if_msk.c revision 1.16 1 /* $NetBSD: if_msk.c,v 1.16 2008/02/07 01:21:56 dyoung Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.16 2008/02/07 01:21:56 dyoung Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73 #define letoh16 htole16
74 #define letoh32 htole32
75 #endif
76
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80
81 #include <net/if_media.h>
82
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #endif
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/brgphyreg.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97
98 #include <dev/pci/if_skreg.h>
99 #include <dev/pci/if_mskvar.h>
100
101 int mskc_probe(struct device *, struct cfdata *, void *);
102 void mskc_attach(struct device *, struct device *self, void *aux);
103 void mskc_shutdown(void *);
104 int msk_probe(struct device *, struct cfdata *, void *);
105 void msk_attach(struct device *, struct device *self, void *aux);
106 int mskcprint(void *, const char *);
107 int msk_intr(void *);
108 void msk_intr_yukon(struct sk_if_softc *);
109 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
110 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
111 void msk_txeof(struct sk_if_softc *, int);
112 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
113 void msk_start(struct ifnet *);
114 int msk_ioctl(struct ifnet *, u_long, void *);
115 int msk_init(struct ifnet *);
116 void msk_init_yukon(struct sk_if_softc *);
117 void msk_stop(struct ifnet *, int);
118 void msk_watchdog(struct ifnet *);
119 void msk_reset(struct sk_softc *);
120 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
121 int msk_alloc_jumbo_mem(struct sk_if_softc *);
122 void *msk_jalloc(struct sk_if_softc *);
123 void msk_jfree(struct mbuf *, void *, size_t, void *);
124 int msk_init_rx_ring(struct sk_if_softc *);
125 int msk_init_tx_ring(struct sk_if_softc *);
126
127 void msk_update_int_mod(struct sk_softc *);
128
129 int msk_miibus_readreg(struct device *, int, int);
130 void msk_miibus_writereg(struct device *, int, int, int);
131 void msk_miibus_statchg(struct device *);
132
133 void msk_setfilt(struct sk_if_softc *, void *, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_tick(void *);
137
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x) if (mskdebug) printf x
141 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 int mskdebug = MSK_DEBUG;
143
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
188 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
189 };
190
191 static inline u_int32_t
192 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
193 {
194 return CSR_READ_4(sc, reg);
195 }
196
197 static inline u_int16_t
198 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
199 {
200 return CSR_READ_2(sc, reg);
201 }
202
203 static inline u_int8_t
204 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
205 {
206 return CSR_READ_1(sc, reg);
207 }
208
209 static inline void
210 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
211 {
212 CSR_WRITE_4(sc, reg, x);
213 }
214
215 static inline void
216 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
217 {
218 CSR_WRITE_2(sc, reg, x);
219 }
220
221 static inline void
222 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
223 {
224 CSR_WRITE_1(sc, reg, x);
225 }
226
227 int
228 msk_miibus_readreg(struct device *dev, int phy, int reg)
229 {
230 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
231 u_int16_t val;
232 int i;
233
234 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
235 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
236
237 for (i = 0; i < SK_TIMEOUT; i++) {
238 DELAY(1);
239 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
240 if (val & YU_SMICR_READ_VALID)
241 break;
242 }
243
244 if (i == SK_TIMEOUT) {
245 aprint_error("%s: phy failed to come ready\n",
246 sc_if->sk_dev.dv_xname);
247 return (0);
248 }
249
250 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
251 SK_TIMEOUT));
252
253 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
254
255 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
256 phy, reg, val));
257
258 return (val);
259 }
260
261 void
262 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
263 {
264 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
265 int i;
266
267 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
268 phy, reg, val));
269
270 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
271 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
272 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
273
274 for (i = 0; i < SK_TIMEOUT; i++) {
275 DELAY(1);
276 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
277 break;
278 }
279
280 if (i == SK_TIMEOUT)
281 aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
282 }
283
284 void
285 msk_miibus_statchg(struct device *dev)
286 {
287 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
288 struct mii_data *mii = &sc_if->sk_mii;
289 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
290 int gpcr;
291
292 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
293 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
294
295 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
296 /* Set speed. */
297 gpcr |= YU_GPCR_SPEED_DIS;
298 switch (IFM_SUBTYPE(mii->mii_media_active)) {
299 case IFM_1000_SX:
300 case IFM_1000_LX:
301 case IFM_1000_CX:
302 case IFM_1000_T:
303 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
304 break;
305 case IFM_100_TX:
306 gpcr |= YU_GPCR_SPEED;
307 break;
308 }
309
310 /* Set duplex. */
311 gpcr |= YU_GPCR_DPLX_DIS;
312 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
313 gpcr |= YU_GPCR_DUPLEX;
314
315 /* Disable flow control. */
316 gpcr |= YU_GPCR_FCTL_DIS;
317 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
318 }
319
320 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
321
322 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
323 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
324 }
325
326 #define HASH_BITS 6
327
328 void
329 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
330 {
331 char *addr = addrv;
332 int base = XM_RXFILT_ENTRY(slot);
333
334 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
335 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
336 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
337 }
338
339 void
340 msk_setmulti(struct sk_if_softc *sc_if)
341 {
342 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
343 u_int32_t hashes[2] = { 0, 0 };
344 int h;
345 struct ethercom *ec = &sc_if->sk_ethercom;
346 struct ether_multi *enm;
347 struct ether_multistep step;
348 u_int16_t reg;
349
350 /* First, zot all the existing filters. */
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
355
356
357 /* Now program new ones. */
358 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
359 reg |= YU_RCR_UFLEN;
360 allmulti:
361 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
362 if ((ifp->if_flags & IFF_PROMISC) != 0)
363 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
364 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
365 hashes[0] = 0xFFFFFFFF;
366 hashes[1] = 0xFFFFFFFF;
367 }
368 } else {
369 /* First find the tail of the list. */
370 ETHER_FIRST_MULTI(step, ec, enm);
371 while (enm != NULL) {
372 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
373 ETHER_ADDR_LEN)) {
374 ifp->if_flags |= IFF_ALLMULTI;
375 goto allmulti;
376 }
377 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
378 ((1 << HASH_BITS) - 1);
379 if (h < 32)
380 hashes[0] |= (1 << h);
381 else
382 hashes[1] |= (1 << (h - 32));
383
384 ETHER_NEXT_MULTI(step, enm);
385 }
386 reg |= YU_RCR_MUFLEN;
387 }
388
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
394 }
395
396 void
397 msk_setpromisc(struct sk_if_softc *sc_if)
398 {
399 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
400
401 if (ifp->if_flags & IFF_PROMISC)
402 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
403 YU_RCR_UFLEN | YU_RCR_MUFLEN);
404 else
405 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
406 YU_RCR_UFLEN | YU_RCR_MUFLEN);
407 }
408
409 int
410 msk_init_rx_ring(struct sk_if_softc *sc_if)
411 {
412 struct msk_chain_data *cd = &sc_if->sk_cdata;
413 struct msk_ring_data *rd = sc_if->sk_rdata;
414 int i, nexti;
415
416 bzero((char *)rd->sk_rx_ring,
417 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
418
419 for (i = 0; i < MSK_RX_RING_CNT; i++) {
420 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
421 if (i == (MSK_RX_RING_CNT - 1))
422 nexti = 0;
423 else
424 nexti = i + 1;
425 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
426 }
427
428 for (i = 0; i < MSK_RX_RING_CNT; i++) {
429 if (msk_newbuf(sc_if, i, NULL,
430 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
431 aprint_error("%s: failed alloc of %dth mbuf\n",
432 sc_if->sk_dev.dv_xname, i);
433 return (ENOBUFS);
434 }
435 }
436
437 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 sc_if->sk_cdata.sk_rx_cons = 0;
439
440 return (0);
441 }
442
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 struct sk_softc *sc = sc_if->sk_softc;
447 struct msk_chain_data *cd = &sc_if->sk_cdata;
448 struct msk_ring_data *rd = sc_if->sk_rdata;
449 bus_dmamap_t dmamap;
450 struct sk_txmap_entry *entry;
451 int i, nexti;
452
453 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
454 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455
456 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 if (i == (MSK_TX_RING_CNT - 1))
460 nexti = 0;
461 else
462 nexti = i + 1;
463 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464
465 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 return (ENOBUFS);
468
469 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 if (!entry) {
471 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 return (ENOBUFS);
473 }
474 entry->dmamap = dmamap;
475 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 }
477
478 sc_if->sk_cdata.sk_tx_prod = 0;
479 sc_if->sk_cdata.sk_tx_cons = 0;
480 sc_if->sk_cdata.sk_tx_cnt = 0;
481
482 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484
485 return (0);
486 }
487
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 bus_dmamap_t dmamap)
491 {
492 struct mbuf *m_new = NULL;
493 struct sk_chain *c;
494 struct msk_rx_desc *r;
495
496 if (m == NULL) {
497 void *buf = NULL;
498
499 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 if (m_new == NULL)
501 return (ENOBUFS);
502
503 /* Allocate the jumbo buffer */
504 buf = msk_jalloc(sc_if);
505 if (buf == NULL) {
506 m_freem(m_new);
507 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 return (ENOBUFS);
510 }
511
512 /* Attach the buffer to the mbuf */
513 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 } else {
516 /*
517 * We're re-using a previously allocated mbuf;
518 * be sure to re-init pointers and lengths to
519 * default values.
520 */
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 }
525 m_adj(m_new, ETHER_ALIGN);
526
527 c = &sc_if->sk_cdata.sk_rx_chain[i];
528 r = c->sk_le;
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 (((vaddr_t)m_new->m_data
532 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 r->sk_len = htole16(SK_JLEN);
534 r->sk_ctl = 0;
535 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536
537 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538
539 return (0);
540 }
541
542 /*
543 * Memory management for jumbo frames.
544 */
545
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 struct sk_softc *sc = sc_if->sk_softc;
550 char *ptr, *kva;
551 bus_dma_segment_t seg;
552 int i, rseg, state, error;
553 struct sk_jpool_entry *entry;
554
555 state = error = 0;
556
557 /* Grab a big chunk o' storage. */
558 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 aprint_error(": can't alloc rx buffers");
561 return (ENOBUFS);
562 }
563
564 state = 1;
565 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 BUS_DMA_NOWAIT)) {
567 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 2;
573 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 aprint_error(": can't create dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 3;
581 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 aprint_error(": can't load dma map");
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 4;
589 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591
592 LIST_INIT(&sc_if->sk_jfree_listhead);
593 LIST_INIT(&sc_if->sk_jinuse_listhead);
594
595 /*
596 * Now divide it up into 9K pieces and save the addresses
597 * in an array.
598 */
599 ptr = sc_if->sk_cdata.sk_jumbo_buf;
600 for (i = 0; i < MSK_JSLOTS; i++) {
601 sc_if->sk_cdata.sk_jslots[i] = ptr;
602 ptr += SK_JLEN;
603 entry = malloc(sizeof(struct sk_jpool_entry),
604 M_DEVBUF, M_NOWAIT);
605 if (entry == NULL) {
606 sc_if->sk_cdata.sk_jumbo_buf = NULL;
607 aprint_error(": no memory for jumbo buffer queue!");
608 error = ENOBUFS;
609 goto out;
610 }
611 entry->slot = i;
612 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
613 entry, jpool_entries);
614 }
615 out:
616 if (error != 0) {
617 switch (state) {
618 case 4:
619 bus_dmamap_unload(sc->sc_dmatag,
620 sc_if->sk_cdata.sk_rx_jumbo_map);
621 case 3:
622 bus_dmamap_destroy(sc->sc_dmatag,
623 sc_if->sk_cdata.sk_rx_jumbo_map);
624 case 2:
625 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
626 case 1:
627 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
628 break;
629 default:
630 break;
631 }
632 }
633
634 return (error);
635 }
636
637 /*
638 * Allocate a jumbo buffer.
639 */
640 void *
641 msk_jalloc(struct sk_if_softc *sc_if)
642 {
643 struct sk_jpool_entry *entry;
644
645 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
646
647 if (entry == NULL)
648 return (NULL);
649
650 LIST_REMOVE(entry, jpool_entries);
651 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
652 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
653 }
654
655 /*
656 * Release a jumbo buffer.
657 */
658 void
659 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
660 {
661 struct sk_jpool_entry *entry;
662 struct sk_if_softc *sc;
663 int i, s;
664
665 /* Extract the softc struct pointer. */
666 sc = (struct sk_if_softc *)arg;
667
668 if (sc == NULL)
669 panic("msk_jfree: can't find softc pointer!");
670
671 /* calculate the slot this buffer belongs to */
672 i = ((vaddr_t)buf
673 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
674
675 if ((i < 0) || (i >= MSK_JSLOTS))
676 panic("msk_jfree: asked to free buffer that we don't manage!");
677
678 s = splvm();
679 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
680 if (entry == NULL)
681 panic("msk_jfree: buffer not in use!");
682 entry->slot = i;
683 LIST_REMOVE(entry, jpool_entries);
684 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
685
686 if (__predict_true(m != NULL))
687 pool_cache_put(mb_cache, m);
688 splx(s);
689 }
690
691 int
692 msk_ioctl(struct ifnet *ifp, u_long command, void *data)
693 {
694 struct sk_if_softc *sc_if = ifp->if_softc;
695 struct ifreq *ifr = (struct ifreq *) data;
696 int s, error = 0;
697
698 s = splnet();
699
700 switch(command) {
701 case SIOCSIFMTU:
702 if (ifr->ifr_mtu < ETHERMIN)
703 return EINVAL;
704 else if (sc_if->sk_softc->sk_type != SK_YUKON_FE) {
705 if (ifr->ifr_mtu > SK_JUMBO_MTU)
706 error = EINVAL;
707 } else if (ifr->ifr_mtu > ETHERMTU)
708 error = EINVAL;
709 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
710 error = 0;
711 break;
712 default:
713 DPRINTFN(2, ("msk_ioctl ETHER\n"));
714 error = ether_ioctl(ifp, command, data);
715
716 if (error == ENETRESET) {
717 /*
718 * Multicast list has changed; set the hardware
719 * filter accordingly.
720 */
721 if (ifp->if_flags & IFF_RUNNING)
722 msk_setmulti(sc_if);
723 error = 0;
724 }
725 break;
726 }
727
728 splx(s);
729 return (error);
730 }
731
732 void
733 msk_update_int_mod(struct sk_softc *sc)
734 {
735 u_int32_t imtimer_ticks;
736
737 /*
738 * Configure interrupt moderation. The moderation timer
739 * defers interrupts specified in the interrupt moderation
740 * timer mask based on the timeout specified in the interrupt
741 * moderation timer init register. Each bit in the timer
742 * register represents one tick, so to specify a timeout in
743 * microseconds, we have to multiply by the correct number of
744 * ticks-per-microsecond.
745 */
746 switch (sc->sk_type) {
747 case SK_YUKON_EC:
748 case SK_YUKON_EC_U:
749 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
750 break;
751 case SK_YUKON_FE:
752 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
753 break;
754 case SK_YUKON_XL:
755 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
756 break;
757 default:
758 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
759 }
760 aprint_verbose("%s: interrupt moderation is %d us\n",
761 sc->sk_dev.dv_xname, sc->sk_int_mod);
762 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
763 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
764 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
765 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
766 sc->sk_int_mod_pending = 0;
767 }
768
769 static int
770 msk_lookup(const struct pci_attach_args *pa)
771 {
772 const struct msk_product *pmsk;
773
774 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
775 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
776 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
777 return 1;
778 }
779 return 0;
780 }
781
782 /*
783 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
784 * IDs against our list and return a device name if we find a match.
785 */
786 int
787 mskc_probe(struct device *parent, struct cfdata *match,
788 void *aux)
789 {
790 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
791
792 return msk_lookup(pa);
793 }
794
795 /*
796 * Force the GEnesis into reset, then bring it out of reset.
797 */
798 void msk_reset(struct sk_softc *sc)
799 {
800 u_int32_t imtimer_ticks, reg1;
801 int reg;
802
803 DPRINTFN(2, ("msk_reset\n"));
804
805 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
806 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
807
808 DELAY(1000);
809 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
810 DELAY(2);
811 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
812 sk_win_write_1(sc, SK_TESTCTL1, 2);
813
814 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
815 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
816 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
817 else
818 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
819 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
820
821 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
822 sk_win_write_1(sc, SK_Y2_CLKGATE,
823 SK_Y2_CLKGATE_LINK1_GATE_DIS |
824 SK_Y2_CLKGATE_LINK2_GATE_DIS |
825 SK_Y2_CLKGATE_LINK1_CORE_DIS |
826 SK_Y2_CLKGATE_LINK2_CORE_DIS |
827 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
828 else
829 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
830
831 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
832 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
833 DELAY(1000);
834 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
835 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
836
837 sk_win_write_1(sc, SK_TESTCTL1, 1);
838
839 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
840 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
841 CSR_READ_2(sc, SK_LINK_CTRL)));
842
843 /* Disable ASF */
844 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
845 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
846
847 /* Clear I2C IRQ noise */
848 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
849
850 /* Disable hardware timer */
851 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
852 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
853
854 /* Disable descriptor polling */
855 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
856
857 /* Disable time stamps */
858 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
859 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
860
861 /* Enable RAM interface */
862 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
863 for (reg = SK_TO0;reg <= SK_TO11; reg++)
864 sk_win_write_1(sc, reg, 36);
865 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
866 for (reg = SK_TO0;reg <= SK_TO11; reg++)
867 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
868
869 /*
870 * Configure interrupt moderation. The moderation timer
871 * defers interrupts specified in the interrupt moderation
872 * timer mask based on the timeout specified in the interrupt
873 * moderation timer init register. Each bit in the timer
874 * register represents one tick, so to specify a timeout in
875 * microseconds, we have to multiply by the correct number of
876 * ticks-per-microsecond.
877 */
878 switch (sc->sk_type) {
879 case SK_YUKON_EC:
880 case SK_YUKON_EC_U:
881 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
882 break;
883 case SK_YUKON_FE:
884 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
885 break;
886 case SK_YUKON_XL:
887 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
888 break;
889 default:
890 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
891 }
892
893 /* Reset status ring. */
894 bzero((char *)sc->sk_status_ring,
895 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
896 sc->sk_status_idx = 0;
897
898 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
899 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
900
901 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
902 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
903 sc->sk_status_map->dm_segs[0].ds_addr);
904 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
905 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
906 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
907 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
908 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
909 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
910 } else {
911 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
912 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
913 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
914 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
915 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
916 }
917
918 #if 0
919 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
920 #endif
921 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
922
923 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
924
925 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
926 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
927 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
928
929 msk_update_int_mod(sc);
930 }
931
932 int
933 msk_probe(struct device *parent, struct cfdata *match,
934 void *aux)
935 {
936 struct skc_attach_args *sa = aux;
937
938 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
939 return (0);
940
941 switch (sa->skc_type) {
942 case SK_YUKON_XL:
943 case SK_YUKON_EC_U:
944 case SK_YUKON_EC:
945 case SK_YUKON_FE:
946 return (1);
947 }
948
949 return (0);
950 }
951
952 /*
953 * Each XMAC chip is attached as a separate logical IP interface.
954 * Single port cards will have only one logical interface of course.
955 */
956 void
957 msk_attach(struct device *parent, struct device *self, void *aux)
958 {
959 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
960 struct sk_softc *sc = (struct sk_softc *)parent;
961 struct skc_attach_args *sa = aux;
962 struct ifnet *ifp;
963 void *kva;
964 bus_dma_segment_t seg;
965 int i, rseg;
966 u_int32_t chunk, val;
967
968 sc_if->sk_port = sa->skc_port;
969 sc_if->sk_softc = sc;
970 sc->sk_if[sa->skc_port] = sc_if;
971
972 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
973
974 /*
975 * Get station address for this interface. Note that
976 * dual port cards actually come with three station
977 * addresses: one for each port, plus an extra. The
978 * extra one is used by the SysKonnect driver software
979 * as a 'virtual' station address for when both ports
980 * are operating in failover mode. Currently we don't
981 * use this extra address.
982 */
983 for (i = 0; i < ETHER_ADDR_LEN; i++)
984 sc_if->sk_enaddr[i] =
985 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
986
987 aprint_normal(": Ethernet address %s\n",
988 ether_sprintf(sc_if->sk_enaddr));
989
990 /*
991 * Set up RAM buffer addresses. The NIC will have a certain
992 * amount of SRAM on it, somewhere between 512K and 2MB. We
993 * need to divide this up a) between the transmitter and
994 * receiver and b) between the two XMACs, if this is a
995 * dual port NIC. Our algorithm is to divide up the memory
996 * evenly so that everyone gets a fair share.
997 *
998 * Just to be contrary, Yukon2 appears to have separate memory
999 * for each MAC.
1000 */
1001 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1002 val = sc->sk_rboff / sizeof(u_int64_t);
1003 sc_if->sk_rx_ramstart = val;
1004 val += (chunk / sizeof(u_int64_t));
1005 sc_if->sk_rx_ramend = val - 1;
1006 chunk = sc->sk_ramsize - chunk;
1007 sc_if->sk_tx_ramstart = val;
1008 val += (chunk / sizeof(u_int64_t));
1009 sc_if->sk_tx_ramend = val - 1;
1010
1011 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1012 " tx_ramstart=%#x tx_ramend=%#x\n",
1013 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1014 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1015
1016 /* Allocate the descriptor queues. */
1017 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1018 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1019 aprint_error(": can't alloc rx buffers\n");
1020 goto fail;
1021 }
1022 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1023 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1024 aprint_error(": can't map dma buffers (%zu bytes)\n",
1025 sizeof(struct msk_ring_data));
1026 goto fail_1;
1027 }
1028 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1029 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1030 &sc_if->sk_ring_map)) {
1031 aprint_error(": can't create dma map\n");
1032 goto fail_2;
1033 }
1034 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1035 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1036 aprint_error(": can't load dma map\n");
1037 goto fail_3;
1038 }
1039 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1040 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1041
1042 ifp = &sc_if->sk_ethercom.ec_if;
1043 /* Try to allocate memory for jumbo buffers. */
1044 if (msk_alloc_jumbo_mem(sc_if)) {
1045 aprint_error(": jumbo buffer allocation failed\n");
1046 goto fail_3;
1047 }
1048 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1049 | ETHERCAP_JUMBO_MTU;
1050
1051 ifp->if_softc = sc_if;
1052 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053 ifp->if_ioctl = msk_ioctl;
1054 ifp->if_start = msk_start;
1055 ifp->if_stop = msk_stop;
1056 ifp->if_init = msk_init;
1057 ifp->if_watchdog = msk_watchdog;
1058 ifp->if_baudrate = 1000000000;
1059 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1060 IFQ_SET_READY(&ifp->if_snd);
1061 strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1062
1063 /*
1064 * Do miibus setup.
1065 */
1066 msk_init_yukon(sc_if);
1067
1068 DPRINTFN(2, ("msk_attach: 1\n"));
1069
1070 sc_if->sk_mii.mii_ifp = ifp;
1071 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1072 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1073 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1074
1075 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1076 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1077 ether_mediachange, ether_mediastatus);
1078 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1079 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1080 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1081 aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1082 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1083 0, NULL);
1084 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1085 } else
1086 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1087
1088 callout_init(&sc_if->sk_tick_ch, 0);
1089 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1090 callout_schedule(&sc_if->sk_tick_ch, hz);
1091
1092 /*
1093 * Call MI attach routines.
1094 */
1095 if_attach(ifp);
1096 ether_ifattach(ifp, sc_if->sk_enaddr);
1097
1098 shutdownhook_establish(mskc_shutdown, sc);
1099
1100 #if NRND > 0
1101 rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1102 RND_TYPE_NET, 0);
1103 #endif
1104
1105 DPRINTFN(2, ("msk_attach: end\n"));
1106 return;
1107
1108 fail_3:
1109 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1110 fail_2:
1111 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1112 fail_1:
1113 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1114 fail:
1115 sc->sk_if[sa->skc_port] = NULL;
1116 }
1117
1118 int
1119 mskcprint(void *aux, const char *pnp)
1120 {
1121 struct skc_attach_args *sa = aux;
1122
1123 if (pnp)
1124 aprint_normal("sk port %c at %s",
1125 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1126 else
1127 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1128 return (UNCONF);
1129 }
1130
1131 /*
1132 * Attach the interface. Allocate softc structures, do ifmedia
1133 * setup and ethernet/BPF attach.
1134 */
1135 void
1136 mskc_attach(struct device *parent, struct device *self, void *aux)
1137 {
1138 struct sk_softc *sc = (struct sk_softc *)self;
1139 struct pci_attach_args *pa = aux;
1140 struct skc_attach_args skca;
1141 pci_chipset_tag_t pc = pa->pa_pc;
1142 pcireg_t command, memtype;
1143 pci_intr_handle_t ih;
1144 const char *intrstr = NULL;
1145 bus_size_t size;
1146 int rc, sk_nodenum;
1147 u_int8_t hw, skrs;
1148 const char *revstr = NULL;
1149 const struct sysctlnode *node;
1150 void *kva;
1151 bus_dma_segment_t seg;
1152 int rseg;
1153
1154 DPRINTFN(2, ("begin mskc_attach\n"));
1155
1156 /*
1157 * Handle power management nonsense.
1158 */
1159 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1160
1161 if (command == 0x01) {
1162 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1163 if (command & SK_PSTATE_MASK) {
1164 u_int32_t iobase, membase, irq;
1165
1166 /* Save important PCI config data. */
1167 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1168 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1169 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1170
1171 /* Reset the power state. */
1172 aprint_normal("%s chip is in D%d power mode "
1173 "-- setting to D0\n", sc->sk_dev.dv_xname,
1174 command & SK_PSTATE_MASK);
1175 command &= 0xFFFFFFFC;
1176 pci_conf_write(pc, pa->pa_tag,
1177 SK_PCI_PWRMGMTCTRL, command);
1178
1179 /* Restore PCI config data. */
1180 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1181 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1182 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1183 }
1184 }
1185
1186 /*
1187 * Map control/status registers.
1188 */
1189
1190 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1191 switch (memtype) {
1192 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1193 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1194 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1195 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1196 NULL, &size) == 0)
1197 break;
1198 default:
1199 aprint_error(": can't map mem space\n");
1200 return;
1201 }
1202
1203 sc->sc_dmatag = pa->pa_dmat;
1204
1205 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1206 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1207
1208 /* bail out here if chip is not recognized */
1209 if (!(SK_IS_YUKON2(sc))) {
1210 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1211 goto fail_1;
1212 }
1213 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1214
1215 /* Allocate interrupt */
1216 if (pci_intr_map(pa, &ih)) {
1217 aprint_error(": couldn't map interrupt\n");
1218 goto fail_1;
1219 }
1220
1221 intrstr = pci_intr_string(pc, ih);
1222 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1223 if (sc->sk_intrhand == NULL) {
1224 aprint_error(": couldn't establish interrupt");
1225 if (intrstr != NULL)
1226 aprint_error(" at %s", intrstr);
1227 aprint_error("\n");
1228 goto fail_1;
1229 }
1230
1231 if (bus_dmamem_alloc(sc->sc_dmatag,
1232 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1233 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1234 aprint_error(": can't alloc status buffers\n");
1235 goto fail_2;
1236 }
1237
1238 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1239 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1240 &kva, BUS_DMA_NOWAIT)) {
1241 aprint_error(": can't map dma buffers (%zu bytes)\n",
1242 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1243 goto fail_3;
1244 }
1245 if (bus_dmamap_create(sc->sc_dmatag,
1246 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1247 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1248 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1249 aprint_error(": can't create dma map\n");
1250 goto fail_4;
1251 }
1252 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1253 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1254 NULL, BUS_DMA_NOWAIT)) {
1255 aprint_error(": can't load dma map\n");
1256 goto fail_5;
1257 }
1258 sc->sk_status_ring = (struct msk_status_desc *)kva;
1259 bzero(sc->sk_status_ring,
1260 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1261
1262 /* Reset the adapter. */
1263 msk_reset(sc);
1264
1265 skrs = sk_win_read_1(sc, SK_EPROM0);
1266 if (skrs == 0x00)
1267 sc->sk_ramsize = 0x20000;
1268 else
1269 sc->sk_ramsize = skrs * (1<<12);
1270 sc->sk_rboff = SK_RBOFF_0;
1271
1272 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1273 sc->sk_ramsize, sc->sk_ramsize / 1024,
1274 sc->sk_rboff));
1275
1276 switch (sc->sk_type) {
1277 case SK_YUKON_XL:
1278 sc->sk_name = "Yukon-2 XL";
1279 break;
1280 case SK_YUKON_EC_U:
1281 sc->sk_name = "Yukon-2 EC Ultra";
1282 break;
1283 case SK_YUKON_EC:
1284 sc->sk_name = "Yukon-2 EC";
1285 break;
1286 case SK_YUKON_FE:
1287 sc->sk_name = "Yukon-2 FE";
1288 break;
1289 default:
1290 sc->sk_name = "Yukon (Unknown)";
1291 }
1292
1293 if (sc->sk_type == SK_YUKON_XL) {
1294 switch (sc->sk_rev) {
1295 case SK_YUKON_XL_REV_A0:
1296 sc->sk_workaround = 0;
1297 revstr = "A0";
1298 break;
1299 case SK_YUKON_XL_REV_A1:
1300 sc->sk_workaround = SK_WA_4109;
1301 revstr = "A1";
1302 break;
1303 case SK_YUKON_XL_REV_A2:
1304 sc->sk_workaround = SK_WA_4109;
1305 revstr = "A2";
1306 break;
1307 case SK_YUKON_XL_REV_A3:
1308 sc->sk_workaround = SK_WA_4109;
1309 revstr = "A3";
1310 break;
1311 default:
1312 sc->sk_workaround = 0;
1313 break;
1314 }
1315 }
1316
1317 if (sc->sk_type == SK_YUKON_EC) {
1318 switch (sc->sk_rev) {
1319 case SK_YUKON_EC_REV_A1:
1320 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1321 revstr = "A1";
1322 break;
1323 case SK_YUKON_EC_REV_A2:
1324 sc->sk_workaround = SK_WA_4109;
1325 revstr = "A2";
1326 break;
1327 case SK_YUKON_EC_REV_A3:
1328 sc->sk_workaround = SK_WA_4109;
1329 revstr = "A3";
1330 break;
1331 default:
1332 sc->sk_workaround = 0;
1333 break;
1334 }
1335 }
1336
1337 if (sc->sk_type == SK_YUKON_FE) {
1338 sc->sk_workaround = SK_WA_4109;
1339 switch (sc->sk_rev) {
1340 case SK_YUKON_FE_REV_A1:
1341 revstr = "A1";
1342 break;
1343 case SK_YUKON_FE_REV_A2:
1344 revstr = "A2";
1345 break;
1346 default:
1347 sc->sk_workaround = 0;
1348 break;
1349 }
1350 }
1351
1352 if (sc->sk_type == SK_YUKON_EC_U) {
1353 sc->sk_workaround = SK_WA_4109;
1354 switch (sc->sk_rev) {
1355 case SK_YUKON_EC_U_REV_A0:
1356 revstr = "A0";
1357 break;
1358 case SK_YUKON_EC_U_REV_A1:
1359 revstr = "A1";
1360 break;
1361 case SK_YUKON_EC_U_REV_B0:
1362 revstr = "B0";
1363 break;
1364 default:
1365 sc->sk_workaround = 0;
1366 break;
1367 }
1368 }
1369
1370 /* Announce the product name. */
1371 aprint_normal(", %s", sc->sk_name);
1372 if (revstr != NULL)
1373 aprint_normal(" rev. %s", revstr);
1374 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1375
1376 sc->sk_macs = 1;
1377
1378 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1379 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1380 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1381 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1382 sc->sk_macs++;
1383 }
1384
1385 skca.skc_port = SK_PORT_A;
1386 skca.skc_type = sc->sk_type;
1387 skca.skc_rev = sc->sk_rev;
1388 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1389
1390 if (sc->sk_macs > 1) {
1391 skca.skc_port = SK_PORT_B;
1392 skca.skc_type = sc->sk_type;
1393 skca.skc_rev = sc->sk_rev;
1394 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1395 }
1396
1397 /* Turn on the 'driver is loaded' LED. */
1398 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1399
1400 /* skc sysctl setup */
1401
1402 sc->sk_int_mod = SK_IM_DEFAULT;
1403 sc->sk_int_mod_pending = 0;
1404
1405 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1406 0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1407 SYSCTL_DESCR("mskc per-controller controls"),
1408 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1409 CTL_EOL)) != 0) {
1410 aprint_normal("%s: couldn't create sysctl node\n",
1411 sc->sk_dev.dv_xname);
1412 goto fail_6;
1413 }
1414
1415 sk_nodenum = node->sysctl_num;
1416
1417 /* interrupt moderation time in usecs */
1418 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1419 CTLFLAG_READWRITE,
1420 CTLTYPE_INT, "int_mod",
1421 SYSCTL_DESCR("msk interrupt moderation timer"),
1422 msk_sysctl_handler, 0, sc,
1423 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1424 CTL_EOL)) != 0) {
1425 aprint_normal("%s: couldn't create int_mod sysctl node\n",
1426 sc->sk_dev.dv_xname);
1427 goto fail_6;
1428 }
1429
1430 return;
1431
1432 fail_6:
1433 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1434 fail_5:
1435 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1436 fail_4:
1437 bus_dmamem_unmap(sc->sc_dmatag, kva,
1438 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1439 fail_3:
1440 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1441 fail_2:
1442 pci_intr_disestablish(pc, sc->sk_intrhand);
1443 fail_1:
1444 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1445 }
1446
1447 int
1448 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1449 {
1450 struct sk_softc *sc = sc_if->sk_softc;
1451 struct msk_tx_desc *f = NULL;
1452 u_int32_t frag, cur;
1453 int i;
1454 struct sk_txmap_entry *entry;
1455 bus_dmamap_t txmap;
1456
1457 DPRINTFN(2, ("msk_encap\n"));
1458
1459 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1460 if (entry == NULL) {
1461 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1462 return (ENOBUFS);
1463 }
1464 txmap = entry->dmamap;
1465
1466 cur = frag = *txidx;
1467
1468 #ifdef MSK_DEBUG
1469 if (mskdebug >= 2)
1470 msk_dump_mbuf(m_head);
1471 #endif
1472
1473 /*
1474 * Start packing the mbufs in this chain into
1475 * the fragment pointers. Stop when we run out
1476 * of fragments or hit the end of the mbuf chain.
1477 */
1478 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1479 BUS_DMA_NOWAIT)) {
1480 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1481 return (ENOBUFS);
1482 }
1483
1484 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1485 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1486 bus_dmamap_unload(sc->sc_dmatag, txmap);
1487 return (ENOBUFS);
1488 }
1489
1490 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1491
1492 /* Sync the DMA map. */
1493 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1494 BUS_DMASYNC_PREWRITE);
1495
1496 for (i = 0; i < txmap->dm_nsegs; i++) {
1497 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1498 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1499 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1500 f->sk_ctl = 0;
1501 if (i == 0)
1502 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1503 else
1504 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1505 cur = frag;
1506 SK_INC(frag, MSK_TX_RING_CNT);
1507 }
1508
1509 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1510 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1511
1512 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1513 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1514
1515 /* Sync descriptors before handing to chip */
1516 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1517 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1518
1519 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1520
1521 /* Sync first descriptor to hand it off */
1522 MSK_CDTXSYNC(sc_if, *txidx, 1,
1523 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1524
1525 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1526
1527 #ifdef MSK_DEBUG
1528 if (mskdebug >= 2) {
1529 struct msk_tx_desc *le;
1530 u_int32_t idx;
1531 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1532 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1533 msk_dump_txdesc(le, idx);
1534 }
1535 }
1536 #endif
1537
1538 *txidx = frag;
1539
1540 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1541
1542 return (0);
1543 }
1544
1545 void
1546 msk_start(struct ifnet *ifp)
1547 {
1548 struct sk_if_softc *sc_if = ifp->if_softc;
1549 struct mbuf *m_head = NULL;
1550 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1551 int pkts = 0;
1552
1553 DPRINTFN(2, ("msk_start\n"));
1554
1555 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1556 IFQ_POLL(&ifp->if_snd, m_head);
1557 if (m_head == NULL)
1558 break;
1559
1560 /*
1561 * Pack the data into the transmit ring. If we
1562 * don't have room, set the OACTIVE flag and wait
1563 * for the NIC to drain the ring.
1564 */
1565 if (msk_encap(sc_if, m_head, &idx)) {
1566 ifp->if_flags |= IFF_OACTIVE;
1567 break;
1568 }
1569
1570 /* now we are committed to transmit the packet */
1571 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1572 pkts++;
1573
1574 /*
1575 * If there's a BPF listener, bounce a copy of this frame
1576 * to him.
1577 */
1578 #if NBPFILTER > 0
1579 if (ifp->if_bpf)
1580 bpf_mtap(ifp->if_bpf, m_head);
1581 #endif
1582 }
1583 if (pkts == 0)
1584 return;
1585
1586 /* Transmit */
1587 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1588 sc_if->sk_cdata.sk_tx_prod = idx;
1589 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1590
1591 /* Set a timeout in case the chip goes out to lunch. */
1592 ifp->if_timer = 5;
1593 }
1594 }
1595
1596 void
1597 msk_watchdog(struct ifnet *ifp)
1598 {
1599 struct sk_if_softc *sc_if = ifp->if_softc;
1600 u_int32_t reg;
1601 int idx;
1602
1603 /*
1604 * Reclaim first as there is a possibility of losing Tx completion
1605 * interrupts.
1606 */
1607 if (sc_if->sk_port == SK_PORT_A)
1608 reg = SK_STAT_BMU_TXA1_RIDX;
1609 else
1610 reg = SK_STAT_BMU_TXA2_RIDX;
1611
1612 idx = sk_win_read_2(sc_if->sk_softc, reg);
1613 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1614 msk_txeof(sc_if, idx);
1615 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1616 aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1617
1618 ifp->if_oerrors++;
1619
1620 /* XXX Resets both ports; we shouldn't do that. */
1621 msk_reset(sc_if->sk_softc);
1622 msk_init(ifp);
1623 }
1624 }
1625 }
1626
1627 void
1628 mskc_shutdown(void *v)
1629 {
1630 struct sk_softc *sc = v;
1631
1632 DPRINTFN(2, ("msk_shutdown\n"));
1633
1634 /* Turn off the 'driver is loaded' LED. */
1635 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1636
1637 msk_reset(sc);
1638 }
1639
1640 __inline int
1641 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1642 {
1643 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1644 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1645 YU_RXSTAT_JABBER)) != 0 ||
1646 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1647 YU_RXSTAT_BYTES(stat) != len)
1648 return (0);
1649
1650 return (1);
1651 }
1652
1653 void
1654 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1655 {
1656 struct sk_softc *sc = sc_if->sk_softc;
1657 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1658 struct mbuf *m;
1659 struct sk_chain *cur_rx;
1660 int cur, total_len = len;
1661 bus_dmamap_t dmamap;
1662
1663 DPRINTFN(2, ("msk_rxeof\n"));
1664
1665 cur = sc_if->sk_cdata.sk_rx_cons;
1666 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1667 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1668
1669 /* Sync the descriptor */
1670 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1671
1672 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1673 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1674
1675 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1676 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1677
1678 m = cur_rx->sk_mbuf;
1679 cur_rx->sk_mbuf = NULL;
1680
1681 if (total_len < SK_MIN_FRAMELEN ||
1682 total_len > SK_JUMBO_FRAMELEN ||
1683 msk_rxvalid(sc, rxstat, total_len) == 0) {
1684 ifp->if_ierrors++;
1685 msk_newbuf(sc_if, cur, m, dmamap);
1686 return;
1687 }
1688
1689 /*
1690 * Try to allocate a new jumbo buffer. If that fails, copy the
1691 * packet to mbufs and put the jumbo buffer back in the ring
1692 * so it can be re-used. If allocating mbufs fails, then we
1693 * have to drop the packet.
1694 */
1695 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1696 struct mbuf *m0;
1697 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1698 total_len + ETHER_ALIGN, 0, ifp, NULL);
1699 msk_newbuf(sc_if, cur, m, dmamap);
1700 if (m0 == NULL) {
1701 ifp->if_ierrors++;
1702 return;
1703 }
1704 m_adj(m0, ETHER_ALIGN);
1705 m = m0;
1706 } else {
1707 m->m_pkthdr.rcvif = ifp;
1708 m->m_pkthdr.len = m->m_len = total_len;
1709 }
1710
1711 ifp->if_ipackets++;
1712
1713 #if NBPFILTER > 0
1714 if (ifp->if_bpf)
1715 bpf_mtap(ifp->if_bpf, m);
1716 #endif
1717
1718 /* pass it on. */
1719 (*ifp->if_input)(ifp, m);
1720 }
1721
1722 void
1723 msk_txeof(struct sk_if_softc *sc_if, int idx)
1724 {
1725 struct sk_softc *sc = sc_if->sk_softc;
1726 struct msk_tx_desc *cur_tx;
1727 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1728 u_int32_t sk_ctl;
1729 struct sk_txmap_entry *entry;
1730 int cons, prog;
1731
1732 DPRINTFN(2, ("msk_txeof\n"));
1733
1734 /*
1735 * Go through our tx ring and free mbufs for those
1736 * frames that have been sent.
1737 */
1738 cons = sc_if->sk_cdata.sk_tx_cons;
1739 prog = 0;
1740 while (cons != idx) {
1741 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1742 break;
1743 prog++;
1744 MSK_CDTXSYNC(sc_if, cons, 1,
1745 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1746
1747 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1748 sk_ctl = cur_tx->sk_ctl;
1749 #ifdef MSK_DEBUG
1750 if (mskdebug >= 2)
1751 msk_dump_txdesc(cur_tx, cons);
1752 #endif
1753 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1754 ifp->if_opackets++;
1755 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1756 entry = sc_if->sk_cdata.sk_tx_map[cons];
1757
1758 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1759 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1760
1761 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1762 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1763 link);
1764 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1765 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1766 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1767 }
1768 sc_if->sk_cdata.sk_tx_cnt--;
1769 SK_INC(cons, MSK_TX_RING_CNT);
1770 }
1771 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1772
1773 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1774 ifp->if_flags &= ~IFF_OACTIVE;
1775
1776 if (prog > 0)
1777 sc_if->sk_cdata.sk_tx_cons = cons;
1778 }
1779
1780 void
1781 msk_tick(void *xsc_if)
1782 {
1783 struct sk_if_softc *sc_if = xsc_if;
1784 struct mii_data *mii = &sc_if->sk_mii;
1785
1786 mii_tick(mii);
1787 callout_schedule(&sc_if->sk_tick_ch, hz);
1788 }
1789
1790 void
1791 msk_intr_yukon(struct sk_if_softc *sc_if)
1792 {
1793 u_int8_t status;
1794
1795 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1796 /* RX overrun */
1797 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1798 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1799 SK_RFCTL_RX_FIFO_OVER);
1800 }
1801 /* TX underrun */
1802 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1803 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1804 SK_TFCTL_TX_FIFO_UNDER);
1805 }
1806
1807 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1808 }
1809
1810 int
1811 msk_intr(void *xsc)
1812 {
1813 struct sk_softc *sc = xsc;
1814 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1815 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1816 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1817 int claimed = 0;
1818 u_int32_t status;
1819 struct msk_status_desc *cur_st;
1820
1821 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1822 if (status == 0) {
1823 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1824 return (0);
1825 }
1826
1827 status = CSR_READ_4(sc, SK_ISR);
1828
1829 if (sc_if0 != NULL)
1830 ifp0 = &sc_if0->sk_ethercom.ec_if;
1831 if (sc_if1 != NULL)
1832 ifp1 = &sc_if1->sk_ethercom.ec_if;
1833
1834 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1835 (ifp0->if_flags & IFF_RUNNING)) {
1836 msk_intr_yukon(sc_if0);
1837 }
1838
1839 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1840 (ifp1->if_flags & IFF_RUNNING)) {
1841 msk_intr_yukon(sc_if1);
1842 }
1843
1844 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1845 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1846 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1847
1848 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1849 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1850 switch (cur_st->sk_opcode) {
1851 case SK_Y2_STOPC_RXSTAT:
1852 msk_rxeof(sc->sk_if[cur_st->sk_link],
1853 letoh16(cur_st->sk_len),
1854 letoh32(cur_st->sk_status));
1855 SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0,
1856 SK_RXQ1_Y2_PREF_PUTIDX,
1857 sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod);
1858 break;
1859 case SK_Y2_STOPC_TXSTAT:
1860 if (sc_if0)
1861 msk_txeof(sc_if0,
1862 letoh32(cur_st->sk_status)
1863 & SK_Y2_ST_TXA1_MSKL);
1864 if (sc_if1)
1865 msk_txeof(sc_if1,
1866 ((letoh32(cur_st->sk_status)
1867 & SK_Y2_ST_TXA2_MSKL)
1868 >> SK_Y2_ST_TXA2_SHIFTL)
1869 | ((letoh16(cur_st->sk_len) & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1870 break;
1871 default:
1872 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
1873 break;
1874 }
1875 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1876
1877 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1878 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1879 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1880 }
1881
1882 if (status & SK_Y2_IMR_BMU) {
1883 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1884 claimed = 1;
1885 }
1886
1887 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1888
1889 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1890 msk_start(ifp0);
1891 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1892 msk_start(ifp1);
1893
1894 #if NRND > 0
1895 if (RND_ENABLED(&sc->rnd_source))
1896 rnd_add_uint32(&sc->rnd_source, status);
1897 #endif
1898
1899 if (sc->sk_int_mod_pending)
1900 msk_update_int_mod(sc);
1901
1902 return claimed;
1903 }
1904
1905 void
1906 msk_init_yukon(struct sk_if_softc *sc_if)
1907 {
1908 u_int32_t v;
1909 u_int16_t reg;
1910 struct sk_softc *sc;
1911 int i;
1912
1913 sc = sc_if->sk_softc;
1914
1915 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1916 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1917
1918 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1919
1920 /* GMAC and GPHY Reset */
1921 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1922 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1923 DELAY(1000);
1924
1925 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1926
1927 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1928 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1929 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1930
1931 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1932 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1933
1934 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1935
1936 /* unused read of the interrupt source register */
1937 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1938 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1939
1940 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1941 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1942 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1943
1944 /* MIB Counter Clear Mode set */
1945 reg |= YU_PAR_MIB_CLR;
1946 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1947 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1948 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1949
1950 /* MIB Counter Clear Mode clear */
1951 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1952 reg &= ~YU_PAR_MIB_CLR;
1953 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1954
1955 /* receive control reg */
1956 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1957 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1958
1959 /* transmit control register */
1960 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1961
1962 /* transmit flow control register */
1963 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
1964
1965 /* transmit parameter register */
1966 DPRINTFN(6, ("msk_init_yukon: 8\n"));
1967 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1968 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
1969
1970 /* serial mode register */
1971 DPRINTFN(6, ("msk_init_yukon: 9\n"));
1972 reg = YU_SMR_DATA_BLIND(0x1c) |
1973 YU_SMR_MFL_VLAN |
1974 YU_SMR_IPG_DATA(0x1e);
1975
1976 if (sc->sk_type != SK_YUKON_FE)
1977 reg |= YU_SMR_MFL_JUMBO;
1978
1979 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1980
1981 DPRINTFN(6, ("msk_init_yukon: 10\n"));
1982 /* Setup Yukon's address */
1983 for (i = 0; i < 3; i++) {
1984 /* Write Source Address 1 (unicast filter) */
1985 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1986 sc_if->sk_enaddr[i * 2] |
1987 sc_if->sk_enaddr[i * 2 + 1] << 8);
1988 }
1989
1990 for (i = 0; i < 3; i++) {
1991 reg = sk_win_read_2(sc_if->sk_softc,
1992 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1993 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1994 }
1995
1996 /* Set promiscuous mode */
1997 msk_setpromisc(sc_if);
1998
1999 /* Set multicast filter */
2000 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2001 msk_setmulti(sc_if);
2002
2003 /* enable interrupt mask for counter overflows */
2004 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2005 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2006 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2007 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2008
2009 /* Configure RX MAC FIFO Flush Mask */
2010 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2011 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2012 YU_RXSTAT_JABBER;
2013 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2014
2015 /* Configure RX MAC FIFO */
2016 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2017 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2018 SK_RFCTL_FIFO_FLUSH_ON);
2019
2020 /* Increase flush threshould to 64 bytes */
2021 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2022 SK_RFCTL_FIFO_THRESHOLD + 1);
2023
2024 /* Configure TX MAC FIFO */
2025 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2026 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2027
2028 #if 1
2029 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2030 #endif
2031 DPRINTFN(6, ("msk_init_yukon: end\n"));
2032 }
2033
2034 /*
2035 * Note that to properly initialize any part of the GEnesis chip,
2036 * you first have to take it out of reset mode.
2037 */
2038 int
2039 msk_init(struct ifnet *ifp)
2040 {
2041 struct sk_if_softc *sc_if = ifp->if_softc;
2042 struct sk_softc *sc = sc_if->sk_softc;
2043 int rc = 0, s;
2044 uint32_t imr, imtimer_ticks;
2045
2046
2047 DPRINTFN(2, ("msk_init\n"));
2048
2049 s = splnet();
2050
2051 /* Cancel pending I/O and free all RX/TX buffers. */
2052 msk_stop(ifp,0);
2053
2054 /* Configure I2C registers */
2055
2056 /* Configure XMAC(s) */
2057 msk_init_yukon(sc_if);
2058 if ((rc = ether_mediachange(ifp)) != 0)
2059 goto out;
2060
2061 /* Configure transmit arbiter(s) */
2062 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2063 #if 0
2064 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2065 #endif
2066
2067 /* Configure RAMbuffers */
2068 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2069 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2070 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2071 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2072 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2073 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2074
2075 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2076 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2077 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2078 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2079 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2080 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2081 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2082
2083 /* Configure BMUs */
2084 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2085 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2086 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2087 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2088
2089 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2090 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2091 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2092 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2093
2094 /* Make sure the sync transmit queue is disabled. */
2095 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2096
2097 /* Init descriptors */
2098 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2099 aprint_error("%s: initialization failed: no "
2100 "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2101 msk_stop(ifp,0);
2102 splx(s);
2103 return ENOBUFS;
2104 }
2105
2106 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2107 aprint_error("%s: initialization failed: no "
2108 "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2109 msk_stop(ifp,0);
2110 splx(s);
2111 return ENOBUFS;
2112 }
2113
2114 /* Set interrupt moderation if changed via sysctl. */
2115 switch (sc->sk_type) {
2116 case SK_YUKON_EC:
2117 case SK_YUKON_EC_U:
2118 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2119 break;
2120 case SK_YUKON_FE:
2121 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2122 break;
2123 case SK_YUKON_XL:
2124 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2125 break;
2126 default:
2127 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2128 }
2129 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2130 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2131 sk_win_write_4(sc, SK_IMTIMERINIT,
2132 SK_IM_USECS(sc->sk_int_mod));
2133 aprint_verbose("%s: interrupt moderation is %d us\n",
2134 sc->sk_dev.dv_xname, sc->sk_int_mod);
2135 }
2136
2137 /* Initialize prefetch engine. */
2138 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2139 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2140 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2141 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2142 MSK_RX_RING_ADDR(sc_if, 0));
2143 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2144 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2145 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2146 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2147
2148 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2149 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2150 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2151 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2152 MSK_TX_RING_ADDR(sc_if, 0));
2153 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2154 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2155 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2156 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2157
2158 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2159 sc_if->sk_cdata.sk_rx_prod);
2160
2161 /* Configure interrupt handling */
2162 if (sc_if->sk_port == SK_PORT_A)
2163 sc->sk_intrmask |= SK_Y2_INTRS1;
2164 else
2165 sc->sk_intrmask |= SK_Y2_INTRS2;
2166 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2167 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2168
2169 ifp->if_flags |= IFF_RUNNING;
2170 ifp->if_flags &= ~IFF_OACTIVE;
2171
2172 callout_schedule(&sc_if->sk_tick_ch, hz);
2173
2174 out:
2175 splx(s);
2176 return rc;
2177 }
2178
2179 void
2180 msk_stop(struct ifnet *ifp, int disable)
2181 {
2182 struct sk_if_softc *sc_if = ifp->if_softc;
2183 struct sk_softc *sc = sc_if->sk_softc;
2184 struct sk_txmap_entry *dma;
2185 int i;
2186
2187 DPRINTFN(2, ("msk_stop\n"));
2188
2189 callout_stop(&sc_if->sk_tick_ch);
2190
2191 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2192
2193 /* Stop transfer of Tx descriptors */
2194
2195 /* Stop transfer of Rx descriptors */
2196
2197 /* Turn off various components of this interface. */
2198 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2199 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2200 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2201 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2202 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2203 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2204 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2205 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2206 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2207 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2208 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2209 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2210
2211 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2212 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2213
2214 /* Disable interrupts */
2215 if (sc_if->sk_port == SK_PORT_A)
2216 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2217 else
2218 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2219 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2220
2221 SK_XM_READ_2(sc_if, XM_ISR);
2222 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2223
2224 /* Free RX and TX mbufs still in the queues. */
2225 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2226 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2227 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2228 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2229 }
2230 }
2231
2232 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2233 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2234 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2235 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2236 #if 1
2237 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2238 sc_if->sk_cdata.sk_tx_map[i], link);
2239 sc_if->sk_cdata.sk_tx_map[i] = 0;
2240 #endif
2241 }
2242 }
2243
2244 #if 1
2245 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2246 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2247 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2248 free(dma, M_DEVBUF);
2249 }
2250 #endif
2251 }
2252
2253 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2254 NULL, NULL);
2255
2256 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2257 NULL, NULL);
2258
2259 #ifdef MSK_DEBUG
2260 void
2261 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2262 {
2263 #define DESC_PRINT(X) \
2264 if (X) \
2265 printf("txdesc[%d]." #X "=%#x\n", \
2266 idx, X);
2267
2268 DESC_PRINT(letoh32(le->sk_addr));
2269 DESC_PRINT(letoh16(le->sk_len));
2270 DESC_PRINT(le->sk_ctl);
2271 DESC_PRINT(le->sk_opcode);
2272 #undef DESC_PRINT
2273 }
2274
2275 void
2276 msk_dump_bytes(const char *data, int len)
2277 {
2278 int c, i, j;
2279
2280 for (i = 0; i < len; i += 16) {
2281 printf("%08x ", i);
2282 c = len - i;
2283 if (c > 16) c = 16;
2284
2285 for (j = 0; j < c; j++) {
2286 printf("%02x ", data[i + j] & 0xff);
2287 if ((j & 0xf) == 7 && j > 0)
2288 printf(" ");
2289 }
2290
2291 for (; j < 16; j++)
2292 printf(" ");
2293 printf(" ");
2294
2295 for (j = 0; j < c; j++) {
2296 int ch = data[i + j] & 0xff;
2297 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2298 }
2299
2300 printf("\n");
2301
2302 if (c < 16)
2303 break;
2304 }
2305 }
2306
2307 void
2308 msk_dump_mbuf(struct mbuf *m)
2309 {
2310 int count = m->m_pkthdr.len;
2311
2312 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2313
2314 while (count > 0 && m) {
2315 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2316 m, m->m_data, m->m_len);
2317 msk_dump_bytes(mtod(m, char *), m->m_len);
2318
2319 count -= m->m_len;
2320 m = m->m_next;
2321 }
2322 }
2323 #endif
2324
2325 static int
2326 msk_sysctl_handler(SYSCTLFN_ARGS)
2327 {
2328 int error, t;
2329 struct sysctlnode node;
2330 struct sk_softc *sc;
2331
2332 node = *rnode;
2333 sc = node.sysctl_data;
2334 t = sc->sk_int_mod;
2335 node.sysctl_data = &t;
2336 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2337 if (error || newp == NULL)
2338 return error;
2339
2340 if (t < SK_IM_MIN || t > SK_IM_MAX)
2341 return EINVAL;
2342
2343 /* update the softc with sysctl-changed value, and mark
2344 for hardware update */
2345 sc->sk_int_mod = t;
2346 sc->sk_int_mod_pending = 1;
2347 return 0;
2348 }
2349
2350 /*
2351 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2352 * set up in skc_attach()
2353 */
2354 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2355 {
2356 int rc;
2357 const struct sysctlnode *node;
2358
2359 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2360 0, CTLTYPE_NODE, "hw", NULL,
2361 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2362 goto err;
2363 }
2364
2365 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2366 0, CTLTYPE_NODE, "msk",
2367 SYSCTL_DESCR("msk interface controls"),
2368 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2369 goto err;
2370 }
2371
2372 msk_root_num = node->sysctl_num;
2373 return;
2374
2375 err:
2376 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2377 }
2378