if_msk.c revision 1.18 1 /* $NetBSD: if_msk.c,v 1.18 2008/04/10 19:13:37 cegger Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.18 2008/04/10 19:13:37 cegger Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73 #define letoh16 htole16
74 #define letoh32 htole32
75 #endif
76
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80
81 #include <net/if_media.h>
82
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #endif
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/brgphyreg.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97
98 #include <dev/pci/if_skreg.h>
99 #include <dev/pci/if_mskvar.h>
100
101 int mskc_probe(struct device *, struct cfdata *, void *);
102 void mskc_attach(struct device *, struct device *self, void *aux);
103 void mskc_shutdown(void *);
104 int msk_probe(struct device *, struct cfdata *, void *);
105 void msk_attach(struct device *, struct device *self, void *aux);
106 int mskcprint(void *, const char *);
107 int msk_intr(void *);
108 void msk_intr_yukon(struct sk_if_softc *);
109 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
110 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
111 void msk_txeof(struct sk_if_softc *, int);
112 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
113 void msk_start(struct ifnet *);
114 int msk_ioctl(struct ifnet *, u_long, void *);
115 int msk_init(struct ifnet *);
116 void msk_init_yukon(struct sk_if_softc *);
117 void msk_stop(struct ifnet *, int);
118 void msk_watchdog(struct ifnet *);
119 void msk_reset(struct sk_softc *);
120 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
121 int msk_alloc_jumbo_mem(struct sk_if_softc *);
122 void *msk_jalloc(struct sk_if_softc *);
123 void msk_jfree(struct mbuf *, void *, size_t, void *);
124 int msk_init_rx_ring(struct sk_if_softc *);
125 int msk_init_tx_ring(struct sk_if_softc *);
126
127 void msk_update_int_mod(struct sk_softc *);
128
129 int msk_miibus_readreg(struct device *, int, int);
130 void msk_miibus_writereg(struct device *, int, int, int);
131 void msk_miibus_statchg(struct device *);
132
133 void msk_setfilt(struct sk_if_softc *, void *, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_tick(void *);
137
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x) if (mskdebug) printf x
141 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 int mskdebug = MSK_DEBUG;
143
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
188 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
189 };
190
191 static inline u_int32_t
192 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
193 {
194 return CSR_READ_4(sc, reg);
195 }
196
197 static inline u_int16_t
198 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
199 {
200 return CSR_READ_2(sc, reg);
201 }
202
203 static inline u_int8_t
204 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
205 {
206 return CSR_READ_1(sc, reg);
207 }
208
209 static inline void
210 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
211 {
212 CSR_WRITE_4(sc, reg, x);
213 }
214
215 static inline void
216 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
217 {
218 CSR_WRITE_2(sc, reg, x);
219 }
220
221 static inline void
222 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
223 {
224 CSR_WRITE_1(sc, reg, x);
225 }
226
227 int
228 msk_miibus_readreg(struct device *dev, int phy, int reg)
229 {
230 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
231 u_int16_t val;
232 int i;
233
234 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
235 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
236
237 for (i = 0; i < SK_TIMEOUT; i++) {
238 DELAY(1);
239 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
240 if (val & YU_SMICR_READ_VALID)
241 break;
242 }
243
244 if (i == SK_TIMEOUT) {
245 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
246 return (0);
247 }
248
249 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
250 SK_TIMEOUT));
251
252 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
253
254 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
255 phy, reg, val));
256
257 return (val);
258 }
259
260 void
261 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
262 {
263 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
264 int i;
265
266 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
267 phy, reg, val));
268
269 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
270 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
271 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
272
273 for (i = 0; i < SK_TIMEOUT; i++) {
274 DELAY(1);
275 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
276 break;
277 }
278
279 if (i == SK_TIMEOUT)
280 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
281 }
282
283 void
284 msk_miibus_statchg(struct device *dev)
285 {
286 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
287 struct mii_data *mii = &sc_if->sk_mii;
288 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
289 int gpcr;
290
291 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
292 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
293
294 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
295 /* Set speed. */
296 gpcr |= YU_GPCR_SPEED_DIS;
297 switch (IFM_SUBTYPE(mii->mii_media_active)) {
298 case IFM_1000_SX:
299 case IFM_1000_LX:
300 case IFM_1000_CX:
301 case IFM_1000_T:
302 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
303 break;
304 case IFM_100_TX:
305 gpcr |= YU_GPCR_SPEED;
306 break;
307 }
308
309 /* Set duplex. */
310 gpcr |= YU_GPCR_DPLX_DIS;
311 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
312 gpcr |= YU_GPCR_DUPLEX;
313
314 /* Disable flow control. */
315 gpcr |= YU_GPCR_FCTL_DIS;
316 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
317 }
318
319 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
320
321 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
322 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
323 }
324
325 #define HASH_BITS 6
326
327 void
328 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
329 {
330 char *addr = addrv;
331 int base = XM_RXFILT_ENTRY(slot);
332
333 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
334 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
335 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
336 }
337
338 void
339 msk_setmulti(struct sk_if_softc *sc_if)
340 {
341 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
342 u_int32_t hashes[2] = { 0, 0 };
343 int h;
344 struct ethercom *ec = &sc_if->sk_ethercom;
345 struct ether_multi *enm;
346 struct ether_multistep step;
347 u_int16_t reg;
348
349 /* First, zot all the existing filters. */
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
354
355
356 /* Now program new ones. */
357 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
358 reg |= YU_RCR_UFLEN;
359 allmulti:
360 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
361 if ((ifp->if_flags & IFF_PROMISC) != 0)
362 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
364 hashes[0] = 0xFFFFFFFF;
365 hashes[1] = 0xFFFFFFFF;
366 }
367 } else {
368 /* First find the tail of the list. */
369 ETHER_FIRST_MULTI(step, ec, enm);
370 while (enm != NULL) {
371 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
372 ETHER_ADDR_LEN)) {
373 ifp->if_flags |= IFF_ALLMULTI;
374 goto allmulti;
375 }
376 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
377 ((1 << HASH_BITS) - 1);
378 if (h < 32)
379 hashes[0] |= (1 << h);
380 else
381 hashes[1] |= (1 << (h - 32));
382
383 ETHER_NEXT_MULTI(step, enm);
384 }
385 reg |= YU_RCR_MUFLEN;
386 }
387
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
393 }
394
395 void
396 msk_setpromisc(struct sk_if_softc *sc_if)
397 {
398 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
399
400 if (ifp->if_flags & IFF_PROMISC)
401 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
402 YU_RCR_UFLEN | YU_RCR_MUFLEN);
403 else
404 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
405 YU_RCR_UFLEN | YU_RCR_MUFLEN);
406 }
407
408 int
409 msk_init_rx_ring(struct sk_if_softc *sc_if)
410 {
411 struct msk_chain_data *cd = &sc_if->sk_cdata;
412 struct msk_ring_data *rd = sc_if->sk_rdata;
413 int i, nexti;
414
415 bzero((char *)rd->sk_rx_ring,
416 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
417
418 for (i = 0; i < MSK_RX_RING_CNT; i++) {
419 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
420 if (i == (MSK_RX_RING_CNT - 1))
421 nexti = 0;
422 else
423 nexti = i + 1;
424 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
425 }
426
427 for (i = 0; i < MSK_RX_RING_CNT; i++) {
428 if (msk_newbuf(sc_if, i, NULL,
429 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
430 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
431 return (ENOBUFS);
432 }
433 }
434
435 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
436 sc_if->sk_cdata.sk_rx_cons = 0;
437
438 return (0);
439 }
440
441 int
442 msk_init_tx_ring(struct sk_if_softc *sc_if)
443 {
444 struct sk_softc *sc = sc_if->sk_softc;
445 struct msk_chain_data *cd = &sc_if->sk_cdata;
446 struct msk_ring_data *rd = sc_if->sk_rdata;
447 bus_dmamap_t dmamap;
448 struct sk_txmap_entry *entry;
449 int i, nexti;
450
451 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
452 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
455 for (i = 0; i < MSK_TX_RING_CNT; i++) {
456 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
457 if (i == (MSK_TX_RING_CNT - 1))
458 nexti = 0;
459 else
460 nexti = i + 1;
461 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
462
463 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
464 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
465 return (ENOBUFS);
466
467 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
468 if (!entry) {
469 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
470 return (ENOBUFS);
471 }
472 entry->dmamap = dmamap;
473 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
474 }
475
476 sc_if->sk_cdata.sk_tx_prod = 0;
477 sc_if->sk_cdata.sk_tx_cons = 0;
478 sc_if->sk_cdata.sk_tx_cnt = 0;
479
480 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
481 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
482
483 return (0);
484 }
485
486 int
487 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
488 bus_dmamap_t dmamap)
489 {
490 struct mbuf *m_new = NULL;
491 struct sk_chain *c;
492 struct msk_rx_desc *r;
493
494 if (m == NULL) {
495 void *buf = NULL;
496
497 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
498 if (m_new == NULL)
499 return (ENOBUFS);
500
501 /* Allocate the jumbo buffer */
502 buf = msk_jalloc(sc_if);
503 if (buf == NULL) {
504 m_freem(m_new);
505 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
506 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
507 return (ENOBUFS);
508 }
509
510 /* Attach the buffer to the mbuf */
511 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
512 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
513 } else {
514 /*
515 * We're re-using a previously allocated mbuf;
516 * be sure to re-init pointers and lengths to
517 * default values.
518 */
519 m_new = m;
520 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
521 m_new->m_data = m_new->m_ext.ext_buf;
522 }
523 m_adj(m_new, ETHER_ALIGN);
524
525 c = &sc_if->sk_cdata.sk_rx_chain[i];
526 r = c->sk_le;
527 c->sk_mbuf = m_new;
528 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
529 (((vaddr_t)m_new->m_data
530 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
531 r->sk_len = htole16(SK_JLEN);
532 r->sk_ctl = 0;
533 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
534
535 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
536
537 return (0);
538 }
539
540 /*
541 * Memory management for jumbo frames.
542 */
543
544 int
545 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
546 {
547 struct sk_softc *sc = sc_if->sk_softc;
548 char *ptr, *kva;
549 bus_dma_segment_t seg;
550 int i, rseg, state, error;
551 struct sk_jpool_entry *entry;
552
553 state = error = 0;
554
555 /* Grab a big chunk o' storage. */
556 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
557 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
558 aprint_error(": can't alloc rx buffers");
559 return (ENOBUFS);
560 }
561
562 state = 1;
563 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
564 BUS_DMA_NOWAIT)) {
565 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
566 error = ENOBUFS;
567 goto out;
568 }
569
570 state = 2;
571 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
572 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
573 aprint_error(": can't create dma map");
574 error = ENOBUFS;
575 goto out;
576 }
577
578 state = 3;
579 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
580 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
581 aprint_error(": can't load dma map");
582 error = ENOBUFS;
583 goto out;
584 }
585
586 state = 4;
587 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
588 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
589
590 LIST_INIT(&sc_if->sk_jfree_listhead);
591 LIST_INIT(&sc_if->sk_jinuse_listhead);
592
593 /*
594 * Now divide it up into 9K pieces and save the addresses
595 * in an array.
596 */
597 ptr = sc_if->sk_cdata.sk_jumbo_buf;
598 for (i = 0; i < MSK_JSLOTS; i++) {
599 sc_if->sk_cdata.sk_jslots[i] = ptr;
600 ptr += SK_JLEN;
601 entry = malloc(sizeof(struct sk_jpool_entry),
602 M_DEVBUF, M_NOWAIT);
603 if (entry == NULL) {
604 sc_if->sk_cdata.sk_jumbo_buf = NULL;
605 aprint_error(": no memory for jumbo buffer queue!");
606 error = ENOBUFS;
607 goto out;
608 }
609 entry->slot = i;
610 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
611 entry, jpool_entries);
612 }
613 out:
614 if (error != 0) {
615 switch (state) {
616 case 4:
617 bus_dmamap_unload(sc->sc_dmatag,
618 sc_if->sk_cdata.sk_rx_jumbo_map);
619 case 3:
620 bus_dmamap_destroy(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 2:
623 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
624 case 1:
625 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
626 break;
627 default:
628 break;
629 }
630 }
631
632 return (error);
633 }
634
635 /*
636 * Allocate a jumbo buffer.
637 */
638 void *
639 msk_jalloc(struct sk_if_softc *sc_if)
640 {
641 struct sk_jpool_entry *entry;
642
643 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
644
645 if (entry == NULL)
646 return (NULL);
647
648 LIST_REMOVE(entry, jpool_entries);
649 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
650 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
651 }
652
653 /*
654 * Release a jumbo buffer.
655 */
656 void
657 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
658 {
659 struct sk_jpool_entry *entry;
660 struct sk_if_softc *sc;
661 int i, s;
662
663 /* Extract the softc struct pointer. */
664 sc = (struct sk_if_softc *)arg;
665
666 if (sc == NULL)
667 panic("msk_jfree: can't find softc pointer!");
668
669 /* calculate the slot this buffer belongs to */
670 i = ((vaddr_t)buf
671 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
672
673 if ((i < 0) || (i >= MSK_JSLOTS))
674 panic("msk_jfree: asked to free buffer that we don't manage!");
675
676 s = splvm();
677 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
678 if (entry == NULL)
679 panic("msk_jfree: buffer not in use!");
680 entry->slot = i;
681 LIST_REMOVE(entry, jpool_entries);
682 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 splx(s);
687 }
688
689 int
690 msk_ioctl(struct ifnet *ifp, u_long command, void *data)
691 {
692 struct sk_if_softc *sc_if = ifp->if_softc;
693 struct ifreq *ifr = (struct ifreq *) data;
694 int s, error = 0;
695
696 s = splnet();
697
698 switch(command) {
699 case SIOCSIFMTU:
700 if (ifr->ifr_mtu < ETHERMIN)
701 return EINVAL;
702 else if (sc_if->sk_softc->sk_type != SK_YUKON_FE) {
703 if (ifr->ifr_mtu > SK_JUMBO_MTU)
704 error = EINVAL;
705 } else if (ifr->ifr_mtu > ETHERMTU)
706 error = EINVAL;
707 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
708 error = 0;
709 break;
710 default:
711 DPRINTFN(2, ("msk_ioctl ETHER\n"));
712 error = ether_ioctl(ifp, command, data);
713
714 if (error == ENETRESET) {
715 /*
716 * Multicast list has changed; set the hardware
717 * filter accordingly.
718 */
719 if (ifp->if_flags & IFF_RUNNING)
720 msk_setmulti(sc_if);
721 error = 0;
722 }
723 break;
724 }
725
726 splx(s);
727 return (error);
728 }
729
730 void
731 msk_update_int_mod(struct sk_softc *sc)
732 {
733 u_int32_t imtimer_ticks;
734
735 /*
736 * Configure interrupt moderation. The moderation timer
737 * defers interrupts specified in the interrupt moderation
738 * timer mask based on the timeout specified in the interrupt
739 * moderation timer init register. Each bit in the timer
740 * register represents one tick, so to specify a timeout in
741 * microseconds, we have to multiply by the correct number of
742 * ticks-per-microsecond.
743 */
744 switch (sc->sk_type) {
745 case SK_YUKON_EC:
746 case SK_YUKON_EC_U:
747 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
748 break;
749 case SK_YUKON_FE:
750 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
751 break;
752 case SK_YUKON_XL:
753 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
754 break;
755 default:
756 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
757 }
758 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
759 sc->sk_int_mod);
760 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
761 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
762 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
763 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
764 sc->sk_int_mod_pending = 0;
765 }
766
767 static int
768 msk_lookup(const struct pci_attach_args *pa)
769 {
770 const struct msk_product *pmsk;
771
772 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
773 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
774 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
775 return 1;
776 }
777 return 0;
778 }
779
780 /*
781 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
782 * IDs against our list and return a device name if we find a match.
783 */
784 int
785 mskc_probe(struct device *parent, struct cfdata *match,
786 void *aux)
787 {
788 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
789
790 return msk_lookup(pa);
791 }
792
793 /*
794 * Force the GEnesis into reset, then bring it out of reset.
795 */
796 void msk_reset(struct sk_softc *sc)
797 {
798 u_int32_t imtimer_ticks, reg1;
799 int reg;
800
801 DPRINTFN(2, ("msk_reset\n"));
802
803 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
804 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
805
806 DELAY(1000);
807 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
808 DELAY(2);
809 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
810 sk_win_write_1(sc, SK_TESTCTL1, 2);
811
812 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
813 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
814 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
815 else
816 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
817 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
818
819 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
820 sk_win_write_1(sc, SK_Y2_CLKGATE,
821 SK_Y2_CLKGATE_LINK1_GATE_DIS |
822 SK_Y2_CLKGATE_LINK2_GATE_DIS |
823 SK_Y2_CLKGATE_LINK1_CORE_DIS |
824 SK_Y2_CLKGATE_LINK2_CORE_DIS |
825 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
826 else
827 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
828
829 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
830 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
831 DELAY(1000);
832 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
833 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
834
835 sk_win_write_1(sc, SK_TESTCTL1, 1);
836
837 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
838 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
839 CSR_READ_2(sc, SK_LINK_CTRL)));
840
841 /* Disable ASF */
842 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
843 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
844
845 /* Clear I2C IRQ noise */
846 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
847
848 /* Disable hardware timer */
849 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
850 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
851
852 /* Disable descriptor polling */
853 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
854
855 /* Disable time stamps */
856 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
857 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
858
859 /* Enable RAM interface */
860 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
861 for (reg = SK_TO0;reg <= SK_TO11; reg++)
862 sk_win_write_1(sc, reg, 36);
863 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
864 for (reg = SK_TO0;reg <= SK_TO11; reg++)
865 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
866
867 /*
868 * Configure interrupt moderation. The moderation timer
869 * defers interrupts specified in the interrupt moderation
870 * timer mask based on the timeout specified in the interrupt
871 * moderation timer init register. Each bit in the timer
872 * register represents one tick, so to specify a timeout in
873 * microseconds, we have to multiply by the correct number of
874 * ticks-per-microsecond.
875 */
876 switch (sc->sk_type) {
877 case SK_YUKON_EC:
878 case SK_YUKON_EC_U:
879 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
880 break;
881 case SK_YUKON_FE:
882 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
883 break;
884 case SK_YUKON_XL:
885 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
886 break;
887 default:
888 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
889 }
890
891 /* Reset status ring. */
892 bzero((char *)sc->sk_status_ring,
893 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
894 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
895 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
896 sc->sk_status_idx = 0;
897 sc->sk_status_own_idx = 0;
898
899 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
900 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
901
902 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
903 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
904 sc->sk_status_map->dm_segs[0].ds_addr);
905 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
906 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
907 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
908 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
909 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
910 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
911 } else {
912 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
913 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
914 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
915 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
916 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
917 }
918
919 #if 0
920 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
921 #endif
922 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
923
924 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
925
926 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
927 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
928 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
929
930 msk_update_int_mod(sc);
931 }
932
933 int
934 msk_probe(struct device *parent, struct cfdata *match,
935 void *aux)
936 {
937 struct skc_attach_args *sa = aux;
938
939 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
940 return (0);
941
942 switch (sa->skc_type) {
943 case SK_YUKON_XL:
944 case SK_YUKON_EC_U:
945 case SK_YUKON_EC:
946 case SK_YUKON_FE:
947 return (1);
948 }
949
950 return (0);
951 }
952
953 /*
954 * Each XMAC chip is attached as a separate logical IP interface.
955 * Single port cards will have only one logical interface of course.
956 */
957 void
958 msk_attach(struct device *parent, struct device *self, void *aux)
959 {
960 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
961 struct sk_softc *sc = (struct sk_softc *)parent;
962 struct skc_attach_args *sa = aux;
963 struct ifnet *ifp;
964 void *kva;
965 bus_dma_segment_t seg;
966 int i, rseg;
967 u_int32_t chunk, val;
968
969 sc_if->sk_port = sa->skc_port;
970 sc_if->sk_softc = sc;
971 sc->sk_if[sa->skc_port] = sc_if;
972
973 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
974
975 /*
976 * Get station address for this interface. Note that
977 * dual port cards actually come with three station
978 * addresses: one for each port, plus an extra. The
979 * extra one is used by the SysKonnect driver software
980 * as a 'virtual' station address for when both ports
981 * are operating in failover mode. Currently we don't
982 * use this extra address.
983 */
984 for (i = 0; i < ETHER_ADDR_LEN; i++)
985 sc_if->sk_enaddr[i] =
986 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
987
988 aprint_normal(": Ethernet address %s\n",
989 ether_sprintf(sc_if->sk_enaddr));
990
991 /*
992 * Set up RAM buffer addresses. The NIC will have a certain
993 * amount of SRAM on it, somewhere between 512K and 2MB. We
994 * need to divide this up a) between the transmitter and
995 * receiver and b) between the two XMACs, if this is a
996 * dual port NIC. Our algorithm is to divide up the memory
997 * evenly so that everyone gets a fair share.
998 *
999 * Just to be contrary, Yukon2 appears to have separate memory
1000 * for each MAC.
1001 */
1002 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1003 val = sc->sk_rboff / sizeof(u_int64_t);
1004 sc_if->sk_rx_ramstart = val;
1005 val += (chunk / sizeof(u_int64_t));
1006 sc_if->sk_rx_ramend = val - 1;
1007 chunk = sc->sk_ramsize - chunk;
1008 sc_if->sk_tx_ramstart = val;
1009 val += (chunk / sizeof(u_int64_t));
1010 sc_if->sk_tx_ramend = val - 1;
1011
1012 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1013 " tx_ramstart=%#x tx_ramend=%#x\n",
1014 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1015 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1016
1017 /* Allocate the descriptor queues. */
1018 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1019 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1020 aprint_error(": can't alloc rx buffers\n");
1021 goto fail;
1022 }
1023 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1024 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1025 aprint_error(": can't map dma buffers (%zu bytes)\n",
1026 sizeof(struct msk_ring_data));
1027 goto fail_1;
1028 }
1029 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1030 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1031 &sc_if->sk_ring_map)) {
1032 aprint_error(": can't create dma map\n");
1033 goto fail_2;
1034 }
1035 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1036 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1037 aprint_error(": can't load dma map\n");
1038 goto fail_3;
1039 }
1040 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1041 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1042
1043 ifp = &sc_if->sk_ethercom.ec_if;
1044 /* Try to allocate memory for jumbo buffers. */
1045 if (msk_alloc_jumbo_mem(sc_if)) {
1046 aprint_error(": jumbo buffer allocation failed\n");
1047 goto fail_3;
1048 }
1049 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1050 | ETHERCAP_JUMBO_MTU;
1051
1052 ifp->if_softc = sc_if;
1053 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1054 ifp->if_ioctl = msk_ioctl;
1055 ifp->if_start = msk_start;
1056 ifp->if_stop = msk_stop;
1057 ifp->if_init = msk_init;
1058 ifp->if_watchdog = msk_watchdog;
1059 ifp->if_baudrate = 1000000000;
1060 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1061 IFQ_SET_READY(&ifp->if_snd);
1062 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1063
1064 /*
1065 * Do miibus setup.
1066 */
1067 msk_init_yukon(sc_if);
1068
1069 DPRINTFN(2, ("msk_attach: 1\n"));
1070
1071 sc_if->sk_mii.mii_ifp = ifp;
1072 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1073 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1074 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1075
1076 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1077 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1078 ether_mediachange, ether_mediastatus);
1079 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1080 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1081 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1082 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1083 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1084 0, NULL);
1085 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1086 } else
1087 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1088
1089 callout_init(&sc_if->sk_tick_ch, 0);
1090 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1091 callout_schedule(&sc_if->sk_tick_ch, hz);
1092
1093 /*
1094 * Call MI attach routines.
1095 */
1096 if_attach(ifp);
1097 ether_ifattach(ifp, sc_if->sk_enaddr);
1098
1099 shutdownhook_establish(mskc_shutdown, sc);
1100
1101 #if NRND > 0
1102 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1103 RND_TYPE_NET, 0);
1104 #endif
1105
1106 DPRINTFN(2, ("msk_attach: end\n"));
1107 return;
1108
1109 fail_3:
1110 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1111 fail_2:
1112 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1113 fail_1:
1114 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1115 fail:
1116 sc->sk_if[sa->skc_port] = NULL;
1117 }
1118
1119 int
1120 mskcprint(void *aux, const char *pnp)
1121 {
1122 struct skc_attach_args *sa = aux;
1123
1124 if (pnp)
1125 aprint_normal("sk port %c at %s",
1126 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1127 else
1128 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1129 return (UNCONF);
1130 }
1131
1132 /*
1133 * Attach the interface. Allocate softc structures, do ifmedia
1134 * setup and ethernet/BPF attach.
1135 */
1136 void
1137 mskc_attach(struct device *parent, struct device *self, void *aux)
1138 {
1139 struct sk_softc *sc = (struct sk_softc *)self;
1140 struct pci_attach_args *pa = aux;
1141 struct skc_attach_args skca;
1142 pci_chipset_tag_t pc = pa->pa_pc;
1143 pcireg_t command, memtype;
1144 pci_intr_handle_t ih;
1145 const char *intrstr = NULL;
1146 bus_size_t size;
1147 int rc, sk_nodenum;
1148 u_int8_t hw, skrs;
1149 const char *revstr = NULL;
1150 const struct sysctlnode *node;
1151 void *kva;
1152 bus_dma_segment_t seg;
1153 int rseg;
1154
1155 DPRINTFN(2, ("begin mskc_attach\n"));
1156
1157 /*
1158 * Handle power management nonsense.
1159 */
1160 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1161
1162 if (command == 0x01) {
1163 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1164 if (command & SK_PSTATE_MASK) {
1165 u_int32_t iobase, membase, irq;
1166
1167 /* Save important PCI config data. */
1168 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1169 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1170 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1171
1172 /* Reset the power state. */
1173 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1174 "-- setting to D0\n",
1175 command & SK_PSTATE_MASK);
1176 command &= 0xFFFFFFFC;
1177 pci_conf_write(pc, pa->pa_tag,
1178 SK_PCI_PWRMGMTCTRL, command);
1179
1180 /* Restore PCI config data. */
1181 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1182 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1183 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1184 }
1185 }
1186
1187 /*
1188 * Map control/status registers.
1189 */
1190
1191 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1192 switch (memtype) {
1193 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1194 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1195 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1196 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1197 NULL, &size) == 0)
1198 break;
1199 default:
1200 aprint_error(": can't map mem space\n");
1201 return;
1202 }
1203
1204 sc->sc_dmatag = pa->pa_dmat;
1205
1206 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1207 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1208
1209 /* bail out here if chip is not recognized */
1210 if (!(SK_IS_YUKON2(sc))) {
1211 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1212 goto fail_1;
1213 }
1214 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1215
1216 /* Allocate interrupt */
1217 if (pci_intr_map(pa, &ih)) {
1218 aprint_error(": couldn't map interrupt\n");
1219 goto fail_1;
1220 }
1221
1222 intrstr = pci_intr_string(pc, ih);
1223 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1224 if (sc->sk_intrhand == NULL) {
1225 aprint_error(": couldn't establish interrupt");
1226 if (intrstr != NULL)
1227 aprint_error(" at %s", intrstr);
1228 aprint_error("\n");
1229 goto fail_1;
1230 }
1231
1232 if (bus_dmamem_alloc(sc->sc_dmatag,
1233 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1234 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1235 aprint_error(": can't alloc status buffers\n");
1236 goto fail_2;
1237 }
1238
1239 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1240 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1241 &kva, BUS_DMA_NOWAIT)) {
1242 aprint_error(": can't map dma buffers (%zu bytes)\n",
1243 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1244 goto fail_3;
1245 }
1246 if (bus_dmamap_create(sc->sc_dmatag,
1247 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1248 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1249 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1250 aprint_error(": can't create dma map\n");
1251 goto fail_4;
1252 }
1253 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1254 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1255 NULL, BUS_DMA_NOWAIT)) {
1256 aprint_error(": can't load dma map\n");
1257 goto fail_5;
1258 }
1259 sc->sk_status_ring = (struct msk_status_desc *)kva;
1260
1261 /* Reset the adapter. */
1262 msk_reset(sc);
1263
1264 skrs = sk_win_read_1(sc, SK_EPROM0);
1265 if (skrs == 0x00)
1266 sc->sk_ramsize = 0x20000;
1267 else
1268 sc->sk_ramsize = skrs * (1<<12);
1269 sc->sk_rboff = SK_RBOFF_0;
1270
1271 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1272 sc->sk_ramsize, sc->sk_ramsize / 1024,
1273 sc->sk_rboff));
1274
1275 switch (sc->sk_type) {
1276 case SK_YUKON_XL:
1277 sc->sk_name = "Yukon-2 XL";
1278 break;
1279 case SK_YUKON_EC_U:
1280 sc->sk_name = "Yukon-2 EC Ultra";
1281 break;
1282 case SK_YUKON_EC:
1283 sc->sk_name = "Yukon-2 EC";
1284 break;
1285 case SK_YUKON_FE:
1286 sc->sk_name = "Yukon-2 FE";
1287 break;
1288 default:
1289 sc->sk_name = "Yukon (Unknown)";
1290 }
1291
1292 if (sc->sk_type == SK_YUKON_XL) {
1293 switch (sc->sk_rev) {
1294 case SK_YUKON_XL_REV_A0:
1295 sc->sk_workaround = 0;
1296 revstr = "A0";
1297 break;
1298 case SK_YUKON_XL_REV_A1:
1299 sc->sk_workaround = SK_WA_4109;
1300 revstr = "A1";
1301 break;
1302 case SK_YUKON_XL_REV_A2:
1303 sc->sk_workaround = SK_WA_4109;
1304 revstr = "A2";
1305 break;
1306 case SK_YUKON_XL_REV_A3:
1307 sc->sk_workaround = SK_WA_4109;
1308 revstr = "A3";
1309 break;
1310 default:
1311 sc->sk_workaround = 0;
1312 break;
1313 }
1314 }
1315
1316 if (sc->sk_type == SK_YUKON_EC) {
1317 switch (sc->sk_rev) {
1318 case SK_YUKON_EC_REV_A1:
1319 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1320 revstr = "A1";
1321 break;
1322 case SK_YUKON_EC_REV_A2:
1323 sc->sk_workaround = SK_WA_4109;
1324 revstr = "A2";
1325 break;
1326 case SK_YUKON_EC_REV_A3:
1327 sc->sk_workaround = SK_WA_4109;
1328 revstr = "A3";
1329 break;
1330 default:
1331 sc->sk_workaround = 0;
1332 break;
1333 }
1334 }
1335
1336 if (sc->sk_type == SK_YUKON_FE) {
1337 sc->sk_workaround = SK_WA_4109;
1338 switch (sc->sk_rev) {
1339 case SK_YUKON_FE_REV_A1:
1340 revstr = "A1";
1341 break;
1342 case SK_YUKON_FE_REV_A2:
1343 revstr = "A2";
1344 break;
1345 default:
1346 sc->sk_workaround = 0;
1347 break;
1348 }
1349 }
1350
1351 if (sc->sk_type == SK_YUKON_EC_U) {
1352 sc->sk_workaround = SK_WA_4109;
1353 switch (sc->sk_rev) {
1354 case SK_YUKON_EC_U_REV_A0:
1355 revstr = "A0";
1356 break;
1357 case SK_YUKON_EC_U_REV_A1:
1358 revstr = "A1";
1359 break;
1360 case SK_YUKON_EC_U_REV_B0:
1361 revstr = "B0";
1362 break;
1363 default:
1364 sc->sk_workaround = 0;
1365 break;
1366 }
1367 }
1368
1369 /* Announce the product name. */
1370 aprint_normal(", %s", sc->sk_name);
1371 if (revstr != NULL)
1372 aprint_normal(" rev. %s", revstr);
1373 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1374
1375 sc->sk_macs = 1;
1376
1377 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1378 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1379 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1380 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1381 sc->sk_macs++;
1382 }
1383
1384 skca.skc_port = SK_PORT_A;
1385 skca.skc_type = sc->sk_type;
1386 skca.skc_rev = sc->sk_rev;
1387 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1388
1389 if (sc->sk_macs > 1) {
1390 skca.skc_port = SK_PORT_B;
1391 skca.skc_type = sc->sk_type;
1392 skca.skc_rev = sc->sk_rev;
1393 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1394 }
1395
1396 /* Turn on the 'driver is loaded' LED. */
1397 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1398
1399 /* skc sysctl setup */
1400
1401 sc->sk_int_mod = SK_IM_DEFAULT;
1402 sc->sk_int_mod_pending = 0;
1403
1404 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1405 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1406 SYSCTL_DESCR("mskc per-controller controls"),
1407 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1408 CTL_EOL)) != 0) {
1409 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1410 goto fail_6;
1411 }
1412
1413 sk_nodenum = node->sysctl_num;
1414
1415 /* interrupt moderation time in usecs */
1416 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1417 CTLFLAG_READWRITE,
1418 CTLTYPE_INT, "int_mod",
1419 SYSCTL_DESCR("msk interrupt moderation timer"),
1420 msk_sysctl_handler, 0, sc,
1421 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1422 CTL_EOL)) != 0) {
1423 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1424 goto fail_6;
1425 }
1426
1427 return;
1428
1429 fail_6:
1430 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1431 fail_5:
1432 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1433 fail_4:
1434 bus_dmamem_unmap(sc->sc_dmatag, kva,
1435 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1436 fail_3:
1437 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1438 fail_2:
1439 pci_intr_disestablish(pc, sc->sk_intrhand);
1440 fail_1:
1441 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1442 }
1443
1444 int
1445 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1446 {
1447 struct sk_softc *sc = sc_if->sk_softc;
1448 struct msk_tx_desc *f = NULL;
1449 u_int32_t frag, cur;
1450 int i;
1451 struct sk_txmap_entry *entry;
1452 bus_dmamap_t txmap;
1453
1454 DPRINTFN(2, ("msk_encap\n"));
1455
1456 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1457 if (entry == NULL) {
1458 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1459 return (ENOBUFS);
1460 }
1461 txmap = entry->dmamap;
1462
1463 cur = frag = *txidx;
1464
1465 #ifdef MSK_DEBUG
1466 if (mskdebug >= 2)
1467 msk_dump_mbuf(m_head);
1468 #endif
1469
1470 /*
1471 * Start packing the mbufs in this chain into
1472 * the fragment pointers. Stop when we run out
1473 * of fragments or hit the end of the mbuf chain.
1474 */
1475 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1476 BUS_DMA_NOWAIT)) {
1477 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1478 return (ENOBUFS);
1479 }
1480
1481 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1482 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1483 bus_dmamap_unload(sc->sc_dmatag, txmap);
1484 return (ENOBUFS);
1485 }
1486
1487 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1488
1489 /* Sync the DMA map. */
1490 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1491 BUS_DMASYNC_PREWRITE);
1492
1493 for (i = 0; i < txmap->dm_nsegs; i++) {
1494 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1495 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1496 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1497 f->sk_ctl = 0;
1498 if (i == 0)
1499 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1500 else
1501 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1502 cur = frag;
1503 SK_INC(frag, MSK_TX_RING_CNT);
1504 }
1505
1506 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1507 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1508
1509 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1510 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1511
1512 /* Sync descriptors before handing to chip */
1513 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1514 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1515
1516 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1517
1518 /* Sync first descriptor to hand it off */
1519 MSK_CDTXSYNC(sc_if, *txidx, 1,
1520 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1521
1522 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1523
1524 #ifdef MSK_DEBUG
1525 if (mskdebug >= 2) {
1526 struct msk_tx_desc *le;
1527 u_int32_t idx;
1528 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1529 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1530 msk_dump_txdesc(le, idx);
1531 }
1532 }
1533 #endif
1534
1535 *txidx = frag;
1536
1537 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1538
1539 return (0);
1540 }
1541
1542 void
1543 msk_start(struct ifnet *ifp)
1544 {
1545 struct sk_if_softc *sc_if = ifp->if_softc;
1546 struct mbuf *m_head = NULL;
1547 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1548 int pkts = 0;
1549
1550 DPRINTFN(2, ("msk_start\n"));
1551
1552 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1553 IFQ_POLL(&ifp->if_snd, m_head);
1554 if (m_head == NULL)
1555 break;
1556
1557 /*
1558 * Pack the data into the transmit ring. If we
1559 * don't have room, set the OACTIVE flag and wait
1560 * for the NIC to drain the ring.
1561 */
1562 if (msk_encap(sc_if, m_head, &idx)) {
1563 ifp->if_flags |= IFF_OACTIVE;
1564 break;
1565 }
1566
1567 /* now we are committed to transmit the packet */
1568 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1569 pkts++;
1570
1571 /*
1572 * If there's a BPF listener, bounce a copy of this frame
1573 * to him.
1574 */
1575 #if NBPFILTER > 0
1576 if (ifp->if_bpf)
1577 bpf_mtap(ifp->if_bpf, m_head);
1578 #endif
1579 }
1580 if (pkts == 0)
1581 return;
1582
1583 /* Transmit */
1584 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1585 sc_if->sk_cdata.sk_tx_prod = idx;
1586 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1587
1588 /* Set a timeout in case the chip goes out to lunch. */
1589 ifp->if_timer = 5;
1590 }
1591 }
1592
1593 void
1594 msk_watchdog(struct ifnet *ifp)
1595 {
1596 struct sk_if_softc *sc_if = ifp->if_softc;
1597 u_int32_t reg;
1598 int idx;
1599
1600 /*
1601 * Reclaim first as there is a possibility of losing Tx completion
1602 * interrupts.
1603 */
1604 if (sc_if->sk_port == SK_PORT_A)
1605 reg = SK_STAT_BMU_TXA1_RIDX;
1606 else
1607 reg = SK_STAT_BMU_TXA2_RIDX;
1608
1609 idx = sk_win_read_2(sc_if->sk_softc, reg);
1610 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1611 msk_txeof(sc_if, idx);
1612 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1613 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1614
1615 ifp->if_oerrors++;
1616
1617 /* XXX Resets both ports; we shouldn't do that. */
1618 msk_reset(sc_if->sk_softc);
1619 msk_init(ifp);
1620 }
1621 }
1622 }
1623
1624 void
1625 mskc_shutdown(void *v)
1626 {
1627 struct sk_softc *sc = v;
1628
1629 DPRINTFN(2, ("msk_shutdown\n"));
1630
1631 /* Turn off the 'driver is loaded' LED. */
1632 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1633
1634 msk_reset(sc);
1635 }
1636
1637 __inline int
1638 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1639 {
1640 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1641 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1642 YU_RXSTAT_JABBER)) != 0 ||
1643 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1644 YU_RXSTAT_BYTES(stat) != len)
1645 return (0);
1646
1647 return (1);
1648 }
1649
1650 void
1651 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1652 {
1653 struct sk_softc *sc = sc_if->sk_softc;
1654 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1655 struct mbuf *m;
1656 struct sk_chain *cur_rx;
1657 int cur, total_len = len;
1658 bus_dmamap_t dmamap;
1659
1660 DPRINTFN(2, ("msk_rxeof\n"));
1661
1662 cur = sc_if->sk_cdata.sk_rx_cons;
1663 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1664 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1665
1666 /* Sync the descriptor */
1667 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1668
1669 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1670 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1671
1672 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1673 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1674
1675 m = cur_rx->sk_mbuf;
1676 cur_rx->sk_mbuf = NULL;
1677
1678 if (total_len < SK_MIN_FRAMELEN ||
1679 total_len > SK_JUMBO_FRAMELEN ||
1680 msk_rxvalid(sc, rxstat, total_len) == 0) {
1681 ifp->if_ierrors++;
1682 msk_newbuf(sc_if, cur, m, dmamap);
1683 return;
1684 }
1685
1686 /*
1687 * Try to allocate a new jumbo buffer. If that fails, copy the
1688 * packet to mbufs and put the jumbo buffer back in the ring
1689 * so it can be re-used. If allocating mbufs fails, then we
1690 * have to drop the packet.
1691 */
1692 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1693 struct mbuf *m0;
1694 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1695 total_len + ETHER_ALIGN, 0, ifp, NULL);
1696 msk_newbuf(sc_if, cur, m, dmamap);
1697 if (m0 == NULL) {
1698 ifp->if_ierrors++;
1699 return;
1700 }
1701 m_adj(m0, ETHER_ALIGN);
1702 m = m0;
1703 } else {
1704 m->m_pkthdr.rcvif = ifp;
1705 m->m_pkthdr.len = m->m_len = total_len;
1706 }
1707
1708 ifp->if_ipackets++;
1709
1710 #if NBPFILTER > 0
1711 if (ifp->if_bpf)
1712 bpf_mtap(ifp->if_bpf, m);
1713 #endif
1714
1715 /* pass it on. */
1716 (*ifp->if_input)(ifp, m);
1717 }
1718
1719 void
1720 msk_txeof(struct sk_if_softc *sc_if, int idx)
1721 {
1722 struct sk_softc *sc = sc_if->sk_softc;
1723 struct msk_tx_desc *cur_tx;
1724 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1725 u_int32_t sk_ctl;
1726 struct sk_txmap_entry *entry;
1727 int cons, prog;
1728
1729 DPRINTFN(2, ("msk_txeof\n"));
1730
1731 /*
1732 * Go through our tx ring and free mbufs for those
1733 * frames that have been sent.
1734 */
1735 cons = sc_if->sk_cdata.sk_tx_cons;
1736 prog = 0;
1737 while (cons != idx) {
1738 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1739 break;
1740 prog++;
1741 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1742
1743 MSK_CDTXSYNC(sc_if, cons, 1,
1744 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1745 sk_ctl = cur_tx->sk_ctl;
1746 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1747 #ifdef MSK_DEBUG
1748 if (mskdebug >= 2)
1749 msk_dump_txdesc(cur_tx, cons);
1750 #endif
1751 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1752 ifp->if_opackets++;
1753 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1754 entry = sc_if->sk_cdata.sk_tx_map[cons];
1755
1756 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1757 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1758
1759 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1760 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1761 link);
1762 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1763 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1764 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1765 }
1766 sc_if->sk_cdata.sk_tx_cnt--;
1767 SK_INC(cons, MSK_TX_RING_CNT);
1768 }
1769 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1770
1771 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1772 ifp->if_flags &= ~IFF_OACTIVE;
1773
1774 if (prog > 0)
1775 sc_if->sk_cdata.sk_tx_cons = cons;
1776 }
1777
1778 void
1779 msk_tick(void *xsc_if)
1780 {
1781 struct sk_if_softc *sc_if = xsc_if;
1782 struct mii_data *mii = &sc_if->sk_mii;
1783
1784 mii_tick(mii);
1785 callout_schedule(&sc_if->sk_tick_ch, hz);
1786 }
1787
1788 void
1789 msk_intr_yukon(struct sk_if_softc *sc_if)
1790 {
1791 u_int8_t status;
1792
1793 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1794 /* RX overrun */
1795 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1796 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1797 SK_RFCTL_RX_FIFO_OVER);
1798 }
1799 /* TX underrun */
1800 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1801 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1802 SK_TFCTL_TX_FIFO_UNDER);
1803 }
1804
1805 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1806 }
1807
1808 int
1809 msk_intr(void *xsc)
1810 {
1811 struct sk_softc *sc = xsc;
1812 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1813 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1814 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1815 int claimed = 0;
1816 u_int32_t status;
1817 uint32_t st_status;
1818 uint16_t st_len;
1819 uint8_t st_opcode, st_link;
1820 struct msk_status_desc *cur_st;
1821
1822 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1823 if (status == 0) {
1824 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1825 return (0);
1826 }
1827
1828 status = CSR_READ_4(sc, SK_ISR);
1829
1830 if (sc_if0 != NULL)
1831 ifp0 = &sc_if0->sk_ethercom.ec_if;
1832 if (sc_if1 != NULL)
1833 ifp1 = &sc_if1->sk_ethercom.ec_if;
1834
1835 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1836 (ifp0->if_flags & IFF_RUNNING)) {
1837 msk_intr_yukon(sc_if0);
1838 }
1839
1840 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1841 (ifp1->if_flags & IFF_RUNNING)) {
1842 msk_intr_yukon(sc_if1);
1843 }
1844
1845 for (;;) {
1846 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1847 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1848 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1849 st_opcode = cur_st->sk_opcode;
1850 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1851 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1852 BUS_DMASYNC_PREREAD);
1853 break;
1854 }
1855 st_status = le32toh(cur_st->sk_status);
1856 st_len = le16toh(cur_st->sk_len);
1857 st_link = cur_st->sk_link;
1858 st_opcode &= ~SK_Y2_STOPC_OWN;
1859
1860 switch (st_opcode) {
1861 case SK_Y2_STOPC_RXSTAT:
1862 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1863 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1864 SK_RXQ1_Y2_PREF_PUTIDX,
1865 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1866 break;
1867 case SK_Y2_STOPC_TXSTAT:
1868 if (sc_if0)
1869 msk_txeof(sc_if0, st_status
1870 & SK_Y2_ST_TXA1_MSKL);
1871 if (sc_if1)
1872 msk_txeof(sc_if1,
1873 ((st_status & SK_Y2_ST_TXA2_MSKL)
1874 >> SK_Y2_ST_TXA2_SHIFTL)
1875 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1876 break;
1877 default:
1878 aprint_error("opcode=0x%x\n", st_opcode);
1879 break;
1880 }
1881 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1882 }
1883
1884 #define MSK_STATUS_RING_OWN_CNT(sc) \
1885 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1886 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1887
1888 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1889 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1890 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1891 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1892 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1893
1894 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1895 }
1896
1897 if (status & SK_Y2_IMR_BMU) {
1898 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1899 claimed = 1;
1900 }
1901
1902 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1903
1904 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1905 msk_start(ifp0);
1906 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1907 msk_start(ifp1);
1908
1909 #if NRND > 0
1910 if (RND_ENABLED(&sc->rnd_source))
1911 rnd_add_uint32(&sc->rnd_source, status);
1912 #endif
1913
1914 if (sc->sk_int_mod_pending)
1915 msk_update_int_mod(sc);
1916
1917 return claimed;
1918 }
1919
1920 void
1921 msk_init_yukon(struct sk_if_softc *sc_if)
1922 {
1923 u_int32_t v;
1924 u_int16_t reg;
1925 struct sk_softc *sc;
1926 int i;
1927
1928 sc = sc_if->sk_softc;
1929
1930 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1931 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1932
1933 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1934
1935 /* GMAC and GPHY Reset */
1936 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1937 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1938 DELAY(1000);
1939
1940 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1941
1942 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1943 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1944 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1945
1946 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1947 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1948
1949 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1950
1951 /* unused read of the interrupt source register */
1952 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1953 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1954
1955 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1956 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1957 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1958
1959 /* MIB Counter Clear Mode set */
1960 reg |= YU_PAR_MIB_CLR;
1961 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1962 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1963 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1964
1965 /* MIB Counter Clear Mode clear */
1966 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1967 reg &= ~YU_PAR_MIB_CLR;
1968 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1969
1970 /* receive control reg */
1971 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1972 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1973
1974 /* transmit control register */
1975 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1976
1977 /* transmit flow control register */
1978 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
1979
1980 /* transmit parameter register */
1981 DPRINTFN(6, ("msk_init_yukon: 8\n"));
1982 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1983 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
1984
1985 /* serial mode register */
1986 DPRINTFN(6, ("msk_init_yukon: 9\n"));
1987 reg = YU_SMR_DATA_BLIND(0x1c) |
1988 YU_SMR_MFL_VLAN |
1989 YU_SMR_IPG_DATA(0x1e);
1990
1991 if (sc->sk_type != SK_YUKON_FE)
1992 reg |= YU_SMR_MFL_JUMBO;
1993
1994 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1995
1996 DPRINTFN(6, ("msk_init_yukon: 10\n"));
1997 /* Setup Yukon's address */
1998 for (i = 0; i < 3; i++) {
1999 /* Write Source Address 1 (unicast filter) */
2000 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2001 sc_if->sk_enaddr[i * 2] |
2002 sc_if->sk_enaddr[i * 2 + 1] << 8);
2003 }
2004
2005 for (i = 0; i < 3; i++) {
2006 reg = sk_win_read_2(sc_if->sk_softc,
2007 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2008 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2009 }
2010
2011 /* Set promiscuous mode */
2012 msk_setpromisc(sc_if);
2013
2014 /* Set multicast filter */
2015 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2016 msk_setmulti(sc_if);
2017
2018 /* enable interrupt mask for counter overflows */
2019 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2020 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2021 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2022 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2023
2024 /* Configure RX MAC FIFO Flush Mask */
2025 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2026 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2027 YU_RXSTAT_JABBER;
2028 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2029
2030 /* Configure RX MAC FIFO */
2031 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2032 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2033 SK_RFCTL_FIFO_FLUSH_ON);
2034
2035 /* Increase flush threshould to 64 bytes */
2036 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2037 SK_RFCTL_FIFO_THRESHOLD + 1);
2038
2039 /* Configure TX MAC FIFO */
2040 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2041 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2042
2043 #if 1
2044 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2045 #endif
2046 DPRINTFN(6, ("msk_init_yukon: end\n"));
2047 }
2048
2049 /*
2050 * Note that to properly initialize any part of the GEnesis chip,
2051 * you first have to take it out of reset mode.
2052 */
2053 int
2054 msk_init(struct ifnet *ifp)
2055 {
2056 struct sk_if_softc *sc_if = ifp->if_softc;
2057 struct sk_softc *sc = sc_if->sk_softc;
2058 int rc = 0, s;
2059 uint32_t imr, imtimer_ticks;
2060
2061
2062 DPRINTFN(2, ("msk_init\n"));
2063
2064 s = splnet();
2065
2066 /* Cancel pending I/O and free all RX/TX buffers. */
2067 msk_stop(ifp,0);
2068
2069 /* Configure I2C registers */
2070
2071 /* Configure XMAC(s) */
2072 msk_init_yukon(sc_if);
2073 if ((rc = ether_mediachange(ifp)) != 0)
2074 goto out;
2075
2076 /* Configure transmit arbiter(s) */
2077 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2078 #if 0
2079 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2080 #endif
2081
2082 /* Configure RAMbuffers */
2083 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2084 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2085 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2086 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2087 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2088 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2089
2090 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2091 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2092 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2093 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2094 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2095 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2096 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2097
2098 /* Configure BMUs */
2099 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2100 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2101 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2102 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2103
2104 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2105 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2106 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2107 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2108
2109 /* Make sure the sync transmit queue is disabled. */
2110 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2111
2112 /* Init descriptors */
2113 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2114 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2115 "memory for rx buffers\n");
2116 msk_stop(ifp,0);
2117 splx(s);
2118 return ENOBUFS;
2119 }
2120
2121 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2122 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2123 "memory for tx buffers\n");
2124 msk_stop(ifp,0);
2125 splx(s);
2126 return ENOBUFS;
2127 }
2128
2129 /* Set interrupt moderation if changed via sysctl. */
2130 switch (sc->sk_type) {
2131 case SK_YUKON_EC:
2132 case SK_YUKON_EC_U:
2133 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2134 break;
2135 case SK_YUKON_FE:
2136 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2137 break;
2138 case SK_YUKON_XL:
2139 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2140 break;
2141 default:
2142 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2143 }
2144 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2145 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2146 sk_win_write_4(sc, SK_IMTIMERINIT,
2147 SK_IM_USECS(sc->sk_int_mod));
2148 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2149 sc->sk_int_mod);
2150 }
2151
2152 /* Initialize prefetch engine. */
2153 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2154 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2155 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2156 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2157 MSK_RX_RING_ADDR(sc_if, 0));
2158 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2159 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2160 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2161 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2162
2163 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2164 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2165 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2166 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2167 MSK_TX_RING_ADDR(sc_if, 0));
2168 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2169 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2170 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2171 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2172
2173 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2174 sc_if->sk_cdata.sk_rx_prod);
2175
2176 /* Configure interrupt handling */
2177 if (sc_if->sk_port == SK_PORT_A)
2178 sc->sk_intrmask |= SK_Y2_INTRS1;
2179 else
2180 sc->sk_intrmask |= SK_Y2_INTRS2;
2181 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2182 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2183
2184 ifp->if_flags |= IFF_RUNNING;
2185 ifp->if_flags &= ~IFF_OACTIVE;
2186
2187 callout_schedule(&sc_if->sk_tick_ch, hz);
2188
2189 out:
2190 splx(s);
2191 return rc;
2192 }
2193
2194 void
2195 msk_stop(struct ifnet *ifp, int disable)
2196 {
2197 struct sk_if_softc *sc_if = ifp->if_softc;
2198 struct sk_softc *sc = sc_if->sk_softc;
2199 struct sk_txmap_entry *dma;
2200 int i;
2201
2202 DPRINTFN(2, ("msk_stop\n"));
2203
2204 callout_stop(&sc_if->sk_tick_ch);
2205
2206 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2207
2208 /* Stop transfer of Tx descriptors */
2209
2210 /* Stop transfer of Rx descriptors */
2211
2212 /* Turn off various components of this interface. */
2213 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2214 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2215 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2216 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2217 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2218 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2219 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2220 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2221 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2222 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2223 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2224 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2225
2226 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2227 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2228
2229 /* Disable interrupts */
2230 if (sc_if->sk_port == SK_PORT_A)
2231 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2232 else
2233 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2234 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2235
2236 SK_XM_READ_2(sc_if, XM_ISR);
2237 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2238
2239 /* Free RX and TX mbufs still in the queues. */
2240 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2241 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2242 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2243 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2244 }
2245 }
2246
2247 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2248 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2249 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2250 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2251 #if 1
2252 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2253 sc_if->sk_cdata.sk_tx_map[i], link);
2254 sc_if->sk_cdata.sk_tx_map[i] = 0;
2255 #endif
2256 }
2257 }
2258
2259 #if 1
2260 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2261 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2262 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2263 free(dma, M_DEVBUF);
2264 }
2265 #endif
2266 }
2267
2268 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2269 NULL, NULL);
2270
2271 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2272 NULL, NULL);
2273
2274 #ifdef MSK_DEBUG
2275 void
2276 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2277 {
2278 #define DESC_PRINT(X) \
2279 if (X) \
2280 printf("txdesc[%d]." #X "=%#x\n", \
2281 idx, X);
2282
2283 DESC_PRINT(letoh32(le->sk_addr));
2284 DESC_PRINT(letoh16(le->sk_len));
2285 DESC_PRINT(le->sk_ctl);
2286 DESC_PRINT(le->sk_opcode);
2287 #undef DESC_PRINT
2288 }
2289
2290 void
2291 msk_dump_bytes(const char *data, int len)
2292 {
2293 int c, i, j;
2294
2295 for (i = 0; i < len; i += 16) {
2296 printf("%08x ", i);
2297 c = len - i;
2298 if (c > 16) c = 16;
2299
2300 for (j = 0; j < c; j++) {
2301 printf("%02x ", data[i + j] & 0xff);
2302 if ((j & 0xf) == 7 && j > 0)
2303 printf(" ");
2304 }
2305
2306 for (; j < 16; j++)
2307 printf(" ");
2308 printf(" ");
2309
2310 for (j = 0; j < c; j++) {
2311 int ch = data[i + j] & 0xff;
2312 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2313 }
2314
2315 printf("\n");
2316
2317 if (c < 16)
2318 break;
2319 }
2320 }
2321
2322 void
2323 msk_dump_mbuf(struct mbuf *m)
2324 {
2325 int count = m->m_pkthdr.len;
2326
2327 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2328
2329 while (count > 0 && m) {
2330 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2331 m, m->m_data, m->m_len);
2332 msk_dump_bytes(mtod(m, char *), m->m_len);
2333
2334 count -= m->m_len;
2335 m = m->m_next;
2336 }
2337 }
2338 #endif
2339
2340 static int
2341 msk_sysctl_handler(SYSCTLFN_ARGS)
2342 {
2343 int error, t;
2344 struct sysctlnode node;
2345 struct sk_softc *sc;
2346
2347 node = *rnode;
2348 sc = node.sysctl_data;
2349 t = sc->sk_int_mod;
2350 node.sysctl_data = &t;
2351 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2352 if (error || newp == NULL)
2353 return error;
2354
2355 if (t < SK_IM_MIN || t > SK_IM_MAX)
2356 return EINVAL;
2357
2358 /* update the softc with sysctl-changed value, and mark
2359 for hardware update */
2360 sc->sk_int_mod = t;
2361 sc->sk_int_mod_pending = 1;
2362 return 0;
2363 }
2364
2365 /*
2366 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2367 * set up in skc_attach()
2368 */
2369 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2370 {
2371 int rc;
2372 const struct sysctlnode *node;
2373
2374 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2375 0, CTLTYPE_NODE, "hw", NULL,
2376 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2377 goto err;
2378 }
2379
2380 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2381 0, CTLTYPE_NODE, "msk",
2382 SYSCTL_DESCR("msk interface controls"),
2383 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2384 goto err;
2385 }
2386
2387 msk_root_num = node->sysctl_num;
2388 return;
2389
2390 err:
2391 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2392 }
2393