if_msk.c revision 1.23 1 /* $NetBSD: if_msk.c,v 1.23 2009/03/18 15:14:30 cegger Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.23 2009/03/18 15:14:30 cegger Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/device.h>
69 #include <sys/queue.h>
70 #include <sys/callout.h>
71 #include <sys/sysctl.h>
72 #include <sys/endian.h>
73 #ifdef __NetBSD__
74 #define letoh16 htole16
75 #define letoh32 htole32
76 #endif
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_types.h>
81
82 #include <net/if_media.h>
83
84 #if NBPFILTER > 0
85 #include <net/bpf.h>
86 #endif
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/brgphyreg.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_skreg.h>
100 #include <dev/pci/if_mskvar.h>
101
102 int mskc_probe(struct device *, struct cfdata *, void *);
103 void mskc_attach(struct device *, struct device *self, void *aux);
104 static bool mskc_suspend(device_t PMF_FN_PROTO);
105 static bool mskc_resume(device_t PMF_FN_PROTO);
106 int msk_probe(struct device *, struct cfdata *, void *);
107 void msk_attach(struct device *, struct device *self, void *aux);
108 int mskcprint(void *, const char *);
109 int msk_intr(void *);
110 void msk_intr_yukon(struct sk_if_softc *);
111 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
112 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
113 void msk_txeof(struct sk_if_softc *, int);
114 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
115 void msk_start(struct ifnet *);
116 int msk_ioctl(struct ifnet *, u_long, void *);
117 int msk_init(struct ifnet *);
118 void msk_init_yukon(struct sk_if_softc *);
119 void msk_stop(struct ifnet *, int);
120 void msk_watchdog(struct ifnet *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128
129 void msk_update_int_mod(struct sk_softc *);
130
131 int msk_miibus_readreg(struct device *, int, int);
132 void msk_miibus_writereg(struct device *, int, int, int);
133 void msk_miibus_statchg(struct device *);
134
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x) if (mskdebug) printf x
143 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
144 int mskdebug = MSK_DEBUG;
145
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156
157 /* supported device vendors */
158 static const struct msk_product {
159 pci_vendor_id_t msk_vendor;
160 pci_product_id_t msk_product;
161 } msk_products[] = {
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 return CSR_READ_4(sc, reg);
197 }
198
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_2(sc, reg);
203 }
204
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_1(sc, reg);
209 }
210
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 CSR_WRITE_4(sc, reg, x);
215 }
216
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 CSR_WRITE_2(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 CSR_WRITE_1(sc, reg, x);
227 }
228
229 int
230 msk_miibus_readreg(struct device *dev, int phy, int reg)
231 {
232 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
233 u_int16_t val;
234 int i;
235
236 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238
239 for (i = 0; i < SK_TIMEOUT; i++) {
240 DELAY(1);
241 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 if (val & YU_SMICR_READ_VALID)
243 break;
244 }
245
246 if (i == SK_TIMEOUT) {
247 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
248 return (0);
249 }
250
251 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
252 SK_TIMEOUT));
253
254 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
255
256 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
257 phy, reg, val));
258
259 return (val);
260 }
261
262 void
263 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
264 {
265 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
266 int i;
267
268 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
269 phy, reg, val));
270
271 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
272 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
274
275 for (i = 0; i < SK_TIMEOUT; i++) {
276 DELAY(1);
277 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
278 break;
279 }
280
281 if (i == SK_TIMEOUT)
282 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
283 }
284
285 void
286 msk_miibus_statchg(struct device *dev)
287 {
288 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
289 struct mii_data *mii = &sc_if->sk_mii;
290 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
291 int gpcr;
292
293 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
294 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
295
296 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
297 /* Set speed. */
298 gpcr |= YU_GPCR_SPEED_DIS;
299 switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 case IFM_1000_SX:
301 case IFM_1000_LX:
302 case IFM_1000_CX:
303 case IFM_1000_T:
304 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
305 break;
306 case IFM_100_TX:
307 gpcr |= YU_GPCR_SPEED;
308 break;
309 }
310
311 /* Set duplex. */
312 gpcr |= YU_GPCR_DPLX_DIS;
313 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
314 gpcr |= YU_GPCR_DUPLEX;
315
316 /* Disable flow control. */
317 gpcr |= YU_GPCR_FCTL_DIS;
318 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
319 }
320
321 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
322
323 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
324 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
325 }
326
327 #define HASH_BITS 6
328
329 void
330 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
331 {
332 char *addr = addrv;
333 int base = XM_RXFILT_ENTRY(slot);
334
335 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
336 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
337 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 u_int32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 u_int16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 int i, nexti;
416
417 bzero((char *)rd->sk_rx_ring,
418 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 for (i = 0; i < MSK_RX_RING_CNT; i++) {
430 if (msk_newbuf(sc_if, i, NULL,
431 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
432 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
433 return (ENOBUFS);
434 }
435 }
436
437 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 sc_if->sk_cdata.sk_rx_cons = 0;
439
440 return (0);
441 }
442
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 struct sk_softc *sc = sc_if->sk_softc;
447 struct msk_chain_data *cd = &sc_if->sk_cdata;
448 struct msk_ring_data *rd = sc_if->sk_rdata;
449 bus_dmamap_t dmamap;
450 struct sk_txmap_entry *entry;
451 int i, nexti;
452
453 bzero((char *)sc_if->sk_rdata->sk_tx_ring,
454 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455
456 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 if (i == (MSK_TX_RING_CNT - 1))
460 nexti = 0;
461 else
462 nexti = i + 1;
463 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464
465 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 return (ENOBUFS);
468
469 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 if (!entry) {
471 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 return (ENOBUFS);
473 }
474 entry->dmamap = dmamap;
475 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 }
477
478 sc_if->sk_cdata.sk_tx_prod = 0;
479 sc_if->sk_cdata.sk_tx_cons = 0;
480 sc_if->sk_cdata.sk_tx_cnt = 0;
481
482 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484
485 return (0);
486 }
487
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 bus_dmamap_t dmamap)
491 {
492 struct mbuf *m_new = NULL;
493 struct sk_chain *c;
494 struct msk_rx_desc *r;
495
496 if (m == NULL) {
497 void *buf = NULL;
498
499 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 if (m_new == NULL)
501 return (ENOBUFS);
502
503 /* Allocate the jumbo buffer */
504 buf = msk_jalloc(sc_if);
505 if (buf == NULL) {
506 m_freem(m_new);
507 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 return (ENOBUFS);
510 }
511
512 /* Attach the buffer to the mbuf */
513 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 } else {
516 /*
517 * We're re-using a previously allocated mbuf;
518 * be sure to re-init pointers and lengths to
519 * default values.
520 */
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 }
525 m_adj(m_new, ETHER_ALIGN);
526
527 c = &sc_if->sk_cdata.sk_rx_chain[i];
528 r = c->sk_le;
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 (((vaddr_t)m_new->m_data
532 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 r->sk_len = htole16(SK_JLEN);
534 r->sk_ctl = 0;
535 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536
537 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538
539 return (0);
540 }
541
542 /*
543 * Memory management for jumbo frames.
544 */
545
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 struct sk_softc *sc = sc_if->sk_softc;
550 char *ptr, *kva;
551 bus_dma_segment_t seg;
552 int i, rseg, state, error;
553 struct sk_jpool_entry *entry;
554
555 state = error = 0;
556
557 /* Grab a big chunk o' storage. */
558 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 aprint_error(": can't alloc rx buffers");
561 return (ENOBUFS);
562 }
563
564 state = 1;
565 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 BUS_DMA_NOWAIT)) {
567 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 2;
573 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 aprint_error(": can't create dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 3;
581 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 aprint_error(": can't load dma map");
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 4;
589 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591
592 LIST_INIT(&sc_if->sk_jfree_listhead);
593 LIST_INIT(&sc_if->sk_jinuse_listhead);
594 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
595
596 /*
597 * Now divide it up into 9K pieces and save the addresses
598 * in an array.
599 */
600 ptr = sc_if->sk_cdata.sk_jumbo_buf;
601 for (i = 0; i < MSK_JSLOTS; i++) {
602 sc_if->sk_cdata.sk_jslots[i] = ptr;
603 ptr += SK_JLEN;
604 entry = malloc(sizeof(struct sk_jpool_entry),
605 M_DEVBUF, M_NOWAIT);
606 if (entry == NULL) {
607 sc_if->sk_cdata.sk_jumbo_buf = NULL;
608 aprint_error(": no memory for jumbo buffer queue!");
609 error = ENOBUFS;
610 goto out;
611 }
612 entry->slot = i;
613 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
614 entry, jpool_entries);
615 }
616 out:
617 if (error != 0) {
618 switch (state) {
619 case 4:
620 bus_dmamap_unload(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 3:
623 bus_dmamap_destroy(sc->sc_dmatag,
624 sc_if->sk_cdata.sk_rx_jumbo_map);
625 case 2:
626 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 case 1:
628 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
629 break;
630 default:
631 break;
632 }
633 }
634
635 return (error);
636 }
637
638 /*
639 * Allocate a jumbo buffer.
640 */
641 void *
642 msk_jalloc(struct sk_if_softc *sc_if)
643 {
644 struct sk_jpool_entry *entry;
645
646 mutex_enter(&sc_if->sk_jpool_mtx);
647 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648
649 if (entry == NULL) {
650 mutex_exit(&sc_if->sk_jpool_mtx);
651 return NULL;
652 }
653
654 LIST_REMOVE(entry, jpool_entries);
655 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
656 mutex_exit(&sc_if->sk_jpool_mtx);
657 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
658 }
659
660 /*
661 * Release a jumbo buffer.
662 */
663 void
664 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
665 {
666 struct sk_jpool_entry *entry;
667 struct sk_if_softc *sc;
668 int i;
669
670 /* Extract the softc struct pointer. */
671 sc = (struct sk_if_softc *)arg;
672
673 if (sc == NULL)
674 panic("msk_jfree: can't find softc pointer!");
675
676 /* calculate the slot this buffer belongs to */
677 i = ((vaddr_t)buf
678 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
679
680 if ((i < 0) || (i >= MSK_JSLOTS))
681 panic("msk_jfree: asked to free buffer that we don't manage!");
682
683 mutex_enter(&sc->sk_jpool_mtx);
684 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
685 if (entry == NULL)
686 panic("msk_jfree: buffer not in use!");
687 entry->slot = i;
688 LIST_REMOVE(entry, jpool_entries);
689 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
690 mutex_exit(&sc->sk_jpool_mtx);
691
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 }
695
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 struct sk_if_softc *sc_if = ifp->if_softc;
700 int s, error = 0;
701
702 s = splnet();
703
704 DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 error = ether_ioctl(ifp, cmd, data);
706
707 if (error == ENETRESET) {
708 error = 0;
709 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
710 ;
711 else if (ifp->if_flags & IFF_RUNNING) {
712 /*
713 * Multicast list has changed; set the hardware
714 * filter accordingly.
715 */
716 msk_setmulti(sc_if);
717 }
718 }
719
720 splx(s);
721 return (error);
722 }
723
724 void
725 msk_update_int_mod(struct sk_softc *sc)
726 {
727 u_int32_t imtimer_ticks;
728
729 /*
730 * Configure interrupt moderation. The moderation timer
731 * defers interrupts specified in the interrupt moderation
732 * timer mask based on the timeout specified in the interrupt
733 * moderation timer init register. Each bit in the timer
734 * register represents one tick, so to specify a timeout in
735 * microseconds, we have to multiply by the correct number of
736 * ticks-per-microsecond.
737 */
738 switch (sc->sk_type) {
739 case SK_YUKON_EC:
740 case SK_YUKON_EC_U:
741 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
742 break;
743 case SK_YUKON_FE:
744 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
745 break;
746 case SK_YUKON_XL:
747 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
748 break;
749 default:
750 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
751 }
752 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
753 sc->sk_int_mod);
754 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
755 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
756 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
757 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
758 sc->sk_int_mod_pending = 0;
759 }
760
761 static int
762 msk_lookup(const struct pci_attach_args *pa)
763 {
764 const struct msk_product *pmsk;
765
766 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
767 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
768 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
769 return 1;
770 }
771 return 0;
772 }
773
774 /*
775 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
776 * IDs against our list and return a device name if we find a match.
777 */
778 int
779 mskc_probe(struct device *parent, struct cfdata *match,
780 void *aux)
781 {
782 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
783
784 return msk_lookup(pa);
785 }
786
787 /*
788 * Force the GEnesis into reset, then bring it out of reset.
789 */
790 void msk_reset(struct sk_softc *sc)
791 {
792 u_int32_t imtimer_ticks, reg1;
793 int reg;
794
795 DPRINTFN(2, ("msk_reset\n"));
796
797 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
798 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
799
800 DELAY(1000);
801 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
802 DELAY(2);
803 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
804 sk_win_write_1(sc, SK_TESTCTL1, 2);
805
806 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
807 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
808 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
809 else
810 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
811
812 if (sc->sk_type == SK_YUKON_EC_U) {
813 uint32_t our;
814
815 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
816
817 /* enable all clocks. */
818 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
819 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
820 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
821 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
822 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
823 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
824 /* Set all bits to 0 except bits 15..12 */
825 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
826 /* Set to default value */
827 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
828 }
829
830 /* release PHY from PowerDown/Coma mode. */
831 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
832
833 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
834 sk_win_write_1(sc, SK_Y2_CLKGATE,
835 SK_Y2_CLKGATE_LINK1_GATE_DIS |
836 SK_Y2_CLKGATE_LINK2_GATE_DIS |
837 SK_Y2_CLKGATE_LINK1_CORE_DIS |
838 SK_Y2_CLKGATE_LINK2_CORE_DIS |
839 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
840 else
841 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
842
843 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
844 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
845 DELAY(1000);
846 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
847 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
848
849 sk_win_write_1(sc, SK_TESTCTL1, 1);
850
851 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
852 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
853 CSR_READ_2(sc, SK_LINK_CTRL)));
854
855 /* Disable ASF */
856 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
857 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
858
859 /* Clear I2C IRQ noise */
860 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
861
862 /* Disable hardware timer */
863 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
864 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
865
866 /* Disable descriptor polling */
867 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
868
869 /* Disable time stamps */
870 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
871 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
872
873 /* Enable RAM interface */
874 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
875 for (reg = SK_TO0;reg <= SK_TO11; reg++)
876 sk_win_write_1(sc, reg, 36);
877 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
878 for (reg = SK_TO0;reg <= SK_TO11; reg++)
879 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
880
881 /*
882 * Configure interrupt moderation. The moderation timer
883 * defers interrupts specified in the interrupt moderation
884 * timer mask based on the timeout specified in the interrupt
885 * moderation timer init register. Each bit in the timer
886 * register represents one tick, so to specify a timeout in
887 * microseconds, we have to multiply by the correct number of
888 * ticks-per-microsecond.
889 */
890 switch (sc->sk_type) {
891 case SK_YUKON_EC:
892 case SK_YUKON_EC_U:
893 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
894 break;
895 case SK_YUKON_FE:
896 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
897 break;
898 case SK_YUKON_XL:
899 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
900 break;
901 default:
902 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
903 }
904
905 /* Reset status ring. */
906 bzero((char *)sc->sk_status_ring,
907 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
908 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
909 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
910 sc->sk_status_idx = 0;
911 sc->sk_status_own_idx = 0;
912
913 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
914 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
915
916 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
917 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
918 sc->sk_status_map->dm_segs[0].ds_addr);
919 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
920 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
921 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
922 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
923 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
924 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
925 } else {
926 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
927 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
928 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
929 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
930 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
931 }
932
933 #if 0
934 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
935 #endif
936 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
937
938 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
939
940 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
941 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
942 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
943
944 msk_update_int_mod(sc);
945 }
946
947 int
948 msk_probe(struct device *parent, struct cfdata *match,
949 void *aux)
950 {
951 struct skc_attach_args *sa = aux;
952
953 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
954 return (0);
955
956 switch (sa->skc_type) {
957 case SK_YUKON_XL:
958 case SK_YUKON_EC_U:
959 case SK_YUKON_EC:
960 case SK_YUKON_FE:
961 return (1);
962 }
963
964 return (0);
965 }
966
967 static bool
968 msk_resume(device_t dv PMF_FN_ARGS)
969 {
970 struct sk_if_softc *sc_if = device_private(dv);
971
972 msk_init_yukon(sc_if);
973 return true;
974 }
975
976 /*
977 * Each XMAC chip is attached as a separate logical IP interface.
978 * Single port cards will have only one logical interface of course.
979 */
980 void
981 msk_attach(struct device *parent, struct device *self, void *aux)
982 {
983 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
984 struct sk_softc *sc = (struct sk_softc *)parent;
985 struct skc_attach_args *sa = aux;
986 struct ifnet *ifp;
987 void *kva;
988 bus_dma_segment_t seg;
989 int i, rseg;
990 u_int32_t chunk, val;
991
992 sc_if->sk_port = sa->skc_port;
993 sc_if->sk_softc = sc;
994 sc->sk_if[sa->skc_port] = sc_if;
995
996 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
997
998 /*
999 * Get station address for this interface. Note that
1000 * dual port cards actually come with three station
1001 * addresses: one for each port, plus an extra. The
1002 * extra one is used by the SysKonnect driver software
1003 * as a 'virtual' station address for when both ports
1004 * are operating in failover mode. Currently we don't
1005 * use this extra address.
1006 */
1007 for (i = 0; i < ETHER_ADDR_LEN; i++)
1008 sc_if->sk_enaddr[i] =
1009 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1010
1011 aprint_normal(": Ethernet address %s\n",
1012 ether_sprintf(sc_if->sk_enaddr));
1013
1014 /*
1015 * Set up RAM buffer addresses. The NIC will have a certain
1016 * amount of SRAM on it, somewhere between 512K and 2MB. We
1017 * need to divide this up a) between the transmitter and
1018 * receiver and b) between the two XMACs, if this is a
1019 * dual port NIC. Our algorithm is to divide up the memory
1020 * evenly so that everyone gets a fair share.
1021 *
1022 * Just to be contrary, Yukon2 appears to have separate memory
1023 * for each MAC.
1024 */
1025 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1026 val = sc->sk_rboff / sizeof(u_int64_t);
1027 sc_if->sk_rx_ramstart = val;
1028 val += (chunk / sizeof(u_int64_t));
1029 sc_if->sk_rx_ramend = val - 1;
1030 chunk = sc->sk_ramsize - chunk;
1031 sc_if->sk_tx_ramstart = val;
1032 val += (chunk / sizeof(u_int64_t));
1033 sc_if->sk_tx_ramend = val - 1;
1034
1035 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1036 " tx_ramstart=%#x tx_ramend=%#x\n",
1037 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1038 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1039
1040 /* Allocate the descriptor queues. */
1041 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1042 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1043 aprint_error(": can't alloc rx buffers\n");
1044 goto fail;
1045 }
1046 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1047 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1048 aprint_error(": can't map dma buffers (%zu bytes)\n",
1049 sizeof(struct msk_ring_data));
1050 goto fail_1;
1051 }
1052 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1053 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1054 &sc_if->sk_ring_map)) {
1055 aprint_error(": can't create dma map\n");
1056 goto fail_2;
1057 }
1058 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1059 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1060 aprint_error(": can't load dma map\n");
1061 goto fail_3;
1062 }
1063 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1064 bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data));
1065
1066 ifp = &sc_if->sk_ethercom.ec_if;
1067 /* Try to allocate memory for jumbo buffers. */
1068 if (msk_alloc_jumbo_mem(sc_if)) {
1069 aprint_error(": jumbo buffer allocation failed\n");
1070 goto fail_3;
1071 }
1072 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1073 if (sc->sk_type != SK_YUKON_FE)
1074 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1075
1076 ifp->if_softc = sc_if;
1077 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1078 ifp->if_ioctl = msk_ioctl;
1079 ifp->if_start = msk_start;
1080 ifp->if_stop = msk_stop;
1081 ifp->if_init = msk_init;
1082 ifp->if_watchdog = msk_watchdog;
1083 ifp->if_baudrate = 1000000000;
1084 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1085 IFQ_SET_READY(&ifp->if_snd);
1086 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1087
1088 /*
1089 * Do miibus setup.
1090 */
1091 msk_init_yukon(sc_if);
1092
1093 DPRINTFN(2, ("msk_attach: 1\n"));
1094
1095 sc_if->sk_mii.mii_ifp = ifp;
1096 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1097 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1098 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1099
1100 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1101 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1102 ether_mediachange, ether_mediastatus);
1103 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1104 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1105 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1106 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1107 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1108 0, NULL);
1109 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1110 } else
1111 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1112
1113 callout_init(&sc_if->sk_tick_ch, 0);
1114 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1115 callout_schedule(&sc_if->sk_tick_ch, hz);
1116
1117 /*
1118 * Call MI attach routines.
1119 */
1120 if_attach(ifp);
1121 ether_ifattach(ifp, sc_if->sk_enaddr);
1122
1123 if (!pmf_device_register(self, NULL, msk_resume))
1124 aprint_error_dev(self, "couldn't establish power handler\n");
1125 else
1126 pmf_class_network_register(self, ifp);
1127
1128 #if NRND > 0
1129 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1130 RND_TYPE_NET, 0);
1131 #endif
1132
1133 DPRINTFN(2, ("msk_attach: end\n"));
1134 return;
1135
1136 fail_3:
1137 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1138 fail_2:
1139 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1140 fail_1:
1141 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1142 fail:
1143 sc->sk_if[sa->skc_port] = NULL;
1144 }
1145
1146 int
1147 mskcprint(void *aux, const char *pnp)
1148 {
1149 struct skc_attach_args *sa = aux;
1150
1151 if (pnp)
1152 aprint_normal("sk port %c at %s",
1153 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1154 else
1155 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1156 return (UNCONF);
1157 }
1158
1159 /*
1160 * Attach the interface. Allocate softc structures, do ifmedia
1161 * setup and ethernet/BPF attach.
1162 */
1163 void
1164 mskc_attach(struct device *parent, struct device *self, void *aux)
1165 {
1166 struct sk_softc *sc = (struct sk_softc *)self;
1167 struct pci_attach_args *pa = aux;
1168 struct skc_attach_args skca;
1169 pci_chipset_tag_t pc = pa->pa_pc;
1170 pcireg_t command, memtype;
1171 pci_intr_handle_t ih;
1172 const char *intrstr = NULL;
1173 bus_size_t size;
1174 int rc, sk_nodenum;
1175 u_int8_t hw, skrs;
1176 const char *revstr = NULL;
1177 const struct sysctlnode *node;
1178 void *kva;
1179 bus_dma_segment_t seg;
1180 int rseg;
1181
1182 DPRINTFN(2, ("begin mskc_attach\n"));
1183
1184 /*
1185 * Handle power management nonsense.
1186 */
1187 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1188
1189 if (command == 0x01) {
1190 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1191 if (command & SK_PSTATE_MASK) {
1192 u_int32_t iobase, membase, irq;
1193
1194 /* Save important PCI config data. */
1195 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1196 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1197 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1198
1199 /* Reset the power state. */
1200 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1201 "-- setting to D0\n",
1202 command & SK_PSTATE_MASK);
1203 command &= 0xFFFFFFFC;
1204 pci_conf_write(pc, pa->pa_tag,
1205 SK_PCI_PWRMGMTCTRL, command);
1206
1207 /* Restore PCI config data. */
1208 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1209 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1210 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1211 }
1212 }
1213
1214 /*
1215 * Map control/status registers.
1216 */
1217
1218 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1219 switch (memtype) {
1220 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1221 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1222 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1223 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1224 NULL, &size) == 0)
1225 break;
1226 default:
1227 aprint_error(": can't map mem space\n");
1228 return;
1229 }
1230
1231 sc->sc_dmatag = pa->pa_dmat;
1232
1233 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1234 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1235
1236 /* bail out here if chip is not recognized */
1237 if (!(SK_IS_YUKON2(sc))) {
1238 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1239 goto fail_1;
1240 }
1241 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1242
1243 /* Allocate interrupt */
1244 if (pci_intr_map(pa, &ih)) {
1245 aprint_error(": couldn't map interrupt\n");
1246 goto fail_1;
1247 }
1248
1249 intrstr = pci_intr_string(pc, ih);
1250 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1251 if (sc->sk_intrhand == NULL) {
1252 aprint_error(": couldn't establish interrupt");
1253 if (intrstr != NULL)
1254 aprint_error(" at %s", intrstr);
1255 aprint_error("\n");
1256 goto fail_1;
1257 }
1258
1259 if (bus_dmamem_alloc(sc->sc_dmatag,
1260 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1261 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1262 aprint_error(": can't alloc status buffers\n");
1263 goto fail_2;
1264 }
1265
1266 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1267 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1268 &kva, BUS_DMA_NOWAIT)) {
1269 aprint_error(": can't map dma buffers (%zu bytes)\n",
1270 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1271 goto fail_3;
1272 }
1273 if (bus_dmamap_create(sc->sc_dmatag,
1274 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1275 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1276 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1277 aprint_error(": can't create dma map\n");
1278 goto fail_4;
1279 }
1280 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1281 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1282 NULL, BUS_DMA_NOWAIT)) {
1283 aprint_error(": can't load dma map\n");
1284 goto fail_5;
1285 }
1286 sc->sk_status_ring = (struct msk_status_desc *)kva;
1287
1288 /* Reset the adapter. */
1289 msk_reset(sc);
1290
1291 skrs = sk_win_read_1(sc, SK_EPROM0);
1292 if (skrs == 0x00)
1293 sc->sk_ramsize = 0x20000;
1294 else
1295 sc->sk_ramsize = skrs * (1<<12);
1296 sc->sk_rboff = SK_RBOFF_0;
1297
1298 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1299 sc->sk_ramsize, sc->sk_ramsize / 1024,
1300 sc->sk_rboff));
1301
1302 switch (sc->sk_type) {
1303 case SK_YUKON_XL:
1304 sc->sk_name = "Yukon-2 XL";
1305 break;
1306 case SK_YUKON_EC_U:
1307 sc->sk_name = "Yukon-2 EC Ultra";
1308 break;
1309 case SK_YUKON_EC:
1310 sc->sk_name = "Yukon-2 EC";
1311 break;
1312 case SK_YUKON_FE:
1313 sc->sk_name = "Yukon-2 FE";
1314 break;
1315 default:
1316 sc->sk_name = "Yukon (Unknown)";
1317 }
1318
1319 if (sc->sk_type == SK_YUKON_XL) {
1320 switch (sc->sk_rev) {
1321 case SK_YUKON_XL_REV_A0:
1322 sc->sk_workaround = 0;
1323 revstr = "A0";
1324 break;
1325 case SK_YUKON_XL_REV_A1:
1326 sc->sk_workaround = SK_WA_4109;
1327 revstr = "A1";
1328 break;
1329 case SK_YUKON_XL_REV_A2:
1330 sc->sk_workaround = SK_WA_4109;
1331 revstr = "A2";
1332 break;
1333 case SK_YUKON_XL_REV_A3:
1334 sc->sk_workaround = SK_WA_4109;
1335 revstr = "A3";
1336 break;
1337 default:
1338 sc->sk_workaround = 0;
1339 break;
1340 }
1341 }
1342
1343 if (sc->sk_type == SK_YUKON_EC) {
1344 switch (sc->sk_rev) {
1345 case SK_YUKON_EC_REV_A1:
1346 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1347 revstr = "A1";
1348 break;
1349 case SK_YUKON_EC_REV_A2:
1350 sc->sk_workaround = SK_WA_4109;
1351 revstr = "A2";
1352 break;
1353 case SK_YUKON_EC_REV_A3:
1354 sc->sk_workaround = SK_WA_4109;
1355 revstr = "A3";
1356 break;
1357 default:
1358 sc->sk_workaround = 0;
1359 break;
1360 }
1361 }
1362
1363 if (sc->sk_type == SK_YUKON_FE) {
1364 sc->sk_workaround = SK_WA_4109;
1365 switch (sc->sk_rev) {
1366 case SK_YUKON_FE_REV_A1:
1367 revstr = "A1";
1368 break;
1369 case SK_YUKON_FE_REV_A2:
1370 revstr = "A2";
1371 break;
1372 default:
1373 sc->sk_workaround = 0;
1374 break;
1375 }
1376 }
1377
1378 if (sc->sk_type == SK_YUKON_EC_U) {
1379 sc->sk_workaround = SK_WA_4109;
1380 switch (sc->sk_rev) {
1381 case SK_YUKON_EC_U_REV_A0:
1382 revstr = "A0";
1383 break;
1384 case SK_YUKON_EC_U_REV_A1:
1385 revstr = "A1";
1386 break;
1387 case SK_YUKON_EC_U_REV_B0:
1388 revstr = "B0";
1389 break;
1390 default:
1391 sc->sk_workaround = 0;
1392 break;
1393 }
1394 }
1395
1396 /* Announce the product name. */
1397 aprint_normal(", %s", sc->sk_name);
1398 if (revstr != NULL)
1399 aprint_normal(" rev. %s", revstr);
1400 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1401
1402 sc->sk_macs = 1;
1403
1404 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1405 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1406 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1407 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1408 sc->sk_macs++;
1409 }
1410
1411 skca.skc_port = SK_PORT_A;
1412 skca.skc_type = sc->sk_type;
1413 skca.skc_rev = sc->sk_rev;
1414 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1415
1416 if (sc->sk_macs > 1) {
1417 skca.skc_port = SK_PORT_B;
1418 skca.skc_type = sc->sk_type;
1419 skca.skc_rev = sc->sk_rev;
1420 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1421 }
1422
1423 /* Turn on the 'driver is loaded' LED. */
1424 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1425
1426 /* skc sysctl setup */
1427
1428 sc->sk_int_mod = SK_IM_DEFAULT;
1429 sc->sk_int_mod_pending = 0;
1430
1431 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1432 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1433 SYSCTL_DESCR("mskc per-controller controls"),
1434 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1435 CTL_EOL)) != 0) {
1436 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1437 goto fail_6;
1438 }
1439
1440 sk_nodenum = node->sysctl_num;
1441
1442 /* interrupt moderation time in usecs */
1443 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1444 CTLFLAG_READWRITE,
1445 CTLTYPE_INT, "int_mod",
1446 SYSCTL_DESCR("msk interrupt moderation timer"),
1447 msk_sysctl_handler, 0, sc,
1448 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1449 CTL_EOL)) != 0) {
1450 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1451 goto fail_6;
1452 }
1453
1454 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1455 aprint_error_dev(self, "couldn't establish power handler\n");
1456
1457 return;
1458
1459 fail_6:
1460 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1461 fail_5:
1462 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1463 fail_4:
1464 bus_dmamem_unmap(sc->sc_dmatag, kva,
1465 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1466 fail_3:
1467 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1468 fail_2:
1469 pci_intr_disestablish(pc, sc->sk_intrhand);
1470 fail_1:
1471 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1472 }
1473
1474 int
1475 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1476 {
1477 struct sk_softc *sc = sc_if->sk_softc;
1478 struct msk_tx_desc *f = NULL;
1479 u_int32_t frag, cur;
1480 int i;
1481 struct sk_txmap_entry *entry;
1482 bus_dmamap_t txmap;
1483
1484 DPRINTFN(2, ("msk_encap\n"));
1485
1486 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1487 if (entry == NULL) {
1488 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1489 return (ENOBUFS);
1490 }
1491 txmap = entry->dmamap;
1492
1493 cur = frag = *txidx;
1494
1495 #ifdef MSK_DEBUG
1496 if (mskdebug >= 2)
1497 msk_dump_mbuf(m_head);
1498 #endif
1499
1500 /*
1501 * Start packing the mbufs in this chain into
1502 * the fragment pointers. Stop when we run out
1503 * of fragments or hit the end of the mbuf chain.
1504 */
1505 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1506 BUS_DMA_NOWAIT)) {
1507 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1508 return (ENOBUFS);
1509 }
1510
1511 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1512 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1513 bus_dmamap_unload(sc->sc_dmatag, txmap);
1514 return (ENOBUFS);
1515 }
1516
1517 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1518
1519 /* Sync the DMA map. */
1520 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1521 BUS_DMASYNC_PREWRITE);
1522
1523 for (i = 0; i < txmap->dm_nsegs; i++) {
1524 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1525 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1526 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1527 f->sk_ctl = 0;
1528 if (i == 0)
1529 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1530 else
1531 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1532 cur = frag;
1533 SK_INC(frag, MSK_TX_RING_CNT);
1534 }
1535
1536 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1537 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1538
1539 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1540 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1541
1542 /* Sync descriptors before handing to chip */
1543 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1544 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1545
1546 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1547
1548 /* Sync first descriptor to hand it off */
1549 MSK_CDTXSYNC(sc_if, *txidx, 1,
1550 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1551
1552 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1553
1554 #ifdef MSK_DEBUG
1555 if (mskdebug >= 2) {
1556 struct msk_tx_desc *le;
1557 u_int32_t idx;
1558 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1559 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1560 msk_dump_txdesc(le, idx);
1561 }
1562 }
1563 #endif
1564
1565 *txidx = frag;
1566
1567 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1568
1569 return (0);
1570 }
1571
1572 void
1573 msk_start(struct ifnet *ifp)
1574 {
1575 struct sk_if_softc *sc_if = ifp->if_softc;
1576 struct mbuf *m_head = NULL;
1577 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1578 int pkts = 0;
1579
1580 DPRINTFN(2, ("msk_start\n"));
1581
1582 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1583 IFQ_POLL(&ifp->if_snd, m_head);
1584 if (m_head == NULL)
1585 break;
1586
1587 /*
1588 * Pack the data into the transmit ring. If we
1589 * don't have room, set the OACTIVE flag and wait
1590 * for the NIC to drain the ring.
1591 */
1592 if (msk_encap(sc_if, m_head, &idx)) {
1593 ifp->if_flags |= IFF_OACTIVE;
1594 break;
1595 }
1596
1597 /* now we are committed to transmit the packet */
1598 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1599 pkts++;
1600
1601 /*
1602 * If there's a BPF listener, bounce a copy of this frame
1603 * to him.
1604 */
1605 #if NBPFILTER > 0
1606 if (ifp->if_bpf)
1607 bpf_mtap(ifp->if_bpf, m_head);
1608 #endif
1609 }
1610 if (pkts == 0)
1611 return;
1612
1613 /* Transmit */
1614 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1615 sc_if->sk_cdata.sk_tx_prod = idx;
1616 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1617
1618 /* Set a timeout in case the chip goes out to lunch. */
1619 ifp->if_timer = 5;
1620 }
1621 }
1622
1623 void
1624 msk_watchdog(struct ifnet *ifp)
1625 {
1626 struct sk_if_softc *sc_if = ifp->if_softc;
1627 u_int32_t reg;
1628 int idx;
1629
1630 /*
1631 * Reclaim first as there is a possibility of losing Tx completion
1632 * interrupts.
1633 */
1634 if (sc_if->sk_port == SK_PORT_A)
1635 reg = SK_STAT_BMU_TXA1_RIDX;
1636 else
1637 reg = SK_STAT_BMU_TXA2_RIDX;
1638
1639 idx = sk_win_read_2(sc_if->sk_softc, reg);
1640 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1641 msk_txeof(sc_if, idx);
1642 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1643 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1644
1645 ifp->if_oerrors++;
1646
1647 /* XXX Resets both ports; we shouldn't do that. */
1648 msk_reset(sc_if->sk_softc);
1649 msk_init(ifp);
1650 }
1651 }
1652 }
1653
1654 static bool
1655 mskc_suspend(device_t dv PMF_FN_ARGS)
1656 {
1657 struct sk_softc *sc = device_private(dv);
1658
1659 DPRINTFN(2, ("mskc_suspend\n"));
1660
1661 /* Turn off the 'driver is loaded' LED. */
1662 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1663
1664 return true;
1665 }
1666
1667 static bool
1668 mskc_resume(device_t dv PMF_FN_ARGS)
1669 {
1670 struct sk_softc *sc = device_private(dv);
1671
1672 DPRINTFN(2, ("mskc_resume\n"));
1673
1674 msk_reset(sc);
1675 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1676
1677 return true;
1678 }
1679
1680 __inline int
1681 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1682 {
1683 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1684 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1685 YU_RXSTAT_JABBER)) != 0 ||
1686 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1687 YU_RXSTAT_BYTES(stat) != len)
1688 return (0);
1689
1690 return (1);
1691 }
1692
1693 void
1694 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1695 {
1696 struct sk_softc *sc = sc_if->sk_softc;
1697 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1698 struct mbuf *m;
1699 struct sk_chain *cur_rx;
1700 int cur, total_len = len;
1701 bus_dmamap_t dmamap;
1702
1703 DPRINTFN(2, ("msk_rxeof\n"));
1704
1705 cur = sc_if->sk_cdata.sk_rx_cons;
1706 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1707 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1708
1709 /* Sync the descriptor */
1710 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1711
1712 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1713 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1714
1715 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1716 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1717
1718 m = cur_rx->sk_mbuf;
1719 cur_rx->sk_mbuf = NULL;
1720
1721 if (total_len < SK_MIN_FRAMELEN ||
1722 total_len > ETHER_MAX_LEN_JUMBO ||
1723 msk_rxvalid(sc, rxstat, total_len) == 0) {
1724 ifp->if_ierrors++;
1725 msk_newbuf(sc_if, cur, m, dmamap);
1726 return;
1727 }
1728
1729 /*
1730 * Try to allocate a new jumbo buffer. If that fails, copy the
1731 * packet to mbufs and put the jumbo buffer back in the ring
1732 * so it can be re-used. If allocating mbufs fails, then we
1733 * have to drop the packet.
1734 */
1735 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1736 struct mbuf *m0;
1737 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1738 total_len + ETHER_ALIGN, 0, ifp, NULL);
1739 msk_newbuf(sc_if, cur, m, dmamap);
1740 if (m0 == NULL) {
1741 ifp->if_ierrors++;
1742 return;
1743 }
1744 m_adj(m0, ETHER_ALIGN);
1745 m = m0;
1746 } else {
1747 m->m_pkthdr.rcvif = ifp;
1748 m->m_pkthdr.len = m->m_len = total_len;
1749 }
1750
1751 ifp->if_ipackets++;
1752
1753 #if NBPFILTER > 0
1754 if (ifp->if_bpf)
1755 bpf_mtap(ifp->if_bpf, m);
1756 #endif
1757
1758 /* pass it on. */
1759 (*ifp->if_input)(ifp, m);
1760 }
1761
1762 void
1763 msk_txeof(struct sk_if_softc *sc_if, int idx)
1764 {
1765 struct sk_softc *sc = sc_if->sk_softc;
1766 struct msk_tx_desc *cur_tx;
1767 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1768 u_int32_t sk_ctl;
1769 struct sk_txmap_entry *entry;
1770 int cons, prog;
1771
1772 DPRINTFN(2, ("msk_txeof\n"));
1773
1774 /*
1775 * Go through our tx ring and free mbufs for those
1776 * frames that have been sent.
1777 */
1778 cons = sc_if->sk_cdata.sk_tx_cons;
1779 prog = 0;
1780 while (cons != idx) {
1781 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1782 break;
1783 prog++;
1784 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1785
1786 MSK_CDTXSYNC(sc_if, cons, 1,
1787 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1788 sk_ctl = cur_tx->sk_ctl;
1789 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1790 #ifdef MSK_DEBUG
1791 if (mskdebug >= 2)
1792 msk_dump_txdesc(cur_tx, cons);
1793 #endif
1794 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1795 ifp->if_opackets++;
1796 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1797 entry = sc_if->sk_cdata.sk_tx_map[cons];
1798
1799 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1800 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1801
1802 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1803 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1804 link);
1805 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1806 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1807 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1808 }
1809 sc_if->sk_cdata.sk_tx_cnt--;
1810 SK_INC(cons, MSK_TX_RING_CNT);
1811 }
1812 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1813
1814 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1815 ifp->if_flags &= ~IFF_OACTIVE;
1816
1817 if (prog > 0)
1818 sc_if->sk_cdata.sk_tx_cons = cons;
1819 }
1820
1821 void
1822 msk_tick(void *xsc_if)
1823 {
1824 struct sk_if_softc *sc_if = xsc_if;
1825 struct mii_data *mii = &sc_if->sk_mii;
1826 int s;
1827
1828 s = splnet();
1829 mii_tick(mii);
1830 splx(s);
1831
1832 callout_schedule(&sc_if->sk_tick_ch, hz);
1833 }
1834
1835 void
1836 msk_intr_yukon(struct sk_if_softc *sc_if)
1837 {
1838 u_int8_t status;
1839
1840 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1841 /* RX overrun */
1842 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1843 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1844 SK_RFCTL_RX_FIFO_OVER);
1845 }
1846 /* TX underrun */
1847 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1848 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1849 SK_TFCTL_TX_FIFO_UNDER);
1850 }
1851
1852 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1853 }
1854
1855 int
1856 msk_intr(void *xsc)
1857 {
1858 struct sk_softc *sc = xsc;
1859 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1860 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1861 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1862 int claimed = 0;
1863 u_int32_t status;
1864 uint32_t st_status;
1865 uint16_t st_len;
1866 uint8_t st_opcode, st_link;
1867 struct msk_status_desc *cur_st;
1868
1869 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1870 if (status == 0) {
1871 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1872 return (0);
1873 }
1874
1875 status = CSR_READ_4(sc, SK_ISR);
1876
1877 if (sc_if0 != NULL)
1878 ifp0 = &sc_if0->sk_ethercom.ec_if;
1879 if (sc_if1 != NULL)
1880 ifp1 = &sc_if1->sk_ethercom.ec_if;
1881
1882 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1883 (ifp0->if_flags & IFF_RUNNING)) {
1884 msk_intr_yukon(sc_if0);
1885 }
1886
1887 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1888 (ifp1->if_flags & IFF_RUNNING)) {
1889 msk_intr_yukon(sc_if1);
1890 }
1891
1892 for (;;) {
1893 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1894 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1895 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1896 st_opcode = cur_st->sk_opcode;
1897 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1898 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1899 BUS_DMASYNC_PREREAD);
1900 break;
1901 }
1902 st_status = le32toh(cur_st->sk_status);
1903 st_len = le16toh(cur_st->sk_len);
1904 st_link = cur_st->sk_link;
1905 st_opcode &= ~SK_Y2_STOPC_OWN;
1906
1907 switch (st_opcode) {
1908 case SK_Y2_STOPC_RXSTAT:
1909 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1910 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1911 SK_RXQ1_Y2_PREF_PUTIDX,
1912 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1913 break;
1914 case SK_Y2_STOPC_TXSTAT:
1915 if (sc_if0)
1916 msk_txeof(sc_if0, st_status
1917 & SK_Y2_ST_TXA1_MSKL);
1918 if (sc_if1)
1919 msk_txeof(sc_if1,
1920 ((st_status & SK_Y2_ST_TXA2_MSKL)
1921 >> SK_Y2_ST_TXA2_SHIFTL)
1922 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1923 break;
1924 default:
1925 aprint_error("opcode=0x%x\n", st_opcode);
1926 break;
1927 }
1928 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1929 }
1930
1931 #define MSK_STATUS_RING_OWN_CNT(sc) \
1932 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1933 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1934
1935 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1936 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1937 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1938 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1939 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1940
1941 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1942 }
1943
1944 if (status & SK_Y2_IMR_BMU) {
1945 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1946 claimed = 1;
1947 }
1948
1949 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1950
1951 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1952 msk_start(ifp0);
1953 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1954 msk_start(ifp1);
1955
1956 #if NRND > 0
1957 if (RND_ENABLED(&sc->rnd_source))
1958 rnd_add_uint32(&sc->rnd_source, status);
1959 #endif
1960
1961 if (sc->sk_int_mod_pending)
1962 msk_update_int_mod(sc);
1963
1964 return claimed;
1965 }
1966
1967 void
1968 msk_init_yukon(struct sk_if_softc *sc_if)
1969 {
1970 u_int32_t v;
1971 u_int16_t reg;
1972 struct sk_softc *sc;
1973 int i;
1974
1975 sc = sc_if->sk_softc;
1976
1977 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1978 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1979
1980 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1981
1982 /* GMAC and GPHY Reset */
1983 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1984 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1985 DELAY(1000);
1986
1987 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1988
1989 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1990 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1991 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1992
1993 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1994 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1995
1996 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1997
1998 /* unused read of the interrupt source register */
1999 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2000 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2001
2002 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2003 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2004 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2005
2006 /* MIB Counter Clear Mode set */
2007 reg |= YU_PAR_MIB_CLR;
2008 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2009 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2010 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2011
2012 /* MIB Counter Clear Mode clear */
2013 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2014 reg &= ~YU_PAR_MIB_CLR;
2015 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2016
2017 /* receive control reg */
2018 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2019 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2020
2021 /* transmit control register */
2022 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2023
2024 /* transmit flow control register */
2025 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2026
2027 /* transmit parameter register */
2028 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2029 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2030 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2031
2032 /* serial mode register */
2033 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2034 reg = YU_SMR_DATA_BLIND(0x1c) |
2035 YU_SMR_MFL_VLAN |
2036 YU_SMR_IPG_DATA(0x1e);
2037
2038 if (sc->sk_type != SK_YUKON_FE)
2039 reg |= YU_SMR_MFL_JUMBO;
2040
2041 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2042
2043 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2044 /* Setup Yukon's address */
2045 for (i = 0; i < 3; i++) {
2046 /* Write Source Address 1 (unicast filter) */
2047 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2048 sc_if->sk_enaddr[i * 2] |
2049 sc_if->sk_enaddr[i * 2 + 1] << 8);
2050 }
2051
2052 for (i = 0; i < 3; i++) {
2053 reg = sk_win_read_2(sc_if->sk_softc,
2054 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2055 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2056 }
2057
2058 /* Set promiscuous mode */
2059 msk_setpromisc(sc_if);
2060
2061 /* Set multicast filter */
2062 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2063 msk_setmulti(sc_if);
2064
2065 /* enable interrupt mask for counter overflows */
2066 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2067 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2068 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2069 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2070
2071 /* Configure RX MAC FIFO Flush Mask */
2072 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2073 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2074 YU_RXSTAT_JABBER;
2075 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2076
2077 /* Configure RX MAC FIFO */
2078 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2079 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2080 SK_RFCTL_FIFO_FLUSH_ON);
2081
2082 /* Increase flush threshould to 64 bytes */
2083 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2084 SK_RFCTL_FIFO_THRESHOLD + 1);
2085
2086 /* Configure TX MAC FIFO */
2087 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2088 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2089
2090 #if 1
2091 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2092 #endif
2093 DPRINTFN(6, ("msk_init_yukon: end\n"));
2094 }
2095
2096 /*
2097 * Note that to properly initialize any part of the GEnesis chip,
2098 * you first have to take it out of reset mode.
2099 */
2100 int
2101 msk_init(struct ifnet *ifp)
2102 {
2103 struct sk_if_softc *sc_if = ifp->if_softc;
2104 struct sk_softc *sc = sc_if->sk_softc;
2105 int rc = 0, s;
2106 uint32_t imr, imtimer_ticks;
2107
2108
2109 DPRINTFN(2, ("msk_init\n"));
2110
2111 s = splnet();
2112
2113 /* Cancel pending I/O and free all RX/TX buffers. */
2114 msk_stop(ifp,0);
2115
2116 /* Configure I2C registers */
2117
2118 /* Configure XMAC(s) */
2119 msk_init_yukon(sc_if);
2120 if ((rc = ether_mediachange(ifp)) != 0)
2121 goto out;
2122
2123 /* Configure transmit arbiter(s) */
2124 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2125 #if 0
2126 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2127 #endif
2128
2129 /* Configure RAMbuffers */
2130 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2131 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2132 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2133 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2134 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2135 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2136
2137 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2138 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2139 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2140 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2141 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2142 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2143 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2144
2145 /* Configure BMUs */
2146 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2147 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2148 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2149 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2150
2151 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2152 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2153 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2154 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2155
2156 /* Make sure the sync transmit queue is disabled. */
2157 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2158
2159 /* Init descriptors */
2160 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2161 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2162 "memory for rx buffers\n");
2163 msk_stop(ifp,0);
2164 splx(s);
2165 return ENOBUFS;
2166 }
2167
2168 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2169 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2170 "memory for tx buffers\n");
2171 msk_stop(ifp,0);
2172 splx(s);
2173 return ENOBUFS;
2174 }
2175
2176 /* Set interrupt moderation if changed via sysctl. */
2177 switch (sc->sk_type) {
2178 case SK_YUKON_EC:
2179 case SK_YUKON_EC_U:
2180 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2181 break;
2182 case SK_YUKON_FE:
2183 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2184 break;
2185 case SK_YUKON_XL:
2186 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2187 break;
2188 default:
2189 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2190 }
2191 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2192 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2193 sk_win_write_4(sc, SK_IMTIMERINIT,
2194 SK_IM_USECS(sc->sk_int_mod));
2195 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2196 sc->sk_int_mod);
2197 }
2198
2199 /* Initialize prefetch engine. */
2200 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2201 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2202 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2203 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2204 MSK_RX_RING_ADDR(sc_if, 0));
2205 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2206 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2207 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2208 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2209
2210 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2211 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2212 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2213 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2214 MSK_TX_RING_ADDR(sc_if, 0));
2215 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2216 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2217 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2218 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2219
2220 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2221 sc_if->sk_cdata.sk_rx_prod);
2222
2223 /* Configure interrupt handling */
2224 if (sc_if->sk_port == SK_PORT_A)
2225 sc->sk_intrmask |= SK_Y2_INTRS1;
2226 else
2227 sc->sk_intrmask |= SK_Y2_INTRS2;
2228 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2229 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2230
2231 ifp->if_flags |= IFF_RUNNING;
2232 ifp->if_flags &= ~IFF_OACTIVE;
2233
2234 callout_schedule(&sc_if->sk_tick_ch, hz);
2235
2236 out:
2237 splx(s);
2238 return rc;
2239 }
2240
2241 void
2242 msk_stop(struct ifnet *ifp, int disable)
2243 {
2244 struct sk_if_softc *sc_if = ifp->if_softc;
2245 struct sk_softc *sc = sc_if->sk_softc;
2246 struct sk_txmap_entry *dma;
2247 int i;
2248
2249 DPRINTFN(2, ("msk_stop\n"));
2250
2251 callout_stop(&sc_if->sk_tick_ch);
2252
2253 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2254
2255 /* Stop transfer of Tx descriptors */
2256
2257 /* Stop transfer of Rx descriptors */
2258
2259 /* Turn off various components of this interface. */
2260 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2261 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2262 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2263 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2264 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2265 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2266 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2267 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2268 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2269 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2270 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2271 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2272
2273 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2274 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2275
2276 /* Disable interrupts */
2277 if (sc_if->sk_port == SK_PORT_A)
2278 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2279 else
2280 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2281 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2282
2283 SK_XM_READ_2(sc_if, XM_ISR);
2284 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2285
2286 /* Free RX and TX mbufs still in the queues. */
2287 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2288 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2289 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2290 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2291 }
2292 }
2293
2294 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2295 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2296 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2297 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2298 #if 1
2299 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2300 sc_if->sk_cdata.sk_tx_map[i], link);
2301 sc_if->sk_cdata.sk_tx_map[i] = 0;
2302 #endif
2303 }
2304 }
2305
2306 #if 1
2307 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2308 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2309 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2310 free(dma, M_DEVBUF);
2311 }
2312 #endif
2313 }
2314
2315 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2316 NULL, NULL);
2317
2318 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2319 NULL, NULL);
2320
2321 #ifdef MSK_DEBUG
2322 void
2323 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2324 {
2325 #define DESC_PRINT(X) \
2326 if (X) \
2327 printf("txdesc[%d]." #X "=%#x\n", \
2328 idx, X);
2329
2330 DESC_PRINT(letoh32(le->sk_addr));
2331 DESC_PRINT(letoh16(le->sk_len));
2332 DESC_PRINT(le->sk_ctl);
2333 DESC_PRINT(le->sk_opcode);
2334 #undef DESC_PRINT
2335 }
2336
2337 void
2338 msk_dump_bytes(const char *data, int len)
2339 {
2340 int c, i, j;
2341
2342 for (i = 0; i < len; i += 16) {
2343 printf("%08x ", i);
2344 c = len - i;
2345 if (c > 16) c = 16;
2346
2347 for (j = 0; j < c; j++) {
2348 printf("%02x ", data[i + j] & 0xff);
2349 if ((j & 0xf) == 7 && j > 0)
2350 printf(" ");
2351 }
2352
2353 for (; j < 16; j++)
2354 printf(" ");
2355 printf(" ");
2356
2357 for (j = 0; j < c; j++) {
2358 int ch = data[i + j] & 0xff;
2359 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2360 }
2361
2362 printf("\n");
2363
2364 if (c < 16)
2365 break;
2366 }
2367 }
2368
2369 void
2370 msk_dump_mbuf(struct mbuf *m)
2371 {
2372 int count = m->m_pkthdr.len;
2373
2374 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2375
2376 while (count > 0 && m) {
2377 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2378 m, m->m_data, m->m_len);
2379 msk_dump_bytes(mtod(m, char *), m->m_len);
2380
2381 count -= m->m_len;
2382 m = m->m_next;
2383 }
2384 }
2385 #endif
2386
2387 static int
2388 msk_sysctl_handler(SYSCTLFN_ARGS)
2389 {
2390 int error, t;
2391 struct sysctlnode node;
2392 struct sk_softc *sc;
2393
2394 node = *rnode;
2395 sc = node.sysctl_data;
2396 t = sc->sk_int_mod;
2397 node.sysctl_data = &t;
2398 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2399 if (error || newp == NULL)
2400 return error;
2401
2402 if (t < SK_IM_MIN || t > SK_IM_MAX)
2403 return EINVAL;
2404
2405 /* update the softc with sysctl-changed value, and mark
2406 for hardware update */
2407 sc->sk_int_mod = t;
2408 sc->sk_int_mod_pending = 1;
2409 return 0;
2410 }
2411
2412 /*
2413 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2414 * set up in skc_attach()
2415 */
2416 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2417 {
2418 int rc;
2419 const struct sysctlnode *node;
2420
2421 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2422 0, CTLTYPE_NODE, "hw", NULL,
2423 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2424 goto err;
2425 }
2426
2427 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2428 0, CTLTYPE_NODE, "msk",
2429 SYSCTL_DESCR("msk interface controls"),
2430 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2431 goto err;
2432 }
2433
2434 msk_root_num = node->sysctl_num;
2435 return;
2436
2437 err:
2438 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2439 }
2440