if_msk.c revision 1.13.6.1 1 /* $NetBSD: if_msk.c,v 1.13.6.1 2007/12/13 21:55:49 bouyer Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.13.6.1 2007/12/13 21:55:49 bouyer Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73 #define letoh16 htole16
74 #define letoh32 htole32
75 #endif
76
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80
81 #include <net/if_media.h>
82
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #endif
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/brgphyreg.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97
98 #include <dev/pci/if_skreg.h>
99 #include <dev/pci/if_mskvar.h>
100
101 int mskc_probe(struct device *, struct cfdata *, void *);
102 void mskc_attach(struct device *, struct device *self, void *aux);
103 void mskc_shutdown(void *);
104 int msk_probe(struct device *, struct cfdata *, void *);
105 void msk_attach(struct device *, struct device *self, void *aux);
106 int mskcprint(void *, const char *);
107 int msk_intr(void *);
108 void msk_intr_yukon(struct sk_if_softc *);
109 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
110 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
111 void msk_txeof(struct sk_if_softc *, int);
112 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
113 void msk_start(struct ifnet *);
114 int msk_ioctl(struct ifnet *, u_long, void *);
115 int msk_init(struct ifnet *);
116 void msk_init_yukon(struct sk_if_softc *);
117 void msk_stop(struct ifnet *, int);
118 void msk_watchdog(struct ifnet *);
119 int msk_ifmedia_upd(struct ifnet *);
120 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128
129 void msk_update_int_mod(struct sk_softc *);
130
131 int msk_miibus_readreg(struct device *, int, int);
132 void msk_miibus_writereg(struct device *, int, int, int);
133 void msk_miibus_statchg(struct device *);
134
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x) if (mskdebug) printf x
143 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
144 int mskdebug = MSK_DEBUG;
145
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156
157 /* supported device vendors */
158 static const struct msk_product {
159 pci_vendor_id_t msk_vendor;
160 pci_product_id_t msk_product;
161 } msk_products[] = {
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 return CSR_READ_4(sc, reg);
197 }
198
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_2(sc, reg);
203 }
204
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_1(sc, reg);
209 }
210
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 CSR_WRITE_4(sc, reg, x);
215 }
216
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 CSR_WRITE_2(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 CSR_WRITE_1(sc, reg, x);
227 }
228
229 int
230 msk_miibus_readreg(struct device *dev, int phy, int reg)
231 {
232 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
233 u_int16_t val;
234 int i;
235
236 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238
239 for (i = 0; i < SK_TIMEOUT; i++) {
240 DELAY(1);
241 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 if (val & YU_SMICR_READ_VALID)
243 break;
244 }
245
246 if (i == SK_TIMEOUT) {
247 aprint_error("%s: phy failed to come ready\n",
248 sc_if->sk_dev.dv_xname);
249 return (0);
250 }
251
252 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
253 SK_TIMEOUT));
254
255 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
256
257 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
258 phy, reg, val));
259
260 return (val);
261 }
262
263 void
264 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
265 {
266 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
267 int i;
268
269 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
270 phy, reg, val));
271
272 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
273 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
274 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
275
276 for (i = 0; i < SK_TIMEOUT; i++) {
277 DELAY(1);
278 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
279 break;
280 }
281
282 if (i == SK_TIMEOUT)
283 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
284 }
285
286 void
287 msk_miibus_statchg(struct device *dev)
288 {
289 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
290 struct mii_data *mii = &sc_if->sk_mii;
291 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
292 int gpcr;
293
294 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
295 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
296
297 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
298 /* Set speed. */
299 gpcr |= YU_GPCR_SPEED_DIS;
300 switch (IFM_SUBTYPE(mii->mii_media_active)) {
301 case IFM_1000_SX:
302 case IFM_1000_LX:
303 case IFM_1000_CX:
304 case IFM_1000_T:
305 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
306 break;
307 case IFM_100_TX:
308 gpcr |= YU_GPCR_SPEED;
309 break;
310 }
311
312 /* Set duplex. */
313 gpcr |= YU_GPCR_DPLX_DIS;
314 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
315 gpcr |= YU_GPCR_DUPLEX;
316
317 /* Disable flow control. */
318 gpcr |= YU_GPCR_FCTL_DIS;
319 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
320 }
321
322 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
323
324 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
325 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
326 }
327
328 #define HASH_BITS 6
329
330 void
331 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
332 {
333 char *addr = addrv;
334 int base = XM_RXFILT_ENTRY(slot);
335
336 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
337 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
338 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
339 }
340
341 void
342 msk_setmulti(struct sk_if_softc *sc_if)
343 {
344 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
345 u_int32_t hashes[2] = { 0, 0 };
346 int h;
347 struct ethercom *ec = &sc_if->sk_ethercom;
348 struct ether_multi *enm;
349 struct ether_multistep step;
350 u_int16_t reg;
351
352 /* First, zot all the existing filters. */
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
357
358
359 /* Now program new ones. */
360 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
361 reg |= YU_RCR_UFLEN;
362 allmulti:
363 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
364 if ((ifp->if_flags & IFF_PROMISC) != 0)
365 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
367 hashes[0] = 0xFFFFFFFF;
368 hashes[1] = 0xFFFFFFFF;
369 }
370 } else {
371 /* First find the tail of the list. */
372 ETHER_FIRST_MULTI(step, ec, enm);
373 while (enm != NULL) {
374 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
375 ETHER_ADDR_LEN)) {
376 ifp->if_flags |= IFF_ALLMULTI;
377 goto allmulti;
378 }
379 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
380 ((1 << HASH_BITS) - 1);
381 if (h < 32)
382 hashes[0] |= (1 << h);
383 else
384 hashes[1] |= (1 << (h - 32));
385
386 ETHER_NEXT_MULTI(step, enm);
387 }
388 reg |= YU_RCR_MUFLEN;
389 }
390
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
395 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
396 }
397
398 void
399 msk_setpromisc(struct sk_if_softc *sc_if)
400 {
401 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
402
403 if (ifp->if_flags & IFF_PROMISC)
404 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
405 YU_RCR_UFLEN | YU_RCR_MUFLEN);
406 else
407 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
408 YU_RCR_UFLEN | YU_RCR_MUFLEN);
409 }
410
411 int
412 msk_init_rx_ring(struct sk_if_softc *sc_if)
413 {
414 struct msk_chain_data *cd = &sc_if->sk_cdata;
415 struct msk_ring_data *rd = sc_if->sk_rdata;
416 int i, nexti;
417
418 bzero((char *)rd->sk_rx_ring,
419 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
420
421 for (i = 0; i < MSK_RX_RING_CNT; i++) {
422 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
423 if (i == (MSK_RX_RING_CNT - 1))
424 nexti = 0;
425 else
426 nexti = i + 1;
427 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
428 }
429
430 for (i = 0; i < MSK_RX_RING_CNT; i++) {
431 if (msk_newbuf(sc_if, i, NULL,
432 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
433 aprint_error("%s: failed alloc of %dth mbuf\n",
434 sc_if->sk_dev.dv_xname, i);
435 return (ENOBUFS);
436 }
437 }
438
439 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
440 sc_if->sk_cdata.sk_rx_cons = 0;
441
442 return (0);
443 }
444
445 int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct sk_softc *sc = sc_if->sk_softc;
449 struct msk_chain_data *cd = &sc_if->sk_cdata;
450 struct msk_ring_data *rd = sc_if->sk_rdata;
451 bus_dmamap_t dmamap;
452 struct sk_txmap_entry *entry;
453 int i, nexti;
454
455 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
456 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
457
458 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
459 for (i = 0; i < MSK_TX_RING_CNT; i++) {
460 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
461 if (i == (MSK_TX_RING_CNT - 1))
462 nexti = 0;
463 else
464 nexti = i + 1;
465 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
466
467 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
468 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
469 return (ENOBUFS);
470
471 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
472 if (!entry) {
473 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
474 return (ENOBUFS);
475 }
476 entry->dmamap = dmamap;
477 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
478 }
479
480 sc_if->sk_cdata.sk_tx_prod = 0;
481 sc_if->sk_cdata.sk_tx_cons = 0;
482 sc_if->sk_cdata.sk_tx_cnt = 0;
483
484 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
485 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
486
487 return (0);
488 }
489
490 int
491 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
492 bus_dmamap_t dmamap)
493 {
494 struct mbuf *m_new = NULL;
495 struct sk_chain *c;
496 struct msk_rx_desc *r;
497
498 if (m == NULL) {
499 void *buf = NULL;
500
501 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
502 if (m_new == NULL)
503 return (ENOBUFS);
504
505 /* Allocate the jumbo buffer */
506 buf = msk_jalloc(sc_if);
507 if (buf == NULL) {
508 m_freem(m_new);
509 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
510 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
511 return (ENOBUFS);
512 }
513
514 /* Attach the buffer to the mbuf */
515 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
516 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
517 } else {
518 /*
519 * We're re-using a previously allocated mbuf;
520 * be sure to re-init pointers and lengths to
521 * default values.
522 */
523 m_new = m;
524 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
525 m_new->m_data = m_new->m_ext.ext_buf;
526 }
527 m_adj(m_new, ETHER_ALIGN);
528
529 c = &sc_if->sk_cdata.sk_rx_chain[i];
530 r = c->sk_le;
531 c->sk_mbuf = m_new;
532 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
533 (((vaddr_t)m_new->m_data
534 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
535 r->sk_len = htole16(SK_JLEN);
536 r->sk_ctl = 0;
537 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
538
539 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
540
541 return (0);
542 }
543
544 /*
545 * Memory management for jumbo frames.
546 */
547
548 int
549 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
550 {
551 struct sk_softc *sc = sc_if->sk_softc;
552 char *ptr, *kva;
553 bus_dma_segment_t seg;
554 int i, rseg, state, error;
555 struct sk_jpool_entry *entry;
556
557 state = error = 0;
558
559 /* Grab a big chunk o' storage. */
560 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
561 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
562 aprint_error(": can't alloc rx buffers");
563 return (ENOBUFS);
564 }
565
566 state = 1;
567 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
568 BUS_DMA_NOWAIT)) {
569 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
570 error = ENOBUFS;
571 goto out;
572 }
573
574 state = 2;
575 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
576 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
577 aprint_error(": can't create dma map");
578 error = ENOBUFS;
579 goto out;
580 }
581
582 state = 3;
583 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
584 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
585 aprint_error(": can't load dma map");
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 4;
591 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
592 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
593
594 LIST_INIT(&sc_if->sk_jfree_listhead);
595 LIST_INIT(&sc_if->sk_jinuse_listhead);
596
597 /*
598 * Now divide it up into 9K pieces and save the addresses
599 * in an array.
600 */
601 ptr = sc_if->sk_cdata.sk_jumbo_buf;
602 for (i = 0; i < MSK_JSLOTS; i++) {
603 sc_if->sk_cdata.sk_jslots[i] = ptr;
604 ptr += SK_JLEN;
605 entry = malloc(sizeof(struct sk_jpool_entry),
606 M_DEVBUF, M_NOWAIT);
607 if (entry == NULL) {
608 sc_if->sk_cdata.sk_jumbo_buf = NULL;
609 aprint_error(": no memory for jumbo buffer queue!");
610 error = ENOBUFS;
611 goto out;
612 }
613 entry->slot = i;
614 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
615 entry, jpool_entries);
616 }
617 out:
618 if (error != 0) {
619 switch (state) {
620 case 4:
621 bus_dmamap_unload(sc->sc_dmatag,
622 sc_if->sk_cdata.sk_rx_jumbo_map);
623 case 3:
624 bus_dmamap_destroy(sc->sc_dmatag,
625 sc_if->sk_cdata.sk_rx_jumbo_map);
626 case 2:
627 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
628 case 1:
629 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
630 break;
631 default:
632 break;
633 }
634 }
635
636 return (error);
637 }
638
639 /*
640 * Allocate a jumbo buffer.
641 */
642 void *
643 msk_jalloc(struct sk_if_softc *sc_if)
644 {
645 struct sk_jpool_entry *entry;
646
647 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648
649 if (entry == NULL)
650 return (NULL);
651
652 LIST_REMOVE(entry, jpool_entries);
653 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
654 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
655 }
656
657 /*
658 * Release a jumbo buffer.
659 */
660 void
661 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
662 {
663 struct sk_jpool_entry *entry;
664 struct sk_if_softc *sc;
665 int i, s;
666
667 /* Extract the softc struct pointer. */
668 sc = (struct sk_if_softc *)arg;
669
670 if (sc == NULL)
671 panic("msk_jfree: can't find softc pointer!");
672
673 /* calculate the slot this buffer belongs to */
674 i = ((vaddr_t)buf
675 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
676
677 if ((i < 0) || (i >= MSK_JSLOTS))
678 panic("msk_jfree: asked to free buffer that we don't manage!");
679
680 s = splvm();
681 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
682 if (entry == NULL)
683 panic("msk_jfree: buffer not in use!");
684 entry->slot = i;
685 LIST_REMOVE(entry, jpool_entries);
686 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
687
688 if (__predict_true(m != NULL))
689 pool_cache_put(mb_cache, m);
690 splx(s);
691 }
692
693 /*
694 * Set media options.
695 */
696 int
697 msk_ifmedia_upd(struct ifnet *ifp)
698 {
699 struct sk_if_softc *sc_if = ifp->if_softc;
700
701 mii_mediachg(&sc_if->sk_mii);
702 return (0);
703 }
704
705 /*
706 * Report current media status.
707 */
708 void
709 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
710 {
711 struct sk_if_softc *sc_if = ifp->if_softc;
712
713 mii_pollstat(&sc_if->sk_mii);
714 ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
715 ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
716 }
717
718 int
719 msk_ioctl(struct ifnet *ifp, u_long command, void *data)
720 {
721 struct sk_if_softc *sc_if = ifp->if_softc;
722 struct ifreq *ifr = (struct ifreq *) data;
723 struct mii_data *mii;
724 int s, error = 0;
725
726 s = splnet();
727
728 switch(command) {
729 case SIOCSIFMTU:
730 if (ifr->ifr_mtu < ETHERMIN)
731 return EINVAL;
732 else if (sc_if->sk_softc->sk_type != SK_YUKON_FE) {
733 if (ifr->ifr_mtu > SK_JUMBO_MTU)
734 error = EINVAL;
735 } else if (ifr->ifr_mtu > ETHERMTU)
736 error = EINVAL;
737 ifp->if_mtu = ifr->ifr_mtu;
738 break;
739 case SIOCGIFMEDIA:
740 case SIOCSIFMEDIA:
741 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA\n"));
742 mii = &sc_if->sk_mii;
743 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
744 DPRINTFN(2,("msk_ioctl: SIOC[GS]IFMEDIA done\n"));
745 break;
746 default:
747 DPRINTFN(2, ("msk_ioctl ETHER\n"));
748 error = ether_ioctl(ifp, command, data);
749
750 if (error == ENETRESET) {
751 /*
752 * Multicast list has changed; set the hardware
753 * filter accordingly.
754 */
755 if (ifp->if_flags & IFF_RUNNING)
756 msk_setmulti(sc_if);
757 error = 0;
758 }
759 break;
760 }
761
762 splx(s);
763 return (error);
764 }
765
766 void
767 msk_update_int_mod(struct sk_softc *sc)
768 {
769 u_int32_t imtimer_ticks;
770
771 /*
772 * Configure interrupt moderation. The moderation timer
773 * defers interrupts specified in the interrupt moderation
774 * timer mask based on the timeout specified in the interrupt
775 * moderation timer init register. Each bit in the timer
776 * register represents one tick, so to specify a timeout in
777 * microseconds, we have to multiply by the correct number of
778 * ticks-per-microsecond.
779 */
780 switch (sc->sk_type) {
781 case SK_YUKON_EC:
782 case SK_YUKON_EC_U:
783 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
784 break;
785 case SK_YUKON_FE:
786 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
787 break;
788 case SK_YUKON_XL:
789 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
790 break;
791 default:
792 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
793 }
794 aprint_verbose("%s: interrupt moderation is %d us\n",
795 sc->sk_dev.dv_xname, sc->sk_int_mod);
796 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
797 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
798 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
799 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
800 sc->sk_int_mod_pending = 0;
801 }
802
803 static int
804 msk_lookup(const struct pci_attach_args *pa)
805 {
806 const struct msk_product *pmsk;
807
808 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
809 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
810 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
811 return 1;
812 }
813 return 0;
814 }
815
816 /*
817 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
818 * IDs against our list and return a device name if we find a match.
819 */
820 int
821 mskc_probe(struct device *parent, struct cfdata *match,
822 void *aux)
823 {
824 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
825
826 return msk_lookup(pa);
827 }
828
829 /*
830 * Force the GEnesis into reset, then bring it out of reset.
831 */
832 void msk_reset(struct sk_softc *sc)
833 {
834 u_int32_t imtimer_ticks, reg1;
835 int reg;
836
837 DPRINTFN(2, ("msk_reset\n"));
838
839 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
840 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
841
842 DELAY(1000);
843 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
844 DELAY(2);
845 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
846 sk_win_write_1(sc, SK_TESTCTL1, 2);
847
848 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
849 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
850 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
851 else
852 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
853 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
854
855 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
856 sk_win_write_1(sc, SK_Y2_CLKGATE,
857 SK_Y2_CLKGATE_LINK1_GATE_DIS |
858 SK_Y2_CLKGATE_LINK2_GATE_DIS |
859 SK_Y2_CLKGATE_LINK1_CORE_DIS |
860 SK_Y2_CLKGATE_LINK2_CORE_DIS |
861 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
862 else
863 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
864
865 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
866 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
867 DELAY(1000);
868 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
869 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
870
871 sk_win_write_1(sc, SK_TESTCTL1, 1);
872
873 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
874 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
875 CSR_READ_2(sc, SK_LINK_CTRL)));
876
877 /* Disable ASF */
878 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
879 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
880
881 /* Clear I2C IRQ noise */
882 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
883
884 /* Disable hardware timer */
885 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
886 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
887
888 /* Disable descriptor polling */
889 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
890
891 /* Disable time stamps */
892 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
893 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
894
895 /* Enable RAM interface */
896 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
897 for (reg = SK_TO0;reg <= SK_TO11; reg++)
898 sk_win_write_1(sc, reg, 36);
899 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
900 for (reg = SK_TO0;reg <= SK_TO11; reg++)
901 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
902
903 /*
904 * Configure interrupt moderation. The moderation timer
905 * defers interrupts specified in the interrupt moderation
906 * timer mask based on the timeout specified in the interrupt
907 * moderation timer init register. Each bit in the timer
908 * register represents one tick, so to specify a timeout in
909 * microseconds, we have to multiply by the correct number of
910 * ticks-per-microsecond.
911 */
912 switch (sc->sk_type) {
913 case SK_YUKON_EC:
914 case SK_YUKON_EC_U:
915 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
916 break;
917 case SK_YUKON_FE:
918 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
919 break;
920 case SK_YUKON_XL:
921 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
922 break;
923 default:
924 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
925 }
926
927 /* Reset status ring. */
928 bzero((char *)sc->sk_status_ring,
929 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
930 sc->sk_status_idx = 0;
931
932 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
933 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
934
935 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
936 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
937 sc->sk_status_map->dm_segs[0].ds_addr);
938 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
939 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
940 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
941 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
942 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
943 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
944 } else {
945 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
946 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
947 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
948 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
949 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
950 }
951
952 #if 0
953 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
954 #endif
955 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
956
957 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
958
959 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
960 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
961 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
962
963 msk_update_int_mod(sc);
964 }
965
966 int
967 msk_probe(struct device *parent, struct cfdata *match,
968 void *aux)
969 {
970 struct skc_attach_args *sa = aux;
971
972 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
973 return (0);
974
975 switch (sa->skc_type) {
976 case SK_YUKON_XL:
977 case SK_YUKON_EC_U:
978 case SK_YUKON_EC:
979 case SK_YUKON_FE:
980 return (1);
981 }
982
983 return (0);
984 }
985
986 /*
987 * Each XMAC chip is attached as a separate logical IP interface.
988 * Single port cards will have only one logical interface of course.
989 */
990 void
991 msk_attach(struct device *parent, struct device *self, void *aux)
992 {
993 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
994 struct sk_softc *sc = (struct sk_softc *)parent;
995 struct skc_attach_args *sa = aux;
996 struct ifnet *ifp;
997 void *kva;
998 bus_dma_segment_t seg;
999 int i, rseg;
1000 u_int32_t chunk, val;
1001
1002 sc_if->sk_port = sa->skc_port;
1003 sc_if->sk_softc = sc;
1004 sc->sk_if[sa->skc_port] = sc_if;
1005
1006 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1007
1008 /*
1009 * Get station address for this interface. Note that
1010 * dual port cards actually come with three station
1011 * addresses: one for each port, plus an extra. The
1012 * extra one is used by the SysKonnect driver software
1013 * as a 'virtual' station address for when both ports
1014 * are operating in failover mode. Currently we don't
1015 * use this extra address.
1016 */
1017 for (i = 0; i < ETHER_ADDR_LEN; i++)
1018 sc_if->sk_enaddr[i] =
1019 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1020
1021 aprint_normal(": Ethernet address %s\n",
1022 ether_sprintf(sc_if->sk_enaddr));
1023
1024 /*
1025 * Set up RAM buffer addresses. The NIC will have a certain
1026 * amount of SRAM on it, somewhere between 512K and 2MB. We
1027 * need to divide this up a) between the transmitter and
1028 * receiver and b) between the two XMACs, if this is a
1029 * dual port NIC. Our algorithm is to divide up the memory
1030 * evenly so that everyone gets a fair share.
1031 *
1032 * Just to be contrary, Yukon2 appears to have separate memory
1033 * for each MAC.
1034 */
1035 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1036 val = sc->sk_rboff / sizeof(u_int64_t);
1037 sc_if->sk_rx_ramstart = val;
1038 val += (chunk / sizeof(u_int64_t));
1039 sc_if->sk_rx_ramend = val - 1;
1040 chunk = sc->sk_ramsize - chunk;
1041 sc_if->sk_tx_ramstart = val;
1042 val += (chunk / sizeof(u_int64_t));
1043 sc_if->sk_tx_ramend = val - 1;
1044
1045 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1046 " tx_ramstart=%#x tx_ramend=%#x\n",
1047 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1048 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1049
1050 /* Allocate the descriptor queues. */
1051 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1052 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1053 aprint_error(": can't alloc rx buffers\n");
1054 goto fail;
1055 }
1056 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1057 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1058 aprint_error(": can't map dma buffers (%zu bytes)\n",
1059 sizeof(struct msk_ring_data));
1060 goto fail_1;
1061 }
1062 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1063 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1064 &sc_if->sk_ring_map)) {
1065 aprint_error(": can't create dma map\n");
1066 goto fail_2;
1067 }
1068 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1069 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1070 aprint_error(": can't load dma map\n");
1071 goto fail_3;
1072 }
1073 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1074 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1075
1076 ifp = &sc_if->sk_ethercom.ec_if;
1077 /* Try to allocate memory for jumbo buffers. */
1078 if (msk_alloc_jumbo_mem(sc_if)) {
1079 aprint_error(": jumbo buffer allocation failed\n");
1080 goto fail_3;
1081 }
1082 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1083 | ETHERCAP_JUMBO_MTU;
1084
1085 ifp->if_softc = sc_if;
1086 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1087 ifp->if_ioctl = msk_ioctl;
1088 ifp->if_start = msk_start;
1089 ifp->if_stop = msk_stop;
1090 ifp->if_init = msk_init;
1091 ifp->if_watchdog = msk_watchdog;
1092 ifp->if_baudrate = 1000000000;
1093 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1094 IFQ_SET_READY(&ifp->if_snd);
1095 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1096
1097 /*
1098 * Do miibus setup.
1099 */
1100 msk_init_yukon(sc_if);
1101
1102 DPRINTFN(2, ("msk_attach: 1\n"));
1103
1104 sc_if->sk_mii.mii_ifp = ifp;
1105 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1106 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1107 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1108
1109 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1110 msk_ifmedia_upd, msk_ifmedia_sts);
1111 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1112 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1113 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1114 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1115 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1116 0, NULL);
1117 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1118 } else
1119 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1120
1121 callout_init(&sc_if->sk_tick_ch, 0);
1122 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1123 callout_schedule(&sc_if->sk_tick_ch, hz);
1124
1125 /*
1126 * Call MI attach routines.
1127 */
1128 if_attach(ifp);
1129 ether_ifattach(ifp, sc_if->sk_enaddr);
1130
1131 shutdownhook_establish(mskc_shutdown, sc);
1132
1133 #if NRND > 0
1134 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1135 RND_TYPE_NET, 0);
1136 #endif
1137
1138 DPRINTFN(2, ("msk_attach: end\n"));
1139 return;
1140
1141 fail_3:
1142 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1143 fail_2:
1144 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1145 fail_1:
1146 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1147 fail:
1148 sc->sk_if[sa->skc_port] = NULL;
1149 }
1150
1151 int
1152 mskcprint(void *aux, const char *pnp)
1153 {
1154 struct skc_attach_args *sa = aux;
1155
1156 if (pnp)
1157 aprint_normal("sk port %c at %s",
1158 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1159 else
1160 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1161 return (UNCONF);
1162 }
1163
1164 /*
1165 * Attach the interface. Allocate softc structures, do ifmedia
1166 * setup and ethernet/BPF attach.
1167 */
1168 void
1169 mskc_attach(struct device *parent, struct device *self, void *aux)
1170 {
1171 struct sk_softc *sc = (struct sk_softc *)self;
1172 struct pci_attach_args *pa = aux;
1173 struct skc_attach_args skca;
1174 pci_chipset_tag_t pc = pa->pa_pc;
1175 pcireg_t command, memtype;
1176 pci_intr_handle_t ih;
1177 const char *intrstr = NULL;
1178 bus_size_t size;
1179 int rc, sk_nodenum;
1180 u_int8_t hw, skrs;
1181 const char *revstr = NULL;
1182 const struct sysctlnode *node;
1183 void *kva;
1184 bus_dma_segment_t seg;
1185 int rseg;
1186
1187 DPRINTFN(2, ("begin mskc_attach\n"));
1188
1189 /*
1190 * Handle power management nonsense.
1191 */
1192 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1193
1194 if (command == 0x01) {
1195 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1196 if (command & SK_PSTATE_MASK) {
1197 u_int32_t iobase, membase, irq;
1198
1199 /* Save important PCI config data. */
1200 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1201 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1202 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1203
1204 /* Reset the power state. */
1205 aprint_normal("%s chip is in D%d power mode "
1206 "-- setting to D0\n", sc->sk_dev.dv_xname,
1207 command & SK_PSTATE_MASK);
1208 command &= 0xFFFFFFFC;
1209 pci_conf_write(pc, pa->pa_tag,
1210 SK_PCI_PWRMGMTCTRL, command);
1211
1212 /* Restore PCI config data. */
1213 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1214 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1215 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1216 }
1217 }
1218
1219 /*
1220 * Map control/status registers.
1221 */
1222
1223 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1224 switch (memtype) {
1225 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1226 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1227 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1228 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1229 NULL, &size) == 0)
1230 break;
1231 default:
1232 aprint_error(": can't map mem space\n");
1233 return;
1234 }
1235
1236 sc->sc_dmatag = pa->pa_dmat;
1237
1238 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1239 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1240
1241 /* bail out here if chip is not recognized */
1242 if (!(SK_IS_YUKON2(sc))) {
1243 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1244 goto fail_1;
1245 }
1246 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1247
1248 /* Allocate interrupt */
1249 if (pci_intr_map(pa, &ih)) {
1250 aprint_error(": couldn't map interrupt\n");
1251 goto fail_1;
1252 }
1253
1254 intrstr = pci_intr_string(pc, ih);
1255 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1256 if (sc->sk_intrhand == NULL) {
1257 aprint_error(": couldn't establish interrupt");
1258 if (intrstr != NULL)
1259 aprint_error(" at %s", intrstr);
1260 aprint_error("\n");
1261 goto fail_1;
1262 }
1263
1264 if (bus_dmamem_alloc(sc->sc_dmatag,
1265 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1266 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1267 aprint_error(": can't alloc status buffers\n");
1268 goto fail_2;
1269 }
1270
1271 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1272 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1273 &kva, BUS_DMA_NOWAIT)) {
1274 aprint_error(": can't map dma buffers (%zu bytes)\n",
1275 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1276 goto fail_3;
1277 }
1278 if (bus_dmamap_create(sc->sc_dmatag,
1279 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1280 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1281 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1282 aprint_error(": can't create dma map\n");
1283 goto fail_4;
1284 }
1285 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1286 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1287 NULL, BUS_DMA_NOWAIT)) {
1288 aprint_error(": can't load dma map\n");
1289 goto fail_5;
1290 }
1291 sc->sk_status_ring = (struct msk_status_desc *)kva;
1292 bzero(sc->sk_status_ring,
1293 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1294
1295 /* Reset the adapter. */
1296 msk_reset(sc);
1297
1298 skrs = sk_win_read_1(sc, SK_EPROM0);
1299 if (skrs == 0x00)
1300 sc->sk_ramsize = 0x20000;
1301 else
1302 sc->sk_ramsize = skrs * (1<<12);
1303 sc->sk_rboff = SK_RBOFF_0;
1304
1305 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1306 sc->sk_ramsize, sc->sk_ramsize / 1024,
1307 sc->sk_rboff));
1308
1309 switch (sc->sk_type) {
1310 case SK_YUKON_XL:
1311 sc->sk_name = "Yukon-2 XL";
1312 break;
1313 case SK_YUKON_EC_U:
1314 sc->sk_name = "Yukon-2 EC Ultra";
1315 break;
1316 case SK_YUKON_EC:
1317 sc->sk_name = "Yukon-2 EC";
1318 break;
1319 case SK_YUKON_FE:
1320 sc->sk_name = "Yukon-2 FE";
1321 break;
1322 default:
1323 sc->sk_name = "Yukon (Unknown)";
1324 }
1325
1326 if (sc->sk_type == SK_YUKON_XL) {
1327 switch (sc->sk_rev) {
1328 case SK_YUKON_XL_REV_A0:
1329 sc->sk_workaround = 0;
1330 revstr = "A0";
1331 break;
1332 case SK_YUKON_XL_REV_A1:
1333 sc->sk_workaround = SK_WA_4109;
1334 revstr = "A1";
1335 break;
1336 case SK_YUKON_XL_REV_A2:
1337 sc->sk_workaround = SK_WA_4109;
1338 revstr = "A2";
1339 break;
1340 case SK_YUKON_XL_REV_A3:
1341 sc->sk_workaround = SK_WA_4109;
1342 revstr = "A3";
1343 break;
1344 default:
1345 sc->sk_workaround = 0;
1346 break;
1347 }
1348 }
1349
1350 if (sc->sk_type == SK_YUKON_EC) {
1351 switch (sc->sk_rev) {
1352 case SK_YUKON_EC_REV_A1:
1353 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1354 revstr = "A1";
1355 break;
1356 case SK_YUKON_EC_REV_A2:
1357 sc->sk_workaround = SK_WA_4109;
1358 revstr = "A2";
1359 break;
1360 case SK_YUKON_EC_REV_A3:
1361 sc->sk_workaround = SK_WA_4109;
1362 revstr = "A3";
1363 break;
1364 default:
1365 sc->sk_workaround = 0;
1366 break;
1367 }
1368 }
1369
1370 if (sc->sk_type == SK_YUKON_FE) {
1371 sc->sk_workaround = SK_WA_4109;
1372 switch (sc->sk_rev) {
1373 case SK_YUKON_FE_REV_A1:
1374 revstr = "A1";
1375 break;
1376 case SK_YUKON_FE_REV_A2:
1377 revstr = "A2";
1378 break;
1379 default:
1380 sc->sk_workaround = 0;
1381 break;
1382 }
1383 }
1384
1385 if (sc->sk_type == SK_YUKON_EC_U) {
1386 sc->sk_workaround = SK_WA_4109;
1387 switch (sc->sk_rev) {
1388 case SK_YUKON_EC_U_REV_A0:
1389 revstr = "A0";
1390 break;
1391 case SK_YUKON_EC_U_REV_A1:
1392 revstr = "A1";
1393 break;
1394 case SK_YUKON_EC_U_REV_B0:
1395 revstr = "B0";
1396 break;
1397 default:
1398 sc->sk_workaround = 0;
1399 break;
1400 }
1401 }
1402
1403 /* Announce the product name. */
1404 aprint_normal(", %s", sc->sk_name);
1405 if (revstr != NULL)
1406 aprint_normal(" rev. %s", revstr);
1407 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1408
1409 sc->sk_macs = 1;
1410
1411 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1412 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1413 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1414 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1415 sc->sk_macs++;
1416 }
1417
1418 skca.skc_port = SK_PORT_A;
1419 skca.skc_type = sc->sk_type;
1420 skca.skc_rev = sc->sk_rev;
1421 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1422
1423 if (sc->sk_macs > 1) {
1424 skca.skc_port = SK_PORT_B;
1425 skca.skc_type = sc->sk_type;
1426 skca.skc_rev = sc->sk_rev;
1427 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1428 }
1429
1430 /* Turn on the 'driver is loaded' LED. */
1431 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1432
1433 /* skc sysctl setup */
1434
1435 sc->sk_int_mod = SK_IM_DEFAULT;
1436 sc->sk_int_mod_pending = 0;
1437
1438 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1439 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1440 SYSCTL_DESCR("mskc per-controller controls"),
1441 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1442 CTL_EOL)) != 0) {
1443 aprint_normal("%s: couldn't create sysctl node\n",
1444 sc->sk_dev.dv_xname);
1445 goto fail_6;
1446 }
1447
1448 sk_nodenum = node->sysctl_num;
1449
1450 /* interrupt moderation time in usecs */
1451 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1452 CTLFLAG_READWRITE,
1453 CTLTYPE_INT, "int_mod",
1454 SYSCTL_DESCR("msk interrupt moderation timer"),
1455 msk_sysctl_handler, 0, sc,
1456 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1457 CTL_EOL)) != 0) {
1458 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1459 sc->sk_dev.dv_xname);
1460 goto fail_6;
1461 }
1462
1463 return;
1464
1465 fail_6:
1466 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1467 fail_5:
1468 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1469 fail_4:
1470 bus_dmamem_unmap(sc->sc_dmatag, kva,
1471 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1472 fail_3:
1473 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1474 fail_2:
1475 pci_intr_disestablish(pc, sc->sk_intrhand);
1476 fail_1:
1477 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1478 }
1479
1480 int
1481 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1482 {
1483 struct sk_softc *sc = sc_if->sk_softc;
1484 struct msk_tx_desc *f = NULL;
1485 u_int32_t frag, cur;
1486 int i;
1487 struct sk_txmap_entry *entry;
1488 bus_dmamap_t txmap;
1489
1490 DPRINTFN(2, ("msk_encap\n"));
1491
1492 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1493 if (entry == NULL) {
1494 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1495 return (ENOBUFS);
1496 }
1497 txmap = entry->dmamap;
1498
1499 cur = frag = *txidx;
1500
1501 #ifdef MSK_DEBUG
1502 if (mskdebug >= 2)
1503 msk_dump_mbuf(m_head);
1504 #endif
1505
1506 /*
1507 * Start packing the mbufs in this chain into
1508 * the fragment pointers. Stop when we run out
1509 * of fragments or hit the end of the mbuf chain.
1510 */
1511 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1512 BUS_DMA_NOWAIT)) {
1513 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1514 return (ENOBUFS);
1515 }
1516
1517 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1518 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1519 bus_dmamap_unload(sc->sc_dmatag, txmap);
1520 return (ENOBUFS);
1521 }
1522
1523 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1524
1525 /* Sync the DMA map. */
1526 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1527 BUS_DMASYNC_PREWRITE);
1528
1529 for (i = 0; i < txmap->dm_nsegs; i++) {
1530 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1531 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1532 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1533 f->sk_ctl = 0;
1534 if (i == 0)
1535 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1536 else
1537 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1538 cur = frag;
1539 SK_INC(frag, MSK_TX_RING_CNT);
1540 }
1541
1542 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1543 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1544
1545 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1546 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1547
1548 /* Sync descriptors before handing to chip */
1549 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1550 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1551
1552 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1553
1554 /* Sync first descriptor to hand it off */
1555 MSK_CDTXSYNC(sc_if, *txidx, 1,
1556 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1557
1558 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1559
1560 #ifdef MSK_DEBUG
1561 if (mskdebug >= 2) {
1562 struct msk_tx_desc *le;
1563 u_int32_t idx;
1564 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1565 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1566 msk_dump_txdesc(le, idx);
1567 }
1568 }
1569 #endif
1570
1571 *txidx = frag;
1572
1573 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1574
1575 return (0);
1576 }
1577
1578 void
1579 msk_start(struct ifnet *ifp)
1580 {
1581 struct sk_if_softc *sc_if = ifp->if_softc;
1582 struct mbuf *m_head = NULL;
1583 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1584 int pkts = 0;
1585
1586 DPRINTFN(2, ("msk_start\n"));
1587
1588 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1589 IFQ_POLL(&ifp->if_snd, m_head);
1590 if (m_head == NULL)
1591 break;
1592
1593 /*
1594 * Pack the data into the transmit ring. If we
1595 * don't have room, set the OACTIVE flag and wait
1596 * for the NIC to drain the ring.
1597 */
1598 if (msk_encap(sc_if, m_head, &idx)) {
1599 ifp->if_flags |= IFF_OACTIVE;
1600 break;
1601 }
1602
1603 /* now we are committed to transmit the packet */
1604 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1605 pkts++;
1606
1607 /*
1608 * If there's a BPF listener, bounce a copy of this frame
1609 * to him.
1610 */
1611 #if NBPFILTER > 0
1612 if (ifp->if_bpf)
1613 bpf_mtap(ifp->if_bpf, m_head);
1614 #endif
1615 }
1616 if (pkts == 0)
1617 return;
1618
1619 /* Transmit */
1620 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1621 sc_if->sk_cdata.sk_tx_prod = idx;
1622 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1623
1624 /* Set a timeout in case the chip goes out to lunch. */
1625 ifp->if_timer = 5;
1626 }
1627 }
1628
1629 void
1630 msk_watchdog(struct ifnet *ifp)
1631 {
1632 struct sk_if_softc *sc_if = ifp->if_softc;
1633 u_int32_t reg;
1634 int idx;
1635
1636 /*
1637 * Reclaim first as there is a possibility of losing Tx completion
1638 * interrupts.
1639 */
1640 if (sc_if->sk_port == SK_PORT_A)
1641 reg = SK_STAT_BMU_TXA1_RIDX;
1642 else
1643 reg = SK_STAT_BMU_TXA2_RIDX;
1644
1645 idx = sk_win_read_2(sc_if->sk_softc, reg);
1646 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1647 msk_txeof(sc_if, idx);
1648 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1649 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1650
1651 ifp->if_oerrors++;
1652
1653 /* XXX Resets both ports; we shouldn't do that. */
1654 msk_reset(sc_if->sk_softc);
1655 msk_init(ifp);
1656 }
1657 }
1658 }
1659
1660 void
1661 mskc_shutdown(void *v)
1662 {
1663 struct sk_softc *sc = v;
1664
1665 DPRINTFN(2, ("msk_shutdown\n"));
1666
1667 /* Turn off the 'driver is loaded' LED. */
1668 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1669
1670 msk_reset(sc);
1671 }
1672
1673 __inline int
1674 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1675 {
1676 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1677 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1678 YU_RXSTAT_JABBER)) != 0 ||
1679 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1680 YU_RXSTAT_BYTES(stat) != len)
1681 return (0);
1682
1683 return (1);
1684 }
1685
1686 void
1687 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1688 {
1689 struct sk_softc *sc = sc_if->sk_softc;
1690 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1691 struct mbuf *m;
1692 struct sk_chain *cur_rx;
1693 int cur, total_len = len;
1694 bus_dmamap_t dmamap;
1695
1696 DPRINTFN(2, ("msk_rxeof\n"));
1697
1698 cur = sc_if->sk_cdata.sk_rx_cons;
1699 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1700 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1701
1702 /* Sync the descriptor */
1703 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1704
1705 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1706 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1707
1708 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1709 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1710
1711 m = cur_rx->sk_mbuf;
1712 cur_rx->sk_mbuf = NULL;
1713
1714 if (total_len < SK_MIN_FRAMELEN ||
1715 total_len > SK_JUMBO_FRAMELEN ||
1716 msk_rxvalid(sc, rxstat, total_len) == 0) {
1717 ifp->if_ierrors++;
1718 msk_newbuf(sc_if, cur, m, dmamap);
1719 return;
1720 }
1721
1722 /*
1723 * Try to allocate a new jumbo buffer. If that fails, copy the
1724 * packet to mbufs and put the jumbo buffer back in the ring
1725 * so it can be re-used. If allocating mbufs fails, then we
1726 * have to drop the packet.
1727 */
1728 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1729 struct mbuf *m0;
1730 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1731 total_len + ETHER_ALIGN, 0, ifp, NULL);
1732 msk_newbuf(sc_if, cur, m, dmamap);
1733 if (m0 == NULL) {
1734 ifp->if_ierrors++;
1735 return;
1736 }
1737 m_adj(m0, ETHER_ALIGN);
1738 m = m0;
1739 } else {
1740 m->m_pkthdr.rcvif = ifp;
1741 m->m_pkthdr.len = m->m_len = total_len;
1742 }
1743
1744 ifp->if_ipackets++;
1745
1746 #if NBPFILTER > 0
1747 if (ifp->if_bpf)
1748 bpf_mtap(ifp->if_bpf, m);
1749 #endif
1750
1751 /* pass it on. */
1752 (*ifp->if_input)(ifp, m);
1753 }
1754
1755 void
1756 msk_txeof(struct sk_if_softc *sc_if, int idx)
1757 {
1758 struct sk_softc *sc = sc_if->sk_softc;
1759 struct msk_tx_desc *cur_tx;
1760 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1761 u_int32_t sk_ctl;
1762 struct sk_txmap_entry *entry;
1763 int cons, prog;
1764
1765 DPRINTFN(2, ("msk_txeof\n"));
1766
1767 /*
1768 * Go through our tx ring and free mbufs for those
1769 * frames that have been sent.
1770 */
1771 cons = sc_if->sk_cdata.sk_tx_cons;
1772 prog = 0;
1773 while (cons != idx) {
1774 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1775 break;
1776 prog++;
1777 MSK_CDTXSYNC(sc_if, cons, 1,
1778 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1779
1780 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1781 sk_ctl = cur_tx->sk_ctl;
1782 #ifdef MSK_DEBUG
1783 if (mskdebug >= 2)
1784 msk_dump_txdesc(cur_tx, cons);
1785 #endif
1786 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1787 ifp->if_opackets++;
1788 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1789 entry = sc_if->sk_cdata.sk_tx_map[cons];
1790
1791 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1792 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1793
1794 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1795 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1796 link);
1797 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1798 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1799 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1800 }
1801 sc_if->sk_cdata.sk_tx_cnt--;
1802 SK_INC(cons, MSK_TX_RING_CNT);
1803 }
1804 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1805
1806 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1807 ifp->if_flags &= ~IFF_OACTIVE;
1808
1809 if (prog > 0)
1810 sc_if->sk_cdata.sk_tx_cons = cons;
1811 }
1812
1813 void
1814 msk_tick(void *xsc_if)
1815 {
1816 struct sk_if_softc *sc_if = xsc_if;
1817 struct mii_data *mii = &sc_if->sk_mii;
1818
1819 mii_tick(mii);
1820 callout_schedule(&sc_if->sk_tick_ch, hz);
1821 }
1822
1823 void
1824 msk_intr_yukon(struct sk_if_softc *sc_if)
1825 {
1826 u_int8_t status;
1827
1828 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1829 /* RX overrun */
1830 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1831 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1832 SK_RFCTL_RX_FIFO_OVER);
1833 }
1834 /* TX underrun */
1835 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1836 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1837 SK_TFCTL_TX_FIFO_UNDER);
1838 }
1839
1840 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1841 }
1842
1843 int
1844 msk_intr(void *xsc)
1845 {
1846 struct sk_softc *sc = xsc;
1847 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1848 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1849 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1850 int claimed = 0;
1851 u_int32_t status;
1852 struct msk_status_desc *cur_st;
1853
1854 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1855 if (status == 0) {
1856 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1857 return (0);
1858 }
1859
1860 status = CSR_READ_4(sc, SK_ISR);
1861
1862 if (sc_if0 != NULL)
1863 ifp0 = &sc_if0->sk_ethercom.ec_if;
1864 if (sc_if1 != NULL)
1865 ifp1 = &sc_if1->sk_ethercom.ec_if;
1866
1867 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1868 (ifp0->if_flags & IFF_RUNNING)) {
1869 msk_intr_yukon(sc_if0);
1870 }
1871
1872 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1873 (ifp1->if_flags & IFF_RUNNING)) {
1874 msk_intr_yukon(sc_if1);
1875 }
1876
1877 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1878 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1879 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1880
1881 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1882 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1883 switch (cur_st->sk_opcode) {
1884 case SK_Y2_STOPC_RXSTAT:
1885 msk_rxeof(sc->sk_if[cur_st->sk_link],
1886 letoh16(cur_st->sk_len),
1887 letoh32(cur_st->sk_status));
1888 SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1889 SK_RXQ1_Y2_PREF_PUTIDX,
1890 sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1891 break;
1892 case SK_Y2_STOPC_TXSTAT:
1893 if (sc_if0)
1894 msk_txeof(sc_if0,
1895 letoh32(cur_st->sk_status)
1896 & SK_Y2_ST_TXA1_MSKL);
1897 if (sc_if1)
1898 msk_txeof(sc_if1,
1899 ((letoh32(cur_st->sk_status)
1900 & SK_Y2_ST_TXA2_MSKL)
1901 >> SK_Y2_ST_TXA2_SHIFTL)
1902 | ((letoh16(cur_st->sk_len) & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1903 break;
1904 default:
1905 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1906 break;
1907 }
1908 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1909
1910 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1911 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1912 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1913 }
1914
1915 if (status & SK_Y2_IMR_BMU) {
1916 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1917 claimed = 1;
1918 }
1919
1920 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1921
1922 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1923 msk_start(ifp0);
1924 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1925 msk_start(ifp1);
1926
1927 #if NRND > 0
1928 if (RND_ENABLED(&sc->rnd_source))
1929 rnd_add_uint32(&sc->rnd_source, status);
1930 #endif
1931
1932 if (sc->sk_int_mod_pending)
1933 msk_update_int_mod(sc);
1934
1935 return claimed;
1936 }
1937
1938 void
1939 msk_init_yukon(struct sk_if_softc *sc_if)
1940 {
1941 u_int32_t v;
1942 u_int16_t reg;
1943 struct sk_softc *sc;
1944 int i;
1945
1946 sc = sc_if->sk_softc;
1947
1948 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1949 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1950
1951 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1952
1953 /* GMAC and GPHY Reset */
1954 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1955 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1956 DELAY(1000);
1957
1958 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1959
1960 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1961 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1962 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1963
1964 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1965 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1966
1967 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1968
1969 /* unused read of the interrupt source register */
1970 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1971 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1972
1973 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1974 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1975 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1976
1977 /* MIB Counter Clear Mode set */
1978 reg |= YU_PAR_MIB_CLR;
1979 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1980 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1981 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1982
1983 /* MIB Counter Clear Mode clear */
1984 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1985 reg &= ~YU_PAR_MIB_CLR;
1986 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1987
1988 /* receive control reg */
1989 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1990 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1991
1992 /* transmit control register */
1993 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1994
1995 /* transmit flow control register */
1996 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
1997
1998 /* transmit parameter register */
1999 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2000 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2001 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2002
2003 /* serial mode register */
2004 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2005 reg = YU_SMR_DATA_BLIND(0x1c) |
2006 YU_SMR_MFL_VLAN |
2007 YU_SMR_IPG_DATA(0x1e);
2008
2009 if (sc->sk_type != SK_YUKON_FE)
2010 reg |= YU_SMR_MFL_JUMBO;
2011
2012 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2013
2014 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2015 /* Setup Yukon's address */
2016 for (i = 0; i < 3; i++) {
2017 /* Write Source Address 1 (unicast filter) */
2018 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2019 sc_if->sk_enaddr[i * 2] |
2020 sc_if->sk_enaddr[i * 2 + 1] << 8);
2021 }
2022
2023 for (i = 0; i < 3; i++) {
2024 reg = sk_win_read_2(sc_if->sk_softc,
2025 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2026 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2027 }
2028
2029 /* Set promiscuous mode */
2030 msk_setpromisc(sc_if);
2031
2032 /* Set multicast filter */
2033 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2034 msk_setmulti(sc_if);
2035
2036 /* enable interrupt mask for counter overflows */
2037 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2038 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2039 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2040 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2041
2042 /* Configure RX MAC FIFO Flush Mask */
2043 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2044 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2045 YU_RXSTAT_JABBER;
2046 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2047
2048 /* Configure RX MAC FIFO */
2049 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2050 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2051 SK_RFCTL_FIFO_FLUSH_ON);
2052
2053 /* Increase flush threshould to 64 bytes */
2054 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2055 SK_RFCTL_FIFO_THRESHOLD + 1);
2056
2057 /* Configure TX MAC FIFO */
2058 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2059 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2060
2061 #if 1
2062 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2063 #endif
2064 DPRINTFN(6, ("msk_init_yukon: end\n"));
2065 }
2066
2067 /*
2068 * Note that to properly initialize any part of the GEnesis chip,
2069 * you first have to take it out of reset mode.
2070 */
2071 int
2072 msk_init(struct ifnet *ifp)
2073 {
2074 struct sk_if_softc *sc_if = ifp->if_softc;
2075 struct sk_softc *sc = sc_if->sk_softc;
2076 struct mii_data *mii = &sc_if->sk_mii;
2077 int s;
2078 uint32_t imr, imtimer_ticks;
2079
2080
2081 DPRINTFN(2, ("msk_init\n"));
2082
2083 s = splnet();
2084
2085 /* Cancel pending I/O and free all RX/TX buffers. */
2086 msk_stop(ifp,0);
2087
2088 /* Configure I2C registers */
2089
2090 /* Configure XMAC(s) */
2091 msk_init_yukon(sc_if);
2092 mii_mediachg(mii);
2093
2094 /* Configure transmit arbiter(s) */
2095 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2096 #if 0
2097 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2098 #endif
2099
2100 /* Configure RAMbuffers */
2101 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2102 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2103 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2104 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2105 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2106 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2107
2108 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2109 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2110 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2111 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2112 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2113 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2114 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2115
2116 /* Configure BMUs */
2117 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2118 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2119 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2120 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2121
2122 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2123 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2124 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2125 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2126
2127 /* Make sure the sync transmit queue is disabled. */
2128 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2129
2130 /* Init descriptors */
2131 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2132 aprint_error("%s: initialization failed: no "
2133 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2134 msk_stop(ifp,0);
2135 splx(s);
2136 return ENOBUFS;
2137 }
2138
2139 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2140 aprint_error("%s: initialization failed: no "
2141 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2142 msk_stop(ifp,0);
2143 splx(s);
2144 return ENOBUFS;
2145 }
2146
2147 /* Set interrupt moderation if changed via sysctl. */
2148 switch (sc->sk_type) {
2149 case SK_YUKON_EC:
2150 case SK_YUKON_EC_U:
2151 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2152 break;
2153 case SK_YUKON_FE:
2154 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2155 break;
2156 case SK_YUKON_XL:
2157 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2158 break;
2159 default:
2160 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2161 }
2162 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2163 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2164 sk_win_write_4(sc, SK_IMTIMERINIT,
2165 SK_IM_USECS(sc->sk_int_mod));
2166 aprint_verbose("%s: interrupt moderation is %d us\n",
2167 sc->sk_dev.dv_xname, sc->sk_int_mod);
2168 }
2169
2170 /* Initialize prefetch engine. */
2171 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2172 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2173 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2174 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2175 MSK_RX_RING_ADDR(sc_if, 0));
2176 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2177 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2178 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2179 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2180
2181 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2182 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2183 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2184 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2185 MSK_TX_RING_ADDR(sc_if, 0));
2186 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2187 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2188 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2189 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2190
2191 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2192 sc_if->sk_cdata.sk_rx_prod);
2193
2194 /* Configure interrupt handling */
2195 if (sc_if->sk_port == SK_PORT_A)
2196 sc->sk_intrmask |= SK_Y2_INTRS1;
2197 else
2198 sc->sk_intrmask |= SK_Y2_INTRS2;
2199 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2200 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2201
2202 ifp->if_flags |= IFF_RUNNING;
2203 ifp->if_flags &= ~IFF_OACTIVE;
2204
2205 callout_schedule(&sc_if->sk_tick_ch, hz);
2206
2207 splx(s);
2208 return 0;
2209 }
2210
2211 void
2212 msk_stop(struct ifnet *ifp, int disable)
2213 {
2214 struct sk_if_softc *sc_if = ifp->if_softc;
2215 struct sk_softc *sc = sc_if->sk_softc;
2216 struct sk_txmap_entry *dma;
2217 int i;
2218
2219 DPRINTFN(2, ("msk_stop\n"));
2220
2221 callout_stop(&sc_if->sk_tick_ch);
2222
2223 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2224
2225 /* Stop transfer of Tx descriptors */
2226
2227 /* Stop transfer of Rx descriptors */
2228
2229 /* Turn off various components of this interface. */
2230 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2231 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2232 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2233 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2234 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2235 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2236 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2237 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2238 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2239 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2240 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2241 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2242
2243 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2244 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2245
2246 /* Disable interrupts */
2247 if (sc_if->sk_port == SK_PORT_A)
2248 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2249 else
2250 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2251 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2252
2253 SK_XM_READ_2(sc_if, XM_ISR);
2254 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2255
2256 /* Free RX and TX mbufs still in the queues. */
2257 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2258 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2259 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2260 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2261 }
2262 }
2263
2264 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2265 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2266 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2267 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2268 #if 1
2269 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2270 sc_if->sk_cdata.sk_tx_map[i], link);
2271 sc_if->sk_cdata.sk_tx_map[i] = 0;
2272 #endif
2273 }
2274 }
2275
2276 #if 1
2277 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2278 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2279 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2280 free(dma, M_DEVBUF);
2281 }
2282 #endif
2283 }
2284
2285 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2286 NULL, NULL);
2287
2288 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2289 NULL, NULL);
2290
2291 #ifdef MSK_DEBUG
2292 void
2293 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2294 {
2295 #define DESC_PRINT(X) \
2296 if (X) \
2297 printf("txdesc[%d]." #X "=%#x\n", \
2298 idx, X);
2299
2300 DESC_PRINT(letoh32(le->sk_addr));
2301 DESC_PRINT(letoh16(le->sk_len));
2302 DESC_PRINT(le->sk_ctl);
2303 DESC_PRINT(le->sk_opcode);
2304 #undef DESC_PRINT
2305 }
2306
2307 void
2308 msk_dump_bytes(const char *data, int len)
2309 {
2310 int c, i, j;
2311
2312 for (i = 0; i < len; i += 16) {
2313 printf("%08x ", i);
2314 c = len - i;
2315 if (c > 16) c = 16;
2316
2317 for (j = 0; j < c; j++) {
2318 printf("%02x ", data[i + j] & 0xff);
2319 if ((j & 0xf) == 7 && j > 0)
2320 printf(" ");
2321 }
2322
2323 for (; j < 16; j++)
2324 printf(" ");
2325 printf(" ");
2326
2327 for (j = 0; j < c; j++) {
2328 int ch = data[i + j] & 0xff;
2329 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2330 }
2331
2332 printf("\n");
2333
2334 if (c < 16)
2335 break;
2336 }
2337 }
2338
2339 void
2340 msk_dump_mbuf(struct mbuf *m)
2341 {
2342 int count = m->m_pkthdr.len;
2343
2344 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2345
2346 while (count > 0 && m) {
2347 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2348 m, m->m_data, m->m_len);
2349 msk_dump_bytes(mtod(m, char *), m->m_len);
2350
2351 count -= m->m_len;
2352 m = m->m_next;
2353 }
2354 }
2355 #endif
2356
2357 static int
2358 msk_sysctl_handler(SYSCTLFN_ARGS)
2359 {
2360 int error, t;
2361 struct sysctlnode node;
2362 struct sk_softc *sc;
2363
2364 node = *rnode;
2365 sc = node.sysctl_data;
2366 t = sc->sk_int_mod;
2367 node.sysctl_data = &t;
2368 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2369 if (error || newp == NULL)
2370 return error;
2371
2372 if (t < SK_IM_MIN || t > SK_IM_MAX)
2373 return EINVAL;
2374
2375 /* update the softc with sysctl-changed value, and mark
2376 for hardware update */
2377 sc->sk_int_mod = t;
2378 sc->sk_int_mod_pending = 1;
2379 return 0;
2380 }
2381
2382 /*
2383 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2384 * set up in skc_attach()
2385 */
2386 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2387 {
2388 int rc;
2389 const struct sysctlnode *node;
2390
2391 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2392 0, CTLTYPE_NODE, "hw", NULL,
2393 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2394 goto err;
2395 }
2396
2397 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2398 0, CTLTYPE_NODE, "msk",
2399 SYSCTL_DESCR("msk interface controls"),
2400 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2401 goto err;
2402 }
2403
2404 msk_root_num = node->sysctl_num;
2405 return;
2406
2407 err:
2408 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2409 }
2410