if_msk.c revision 1.19 1 /* $NetBSD: if_msk.c,v 1.19 2008/05/27 20:14:28 dyoung Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.19 2008/05/27 20:14:28 dyoung Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73 #define letoh16 htole16
74 #define letoh32 htole32
75 #endif
76
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80
81 #include <net/if_media.h>
82
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #endif
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include <dev/mii/brgphyreg.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97
98 #include <dev/pci/if_skreg.h>
99 #include <dev/pci/if_mskvar.h>
100
101 int mskc_probe(struct device *, struct cfdata *, void *);
102 void mskc_attach(struct device *, struct device *self, void *aux);
103 void mskc_shutdown(void *);
104 int msk_probe(struct device *, struct cfdata *, void *);
105 void msk_attach(struct device *, struct device *self, void *aux);
106 int mskcprint(void *, const char *);
107 int msk_intr(void *);
108 void msk_intr_yukon(struct sk_if_softc *);
109 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
110 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
111 void msk_txeof(struct sk_if_softc *, int);
112 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
113 void msk_start(struct ifnet *);
114 int msk_ioctl(struct ifnet *, u_long, void *);
115 int msk_init(struct ifnet *);
116 void msk_init_yukon(struct sk_if_softc *);
117 void msk_stop(struct ifnet *, int);
118 void msk_watchdog(struct ifnet *);
119 void msk_reset(struct sk_softc *);
120 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
121 int msk_alloc_jumbo_mem(struct sk_if_softc *);
122 void *msk_jalloc(struct sk_if_softc *);
123 void msk_jfree(struct mbuf *, void *, size_t, void *);
124 int msk_init_rx_ring(struct sk_if_softc *);
125 int msk_init_tx_ring(struct sk_if_softc *);
126
127 void msk_update_int_mod(struct sk_softc *);
128
129 int msk_miibus_readreg(struct device *, int, int);
130 void msk_miibus_writereg(struct device *, int, int, int);
131 void msk_miibus_statchg(struct device *);
132
133 void msk_setfilt(struct sk_if_softc *, void *, int);
134 void msk_setmulti(struct sk_if_softc *);
135 void msk_setpromisc(struct sk_if_softc *);
136 void msk_tick(void *);
137
138 /* #define MSK_DEBUG 1 */
139 #ifdef MSK_DEBUG
140 #define DPRINTF(x) if (mskdebug) printf x
141 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
142 int mskdebug = MSK_DEBUG;
143
144 void msk_dump_txdesc(struct msk_tx_desc *, int);
145 void msk_dump_mbuf(struct mbuf *);
146 void msk_dump_bytes(const char *, int);
147 #else
148 #define DPRINTF(x)
149 #define DPRINTFN(n,x)
150 #endif
151
152 static int msk_sysctl_handler(SYSCTLFN_PROTO);
153 static int msk_root_num;
154
155 /* supported device vendors */
156 static const struct msk_product {
157 pci_vendor_id_t msk_vendor;
158 pci_product_id_t msk_product;
159 } msk_products[] = {
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
188 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
189 };
190
191 static inline u_int32_t
192 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
193 {
194 return CSR_READ_4(sc, reg);
195 }
196
197 static inline u_int16_t
198 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
199 {
200 return CSR_READ_2(sc, reg);
201 }
202
203 static inline u_int8_t
204 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
205 {
206 return CSR_READ_1(sc, reg);
207 }
208
209 static inline void
210 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
211 {
212 CSR_WRITE_4(sc, reg, x);
213 }
214
215 static inline void
216 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
217 {
218 CSR_WRITE_2(sc, reg, x);
219 }
220
221 static inline void
222 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
223 {
224 CSR_WRITE_1(sc, reg, x);
225 }
226
227 int
228 msk_miibus_readreg(struct device *dev, int phy, int reg)
229 {
230 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
231 u_int16_t val;
232 int i;
233
234 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
235 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
236
237 for (i = 0; i < SK_TIMEOUT; i++) {
238 DELAY(1);
239 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
240 if (val & YU_SMICR_READ_VALID)
241 break;
242 }
243
244 if (i == SK_TIMEOUT) {
245 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
246 return (0);
247 }
248
249 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
250 SK_TIMEOUT));
251
252 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
253
254 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
255 phy, reg, val));
256
257 return (val);
258 }
259
260 void
261 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
262 {
263 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
264 int i;
265
266 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
267 phy, reg, val));
268
269 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
270 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
271 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
272
273 for (i = 0; i < SK_TIMEOUT; i++) {
274 DELAY(1);
275 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
276 break;
277 }
278
279 if (i == SK_TIMEOUT)
280 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
281 }
282
283 void
284 msk_miibus_statchg(struct device *dev)
285 {
286 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
287 struct mii_data *mii = &sc_if->sk_mii;
288 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
289 int gpcr;
290
291 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
292 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
293
294 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
295 /* Set speed. */
296 gpcr |= YU_GPCR_SPEED_DIS;
297 switch (IFM_SUBTYPE(mii->mii_media_active)) {
298 case IFM_1000_SX:
299 case IFM_1000_LX:
300 case IFM_1000_CX:
301 case IFM_1000_T:
302 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
303 break;
304 case IFM_100_TX:
305 gpcr |= YU_GPCR_SPEED;
306 break;
307 }
308
309 /* Set duplex. */
310 gpcr |= YU_GPCR_DPLX_DIS;
311 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
312 gpcr |= YU_GPCR_DUPLEX;
313
314 /* Disable flow control. */
315 gpcr |= YU_GPCR_FCTL_DIS;
316 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
317 }
318
319 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
320
321 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
322 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
323 }
324
325 #define HASH_BITS 6
326
327 void
328 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
329 {
330 char *addr = addrv;
331 int base = XM_RXFILT_ENTRY(slot);
332
333 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
334 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
335 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
336 }
337
338 void
339 msk_setmulti(struct sk_if_softc *sc_if)
340 {
341 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
342 u_int32_t hashes[2] = { 0, 0 };
343 int h;
344 struct ethercom *ec = &sc_if->sk_ethercom;
345 struct ether_multi *enm;
346 struct ether_multistep step;
347 u_int16_t reg;
348
349 /* First, zot all the existing filters. */
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
354
355
356 /* Now program new ones. */
357 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
358 reg |= YU_RCR_UFLEN;
359 allmulti:
360 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
361 if ((ifp->if_flags & IFF_PROMISC) != 0)
362 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
363 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
364 hashes[0] = 0xFFFFFFFF;
365 hashes[1] = 0xFFFFFFFF;
366 }
367 } else {
368 /* First find the tail of the list. */
369 ETHER_FIRST_MULTI(step, ec, enm);
370 while (enm != NULL) {
371 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
372 ETHER_ADDR_LEN)) {
373 ifp->if_flags |= IFF_ALLMULTI;
374 goto allmulti;
375 }
376 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
377 ((1 << HASH_BITS) - 1);
378 if (h < 32)
379 hashes[0] |= (1 << h);
380 else
381 hashes[1] |= (1 << (h - 32));
382
383 ETHER_NEXT_MULTI(step, enm);
384 }
385 reg |= YU_RCR_MUFLEN;
386 }
387
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
393 }
394
395 void
396 msk_setpromisc(struct sk_if_softc *sc_if)
397 {
398 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
399
400 if (ifp->if_flags & IFF_PROMISC)
401 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
402 YU_RCR_UFLEN | YU_RCR_MUFLEN);
403 else
404 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
405 YU_RCR_UFLEN | YU_RCR_MUFLEN);
406 }
407
408 int
409 msk_init_rx_ring(struct sk_if_softc *sc_if)
410 {
411 struct msk_chain_data *cd = &sc_if->sk_cdata;
412 struct msk_ring_data *rd = sc_if->sk_rdata;
413 int i, nexti;
414
415 bzero((char *)rd->sk_rx_ring,
416 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
417
418 for (i = 0; i < MSK_RX_RING_CNT; i++) {
419 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
420 if (i == (MSK_RX_RING_CNT - 1))
421 nexti = 0;
422 else
423 nexti = i + 1;
424 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
425 }
426
427 for (i = 0; i < MSK_RX_RING_CNT; i++) {
428 if (msk_newbuf(sc_if, i, NULL,
429 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
430 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
431 return (ENOBUFS);
432 }
433 }
434
435 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
436 sc_if->sk_cdata.sk_rx_cons = 0;
437
438 return (0);
439 }
440
441 int
442 msk_init_tx_ring(struct sk_if_softc *sc_if)
443 {
444 struct sk_softc *sc = sc_if->sk_softc;
445 struct msk_chain_data *cd = &sc_if->sk_cdata;
446 struct msk_ring_data *rd = sc_if->sk_rdata;
447 bus_dmamap_t dmamap;
448 struct sk_txmap_entry *entry;
449 int i, nexti;
450
451 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
452 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
453
454 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
455 for (i = 0; i < MSK_TX_RING_CNT; i++) {
456 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
457 if (i == (MSK_TX_RING_CNT - 1))
458 nexti = 0;
459 else
460 nexti = i + 1;
461 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
462
463 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
464 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
465 return (ENOBUFS);
466
467 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
468 if (!entry) {
469 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
470 return (ENOBUFS);
471 }
472 entry->dmamap = dmamap;
473 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
474 }
475
476 sc_if->sk_cdata.sk_tx_prod = 0;
477 sc_if->sk_cdata.sk_tx_cons = 0;
478 sc_if->sk_cdata.sk_tx_cnt = 0;
479
480 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
481 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
482
483 return (0);
484 }
485
486 int
487 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
488 bus_dmamap_t dmamap)
489 {
490 struct mbuf *m_new = NULL;
491 struct sk_chain *c;
492 struct msk_rx_desc *r;
493
494 if (m == NULL) {
495 void *buf = NULL;
496
497 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
498 if (m_new == NULL)
499 return (ENOBUFS);
500
501 /* Allocate the jumbo buffer */
502 buf = msk_jalloc(sc_if);
503 if (buf == NULL) {
504 m_freem(m_new);
505 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
506 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
507 return (ENOBUFS);
508 }
509
510 /* Attach the buffer to the mbuf */
511 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
512 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
513 } else {
514 /*
515 * We're re-using a previously allocated mbuf;
516 * be sure to re-init pointers and lengths to
517 * default values.
518 */
519 m_new = m;
520 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
521 m_new->m_data = m_new->m_ext.ext_buf;
522 }
523 m_adj(m_new, ETHER_ALIGN);
524
525 c = &sc_if->sk_cdata.sk_rx_chain[i];
526 r = c->sk_le;
527 c->sk_mbuf = m_new;
528 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
529 (((vaddr_t)m_new->m_data
530 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
531 r->sk_len = htole16(SK_JLEN);
532 r->sk_ctl = 0;
533 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
534
535 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
536
537 return (0);
538 }
539
540 /*
541 * Memory management for jumbo frames.
542 */
543
544 int
545 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
546 {
547 struct sk_softc *sc = sc_if->sk_softc;
548 char *ptr, *kva;
549 bus_dma_segment_t seg;
550 int i, rseg, state, error;
551 struct sk_jpool_entry *entry;
552
553 state = error = 0;
554
555 /* Grab a big chunk o' storage. */
556 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
557 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
558 aprint_error(": can't alloc rx buffers");
559 return (ENOBUFS);
560 }
561
562 state = 1;
563 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
564 BUS_DMA_NOWAIT)) {
565 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
566 error = ENOBUFS;
567 goto out;
568 }
569
570 state = 2;
571 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
572 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
573 aprint_error(": can't create dma map");
574 error = ENOBUFS;
575 goto out;
576 }
577
578 state = 3;
579 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
580 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
581 aprint_error(": can't load dma map");
582 error = ENOBUFS;
583 goto out;
584 }
585
586 state = 4;
587 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
588 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
589
590 LIST_INIT(&sc_if->sk_jfree_listhead);
591 LIST_INIT(&sc_if->sk_jinuse_listhead);
592
593 /*
594 * Now divide it up into 9K pieces and save the addresses
595 * in an array.
596 */
597 ptr = sc_if->sk_cdata.sk_jumbo_buf;
598 for (i = 0; i < MSK_JSLOTS; i++) {
599 sc_if->sk_cdata.sk_jslots[i] = ptr;
600 ptr += SK_JLEN;
601 entry = malloc(sizeof(struct sk_jpool_entry),
602 M_DEVBUF, M_NOWAIT);
603 if (entry == NULL) {
604 sc_if->sk_cdata.sk_jumbo_buf = NULL;
605 aprint_error(": no memory for jumbo buffer queue!");
606 error = ENOBUFS;
607 goto out;
608 }
609 entry->slot = i;
610 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
611 entry, jpool_entries);
612 }
613 out:
614 if (error != 0) {
615 switch (state) {
616 case 4:
617 bus_dmamap_unload(sc->sc_dmatag,
618 sc_if->sk_cdata.sk_rx_jumbo_map);
619 case 3:
620 bus_dmamap_destroy(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 2:
623 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
624 case 1:
625 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
626 break;
627 default:
628 break;
629 }
630 }
631
632 return (error);
633 }
634
635 /*
636 * Allocate a jumbo buffer.
637 */
638 void *
639 msk_jalloc(struct sk_if_softc *sc_if)
640 {
641 struct sk_jpool_entry *entry;
642
643 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
644
645 if (entry == NULL)
646 return (NULL);
647
648 LIST_REMOVE(entry, jpool_entries);
649 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
650 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
651 }
652
653 /*
654 * Release a jumbo buffer.
655 */
656 void
657 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
658 {
659 struct sk_jpool_entry *entry;
660 struct sk_if_softc *sc;
661 int i, s;
662
663 /* Extract the softc struct pointer. */
664 sc = (struct sk_if_softc *)arg;
665
666 if (sc == NULL)
667 panic("msk_jfree: can't find softc pointer!");
668
669 /* calculate the slot this buffer belongs to */
670 i = ((vaddr_t)buf
671 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
672
673 if ((i < 0) || (i >= MSK_JSLOTS))
674 panic("msk_jfree: asked to free buffer that we don't manage!");
675
676 s = splvm();
677 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
678 if (entry == NULL)
679 panic("msk_jfree: buffer not in use!");
680 entry->slot = i;
681 LIST_REMOVE(entry, jpool_entries);
682 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 splx(s);
687 }
688
689 int
690 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
691 {
692 struct sk_if_softc *sc_if = ifp->if_softc;
693 int s, error = 0;
694
695 s = splnet();
696
697 DPRINTFN(2, ("msk_ioctl ETHER\n"));
698 error = ether_ioctl(ifp, cmd, data);
699
700 if (error == ENETRESET) {
701 error = 0;
702 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
703 ;
704 else if (ifp->if_flags & IFF_RUNNING) {
705 /*
706 * Multicast list has changed; set the hardware
707 * filter accordingly.
708 */
709 msk_setmulti(sc_if);
710 }
711 }
712
713 splx(s);
714 return (error);
715 }
716
717 void
718 msk_update_int_mod(struct sk_softc *sc)
719 {
720 u_int32_t imtimer_ticks;
721
722 /*
723 * Configure interrupt moderation. The moderation timer
724 * defers interrupts specified in the interrupt moderation
725 * timer mask based on the timeout specified in the interrupt
726 * moderation timer init register. Each bit in the timer
727 * register represents one tick, so to specify a timeout in
728 * microseconds, we have to multiply by the correct number of
729 * ticks-per-microsecond.
730 */
731 switch (sc->sk_type) {
732 case SK_YUKON_EC:
733 case SK_YUKON_EC_U:
734 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
735 break;
736 case SK_YUKON_FE:
737 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
738 break;
739 case SK_YUKON_XL:
740 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
741 break;
742 default:
743 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
744 }
745 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
746 sc->sk_int_mod);
747 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
748 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
749 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
750 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
751 sc->sk_int_mod_pending = 0;
752 }
753
754 static int
755 msk_lookup(const struct pci_attach_args *pa)
756 {
757 const struct msk_product *pmsk;
758
759 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
760 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
761 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
762 return 1;
763 }
764 return 0;
765 }
766
767 /*
768 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
769 * IDs against our list and return a device name if we find a match.
770 */
771 int
772 mskc_probe(struct device *parent, struct cfdata *match,
773 void *aux)
774 {
775 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
776
777 return msk_lookup(pa);
778 }
779
780 /*
781 * Force the GEnesis into reset, then bring it out of reset.
782 */
783 void msk_reset(struct sk_softc *sc)
784 {
785 u_int32_t imtimer_ticks, reg1;
786 int reg;
787
788 DPRINTFN(2, ("msk_reset\n"));
789
790 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
791 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
792
793 DELAY(1000);
794 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
795 DELAY(2);
796 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
797 sk_win_write_1(sc, SK_TESTCTL1, 2);
798
799 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
800 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
801 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
802 else
803 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
804 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
805
806 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
807 sk_win_write_1(sc, SK_Y2_CLKGATE,
808 SK_Y2_CLKGATE_LINK1_GATE_DIS |
809 SK_Y2_CLKGATE_LINK2_GATE_DIS |
810 SK_Y2_CLKGATE_LINK1_CORE_DIS |
811 SK_Y2_CLKGATE_LINK2_CORE_DIS |
812 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
813 else
814 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
815
816 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
817 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
818 DELAY(1000);
819 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
820 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
821
822 sk_win_write_1(sc, SK_TESTCTL1, 1);
823
824 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
825 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
826 CSR_READ_2(sc, SK_LINK_CTRL)));
827
828 /* Disable ASF */
829 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
830 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
831
832 /* Clear I2C IRQ noise */
833 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
834
835 /* Disable hardware timer */
836 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
837 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
838
839 /* Disable descriptor polling */
840 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
841
842 /* Disable time stamps */
843 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
844 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
845
846 /* Enable RAM interface */
847 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
848 for (reg = SK_TO0;reg <= SK_TO11; reg++)
849 sk_win_write_1(sc, reg, 36);
850 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
851 for (reg = SK_TO0;reg <= SK_TO11; reg++)
852 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
853
854 /*
855 * Configure interrupt moderation. The moderation timer
856 * defers interrupts specified in the interrupt moderation
857 * timer mask based on the timeout specified in the interrupt
858 * moderation timer init register. Each bit in the timer
859 * register represents one tick, so to specify a timeout in
860 * microseconds, we have to multiply by the correct number of
861 * ticks-per-microsecond.
862 */
863 switch (sc->sk_type) {
864 case SK_YUKON_EC:
865 case SK_YUKON_EC_U:
866 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
867 break;
868 case SK_YUKON_FE:
869 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
870 break;
871 case SK_YUKON_XL:
872 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
873 break;
874 default:
875 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
876 }
877
878 /* Reset status ring. */
879 bzero((char *)sc->sk_status_ring,
880 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
881 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
882 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
883 sc->sk_status_idx = 0;
884 sc->sk_status_own_idx = 0;
885
886 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
887 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
888
889 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
890 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
891 sc->sk_status_map->dm_segs[0].ds_addr);
892 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
893 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
894 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
895 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
896 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
897 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
898 } else {
899 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
900 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
901 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
902 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
903 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
904 }
905
906 #if 0
907 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
908 #endif
909 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
910
911 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
912
913 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
914 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
915 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
916
917 msk_update_int_mod(sc);
918 }
919
920 int
921 msk_probe(struct device *parent, struct cfdata *match,
922 void *aux)
923 {
924 struct skc_attach_args *sa = aux;
925
926 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
927 return (0);
928
929 switch (sa->skc_type) {
930 case SK_YUKON_XL:
931 case SK_YUKON_EC_U:
932 case SK_YUKON_EC:
933 case SK_YUKON_FE:
934 return (1);
935 }
936
937 return (0);
938 }
939
940 /*
941 * Each XMAC chip is attached as a separate logical IP interface.
942 * Single port cards will have only one logical interface of course.
943 */
944 void
945 msk_attach(struct device *parent, struct device *self, void *aux)
946 {
947 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
948 struct sk_softc *sc = (struct sk_softc *)parent;
949 struct skc_attach_args *sa = aux;
950 struct ifnet *ifp;
951 void *kva;
952 bus_dma_segment_t seg;
953 int i, rseg;
954 u_int32_t chunk, val;
955
956 sc_if->sk_port = sa->skc_port;
957 sc_if->sk_softc = sc;
958 sc->sk_if[sa->skc_port] = sc_if;
959
960 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
961
962 /*
963 * Get station address for this interface. Note that
964 * dual port cards actually come with three station
965 * addresses: one for each port, plus an extra. The
966 * extra one is used by the SysKonnect driver software
967 * as a 'virtual' station address for when both ports
968 * are operating in failover mode. Currently we don't
969 * use this extra address.
970 */
971 for (i = 0; i < ETHER_ADDR_LEN; i++)
972 sc_if->sk_enaddr[i] =
973 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
974
975 aprint_normal(": Ethernet address %s\n",
976 ether_sprintf(sc_if->sk_enaddr));
977
978 /*
979 * Set up RAM buffer addresses. The NIC will have a certain
980 * amount of SRAM on it, somewhere between 512K and 2MB. We
981 * need to divide this up a) between the transmitter and
982 * receiver and b) between the two XMACs, if this is a
983 * dual port NIC. Our algorithm is to divide up the memory
984 * evenly so that everyone gets a fair share.
985 *
986 * Just to be contrary, Yukon2 appears to have separate memory
987 * for each MAC.
988 */
989 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
990 val = sc->sk_rboff / sizeof(u_int64_t);
991 sc_if->sk_rx_ramstart = val;
992 val += (chunk / sizeof(u_int64_t));
993 sc_if->sk_rx_ramend = val - 1;
994 chunk = sc->sk_ramsize - chunk;
995 sc_if->sk_tx_ramstart = val;
996 val += (chunk / sizeof(u_int64_t));
997 sc_if->sk_tx_ramend = val - 1;
998
999 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1000 " tx_ramstart=%#x tx_ramend=%#x\n",
1001 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1002 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1003
1004 /* Allocate the descriptor queues. */
1005 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1006 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1007 aprint_error(": can't alloc rx buffers\n");
1008 goto fail;
1009 }
1010 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1011 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1012 aprint_error(": can't map dma buffers (%zu bytes)\n",
1013 sizeof(struct msk_ring_data));
1014 goto fail_1;
1015 }
1016 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1017 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1018 &sc_if->sk_ring_map)) {
1019 aprint_error(": can't create dma map\n");
1020 goto fail_2;
1021 }
1022 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1023 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1024 aprint_error(": can't load dma map\n");
1025 goto fail_3;
1026 }
1027 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1028 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1029
1030 ifp = &sc_if->sk_ethercom.ec_if;
1031 /* Try to allocate memory for jumbo buffers. */
1032 if (msk_alloc_jumbo_mem(sc_if)) {
1033 aprint_error(": jumbo buffer allocation failed\n");
1034 goto fail_3;
1035 }
1036 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1037 if (sc->sk_type != SK_YUKON_FE)
1038 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1039
1040 ifp->if_softc = sc_if;
1041 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1042 ifp->if_ioctl = msk_ioctl;
1043 ifp->if_start = msk_start;
1044 ifp->if_stop = msk_stop;
1045 ifp->if_init = msk_init;
1046 ifp->if_watchdog = msk_watchdog;
1047 ifp->if_baudrate = 1000000000;
1048 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1049 IFQ_SET_READY(&ifp->if_snd);
1050 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1051
1052 /*
1053 * Do miibus setup.
1054 */
1055 msk_init_yukon(sc_if);
1056
1057 DPRINTFN(2, ("msk_attach: 1\n"));
1058
1059 sc_if->sk_mii.mii_ifp = ifp;
1060 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1061 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1062 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1063
1064 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1065 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1066 ether_mediachange, ether_mediastatus);
1067 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1068 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1069 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1070 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1071 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1072 0, NULL);
1073 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1074 } else
1075 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1076
1077 callout_init(&sc_if->sk_tick_ch, 0);
1078 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1079 callout_schedule(&sc_if->sk_tick_ch, hz);
1080
1081 /*
1082 * Call MI attach routines.
1083 */
1084 if_attach(ifp);
1085 ether_ifattach(ifp, sc_if->sk_enaddr);
1086
1087 shutdownhook_establish(mskc_shutdown, sc);
1088
1089 #if NRND > 0
1090 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1091 RND_TYPE_NET, 0);
1092 #endif
1093
1094 DPRINTFN(2, ("msk_attach: end\n"));
1095 return;
1096
1097 fail_3:
1098 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1099 fail_2:
1100 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1101 fail_1:
1102 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1103 fail:
1104 sc->sk_if[sa->skc_port] = NULL;
1105 }
1106
1107 int
1108 mskcprint(void *aux, const char *pnp)
1109 {
1110 struct skc_attach_args *sa = aux;
1111
1112 if (pnp)
1113 aprint_normal("sk port %c at %s",
1114 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1115 else
1116 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1117 return (UNCONF);
1118 }
1119
1120 /*
1121 * Attach the interface. Allocate softc structures, do ifmedia
1122 * setup and ethernet/BPF attach.
1123 */
1124 void
1125 mskc_attach(struct device *parent, struct device *self, void *aux)
1126 {
1127 struct sk_softc *sc = (struct sk_softc *)self;
1128 struct pci_attach_args *pa = aux;
1129 struct skc_attach_args skca;
1130 pci_chipset_tag_t pc = pa->pa_pc;
1131 pcireg_t command, memtype;
1132 pci_intr_handle_t ih;
1133 const char *intrstr = NULL;
1134 bus_size_t size;
1135 int rc, sk_nodenum;
1136 u_int8_t hw, skrs;
1137 const char *revstr = NULL;
1138 const struct sysctlnode *node;
1139 void *kva;
1140 bus_dma_segment_t seg;
1141 int rseg;
1142
1143 DPRINTFN(2, ("begin mskc_attach\n"));
1144
1145 /*
1146 * Handle power management nonsense.
1147 */
1148 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1149
1150 if (command == 0x01) {
1151 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1152 if (command & SK_PSTATE_MASK) {
1153 u_int32_t iobase, membase, irq;
1154
1155 /* Save important PCI config data. */
1156 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1157 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1158 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1159
1160 /* Reset the power state. */
1161 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1162 "-- setting to D0\n",
1163 command & SK_PSTATE_MASK);
1164 command &= 0xFFFFFFFC;
1165 pci_conf_write(pc, pa->pa_tag,
1166 SK_PCI_PWRMGMTCTRL, command);
1167
1168 /* Restore PCI config data. */
1169 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1170 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1171 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1172 }
1173 }
1174
1175 /*
1176 * Map control/status registers.
1177 */
1178
1179 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1180 switch (memtype) {
1181 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1182 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1183 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1184 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1185 NULL, &size) == 0)
1186 break;
1187 default:
1188 aprint_error(": can't map mem space\n");
1189 return;
1190 }
1191
1192 sc->sc_dmatag = pa->pa_dmat;
1193
1194 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1195 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1196
1197 /* bail out here if chip is not recognized */
1198 if (!(SK_IS_YUKON2(sc))) {
1199 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1200 goto fail_1;
1201 }
1202 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1203
1204 /* Allocate interrupt */
1205 if (pci_intr_map(pa, &ih)) {
1206 aprint_error(": couldn't map interrupt\n");
1207 goto fail_1;
1208 }
1209
1210 intrstr = pci_intr_string(pc, ih);
1211 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1212 if (sc->sk_intrhand == NULL) {
1213 aprint_error(": couldn't establish interrupt");
1214 if (intrstr != NULL)
1215 aprint_error(" at %s", intrstr);
1216 aprint_error("\n");
1217 goto fail_1;
1218 }
1219
1220 if (bus_dmamem_alloc(sc->sc_dmatag,
1221 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1222 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1223 aprint_error(": can't alloc status buffers\n");
1224 goto fail_2;
1225 }
1226
1227 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1228 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1229 &kva, BUS_DMA_NOWAIT)) {
1230 aprint_error(": can't map dma buffers (%zu bytes)\n",
1231 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1232 goto fail_3;
1233 }
1234 if (bus_dmamap_create(sc->sc_dmatag,
1235 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1236 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1237 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1238 aprint_error(": can't create dma map\n");
1239 goto fail_4;
1240 }
1241 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1242 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1243 NULL, BUS_DMA_NOWAIT)) {
1244 aprint_error(": can't load dma map\n");
1245 goto fail_5;
1246 }
1247 sc->sk_status_ring = (struct msk_status_desc *)kva;
1248
1249 /* Reset the adapter. */
1250 msk_reset(sc);
1251
1252 skrs = sk_win_read_1(sc, SK_EPROM0);
1253 if (skrs == 0x00)
1254 sc->sk_ramsize = 0x20000;
1255 else
1256 sc->sk_ramsize = skrs * (1<<12);
1257 sc->sk_rboff = SK_RBOFF_0;
1258
1259 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1260 sc->sk_ramsize, sc->sk_ramsize / 1024,
1261 sc->sk_rboff));
1262
1263 switch (sc->sk_type) {
1264 case SK_YUKON_XL:
1265 sc->sk_name = "Yukon-2 XL";
1266 break;
1267 case SK_YUKON_EC_U:
1268 sc->sk_name = "Yukon-2 EC Ultra";
1269 break;
1270 case SK_YUKON_EC:
1271 sc->sk_name = "Yukon-2 EC";
1272 break;
1273 case SK_YUKON_FE:
1274 sc->sk_name = "Yukon-2 FE";
1275 break;
1276 default:
1277 sc->sk_name = "Yukon (Unknown)";
1278 }
1279
1280 if (sc->sk_type == SK_YUKON_XL) {
1281 switch (sc->sk_rev) {
1282 case SK_YUKON_XL_REV_A0:
1283 sc->sk_workaround = 0;
1284 revstr = "A0";
1285 break;
1286 case SK_YUKON_XL_REV_A1:
1287 sc->sk_workaround = SK_WA_4109;
1288 revstr = "A1";
1289 break;
1290 case SK_YUKON_XL_REV_A2:
1291 sc->sk_workaround = SK_WA_4109;
1292 revstr = "A2";
1293 break;
1294 case SK_YUKON_XL_REV_A3:
1295 sc->sk_workaround = SK_WA_4109;
1296 revstr = "A3";
1297 break;
1298 default:
1299 sc->sk_workaround = 0;
1300 break;
1301 }
1302 }
1303
1304 if (sc->sk_type == SK_YUKON_EC) {
1305 switch (sc->sk_rev) {
1306 case SK_YUKON_EC_REV_A1:
1307 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1308 revstr = "A1";
1309 break;
1310 case SK_YUKON_EC_REV_A2:
1311 sc->sk_workaround = SK_WA_4109;
1312 revstr = "A2";
1313 break;
1314 case SK_YUKON_EC_REV_A3:
1315 sc->sk_workaround = SK_WA_4109;
1316 revstr = "A3";
1317 break;
1318 default:
1319 sc->sk_workaround = 0;
1320 break;
1321 }
1322 }
1323
1324 if (sc->sk_type == SK_YUKON_FE) {
1325 sc->sk_workaround = SK_WA_4109;
1326 switch (sc->sk_rev) {
1327 case SK_YUKON_FE_REV_A1:
1328 revstr = "A1";
1329 break;
1330 case SK_YUKON_FE_REV_A2:
1331 revstr = "A2";
1332 break;
1333 default:
1334 sc->sk_workaround = 0;
1335 break;
1336 }
1337 }
1338
1339 if (sc->sk_type == SK_YUKON_EC_U) {
1340 sc->sk_workaround = SK_WA_4109;
1341 switch (sc->sk_rev) {
1342 case SK_YUKON_EC_U_REV_A0:
1343 revstr = "A0";
1344 break;
1345 case SK_YUKON_EC_U_REV_A1:
1346 revstr = "A1";
1347 break;
1348 case SK_YUKON_EC_U_REV_B0:
1349 revstr = "B0";
1350 break;
1351 default:
1352 sc->sk_workaround = 0;
1353 break;
1354 }
1355 }
1356
1357 /* Announce the product name. */
1358 aprint_normal(", %s", sc->sk_name);
1359 if (revstr != NULL)
1360 aprint_normal(" rev. %s", revstr);
1361 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1362
1363 sc->sk_macs = 1;
1364
1365 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1366 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1367 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1368 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1369 sc->sk_macs++;
1370 }
1371
1372 skca.skc_port = SK_PORT_A;
1373 skca.skc_type = sc->sk_type;
1374 skca.skc_rev = sc->sk_rev;
1375 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1376
1377 if (sc->sk_macs > 1) {
1378 skca.skc_port = SK_PORT_B;
1379 skca.skc_type = sc->sk_type;
1380 skca.skc_rev = sc->sk_rev;
1381 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1382 }
1383
1384 /* Turn on the 'driver is loaded' LED. */
1385 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1386
1387 /* skc sysctl setup */
1388
1389 sc->sk_int_mod = SK_IM_DEFAULT;
1390 sc->sk_int_mod_pending = 0;
1391
1392 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1393 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1394 SYSCTL_DESCR("mskc per-controller controls"),
1395 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1396 CTL_EOL)) != 0) {
1397 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1398 goto fail_6;
1399 }
1400
1401 sk_nodenum = node->sysctl_num;
1402
1403 /* interrupt moderation time in usecs */
1404 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1405 CTLFLAG_READWRITE,
1406 CTLTYPE_INT, "int_mod",
1407 SYSCTL_DESCR("msk interrupt moderation timer"),
1408 msk_sysctl_handler, 0, sc,
1409 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1410 CTL_EOL)) != 0) {
1411 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1412 goto fail_6;
1413 }
1414
1415 return;
1416
1417 fail_6:
1418 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1419 fail_5:
1420 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1421 fail_4:
1422 bus_dmamem_unmap(sc->sc_dmatag, kva,
1423 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1424 fail_3:
1425 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1426 fail_2:
1427 pci_intr_disestablish(pc, sc->sk_intrhand);
1428 fail_1:
1429 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1430 }
1431
1432 int
1433 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1434 {
1435 struct sk_softc *sc = sc_if->sk_softc;
1436 struct msk_tx_desc *f = NULL;
1437 u_int32_t frag, cur;
1438 int i;
1439 struct sk_txmap_entry *entry;
1440 bus_dmamap_t txmap;
1441
1442 DPRINTFN(2, ("msk_encap\n"));
1443
1444 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1445 if (entry == NULL) {
1446 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1447 return (ENOBUFS);
1448 }
1449 txmap = entry->dmamap;
1450
1451 cur = frag = *txidx;
1452
1453 #ifdef MSK_DEBUG
1454 if (mskdebug >= 2)
1455 msk_dump_mbuf(m_head);
1456 #endif
1457
1458 /*
1459 * Start packing the mbufs in this chain into
1460 * the fragment pointers. Stop when we run out
1461 * of fragments or hit the end of the mbuf chain.
1462 */
1463 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1464 BUS_DMA_NOWAIT)) {
1465 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1466 return (ENOBUFS);
1467 }
1468
1469 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1470 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1471 bus_dmamap_unload(sc->sc_dmatag, txmap);
1472 return (ENOBUFS);
1473 }
1474
1475 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1476
1477 /* Sync the DMA map. */
1478 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1479 BUS_DMASYNC_PREWRITE);
1480
1481 for (i = 0; i < txmap->dm_nsegs; i++) {
1482 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1483 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1484 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1485 f->sk_ctl = 0;
1486 if (i == 0)
1487 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1488 else
1489 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1490 cur = frag;
1491 SK_INC(frag, MSK_TX_RING_CNT);
1492 }
1493
1494 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1495 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1496
1497 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1498 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1499
1500 /* Sync descriptors before handing to chip */
1501 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1502 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1503
1504 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1505
1506 /* Sync first descriptor to hand it off */
1507 MSK_CDTXSYNC(sc_if, *txidx, 1,
1508 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1509
1510 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1511
1512 #ifdef MSK_DEBUG
1513 if (mskdebug >= 2) {
1514 struct msk_tx_desc *le;
1515 u_int32_t idx;
1516 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1517 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1518 msk_dump_txdesc(le, idx);
1519 }
1520 }
1521 #endif
1522
1523 *txidx = frag;
1524
1525 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1526
1527 return (0);
1528 }
1529
1530 void
1531 msk_start(struct ifnet *ifp)
1532 {
1533 struct sk_if_softc *sc_if = ifp->if_softc;
1534 struct mbuf *m_head = NULL;
1535 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1536 int pkts = 0;
1537
1538 DPRINTFN(2, ("msk_start\n"));
1539
1540 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1541 IFQ_POLL(&ifp->if_snd, m_head);
1542 if (m_head == NULL)
1543 break;
1544
1545 /*
1546 * Pack the data into the transmit ring. If we
1547 * don't have room, set the OACTIVE flag and wait
1548 * for the NIC to drain the ring.
1549 */
1550 if (msk_encap(sc_if, m_head, &idx)) {
1551 ifp->if_flags |= IFF_OACTIVE;
1552 break;
1553 }
1554
1555 /* now we are committed to transmit the packet */
1556 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1557 pkts++;
1558
1559 /*
1560 * If there's a BPF listener, bounce a copy of this frame
1561 * to him.
1562 */
1563 #if NBPFILTER > 0
1564 if (ifp->if_bpf)
1565 bpf_mtap(ifp->if_bpf, m_head);
1566 #endif
1567 }
1568 if (pkts == 0)
1569 return;
1570
1571 /* Transmit */
1572 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1573 sc_if->sk_cdata.sk_tx_prod = idx;
1574 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1575
1576 /* Set a timeout in case the chip goes out to lunch. */
1577 ifp->if_timer = 5;
1578 }
1579 }
1580
1581 void
1582 msk_watchdog(struct ifnet *ifp)
1583 {
1584 struct sk_if_softc *sc_if = ifp->if_softc;
1585 u_int32_t reg;
1586 int idx;
1587
1588 /*
1589 * Reclaim first as there is a possibility of losing Tx completion
1590 * interrupts.
1591 */
1592 if (sc_if->sk_port == SK_PORT_A)
1593 reg = SK_STAT_BMU_TXA1_RIDX;
1594 else
1595 reg = SK_STAT_BMU_TXA2_RIDX;
1596
1597 idx = sk_win_read_2(sc_if->sk_softc, reg);
1598 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1599 msk_txeof(sc_if, idx);
1600 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1601 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1602
1603 ifp->if_oerrors++;
1604
1605 /* XXX Resets both ports; we shouldn't do that. */
1606 msk_reset(sc_if->sk_softc);
1607 msk_init(ifp);
1608 }
1609 }
1610 }
1611
1612 void
1613 mskc_shutdown(void *v)
1614 {
1615 struct sk_softc *sc = v;
1616
1617 DPRINTFN(2, ("msk_shutdown\n"));
1618
1619 /* Turn off the 'driver is loaded' LED. */
1620 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1621
1622 msk_reset(sc);
1623 }
1624
1625 __inline int
1626 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1627 {
1628 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1629 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1630 YU_RXSTAT_JABBER)) != 0 ||
1631 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1632 YU_RXSTAT_BYTES(stat) != len)
1633 return (0);
1634
1635 return (1);
1636 }
1637
1638 void
1639 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1640 {
1641 struct sk_softc *sc = sc_if->sk_softc;
1642 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1643 struct mbuf *m;
1644 struct sk_chain *cur_rx;
1645 int cur, total_len = len;
1646 bus_dmamap_t dmamap;
1647
1648 DPRINTFN(2, ("msk_rxeof\n"));
1649
1650 cur = sc_if->sk_cdata.sk_rx_cons;
1651 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1652 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1653
1654 /* Sync the descriptor */
1655 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1656
1657 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1658 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1659
1660 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1661 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1662
1663 m = cur_rx->sk_mbuf;
1664 cur_rx->sk_mbuf = NULL;
1665
1666 if (total_len < SK_MIN_FRAMELEN ||
1667 total_len > ETHER_MAX_LEN_JUMBO ||
1668 msk_rxvalid(sc, rxstat, total_len) == 0) {
1669 ifp->if_ierrors++;
1670 msk_newbuf(sc_if, cur, m, dmamap);
1671 return;
1672 }
1673
1674 /*
1675 * Try to allocate a new jumbo buffer. If that fails, copy the
1676 * packet to mbufs and put the jumbo buffer back in the ring
1677 * so it can be re-used. If allocating mbufs fails, then we
1678 * have to drop the packet.
1679 */
1680 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1681 struct mbuf *m0;
1682 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1683 total_len + ETHER_ALIGN, 0, ifp, NULL);
1684 msk_newbuf(sc_if, cur, m, dmamap);
1685 if (m0 == NULL) {
1686 ifp->if_ierrors++;
1687 return;
1688 }
1689 m_adj(m0, ETHER_ALIGN);
1690 m = m0;
1691 } else {
1692 m->m_pkthdr.rcvif = ifp;
1693 m->m_pkthdr.len = m->m_len = total_len;
1694 }
1695
1696 ifp->if_ipackets++;
1697
1698 #if NBPFILTER > 0
1699 if (ifp->if_bpf)
1700 bpf_mtap(ifp->if_bpf, m);
1701 #endif
1702
1703 /* pass it on. */
1704 (*ifp->if_input)(ifp, m);
1705 }
1706
1707 void
1708 msk_txeof(struct sk_if_softc *sc_if, int idx)
1709 {
1710 struct sk_softc *sc = sc_if->sk_softc;
1711 struct msk_tx_desc *cur_tx;
1712 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1713 u_int32_t sk_ctl;
1714 struct sk_txmap_entry *entry;
1715 int cons, prog;
1716
1717 DPRINTFN(2, ("msk_txeof\n"));
1718
1719 /*
1720 * Go through our tx ring and free mbufs for those
1721 * frames that have been sent.
1722 */
1723 cons = sc_if->sk_cdata.sk_tx_cons;
1724 prog = 0;
1725 while (cons != idx) {
1726 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1727 break;
1728 prog++;
1729 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1730
1731 MSK_CDTXSYNC(sc_if, cons, 1,
1732 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1733 sk_ctl = cur_tx->sk_ctl;
1734 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1735 #ifdef MSK_DEBUG
1736 if (mskdebug >= 2)
1737 msk_dump_txdesc(cur_tx, cons);
1738 #endif
1739 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1740 ifp->if_opackets++;
1741 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1742 entry = sc_if->sk_cdata.sk_tx_map[cons];
1743
1744 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1745 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1746
1747 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1748 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1749 link);
1750 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1751 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1752 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1753 }
1754 sc_if->sk_cdata.sk_tx_cnt--;
1755 SK_INC(cons, MSK_TX_RING_CNT);
1756 }
1757 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1758
1759 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1760 ifp->if_flags &= ~IFF_OACTIVE;
1761
1762 if (prog > 0)
1763 sc_if->sk_cdata.sk_tx_cons = cons;
1764 }
1765
1766 void
1767 msk_tick(void *xsc_if)
1768 {
1769 struct sk_if_softc *sc_if = xsc_if;
1770 struct mii_data *mii = &sc_if->sk_mii;
1771
1772 mii_tick(mii);
1773 callout_schedule(&sc_if->sk_tick_ch, hz);
1774 }
1775
1776 void
1777 msk_intr_yukon(struct sk_if_softc *sc_if)
1778 {
1779 u_int8_t status;
1780
1781 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1782 /* RX overrun */
1783 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1784 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1785 SK_RFCTL_RX_FIFO_OVER);
1786 }
1787 /* TX underrun */
1788 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1789 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1790 SK_TFCTL_TX_FIFO_UNDER);
1791 }
1792
1793 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1794 }
1795
1796 int
1797 msk_intr(void *xsc)
1798 {
1799 struct sk_softc *sc = xsc;
1800 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1801 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1802 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1803 int claimed = 0;
1804 u_int32_t status;
1805 uint32_t st_status;
1806 uint16_t st_len;
1807 uint8_t st_opcode, st_link;
1808 struct msk_status_desc *cur_st;
1809
1810 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1811 if (status == 0) {
1812 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1813 return (0);
1814 }
1815
1816 status = CSR_READ_4(sc, SK_ISR);
1817
1818 if (sc_if0 != NULL)
1819 ifp0 = &sc_if0->sk_ethercom.ec_if;
1820 if (sc_if1 != NULL)
1821 ifp1 = &sc_if1->sk_ethercom.ec_if;
1822
1823 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1824 (ifp0->if_flags & IFF_RUNNING)) {
1825 msk_intr_yukon(sc_if0);
1826 }
1827
1828 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1829 (ifp1->if_flags & IFF_RUNNING)) {
1830 msk_intr_yukon(sc_if1);
1831 }
1832
1833 for (;;) {
1834 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1835 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1836 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1837 st_opcode = cur_st->sk_opcode;
1838 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1839 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1840 BUS_DMASYNC_PREREAD);
1841 break;
1842 }
1843 st_status = le32toh(cur_st->sk_status);
1844 st_len = le16toh(cur_st->sk_len);
1845 st_link = cur_st->sk_link;
1846 st_opcode &= ~SK_Y2_STOPC_OWN;
1847
1848 switch (st_opcode) {
1849 case SK_Y2_STOPC_RXSTAT:
1850 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1851 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1852 SK_RXQ1_Y2_PREF_PUTIDX,
1853 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1854 break;
1855 case SK_Y2_STOPC_TXSTAT:
1856 if (sc_if0)
1857 msk_txeof(sc_if0, st_status
1858 & SK_Y2_ST_TXA1_MSKL);
1859 if (sc_if1)
1860 msk_txeof(sc_if1,
1861 ((st_status & SK_Y2_ST_TXA2_MSKL)
1862 >> SK_Y2_ST_TXA2_SHIFTL)
1863 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1864 break;
1865 default:
1866 aprint_error("opcode=0x%x\n", st_opcode);
1867 break;
1868 }
1869 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1870 }
1871
1872 #define MSK_STATUS_RING_OWN_CNT(sc) \
1873 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1874 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1875
1876 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1877 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1878 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1879 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1880 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1881
1882 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1883 }
1884
1885 if (status & SK_Y2_IMR_BMU) {
1886 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1887 claimed = 1;
1888 }
1889
1890 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1891
1892 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1893 msk_start(ifp0);
1894 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1895 msk_start(ifp1);
1896
1897 #if NRND > 0
1898 if (RND_ENABLED(&sc->rnd_source))
1899 rnd_add_uint32(&sc->rnd_source, status);
1900 #endif
1901
1902 if (sc->sk_int_mod_pending)
1903 msk_update_int_mod(sc);
1904
1905 return claimed;
1906 }
1907
1908 void
1909 msk_init_yukon(struct sk_if_softc *sc_if)
1910 {
1911 u_int32_t v;
1912 u_int16_t reg;
1913 struct sk_softc *sc;
1914 int i;
1915
1916 sc = sc_if->sk_softc;
1917
1918 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1919 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1920
1921 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1922
1923 /* GMAC and GPHY Reset */
1924 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1925 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1926 DELAY(1000);
1927
1928 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1929
1930 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1931 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1932 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1933
1934 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1935 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1936
1937 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1938
1939 /* unused read of the interrupt source register */
1940 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1941 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1942
1943 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1944 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1945 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1946
1947 /* MIB Counter Clear Mode set */
1948 reg |= YU_PAR_MIB_CLR;
1949 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1950 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1951 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1952
1953 /* MIB Counter Clear Mode clear */
1954 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1955 reg &= ~YU_PAR_MIB_CLR;
1956 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1957
1958 /* receive control reg */
1959 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1960 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1961
1962 /* transmit control register */
1963 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1964
1965 /* transmit flow control register */
1966 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
1967
1968 /* transmit parameter register */
1969 DPRINTFN(6, ("msk_init_yukon: 8\n"));
1970 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1971 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
1972
1973 /* serial mode register */
1974 DPRINTFN(6, ("msk_init_yukon: 9\n"));
1975 reg = YU_SMR_DATA_BLIND(0x1c) |
1976 YU_SMR_MFL_VLAN |
1977 YU_SMR_IPG_DATA(0x1e);
1978
1979 if (sc->sk_type != SK_YUKON_FE)
1980 reg |= YU_SMR_MFL_JUMBO;
1981
1982 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1983
1984 DPRINTFN(6, ("msk_init_yukon: 10\n"));
1985 /* Setup Yukon's address */
1986 for (i = 0; i < 3; i++) {
1987 /* Write Source Address 1 (unicast filter) */
1988 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1989 sc_if->sk_enaddr[i * 2] |
1990 sc_if->sk_enaddr[i * 2 + 1] << 8);
1991 }
1992
1993 for (i = 0; i < 3; i++) {
1994 reg = sk_win_read_2(sc_if->sk_softc,
1995 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1996 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1997 }
1998
1999 /* Set promiscuous mode */
2000 msk_setpromisc(sc_if);
2001
2002 /* Set multicast filter */
2003 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2004 msk_setmulti(sc_if);
2005
2006 /* enable interrupt mask for counter overflows */
2007 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2008 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2009 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2010 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2011
2012 /* Configure RX MAC FIFO Flush Mask */
2013 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2014 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2015 YU_RXSTAT_JABBER;
2016 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2017
2018 /* Configure RX MAC FIFO */
2019 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2020 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2021 SK_RFCTL_FIFO_FLUSH_ON);
2022
2023 /* Increase flush threshould to 64 bytes */
2024 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2025 SK_RFCTL_FIFO_THRESHOLD + 1);
2026
2027 /* Configure TX MAC FIFO */
2028 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2029 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2030
2031 #if 1
2032 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2033 #endif
2034 DPRINTFN(6, ("msk_init_yukon: end\n"));
2035 }
2036
2037 /*
2038 * Note that to properly initialize any part of the GEnesis chip,
2039 * you first have to take it out of reset mode.
2040 */
2041 int
2042 msk_init(struct ifnet *ifp)
2043 {
2044 struct sk_if_softc *sc_if = ifp->if_softc;
2045 struct sk_softc *sc = sc_if->sk_softc;
2046 int rc = 0, s;
2047 uint32_t imr, imtimer_ticks;
2048
2049
2050 DPRINTFN(2, ("msk_init\n"));
2051
2052 s = splnet();
2053
2054 /* Cancel pending I/O and free all RX/TX buffers. */
2055 msk_stop(ifp,0);
2056
2057 /* Configure I2C registers */
2058
2059 /* Configure XMAC(s) */
2060 msk_init_yukon(sc_if);
2061 if ((rc = ether_mediachange(ifp)) != 0)
2062 goto out;
2063
2064 /* Configure transmit arbiter(s) */
2065 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2066 #if 0
2067 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2068 #endif
2069
2070 /* Configure RAMbuffers */
2071 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2072 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2073 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2074 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2075 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2076 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2077
2078 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2079 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2080 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2081 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2082 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2083 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2084 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2085
2086 /* Configure BMUs */
2087 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2088 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2089 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2090 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2091
2092 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2093 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2094 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2095 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2096
2097 /* Make sure the sync transmit queue is disabled. */
2098 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2099
2100 /* Init descriptors */
2101 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2102 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2103 "memory for rx buffers\n");
2104 msk_stop(ifp,0);
2105 splx(s);
2106 return ENOBUFS;
2107 }
2108
2109 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2110 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2111 "memory for tx buffers\n");
2112 msk_stop(ifp,0);
2113 splx(s);
2114 return ENOBUFS;
2115 }
2116
2117 /* Set interrupt moderation if changed via sysctl. */
2118 switch (sc->sk_type) {
2119 case SK_YUKON_EC:
2120 case SK_YUKON_EC_U:
2121 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2122 break;
2123 case SK_YUKON_FE:
2124 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2125 break;
2126 case SK_YUKON_XL:
2127 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2128 break;
2129 default:
2130 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2131 }
2132 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2133 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2134 sk_win_write_4(sc, SK_IMTIMERINIT,
2135 SK_IM_USECS(sc->sk_int_mod));
2136 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2137 sc->sk_int_mod);
2138 }
2139
2140 /* Initialize prefetch engine. */
2141 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2142 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2143 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2144 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2145 MSK_RX_RING_ADDR(sc_if, 0));
2146 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2147 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2148 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2149 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2150
2151 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2152 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2153 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2154 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2155 MSK_TX_RING_ADDR(sc_if, 0));
2156 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2157 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2158 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2159 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2160
2161 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2162 sc_if->sk_cdata.sk_rx_prod);
2163
2164 /* Configure interrupt handling */
2165 if (sc_if->sk_port == SK_PORT_A)
2166 sc->sk_intrmask |= SK_Y2_INTRS1;
2167 else
2168 sc->sk_intrmask |= SK_Y2_INTRS2;
2169 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2170 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2171
2172 ifp->if_flags |= IFF_RUNNING;
2173 ifp->if_flags &= ~IFF_OACTIVE;
2174
2175 callout_schedule(&sc_if->sk_tick_ch, hz);
2176
2177 out:
2178 splx(s);
2179 return rc;
2180 }
2181
2182 void
2183 msk_stop(struct ifnet *ifp, int disable)
2184 {
2185 struct sk_if_softc *sc_if = ifp->if_softc;
2186 struct sk_softc *sc = sc_if->sk_softc;
2187 struct sk_txmap_entry *dma;
2188 int i;
2189
2190 DPRINTFN(2, ("msk_stop\n"));
2191
2192 callout_stop(&sc_if->sk_tick_ch);
2193
2194 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2195
2196 /* Stop transfer of Tx descriptors */
2197
2198 /* Stop transfer of Rx descriptors */
2199
2200 /* Turn off various components of this interface. */
2201 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2202 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2203 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2204 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2205 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2206 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2207 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2208 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2209 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2210 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2211 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2212 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2213
2214 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2215 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2216
2217 /* Disable interrupts */
2218 if (sc_if->sk_port == SK_PORT_A)
2219 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2220 else
2221 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2222 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2223
2224 SK_XM_READ_2(sc_if, XM_ISR);
2225 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2226
2227 /* Free RX and TX mbufs still in the queues. */
2228 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2229 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2230 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2231 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2232 }
2233 }
2234
2235 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2236 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2237 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2238 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2239 #if 1
2240 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2241 sc_if->sk_cdata.sk_tx_map[i], link);
2242 sc_if->sk_cdata.sk_tx_map[i] = 0;
2243 #endif
2244 }
2245 }
2246
2247 #if 1
2248 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2249 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2250 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2251 free(dma, M_DEVBUF);
2252 }
2253 #endif
2254 }
2255
2256 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2257 NULL, NULL);
2258
2259 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2260 NULL, NULL);
2261
2262 #ifdef MSK_DEBUG
2263 void
2264 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2265 {
2266 #define DESC_PRINT(X) \
2267 if (X) \
2268 printf("txdesc[%d]." #X "=%#x\n", \
2269 idx, X);
2270
2271 DESC_PRINT(letoh32(le->sk_addr));
2272 DESC_PRINT(letoh16(le->sk_len));
2273 DESC_PRINT(le->sk_ctl);
2274 DESC_PRINT(le->sk_opcode);
2275 #undef DESC_PRINT
2276 }
2277
2278 void
2279 msk_dump_bytes(const char *data, int len)
2280 {
2281 int c, i, j;
2282
2283 for (i = 0; i < len; i += 16) {
2284 printf("%08x ", i);
2285 c = len - i;
2286 if (c > 16) c = 16;
2287
2288 for (j = 0; j < c; j++) {
2289 printf("%02x ", data[i + j] & 0xff);
2290 if ((j & 0xf) == 7 && j > 0)
2291 printf(" ");
2292 }
2293
2294 for (; j < 16; j++)
2295 printf(" ");
2296 printf(" ");
2297
2298 for (j = 0; j < c; j++) {
2299 int ch = data[i + j] & 0xff;
2300 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2301 }
2302
2303 printf("\n");
2304
2305 if (c < 16)
2306 break;
2307 }
2308 }
2309
2310 void
2311 msk_dump_mbuf(struct mbuf *m)
2312 {
2313 int count = m->m_pkthdr.len;
2314
2315 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2316
2317 while (count > 0 && m) {
2318 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2319 m, m->m_data, m->m_len);
2320 msk_dump_bytes(mtod(m, char *), m->m_len);
2321
2322 count -= m->m_len;
2323 m = m->m_next;
2324 }
2325 }
2326 #endif
2327
2328 static int
2329 msk_sysctl_handler(SYSCTLFN_ARGS)
2330 {
2331 int error, t;
2332 struct sysctlnode node;
2333 struct sk_softc *sc;
2334
2335 node = *rnode;
2336 sc = node.sysctl_data;
2337 t = sc->sk_int_mod;
2338 node.sysctl_data = &t;
2339 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2340 if (error || newp == NULL)
2341 return error;
2342
2343 if (t < SK_IM_MIN || t > SK_IM_MAX)
2344 return EINVAL;
2345
2346 /* update the softc with sysctl-changed value, and mark
2347 for hardware update */
2348 sc->sk_int_mod = t;
2349 sc->sk_int_mod_pending = 1;
2350 return 0;
2351 }
2352
2353 /*
2354 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2355 * set up in skc_attach()
2356 */
2357 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2358 {
2359 int rc;
2360 const struct sysctlnode *node;
2361
2362 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2363 0, CTLTYPE_NODE, "hw", NULL,
2364 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2365 goto err;
2366 }
2367
2368 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2369 0, CTLTYPE_NODE, "msk",
2370 SYSCTL_DESCR("msk interface controls"),
2371 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2372 goto err;
2373 }
2374
2375 msk_root_num = node->sysctl_num;
2376 return;
2377
2378 err:
2379 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2380 }
2381