if_msk.c revision 1.20.2.1 1 /* $NetBSD: if_msk.c,v 1.20.2.1 2008/06/27 15:11:22 simonb Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.20.2.1 2008/06/27 15:11:22 simonb Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/device.h>
69 #include <sys/queue.h>
70 #include <sys/callout.h>
71 #include <sys/sysctl.h>
72 #include <sys/endian.h>
73 #ifdef __NetBSD__
74 #define letoh16 htole16
75 #define letoh32 htole32
76 #endif
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_types.h>
81
82 #include <net/if_media.h>
83
84 #if NBPFILTER > 0
85 #include <net/bpf.h>
86 #endif
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/brgphyreg.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_skreg.h>
100 #include <dev/pci/if_mskvar.h>
101
102 int mskc_probe(struct device *, struct cfdata *, void *);
103 void mskc_attach(struct device *, struct device *self, void *aux);
104 static bool mskc_suspend(device_t PMF_FN_PROTO);
105 static bool mskc_resume(device_t PMF_FN_PROTO);
106 int msk_probe(struct device *, struct cfdata *, void *);
107 void msk_attach(struct device *, struct device *self, void *aux);
108 int mskcprint(void *, const char *);
109 int msk_intr(void *);
110 void msk_intr_yukon(struct sk_if_softc *);
111 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
112 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
113 void msk_txeof(struct sk_if_softc *, int);
114 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
115 void msk_start(struct ifnet *);
116 int msk_ioctl(struct ifnet *, u_long, void *);
117 int msk_init(struct ifnet *);
118 void msk_init_yukon(struct sk_if_softc *);
119 void msk_stop(struct ifnet *, int);
120 void msk_watchdog(struct ifnet *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128
129 void msk_update_int_mod(struct sk_softc *);
130
131 int msk_miibus_readreg(struct device *, int, int);
132 void msk_miibus_writereg(struct device *, int, int, int);
133 void msk_miibus_statchg(struct device *);
134
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x) if (mskdebug) printf x
143 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
144 int mskdebug = MSK_DEBUG;
145
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156
157 /* supported device vendors */
158 static const struct msk_product {
159 pci_vendor_id_t msk_vendor;
160 pci_product_id_t msk_product;
161 } msk_products[] = {
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 return CSR_READ_4(sc, reg);
197 }
198
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_2(sc, reg);
203 }
204
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_1(sc, reg);
209 }
210
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 CSR_WRITE_4(sc, reg, x);
215 }
216
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 CSR_WRITE_2(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 CSR_WRITE_1(sc, reg, x);
227 }
228
229 int
230 msk_miibus_readreg(struct device *dev, int phy, int reg)
231 {
232 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
233 u_int16_t val;
234 int i;
235
236 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238
239 for (i = 0; i < SK_TIMEOUT; i++) {
240 DELAY(1);
241 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 if (val & YU_SMICR_READ_VALID)
243 break;
244 }
245
246 if (i == SK_TIMEOUT) {
247 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
248 return (0);
249 }
250
251 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
252 SK_TIMEOUT));
253
254 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
255
256 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
257 phy, reg, val));
258
259 return (val);
260 }
261
262 void
263 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
264 {
265 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
266 int i;
267
268 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
269 phy, reg, val));
270
271 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
272 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
274
275 for (i = 0; i < SK_TIMEOUT; i++) {
276 DELAY(1);
277 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
278 break;
279 }
280
281 if (i == SK_TIMEOUT)
282 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
283 }
284
285 void
286 msk_miibus_statchg(struct device *dev)
287 {
288 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
289 struct mii_data *mii = &sc_if->sk_mii;
290 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
291 int gpcr;
292
293 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
294 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
295
296 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
297 /* Set speed. */
298 gpcr |= YU_GPCR_SPEED_DIS;
299 switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 case IFM_1000_SX:
301 case IFM_1000_LX:
302 case IFM_1000_CX:
303 case IFM_1000_T:
304 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
305 break;
306 case IFM_100_TX:
307 gpcr |= YU_GPCR_SPEED;
308 break;
309 }
310
311 /* Set duplex. */
312 gpcr |= YU_GPCR_DPLX_DIS;
313 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
314 gpcr |= YU_GPCR_DUPLEX;
315
316 /* Disable flow control. */
317 gpcr |= YU_GPCR_FCTL_DIS;
318 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
319 }
320
321 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
322
323 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
324 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
325 }
326
327 #define HASH_BITS 6
328
329 void
330 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
331 {
332 char *addr = addrv;
333 int base = XM_RXFILT_ENTRY(slot);
334
335 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
336 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
337 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 u_int32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 u_int16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 int i, nexti;
416
417 bzero((char *)rd->sk_rx_ring,
418 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 for (i = 0; i < MSK_RX_RING_CNT; i++) {
430 if (msk_newbuf(sc_if, i, NULL,
431 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
432 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
433 return (ENOBUFS);
434 }
435 }
436
437 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 sc_if->sk_cdata.sk_rx_cons = 0;
439
440 return (0);
441 }
442
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 struct sk_softc *sc = sc_if->sk_softc;
447 struct msk_chain_data *cd = &sc_if->sk_cdata;
448 struct msk_ring_data *rd = sc_if->sk_rdata;
449 bus_dmamap_t dmamap;
450 struct sk_txmap_entry *entry;
451 int i, nexti;
452
453 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
454 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455
456 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 if (i == (MSK_TX_RING_CNT - 1))
460 nexti = 0;
461 else
462 nexti = i + 1;
463 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464
465 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 return (ENOBUFS);
468
469 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 if (!entry) {
471 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 return (ENOBUFS);
473 }
474 entry->dmamap = dmamap;
475 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 }
477
478 sc_if->sk_cdata.sk_tx_prod = 0;
479 sc_if->sk_cdata.sk_tx_cons = 0;
480 sc_if->sk_cdata.sk_tx_cnt = 0;
481
482 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484
485 return (0);
486 }
487
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 bus_dmamap_t dmamap)
491 {
492 struct mbuf *m_new = NULL;
493 struct sk_chain *c;
494 struct msk_rx_desc *r;
495
496 if (m == NULL) {
497 void *buf = NULL;
498
499 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 if (m_new == NULL)
501 return (ENOBUFS);
502
503 /* Allocate the jumbo buffer */
504 buf = msk_jalloc(sc_if);
505 if (buf == NULL) {
506 m_freem(m_new);
507 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 return (ENOBUFS);
510 }
511
512 /* Attach the buffer to the mbuf */
513 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 } else {
516 /*
517 * We're re-using a previously allocated mbuf;
518 * be sure to re-init pointers and lengths to
519 * default values.
520 */
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 }
525 m_adj(m_new, ETHER_ALIGN);
526
527 c = &sc_if->sk_cdata.sk_rx_chain[i];
528 r = c->sk_le;
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 (((vaddr_t)m_new->m_data
532 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 r->sk_len = htole16(SK_JLEN);
534 r->sk_ctl = 0;
535 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536
537 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538
539 return (0);
540 }
541
542 /*
543 * Memory management for jumbo frames.
544 */
545
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 struct sk_softc *sc = sc_if->sk_softc;
550 char *ptr, *kva;
551 bus_dma_segment_t seg;
552 int i, rseg, state, error;
553 struct sk_jpool_entry *entry;
554
555 state = error = 0;
556
557 /* Grab a big chunk o' storage. */
558 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 aprint_error(": can't alloc rx buffers");
561 return (ENOBUFS);
562 }
563
564 state = 1;
565 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 BUS_DMA_NOWAIT)) {
567 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 2;
573 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 aprint_error(": can't create dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 3;
581 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 aprint_error(": can't load dma map");
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 4;
589 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591
592 LIST_INIT(&sc_if->sk_jfree_listhead);
593 LIST_INIT(&sc_if->sk_jinuse_listhead);
594 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
595
596 /*
597 * Now divide it up into 9K pieces and save the addresses
598 * in an array.
599 */
600 ptr = sc_if->sk_cdata.sk_jumbo_buf;
601 for (i = 0; i < MSK_JSLOTS; i++) {
602 sc_if->sk_cdata.sk_jslots[i] = ptr;
603 ptr += SK_JLEN;
604 entry = malloc(sizeof(struct sk_jpool_entry),
605 M_DEVBUF, M_NOWAIT);
606 if (entry == NULL) {
607 sc_if->sk_cdata.sk_jumbo_buf = NULL;
608 aprint_error(": no memory for jumbo buffer queue!");
609 error = ENOBUFS;
610 goto out;
611 }
612 entry->slot = i;
613 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
614 entry, jpool_entries);
615 }
616 out:
617 if (error != 0) {
618 switch (state) {
619 case 4:
620 bus_dmamap_unload(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 3:
623 bus_dmamap_destroy(sc->sc_dmatag,
624 sc_if->sk_cdata.sk_rx_jumbo_map);
625 case 2:
626 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 case 1:
628 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
629 break;
630 default:
631 break;
632 }
633 }
634
635 return (error);
636 }
637
638 /*
639 * Allocate a jumbo buffer.
640 */
641 void *
642 msk_jalloc(struct sk_if_softc *sc_if)
643 {
644 struct sk_jpool_entry *entry;
645
646 mutex_enter(&sc_if->sk_jpool_mtx);
647 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648
649 if (entry == NULL) {
650 mutex_exit(&sc_if->sk_jpool_mtx);
651 return NULL;
652 }
653
654 LIST_REMOVE(entry, jpool_entries);
655 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
656 mutex_exit(&sc_if->sk_jpool_mtx);
657 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
658 }
659
660 /*
661 * Release a jumbo buffer.
662 */
663 void
664 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
665 {
666 struct sk_jpool_entry *entry;
667 struct sk_if_softc *sc;
668 int i;
669
670 /* Extract the softc struct pointer. */
671 sc = (struct sk_if_softc *)arg;
672
673 if (sc == NULL)
674 panic("msk_jfree: can't find softc pointer!");
675
676 /* calculate the slot this buffer belongs to */
677 i = ((vaddr_t)buf
678 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
679
680 if ((i < 0) || (i >= MSK_JSLOTS))
681 panic("msk_jfree: asked to free buffer that we don't manage!");
682
683 mutex_enter(&sc->sk_jpool_mtx);
684 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
685 if (entry == NULL)
686 panic("msk_jfree: buffer not in use!");
687 entry->slot = i;
688 LIST_REMOVE(entry, jpool_entries);
689 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
690 mutex_exit(&sc->sk_jpool_mtx);
691
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 }
695
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 struct sk_if_softc *sc_if = ifp->if_softc;
700 int s, error = 0;
701
702 s = splnet();
703
704 DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 error = ether_ioctl(ifp, cmd, data);
706
707 if (error == ENETRESET) {
708 error = 0;
709 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
710 ;
711 else if (ifp->if_flags & IFF_RUNNING) {
712 /*
713 * Multicast list has changed; set the hardware
714 * filter accordingly.
715 */
716 msk_setmulti(sc_if);
717 }
718 }
719
720 splx(s);
721 return (error);
722 }
723
724 void
725 msk_update_int_mod(struct sk_softc *sc)
726 {
727 u_int32_t imtimer_ticks;
728
729 /*
730 * Configure interrupt moderation. The moderation timer
731 * defers interrupts specified in the interrupt moderation
732 * timer mask based on the timeout specified in the interrupt
733 * moderation timer init register. Each bit in the timer
734 * register represents one tick, so to specify a timeout in
735 * microseconds, we have to multiply by the correct number of
736 * ticks-per-microsecond.
737 */
738 switch (sc->sk_type) {
739 case SK_YUKON_EC:
740 case SK_YUKON_EC_U:
741 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
742 break;
743 case SK_YUKON_FE:
744 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
745 break;
746 case SK_YUKON_XL:
747 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
748 break;
749 default:
750 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
751 }
752 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
753 sc->sk_int_mod);
754 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
755 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
756 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
757 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
758 sc->sk_int_mod_pending = 0;
759 }
760
761 static int
762 msk_lookup(const struct pci_attach_args *pa)
763 {
764 const struct msk_product *pmsk;
765
766 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
767 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
768 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
769 return 1;
770 }
771 return 0;
772 }
773
774 /*
775 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
776 * IDs against our list and return a device name if we find a match.
777 */
778 int
779 mskc_probe(struct device *parent, struct cfdata *match,
780 void *aux)
781 {
782 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
783
784 return msk_lookup(pa);
785 }
786
787 /*
788 * Force the GEnesis into reset, then bring it out of reset.
789 */
790 void msk_reset(struct sk_softc *sc)
791 {
792 u_int32_t imtimer_ticks, reg1;
793 int reg;
794
795 DPRINTFN(2, ("msk_reset\n"));
796
797 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
798 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
799
800 DELAY(1000);
801 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
802 DELAY(2);
803 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
804 sk_win_write_1(sc, SK_TESTCTL1, 2);
805
806 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
807 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
808 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
809 else
810 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
811 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
812
813 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
814 sk_win_write_1(sc, SK_Y2_CLKGATE,
815 SK_Y2_CLKGATE_LINK1_GATE_DIS |
816 SK_Y2_CLKGATE_LINK2_GATE_DIS |
817 SK_Y2_CLKGATE_LINK1_CORE_DIS |
818 SK_Y2_CLKGATE_LINK2_CORE_DIS |
819 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
820 else
821 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
822
823 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
824 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
825 DELAY(1000);
826 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
827 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
828
829 sk_win_write_1(sc, SK_TESTCTL1, 1);
830
831 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
832 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
833 CSR_READ_2(sc, SK_LINK_CTRL)));
834
835 /* Disable ASF */
836 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
837 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
838
839 /* Clear I2C IRQ noise */
840 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
841
842 /* Disable hardware timer */
843 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
844 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
845
846 /* Disable descriptor polling */
847 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
848
849 /* Disable time stamps */
850 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
851 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
852
853 /* Enable RAM interface */
854 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
855 for (reg = SK_TO0;reg <= SK_TO11; reg++)
856 sk_win_write_1(sc, reg, 36);
857 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
858 for (reg = SK_TO0;reg <= SK_TO11; reg++)
859 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
860
861 /*
862 * Configure interrupt moderation. The moderation timer
863 * defers interrupts specified in the interrupt moderation
864 * timer mask based on the timeout specified in the interrupt
865 * moderation timer init register. Each bit in the timer
866 * register represents one tick, so to specify a timeout in
867 * microseconds, we have to multiply by the correct number of
868 * ticks-per-microsecond.
869 */
870 switch (sc->sk_type) {
871 case SK_YUKON_EC:
872 case SK_YUKON_EC_U:
873 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
874 break;
875 case SK_YUKON_FE:
876 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
877 break;
878 case SK_YUKON_XL:
879 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
880 break;
881 default:
882 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
883 }
884
885 /* Reset status ring. */
886 bzero((char *)sc->sk_status_ring,
887 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
888 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
889 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
890 sc->sk_status_idx = 0;
891 sc->sk_status_own_idx = 0;
892
893 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
894 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
895
896 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
897 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
898 sc->sk_status_map->dm_segs[0].ds_addr);
899 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
900 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
901 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
902 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
903 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
904 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
905 } else {
906 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
907 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
908 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
909 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
910 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
911 }
912
913 #if 0
914 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
915 #endif
916 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
917
918 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
919
920 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
921 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
922 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
923
924 msk_update_int_mod(sc);
925 }
926
927 int
928 msk_probe(struct device *parent, struct cfdata *match,
929 void *aux)
930 {
931 struct skc_attach_args *sa = aux;
932
933 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
934 return (0);
935
936 switch (sa->skc_type) {
937 case SK_YUKON_XL:
938 case SK_YUKON_EC_U:
939 case SK_YUKON_EC:
940 case SK_YUKON_FE:
941 return (1);
942 }
943
944 return (0);
945 }
946
947 static bool
948 msk_resume(device_t dv PMF_FN_ARGS)
949 {
950 struct sk_if_softc *sc_if = device_private(dv);
951
952 msk_init_yukon(sc_if);
953 return true;
954 }
955
956 /*
957 * Each XMAC chip is attached as a separate logical IP interface.
958 * Single port cards will have only one logical interface of course.
959 */
960 void
961 msk_attach(struct device *parent, struct device *self, void *aux)
962 {
963 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
964 struct sk_softc *sc = (struct sk_softc *)parent;
965 struct skc_attach_args *sa = aux;
966 struct ifnet *ifp;
967 void *kva;
968 bus_dma_segment_t seg;
969 int i, rseg;
970 u_int32_t chunk, val;
971
972 sc_if->sk_port = sa->skc_port;
973 sc_if->sk_softc = sc;
974 sc->sk_if[sa->skc_port] = sc_if;
975
976 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
977
978 /*
979 * Get station address for this interface. Note that
980 * dual port cards actually come with three station
981 * addresses: one for each port, plus an extra. The
982 * extra one is used by the SysKonnect driver software
983 * as a 'virtual' station address for when both ports
984 * are operating in failover mode. Currently we don't
985 * use this extra address.
986 */
987 for (i = 0; i < ETHER_ADDR_LEN; i++)
988 sc_if->sk_enaddr[i] =
989 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
990
991 aprint_normal(": Ethernet address %s\n",
992 ether_sprintf(sc_if->sk_enaddr));
993
994 /*
995 * Set up RAM buffer addresses. The NIC will have a certain
996 * amount of SRAM on it, somewhere between 512K and 2MB. We
997 * need to divide this up a) between the transmitter and
998 * receiver and b) between the two XMACs, if this is a
999 * dual port NIC. Our algorithm is to divide up the memory
1000 * evenly so that everyone gets a fair share.
1001 *
1002 * Just to be contrary, Yukon2 appears to have separate memory
1003 * for each MAC.
1004 */
1005 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1006 val = sc->sk_rboff / sizeof(u_int64_t);
1007 sc_if->sk_rx_ramstart = val;
1008 val += (chunk / sizeof(u_int64_t));
1009 sc_if->sk_rx_ramend = val - 1;
1010 chunk = sc->sk_ramsize - chunk;
1011 sc_if->sk_tx_ramstart = val;
1012 val += (chunk / sizeof(u_int64_t));
1013 sc_if->sk_tx_ramend = val - 1;
1014
1015 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1016 " tx_ramstart=%#x tx_ramend=%#x\n",
1017 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1018 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1019
1020 /* Allocate the descriptor queues. */
1021 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1022 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1023 aprint_error(": can't alloc rx buffers\n");
1024 goto fail;
1025 }
1026 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1027 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1028 aprint_error(": can't map dma buffers (%zu bytes)\n",
1029 sizeof(struct msk_ring_data));
1030 goto fail_1;
1031 }
1032 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1033 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1034 &sc_if->sk_ring_map)) {
1035 aprint_error(": can't create dma map\n");
1036 goto fail_2;
1037 }
1038 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1039 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1040 aprint_error(": can't load dma map\n");
1041 goto fail_3;
1042 }
1043 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1044 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1045
1046 ifp = &sc_if->sk_ethercom.ec_if;
1047 /* Try to allocate memory for jumbo buffers. */
1048 if (msk_alloc_jumbo_mem(sc_if)) {
1049 aprint_error(": jumbo buffer allocation failed\n");
1050 goto fail_3;
1051 }
1052 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1053 if (sc->sk_type != SK_YUKON_FE)
1054 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1055
1056 ifp->if_softc = sc_if;
1057 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1058 ifp->if_ioctl = msk_ioctl;
1059 ifp->if_start = msk_start;
1060 ifp->if_stop = msk_stop;
1061 ifp->if_init = msk_init;
1062 ifp->if_watchdog = msk_watchdog;
1063 ifp->if_baudrate = 1000000000;
1064 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1065 IFQ_SET_READY(&ifp->if_snd);
1066 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1067
1068 /*
1069 * Do miibus setup.
1070 */
1071 msk_init_yukon(sc_if);
1072
1073 DPRINTFN(2, ("msk_attach: 1\n"));
1074
1075 sc_if->sk_mii.mii_ifp = ifp;
1076 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1077 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1078 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1079
1080 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1081 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1082 ether_mediachange, ether_mediastatus);
1083 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1084 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1085 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1086 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1087 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1088 0, NULL);
1089 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1090 } else
1091 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1092
1093 callout_init(&sc_if->sk_tick_ch, 0);
1094 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1095 callout_schedule(&sc_if->sk_tick_ch, hz);
1096
1097 /*
1098 * Call MI attach routines.
1099 */
1100 if_attach(ifp);
1101 ether_ifattach(ifp, sc_if->sk_enaddr);
1102
1103 if (!pmf_device_register(self, NULL, msk_resume))
1104 aprint_error_dev(self, "couldn't establish power handler\n");
1105 else
1106 pmf_class_network_register(self, ifp);
1107
1108 #if NRND > 0
1109 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1110 RND_TYPE_NET, 0);
1111 #endif
1112
1113 DPRINTFN(2, ("msk_attach: end\n"));
1114 return;
1115
1116 fail_3:
1117 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1118 fail_2:
1119 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1120 fail_1:
1121 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1122 fail:
1123 sc->sk_if[sa->skc_port] = NULL;
1124 }
1125
1126 int
1127 mskcprint(void *aux, const char *pnp)
1128 {
1129 struct skc_attach_args *sa = aux;
1130
1131 if (pnp)
1132 aprint_normal("sk port %c at %s",
1133 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1134 else
1135 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1136 return (UNCONF);
1137 }
1138
1139 /*
1140 * Attach the interface. Allocate softc structures, do ifmedia
1141 * setup and ethernet/BPF attach.
1142 */
1143 void
1144 mskc_attach(struct device *parent, struct device *self, void *aux)
1145 {
1146 struct sk_softc *sc = (struct sk_softc *)self;
1147 struct pci_attach_args *pa = aux;
1148 struct skc_attach_args skca;
1149 pci_chipset_tag_t pc = pa->pa_pc;
1150 pcireg_t command, memtype;
1151 pci_intr_handle_t ih;
1152 const char *intrstr = NULL;
1153 bus_size_t size;
1154 int rc, sk_nodenum;
1155 u_int8_t hw, skrs;
1156 const char *revstr = NULL;
1157 const struct sysctlnode *node;
1158 void *kva;
1159 bus_dma_segment_t seg;
1160 int rseg;
1161
1162 DPRINTFN(2, ("begin mskc_attach\n"));
1163
1164 /*
1165 * Handle power management nonsense.
1166 */
1167 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1168
1169 if (command == 0x01) {
1170 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1171 if (command & SK_PSTATE_MASK) {
1172 u_int32_t iobase, membase, irq;
1173
1174 /* Save important PCI config data. */
1175 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1176 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1177 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1178
1179 /* Reset the power state. */
1180 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1181 "-- setting to D0\n",
1182 command & SK_PSTATE_MASK);
1183 command &= 0xFFFFFFFC;
1184 pci_conf_write(pc, pa->pa_tag,
1185 SK_PCI_PWRMGMTCTRL, command);
1186
1187 /* Restore PCI config data. */
1188 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1189 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1190 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1191 }
1192 }
1193
1194 /*
1195 * Map control/status registers.
1196 */
1197
1198 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1199 switch (memtype) {
1200 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1201 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1202 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1203 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1204 NULL, &size) == 0)
1205 break;
1206 default:
1207 aprint_error(": can't map mem space\n");
1208 return;
1209 }
1210
1211 sc->sc_dmatag = pa->pa_dmat;
1212
1213 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1214 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1215
1216 /* bail out here if chip is not recognized */
1217 if (!(SK_IS_YUKON2(sc))) {
1218 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1219 goto fail_1;
1220 }
1221 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1222
1223 /* Allocate interrupt */
1224 if (pci_intr_map(pa, &ih)) {
1225 aprint_error(": couldn't map interrupt\n");
1226 goto fail_1;
1227 }
1228
1229 intrstr = pci_intr_string(pc, ih);
1230 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1231 if (sc->sk_intrhand == NULL) {
1232 aprint_error(": couldn't establish interrupt");
1233 if (intrstr != NULL)
1234 aprint_error(" at %s", intrstr);
1235 aprint_error("\n");
1236 goto fail_1;
1237 }
1238
1239 if (bus_dmamem_alloc(sc->sc_dmatag,
1240 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1241 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1242 aprint_error(": can't alloc status buffers\n");
1243 goto fail_2;
1244 }
1245
1246 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1247 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1248 &kva, BUS_DMA_NOWAIT)) {
1249 aprint_error(": can't map dma buffers (%zu bytes)\n",
1250 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1251 goto fail_3;
1252 }
1253 if (bus_dmamap_create(sc->sc_dmatag,
1254 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1255 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1256 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1257 aprint_error(": can't create dma map\n");
1258 goto fail_4;
1259 }
1260 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1261 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1262 NULL, BUS_DMA_NOWAIT)) {
1263 aprint_error(": can't load dma map\n");
1264 goto fail_5;
1265 }
1266 sc->sk_status_ring = (struct msk_status_desc *)kva;
1267
1268 /* Reset the adapter. */
1269 msk_reset(sc);
1270
1271 skrs = sk_win_read_1(sc, SK_EPROM0);
1272 if (skrs == 0x00)
1273 sc->sk_ramsize = 0x20000;
1274 else
1275 sc->sk_ramsize = skrs * (1<<12);
1276 sc->sk_rboff = SK_RBOFF_0;
1277
1278 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1279 sc->sk_ramsize, sc->sk_ramsize / 1024,
1280 sc->sk_rboff));
1281
1282 switch (sc->sk_type) {
1283 case SK_YUKON_XL:
1284 sc->sk_name = "Yukon-2 XL";
1285 break;
1286 case SK_YUKON_EC_U:
1287 sc->sk_name = "Yukon-2 EC Ultra";
1288 break;
1289 case SK_YUKON_EC:
1290 sc->sk_name = "Yukon-2 EC";
1291 break;
1292 case SK_YUKON_FE:
1293 sc->sk_name = "Yukon-2 FE";
1294 break;
1295 default:
1296 sc->sk_name = "Yukon (Unknown)";
1297 }
1298
1299 if (sc->sk_type == SK_YUKON_XL) {
1300 switch (sc->sk_rev) {
1301 case SK_YUKON_XL_REV_A0:
1302 sc->sk_workaround = 0;
1303 revstr = "A0";
1304 break;
1305 case SK_YUKON_XL_REV_A1:
1306 sc->sk_workaround = SK_WA_4109;
1307 revstr = "A1";
1308 break;
1309 case SK_YUKON_XL_REV_A2:
1310 sc->sk_workaround = SK_WA_4109;
1311 revstr = "A2";
1312 break;
1313 case SK_YUKON_XL_REV_A3:
1314 sc->sk_workaround = SK_WA_4109;
1315 revstr = "A3";
1316 break;
1317 default:
1318 sc->sk_workaround = 0;
1319 break;
1320 }
1321 }
1322
1323 if (sc->sk_type == SK_YUKON_EC) {
1324 switch (sc->sk_rev) {
1325 case SK_YUKON_EC_REV_A1:
1326 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1327 revstr = "A1";
1328 break;
1329 case SK_YUKON_EC_REV_A2:
1330 sc->sk_workaround = SK_WA_4109;
1331 revstr = "A2";
1332 break;
1333 case SK_YUKON_EC_REV_A3:
1334 sc->sk_workaround = SK_WA_4109;
1335 revstr = "A3";
1336 break;
1337 default:
1338 sc->sk_workaround = 0;
1339 break;
1340 }
1341 }
1342
1343 if (sc->sk_type == SK_YUKON_FE) {
1344 sc->sk_workaround = SK_WA_4109;
1345 switch (sc->sk_rev) {
1346 case SK_YUKON_FE_REV_A1:
1347 revstr = "A1";
1348 break;
1349 case SK_YUKON_FE_REV_A2:
1350 revstr = "A2";
1351 break;
1352 default:
1353 sc->sk_workaround = 0;
1354 break;
1355 }
1356 }
1357
1358 if (sc->sk_type == SK_YUKON_EC_U) {
1359 sc->sk_workaround = SK_WA_4109;
1360 switch (sc->sk_rev) {
1361 case SK_YUKON_EC_U_REV_A0:
1362 revstr = "A0";
1363 break;
1364 case SK_YUKON_EC_U_REV_A1:
1365 revstr = "A1";
1366 break;
1367 case SK_YUKON_EC_U_REV_B0:
1368 revstr = "B0";
1369 break;
1370 default:
1371 sc->sk_workaround = 0;
1372 break;
1373 }
1374 }
1375
1376 /* Announce the product name. */
1377 aprint_normal(", %s", sc->sk_name);
1378 if (revstr != NULL)
1379 aprint_normal(" rev. %s", revstr);
1380 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1381
1382 sc->sk_macs = 1;
1383
1384 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1385 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1386 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1387 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1388 sc->sk_macs++;
1389 }
1390
1391 skca.skc_port = SK_PORT_A;
1392 skca.skc_type = sc->sk_type;
1393 skca.skc_rev = sc->sk_rev;
1394 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1395
1396 if (sc->sk_macs > 1) {
1397 skca.skc_port = SK_PORT_B;
1398 skca.skc_type = sc->sk_type;
1399 skca.skc_rev = sc->sk_rev;
1400 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1401 }
1402
1403 /* Turn on the 'driver is loaded' LED. */
1404 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1405
1406 /* skc sysctl setup */
1407
1408 sc->sk_int_mod = SK_IM_DEFAULT;
1409 sc->sk_int_mod_pending = 0;
1410
1411 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1412 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1413 SYSCTL_DESCR("mskc per-controller controls"),
1414 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1415 CTL_EOL)) != 0) {
1416 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1417 goto fail_6;
1418 }
1419
1420 sk_nodenum = node->sysctl_num;
1421
1422 /* interrupt moderation time in usecs */
1423 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1424 CTLFLAG_READWRITE,
1425 CTLTYPE_INT, "int_mod",
1426 SYSCTL_DESCR("msk interrupt moderation timer"),
1427 msk_sysctl_handler, 0, sc,
1428 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1429 CTL_EOL)) != 0) {
1430 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1431 goto fail_6;
1432 }
1433
1434 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1435 aprint_error_dev(self, "couldn't establish power handler\n");
1436
1437 return;
1438
1439 fail_6:
1440 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1441 fail_5:
1442 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1443 fail_4:
1444 bus_dmamem_unmap(sc->sc_dmatag, kva,
1445 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1446 fail_3:
1447 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1448 fail_2:
1449 pci_intr_disestablish(pc, sc->sk_intrhand);
1450 fail_1:
1451 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1452 }
1453
1454 int
1455 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1456 {
1457 struct sk_softc *sc = sc_if->sk_softc;
1458 struct msk_tx_desc *f = NULL;
1459 u_int32_t frag, cur;
1460 int i;
1461 struct sk_txmap_entry *entry;
1462 bus_dmamap_t txmap;
1463
1464 DPRINTFN(2, ("msk_encap\n"));
1465
1466 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1467 if (entry == NULL) {
1468 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1469 return (ENOBUFS);
1470 }
1471 txmap = entry->dmamap;
1472
1473 cur = frag = *txidx;
1474
1475 #ifdef MSK_DEBUG
1476 if (mskdebug >= 2)
1477 msk_dump_mbuf(m_head);
1478 #endif
1479
1480 /*
1481 * Start packing the mbufs in this chain into
1482 * the fragment pointers. Stop when we run out
1483 * of fragments or hit the end of the mbuf chain.
1484 */
1485 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1486 BUS_DMA_NOWAIT)) {
1487 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1488 return (ENOBUFS);
1489 }
1490
1491 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1492 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1493 bus_dmamap_unload(sc->sc_dmatag, txmap);
1494 return (ENOBUFS);
1495 }
1496
1497 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1498
1499 /* Sync the DMA map. */
1500 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1501 BUS_DMASYNC_PREWRITE);
1502
1503 for (i = 0; i < txmap->dm_nsegs; i++) {
1504 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1505 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1506 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1507 f->sk_ctl = 0;
1508 if (i == 0)
1509 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1510 else
1511 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1512 cur = frag;
1513 SK_INC(frag, MSK_TX_RING_CNT);
1514 }
1515
1516 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1517 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1518
1519 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1520 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1521
1522 /* Sync descriptors before handing to chip */
1523 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1524 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1525
1526 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1527
1528 /* Sync first descriptor to hand it off */
1529 MSK_CDTXSYNC(sc_if, *txidx, 1,
1530 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1531
1532 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1533
1534 #ifdef MSK_DEBUG
1535 if (mskdebug >= 2) {
1536 struct msk_tx_desc *le;
1537 u_int32_t idx;
1538 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1539 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1540 msk_dump_txdesc(le, idx);
1541 }
1542 }
1543 #endif
1544
1545 *txidx = frag;
1546
1547 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1548
1549 return (0);
1550 }
1551
1552 void
1553 msk_start(struct ifnet *ifp)
1554 {
1555 struct sk_if_softc *sc_if = ifp->if_softc;
1556 struct mbuf *m_head = NULL;
1557 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1558 int pkts = 0;
1559
1560 DPRINTFN(2, ("msk_start\n"));
1561
1562 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1563 IFQ_POLL(&ifp->if_snd, m_head);
1564 if (m_head == NULL)
1565 break;
1566
1567 /*
1568 * Pack the data into the transmit ring. If we
1569 * don't have room, set the OACTIVE flag and wait
1570 * for the NIC to drain the ring.
1571 */
1572 if (msk_encap(sc_if, m_head, &idx)) {
1573 ifp->if_flags |= IFF_OACTIVE;
1574 break;
1575 }
1576
1577 /* now we are committed to transmit the packet */
1578 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1579 pkts++;
1580
1581 /*
1582 * If there's a BPF listener, bounce a copy of this frame
1583 * to him.
1584 */
1585 #if NBPFILTER > 0
1586 if (ifp->if_bpf)
1587 bpf_mtap(ifp->if_bpf, m_head);
1588 #endif
1589 }
1590 if (pkts == 0)
1591 return;
1592
1593 /* Transmit */
1594 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1595 sc_if->sk_cdata.sk_tx_prod = idx;
1596 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1597
1598 /* Set a timeout in case the chip goes out to lunch. */
1599 ifp->if_timer = 5;
1600 }
1601 }
1602
1603 void
1604 msk_watchdog(struct ifnet *ifp)
1605 {
1606 struct sk_if_softc *sc_if = ifp->if_softc;
1607 u_int32_t reg;
1608 int idx;
1609
1610 /*
1611 * Reclaim first as there is a possibility of losing Tx completion
1612 * interrupts.
1613 */
1614 if (sc_if->sk_port == SK_PORT_A)
1615 reg = SK_STAT_BMU_TXA1_RIDX;
1616 else
1617 reg = SK_STAT_BMU_TXA2_RIDX;
1618
1619 idx = sk_win_read_2(sc_if->sk_softc, reg);
1620 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1621 msk_txeof(sc_if, idx);
1622 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1623 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1624
1625 ifp->if_oerrors++;
1626
1627 /* XXX Resets both ports; we shouldn't do that. */
1628 msk_reset(sc_if->sk_softc);
1629 msk_init(ifp);
1630 }
1631 }
1632 }
1633
1634 static bool
1635 mskc_suspend(device_t dv PMF_FN_ARGS)
1636 {
1637 struct sk_softc *sc = device_private(dv);
1638
1639 DPRINTFN(2, ("mskc_suspend\n"));
1640
1641 /* Turn off the 'driver is loaded' LED. */
1642 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1643
1644 return true;
1645 }
1646
1647 static bool
1648 mskc_resume(device_t dv PMF_FN_ARGS)
1649 {
1650 struct sk_softc *sc = device_private(dv);
1651
1652 DPRINTFN(2, ("mskc_resume\n"));
1653
1654 msk_reset(sc);
1655 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1656
1657 return true;
1658 }
1659
1660 __inline int
1661 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1662 {
1663 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1664 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1665 YU_RXSTAT_JABBER)) != 0 ||
1666 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1667 YU_RXSTAT_BYTES(stat) != len)
1668 return (0);
1669
1670 return (1);
1671 }
1672
1673 void
1674 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1675 {
1676 struct sk_softc *sc = sc_if->sk_softc;
1677 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1678 struct mbuf *m;
1679 struct sk_chain *cur_rx;
1680 int cur, total_len = len;
1681 bus_dmamap_t dmamap;
1682
1683 DPRINTFN(2, ("msk_rxeof\n"));
1684
1685 cur = sc_if->sk_cdata.sk_rx_cons;
1686 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1687 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1688
1689 /* Sync the descriptor */
1690 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1691
1692 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1693 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1694
1695 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1696 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1697
1698 m = cur_rx->sk_mbuf;
1699 cur_rx->sk_mbuf = NULL;
1700
1701 if (total_len < SK_MIN_FRAMELEN ||
1702 total_len > ETHER_MAX_LEN_JUMBO ||
1703 msk_rxvalid(sc, rxstat, total_len) == 0) {
1704 ifp->if_ierrors++;
1705 msk_newbuf(sc_if, cur, m, dmamap);
1706 return;
1707 }
1708
1709 /*
1710 * Try to allocate a new jumbo buffer. If that fails, copy the
1711 * packet to mbufs and put the jumbo buffer back in the ring
1712 * so it can be re-used. If allocating mbufs fails, then we
1713 * have to drop the packet.
1714 */
1715 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1716 struct mbuf *m0;
1717 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1718 total_len + ETHER_ALIGN, 0, ifp, NULL);
1719 msk_newbuf(sc_if, cur, m, dmamap);
1720 if (m0 == NULL) {
1721 ifp->if_ierrors++;
1722 return;
1723 }
1724 m_adj(m0, ETHER_ALIGN);
1725 m = m0;
1726 } else {
1727 m->m_pkthdr.rcvif = ifp;
1728 m->m_pkthdr.len = m->m_len = total_len;
1729 }
1730
1731 ifp->if_ipackets++;
1732
1733 #if NBPFILTER > 0
1734 if (ifp->if_bpf)
1735 bpf_mtap(ifp->if_bpf, m);
1736 #endif
1737
1738 /* pass it on. */
1739 (*ifp->if_input)(ifp, m);
1740 }
1741
1742 void
1743 msk_txeof(struct sk_if_softc *sc_if, int idx)
1744 {
1745 struct sk_softc *sc = sc_if->sk_softc;
1746 struct msk_tx_desc *cur_tx;
1747 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1748 u_int32_t sk_ctl;
1749 struct sk_txmap_entry *entry;
1750 int cons, prog;
1751
1752 DPRINTFN(2, ("msk_txeof\n"));
1753
1754 /*
1755 * Go through our tx ring and free mbufs for those
1756 * frames that have been sent.
1757 */
1758 cons = sc_if->sk_cdata.sk_tx_cons;
1759 prog = 0;
1760 while (cons != idx) {
1761 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1762 break;
1763 prog++;
1764 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1765
1766 MSK_CDTXSYNC(sc_if, cons, 1,
1767 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1768 sk_ctl = cur_tx->sk_ctl;
1769 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1770 #ifdef MSK_DEBUG
1771 if (mskdebug >= 2)
1772 msk_dump_txdesc(cur_tx, cons);
1773 #endif
1774 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1775 ifp->if_opackets++;
1776 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1777 entry = sc_if->sk_cdata.sk_tx_map[cons];
1778
1779 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1780 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1781
1782 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1783 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1784 link);
1785 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1786 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1787 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1788 }
1789 sc_if->sk_cdata.sk_tx_cnt--;
1790 SK_INC(cons, MSK_TX_RING_CNT);
1791 }
1792 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1793
1794 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1795 ifp->if_flags &= ~IFF_OACTIVE;
1796
1797 if (prog > 0)
1798 sc_if->sk_cdata.sk_tx_cons = cons;
1799 }
1800
1801 void
1802 msk_tick(void *xsc_if)
1803 {
1804 struct sk_if_softc *sc_if = xsc_if;
1805 struct mii_data *mii = &sc_if->sk_mii;
1806
1807 mii_tick(mii);
1808 callout_schedule(&sc_if->sk_tick_ch, hz);
1809 }
1810
1811 void
1812 msk_intr_yukon(struct sk_if_softc *sc_if)
1813 {
1814 u_int8_t status;
1815
1816 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1817 /* RX overrun */
1818 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1819 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1820 SK_RFCTL_RX_FIFO_OVER);
1821 }
1822 /* TX underrun */
1823 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1824 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1825 SK_TFCTL_TX_FIFO_UNDER);
1826 }
1827
1828 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1829 }
1830
1831 int
1832 msk_intr(void *xsc)
1833 {
1834 struct sk_softc *sc = xsc;
1835 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1836 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1837 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1838 int claimed = 0;
1839 u_int32_t status;
1840 uint32_t st_status;
1841 uint16_t st_len;
1842 uint8_t st_opcode, st_link;
1843 struct msk_status_desc *cur_st;
1844
1845 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1846 if (status == 0) {
1847 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1848 return (0);
1849 }
1850
1851 status = CSR_READ_4(sc, SK_ISR);
1852
1853 if (sc_if0 != NULL)
1854 ifp0 = &sc_if0->sk_ethercom.ec_if;
1855 if (sc_if1 != NULL)
1856 ifp1 = &sc_if1->sk_ethercom.ec_if;
1857
1858 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1859 (ifp0->if_flags & IFF_RUNNING)) {
1860 msk_intr_yukon(sc_if0);
1861 }
1862
1863 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1864 (ifp1->if_flags & IFF_RUNNING)) {
1865 msk_intr_yukon(sc_if1);
1866 }
1867
1868 for (;;) {
1869 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1870 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1871 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1872 st_opcode = cur_st->sk_opcode;
1873 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1874 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1875 BUS_DMASYNC_PREREAD);
1876 break;
1877 }
1878 st_status = le32toh(cur_st->sk_status);
1879 st_len = le16toh(cur_st->sk_len);
1880 st_link = cur_st->sk_link;
1881 st_opcode &= ~SK_Y2_STOPC_OWN;
1882
1883 switch (st_opcode) {
1884 case SK_Y2_STOPC_RXSTAT:
1885 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1886 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1887 SK_RXQ1_Y2_PREF_PUTIDX,
1888 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1889 break;
1890 case SK_Y2_STOPC_TXSTAT:
1891 if (sc_if0)
1892 msk_txeof(sc_if0, st_status
1893 & SK_Y2_ST_TXA1_MSKL);
1894 if (sc_if1)
1895 msk_txeof(sc_if1,
1896 ((st_status & SK_Y2_ST_TXA2_MSKL)
1897 >> SK_Y2_ST_TXA2_SHIFTL)
1898 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1899 break;
1900 default:
1901 aprint_error("opcode=0x%x\n", st_opcode);
1902 break;
1903 }
1904 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1905 }
1906
1907 #define MSK_STATUS_RING_OWN_CNT(sc) \
1908 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1909 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1910
1911 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1912 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1913 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1914 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1915 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1916
1917 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1918 }
1919
1920 if (status & SK_Y2_IMR_BMU) {
1921 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1922 claimed = 1;
1923 }
1924
1925 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1926
1927 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1928 msk_start(ifp0);
1929 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1930 msk_start(ifp1);
1931
1932 #if NRND > 0
1933 if (RND_ENABLED(&sc->rnd_source))
1934 rnd_add_uint32(&sc->rnd_source, status);
1935 #endif
1936
1937 if (sc->sk_int_mod_pending)
1938 msk_update_int_mod(sc);
1939
1940 return claimed;
1941 }
1942
1943 void
1944 msk_init_yukon(struct sk_if_softc *sc_if)
1945 {
1946 u_int32_t v;
1947 u_int16_t reg;
1948 struct sk_softc *sc;
1949 int i;
1950
1951 sc = sc_if->sk_softc;
1952
1953 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1954 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1955
1956 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1957
1958 /* GMAC and GPHY Reset */
1959 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1960 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1961 DELAY(1000);
1962
1963 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1964
1965 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1966 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1967 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1968
1969 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1970 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1971
1972 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1973
1974 /* unused read of the interrupt source register */
1975 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1976 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1977
1978 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1979 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1980 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1981
1982 /* MIB Counter Clear Mode set */
1983 reg |= YU_PAR_MIB_CLR;
1984 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1985 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1986 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1987
1988 /* MIB Counter Clear Mode clear */
1989 DPRINTFN(6, ("msk_init_yukon: 5\n"));
1990 reg &= ~YU_PAR_MIB_CLR;
1991 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1992
1993 /* receive control reg */
1994 DPRINTFN(6, ("msk_init_yukon: 7\n"));
1995 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1996
1997 /* transmit control register */
1998 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
1999
2000 /* transmit flow control register */
2001 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2002
2003 /* transmit parameter register */
2004 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2005 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2006 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2007
2008 /* serial mode register */
2009 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2010 reg = YU_SMR_DATA_BLIND(0x1c) |
2011 YU_SMR_MFL_VLAN |
2012 YU_SMR_IPG_DATA(0x1e);
2013
2014 if (sc->sk_type != SK_YUKON_FE)
2015 reg |= YU_SMR_MFL_JUMBO;
2016
2017 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2018
2019 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2020 /* Setup Yukon's address */
2021 for (i = 0; i < 3; i++) {
2022 /* Write Source Address 1 (unicast filter) */
2023 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2024 sc_if->sk_enaddr[i * 2] |
2025 sc_if->sk_enaddr[i * 2 + 1] << 8);
2026 }
2027
2028 for (i = 0; i < 3; i++) {
2029 reg = sk_win_read_2(sc_if->sk_softc,
2030 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2031 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2032 }
2033
2034 /* Set promiscuous mode */
2035 msk_setpromisc(sc_if);
2036
2037 /* Set multicast filter */
2038 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2039 msk_setmulti(sc_if);
2040
2041 /* enable interrupt mask for counter overflows */
2042 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2043 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2044 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2045 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2046
2047 /* Configure RX MAC FIFO Flush Mask */
2048 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2049 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2050 YU_RXSTAT_JABBER;
2051 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2052
2053 /* Configure RX MAC FIFO */
2054 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2055 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2056 SK_RFCTL_FIFO_FLUSH_ON);
2057
2058 /* Increase flush threshould to 64 bytes */
2059 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2060 SK_RFCTL_FIFO_THRESHOLD + 1);
2061
2062 /* Configure TX MAC FIFO */
2063 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2064 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2065
2066 #if 1
2067 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2068 #endif
2069 DPRINTFN(6, ("msk_init_yukon: end\n"));
2070 }
2071
2072 /*
2073 * Note that to properly initialize any part of the GEnesis chip,
2074 * you first have to take it out of reset mode.
2075 */
2076 int
2077 msk_init(struct ifnet *ifp)
2078 {
2079 struct sk_if_softc *sc_if = ifp->if_softc;
2080 struct sk_softc *sc = sc_if->sk_softc;
2081 int rc = 0, s;
2082 uint32_t imr, imtimer_ticks;
2083
2084
2085 DPRINTFN(2, ("msk_init\n"));
2086
2087 s = splnet();
2088
2089 /* Cancel pending I/O and free all RX/TX buffers. */
2090 msk_stop(ifp,0);
2091
2092 /* Configure I2C registers */
2093
2094 /* Configure XMAC(s) */
2095 msk_init_yukon(sc_if);
2096 if ((rc = ether_mediachange(ifp)) != 0)
2097 goto out;
2098
2099 /* Configure transmit arbiter(s) */
2100 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2101 #if 0
2102 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2103 #endif
2104
2105 /* Configure RAMbuffers */
2106 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2107 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2108 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2109 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2110 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2111 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2112
2113 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2114 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2115 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2116 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2117 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2118 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2119 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2120
2121 /* Configure BMUs */
2122 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2123 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2124 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2125 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2126
2127 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2128 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2129 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2130 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2131
2132 /* Make sure the sync transmit queue is disabled. */
2133 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2134
2135 /* Init descriptors */
2136 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2137 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2138 "memory for rx buffers\n");
2139 msk_stop(ifp,0);
2140 splx(s);
2141 return ENOBUFS;
2142 }
2143
2144 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2145 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2146 "memory for tx buffers\n");
2147 msk_stop(ifp,0);
2148 splx(s);
2149 return ENOBUFS;
2150 }
2151
2152 /* Set interrupt moderation if changed via sysctl. */
2153 switch (sc->sk_type) {
2154 case SK_YUKON_EC:
2155 case SK_YUKON_EC_U:
2156 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2157 break;
2158 case SK_YUKON_FE:
2159 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2160 break;
2161 case SK_YUKON_XL:
2162 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2163 break;
2164 default:
2165 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2166 }
2167 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2168 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2169 sk_win_write_4(sc, SK_IMTIMERINIT,
2170 SK_IM_USECS(sc->sk_int_mod));
2171 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2172 sc->sk_int_mod);
2173 }
2174
2175 /* Initialize prefetch engine. */
2176 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2177 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2178 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2179 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2180 MSK_RX_RING_ADDR(sc_if, 0));
2181 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2182 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2183 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2184 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2185
2186 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2187 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2188 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2189 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2190 MSK_TX_RING_ADDR(sc_if, 0));
2191 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2192 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2193 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2194 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2195
2196 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2197 sc_if->sk_cdata.sk_rx_prod);
2198
2199 /* Configure interrupt handling */
2200 if (sc_if->sk_port == SK_PORT_A)
2201 sc->sk_intrmask |= SK_Y2_INTRS1;
2202 else
2203 sc->sk_intrmask |= SK_Y2_INTRS2;
2204 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2205 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2206
2207 ifp->if_flags |= IFF_RUNNING;
2208 ifp->if_flags &= ~IFF_OACTIVE;
2209
2210 callout_schedule(&sc_if->sk_tick_ch, hz);
2211
2212 out:
2213 splx(s);
2214 return rc;
2215 }
2216
2217 void
2218 msk_stop(struct ifnet *ifp, int disable)
2219 {
2220 struct sk_if_softc *sc_if = ifp->if_softc;
2221 struct sk_softc *sc = sc_if->sk_softc;
2222 struct sk_txmap_entry *dma;
2223 int i;
2224
2225 DPRINTFN(2, ("msk_stop\n"));
2226
2227 callout_stop(&sc_if->sk_tick_ch);
2228
2229 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2230
2231 /* Stop transfer of Tx descriptors */
2232
2233 /* Stop transfer of Rx descriptors */
2234
2235 /* Turn off various components of this interface. */
2236 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2237 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2238 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2239 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2240 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2241 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2242 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2243 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2244 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2245 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2246 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2247 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2248
2249 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2250 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2251
2252 /* Disable interrupts */
2253 if (sc_if->sk_port == SK_PORT_A)
2254 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2255 else
2256 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2257 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2258
2259 SK_XM_READ_2(sc_if, XM_ISR);
2260 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2261
2262 /* Free RX and TX mbufs still in the queues. */
2263 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2264 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2265 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2266 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2267 }
2268 }
2269
2270 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2271 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2272 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2273 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2274 #if 1
2275 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2276 sc_if->sk_cdata.sk_tx_map[i], link);
2277 sc_if->sk_cdata.sk_tx_map[i] = 0;
2278 #endif
2279 }
2280 }
2281
2282 #if 1
2283 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2284 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2285 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2286 free(dma, M_DEVBUF);
2287 }
2288 #endif
2289 }
2290
2291 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2292 NULL, NULL);
2293
2294 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2295 NULL, NULL);
2296
2297 #ifdef MSK_DEBUG
2298 void
2299 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2300 {
2301 #define DESC_PRINT(X) \
2302 if (X) \
2303 printf("txdesc[%d]." #X "=%#x\n", \
2304 idx, X);
2305
2306 DESC_PRINT(letoh32(le->sk_addr));
2307 DESC_PRINT(letoh16(le->sk_len));
2308 DESC_PRINT(le->sk_ctl);
2309 DESC_PRINT(le->sk_opcode);
2310 #undef DESC_PRINT
2311 }
2312
2313 void
2314 msk_dump_bytes(const char *data, int len)
2315 {
2316 int c, i, j;
2317
2318 for (i = 0; i < len; i += 16) {
2319 printf("%08x ", i);
2320 c = len - i;
2321 if (c > 16) c = 16;
2322
2323 for (j = 0; j < c; j++) {
2324 printf("%02x ", data[i + j] & 0xff);
2325 if ((j & 0xf) == 7 && j > 0)
2326 printf(" ");
2327 }
2328
2329 for (; j < 16; j++)
2330 printf(" ");
2331 printf(" ");
2332
2333 for (j = 0; j < c; j++) {
2334 int ch = data[i + j] & 0xff;
2335 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2336 }
2337
2338 printf("\n");
2339
2340 if (c < 16)
2341 break;
2342 }
2343 }
2344
2345 void
2346 msk_dump_mbuf(struct mbuf *m)
2347 {
2348 int count = m->m_pkthdr.len;
2349
2350 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2351
2352 while (count > 0 && m) {
2353 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2354 m, m->m_data, m->m_len);
2355 msk_dump_bytes(mtod(m, char *), m->m_len);
2356
2357 count -= m->m_len;
2358 m = m->m_next;
2359 }
2360 }
2361 #endif
2362
2363 static int
2364 msk_sysctl_handler(SYSCTLFN_ARGS)
2365 {
2366 int error, t;
2367 struct sysctlnode node;
2368 struct sk_softc *sc;
2369
2370 node = *rnode;
2371 sc = node.sysctl_data;
2372 t = sc->sk_int_mod;
2373 node.sysctl_data = &t;
2374 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2375 if (error || newp == NULL)
2376 return error;
2377
2378 if (t < SK_IM_MIN || t > SK_IM_MAX)
2379 return EINVAL;
2380
2381 /* update the softc with sysctl-changed value, and mark
2382 for hardware update */
2383 sc->sk_int_mod = t;
2384 sc->sk_int_mod_pending = 1;
2385 return 0;
2386 }
2387
2388 /*
2389 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2390 * set up in skc_attach()
2391 */
2392 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2393 {
2394 int rc;
2395 const struct sysctlnode *node;
2396
2397 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2398 0, CTLTYPE_NODE, "hw", NULL,
2399 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2400 goto err;
2401 }
2402
2403 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2404 0, CTLTYPE_NODE, "msk",
2405 SYSCTL_DESCR("msk interface controls"),
2406 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2407 goto err;
2408 }
2409
2410 msk_root_num = node->sysctl_num;
2411 return;
2412
2413 err:
2414 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2415 }
2416