void *);
95 static void mskc_attach(device_t, device_t, void *);
96 static int mskc_detach(device_t, int);
97 static void mskc_reset(struct sk_softc *);
98 static bool mskc_suspend(device_t, const pmf_qual_t *);
99 static bool mskc_resume(device_t, const pmf_qual_t *);
100 static int msk_probe(device_t, cfdata_t, void *);
101 static void msk_attach(device_t, device_t, void *);
102 static int msk_detach(device_t, int);
103 static void msk_reset(struct sk_if_softc *);
104 static int mskcprint(void *, const char *);
105 static int msk_intr(void *);
106 static void msk_intr_yukon(struct sk_if_softc *);
107 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
108 static void msk_txeof(struct sk_if_softc *);
109 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
110 static void msk_start(struct ifnet *);
111 static int msk_ioctl(struct ifnet *, u_long, void *);
112 static int msk_init(struct ifnet *);
113 static void msk_init_yukon(struct sk_if_softc *);
114 static void msk_stop(struct ifnet *, int);
115 static void msk_watchdog(struct ifnet *);
116 static int msk_newbuf(struct sk_if_softc *);
117 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
118 static void *msk_jalloc(struct sk_if_softc *);
119 static void msk_jfree(struct mbuf *, void *, size_t, void *);
120 static int msk_init_rx_ring(struct sk_if_softc *);
121 static int msk_init_tx_ring(struct sk_if_softc *);
122 static void msk_fill_rx_ring(struct sk_if_softc *);
123
124 static void msk_update_int_mod(struct sk_softc *, int);
125
126 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
127 static int msk_miibus_writereg(device_t, int, int, uint16_t);
128 static void msk_miibus_statchg(struct ifnet *);
129
130 static void msk_setmulti(struct sk_if_softc *);
131 static void msk_setpromisc(struct sk_if_softc *);
132 static void msk_tick(void *);
133 static void msk_fill_rx_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 static void msk_dump_txdesc(struct msk_tx_desc *, int);
142 static void msk_dump_mbuf(struct mbuf *);
143 static void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n, x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
153 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
154
155 /* supported device vendors */
156 static const struct device_compatible_entry compat_data[] = {
157 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
158 PCI_PRODUCT_DLINK_DGE550SX) },
159 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
160 PCI_PRODUCT_DLINK_DGE550T_B1) },
161 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
162 PCI_PRODUCT_DLINK_DGE560SX) },
163 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
164 PCI_PRODUCT_DLINK_DGE560T) },
165
166 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
167 PCI_PRODUCT_MARVELL_YUKONII_8021CU) },
168 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
169 PCI_PRODUCT_MARVELL_YUKONII_8021X) },
170 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
171 PCI_PRODUCT_MARVELL_YUKONII_8022CU) },
172 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
173 PCI_PRODUCT_MARVELL_YUKONII_8022X) },
174 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
175 PCI_PRODUCT_MARVELL_YUKON_8035) },
176 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
177 PCI_PRODUCT_MARVELL_YUKON_8036) },
178 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
179 PCI_PRODUCT_MARVELL_YUKON_8038) },
180 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
181 PCI_PRODUCT_MARVELL_YUKON_8039) },
182 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
183 PCI_PRODUCT_MARVELL_YUKON_8040) },
184 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
185 PCI_PRODUCT_MARVELL_YUKON_8040T) },
186 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
187 PCI_PRODUCT_MARVELL_YUKON_8042) },
188 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
189 PCI_PRODUCT_MARVELL_YUKON_8048) },
190 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
191 PCI_PRODUCT_MARVELL_YUKON_8050) },
192 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
193 PCI_PRODUCT_MARVELL_YUKON_8052) },
194 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
195 PCI_PRODUCT_MARVELL_YUKON_8053) },
196 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
197 PCI_PRODUCT_MARVELL_YUKON_8055) },
198 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
199 PCI_PRODUCT_MARVELL_YUKON_8055_2) },
200 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
201 PCI_PRODUCT_MARVELL_YUKON_8056) },
202 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
203 PCI_PRODUCT_MARVELL_YUKON_8057) },
204 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
205 PCI_PRODUCT_MARVELL_YUKON_8058) },
206 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
207 PCI_PRODUCT_MARVELL_YUKON_8059) },
208 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
209 PCI_PRODUCT_MARVELL_YUKONII_8061CU) },
210 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
211 PCI_PRODUCT_MARVELL_YUKONII_8061X) },
212 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
213 PCI_PRODUCT_MARVELL_YUKONII_8062CU) },
214 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
215 PCI_PRODUCT_MARVELL_YUKONII_8062X) },
216 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
217 PCI_PRODUCT_MARVELL_YUKON_8070) },
218 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
219 PCI_PRODUCT_MARVELL_YUKON_8071) },
220 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
221 PCI_PRODUCT_MARVELL_YUKON_8072) },
222 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
223 PCI_PRODUCT_MARVELL_YUKON_8075) },
224 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
225 PCI_PRODUCT_MARVELL_YUKON_8079) },
226 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
227 PCI_PRODUCT_MARVELL_YUKON_C032) },
228 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
229 PCI_PRODUCT_MARVELL_YUKON_C033) },
230 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
231 PCI_PRODUCT_MARVELL_YUKON_C034) },
232 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
233 PCI_PRODUCT_MARVELL_YUKON_C036) },
234 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
235 PCI_PRODUCT_MARVELL_YUKON_C042) },
236
237 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
238 PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX) },
239 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
240 PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21) },
241
242 PCI_COMPAT_EOL
243 };
244
245 static inline uint32_t
246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
247 {
248 return CSR_READ_4(sc, reg);
249 }
250
251 static inline uint16_t
252 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
253 {
254 return CSR_READ_2(sc, reg);
255 }
256
257 static inline uint8_t
258 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
259 {
260 return CSR_READ_1(sc, reg);
261 }
262
263 static inline void
264 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
265 {
266 CSR_WRITE_4(sc, reg, x);
267 }
268
269 static inline void
270 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
271 {
272 CSR_WRITE_2(sc, reg, x);
273 }
274
275 static inline void
276 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
277 {
278 CSR_WRITE_1(sc, reg, x);
279 }
280
281 static int
282 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
283 {
284 struct sk_if_softc *sc_if = device_private(dev);
285 uint16_t data;
286 int i;
287
288 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
289 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
290
291 for (i = 0; i < SK_TIMEOUT; i++) {
292 DELAY(1);
293 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
294 if (data & YU_SMICR_READ_VALID)
295 break;
296 }
297
298 if (i == SK_TIMEOUT) {
299 device_printf(sc_if->sk_dev, "phy failed to come ready\n");
300 return ETIMEDOUT;
301 }
302
303 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
304
305 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
306
307 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
308 phy, reg, *val));
309
310 return 0;
311 }
312
313 static int
314 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
315 {
316 struct sk_if_softc *sc_if = device_private(dev);
317 int i;
318
319 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
320 phy, reg, val));
321
322 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
323 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
324 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
325
326 for (i = 0; i < SK_TIMEOUT; i++) {
327 DELAY(1);
328 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
329 break;
330 }
331
332 if (i == SK_TIMEOUT) {
333 device_printf(sc_if->sk_dev, "phy write timed out\n");
334 return ETIMEDOUT;
335 }
336
337 return 0;
338 }
339
340 static void
341 msk_miibus_statchg(struct ifnet *ifp)
342 {
343 struct sk_if_softc *sc_if = ifp->if_softc;
344 struct mii_data *mii = &sc_if->sk_mii;
345 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
346 int gpcr;
347
348 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
349 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
350
351 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
352 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
353 /* Set speed. */
354 gpcr |= YU_GPCR_SPEED_DIS;
355 switch (IFM_SUBTYPE(mii->mii_media_active)) {
356 case IFM_1000_SX:
357 case IFM_1000_LX:
358 case IFM_1000_CX:
359 case IFM_1000_T:
360 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
361 break;
362 case IFM_100_TX:
363 gpcr |= YU_GPCR_SPEED;
364 break;
365 }
366
367 /* Set duplex. */
368 gpcr |= YU_GPCR_DPLX_DIS;
369 if ((mii->mii_media_active & IFM_FDX) != 0)
370 gpcr |= YU_GPCR_DUPLEX;
371
372 /* Disable flow control. */
373 gpcr |= YU_GPCR_FCTL_DIS;
374 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
375 }
376
377 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
378
379 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
380 SK_YU_READ_2(sc_if, YUKON_GPCR)));
381 }
382
383 static void
384 msk_setmulti(struct sk_if_softc *sc_if)
385 {
386 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
387 uint32_t hashes[2] = { 0, 0 };
388 int h;
389 struct ethercom *ec = &sc_if->sk_ethercom;
390 struct ether_multi *enm;
391 struct ether_multistep step;
392 uint16_t reg;
393
394 /* First, zot all the existing filters. */
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
399
400
401 /* Now program new ones. */
402 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
403 reg |= YU_RCR_UFLEN;
404 allmulti:
405 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
406 if ((ifp->if_flags & IFF_PROMISC) != 0)
407 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
409 hashes[0] = 0xFFFFFFFF;
410 hashes[1] = 0xFFFFFFFF;
411 }
412 } else {
413 /* First find the tail of the list. */
414 ETHER_LOCK(ec);
415 ETHER_FIRST_MULTI(step, ec, enm);
416 while (enm != NULL) {
417 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
418 ETHER_ADDR_LEN)) {
419 ifp->if_flags |= IFF_ALLMULTI;
420 ETHER_UNLOCK(ec);
421 goto allmulti;
422 }
423 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
424 ((1 << SK_HASH_BITS) - 1);
425 if (h < 32)
426 hashes[0] |= (1 << h);
427 else
428 hashes[1] |= (1 << (h - 32));
429
430 ETHER_NEXT_MULTI(step, enm);
431 }
432 ETHER_UNLOCK(ec);
433 reg |= YU_RCR_MUFLEN;
434 }
435
436 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
437 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
438 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
439 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
440 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
441 }
442
443 static void
444 msk_setpromisc(struct sk_if_softc *sc_if)
445 {
446 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
447
448 if (ifp->if_flags & IFF_PROMISC)
449 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
450 YU_RCR_UFLEN | YU_RCR_MUFLEN);
451 else
452 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
453 YU_RCR_UFLEN | YU_RCR_MUFLEN);
454 }
455
456 static int
457 msk_init_rx_ring(struct sk_if_softc *sc_if)
458 {
459 struct msk_chain_data *cd = &sc_if->sk_cdata;
460 struct msk_ring_data *rd = sc_if->sk_rdata;
461 struct msk_rx_desc *r;
462
463 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
464
465 sc_if->sk_cdata.sk_rx_prod = 0;
466 sc_if->sk_cdata.sk_rx_cons = 0;
467 sc_if->sk_cdata.sk_rx_cnt = 0;
468 sc_if->sk_cdata.sk_rx_hiaddr = 0;
469
470 /* Mark the first ring element to initialize the high address. */
471 sc_if->sk_cdata.sk_rx_hiaddr = 0;
472 r = &rd->sk_rx_ring[cd->sk_rx_prod];
473 r->sk_addr = htole32(cd->sk_rx_hiaddr);
474 r->sk_len = 0;
475 r->sk_ctl = 0;
476 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
477 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
478 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
479 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
480 sc_if->sk_cdata.sk_rx_cnt++;
481
482 msk_fill_rx_ring(sc_if);
483 return 0;
484 }
485
486 static int
487 msk_init_tx_ring(struct sk_if_softc *sc_if)
488 {
489 struct msk_chain_data *cd = &sc_if->sk_cdata;
490 struct msk_ring_data *rd = sc_if->sk_rdata;
491 struct msk_tx_desc *t;
492
493 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
494
495 sc_if->sk_cdata.sk_tx_prod = 0;
496 sc_if->sk_cdata.sk_tx_cons = 0;
497 sc_if->sk_cdata.sk_tx_cnt = 0;
498 sc_if->sk_cdata.sk_tx_hiaddr = 0;
499
500 /* Mark the first ring element to initialize the high address. */
501 sc_if->sk_cdata.sk_tx_hiaddr = 0;
502 t = &rd->sk_tx_ring[cd->sk_tx_prod];
503 t->sk_addr = htole32(cd->sk_tx_hiaddr);
504 t->sk_len = 0;
505 t->sk_ctl = 0;
506 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
507 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
508 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
509 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
510 sc_if->sk_cdata.sk_tx_cnt++;
511
512 return 0;
513 }
514
515 static int
516 msk_newbuf(struct sk_if_softc *sc_if)
517 {
518 struct sk_softc *sc = sc_if->sk_softc;
519 struct mbuf *m_new = NULL;
520 struct sk_chain *c;
521 struct msk_rx_desc *r;
522 void *buf = NULL;
523 bus_addr_t addr;
524 bus_dmamap_t rxmap;
525 size_t i;
526 uint32_t rxidx, frag, cur, hiaddr, total;
527 uint32_t entries = 0;
528 uint8_t own = 0;
529
530 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
531 if (m_new == NULL)
532 return ENOBUFS;
533
534 /* Allocate the jumbo buffer */
535 buf = msk_jalloc(sc_if);
536 if (buf == NULL) {
537 m_freem(m_new);
538 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
539 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
540 return ENOBUFS;
541 }
542
543 /* Attach the buffer to the mbuf */
544 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
545 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
546
547 m_adj(m_new, ETHER_ALIGN);
548
549 rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
550 rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
551
552 if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
553 DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
554 m_freem(m_new);
555 return ENOBUFS;
556 }
557
558 /* Count how many rx descriptors needed. */
559 hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
560 for (total = i = 0; i < rxmap->dm_nsegs; i++) {
561 if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
562 hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
563 total++;
564 }
565 total++;
566 }
567
568 if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
569 DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
570 bus_dmamap_unload(sc->sc_dmatag, rxmap);
571 m_freem(m_new);
572 return ENOBUFS;
573 }
574
575 DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
576 rxmap->dm_nsegs, total));
577
578 /* Sync the DMA map. */
579 bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
580 BUS_DMASYNC_PREREAD);
581
582 for (i = 0; i < rxmap->dm_nsegs; i++) {
583 addr = rxmap->dm_segs[i].ds_addr;
584 DPRINTFN(2, ("msk_newbuf: addr %llx\n",
585 (unsigned long long)addr));
586 hiaddr = MSK_ADDR_HI(addr);
587
588 if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
589 c = &sc_if->sk_cdata.sk_rx_chain[frag];
590 c->sk_mbuf = NULL;
591 r = &sc_if->sk_rdata->sk_rx_ring[frag];
592 r->sk_addr = htole32(hiaddr);
593 r->sk_len = 0;
594 r->sk_ctl = 0;
595 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
596 own = SK_Y2_RXOPC_OWN;
597 sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
598 MSK_CDRXSYNC(sc_if, frag,
599 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
600 SK_INC(frag, MSK_RX_RING_CNT);
601 entries++;
602 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
603 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
604 }
605
606 c = &sc_if->sk_cdata.sk_rx_chain[frag];
607 r = &sc_if->sk_rdata->sk_rx_ring[frag];
608 r->sk_addr = htole32(MSK_ADDR_LO(addr));
609 r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
610 r->sk_ctl = 0;
611 if (i == 0) {
612 r->sk_opcode = SK_Y2_RXOPC_PACKET | own;
613 } else
614 r->sk_opcode = SK_Y2_RXOPC_BUFFER | own;
615 own = SK_Y2_RXOPC_OWN;
616 MSK_CDRXSYNC(sc_if, frag,
617 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
618 cur = frag;
619 SK_INC(frag, MSK_RX_RING_CNT);
620 entries++;
621 }
622 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
623
624 sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
625 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
626 sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
627 sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
628
629 sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
630 MSK_CDRXSYNC(sc_if, rxidx,
631 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
632
633 sc_if->sk_cdata.sk_rx_cnt += entries;
634 sc_if->sk_cdata.sk_rx_prod = frag;
635
636 return 0;
637 }
638
639 /*
640 * Memory management for jumbo frames.
641 */
642
643 static int
644 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
645 {
646 struct sk_softc *sc = sc_if->sk_softc;
647 char *ptr, *kva;
648 int i, state, error;
649 struct sk_jpool_entry *entry;
650
651 state = error = 0;
652
653 /* Grab a big chunk o' storage. */
654 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
655 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
656 BUS_DMA_NOWAIT)) {
657 aprint_error(": can't alloc rx buffers");
658 return ENOBUFS;
659 }
660
661 state = 1;
662 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
663 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
664 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
665 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
666 error = ENOBUFS;
667 goto out;
668 }
669
670 state = 2;
671 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
672 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
673 aprint_error(": can't create dma map");
674 error = ENOBUFS;
675 goto out;
676 }
677
678 state = 3;
679 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
680 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
681 aprint_error(": can't load dma map");
682 error = ENOBUFS;
683 goto out;
684 }
685
686 state = 4;
687 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
688 DPRINTFN(1,("msk_jumbo_buf = %p\n",
689 (void *)sc_if->sk_cdata.sk_jumbo_buf));
690
691 LIST_INIT(&sc_if->sk_jfree_listhead);
692 LIST_INIT(&sc_if->sk_jinuse_listhead);
693 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
694
695 /*
696 * Now divide it up into 9K pieces and save the addresses
697 * in an array.
698 */
699 ptr = sc_if->sk_cdata.sk_jumbo_buf;
700 for (i = 0; i < MSK_JSLOTS; i++) {
701 sc_if->sk_cdata.sk_jslots[i] = ptr;
702 ptr += SK_JLEN;
703 entry = malloc(sizeof(struct sk_jpool_entry),
704 M_DEVBUF, M_WAITOK);
705 entry->slot = i;
706 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
707 entry, jpool_entries);
708 }
709 out:
710 if (error != 0) {
711 switch (state) {
712 case 4:
713 bus_dmamap_unload(sc->sc_dmatag,
714 sc_if->sk_cdata.sk_rx_jumbo_map);
715 /* FALLTHROUGH */
716 case 3:
717 bus_dmamap_destroy(sc->sc_dmatag,
718 sc_if->sk_cdata.sk_rx_jumbo_map);
719 /* FALLTHROUGH */
720 case 2:
721 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
722 /* FALLTHROUGH */
723 case 1:
724 bus_dmamem_free(sc->sc_dmatag,
725 &sc_if->sk_cdata.sk_jumbo_seg,
726 sc_if->sk_cdata.sk_jumbo_nseg);
727 break;
728 default:
729 break;
730 }
731 }
732
733 return error;
734 }
735
736 static void
737 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
738 {
739 struct sk_softc *sc = sc_if->sk_softc;
740
741 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
742 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
743 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
744 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
745 sc_if->sk_cdata.sk_jumbo_nseg);
746 }
747
748 /*
749 * Allocate a jumbo buffer.
750 */
751 static void *
752 msk_jalloc(struct sk_if_softc *sc_if)
753 {
754 struct sk_jpool_entry *entry;
755
756 mutex_enter(&sc_if->sk_jpool_mtx);
757 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
758
759 if (entry == NULL) {
760 mutex_exit(&sc_if->sk_jpool_mtx);
761 return NULL;
762 }
763
764 LIST_REMOVE(entry, jpool_entries);
765 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
766 mutex_exit(&sc_if->sk_jpool_mtx);
767 return sc_if->sk_cdata.sk_jslots[entry->slot];
768 }
769
770 /*
771 * Release a jumbo buffer.
772 */
773 static void
774 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
775 {
776 struct sk_jpool_entry *entry;
777 struct sk_if_softc *sc;
778 int i;
779
780 /* Extract the softc struct pointer. */
781 sc = (struct sk_if_softc *)arg;
782
783 if (sc == NULL)
784 panic("msk_jfree: can't find softc pointer!");
785
786 /* calculate the slot this buffer belongs to */
787 i = ((vaddr_t)buf
788 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
789
790 if ((i < 0) || (i >= MSK_JSLOTS))
791 panic("msk_jfree: asked to free buffer that we don't manage!");
792
793 mutex_enter(&sc->sk_jpool_mtx);
794 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
795 if (entry == NULL)
796 panic("msk_jfree: buffer not in use!");
797 entry->slot = i;
798 LIST_REMOVE(entry, jpool_entries);
799 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
800 mutex_exit(&sc->sk_jpool_mtx);
801
802 if (__predict_true(m != NULL))
803 pool_cache_put(mb_cache, m);
804
805 /* Now that we know we have a free RX buffer, refill if running out */
806 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
807 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
808 callout_schedule(&sc->sk_tick_rx, 0);
809 }
810
811 static int
812 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
813 {
814 struct sk_if_softc *sc = ifp->if_softc;
815 int s, error;
816
817 s = splnet();
818
819 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
820 switch (cmd) {
821 case SIOCSIFFLAGS:
822 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
823 break;
824
825 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
826 case IFF_RUNNING:
827 msk_stop(ifp, 1);
828 break;
829 case IFF_UP:
830 msk_init(ifp);
831 break;
832 case IFF_UP | IFF_RUNNING:
833 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
834 msk_setpromisc(sc);
835 msk_setmulti(sc);
836 } else
837 msk_init(ifp);
838 break;
839 }
840 sc->sk_if_flags = ifp->if_flags;
841 break;
842 default:
843 error = ether_ioctl(ifp, cmd, data);
844 if (error == ENETRESET) {
845 error = 0;
846 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
847 ;
848 else if (ifp->if_flags & IFF_RUNNING) {
849 /*
850 * Multicast list has changed; set the hardware
851 * filter accordingly.
852 */
853 msk_setmulti(sc);
854 }
855 }
856 break;
857 }
858
859 splx(s);
860 return error;
861 }
862
863 static void
864 msk_update_int_mod(struct sk_softc *sc, int verbose)
865 {
866 uint32_t imtimer_ticks;
867
868 /*
869 * Configure interrupt moderation. The moderation timer
870 * defers interrupts specified in the interrupt moderation
871 * timer mask based on the timeout specified in the interrupt
872 * moderation timer init register. Each bit in the timer
873 * register represents one tick, so to specify a timeout in
874 * microseconds, we have to multiply by the correct number of
875 * ticks-per-microsecond.
876 */
877 switch (sc->sk_type) {
878 case SK_YUKON_EC:
879 case SK_YUKON_EC_U:
880 case SK_YUKON_EX:
881 case SK_YUKON_SUPR:
882 case SK_YUKON_ULTRA2:
883 case SK_YUKON_OPTIMA:
884 case SK_YUKON_PRM:
885 case SK_YUKON_OPTIMA2:
886 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
887 break;
888 case SK_YUKON_FE:
889 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
890 break;
891 case SK_YUKON_FE_P:
892 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
893 break;
894 case SK_YUKON_XL:
895 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
896 break;
897 default:
898 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
899 }
900 if (verbose)
901 aprint_verbose_dev(sc->sk_dev,
902 "interrupt moderation is %d us\n", sc->sk_int_mod);
903 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
904 sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */
905 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
906 sc->sk_int_mod_pending = 0;
907 }
908
909 /*
910 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
911 * IDs against our list and return a device name if we find a match.
912 */
913 static int
914 mskc_probe(device_t parent, cfdata_t match, void *aux)
915 {
916 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
917
918 return pci_compatible_match(pa, compat_data);
919 }
920
921 /*
922 * Force the GEnesis into reset, then bring it out of reset.
923 */
924 static void
925 mskc_reset(struct sk_softc *sc)
926 {
927 uint32_t imtimer_ticks, reg1;
928 uint16_t status;
929 int reg;
930
931 DPRINTFN(2, ("mskc_reset\n"));
932
933 /* Disable ASF */
934 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
935 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
936 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
937 /* Clear AHB bridge & microcontroller reset. */
938 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
939 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
940 /* Clear ASF microcontroller state. */
941 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
942 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
943 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
944 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
945 } else
946 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
947 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
948
949 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
950 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
951
952 DELAY(1000);
953 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
954 DELAY(2);
955 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
956 sk_win_write_1(sc, SK_TESTCTL1, 2);
957
958 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
959 sc->sk_type >= SK_YUKON_FE_P) {
960 uint32_t our;
961
962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
963
964 /* enable all clocks. */
965 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
966 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
967 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
968 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
969 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
970 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
971 /* Set all bits to 0 except bits 15..12 */
972 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
973 /* Set to default value */
974 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
975
976 /*
977 * Disable status race, workaround for Yukon EC Ultra &
978 * Yukon EX.
979 */
980 reg1 = sk_win_read_4(sc, SK_GPIO);
981 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
982 sk_win_write_4(sc, SK_GPIO, reg1);
983 sk_win_read_4(sc, SK_GPIO);
984 }
985
986 /* release PHY from PowerDown/Coma mode. */
987 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
988 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
989 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
990 else
991 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
992 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
993
994 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
995 sk_win_write_1(sc, SK_Y2_CLKGATE,
996 SK_Y2_CLKGATE_LINK1_GATE_DIS |
997 SK_Y2_CLKGATE_LINK2_GATE_DIS |
998 SK_Y2_CLKGATE_LINK1_CORE_DIS |
999 SK_Y2_CLKGATE_LINK2_CORE_DIS |
1000 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
1001 else
1002 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
1003
1004 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1005 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
1006 DELAY(1000);
1007 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1008 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
1009
1010 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
1011 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
1012 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
1013 }
1014
1015 sk_win_write_1(sc, SK_TESTCTL1, 1);
1016
1017 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
1018 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
1019 CSR_READ_2(sc, SK_LINK_CTRL)));
1020
1021 /* Clear I2C IRQ noise */
1022 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
1023
1024 /* Disable hardware timer */
1025 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
1026 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
1027
1028 /* Disable descriptor polling */
1029 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1030
1031 /* Disable time stamps */
1032 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1033 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1034
1035 /* Enable RAM interface */
1036 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1037 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1038 sk_win_write_1(sc, reg, 36);
1039 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1040 for (reg = SK_TO0;reg <= SK_TO11; reg++)
1041 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1042
1043 /*
1044 * Configure interrupt moderation. The moderation timer
1045 * defers interrupts specified in the interrupt moderation
1046 * timer mask based on the timeout specified in the interrupt
1047 * moderation timer init register. Each bit in the timer
1048 * register represents one tick, so to specify a timeout in
1049 * microseconds, we have to multiply by the correct number of
1050 * ticks-per-microsecond.
1051 */
1052 switch (sc->sk_type) {
1053 case SK_YUKON_EC:
1054 case SK_YUKON_EC_U:
1055 case SK_YUKON_EX:
1056 case SK_YUKON_SUPR:
1057 case SK_YUKON_ULTRA2:
1058 case SK_YUKON_OPTIMA:
1059 case SK_YUKON_PRM:
1060 case SK_YUKON_OPTIMA2:
1061 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1062 break;
1063 case SK_YUKON_FE:
1064 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1065 break;
1066 case SK_YUKON_FE_P:
1067 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1068 break;
1069 case SK_YUKON_XL:
1070 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1071 break;
1072 default:
1073 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1074 break;
1075 }
1076
1077 /* Reset status ring. */
1078 memset(sc->sk_status_ring, 0,
1079 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1080 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1081 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1082 sc->sk_status_idx = 0;
1083
1084 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1085 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1086
1087 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1088 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1089 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1090 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1091 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1092 if (sc->sk_type == SK_YUKON_EC &&
1093 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1094 /* WA for dev. #4.3 */
1095 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1096 SK_STAT_BMU_TXTHIDX_MSK);
1097 /* WA for dev. #4.18 */
1098 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1099 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1100 } else {
1101 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1102 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1103 if (sc->sk_type == SK_YUKON_XL)
1104 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1105 else
1106 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1107 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1108 }
1109
1110 #if 0
1111 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1112 #endif
1113 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1114
1115 /* Enable status unit. */
1116 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1117
1118 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1119 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1120 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1121
1122 msk_update_int_mod(sc, 0);
1123 }
1124
1125 static int
1126 msk_probe(device_t parent, cfdata_t match, void *aux)
1127 {
1128 struct skc_attach_args *sa = aux;
1129
1130 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1131 return 0;
1132
1133 switch (sa->skc_type) {
1134 case SK_YUKON_XL:
1135 case SK_YUKON_EC_U:
1136 case SK_YUKON_EX:
1137 case SK_YUKON_EC:
1138 case SK_YUKON_FE:
1139 case SK_YUKON_FE_P:
1140 case SK_YUKON_SUPR:
1141 case SK_YUKON_ULTRA2:
1142 case SK_YUKON_OPTIMA:
1143 case SK_YUKON_PRM:
1144 case SK_YUKON_OPTIMA2:
1145 return 1;
1146 }
1147
1148 return 0;
1149 }
1150
1151 static void
1152 msk_reset(struct sk_if_softc *sc_if)
1153 {
1154 /* GMAC and GPHY Reset */
1155 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1156 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1157 DELAY(1000);
1158 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1159 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1160 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1161 }
1162
1163 static bool
1164 msk_resume(device_t dv, const pmf_qual_t *qual)
1165 {
1166 struct sk_if_softc *sc_if = device_private(dv);
1167
1168 msk_init_yukon(sc_if);
1169 return true;
1170 }
1171
1172 /*
1173 * Each XMAC chip is attached as a separate logical IP interface.
1174 * Single port cards will have only one logical interface of course.
1175 */
1176 static void
1177 msk_attach(device_t parent, device_t self, void *aux)
1178 {
1179 struct sk_if_softc *sc_if = device_private(self);
1180 struct sk_softc *sc = device_private(parent);
1181 struct skc_attach_args *sa = aux;
1182 bus_dmamap_t dmamap;
1183 struct ifnet *ifp;
1184 struct mii_data * const mii = &sc_if->sk_mii;
1185 void *kva;
1186 int i;
1187 uint32_t chunk;
1188 int mii_flags;
1189
1190 sc_if->sk_dev = self;
1191 sc_if->sk_port = sa->skc_port;
1192 sc_if->sk_softc = sc;
1193 sc->sk_if[sa->skc_port] = sc_if;
1194
1195 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1196
1197 /*
1198 * Get station address for this interface. Note that
1199 * dual port cards actually come with three station
1200 * addresses: one for each port, plus an extra. The
1201 * extra one is used by the SysKonnect driver software
1202 * as a 'virtual' station address for when both ports
1203 * are operating in failover mode. Currently we don't
1204 * use this extra address.
1205 */
1206 for (i = 0; i < ETHER_ADDR_LEN; i++)
1207 sc_if->sk_enaddr[i] =
1208 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1209
1210 aprint_normal(": Ethernet address %s\n",
1211 ether_sprintf(sc_if->sk_enaddr));
1212
1213 /*
1214 * Set up RAM buffer addresses. The Yukon2 has a small amount
1215 * of SRAM on it, somewhere between 4K and 48K. We need to
1216 * divide this up between the transmitter and receiver. We
1217 * give the receiver 2/3 of the memory (rounded down), and the
1218 * transmitter whatever remains.
1219 */
1220 if (sc->sk_ramsize) {
1221 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1222 sc_if->sk_rx_ramstart = 0;
1223 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1224 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1225 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1226 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1227
1228 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1229 " tx_ramstart=%#x tx_ramend=%#x\n",
1230 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1231 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1232 }
1233
1234 /* Allocate the descriptor queues. */
1235 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1236 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1237 BUS_DMA_NOWAIT)) {
1238 aprint_error(": can't alloc rx buffers\n");
1239 goto fail;
1240 }
1241 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1242 sc_if->sk_ring_nseg,
1243 sizeof(struct msk_ring_data), &kva,
1244 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1245 aprint_error(": can't map dma buffers (%zu bytes)\n",
1246 sizeof(struct msk_ring_data));
1247 goto fail_1;
1248 }
1249 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1250 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1251 &sc_if->sk_ring_map)) {
1252 aprint_error(": can't create dma map\n");
1253 goto fail_2;
1254 }
1255 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1256 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1257 aprint_error(": can't load dma map\n");
1258 goto fail_3;
1259 }
1260
1261 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1262 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1263
1264 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1265 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1266 aprint_error_dev(sc_if->sk_dev,
1267 "Can't create TX dmamap\n");
1268 goto fail_3;
1269 }
1270
1271 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1272 }
1273
1274 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1275 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1276
1277 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1278 howmany(SK_JLEN + 1, NBPG),
1279 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1280 aprint_error_dev(sc_if->sk_dev,
1281 "Can't create RX dmamap\n");
1282 goto fail_3;
1283 }
1284
1285 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1286 }
1287
1288 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1289 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1290
1291 if (sc->sk_type != SK_YUKON_FE &&
1292 sc->sk_type != SK_YUKON_FE_P)
1293 sc_if->sk_pktlen = SK_JLEN;
1294 else
1295 sc_if->sk_pktlen = MCLBYTES;
1296
1297 /* Try to allocate memory for jumbo buffers. */
1298 if (msk_alloc_jumbo_mem(sc_if)) {
1299 aprint_error(": jumbo buffer allocation failed\n");
1300 goto fail_3;
1301 }
1302
1303 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1304 if (sc->sk_type != SK_YUKON_FE &&
1305 sc->sk_type != SK_YUKON_FE_P)
1306 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1307
1308 ifp = &sc_if->sk_ethercom.ec_if;
1309 ifp->if_softc = sc_if;
1310 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1311 ifp->if_ioctl = msk_ioctl;
1312 ifp->if_start = msk_start;
1313 ifp->if_stop = msk_stop;
1314 ifp->if_init = msk_init;
1315 ifp->if_watchdog = msk_watchdog;
1316 ifp->if_baudrate = 1000000000;
1317 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1318 IFQ_SET_READY(&ifp->if_snd);
1319 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1320
1321 msk_reset(sc_if);
1322
1323 /*
1324 * Do miibus setup.
1325 */
1326 DPRINTFN(2, ("msk_attach: 1\n"));
1327
1328 mii->mii_ifp = ifp;
1329 mii->mii_readreg = msk_miibus_readreg;
1330 mii->mii_writereg = msk_miibus_writereg;
1331 mii->mii_statchg = msk_miibus_statchg;
1332
1333 sc_if->sk_ethercom.ec_mii = mii;
1334 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1335 mii_flags = MIIF_DOPAUSE;
1336 if (sc->sk_fibertype)
1337 mii_flags |= MIIF_HAVEFIBER;
1338 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1339 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1340 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1341 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1342 0, NULL);
1343 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1344 } else
1345 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1346
1347 callout_init(&sc_if->sk_tick_ch, 0);
1348 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1349 callout_schedule(&sc_if->sk_tick_ch, hz);
1350
1351 callout_init(&sc_if->sk_tick_rx, 0);
1352 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1353
1354 /*
1355 * Call MI attach routines.
1356 */
1357 if_attach(ifp);
1358 if_deferred_start_init(ifp, NULL);
1359 ether_ifattach(ifp, sc_if->sk_enaddr);
1360
1361 if (pmf_device_register(self, NULL, msk_resume))
1362 pmf_class_network_register(self, ifp);
1363 else
1364 aprint_error_dev(self, "couldn't establish power handler\n");
1365
1366 if (sc->rnd_attached++ == 0) {
1367 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1368 RND_TYPE_NET, RND_FLAG_DEFAULT);
1369 }
1370
1371 DPRINTFN(2, ("msk_attach: end\n"));
1372 return;
1373
1374 fail_3:
1375 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1376 fail_2:
1377 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1378 fail_1:
1379 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1380 fail:
1381 sc->sk_if[sa->skc_port] = NULL;
1382 }
1383
1384 static int
1385 msk_detach(device_t self, int flags)
1386 {
1387 struct sk_if_softc *sc_if = device_private(self);
1388 struct sk_softc *sc = sc_if->sk_softc;
1389 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1390 int i;
1391
1392 if (sc->sk_if[sc_if->sk_port] == NULL)
1393 return 0;
1394
1395 msk_stop(ifp, 1);
1396
1397 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1398 bus_dmamap_destroy(sc->sc_dmatag,
1399 sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1400 }
1401
1402 for (i = 0; i < MSK_RX_RING_CNT; i++) {
1403 bus_dmamap_destroy(sc->sc_dmatag,
1404 sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1405 }
1406
1407 if (--sc->rnd_attached == 0)
1408 rnd_detach_source(&sc->rnd_source);
1409
1410 callout_halt(&sc_if->sk_tick_ch, NULL);
1411 callout_destroy(&sc_if->sk_tick_ch);
1412
1413 callout_halt(&sc_if->sk_tick_rx, NULL);
1414 callout_destroy(&sc_if->sk_tick_rx);
1415
1416 /* Detach any PHYs we might have. */
1417 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1418 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1419
1420 pmf_device_deregister(self);
1421
1422 ether_ifdetach(ifp);
1423 if_detach(ifp);
1424
1425 /* Delete any remaining media. */
1426 ifmedia_fini(&sc_if->sk_mii.mii_media);
1427
1428 msk_free_jumbo_mem(sc_if);
1429
1430 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1431 sizeof(struct msk_ring_data));
1432 bus_dmamem_free(sc->sc_dmatag,
1433 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1434 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1435 sc->sk_if[sc_if->sk_port] = NULL;
1436
1437 return 0;
1438 }
1439
1440 static int
1441 mskcprint(void *aux, const char *pnp)
1442 {
1443 struct skc_attach_args *sa = aux;
1444
1445 if (pnp)
1446 aprint_normal("msk port %c at %s",
1447 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1448 else
1449 aprint_normal(" port %c",
1450 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1451 return UNCONF;
1452 }
1453
1454 /*
1455 * Attach the interface. Allocate softc structures, do ifmedia
1456 * setup and ethernet/BPF attach.
1457 */
1458 static void
1459 mskc_attach(device_t parent, device_t self, void *aux)
1460 {
1461 struct sk_softc *sc = device_private(self);
1462 struct pci_attach_args *pa = aux;
1463 struct skc_attach_args skca;
1464 pci_chipset_tag_t pc = pa->pa_pc;
1465 pcireg_t command, memtype;
1466 const char *intrstr = NULL;
1467 int rc, sk_nodenum;
1468 uint8_t hw, pmd;
1469 const char *revstr = NULL;
1470 const struct sysctlnode *node;
1471 void *kva;
1472 char intrbuf[PCI_INTRSTR_LEN];
1473
1474 DPRINTFN(2, ("begin mskc_attach\n"));
1475
1476 sc->sk_dev = self;
1477 /*
1478 * Handle power management nonsense.
1479 */
1480 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1481
1482 if (command == 0x01) {
1483 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1484 if (command & SK_PSTATE_MASK) {
1485 uint32_t iobase, membase, irq;
1486
1487 /* Save important PCI config data. */
1488 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1489 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1490 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1491
1492 /* Reset the power state. */
1493 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1494 "mode -- setting to D0\n",
1495 command & SK_PSTATE_MASK);
1496 command &= 0xFFFFFFFC;
1497 pci_conf_write(pc, pa->pa_tag,
1498 SK_PCI_PWRMGMTCTRL, command);
1499
1500 /* Restore PCI config data. */
1501 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1502 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1503 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1504 }
1505 }
1506
1507 /*
1508 * Map control/status registers.
1509 */
1510 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1511 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1512 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1513 aprint_error(": can't map mem space\n");
1514 return;
1515 }
1516
1517 if (pci_dma64_available(pa))
1518 sc->sc_dmatag = pa->pa_dmat64;
1519 else
1520 sc->sc_dmatag = pa->pa_dmat;
1521
1522 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1523 command |= PCI_COMMAND_MASTER_ENABLE;
1524 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1525
1526 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1527 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1528
1529 /* bail out here if chip is not recognized */
1530 if (!(SK_IS_YUKON2(sc))) {
1531 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1532 goto fail_1;
1533 }
1534 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1535
1536 /* Allocate interrupt */
1537 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1538 aprint_error(": couldn't map interrupt\n");
1539 goto fail_1;
1540 }
1541
1542 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1543 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1544 msk_intr, sc, device_xname(sc->sk_dev));
1545 if (sc->sk_intrhand == NULL) {
1546 aprint_error(": couldn't establish interrupt");
1547 if (intrstr != NULL)
1548 aprint_error(" at %s", intrstr);
1549 aprint_error("\n");
1550 goto fail_1;
1551 }
1552 sc->sk_pc = pc;
1553
1554 if (bus_dmamem_alloc(sc->sc_dmatag,
1555 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1556 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1557 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1558 aprint_error(": can't alloc status buffers\n");
1559 goto fail_2;
1560 }
1561
1562 if (bus_dmamem_map(sc->sc_dmatag,
1563 &sc->sk_status_seg, sc->sk_status_nseg,
1564 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1565 &kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1566 aprint_error(": can't map dma buffers (%zu bytes)\n",
1567 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1568 goto fail_3;
1569 }
1570 if (bus_dmamap_create(sc->sc_dmatag,
1571 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1572 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1573 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1574 aprint_error(": can't create dma map\n");
1575 goto fail_4;
1576 }
1577 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1578 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1579 NULL, BUS_DMA_NOWAIT)) {
1580 aprint_error(": can't load dma map\n");
1581 goto fail_5;
1582 }
1583 sc->sk_status_ring = (struct msk_status_desc *)kva;
1584
1585 sc->sk_int_mod = SK_IM_DEFAULT;
1586 sc->sk_int_mod_pending = 0;
1587
1588 /* Reset the adapter. */
1589 mskc_reset(sc);
1590
1591 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1592 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1593
1594 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1595 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1596 sc->sk_fibertype = 1;
1597
1598 switch (sc->sk_type) {
1599 case SK_YUKON_XL:
1600 sc->sk_name = "Yukon-2 XL";
1601 break;
1602 case SK_YUKON_EC_U:
1603 sc->sk_name = "Yukon-2 EC Ultra";
1604 break;
1605 case SK_YUKON_EX:
1606 sc->sk_name = "Yukon-2 Extreme";
1607 break;
1608 case SK_YUKON_EC:
1609 sc->sk_name = "Yukon-2 EC";
1610 break;
1611 case SK_YUKON_FE:
1612 sc->sk_name = "Yukon-2 FE";
1613 break;
1614 case SK_YUKON_FE_P:
1615 sc->sk_name = "Yukon-2 FE+";
1616 break;
1617 case SK_YUKON_SUPR:
1618 sc->sk_name = "Yukon-2 Supreme";
1619 break;
1620 case SK_YUKON_ULTRA2:
1621 sc->sk_name = "Yukon-2 Ultra 2";
1622 break;
1623 case SK_YUKON_OPTIMA:
1624 sc->sk_name = "Yukon-2 Optima";
1625 break;
1626 case SK_YUKON_PRM:
1627 sc->sk_name = "Yukon-2 Optima Prime";
1628 break;
1629 case SK_YUKON_OPTIMA2:
1630 sc->sk_name = "Yukon-2 Optima 2";
1631 break;
1632 default:
1633 sc->sk_name = "Yukon (Unknown)";
1634 }
1635
1636 if (sc->sk_type == SK_YUKON_XL) {
1637 switch (sc->sk_rev) {
1638 case SK_YUKON_XL_REV_A0:
1639 revstr = "A0";
1640 break;
1641 case SK_YUKON_XL_REV_A1:
1642 revstr = "A1";
1643 break;
1644 case SK_YUKON_XL_REV_A2:
1645 revstr = "A2";
1646 break;
1647 case SK_YUKON_XL_REV_A3:
1648 revstr = "A3";
1649 break;
1650 default:
1651 break;
1652 }
1653 }
1654
1655 if (sc->sk_type == SK_YUKON_EC) {
1656 switch (sc->sk_rev) {
1657 case SK_YUKON_EC_REV_A1:
1658 revstr = "A1";
1659 break;
1660 case SK_YUKON_EC_REV_A2:
1661 revstr = "A2";
1662 break;
1663 case SK_YUKON_EC_REV_A3:
1664 revstr = "A3";
1665 break;
1666 default:
1667 break;
1668 }
1669 }
1670
1671 if (sc->sk_type == SK_YUKON_FE) {
1672 switch (sc->sk_rev) {
1673 case SK_YUKON_FE_REV_A1:
1674 revstr = "A1";
1675 break;
1676 case SK_YUKON_FE_REV_A2:
1677 revstr = "A2";
1678 break;
1679 default:
1680 break;
1681 }
1682 }
1683
1684 if (sc->sk_type == SK_YUKON_EC_U) {
1685 switch (sc->sk_rev) {
1686 case SK_YUKON_EC_U_REV_A0:
1687 revstr = "A0";
1688 break;
1689 case SK_YUKON_EC_U_REV_A1:
1690 revstr = "A1";
1691 break;
1692 case SK_YUKON_EC_U_REV_B0:
1693 revstr = "B0";
1694 break;
1695 case SK_YUKON_EC_U_REV_B1:
1696 revstr = "B1";
1697 break;
1698 default:
1699 break;
1700 }
1701 }
1702
1703 if (sc->sk_type == SK_YUKON_FE) {
1704 switch (sc->sk_rev) {
1705 case SK_YUKON_FE_REV_A1:
1706 revstr = "A1";
1707 break;
1708 case SK_YUKON_FE_REV_A2:
1709 revstr = "A2";
1710 break;
1711 default:
1712 ;
1713 }
1714 }
1715
1716 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1717 revstr = "A0";
1718
1719 if (sc->sk_type == SK_YUKON_EX) {
1720 switch (sc->sk_rev) {
1721 case SK_YUKON_EX_REV_A0:
1722 revstr = "A0";
1723 break;
1724 case SK_YUKON_EX_REV_B0:
1725 revstr = "B0";
1726 break;
1727 default:
1728 ;
1729 }
1730 }
1731
1732 if (sc->sk_type == SK_YUKON_SUPR) {
1733 switch (sc->sk_rev) {
1734 case SK_YUKON_SUPR_REV_A0:
1735 revstr = "A0";
1736 break;
1737 case SK_YUKON_SUPR_REV_B0:
1738 revstr = "B0";
1739 break;
1740 case SK_YUKON_SUPR_REV_B1:
1741 revstr = "B1";
1742 break;
1743 default:
1744 ;
1745 }
1746 }
1747
1748 if (sc->sk_type == SK_YUKON_PRM) {
1749 switch (sc->sk_rev) {
1750 case SK_YUKON_PRM_REV_Z1:
1751 revstr = "Z1";
1752 break;
1753 case SK_YUKON_PRM_REV_A0:
1754 revstr = "A0";
1755 break;
1756 default:
1757 ;
1758 }
1759 }
1760
1761 /* Announce the product name. */
1762 aprint_normal(", %s", sc->sk_name);
1763 if (revstr != NULL)
1764 aprint_normal(" rev. %s", revstr);
1765 aprint_normal(" (0x%x)\n", sc->sk_rev);
1766
1767 aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1768
1769 sc->sk_macs = 1;
1770
1771 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1772 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1773 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1774 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1775 sc->sk_macs++;
1776 }
1777
1778 skca.skc_port = SK_PORT_A;
1779 skca.skc_type = sc->sk_type;
1780 skca.skc_rev = sc->sk_rev;
1781 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1782
1783 if (sc->sk_macs > 1) {
1784 skca.skc_port = SK_PORT_B;
1785 skca.skc_type = sc->sk_type;
1786 skca.skc_rev = sc->sk_rev;
1787 (void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1788 }
1789
1790 /* Turn on the 'driver is loaded' LED. */
1791 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1792
1793 /* skc sysctl setup */
1794
1795 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1796 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1797 SYSCTL_DESCR("mskc per-controller controls"),
1798 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1799 CTL_EOL)) != 0) {
1800 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1801 goto fail_6;
1802 }
1803
1804 sk_nodenum = node->sysctl_num;
1805
1806 /* interrupt moderation time in usecs */
1807 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1808 CTLFLAG_READWRITE,
1809 CTLTYPE_INT, "int_mod",
1810 SYSCTL_DESCR("msk interrupt moderation timer"),
1811 msk_sysctl_handler, 0, (void *)sc,
1812 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1813 CTL_EOL)) != 0) {
1814 aprint_normal_dev(sc->sk_dev,
1815 "couldn't create int_mod sysctl node\n");
1816 goto fail_6;
1817 }
1818
1819 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1820 aprint_error_dev(self, "couldn't establish power handler\n");
1821
1822 return;
1823
1824 fail_6:
1825 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1826 fail_4:
1827 bus_dmamem_unmap(sc->sc_dmatag, kva,
1828 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1829 fail_3:
1830 bus_dmamem_free(sc->sc_dmatag,
1831 &sc->sk_status_seg, sc->sk_status_nseg);
1832 sc->sk_status_nseg = 0;
1833 fail_5:
1834 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1835 fail_2:
1836 pci_intr_disestablish(pc, sc->sk_intrhand);
1837 sc->sk_intrhand = NULL;
1838 fail_1:
1839 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1840 sc->sk_bsize = 0;
1841 }
1842
1843 static int
1844 mskc_detach(device_t self, int flags)
1845 {
1846 struct sk_softc *sc = device_private(self);
1847 int rv;
1848
1849 if (sc->sk_intrhand) {
1850 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1851 sc->sk_intrhand = NULL;
1852 }
1853
1854 if (sc->sk_pihp != NULL) {
1855 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1856 sc->sk_pihp = NULL;
1857 }
1858
1859 rv = config_detach_children(self, flags);
1860 if (rv != 0)
1861 return rv;
1862
1863 sysctl_teardown(&sc->sk_clog);
1864
1865 if (sc->sk_status_nseg > 0) {
1866 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1867 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1868 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1869 bus_dmamem_free(sc->sc_dmatag,
1870 &sc->sk_status_seg, sc->sk_status_nseg);
1871 }
1872
1873 if (sc->sk_bsize > 0)
1874 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1875
1876 return 0;
1877 }
1878
1879 static int
1880 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1881 {
1882 struct sk_softc *sc = sc_if->sk_softc;
1883 struct msk_tx_desc *f = NULL;
1884 uint32_t frag, cur, hiaddr, total;
1885 uint32_t entries = 0;
1886 uint8_t own = 0;
1887 size_t i;
1888 bus_dmamap_t txmap;
1889 bus_addr_t addr;
1890
1891 DPRINTFN(2, ("msk_encap\n"));
1892
1893 txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1894
1895 cur = frag = *txidx;
1896
1897 #ifdef MSK_DEBUG
1898 if (mskdebug >= 2)
1899 msk_dump_mbuf(m_head);
1900 #endif
1901
1902 /*
1903 * Start packing the mbufs in this chain into
1904 * the fragment pointers. Stop when we run out
1905 * of fragments or hit the end of the mbuf chain.
1906 */
1907 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1908 BUS_DMA_NOWAIT)) {
1909 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1910 return ENOBUFS;
1911 }
1912
1913 /* Count how many tx descriptors needed. */
1914 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1915 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1916 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1917 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1918 total++;
1919 }
1920 total++;
1921 }
1922
1923 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1924 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1925 bus_dmamap_unload(sc->sc_dmatag, txmap);
1926 return ENOBUFS;
1927 }
1928
1929 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1930 txmap->dm_nsegs, total));
1931
1932 /* Sync the DMA map. */
1933 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1934 BUS_DMASYNC_PREWRITE);
1935
1936 for (i = 0; i < txmap->dm_nsegs; i++) {
1937 addr = txmap->dm_segs[i].ds_addr;
1938 DPRINTFN(2, ("msk_encap: addr %llx\n",
1939 (unsigned long long)addr));
1940 hiaddr = MSK_ADDR_HI(addr);
1941
1942 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1943 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1944 f->sk_addr = htole32(hiaddr);
1945 f->sk_len = 0;
1946 f->sk_ctl = 0;
1947 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
1948 own = SK_Y2_TXOPC_OWN;
1949 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1950 SK_INC(frag, MSK_TX_RING_CNT);
1951 entries++;
1952 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1953 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1954 }
1955
1956 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1957 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1958 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1959 f->sk_ctl = 0;
1960 if (i == 0) {
1961 f->sk_opcode = SK_Y2_TXOPC_PACKET | own;
1962 } else
1963 f->sk_opcode = SK_Y2_TXOPC_BUFFER | own;
1964 own = SK_Y2_TXOPC_OWN;
1965 cur = frag;
1966 SK_INC(frag, MSK_TX_RING_CNT);
1967 entries++;
1968 }
1969 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1970
1971 sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1972 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1973 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1974 sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1975
1976 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1977
1978 /* Sync descriptors before handing to chip */
1979 MSK_CDTXSYNC(sc_if, *txidx, entries,
1980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1981
1982 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1983
1984 /* Sync first descriptor to hand it off */
1985 MSK_CDTXSYNC(sc_if, *txidx, 1,
1986 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1987
1988 sc_if->sk_cdata.sk_tx_cnt += entries;
1989
1990 #ifdef MSK_DEBUG
1991 if (mskdebug >= 2) {
1992 struct msk_tx_desc *le;
1993 uint32_t idx;
1994 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1995 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1996 msk_dump_txdesc(le, idx);
1997 }
1998 }
1999 #endif
2000
2001 *txidx = frag;
2002
2003 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
2004
2005 return 0;
2006 }
2007
2008 static void
2009 msk_start(struct ifnet *ifp)
2010 {
2011 struct sk_if_softc *sc_if = ifp->if_softc;
2012 struct mbuf *m_head = NULL;
2013 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
2014 int pkts = 0;
2015
2016 DPRINTFN(2, ("msk_start\n"));
2017
2018 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2019 IFQ_POLL(&ifp->if_snd, m_head);
2020 if (m_head == NULL)
2021 break;
2022
2023 /*
2024 * Pack the data into the transmit ring. If we
2025 * don't have room, set the OACTIVE flag and wait
2026 * for the NIC to drain the ring.
2027 */
2028 if (msk_encap(sc_if, m_head, &idx)) {
2029 ifp->if_flags |= IFF_OACTIVE;
2030 break;
2031 }
2032
2033 /* now we are committed to transmit the packet */
2034 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2035 pkts++;
2036
2037 /*
2038 * If there's a BPF listener, bounce a copy of this frame
2039 * to him.
2040 */
2041 bpf_mtap(ifp, m_head, BPF_D_OUT);
2042 }
2043 if (pkts == 0)
2044 return;
2045
2046 /* Transmit */
2047 if (idx != sc_if->sk_cdata.sk_tx_prod) {
2048 sc_if->sk_cdata.sk_tx_prod = idx;
2049 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2050
2051 /* Set a timeout in case the chip goes out to lunch. */
2052 ifp->if_timer = 5;
2053 }
2054 }
2055
2056 static void
2057 msk_watchdog(struct ifnet *ifp)
2058 {
2059 struct sk_if_softc *sc_if = ifp->if_softc;
2060
2061 /*
2062 * Reclaim first as there is a possibility of losing Tx completion
2063 * interrupts.
2064 */
2065 msk_txeof(sc_if);
2066 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2067 device_printf(sc_if->sk_dev, "watchdog timeout\n");
2068
2069 if_statinc(ifp, if_oerrors);
2070
2071 /* XXX Resets both ports; we shouldn't do that. */
2072 mskc_reset(sc_if->sk_softc);
2073 msk_reset(sc_if);
2074 msk_init(ifp);
2075 }
2076 }
2077
2078 static bool
2079 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2080 {
2081 struct sk_softc *sc = device_private(dv);
2082
2083 DPRINTFN(2, ("mskc_suspend\n"));
2084
2085 /* Turn off the 'driver is loaded' LED. */
2086 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2087
2088 return true;
2089 }
2090
2091 static bool
2092 mskc_resume(device_t dv, const pmf_qual_t *qual)
2093 {
2094 struct sk_softc *sc = device_private(dv);
2095
2096 DPRINTFN(2, ("mskc_resume\n"));
2097
2098 mskc_reset(sc);
2099 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2100
2101 return true;
2102 }
2103
2104 static __inline int
2105 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2106 {
2107 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2108 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2109 YU_RXSTAT_JABBER)) != 0 ||
2110 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2111 YU_RXSTAT_BYTES(stat) != len)
2112 return 0;
2113
2114 return 1;
2115 }
2116
2117 static void
2118 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2119 {
2120 struct sk_softc *sc = sc_if->sk_softc;
2121 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2122 struct mbuf *m;
2123 unsigned cur, prod, tail, total_len = len;
2124 bus_dmamap_t dmamap;
2125
2126 cur = sc_if->sk_cdata.sk_rx_cons;
2127 prod = sc_if->sk_cdata.sk_rx_prod;
2128
2129 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2130 sc_if->sk_cdata.sk_rx_cnt));
2131
2132 while (prod != cur) {
2133 MSK_CDRXSYNC(sc_if, cur,
2134 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2135
2136 tail = cur;
2137 SK_INC(cur, MSK_RX_RING_CNT);
2138
2139 sc_if->sk_cdata.sk_rx_cnt--;
2140 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2141 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2142 if (m != NULL)
2143 break; /* found it */
2144 }
2145 sc_if->sk_cdata.sk_rx_cons = cur;
2146 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2147 sc_if->sk_cdata.sk_rx_cnt, m));
2148
2149 if (m == NULL)
2150 return;
2151
2152 dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2153
2154 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2155 uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2156 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2157
2158 if (total_len < SK_MIN_FRAMELEN ||
2159 total_len > ETHER_MAX_LEN_JUMBO ||
2160 msk_rxvalid(sc, rxstat, total_len) == 0) {
2161 if_statinc(ifp, if_ierrors);
2162 m_freem(m);
2163 return;
2164 }
2165
2166 m_set_rcvif(m, ifp);
2167 m->m_pkthdr.len = m->m_len = total_len;
2168
2169 /* pass it on. */
2170 if_percpuq_enqueue(ifp->if_percpuq, m);
2171 }
2172
2173 static void
2174 msk_txeof(struct sk_if_softc *sc_if)
2175 {
2176 struct sk_softc *sc = sc_if->sk_softc;
2177 struct msk_tx_desc *cur_tx;
2178 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2179 uint32_t idx, reg, sk_ctl;
2180 bus_dmamap_t dmamap;
2181
2182 DPRINTFN(2, ("msk_txeof\n"));
2183
2184 if (sc_if->sk_port == SK_PORT_A)
2185 reg = SK_STAT_BMU_TXA1_RIDX;
2186 else
2187 reg = SK_STAT_BMU_TXA2_RIDX;
2188
2189 /*
2190 * Go through our tx ring and free mbufs for those
2191 * frames that have been sent.
2192 */
2193 idx = sc_if->sk_cdata.sk_tx_cons;
2194 while (idx != sk_win_read_2(sc, reg)) {
2195 MSK_CDTXSYNC(sc_if, idx, 1,
2196 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197
2198 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2199 sk_ctl = cur_tx->sk_ctl;
2200 #ifdef MSK_DEBUG
2201 if (mskdebug >= 2)
2202 msk_dump_txdesc(cur_tx, idx);
2203 #endif
2204 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2205 if_statinc(ifp, if_opackets);
2206 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2207 dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2208
2209 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2210 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2211
2212 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2213 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2214 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2215 }
2216 sc_if->sk_cdata.sk_tx_cnt--;
2217 SK_INC(idx, MSK_TX_RING_CNT);
2218 }
2219 if (idx == sc_if->sk_cdata.sk_tx_cons)
2220 return;
2221
2222 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2223
2224 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2225 ifp->if_flags &= ~IFF_OACTIVE;
2226
2227 sc_if->sk_cdata.sk_tx_cons = idx;
2228 }
2229
2230 static void
2231 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2232 {
2233 /* Make sure to not completely wrap around */
2234 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2235 if (msk_newbuf(sc_if) == ENOBUFS) {
2236 goto schedretry;
2237 }
2238 }
2239
2240 return;
2241
2242 schedretry:
2243 /* Try later */
2244 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2245 }
2246
2247 static void
2248 msk_fill_rx_tick(void *xsc_if)
2249 {
2250 struct sk_if_softc *sc_if = xsc_if;
2251 int s, rx_prod;
2252
2253 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2254
2255 s = splnet();
2256 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2257 msk_fill_rx_ring(sc_if);
2258 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2259 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2260 sc_if->sk_cdata.sk_rx_prod);
2261 }
2262 splx(s);
2263 }
2264
2265 static void
2266 msk_tick(void *xsc_if)
2267 {
2268 struct sk_if_softc *sc_if = xsc_if;
2269 struct mii_data *mii = &sc_if->sk_mii;
2270 int s;
2271
2272 s = splnet();
2273 mii_tick(mii);
2274 splx(s);
2275
2276 callout_schedule(&sc_if->sk_tick_ch, hz);
2277 }
2278
2279 static void
2280 msk_intr_yukon(struct sk_if_softc *sc_if)
2281 {
2282 uint8_t status;
2283
2284 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2285 /* RX overrun */
2286 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2287 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2288 SK_RFCTL_RX_FIFO_OVER);
2289 }
2290 /* TX underrun */
2291 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2292 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2293 SK_TFCTL_TX_FIFO_UNDER);
2294 }
2295
2296 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2297 }
2298
2299 static int
2300 msk_intr(void *xsc)
2301 {
2302 struct sk_softc *sc = xsc;
2303 struct sk_if_softc *sc_if;
2304 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2305 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2306 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2307 uint32_t status;
2308 struct msk_status_desc *cur_st;
2309 bool retried = false;
2310
2311 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2312 if (status == 0xffffffff)
2313 return 0;
2314 if (status == 0) {
2315 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2316 return 0;
2317 }
2318
2319 status = CSR_READ_4(sc, SK_ISR);
2320
2321 if (sc_if0 != NULL)
2322 ifp0 = &sc_if0->sk_ethercom.ec_if;
2323 if (sc_if1 != NULL)
2324 ifp1 = &sc_if1->sk_ethercom.ec_if;
2325
2326 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2327 (ifp0->if_flags & IFF_RUNNING)) {
2328 msk_intr_yukon(sc_if0);
2329 }
2330
2331 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2332 (ifp1->if_flags & IFF_RUNNING)) {
2333 msk_intr_yukon(sc_if1);
2334 }
2335
2336 again:
2337 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2338 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2339 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2340
2341 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2342 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2343 switch (cur_st->sk_opcode) {
2344 case SK_Y2_STOPC_RXSTAT:
2345 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2346 if (sc_if) {
2347 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2348 letoh32(cur_st->sk_status));
2349 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2350 msk_fill_rx_tick(sc_if);
2351 }
2352 break;
2353 case SK_Y2_STOPC_TXSTAT:
2354 if (sc_if0)
2355 msk_txeof(sc_if0);
2356 if (sc_if1)
2357 msk_txeof(sc_if1);
2358 break;
2359 default:
2360 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2361 break;
2362 }
2363 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2364
2365 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2366 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2367 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2368 }
2369
2370 if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) {
2371 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2372 } else if (!retried) {
2373 retried = true;
2374 goto again;
2375 }
2376
2377 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2378
2379 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2380 if_schedule_deferred_start(ifp0);
2381 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2382 if_schedule_deferred_start(ifp1);
2383
2384 KASSERT(sc->rnd_attached > 0);
2385 rnd_add_uint32(&sc->rnd_source, status);
2386
2387 if (sc->sk_int_mod_pending)
2388 msk_update_int_mod(sc, 1);
2389
2390 return (status & sc->sk_intrmask) != 0;
2391 }
2392
2393 static void
2394 msk_init_yukon(struct sk_if_softc *sc_if)
2395 {
2396 uint32_t v;
2397 uint16_t reg;
2398 struct sk_softc *sc;
2399 int i;
2400
2401 sc = sc_if->sk_softc;
2402
2403 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2404 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2405
2406 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2407
2408 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2409 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2410
2411 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2412
2413 /* unused read of the interrupt source register */
2414 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2415 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2416
2417 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2418 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2419 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2420
2421 /* MIB Counter Clear Mode set */
2422 reg |= YU_PAR_MIB_CLR;
2423 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2424 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2425 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2426
2427 /* MIB Counter Clear Mode clear */
2428 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2429 reg &= ~YU_PAR_MIB_CLR;
2430 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2431
2432 /* receive control reg */
2433 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2434 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2435
2436 /* transmit control register */
2437 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2438
2439 /* transmit flow control register */
2440 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2441
2442 /* transmit parameter register */
2443 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2444 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2445 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2446
2447 /* serial mode register */
2448 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2449 reg = YU_SMR_DATA_BLIND(0x1c) |
2450 YU_SMR_MFL_VLAN |
2451 YU_SMR_IPG_DATA(0x1e);
2452
2453 if (sc->sk_type != SK_YUKON_FE &&
2454 sc->sk_type != SK_YUKON_FE_P)
2455 reg |= YU_SMR_MFL_JUMBO;
2456
2457 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2458
2459 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2460 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2461 /* msk_attach calls me before ether_ifattach so check null */
2462 if (ifp != NULL && ifp->if_sadl != NULL)
2463 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2464 sizeof(sc_if->sk_enaddr));
2465 /* Setup Yukon's address */
2466 for (i = 0; i < 3; i++) {
2467 /* Write Source Address 1 (unicast filter) */
2468 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2469 sc_if->sk_enaddr[i * 2] |
2470 sc_if->sk_enaddr[i * 2 + 1] << 8);
2471 }
2472
2473 for (i = 0; i < 3; i++) {
2474 reg = sk_win_read_2(sc_if->sk_softc,
2475 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2476 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2477 }
2478
2479 /* Set promiscuous mode */
2480 msk_setpromisc(sc_if);
2481
2482 /* Set multicast filter */
2483 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2484 msk_setmulti(sc_if);
2485
2486 /* enable interrupt mask for counter overflows */
2487 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2488 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2489 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2490 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2491
2492 /* Configure RX MAC FIFO Flush Mask */
2493 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2494 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2495 YU_RXSTAT_JABBER;
2496 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2497
2498 /* Configure RX MAC FIFO */
2499 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2500 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2501 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2502 v |= SK_RFCTL_RX_OVER_ON;
2503 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2504
2505 if ((sc->sk_type == SK_YUKON_FE_P) &&
2506 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2507 v = 0x178; /* Magic value */
2508 else {
2509 /* Increase flush threshold to 64 bytes */
2510 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2511 }
2512 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2513
2514 /* Configure TX MAC FIFO */
2515 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2516 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2517
2518 if ((sc->sk_type == SK_YUKON_FE_P) &&
2519 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2520 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2521 v &= ~SK_TXEND_WM_ON;
2522 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2523 }
2524
2525 #if 1
2526 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2527 #endif
2528 DPRINTFN(6, ("msk_init_yukon: end\n"));
2529 }
2530
2531 /*
2532 * Note that to properly initialize any part of the GEnesis chip,
2533 * you first have to take it out of reset mode.
2534 */
2535 static int
2536 msk_init(struct ifnet *ifp)
2537 {
2538 struct sk_if_softc *sc_if = ifp->if_softc;
2539 struct sk_softc *sc = sc_if->sk_softc;
2540 int rc = 0, s;
2541 uint32_t imr, imtimer_ticks;
2542
2543
2544 DPRINTFN(2, ("msk_init\n"));
2545
2546 s = splnet();
2547
2548 /* Cancel pending I/O and free all RX/TX buffers. */
2549 msk_stop(ifp, 1);
2550
2551 /* Configure I2C registers */
2552
2553 /* Configure XMAC(s) */
2554 msk_init_yukon(sc_if);
2555 if ((rc = ether_mediachange(ifp)) != 0)
2556 goto out;
2557
2558 /* Configure transmit arbiter(s) */
2559 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2560 #if 0
2561 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2562 #endif
2563
2564 if (sc->sk_ramsize) {
2565 /* Configure RAMbuffers */
2566 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2567 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2568 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2569 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2570 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2571 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2572
2573 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2574 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2575 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2576 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2577 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2578 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2579 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2580 }
2581
2582 /* Configure BMUs */
2583 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2584 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2585 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2586 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2587
2588 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2589 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2590 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2591 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2592
2593 /* Make sure the sync transmit queue is disabled. */
2594 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2595
2596 /* Init descriptors */
2597 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2598 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2599 "memory for rx buffers\n");
2600 msk_stop(ifp, 1);
2601 splx(s);
2602 return ENOBUFS;
2603 }
2604
2605 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2606 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2607 "memory for tx buffers\n");
2608 msk_stop(ifp, 1);
2609 splx(s);
2610 return ENOBUFS;
2611 }
2612
2613 /* Set interrupt moderation if changed via sysctl. */
2614 switch (sc->sk_type) {
2615 case SK_YUKON_EC:
2616 case SK_YUKON_EC_U:
2617 case SK_YUKON_EX:
2618 case SK_YUKON_SUPR:
2619 case SK_YUKON_ULTRA2:
2620 case SK_YUKON_OPTIMA:
2621 case SK_YUKON_PRM:
2622 case SK_YUKON_OPTIMA2:
2623 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2624 break;
2625 case SK_YUKON_FE:
2626 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2627 break;
2628 case SK_YUKON_FE_P:
2629 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2630 break;
2631 case SK_YUKON_XL:
2632 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2633 break;
2634 default:
2635 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2636 }
2637 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2638 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2639 sk_win_write_4(sc, SK_IMTIMERINIT,
2640 SK_IM_USECS(sc->sk_int_mod));
2641 aprint_verbose_dev(sc->sk_dev,
2642 "interrupt moderation is %d us\n", sc->sk_int_mod);
2643 }
2644
2645 /* Initialize prefetch engine. */
2646 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2647 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2648 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2649 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2650 MSK_RX_RING_ADDR(sc_if, 0));
2651 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2652 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2653 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2654 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2655
2656 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2657 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2658 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2659 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2660 MSK_TX_RING_ADDR(sc_if, 0));
2661 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2662 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2663 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2664 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2665
2666 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2667 sc_if->sk_cdata.sk_rx_prod);
2668
2669
2670 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2671 /* Disable flushing of non-ASF packets. */
2672 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2673 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2674 }
2675
2676 /* Configure interrupt handling */
2677 if (sc_if->sk_port == SK_PORT_A)
2678 sc->sk_intrmask |= SK_Y2_INTRS1;
2679 else
2680 sc->sk_intrmask |= SK_Y2_INTRS2;
2681 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2682 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2683
2684 ifp->if_flags |= IFF_RUNNING;
2685 ifp->if_flags &= ~IFF_OACTIVE;
2686
2687 callout_schedule(&sc_if->sk_tick_ch, hz);
2688
2689 out:
2690 splx(s);
2691 return rc;
2692 }
2693
2694 /*
2695 * Note: the logic of second parameter is inverted compared to OpenBSD
2696 * code, since this code uses the function as if_stop hook too.
2697 */
2698 static void
2699 msk_stop(struct ifnet *ifp, int disable)
2700 {
2701 struct sk_if_softc *sc_if = ifp->if_softc;
2702 struct sk_softc *sc = sc_if->sk_softc;
2703 bus_dmamap_t dmamap;
2704 int i;
2705
2706 DPRINTFN(2, ("msk_stop\n"));
2707
2708 callout_stop(&sc_if->sk_tick_ch);
2709 callout_stop(&sc_if->sk_tick_rx);
2710
2711 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2712
2713 /* Stop transfer of Tx descriptors */
2714
2715 /* Stop transfer of Rx descriptors */
2716
2717 if (disable) {
2718 /* Turn off various components of this interface. */
2719 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2720 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2721 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2722 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2723 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2724 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2725 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2726 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2727 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2729 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2730
2731 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2732 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2733
2734 /* Disable interrupts */
2735 if (sc_if->sk_port == SK_PORT_A)
2736 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2737 else
2738 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2739 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2740 }
2741
2742 /* Free RX and TX mbufs still in the queues. */
2743 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2744 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2745 dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2746
2747 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2748 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2749
2750 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2751
2752 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2753 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2754 }
2755 }
2756
2757 sc_if->sk_cdata.sk_rx_prod = 0;
2758 sc_if->sk_cdata.sk_rx_cons = 0;
2759 sc_if->sk_cdata.sk_rx_cnt = 0;
2760
2761 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2762 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2763 dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2764
2765 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2766 dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2767
2768 bus_dmamap_unload(sc->sc_dmatag, dmamap);
2769
2770 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2771 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2772 }
2773 }
2774 }
2775
2776 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2777 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2778
2779 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2780 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2781
2782 #ifdef MSK_DEBUG
2783 static void
2784 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2785 {
2786 #define DESC_PRINT(X) \
2787 if (X) \
2788 printf("txdesc[%d]." #X "=%#x\n", \
2789 idx, X);
2790
2791 DESC_PRINT(letoh32(le->sk_addr));
2792 DESC_PRINT(letoh16(le->sk_len));
2793 DESC_PRINT(le->sk_ctl);
2794 DESC_PRINT(le->sk_opcode);
2795 #undef DESC_PRINT
2796 }
2797
2798 static void
2799 msk_dump_bytes(const char *data, int len)
2800 {
2801 int c, i, j;
2802
2803 for (i = 0; i < len; i += 16) {
2804 printf("%08x ", i);
2805 c = len - i;
2806 if (c > 16) c = 16;
2807
2808 for (j = 0; j < c; j++) {
2809 printf("%02x ", data[i + j] & 0xff);
2810 if ((j & 0xf) == 7 && j > 0)
2811 printf(" ");
2812 }
2813
2814 for (; j < 16; j++)
2815 printf(" ");
2816 printf(" ");
2817
2818 for (j = 0; j < c; j++) {
2819 int ch = data[i + j] & 0xff;
2820 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2821 }
2822
2823 printf("\n");
2824
2825 if (c < 16)
2826 break;
2827 }
2828 }
2829
2830 static void
2831 msk_dump_mbuf(struct mbuf *m)
2832 {
2833 int count = m->m_pkthdr.len;
2834
2835 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2836
2837 while (count > 0 && m) {
2838 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2839 m, m->m_data, m->m_len);
2840 if (mskdebug >= 4)
2841 msk_dump_bytes(mtod(m, char *), m->m_len);
2842
2843 count -= m->m_len;
2844 m = m->m_next;
2845 }
2846 }
2847 #endif
2848
2849 static int
2850 msk_sysctl_handler(SYSCTLFN_ARGS)
2851 {
2852 int error, t;
2853 struct sysctlnode node;
2854 struct sk_softc *sc;
2855
2856 node = *rnode;
2857 sc = node.sysctl_data;
2858 t = sc->sk_int_mod;
2859 node.sysctl_data = &t;
2860 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2861 if (error || newp == NULL)
2862 return error;
2863
2864 if (t < SK_IM_MIN || t > SK_IM_MAX)
2865 return EINVAL;
2866
2867 /* update the softc with sysctl-changed value, and mark
2868 for hardware update */
2869 sc->sk_int_mod = t;
2870 sc->sk_int_mod_pending = 1;
2871 return 0;
2872 }
2873
2874 /*
2875 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2876 * set up in mskc_attach()
2877 */
2878 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2879 {
2880 int rc;
2881 const struct sysctlnode *node;
2882
2883 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2884 0, CTLTYPE_NODE, "msk",
2885 SYSCTL_DESCR("msk interface controls"),
2886 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2887 goto err;
2888 }
2889
2890 msk_root_num = node->sysctl_num;
2891 return;
2892
2893 err:
2894 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2895 }
2896