if_msk.c revision 1.26 1 /* $NetBSD: if_msk.c,v 1.26 2009/05/06 10:34:32 cegger Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.26 2009/05/06 10:34:32 cegger Exp $");
56
57 #include "bpfilter.h"
58 #include "rnd.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sockio.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/device.h>
69 #include <sys/queue.h>
70 #include <sys/callout.h>
71 #include <sys/sysctl.h>
72 #include <sys/endian.h>
73 #ifdef __NetBSD__
74 #define letoh16 htole16
75 #define letoh32 htole32
76 #endif
77
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_types.h>
81
82 #include <net/if_media.h>
83
84 #if NBPFILTER > 0
85 #include <net/bpf.h>
86 #endif
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <dev/mii/mii.h>
92 #include <dev/mii/miivar.h>
93 #include <dev/mii/brgphyreg.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/pci/if_skreg.h>
100 #include <dev/pci/if_mskvar.h>
101
102 int mskc_probe(device_t, cfdata_t, void *);
103 void mskc_attach(device_t, device_t self, void *aux);
104 static bool mskc_suspend(device_t PMF_FN_PROTO);
105 static bool mskc_resume(device_t PMF_FN_PROTO);
106 int msk_probe(device_t, cfdata_t, void *);
107 void msk_attach(device_t, device_t self, void *aux);
108 int mskcprint(void *, const char *);
109 int msk_intr(void *);
110 void msk_intr_yukon(struct sk_if_softc *);
111 __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
112 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
113 void msk_txeof(struct sk_if_softc *, int);
114 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
115 void msk_start(struct ifnet *);
116 int msk_ioctl(struct ifnet *, u_long, void *);
117 int msk_init(struct ifnet *);
118 void msk_init_yukon(struct sk_if_softc *);
119 void msk_stop(struct ifnet *, int);
120 void msk_watchdog(struct ifnet *);
121 void msk_reset(struct sk_softc *);
122 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
123 int msk_alloc_jumbo_mem(struct sk_if_softc *);
124 void *msk_jalloc(struct sk_if_softc *);
125 void msk_jfree(struct mbuf *, void *, size_t, void *);
126 int msk_init_rx_ring(struct sk_if_softc *);
127 int msk_init_tx_ring(struct sk_if_softc *);
128
129 void msk_update_int_mod(struct sk_softc *);
130
131 int msk_miibus_readreg(device_t, int, int);
132 void msk_miibus_writereg(device_t, int, int, int);
133 void msk_miibus_statchg(device_t);
134
135 void msk_setfilt(struct sk_if_softc *, void *, int);
136 void msk_setmulti(struct sk_if_softc *);
137 void msk_setpromisc(struct sk_if_softc *);
138 void msk_tick(void *);
139
140 /* #define MSK_DEBUG 1 */
141 #ifdef MSK_DEBUG
142 #define DPRINTF(x) if (mskdebug) printf x
143 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
144 int mskdebug = MSK_DEBUG;
145
146 void msk_dump_txdesc(struct msk_tx_desc *, int);
147 void msk_dump_mbuf(struct mbuf *);
148 void msk_dump_bytes(const char *, int);
149 #else
150 #define DPRINTF(x)
151 #define DPRINTFN(n,x)
152 #endif
153
154 static int msk_sysctl_handler(SYSCTLFN_PROTO);
155 static int msk_root_num;
156
157 /* supported device vendors */
158 static const struct msk_product {
159 pci_vendor_id_t msk_vendor;
160 pci_product_id_t msk_product;
161 } msk_products[] = {
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
189 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
190 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
191 };
192
193 static inline u_int32_t
194 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
195 {
196 return CSR_READ_4(sc, reg);
197 }
198
199 static inline u_int16_t
200 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_2(sc, reg);
203 }
204
205 static inline u_int8_t
206 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_1(sc, reg);
209 }
210
211 static inline void
212 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
213 {
214 CSR_WRITE_4(sc, reg, x);
215 }
216
217 static inline void
218 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
219 {
220 CSR_WRITE_2(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
225 {
226 CSR_WRITE_1(sc, reg, x);
227 }
228
229 int
230 msk_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
233 u_int16_t val;
234 int i;
235
236 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
237 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
238
239 for (i = 0; i < SK_TIMEOUT; i++) {
240 DELAY(1);
241 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
242 if (val & YU_SMICR_READ_VALID)
243 break;
244 }
245
246 if (i == SK_TIMEOUT) {
247 aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
248 return (0);
249 }
250
251 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
252 SK_TIMEOUT));
253
254 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
255
256 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
257 phy, reg, val));
258
259 return (val);
260 }
261
262 void
263 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
264 {
265 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
266 int i;
267
268 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
269 phy, reg, val));
270
271 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
272 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
273 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
274
275 for (i = 0; i < SK_TIMEOUT; i++) {
276 DELAY(1);
277 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
278 break;
279 }
280
281 if (i == SK_TIMEOUT)
282 aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
283 }
284
285 void
286 msk_miibus_statchg(device_t dev)
287 {
288 struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
289 struct mii_data *mii = &sc_if->sk_mii;
290 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
291 int gpcr;
292
293 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
294 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
295
296 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
297 /* Set speed. */
298 gpcr |= YU_GPCR_SPEED_DIS;
299 switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 case IFM_1000_SX:
301 case IFM_1000_LX:
302 case IFM_1000_CX:
303 case IFM_1000_T:
304 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
305 break;
306 case IFM_100_TX:
307 gpcr |= YU_GPCR_SPEED;
308 break;
309 }
310
311 /* Set duplex. */
312 gpcr |= YU_GPCR_DPLX_DIS;
313 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
314 gpcr |= YU_GPCR_DUPLEX;
315
316 /* Disable flow control. */
317 gpcr |= YU_GPCR_FCTL_DIS;
318 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
319 }
320
321 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
322
323 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
324 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
325 }
326
327 #define HASH_BITS 6
328
329 void
330 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
331 {
332 char *addr = addrv;
333 int base = XM_RXFILT_ENTRY(slot);
334
335 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
336 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
337 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 u_int32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 u_int16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 int i, nexti;
416
417 memset((char *)rd->sk_rx_ring, 0,
418 sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 for (i = 0; i < MSK_RX_RING_CNT; i++) {
430 if (msk_newbuf(sc_if, i, NULL,
431 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
432 aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
433 return (ENOBUFS);
434 }
435 }
436
437 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 sc_if->sk_cdata.sk_rx_cons = 0;
439
440 return (0);
441 }
442
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 struct sk_softc *sc = sc_if->sk_softc;
447 struct msk_chain_data *cd = &sc_if->sk_cdata;
448 struct msk_ring_data *rd = sc_if->sk_rdata;
449 bus_dmamap_t dmamap;
450 struct sk_txmap_entry *entry;
451 int i, nexti;
452
453 memset((char *)sc_if->sk_rdata->sk_tx_ring, 0,
454 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455
456 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 if (i == (MSK_TX_RING_CNT - 1))
460 nexti = 0;
461 else
462 nexti = i + 1;
463 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464
465 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 return (ENOBUFS);
468
469 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 if (!entry) {
471 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 return (ENOBUFS);
473 }
474 entry->dmamap = dmamap;
475 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 }
477
478 sc_if->sk_cdata.sk_tx_prod = 0;
479 sc_if->sk_cdata.sk_tx_cons = 0;
480 sc_if->sk_cdata.sk_tx_cnt = 0;
481
482 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484
485 return (0);
486 }
487
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 bus_dmamap_t dmamap)
491 {
492 struct mbuf *m_new = NULL;
493 struct sk_chain *c;
494 struct msk_rx_desc *r;
495
496 if (m == NULL) {
497 void *buf = NULL;
498
499 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 if (m_new == NULL)
501 return (ENOBUFS);
502
503 /* Allocate the jumbo buffer */
504 buf = msk_jalloc(sc_if);
505 if (buf == NULL) {
506 m_freem(m_new);
507 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 return (ENOBUFS);
510 }
511
512 /* Attach the buffer to the mbuf */
513 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 } else {
516 /*
517 * We're re-using a previously allocated mbuf;
518 * be sure to re-init pointers and lengths to
519 * default values.
520 */
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 }
525 m_adj(m_new, ETHER_ALIGN);
526
527 c = &sc_if->sk_cdata.sk_rx_chain[i];
528 r = c->sk_le;
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 (((vaddr_t)m_new->m_data
532 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 r->sk_len = htole16(SK_JLEN);
534 r->sk_ctl = 0;
535 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536
537 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538
539 return (0);
540 }
541
542 /*
543 * Memory management for jumbo frames.
544 */
545
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 struct sk_softc *sc = sc_if->sk_softc;
550 char *ptr, *kva;
551 bus_dma_segment_t seg;
552 int i, rseg, state, error;
553 struct sk_jpool_entry *entry;
554
555 state = error = 0;
556
557 /* Grab a big chunk o' storage. */
558 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 aprint_error(": can't alloc rx buffers");
561 return (ENOBUFS);
562 }
563
564 state = 1;
565 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 BUS_DMA_NOWAIT)) {
567 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 2;
573 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 aprint_error(": can't create dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 3;
581 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 aprint_error(": can't load dma map");
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 4;
589 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591
592 LIST_INIT(&sc_if->sk_jfree_listhead);
593 LIST_INIT(&sc_if->sk_jinuse_listhead);
594 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
595
596 /*
597 * Now divide it up into 9K pieces and save the addresses
598 * in an array.
599 */
600 ptr = sc_if->sk_cdata.sk_jumbo_buf;
601 for (i = 0; i < MSK_JSLOTS; i++) {
602 sc_if->sk_cdata.sk_jslots[i] = ptr;
603 ptr += SK_JLEN;
604 entry = malloc(sizeof(struct sk_jpool_entry),
605 M_DEVBUF, M_NOWAIT);
606 if (entry == NULL) {
607 sc_if->sk_cdata.sk_jumbo_buf = NULL;
608 aprint_error(": no memory for jumbo buffer queue!");
609 error = ENOBUFS;
610 goto out;
611 }
612 entry->slot = i;
613 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
614 entry, jpool_entries);
615 }
616 out:
617 if (error != 0) {
618 switch (state) {
619 case 4:
620 bus_dmamap_unload(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 3:
623 bus_dmamap_destroy(sc->sc_dmatag,
624 sc_if->sk_cdata.sk_rx_jumbo_map);
625 case 2:
626 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 case 1:
628 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
629 break;
630 default:
631 break;
632 }
633 }
634
635 return (error);
636 }
637
638 /*
639 * Allocate a jumbo buffer.
640 */
641 void *
642 msk_jalloc(struct sk_if_softc *sc_if)
643 {
644 struct sk_jpool_entry *entry;
645
646 mutex_enter(&sc_if->sk_jpool_mtx);
647 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648
649 if (entry == NULL) {
650 mutex_exit(&sc_if->sk_jpool_mtx);
651 return NULL;
652 }
653
654 LIST_REMOVE(entry, jpool_entries);
655 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
656 mutex_exit(&sc_if->sk_jpool_mtx);
657 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
658 }
659
660 /*
661 * Release a jumbo buffer.
662 */
663 void
664 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
665 {
666 struct sk_jpool_entry *entry;
667 struct sk_if_softc *sc;
668 int i;
669
670 /* Extract the softc struct pointer. */
671 sc = (struct sk_if_softc *)arg;
672
673 if (sc == NULL)
674 panic("msk_jfree: can't find softc pointer!");
675
676 /* calculate the slot this buffer belongs to */
677 i = ((vaddr_t)buf
678 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
679
680 if ((i < 0) || (i >= MSK_JSLOTS))
681 panic("msk_jfree: asked to free buffer that we don't manage!");
682
683 mutex_enter(&sc->sk_jpool_mtx);
684 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
685 if (entry == NULL)
686 panic("msk_jfree: buffer not in use!");
687 entry->slot = i;
688 LIST_REMOVE(entry, jpool_entries);
689 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
690 mutex_exit(&sc->sk_jpool_mtx);
691
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 }
695
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 struct sk_if_softc *sc_if = ifp->if_softc;
700 int s, error = 0;
701
702 s = splnet();
703
704 DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 error = ether_ioctl(ifp, cmd, data);
706
707 if (error == ENETRESET) {
708 error = 0;
709 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
710 ;
711 else if (ifp->if_flags & IFF_RUNNING) {
712 /*
713 * Multicast list has changed; set the hardware
714 * filter accordingly.
715 */
716 msk_setmulti(sc_if);
717 }
718 }
719
720 splx(s);
721 return (error);
722 }
723
724 void
725 msk_update_int_mod(struct sk_softc *sc)
726 {
727 u_int32_t imtimer_ticks;
728
729 /*
730 * Configure interrupt moderation. The moderation timer
731 * defers interrupts specified in the interrupt moderation
732 * timer mask based on the timeout specified in the interrupt
733 * moderation timer init register. Each bit in the timer
734 * register represents one tick, so to specify a timeout in
735 * microseconds, we have to multiply by the correct number of
736 * ticks-per-microsecond.
737 */
738 switch (sc->sk_type) {
739 case SK_YUKON_EC:
740 case SK_YUKON_EC_U:
741 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
742 break;
743 case SK_YUKON_FE:
744 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
745 break;
746 case SK_YUKON_XL:
747 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
748 break;
749 default:
750 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
751 }
752 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
753 sc->sk_int_mod);
754 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
755 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
756 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
757 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
758 sc->sk_int_mod_pending = 0;
759 }
760
761 static int
762 msk_lookup(const struct pci_attach_args *pa)
763 {
764 const struct msk_product *pmsk;
765
766 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
767 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
768 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
769 return 1;
770 }
771 return 0;
772 }
773
774 /*
775 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
776 * IDs against our list and return a device name if we find a match.
777 */
778 int
779 mskc_probe(device_t parent, cfdata_t match, void *aux)
780 {
781 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
782
783 return msk_lookup(pa);
784 }
785
786 /*
787 * Force the GEnesis into reset, then bring it out of reset.
788 */
789 void msk_reset(struct sk_softc *sc)
790 {
791 u_int32_t imtimer_ticks, reg1;
792 int reg;
793
794 DPRINTFN(2, ("msk_reset\n"));
795
796 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
797 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
798
799 DELAY(1000);
800 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
801 DELAY(2);
802 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
803 sk_win_write_1(sc, SK_TESTCTL1, 2);
804
805 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
806 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
807 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
808 else
809 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
810
811 if (sc->sk_type == SK_YUKON_EC_U) {
812 uint32_t our;
813
814 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
815
816 /* enable all clocks. */
817 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
818 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
819 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
820 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
821 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
822 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
823 /* Set all bits to 0 except bits 15..12 */
824 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
825 /* Set to default value */
826 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
827 }
828
829 /* release PHY from PowerDown/Coma mode. */
830 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
831
832 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
833 sk_win_write_1(sc, SK_Y2_CLKGATE,
834 SK_Y2_CLKGATE_LINK1_GATE_DIS |
835 SK_Y2_CLKGATE_LINK2_GATE_DIS |
836 SK_Y2_CLKGATE_LINK1_CORE_DIS |
837 SK_Y2_CLKGATE_LINK2_CORE_DIS |
838 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
839 else
840 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
841
842 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
843 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
844 DELAY(1000);
845 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
846 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
847
848 sk_win_write_1(sc, SK_TESTCTL1, 1);
849
850 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
851 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
852 CSR_READ_2(sc, SK_LINK_CTRL)));
853
854 /* Disable ASF */
855 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
856 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
857
858 /* Clear I2C IRQ noise */
859 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
860
861 /* Disable hardware timer */
862 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
863 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
864
865 /* Disable descriptor polling */
866 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
867
868 /* Disable time stamps */
869 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
870 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
871
872 /* Enable RAM interface */
873 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
874 for (reg = SK_TO0;reg <= SK_TO11; reg++)
875 sk_win_write_1(sc, reg, 36);
876 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
877 for (reg = SK_TO0;reg <= SK_TO11; reg++)
878 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
879
880 /*
881 * Configure interrupt moderation. The moderation timer
882 * defers interrupts specified in the interrupt moderation
883 * timer mask based on the timeout specified in the interrupt
884 * moderation timer init register. Each bit in the timer
885 * register represents one tick, so to specify a timeout in
886 * microseconds, we have to multiply by the correct number of
887 * ticks-per-microsecond.
888 */
889 switch (sc->sk_type) {
890 case SK_YUKON_EC:
891 case SK_YUKON_EC_U:
892 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
893 break;
894 case SK_YUKON_FE:
895 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
896 break;
897 case SK_YUKON_XL:
898 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
899 break;
900 default:
901 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
902 }
903
904 /* Reset status ring. */
905 memset((char *)sc->sk_status_ring, 0,
906 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
907 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
908 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
909 sc->sk_status_idx = 0;
910 sc->sk_status_own_idx = 0;
911
912 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
913 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
914
915 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
916 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
917 sc->sk_status_map->dm_segs[0].ds_addr);
918 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
919 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
920 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
921 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
922 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
923 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
924 } else {
925 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
926 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
927 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
928 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
929 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
930 }
931
932 #if 0
933 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
934 #endif
935 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
936
937 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
938
939 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
940 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
941 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
942
943 msk_update_int_mod(sc);
944 }
945
946 int
947 msk_probe(device_t parent, cfdata_t match, void *aux)
948 {
949 struct skc_attach_args *sa = aux;
950
951 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
952 return (0);
953
954 switch (sa->skc_type) {
955 case SK_YUKON_XL:
956 case SK_YUKON_EC_U:
957 case SK_YUKON_EC:
958 case SK_YUKON_FE:
959 return (1);
960 }
961
962 return (0);
963 }
964
965 static bool
966 msk_resume(device_t dv PMF_FN_ARGS)
967 {
968 struct sk_if_softc *sc_if = device_private(dv);
969
970 msk_init_yukon(sc_if);
971 return true;
972 }
973
974 /*
975 * Each XMAC chip is attached as a separate logical IP interface.
976 * Single port cards will have only one logical interface of course.
977 */
978 void
979 msk_attach(device_t parent, device_t self, void *aux)
980 {
981 struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
982 struct sk_softc *sc = (struct sk_softc *)parent;
983 struct skc_attach_args *sa = aux;
984 struct ifnet *ifp;
985 void *kva;
986 bus_dma_segment_t seg;
987 int i, rseg;
988 u_int32_t chunk, val;
989
990 sc_if->sk_port = sa->skc_port;
991 sc_if->sk_softc = sc;
992 sc->sk_if[sa->skc_port] = sc_if;
993
994 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
995
996 /*
997 * Get station address for this interface. Note that
998 * dual port cards actually come with three station
999 * addresses: one for each port, plus an extra. The
1000 * extra one is used by the SysKonnect driver software
1001 * as a 'virtual' station address for when both ports
1002 * are operating in failover mode. Currently we don't
1003 * use this extra address.
1004 */
1005 for (i = 0; i < ETHER_ADDR_LEN; i++)
1006 sc_if->sk_enaddr[i] =
1007 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1008
1009 aprint_normal(": Ethernet address %s\n",
1010 ether_sprintf(sc_if->sk_enaddr));
1011
1012 /*
1013 * Set up RAM buffer addresses. The NIC will have a certain
1014 * amount of SRAM on it, somewhere between 512K and 2MB. We
1015 * need to divide this up a) between the transmitter and
1016 * receiver and b) between the two XMACs, if this is a
1017 * dual port NIC. Our algorithm is to divide up the memory
1018 * evenly so that everyone gets a fair share.
1019 *
1020 * Just to be contrary, Yukon2 appears to have separate memory
1021 * for each MAC.
1022 */
1023 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1024 val = sc->sk_rboff / sizeof(u_int64_t);
1025 sc_if->sk_rx_ramstart = val;
1026 val += (chunk / sizeof(u_int64_t));
1027 sc_if->sk_rx_ramend = val - 1;
1028 chunk = sc->sk_ramsize - chunk;
1029 sc_if->sk_tx_ramstart = val;
1030 val += (chunk / sizeof(u_int64_t));
1031 sc_if->sk_tx_ramend = val - 1;
1032
1033 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1034 " tx_ramstart=%#x tx_ramend=%#x\n",
1035 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1036 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1037
1038 /* Allocate the descriptor queues. */
1039 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1040 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1041 aprint_error(": can't alloc rx buffers\n");
1042 goto fail;
1043 }
1044 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1045 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1046 aprint_error(": can't map dma buffers (%zu bytes)\n",
1047 sizeof(struct msk_ring_data));
1048 goto fail_1;
1049 }
1050 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1051 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1052 &sc_if->sk_ring_map)) {
1053 aprint_error(": can't create dma map\n");
1054 goto fail_2;
1055 }
1056 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1057 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1058 aprint_error(": can't load dma map\n");
1059 goto fail_3;
1060 }
1061 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1062 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1063
1064 ifp = &sc_if->sk_ethercom.ec_if;
1065 /* Try to allocate memory for jumbo buffers. */
1066 if (msk_alloc_jumbo_mem(sc_if)) {
1067 aprint_error(": jumbo buffer allocation failed\n");
1068 goto fail_3;
1069 }
1070 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1071 if (sc->sk_type != SK_YUKON_FE)
1072 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1073
1074 ifp->if_softc = sc_if;
1075 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1076 ifp->if_ioctl = msk_ioctl;
1077 ifp->if_start = msk_start;
1078 ifp->if_stop = msk_stop;
1079 ifp->if_init = msk_init;
1080 ifp->if_watchdog = msk_watchdog;
1081 ifp->if_baudrate = 1000000000;
1082 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1083 IFQ_SET_READY(&ifp->if_snd);
1084 strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1085
1086 /*
1087 * Do miibus setup.
1088 */
1089 msk_init_yukon(sc_if);
1090
1091 DPRINTFN(2, ("msk_attach: 1\n"));
1092
1093 sc_if->sk_mii.mii_ifp = ifp;
1094 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1095 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1096 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1097
1098 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1099 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1100 ether_mediachange, ether_mediastatus);
1101 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1102 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1103 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1104 aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1105 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1106 0, NULL);
1107 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1108 } else
1109 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1110
1111 callout_init(&sc_if->sk_tick_ch, 0);
1112 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1113 callout_schedule(&sc_if->sk_tick_ch, hz);
1114
1115 /*
1116 * Call MI attach routines.
1117 */
1118 if_attach(ifp);
1119 ether_ifattach(ifp, sc_if->sk_enaddr);
1120
1121 if (!pmf_device_register(self, NULL, msk_resume))
1122 aprint_error_dev(self, "couldn't establish power handler\n");
1123 else
1124 pmf_class_network_register(self, ifp);
1125
1126 #if NRND > 0
1127 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1128 RND_TYPE_NET, 0);
1129 #endif
1130
1131 DPRINTFN(2, ("msk_attach: end\n"));
1132 return;
1133
1134 fail_3:
1135 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1136 fail_2:
1137 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1138 fail_1:
1139 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1140 fail:
1141 sc->sk_if[sa->skc_port] = NULL;
1142 }
1143
1144 int
1145 mskcprint(void *aux, const char *pnp)
1146 {
1147 struct skc_attach_args *sa = aux;
1148
1149 if (pnp)
1150 aprint_normal("sk port %c at %s",
1151 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1152 else
1153 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1154 return (UNCONF);
1155 }
1156
1157 /*
1158 * Attach the interface. Allocate softc structures, do ifmedia
1159 * setup and ethernet/BPF attach.
1160 */
1161 void
1162 mskc_attach(device_t parent, device_t self, void *aux)
1163 {
1164 struct sk_softc *sc = (struct sk_softc *)self;
1165 struct pci_attach_args *pa = aux;
1166 struct skc_attach_args skca;
1167 pci_chipset_tag_t pc = pa->pa_pc;
1168 pcireg_t command, memtype;
1169 pci_intr_handle_t ih;
1170 const char *intrstr = NULL;
1171 bus_size_t size;
1172 int rc, sk_nodenum;
1173 u_int8_t hw, skrs;
1174 const char *revstr = NULL;
1175 const struct sysctlnode *node;
1176 void *kva;
1177 bus_dma_segment_t seg;
1178 int rseg;
1179
1180 DPRINTFN(2, ("begin mskc_attach\n"));
1181
1182 /*
1183 * Handle power management nonsense.
1184 */
1185 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1186
1187 if (command == 0x01) {
1188 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1189 if (command & SK_PSTATE_MASK) {
1190 u_int32_t iobase, membase, irq;
1191
1192 /* Save important PCI config data. */
1193 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1194 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1195 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1196
1197 /* Reset the power state. */
1198 aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1199 "-- setting to D0\n",
1200 command & SK_PSTATE_MASK);
1201 command &= 0xFFFFFFFC;
1202 pci_conf_write(pc, pa->pa_tag,
1203 SK_PCI_PWRMGMTCTRL, command);
1204
1205 /* Restore PCI config data. */
1206 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1207 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1208 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1209 }
1210 }
1211
1212 /*
1213 * Map control/status registers.
1214 */
1215
1216 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1217 switch (memtype) {
1218 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1219 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1220 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1221 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1222 NULL, &size) == 0)
1223 break;
1224 default:
1225 aprint_error(": can't map mem space\n");
1226 return;
1227 }
1228
1229 sc->sc_dmatag = pa->pa_dmat;
1230
1231 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1232 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1233
1234 /* bail out here if chip is not recognized */
1235 if (!(SK_IS_YUKON2(sc))) {
1236 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1237 goto fail_1;
1238 }
1239 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1240
1241 /* Allocate interrupt */
1242 if (pci_intr_map(pa, &ih)) {
1243 aprint_error(": couldn't map interrupt\n");
1244 goto fail_1;
1245 }
1246
1247 intrstr = pci_intr_string(pc, ih);
1248 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1249 if (sc->sk_intrhand == NULL) {
1250 aprint_error(": couldn't establish interrupt");
1251 if (intrstr != NULL)
1252 aprint_error(" at %s", intrstr);
1253 aprint_error("\n");
1254 goto fail_1;
1255 }
1256
1257 if (bus_dmamem_alloc(sc->sc_dmatag,
1258 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1259 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1260 aprint_error(": can't alloc status buffers\n");
1261 goto fail_2;
1262 }
1263
1264 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1265 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1266 &kva, BUS_DMA_NOWAIT)) {
1267 aprint_error(": can't map dma buffers (%zu bytes)\n",
1268 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1269 goto fail_3;
1270 }
1271 if (bus_dmamap_create(sc->sc_dmatag,
1272 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1273 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1274 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1275 aprint_error(": can't create dma map\n");
1276 goto fail_4;
1277 }
1278 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1279 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1280 NULL, BUS_DMA_NOWAIT)) {
1281 aprint_error(": can't load dma map\n");
1282 goto fail_5;
1283 }
1284 sc->sk_status_ring = (struct msk_status_desc *)kva;
1285
1286 /* Reset the adapter. */
1287 msk_reset(sc);
1288
1289 skrs = sk_win_read_1(sc, SK_EPROM0);
1290 if (skrs == 0x00)
1291 sc->sk_ramsize = 0x20000;
1292 else
1293 sc->sk_ramsize = skrs * (1<<12);
1294 sc->sk_rboff = SK_RBOFF_0;
1295
1296 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1297 sc->sk_ramsize, sc->sk_ramsize / 1024,
1298 sc->sk_rboff));
1299
1300 switch (sc->sk_type) {
1301 case SK_YUKON_XL:
1302 sc->sk_name = "Yukon-2 XL";
1303 break;
1304 case SK_YUKON_EC_U:
1305 sc->sk_name = "Yukon-2 EC Ultra";
1306 break;
1307 case SK_YUKON_EC:
1308 sc->sk_name = "Yukon-2 EC";
1309 break;
1310 case SK_YUKON_FE:
1311 sc->sk_name = "Yukon-2 FE";
1312 break;
1313 default:
1314 sc->sk_name = "Yukon (Unknown)";
1315 }
1316
1317 if (sc->sk_type == SK_YUKON_XL) {
1318 switch (sc->sk_rev) {
1319 case SK_YUKON_XL_REV_A0:
1320 sc->sk_workaround = 0;
1321 revstr = "A0";
1322 break;
1323 case SK_YUKON_XL_REV_A1:
1324 sc->sk_workaround = SK_WA_4109;
1325 revstr = "A1";
1326 break;
1327 case SK_YUKON_XL_REV_A2:
1328 sc->sk_workaround = SK_WA_4109;
1329 revstr = "A2";
1330 break;
1331 case SK_YUKON_XL_REV_A3:
1332 sc->sk_workaround = SK_WA_4109;
1333 revstr = "A3";
1334 break;
1335 default:
1336 sc->sk_workaround = 0;
1337 break;
1338 }
1339 }
1340
1341 if (sc->sk_type == SK_YUKON_EC) {
1342 switch (sc->sk_rev) {
1343 case SK_YUKON_EC_REV_A1:
1344 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1345 revstr = "A1";
1346 break;
1347 case SK_YUKON_EC_REV_A2:
1348 sc->sk_workaround = SK_WA_4109;
1349 revstr = "A2";
1350 break;
1351 case SK_YUKON_EC_REV_A3:
1352 sc->sk_workaround = SK_WA_4109;
1353 revstr = "A3";
1354 break;
1355 default:
1356 sc->sk_workaround = 0;
1357 break;
1358 }
1359 }
1360
1361 if (sc->sk_type == SK_YUKON_FE) {
1362 sc->sk_workaround = SK_WA_4109;
1363 switch (sc->sk_rev) {
1364 case SK_YUKON_FE_REV_A1:
1365 revstr = "A1";
1366 break;
1367 case SK_YUKON_FE_REV_A2:
1368 revstr = "A2";
1369 break;
1370 default:
1371 sc->sk_workaround = 0;
1372 break;
1373 }
1374 }
1375
1376 if (sc->sk_type == SK_YUKON_EC_U) {
1377 sc->sk_workaround = SK_WA_4109;
1378 switch (sc->sk_rev) {
1379 case SK_YUKON_EC_U_REV_A0:
1380 revstr = "A0";
1381 break;
1382 case SK_YUKON_EC_U_REV_A1:
1383 revstr = "A1";
1384 break;
1385 case SK_YUKON_EC_U_REV_B0:
1386 revstr = "B0";
1387 break;
1388 default:
1389 sc->sk_workaround = 0;
1390 break;
1391 }
1392 }
1393
1394 /* Announce the product name. */
1395 aprint_normal(", %s", sc->sk_name);
1396 if (revstr != NULL)
1397 aprint_normal(" rev. %s", revstr);
1398 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1399
1400 sc->sk_macs = 1;
1401
1402 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1403 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1404 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1405 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1406 sc->sk_macs++;
1407 }
1408
1409 skca.skc_port = SK_PORT_A;
1410 skca.skc_type = sc->sk_type;
1411 skca.skc_rev = sc->sk_rev;
1412 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1413
1414 if (sc->sk_macs > 1) {
1415 skca.skc_port = SK_PORT_B;
1416 skca.skc_type = sc->sk_type;
1417 skca.skc_rev = sc->sk_rev;
1418 (void)config_found(&sc->sk_dev, &skca, mskcprint);
1419 }
1420
1421 /* Turn on the 'driver is loaded' LED. */
1422 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1423
1424 /* skc sysctl setup */
1425
1426 sc->sk_int_mod = SK_IM_DEFAULT;
1427 sc->sk_int_mod_pending = 0;
1428
1429 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1430 0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1431 SYSCTL_DESCR("mskc per-controller controls"),
1432 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1433 CTL_EOL)) != 0) {
1434 aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1435 goto fail_6;
1436 }
1437
1438 sk_nodenum = node->sysctl_num;
1439
1440 /* interrupt moderation time in usecs */
1441 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1442 CTLFLAG_READWRITE,
1443 CTLTYPE_INT, "int_mod",
1444 SYSCTL_DESCR("msk interrupt moderation timer"),
1445 msk_sysctl_handler, 0, sc,
1446 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1447 CTL_EOL)) != 0) {
1448 aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1449 goto fail_6;
1450 }
1451
1452 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1453 aprint_error_dev(self, "couldn't establish power handler\n");
1454
1455 return;
1456
1457 fail_6:
1458 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1459 fail_5:
1460 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1461 fail_4:
1462 bus_dmamem_unmap(sc->sc_dmatag, kva,
1463 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1464 fail_3:
1465 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1466 fail_2:
1467 pci_intr_disestablish(pc, sc->sk_intrhand);
1468 fail_1:
1469 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1470 }
1471
1472 int
1473 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1474 {
1475 struct sk_softc *sc = sc_if->sk_softc;
1476 struct msk_tx_desc *f = NULL;
1477 u_int32_t frag, cur;
1478 int i;
1479 struct sk_txmap_entry *entry;
1480 bus_dmamap_t txmap;
1481
1482 DPRINTFN(2, ("msk_encap\n"));
1483
1484 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1485 if (entry == NULL) {
1486 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1487 return (ENOBUFS);
1488 }
1489 txmap = entry->dmamap;
1490
1491 cur = frag = *txidx;
1492
1493 #ifdef MSK_DEBUG
1494 if (mskdebug >= 2)
1495 msk_dump_mbuf(m_head);
1496 #endif
1497
1498 /*
1499 * Start packing the mbufs in this chain into
1500 * the fragment pointers. Stop when we run out
1501 * of fragments or hit the end of the mbuf chain.
1502 */
1503 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1504 BUS_DMA_NOWAIT)) {
1505 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1506 return (ENOBUFS);
1507 }
1508
1509 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1510 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1511 bus_dmamap_unload(sc->sc_dmatag, txmap);
1512 return (ENOBUFS);
1513 }
1514
1515 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1516
1517 /* Sync the DMA map. */
1518 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1519 BUS_DMASYNC_PREWRITE);
1520
1521 for (i = 0; i < txmap->dm_nsegs; i++) {
1522 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1523 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1524 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1525 f->sk_ctl = 0;
1526 if (i == 0)
1527 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1528 else
1529 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1530 cur = frag;
1531 SK_INC(frag, MSK_TX_RING_CNT);
1532 }
1533
1534 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1535 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1536
1537 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1538 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1539
1540 /* Sync descriptors before handing to chip */
1541 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1542 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1543
1544 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1545
1546 /* Sync first descriptor to hand it off */
1547 MSK_CDTXSYNC(sc_if, *txidx, 1,
1548 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1549
1550 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1551
1552 #ifdef MSK_DEBUG
1553 if (mskdebug >= 2) {
1554 struct msk_tx_desc *le;
1555 u_int32_t idx;
1556 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1557 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1558 msk_dump_txdesc(le, idx);
1559 }
1560 }
1561 #endif
1562
1563 *txidx = frag;
1564
1565 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1566
1567 return (0);
1568 }
1569
1570 void
1571 msk_start(struct ifnet *ifp)
1572 {
1573 struct sk_if_softc *sc_if = ifp->if_softc;
1574 struct mbuf *m_head = NULL;
1575 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1576 int pkts = 0;
1577
1578 DPRINTFN(2, ("msk_start\n"));
1579
1580 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1581 IFQ_POLL(&ifp->if_snd, m_head);
1582 if (m_head == NULL)
1583 break;
1584
1585 /*
1586 * Pack the data into the transmit ring. If we
1587 * don't have room, set the OACTIVE flag and wait
1588 * for the NIC to drain the ring.
1589 */
1590 if (msk_encap(sc_if, m_head, &idx)) {
1591 ifp->if_flags |= IFF_OACTIVE;
1592 break;
1593 }
1594
1595 /* now we are committed to transmit the packet */
1596 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1597 pkts++;
1598
1599 /*
1600 * If there's a BPF listener, bounce a copy of this frame
1601 * to him.
1602 */
1603 #if NBPFILTER > 0
1604 if (ifp->if_bpf)
1605 bpf_mtap(ifp->if_bpf, m_head);
1606 #endif
1607 }
1608 if (pkts == 0)
1609 return;
1610
1611 /* Transmit */
1612 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1613 sc_if->sk_cdata.sk_tx_prod = idx;
1614 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1615
1616 /* Set a timeout in case the chip goes out to lunch. */
1617 ifp->if_timer = 5;
1618 }
1619 }
1620
1621 void
1622 msk_watchdog(struct ifnet *ifp)
1623 {
1624 struct sk_if_softc *sc_if = ifp->if_softc;
1625 u_int32_t reg;
1626 int idx;
1627
1628 /*
1629 * Reclaim first as there is a possibility of losing Tx completion
1630 * interrupts.
1631 */
1632 if (sc_if->sk_port == SK_PORT_A)
1633 reg = SK_STAT_BMU_TXA1_RIDX;
1634 else
1635 reg = SK_STAT_BMU_TXA2_RIDX;
1636
1637 idx = sk_win_read_2(sc_if->sk_softc, reg);
1638 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1639 msk_txeof(sc_if, idx);
1640 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1641 aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1642
1643 ifp->if_oerrors++;
1644
1645 /* XXX Resets both ports; we shouldn't do that. */
1646 msk_reset(sc_if->sk_softc);
1647 msk_init(ifp);
1648 }
1649 }
1650 }
1651
1652 static bool
1653 mskc_suspend(device_t dv PMF_FN_ARGS)
1654 {
1655 struct sk_softc *sc = device_private(dv);
1656
1657 DPRINTFN(2, ("mskc_suspend\n"));
1658
1659 /* Turn off the 'driver is loaded' LED. */
1660 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1661
1662 return true;
1663 }
1664
1665 static bool
1666 mskc_resume(device_t dv PMF_FN_ARGS)
1667 {
1668 struct sk_softc *sc = device_private(dv);
1669
1670 DPRINTFN(2, ("mskc_resume\n"));
1671
1672 msk_reset(sc);
1673 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1674
1675 return true;
1676 }
1677
1678 __inline int
1679 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1680 {
1681 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1682 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1683 YU_RXSTAT_JABBER)) != 0 ||
1684 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1685 YU_RXSTAT_BYTES(stat) != len)
1686 return (0);
1687
1688 return (1);
1689 }
1690
1691 void
1692 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1693 {
1694 struct sk_softc *sc = sc_if->sk_softc;
1695 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1696 struct mbuf *m;
1697 struct sk_chain *cur_rx;
1698 int cur, total_len = len;
1699 bus_dmamap_t dmamap;
1700
1701 DPRINTFN(2, ("msk_rxeof\n"));
1702
1703 cur = sc_if->sk_cdata.sk_rx_cons;
1704 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1705 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1706
1707 /* Sync the descriptor */
1708 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1709
1710 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1711 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1712
1713 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1714 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715
1716 m = cur_rx->sk_mbuf;
1717 cur_rx->sk_mbuf = NULL;
1718
1719 if (total_len < SK_MIN_FRAMELEN ||
1720 total_len > ETHER_MAX_LEN_JUMBO ||
1721 msk_rxvalid(sc, rxstat, total_len) == 0) {
1722 ifp->if_ierrors++;
1723 msk_newbuf(sc_if, cur, m, dmamap);
1724 return;
1725 }
1726
1727 /*
1728 * Try to allocate a new jumbo buffer. If that fails, copy the
1729 * packet to mbufs and put the jumbo buffer back in the ring
1730 * so it can be re-used. If allocating mbufs fails, then we
1731 * have to drop the packet.
1732 */
1733 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1734 struct mbuf *m0;
1735 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1736 total_len + ETHER_ALIGN, 0, ifp, NULL);
1737 msk_newbuf(sc_if, cur, m, dmamap);
1738 if (m0 == NULL) {
1739 ifp->if_ierrors++;
1740 return;
1741 }
1742 m_adj(m0, ETHER_ALIGN);
1743 m = m0;
1744 } else {
1745 m->m_pkthdr.rcvif = ifp;
1746 m->m_pkthdr.len = m->m_len = total_len;
1747 }
1748
1749 ifp->if_ipackets++;
1750
1751 #if NBPFILTER > 0
1752 if (ifp->if_bpf)
1753 bpf_mtap(ifp->if_bpf, m);
1754 #endif
1755
1756 /* pass it on. */
1757 (*ifp->if_input)(ifp, m);
1758 }
1759
1760 void
1761 msk_txeof(struct sk_if_softc *sc_if, int idx)
1762 {
1763 struct sk_softc *sc = sc_if->sk_softc;
1764 struct msk_tx_desc *cur_tx;
1765 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1766 u_int32_t sk_ctl;
1767 struct sk_txmap_entry *entry;
1768 int cons, prog;
1769
1770 DPRINTFN(2, ("msk_txeof\n"));
1771
1772 /*
1773 * Go through our tx ring and free mbufs for those
1774 * frames that have been sent.
1775 */
1776 cons = sc_if->sk_cdata.sk_tx_cons;
1777 prog = 0;
1778 while (cons != idx) {
1779 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1780 break;
1781 prog++;
1782 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1783
1784 MSK_CDTXSYNC(sc_if, cons, 1,
1785 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786 sk_ctl = cur_tx->sk_ctl;
1787 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1788 #ifdef MSK_DEBUG
1789 if (mskdebug >= 2)
1790 msk_dump_txdesc(cur_tx, cons);
1791 #endif
1792 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1793 ifp->if_opackets++;
1794 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1795 entry = sc_if->sk_cdata.sk_tx_map[cons];
1796
1797 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1798 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1799
1800 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1801 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1802 link);
1803 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1804 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1805 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1806 }
1807 sc_if->sk_cdata.sk_tx_cnt--;
1808 SK_INC(cons, MSK_TX_RING_CNT);
1809 }
1810 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1811
1812 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1813 ifp->if_flags &= ~IFF_OACTIVE;
1814
1815 if (prog > 0)
1816 sc_if->sk_cdata.sk_tx_cons = cons;
1817 }
1818
1819 void
1820 msk_tick(void *xsc_if)
1821 {
1822 struct sk_if_softc *sc_if = xsc_if;
1823 struct mii_data *mii = &sc_if->sk_mii;
1824 int s;
1825
1826 s = splnet();
1827 mii_tick(mii);
1828 splx(s);
1829
1830 callout_schedule(&sc_if->sk_tick_ch, hz);
1831 }
1832
1833 void
1834 msk_intr_yukon(struct sk_if_softc *sc_if)
1835 {
1836 u_int8_t status;
1837
1838 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1839 /* RX overrun */
1840 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1841 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1842 SK_RFCTL_RX_FIFO_OVER);
1843 }
1844 /* TX underrun */
1845 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1846 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1847 SK_TFCTL_TX_FIFO_UNDER);
1848 }
1849
1850 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1851 }
1852
1853 int
1854 msk_intr(void *xsc)
1855 {
1856 struct sk_softc *sc = xsc;
1857 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1858 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1859 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1860 int claimed = 0;
1861 u_int32_t status;
1862 uint32_t st_status;
1863 uint16_t st_len;
1864 uint8_t st_opcode, st_link;
1865 struct msk_status_desc *cur_st;
1866
1867 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1868 if (status == 0) {
1869 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1870 return (0);
1871 }
1872
1873 status = CSR_READ_4(sc, SK_ISR);
1874
1875 if (sc_if0 != NULL)
1876 ifp0 = &sc_if0->sk_ethercom.ec_if;
1877 if (sc_if1 != NULL)
1878 ifp1 = &sc_if1->sk_ethercom.ec_if;
1879
1880 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1881 (ifp0->if_flags & IFF_RUNNING)) {
1882 msk_intr_yukon(sc_if0);
1883 }
1884
1885 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1886 (ifp1->if_flags & IFF_RUNNING)) {
1887 msk_intr_yukon(sc_if1);
1888 }
1889
1890 for (;;) {
1891 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1892 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1893 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1894 st_opcode = cur_st->sk_opcode;
1895 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1896 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1897 BUS_DMASYNC_PREREAD);
1898 break;
1899 }
1900 st_status = le32toh(cur_st->sk_status);
1901 st_len = le16toh(cur_st->sk_len);
1902 st_link = cur_st->sk_link;
1903 st_opcode &= ~SK_Y2_STOPC_OWN;
1904
1905 switch (st_opcode) {
1906 case SK_Y2_STOPC_RXSTAT:
1907 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1908 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1909 SK_RXQ1_Y2_PREF_PUTIDX,
1910 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1911 break;
1912 case SK_Y2_STOPC_TXSTAT:
1913 if (sc_if0)
1914 msk_txeof(sc_if0, st_status
1915 & SK_Y2_ST_TXA1_MSKL);
1916 if (sc_if1)
1917 msk_txeof(sc_if1,
1918 ((st_status & SK_Y2_ST_TXA2_MSKL)
1919 >> SK_Y2_ST_TXA2_SHIFTL)
1920 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1921 break;
1922 default:
1923 aprint_error("opcode=0x%x\n", st_opcode);
1924 break;
1925 }
1926 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1927 }
1928
1929 #define MSK_STATUS_RING_OWN_CNT(sc) \
1930 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1931 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1932
1933 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1934 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1935 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1936 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1937 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1938
1939 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1940 }
1941
1942 if (status & SK_Y2_IMR_BMU) {
1943 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1944 claimed = 1;
1945 }
1946
1947 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1948
1949 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1950 msk_start(ifp0);
1951 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1952 msk_start(ifp1);
1953
1954 #if NRND > 0
1955 if (RND_ENABLED(&sc->rnd_source))
1956 rnd_add_uint32(&sc->rnd_source, status);
1957 #endif
1958
1959 if (sc->sk_int_mod_pending)
1960 msk_update_int_mod(sc);
1961
1962 return claimed;
1963 }
1964
1965 void
1966 msk_init_yukon(struct sk_if_softc *sc_if)
1967 {
1968 u_int32_t v;
1969 u_int16_t reg;
1970 struct sk_softc *sc;
1971 int i;
1972
1973 sc = sc_if->sk_softc;
1974
1975 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1976 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1977
1978 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1979
1980 /* GMAC and GPHY Reset */
1981 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1982 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1983 DELAY(1000);
1984
1985 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1986
1987 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1988 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1989 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1990
1991 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1992 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1993
1994 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1995
1996 /* unused read of the interrupt source register */
1997 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1998 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1999
2000 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2001 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2002 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2003
2004 /* MIB Counter Clear Mode set */
2005 reg |= YU_PAR_MIB_CLR;
2006 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2007 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2008 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2009
2010 /* MIB Counter Clear Mode clear */
2011 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2012 reg &= ~YU_PAR_MIB_CLR;
2013 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2014
2015 /* receive control reg */
2016 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2017 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2018
2019 /* transmit control register */
2020 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2021
2022 /* transmit flow control register */
2023 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2024
2025 /* transmit parameter register */
2026 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2027 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2028 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2029
2030 /* serial mode register */
2031 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2032 reg = YU_SMR_DATA_BLIND(0x1c) |
2033 YU_SMR_MFL_VLAN |
2034 YU_SMR_IPG_DATA(0x1e);
2035
2036 if (sc->sk_type != SK_YUKON_FE)
2037 reg |= YU_SMR_MFL_JUMBO;
2038
2039 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2040
2041 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2042 /* Setup Yukon's address */
2043 for (i = 0; i < 3; i++) {
2044 /* Write Source Address 1 (unicast filter) */
2045 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2046 sc_if->sk_enaddr[i * 2] |
2047 sc_if->sk_enaddr[i * 2 + 1] << 8);
2048 }
2049
2050 for (i = 0; i < 3; i++) {
2051 reg = sk_win_read_2(sc_if->sk_softc,
2052 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2053 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2054 }
2055
2056 /* Set promiscuous mode */
2057 msk_setpromisc(sc_if);
2058
2059 /* Set multicast filter */
2060 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2061 msk_setmulti(sc_if);
2062
2063 /* enable interrupt mask for counter overflows */
2064 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2065 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2066 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2067 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2068
2069 /* Configure RX MAC FIFO Flush Mask */
2070 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2071 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2072 YU_RXSTAT_JABBER;
2073 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2074
2075 /* Configure RX MAC FIFO */
2076 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2077 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2078 SK_RFCTL_FIFO_FLUSH_ON);
2079
2080 /* Increase flush threshould to 64 bytes */
2081 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2082 SK_RFCTL_FIFO_THRESHOLD + 1);
2083
2084 /* Configure TX MAC FIFO */
2085 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2086 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2087
2088 #if 1
2089 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2090 #endif
2091 DPRINTFN(6, ("msk_init_yukon: end\n"));
2092 }
2093
2094 /*
2095 * Note that to properly initialize any part of the GEnesis chip,
2096 * you first have to take it out of reset mode.
2097 */
2098 int
2099 msk_init(struct ifnet *ifp)
2100 {
2101 struct sk_if_softc *sc_if = ifp->if_softc;
2102 struct sk_softc *sc = sc_if->sk_softc;
2103 int rc = 0, s;
2104 uint32_t imr, imtimer_ticks;
2105
2106
2107 DPRINTFN(2, ("msk_init\n"));
2108
2109 s = splnet();
2110
2111 /* Cancel pending I/O and free all RX/TX buffers. */
2112 msk_stop(ifp,0);
2113
2114 /* Configure I2C registers */
2115
2116 /* Configure XMAC(s) */
2117 msk_init_yukon(sc_if);
2118 if ((rc = ether_mediachange(ifp)) != 0)
2119 goto out;
2120
2121 /* Configure transmit arbiter(s) */
2122 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2123 #if 0
2124 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2125 #endif
2126
2127 /* Configure RAMbuffers */
2128 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2129 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2130 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2131 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2132 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2133 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2134
2135 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2136 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2137 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2138 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2139 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2140 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2141 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2142
2143 /* Configure BMUs */
2144 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2145 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2146 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2147 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2148
2149 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2150 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2151 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2152 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2153
2154 /* Make sure the sync transmit queue is disabled. */
2155 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2156
2157 /* Init descriptors */
2158 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2159 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2160 "memory for rx buffers\n");
2161 msk_stop(ifp,0);
2162 splx(s);
2163 return ENOBUFS;
2164 }
2165
2166 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2167 aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2168 "memory for tx buffers\n");
2169 msk_stop(ifp,0);
2170 splx(s);
2171 return ENOBUFS;
2172 }
2173
2174 /* Set interrupt moderation if changed via sysctl. */
2175 switch (sc->sk_type) {
2176 case SK_YUKON_EC:
2177 case SK_YUKON_EC_U:
2178 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2179 break;
2180 case SK_YUKON_FE:
2181 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2182 break;
2183 case SK_YUKON_XL:
2184 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2185 break;
2186 default:
2187 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2188 }
2189 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2190 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2191 sk_win_write_4(sc, SK_IMTIMERINIT,
2192 SK_IM_USECS(sc->sk_int_mod));
2193 aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2194 sc->sk_int_mod);
2195 }
2196
2197 /* Initialize prefetch engine. */
2198 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2199 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2200 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2201 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2202 MSK_RX_RING_ADDR(sc_if, 0));
2203 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2204 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2205 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2206 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2207
2208 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2209 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2210 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2211 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2212 MSK_TX_RING_ADDR(sc_if, 0));
2213 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2214 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2215 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2216 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2217
2218 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2219 sc_if->sk_cdata.sk_rx_prod);
2220
2221 /* Configure interrupt handling */
2222 if (sc_if->sk_port == SK_PORT_A)
2223 sc->sk_intrmask |= SK_Y2_INTRS1;
2224 else
2225 sc->sk_intrmask |= SK_Y2_INTRS2;
2226 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2227 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2228
2229 ifp->if_flags |= IFF_RUNNING;
2230 ifp->if_flags &= ~IFF_OACTIVE;
2231
2232 callout_schedule(&sc_if->sk_tick_ch, hz);
2233
2234 out:
2235 splx(s);
2236 return rc;
2237 }
2238
2239 void
2240 msk_stop(struct ifnet *ifp, int disable)
2241 {
2242 struct sk_if_softc *sc_if = ifp->if_softc;
2243 struct sk_softc *sc = sc_if->sk_softc;
2244 struct sk_txmap_entry *dma;
2245 int i;
2246
2247 DPRINTFN(2, ("msk_stop\n"));
2248
2249 callout_stop(&sc_if->sk_tick_ch);
2250
2251 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2252
2253 /* Stop transfer of Tx descriptors */
2254
2255 /* Stop transfer of Rx descriptors */
2256
2257 /* Turn off various components of this interface. */
2258 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2259 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2260 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2261 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2262 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2263 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2264 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2265 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2266 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2267 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2268 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2269 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2270
2271 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2272 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2273
2274 /* Disable interrupts */
2275 if (sc_if->sk_port == SK_PORT_A)
2276 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2277 else
2278 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2279 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2280
2281 SK_XM_READ_2(sc_if, XM_ISR);
2282 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2283
2284 /* Free RX and TX mbufs still in the queues. */
2285 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2286 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2287 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2288 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2289 }
2290 }
2291
2292 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2293 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2294 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2295 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2296 #if 1
2297 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2298 sc_if->sk_cdata.sk_tx_map[i], link);
2299 sc_if->sk_cdata.sk_tx_map[i] = 0;
2300 #endif
2301 }
2302 }
2303
2304 #if 1
2305 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2306 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2307 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2308 free(dma, M_DEVBUF);
2309 }
2310 #endif
2311 }
2312
2313 CFATTACH_DECL(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2314 NULL, NULL);
2315
2316 CFATTACH_DECL(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2317 NULL, NULL);
2318
2319 #ifdef MSK_DEBUG
2320 void
2321 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2322 {
2323 #define DESC_PRINT(X) \
2324 if (X) \
2325 printf("txdesc[%d]." #X "=%#x\n", \
2326 idx, X);
2327
2328 DESC_PRINT(letoh32(le->sk_addr));
2329 DESC_PRINT(letoh16(le->sk_len));
2330 DESC_PRINT(le->sk_ctl);
2331 DESC_PRINT(le->sk_opcode);
2332 #undef DESC_PRINT
2333 }
2334
2335 void
2336 msk_dump_bytes(const char *data, int len)
2337 {
2338 int c, i, j;
2339
2340 for (i = 0; i < len; i += 16) {
2341 printf("%08x ", i);
2342 c = len - i;
2343 if (c > 16) c = 16;
2344
2345 for (j = 0; j < c; j++) {
2346 printf("%02x ", data[i + j] & 0xff);
2347 if ((j & 0xf) == 7 && j > 0)
2348 printf(" ");
2349 }
2350
2351 for (; j < 16; j++)
2352 printf(" ");
2353 printf(" ");
2354
2355 for (j = 0; j < c; j++) {
2356 int ch = data[i + j] & 0xff;
2357 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2358 }
2359
2360 printf("\n");
2361
2362 if (c < 16)
2363 break;
2364 }
2365 }
2366
2367 void
2368 msk_dump_mbuf(struct mbuf *m)
2369 {
2370 int count = m->m_pkthdr.len;
2371
2372 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2373
2374 while (count > 0 && m) {
2375 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2376 m, m->m_data, m->m_len);
2377 msk_dump_bytes(mtod(m, char *), m->m_len);
2378
2379 count -= m->m_len;
2380 m = m->m_next;
2381 }
2382 }
2383 #endif
2384
2385 static int
2386 msk_sysctl_handler(SYSCTLFN_ARGS)
2387 {
2388 int error, t;
2389 struct sysctlnode node;
2390 struct sk_softc *sc;
2391
2392 node = *rnode;
2393 sc = node.sysctl_data;
2394 t = sc->sk_int_mod;
2395 node.sysctl_data = &t;
2396 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2397 if (error || newp == NULL)
2398 return error;
2399
2400 if (t < SK_IM_MIN || t > SK_IM_MAX)
2401 return EINVAL;
2402
2403 /* update the softc with sysctl-changed value, and mark
2404 for hardware update */
2405 sc->sk_int_mod = t;
2406 sc->sk_int_mod_pending = 1;
2407 return 0;
2408 }
2409
2410 /*
2411 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2412 * set up in skc_attach()
2413 */
2414 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2415 {
2416 int rc;
2417 const struct sysctlnode *node;
2418
2419 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2420 0, CTLTYPE_NODE, "hw", NULL,
2421 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2422 goto err;
2423 }
2424
2425 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2426 0, CTLTYPE_NODE, "msk",
2427 SYSCTL_DESCR("msk interface controls"),
2428 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2429 goto err;
2430 }
2431
2432 msk_root_num = node->sysctl_num;
2433 return;
2434
2435 err:
2436 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2437 }
2438