if_msk.c revision 1.35.2.1 1 /* $NetBSD: if_msk.c,v 1.35.2.1 2011/06/06 09:08:14 jruoho Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.35.2.1 2011/06/06 09:08:14 jruoho Exp $");
56
57 #include "rnd.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/sockio.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/mutex.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/device.h>
68 #include <sys/queue.h>
69 #include <sys/callout.h>
70 #include <sys/sysctl.h>
71 #include <sys/endian.h>
72 #ifdef __NetBSD__
73 #define letoh16 htole16
74 #define letoh32 htole32
75 #endif
76
77 #include <net/if.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80
81 #include <net/if_media.h>
82
83 #include <net/bpf.h>
84 #if NRND > 0
85 #include <sys/rnd.h>
86 #endif
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/brgphyreg.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcidevs.h>
95
96 #include <dev/pci/if_skreg.h>
97 #include <dev/pci/if_mskvar.h>
98
99 int mskc_probe(device_t, cfdata_t, void *);
100 void mskc_attach(device_t, device_t, void *);
101 static bool mskc_suspend(device_t, const pmf_qual_t *);
102 static bool mskc_resume(device_t, const pmf_qual_t *);
103 int msk_probe(device_t, cfdata_t, void *);
104 void msk_attach(device_t, device_t, void *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *, int);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 void msk_reset(struct sk_softc *);
118 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
119 int msk_alloc_jumbo_mem(struct sk_if_softc *);
120 void *msk_jalloc(struct sk_if_softc *);
121 void msk_jfree(struct mbuf *, void *, size_t, void *);
122 int msk_init_rx_ring(struct sk_if_softc *);
123 int msk_init_tx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(device_t);
130
131 void msk_setfilt(struct sk_if_softc *, void *, int);
132 void msk_setmulti(struct sk_if_softc *);
133 void msk_setpromisc(struct sk_if_softc *);
134 void msk_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 /* supported device vendors */
154 static const struct msk_product {
155 pci_vendor_id_t msk_vendor;
156 pci_product_id_t msk_product;
157 } msk_products[] = {
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
185 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
186 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
187 };
188
189 static inline u_int32_t
190 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
191 {
192 return CSR_READ_4(sc, reg);
193 }
194
195 static inline u_int16_t
196 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
197 {
198 return CSR_READ_2(sc, reg);
199 }
200
201 static inline u_int8_t
202 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
203 {
204 return CSR_READ_1(sc, reg);
205 }
206
207 static inline void
208 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
209 {
210 CSR_WRITE_4(sc, reg, x);
211 }
212
213 static inline void
214 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
215 {
216 CSR_WRITE_2(sc, reg, x);
217 }
218
219 static inline void
220 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
221 {
222 CSR_WRITE_1(sc, reg, x);
223 }
224
225 int
226 msk_miibus_readreg(device_t dev, int phy, int reg)
227 {
228 struct sk_if_softc *sc_if = device_private(dev);
229 u_int16_t val;
230 int i;
231
232 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
233 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
234
235 for (i = 0; i < SK_TIMEOUT; i++) {
236 DELAY(1);
237 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
238 if (val & YU_SMICR_READ_VALID)
239 break;
240 }
241
242 if (i == SK_TIMEOUT) {
243 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
244 return (0);
245 }
246
247 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
248 SK_TIMEOUT));
249
250 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
251
252 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
253 phy, reg, val));
254
255 return (val);
256 }
257
258 void
259 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
260 {
261 struct sk_if_softc *sc_if = device_private(dev);
262 int i;
263
264 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
265 phy, reg, val));
266
267 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
268 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
269 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
270
271 for (i = 0; i < SK_TIMEOUT; i++) {
272 DELAY(1);
273 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
274 break;
275 }
276
277 if (i == SK_TIMEOUT)
278 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
279 }
280
281 void
282 msk_miibus_statchg(device_t dev)
283 {
284 struct sk_if_softc *sc_if = device_private(dev);
285 struct mii_data *mii = &sc_if->sk_mii;
286 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
287 int gpcr;
288
289 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
290 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
291
292 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
293 /* Set speed. */
294 gpcr |= YU_GPCR_SPEED_DIS;
295 switch (IFM_SUBTYPE(mii->mii_media_active)) {
296 case IFM_1000_SX:
297 case IFM_1000_LX:
298 case IFM_1000_CX:
299 case IFM_1000_T:
300 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
301 break;
302 case IFM_100_TX:
303 gpcr |= YU_GPCR_SPEED;
304 break;
305 }
306
307 /* Set duplex. */
308 gpcr |= YU_GPCR_DPLX_DIS;
309 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
310 gpcr |= YU_GPCR_DUPLEX;
311
312 /* Disable flow control. */
313 gpcr |= YU_GPCR_FCTL_DIS;
314 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
315 }
316
317 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
318
319 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
320 SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
321 }
322
323 #define HASH_BITS 6
324
325 void
326 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
327 {
328 char *addr = addrv;
329 int base = XM_RXFILT_ENTRY(slot);
330
331 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
332 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
333 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
334 }
335
336 void
337 msk_setmulti(struct sk_if_softc *sc_if)
338 {
339 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
340 u_int32_t hashes[2] = { 0, 0 };
341 int h;
342 struct ethercom *ec = &sc_if->sk_ethercom;
343 struct ether_multi *enm;
344 struct ether_multistep step;
345 u_int16_t reg;
346
347 /* First, zot all the existing filters. */
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
352
353
354 /* Now program new ones. */
355 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
356 reg |= YU_RCR_UFLEN;
357 allmulti:
358 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
359 if ((ifp->if_flags & IFF_PROMISC) != 0)
360 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
361 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
362 hashes[0] = 0xFFFFFFFF;
363 hashes[1] = 0xFFFFFFFF;
364 }
365 } else {
366 /* First find the tail of the list. */
367 ETHER_FIRST_MULTI(step, ec, enm);
368 while (enm != NULL) {
369 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
370 ETHER_ADDR_LEN)) {
371 ifp->if_flags |= IFF_ALLMULTI;
372 goto allmulti;
373 }
374 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
375 ((1 << HASH_BITS) - 1);
376 if (h < 32)
377 hashes[0] |= (1 << h);
378 else
379 hashes[1] |= (1 << (h - 32));
380
381 ETHER_NEXT_MULTI(step, enm);
382 }
383 reg |= YU_RCR_MUFLEN;
384 }
385
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
391 }
392
393 void
394 msk_setpromisc(struct sk_if_softc *sc_if)
395 {
396 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
397
398 if (ifp->if_flags & IFF_PROMISC)
399 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
400 YU_RCR_UFLEN | YU_RCR_MUFLEN);
401 else
402 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
403 YU_RCR_UFLEN | YU_RCR_MUFLEN);
404 }
405
406 int
407 msk_init_rx_ring(struct sk_if_softc *sc_if)
408 {
409 struct msk_chain_data *cd = &sc_if->sk_cdata;
410 struct msk_ring_data *rd = sc_if->sk_rdata;
411 int i, nexti;
412
413 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
414
415 for (i = 0; i < MSK_RX_RING_CNT; i++) {
416 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
417 if (i == (MSK_RX_RING_CNT - 1))
418 nexti = 0;
419 else
420 nexti = i + 1;
421 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
422 }
423
424 for (i = 0; i < MSK_RX_RING_CNT; i++) {
425 if (msk_newbuf(sc_if, i, NULL,
426 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
427 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
428 return (ENOBUFS);
429 }
430 }
431
432 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
433 sc_if->sk_cdata.sk_rx_cons = 0;
434
435 return (0);
436 }
437
438 int
439 msk_init_tx_ring(struct sk_if_softc *sc_if)
440 {
441 struct sk_softc *sc = sc_if->sk_softc;
442 struct msk_chain_data *cd = &sc_if->sk_cdata;
443 struct msk_ring_data *rd = sc_if->sk_rdata;
444 bus_dmamap_t dmamap;
445 struct sk_txmap_entry *entry;
446 int i, nexti;
447
448 memset(sc_if->sk_rdata->sk_tx_ring, 0,
449 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
450
451 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
452 for (i = 0; i < MSK_TX_RING_CNT; i++) {
453 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
454 if (i == (MSK_TX_RING_CNT - 1))
455 nexti = 0;
456 else
457 nexti = i + 1;
458 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
459
460 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
461 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
462 return (ENOBUFS);
463
464 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
465 if (!entry) {
466 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
467 return (ENOBUFS);
468 }
469 entry->dmamap = dmamap;
470 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
471 }
472
473 sc_if->sk_cdata.sk_tx_prod = 0;
474 sc_if->sk_cdata.sk_tx_cons = 0;
475 sc_if->sk_cdata.sk_tx_cnt = 0;
476
477 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
478 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
479
480 return (0);
481 }
482
483 int
484 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
485 bus_dmamap_t dmamap)
486 {
487 struct mbuf *m_new = NULL;
488 struct sk_chain *c;
489 struct msk_rx_desc *r;
490
491 if (m == NULL) {
492 void *buf = NULL;
493
494 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
495 if (m_new == NULL)
496 return (ENOBUFS);
497
498 /* Allocate the jumbo buffer */
499 buf = msk_jalloc(sc_if);
500 if (buf == NULL) {
501 m_freem(m_new);
502 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
503 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
504 return (ENOBUFS);
505 }
506
507 /* Attach the buffer to the mbuf */
508 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
509 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
510 } else {
511 /*
512 * We're re-using a previously allocated mbuf;
513 * be sure to re-init pointers and lengths to
514 * default values.
515 */
516 m_new = m;
517 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
518 m_new->m_data = m_new->m_ext.ext_buf;
519 }
520 m_adj(m_new, ETHER_ALIGN);
521
522 c = &sc_if->sk_cdata.sk_rx_chain[i];
523 r = c->sk_le;
524 c->sk_mbuf = m_new;
525 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
526 (((vaddr_t)m_new->m_data
527 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
528 r->sk_len = htole16(SK_JLEN);
529 r->sk_ctl = 0;
530 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
531
532 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
533
534 return (0);
535 }
536
537 /*
538 * Memory management for jumbo frames.
539 */
540
541 int
542 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
543 {
544 struct sk_softc *sc = sc_if->sk_softc;
545 char *ptr, *kva;
546 bus_dma_segment_t seg;
547 int i, rseg, state, error;
548 struct sk_jpool_entry *entry;
549
550 state = error = 0;
551
552 /* Grab a big chunk o' storage. */
553 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
554 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
555 aprint_error(": can't alloc rx buffers");
556 return (ENOBUFS);
557 }
558
559 state = 1;
560 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
561 BUS_DMA_NOWAIT)) {
562 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
563 error = ENOBUFS;
564 goto out;
565 }
566
567 state = 2;
568 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
569 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
570 aprint_error(": can't create dma map");
571 error = ENOBUFS;
572 goto out;
573 }
574
575 state = 3;
576 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
577 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
578 aprint_error(": can't load dma map");
579 error = ENOBUFS;
580 goto out;
581 }
582
583 state = 4;
584 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
585 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
586
587 LIST_INIT(&sc_if->sk_jfree_listhead);
588 LIST_INIT(&sc_if->sk_jinuse_listhead);
589 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
590
591 /*
592 * Now divide it up into 9K pieces and save the addresses
593 * in an array.
594 */
595 ptr = sc_if->sk_cdata.sk_jumbo_buf;
596 for (i = 0; i < MSK_JSLOTS; i++) {
597 sc_if->sk_cdata.sk_jslots[i] = ptr;
598 ptr += SK_JLEN;
599 entry = malloc(sizeof(struct sk_jpool_entry),
600 M_DEVBUF, M_NOWAIT);
601 if (entry == NULL) {
602 sc_if->sk_cdata.sk_jumbo_buf = NULL;
603 aprint_error(": no memory for jumbo buffer queue!");
604 error = ENOBUFS;
605 goto out;
606 }
607 entry->slot = i;
608 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
609 entry, jpool_entries);
610 }
611 out:
612 if (error != 0) {
613 switch (state) {
614 case 4:
615 bus_dmamap_unload(sc->sc_dmatag,
616 sc_if->sk_cdata.sk_rx_jumbo_map);
617 case 3:
618 bus_dmamap_destroy(sc->sc_dmatag,
619 sc_if->sk_cdata.sk_rx_jumbo_map);
620 case 2:
621 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
622 case 1:
623 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
624 break;
625 default:
626 break;
627 }
628 }
629
630 return (error);
631 }
632
633 /*
634 * Allocate a jumbo buffer.
635 */
636 void *
637 msk_jalloc(struct sk_if_softc *sc_if)
638 {
639 struct sk_jpool_entry *entry;
640
641 mutex_enter(&sc_if->sk_jpool_mtx);
642 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
643
644 if (entry == NULL) {
645 mutex_exit(&sc_if->sk_jpool_mtx);
646 return NULL;
647 }
648
649 LIST_REMOVE(entry, jpool_entries);
650 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
651 mutex_exit(&sc_if->sk_jpool_mtx);
652 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
653 }
654
655 /*
656 * Release a jumbo buffer.
657 */
658 void
659 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
660 {
661 struct sk_jpool_entry *entry;
662 struct sk_if_softc *sc;
663 int i;
664
665 /* Extract the softc struct pointer. */
666 sc = (struct sk_if_softc *)arg;
667
668 if (sc == NULL)
669 panic("msk_jfree: can't find softc pointer!");
670
671 /* calculate the slot this buffer belongs to */
672 i = ((vaddr_t)buf
673 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
674
675 if ((i < 0) || (i >= MSK_JSLOTS))
676 panic("msk_jfree: asked to free buffer that we don't manage!");
677
678 mutex_enter(&sc->sk_jpool_mtx);
679 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
680 if (entry == NULL)
681 panic("msk_jfree: buffer not in use!");
682 entry->slot = i;
683 LIST_REMOVE(entry, jpool_entries);
684 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
685 mutex_exit(&sc->sk_jpool_mtx);
686
687 if (__predict_true(m != NULL))
688 pool_cache_put(mb_cache, m);
689 }
690
691 int
692 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
693 {
694 struct sk_if_softc *sc_if = ifp->if_softc;
695 int s, error = 0;
696
697 s = splnet();
698
699 DPRINTFN(2, ("msk_ioctl ETHER\n"));
700 error = ether_ioctl(ifp, cmd, data);
701
702 if (error == ENETRESET) {
703 error = 0;
704 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
705 ;
706 else if (ifp->if_flags & IFF_RUNNING) {
707 /*
708 * Multicast list has changed; set the hardware
709 * filter accordingly.
710 */
711 msk_setmulti(sc_if);
712 }
713 }
714
715 splx(s);
716 return (error);
717 }
718
719 void
720 msk_update_int_mod(struct sk_softc *sc, int verbose)
721 {
722 u_int32_t imtimer_ticks;
723
724 /*
725 * Configure interrupt moderation. The moderation timer
726 * defers interrupts specified in the interrupt moderation
727 * timer mask based on the timeout specified in the interrupt
728 * moderation timer init register. Each bit in the timer
729 * register represents one tick, so to specify a timeout in
730 * microseconds, we have to multiply by the correct number of
731 * ticks-per-microsecond.
732 */
733 switch (sc->sk_type) {
734 case SK_YUKON_EC:
735 case SK_YUKON_EC_U:
736 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
737 break;
738 case SK_YUKON_FE:
739 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
740 break;
741 case SK_YUKON_XL:
742 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
743 break;
744 default:
745 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
746 }
747 if (verbose)
748 aprint_verbose_dev(sc->sk_dev,
749 "interrupt moderation is %d us\n", sc->sk_int_mod);
750 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
751 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
752 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
753 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
754 sc->sk_int_mod_pending = 0;
755 }
756
757 static int
758 msk_lookup(const struct pci_attach_args *pa)
759 {
760 const struct msk_product *pmsk;
761
762 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
763 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
764 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
765 return 1;
766 }
767 return 0;
768 }
769
770 /*
771 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
772 * IDs against our list and return a device name if we find a match.
773 */
774 int
775 mskc_probe(device_t parent, cfdata_t match, void *aux)
776 {
777 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
778
779 return msk_lookup(pa);
780 }
781
782 /*
783 * Force the GEnesis into reset, then bring it out of reset.
784 */
785 void msk_reset(struct sk_softc *sc)
786 {
787 u_int32_t imtimer_ticks, reg1;
788 int reg;
789
790 DPRINTFN(2, ("msk_reset\n"));
791
792 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
793 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
794
795 DELAY(1000);
796 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
797 DELAY(2);
798 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
799 sk_win_write_1(sc, SK_TESTCTL1, 2);
800
801 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
802 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
803 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
804 else
805 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
806
807 if (sc->sk_type == SK_YUKON_EC_U) {
808 uint32_t our;
809
810 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
811
812 /* enable all clocks. */
813 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
814 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
815 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
816 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
817 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
818 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
819 /* Set all bits to 0 except bits 15..12 */
820 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
821 /* Set to default value */
822 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
823 }
824
825 /* release PHY from PowerDown/Coma mode. */
826 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
827
828 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
829 sk_win_write_1(sc, SK_Y2_CLKGATE,
830 SK_Y2_CLKGATE_LINK1_GATE_DIS |
831 SK_Y2_CLKGATE_LINK2_GATE_DIS |
832 SK_Y2_CLKGATE_LINK1_CORE_DIS |
833 SK_Y2_CLKGATE_LINK2_CORE_DIS |
834 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
835 else
836 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
837
838 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
839 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
840 DELAY(1000);
841 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
842 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
843
844 sk_win_write_1(sc, SK_TESTCTL1, 1);
845
846 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
847 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
848 CSR_READ_2(sc, SK_LINK_CTRL)));
849
850 /* Disable ASF */
851 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
852 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
853
854 /* Clear I2C IRQ noise */
855 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
856
857 /* Disable hardware timer */
858 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
859 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
860
861 /* Disable descriptor polling */
862 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
863
864 /* Disable time stamps */
865 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
866 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
867
868 /* Enable RAM interface */
869 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
870 for (reg = SK_TO0;reg <= SK_TO11; reg++)
871 sk_win_write_1(sc, reg, 36);
872 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
873 for (reg = SK_TO0;reg <= SK_TO11; reg++)
874 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
875
876 /*
877 * Configure interrupt moderation. The moderation timer
878 * defers interrupts specified in the interrupt moderation
879 * timer mask based on the timeout specified in the interrupt
880 * moderation timer init register. Each bit in the timer
881 * register represents one tick, so to specify a timeout in
882 * microseconds, we have to multiply by the correct number of
883 * ticks-per-microsecond.
884 */
885 switch (sc->sk_type) {
886 case SK_YUKON_EC:
887 case SK_YUKON_EC_U:
888 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
889 break;
890 case SK_YUKON_FE:
891 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
892 break;
893 case SK_YUKON_XL:
894 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
895 break;
896 default:
897 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
898 }
899
900 /* Reset status ring. */
901 memset(sc->sk_status_ring, 0,
902 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
903 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
904 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
905 sc->sk_status_idx = 0;
906 sc->sk_status_own_idx = 0;
907
908 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
909 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
910
911 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
912 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
913 sc->sk_status_map->dm_segs[0].ds_addr);
914 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
915 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
916 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
917 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
918 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
919 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
920 } else {
921 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
922 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
923 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
924 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
925 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
926 }
927
928 #if 0
929 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
930 #endif
931 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
932
933 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
934
935 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
936 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
937 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
938
939 msk_update_int_mod(sc, 0);
940 }
941
942 int
943 msk_probe(device_t parent, cfdata_t match, void *aux)
944 {
945 struct skc_attach_args *sa = aux;
946
947 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
948 return (0);
949
950 switch (sa->skc_type) {
951 case SK_YUKON_XL:
952 case SK_YUKON_EC_U:
953 case SK_YUKON_EC:
954 case SK_YUKON_FE:
955 return (1);
956 }
957
958 return (0);
959 }
960
961 static bool
962 msk_resume(device_t dv, const pmf_qual_t *qual)
963 {
964 struct sk_if_softc *sc_if = device_private(dv);
965
966 msk_init_yukon(sc_if);
967 return true;
968 }
969
970 /*
971 * Each XMAC chip is attached as a separate logical IP interface.
972 * Single port cards will have only one logical interface of course.
973 */
974 void
975 msk_attach(device_t parent, device_t self, void *aux)
976 {
977 struct sk_if_softc *sc_if = device_private(self);
978 struct sk_softc *sc = device_private(parent);
979 struct skc_attach_args *sa = aux;
980 struct ifnet *ifp;
981 void *kva;
982 bus_dma_segment_t seg;
983 int i, rseg;
984 u_int32_t chunk, val;
985
986 sc_if->sk_dev = self;
987 sc_if->sk_port = sa->skc_port;
988 sc_if->sk_softc = sc;
989 sc->sk_if[sa->skc_port] = sc_if;
990
991 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
992
993 /*
994 * Get station address for this interface. Note that
995 * dual port cards actually come with three station
996 * addresses: one for each port, plus an extra. The
997 * extra one is used by the SysKonnect driver software
998 * as a 'virtual' station address for when both ports
999 * are operating in failover mode. Currently we don't
1000 * use this extra address.
1001 */
1002 for (i = 0; i < ETHER_ADDR_LEN; i++)
1003 sc_if->sk_enaddr[i] =
1004 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1005
1006 aprint_normal(": Ethernet address %s\n",
1007 ether_sprintf(sc_if->sk_enaddr));
1008
1009 /*
1010 * Set up RAM buffer addresses. The NIC will have a certain
1011 * amount of SRAM on it, somewhere between 512K and 2MB. We
1012 * need to divide this up a) between the transmitter and
1013 * receiver and b) between the two XMACs, if this is a
1014 * dual port NIC. Our algorithm is to divide up the memory
1015 * evenly so that everyone gets a fair share.
1016 *
1017 * Just to be contrary, Yukon2 appears to have separate memory
1018 * for each MAC.
1019 */
1020 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1021 val = sc->sk_rboff / sizeof(u_int64_t);
1022 sc_if->sk_rx_ramstart = val;
1023 val += (chunk / sizeof(u_int64_t));
1024 sc_if->sk_rx_ramend = val - 1;
1025 chunk = sc->sk_ramsize - chunk;
1026 sc_if->sk_tx_ramstart = val;
1027 val += (chunk / sizeof(u_int64_t));
1028 sc_if->sk_tx_ramend = val - 1;
1029
1030 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1031 " tx_ramstart=%#x tx_ramend=%#x\n",
1032 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1033 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1034
1035 /* Allocate the descriptor queues. */
1036 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1037 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1038 aprint_error(": can't alloc rx buffers\n");
1039 goto fail;
1040 }
1041 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1042 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1043 aprint_error(": can't map dma buffers (%zu bytes)\n",
1044 sizeof(struct msk_ring_data));
1045 goto fail_1;
1046 }
1047 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1048 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1049 &sc_if->sk_ring_map)) {
1050 aprint_error(": can't create dma map\n");
1051 goto fail_2;
1052 }
1053 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1054 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1055 aprint_error(": can't load dma map\n");
1056 goto fail_3;
1057 }
1058 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1059 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1060
1061 ifp = &sc_if->sk_ethercom.ec_if;
1062 /* Try to allocate memory for jumbo buffers. */
1063 if (msk_alloc_jumbo_mem(sc_if)) {
1064 aprint_error(": jumbo buffer allocation failed\n");
1065 goto fail_3;
1066 }
1067 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1068 if (sc->sk_type != SK_YUKON_FE)
1069 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1070
1071 ifp->if_softc = sc_if;
1072 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1073 ifp->if_ioctl = msk_ioctl;
1074 ifp->if_start = msk_start;
1075 ifp->if_stop = msk_stop;
1076 ifp->if_init = msk_init;
1077 ifp->if_watchdog = msk_watchdog;
1078 ifp->if_baudrate = 1000000000;
1079 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1080 IFQ_SET_READY(&ifp->if_snd);
1081 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1082
1083 /*
1084 * Do miibus setup.
1085 */
1086 msk_init_yukon(sc_if);
1087
1088 DPRINTFN(2, ("msk_attach: 1\n"));
1089
1090 sc_if->sk_mii.mii_ifp = ifp;
1091 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1092 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1093 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1094
1095 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1096 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1097 ether_mediachange, ether_mediastatus);
1098 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1099 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1100 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1101 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1102 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1103 0, NULL);
1104 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1105 } else
1106 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1107
1108 callout_init(&sc_if->sk_tick_ch, 0);
1109 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1110 callout_schedule(&sc_if->sk_tick_ch, hz);
1111
1112 /*
1113 * Call MI attach routines.
1114 */
1115 if_attach(ifp);
1116 ether_ifattach(ifp, sc_if->sk_enaddr);
1117
1118 if (pmf_device_register(self, NULL, msk_resume))
1119 pmf_class_network_register(self, ifp);
1120 else
1121 aprint_error_dev(self, "couldn't establish power handler\n");
1122
1123 #if NRND > 0
1124 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1125 RND_TYPE_NET, 0);
1126 #endif
1127
1128 DPRINTFN(2, ("msk_attach: end\n"));
1129 return;
1130
1131 fail_3:
1132 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1133 fail_2:
1134 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1135 fail_1:
1136 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1137 fail:
1138 sc->sk_if[sa->skc_port] = NULL;
1139 }
1140
1141 int
1142 mskcprint(void *aux, const char *pnp)
1143 {
1144 struct skc_attach_args *sa = aux;
1145
1146 if (pnp)
1147 aprint_normal("sk port %c at %s",
1148 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1149 else
1150 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1151 return (UNCONF);
1152 }
1153
1154 /*
1155 * Attach the interface. Allocate softc structures, do ifmedia
1156 * setup and ethernet/BPF attach.
1157 */
1158 void
1159 mskc_attach(device_t parent, device_t self, void *aux)
1160 {
1161 struct sk_softc *sc = device_private(self);
1162 struct pci_attach_args *pa = aux;
1163 struct skc_attach_args skca;
1164 pci_chipset_tag_t pc = pa->pa_pc;
1165 pcireg_t command, memtype;
1166 pci_intr_handle_t ih;
1167 const char *intrstr = NULL;
1168 bus_size_t size;
1169 int rc, sk_nodenum;
1170 u_int8_t hw, skrs;
1171 const char *revstr = NULL;
1172 const struct sysctlnode *node;
1173 void *kva;
1174 bus_dma_segment_t seg;
1175 int rseg;
1176
1177 DPRINTFN(2, ("begin mskc_attach\n"));
1178
1179 sc->sk_dev = self;
1180 /*
1181 * Handle power management nonsense.
1182 */
1183 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1184
1185 if (command == 0x01) {
1186 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1187 if (command & SK_PSTATE_MASK) {
1188 u_int32_t iobase, membase, irq;
1189
1190 /* Save important PCI config data. */
1191 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1192 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1193 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1194
1195 /* Reset the power state. */
1196 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1197 "mode -- setting to D0\n",
1198 command & SK_PSTATE_MASK);
1199 command &= 0xFFFFFFFC;
1200 pci_conf_write(pc, pa->pa_tag,
1201 SK_PCI_PWRMGMTCTRL, command);
1202
1203 /* Restore PCI config data. */
1204 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1205 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1206 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1207 }
1208 }
1209
1210 /*
1211 * Map control/status registers.
1212 */
1213
1214 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1215 switch (memtype) {
1216 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1217 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1218 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1219 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1220 NULL, &size) == 0) {
1221 break;
1222 }
1223 default:
1224 aprint_error(": can't map mem space\n");
1225 return;
1226 }
1227
1228 sc->sc_dmatag = pa->pa_dmat;
1229
1230 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1231 command |= PCI_COMMAND_MASTER_ENABLE;
1232 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1233
1234 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1235 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1236
1237 /* bail out here if chip is not recognized */
1238 if (!(SK_IS_YUKON2(sc))) {
1239 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1240 goto fail_1;
1241 }
1242 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1243
1244 /* Allocate interrupt */
1245 if (pci_intr_map(pa, &ih)) {
1246 aprint_error(": couldn't map interrupt\n");
1247 goto fail_1;
1248 }
1249
1250 intrstr = pci_intr_string(pc, ih);
1251 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1252 if (sc->sk_intrhand == NULL) {
1253 aprint_error(": couldn't establish interrupt");
1254 if (intrstr != NULL)
1255 aprint_error(" at %s", intrstr);
1256 aprint_error("\n");
1257 goto fail_1;
1258 }
1259
1260 if (bus_dmamem_alloc(sc->sc_dmatag,
1261 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1262 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1263 aprint_error(": can't alloc status buffers\n");
1264 goto fail_2;
1265 }
1266
1267 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1268 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1269 &kva, BUS_DMA_NOWAIT)) {
1270 aprint_error(": can't map dma buffers (%zu bytes)\n",
1271 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1272 goto fail_3;
1273 }
1274 if (bus_dmamap_create(sc->sc_dmatag,
1275 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1276 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1277 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1278 aprint_error(": can't create dma map\n");
1279 goto fail_4;
1280 }
1281 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1282 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1283 NULL, BUS_DMA_NOWAIT)) {
1284 aprint_error(": can't load dma map\n");
1285 goto fail_5;
1286 }
1287 sc->sk_status_ring = (struct msk_status_desc *)kva;
1288
1289
1290 sc->sk_int_mod = SK_IM_DEFAULT;
1291 sc->sk_int_mod_pending = 0;
1292
1293 /* Reset the adapter. */
1294 msk_reset(sc);
1295
1296 skrs = sk_win_read_1(sc, SK_EPROM0);
1297 if (skrs == 0x00)
1298 sc->sk_ramsize = 0x20000;
1299 else
1300 sc->sk_ramsize = skrs * (1<<12);
1301 sc->sk_rboff = SK_RBOFF_0;
1302
1303 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1304 sc->sk_ramsize, sc->sk_ramsize / 1024,
1305 sc->sk_rboff));
1306
1307 switch (sc->sk_type) {
1308 case SK_YUKON_XL:
1309 sc->sk_name = "Yukon-2 XL";
1310 break;
1311 case SK_YUKON_EC_U:
1312 sc->sk_name = "Yukon-2 EC Ultra";
1313 break;
1314 case SK_YUKON_EC:
1315 sc->sk_name = "Yukon-2 EC";
1316 break;
1317 case SK_YUKON_FE:
1318 sc->sk_name = "Yukon-2 FE";
1319 break;
1320 default:
1321 sc->sk_name = "Yukon (Unknown)";
1322 }
1323
1324 if (sc->sk_type == SK_YUKON_XL) {
1325 switch (sc->sk_rev) {
1326 case SK_YUKON_XL_REV_A0:
1327 sc->sk_workaround = 0;
1328 revstr = "A0";
1329 break;
1330 case SK_YUKON_XL_REV_A1:
1331 sc->sk_workaround = SK_WA_4109;
1332 revstr = "A1";
1333 break;
1334 case SK_YUKON_XL_REV_A2:
1335 sc->sk_workaround = SK_WA_4109;
1336 revstr = "A2";
1337 break;
1338 case SK_YUKON_XL_REV_A3:
1339 sc->sk_workaround = SK_WA_4109;
1340 revstr = "A3";
1341 break;
1342 default:
1343 sc->sk_workaround = 0;
1344 break;
1345 }
1346 }
1347
1348 if (sc->sk_type == SK_YUKON_EC) {
1349 switch (sc->sk_rev) {
1350 case SK_YUKON_EC_REV_A1:
1351 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1352 revstr = "A1";
1353 break;
1354 case SK_YUKON_EC_REV_A2:
1355 sc->sk_workaround = SK_WA_4109;
1356 revstr = "A2";
1357 break;
1358 case SK_YUKON_EC_REV_A3:
1359 sc->sk_workaround = SK_WA_4109;
1360 revstr = "A3";
1361 break;
1362 default:
1363 sc->sk_workaround = 0;
1364 break;
1365 }
1366 }
1367
1368 if (sc->sk_type == SK_YUKON_FE) {
1369 sc->sk_workaround = SK_WA_4109;
1370 switch (sc->sk_rev) {
1371 case SK_YUKON_FE_REV_A1:
1372 revstr = "A1";
1373 break;
1374 case SK_YUKON_FE_REV_A2:
1375 revstr = "A2";
1376 break;
1377 default:
1378 sc->sk_workaround = 0;
1379 break;
1380 }
1381 }
1382
1383 if (sc->sk_type == SK_YUKON_EC_U) {
1384 sc->sk_workaround = SK_WA_4109;
1385 switch (sc->sk_rev) {
1386 case SK_YUKON_EC_U_REV_A0:
1387 revstr = "A0";
1388 break;
1389 case SK_YUKON_EC_U_REV_A1:
1390 revstr = "A1";
1391 break;
1392 case SK_YUKON_EC_U_REV_B0:
1393 revstr = "B0";
1394 break;
1395 default:
1396 sc->sk_workaround = 0;
1397 break;
1398 }
1399 }
1400
1401 /* Announce the product name. */
1402 aprint_normal(", %s", sc->sk_name);
1403 if (revstr != NULL)
1404 aprint_normal(" rev. %s", revstr);
1405 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1406
1407 sc->sk_macs = 1;
1408
1409 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1410 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1411 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1412 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1413 sc->sk_macs++;
1414 }
1415
1416 skca.skc_port = SK_PORT_A;
1417 skca.skc_type = sc->sk_type;
1418 skca.skc_rev = sc->sk_rev;
1419 (void)config_found(sc->sk_dev, &skca, mskcprint);
1420
1421 if (sc->sk_macs > 1) {
1422 skca.skc_port = SK_PORT_B;
1423 skca.skc_type = sc->sk_type;
1424 skca.skc_rev = sc->sk_rev;
1425 (void)config_found(sc->sk_dev, &skca, mskcprint);
1426 }
1427
1428 /* Turn on the 'driver is loaded' LED. */
1429 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1430
1431 /* skc sysctl setup */
1432
1433 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1434 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1435 SYSCTL_DESCR("mskc per-controller controls"),
1436 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1437 CTL_EOL)) != 0) {
1438 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1439 goto fail_6;
1440 }
1441
1442 sk_nodenum = node->sysctl_num;
1443
1444 /* interrupt moderation time in usecs */
1445 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1446 CTLFLAG_READWRITE,
1447 CTLTYPE_INT, "int_mod",
1448 SYSCTL_DESCR("msk interrupt moderation timer"),
1449 msk_sysctl_handler, 0, sc,
1450 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1451 CTL_EOL)) != 0) {
1452 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1453 goto fail_6;
1454 }
1455
1456 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1457 aprint_error_dev(self, "couldn't establish power handler\n");
1458
1459 return;
1460
1461 fail_6:
1462 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1463 fail_5:
1464 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1465 fail_4:
1466 bus_dmamem_unmap(sc->sc_dmatag, kva,
1467 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1468 fail_3:
1469 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1470 fail_2:
1471 pci_intr_disestablish(pc, sc->sk_intrhand);
1472 fail_1:
1473 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1474 }
1475
1476 int
1477 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1478 {
1479 struct sk_softc *sc = sc_if->sk_softc;
1480 struct msk_tx_desc *f = NULL;
1481 u_int32_t frag, cur;
1482 int i;
1483 struct sk_txmap_entry *entry;
1484 bus_dmamap_t txmap;
1485
1486 DPRINTFN(2, ("msk_encap\n"));
1487
1488 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1489 if (entry == NULL) {
1490 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1491 return (ENOBUFS);
1492 }
1493 txmap = entry->dmamap;
1494
1495 cur = frag = *txidx;
1496
1497 #ifdef MSK_DEBUG
1498 if (mskdebug >= 2)
1499 msk_dump_mbuf(m_head);
1500 #endif
1501
1502 /*
1503 * Start packing the mbufs in this chain into
1504 * the fragment pointers. Stop when we run out
1505 * of fragments or hit the end of the mbuf chain.
1506 */
1507 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1508 BUS_DMA_NOWAIT)) {
1509 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1510 return (ENOBUFS);
1511 }
1512
1513 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1514 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1515 bus_dmamap_unload(sc->sc_dmatag, txmap);
1516 return (ENOBUFS);
1517 }
1518
1519 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1520
1521 /* Sync the DMA map. */
1522 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1523 BUS_DMASYNC_PREWRITE);
1524
1525 for (i = 0; i < txmap->dm_nsegs; i++) {
1526 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1527 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1528 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1529 f->sk_ctl = 0;
1530 if (i == 0)
1531 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1532 else
1533 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1534 cur = frag;
1535 SK_INC(frag, MSK_TX_RING_CNT);
1536 }
1537
1538 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1539 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1540
1541 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1542 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1543
1544 /* Sync descriptors before handing to chip */
1545 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1546 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1547
1548 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1549
1550 /* Sync first descriptor to hand it off */
1551 MSK_CDTXSYNC(sc_if, *txidx, 1,
1552 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1553
1554 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1555
1556 #ifdef MSK_DEBUG
1557 if (mskdebug >= 2) {
1558 struct msk_tx_desc *le;
1559 u_int32_t idx;
1560 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1561 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1562 msk_dump_txdesc(le, idx);
1563 }
1564 }
1565 #endif
1566
1567 *txidx = frag;
1568
1569 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1570
1571 return (0);
1572 }
1573
1574 void
1575 msk_start(struct ifnet *ifp)
1576 {
1577 struct sk_if_softc *sc_if = ifp->if_softc;
1578 struct mbuf *m_head = NULL;
1579 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1580 int pkts = 0;
1581
1582 DPRINTFN(2, ("msk_start\n"));
1583
1584 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1585 IFQ_POLL(&ifp->if_snd, m_head);
1586 if (m_head == NULL)
1587 break;
1588
1589 /*
1590 * Pack the data into the transmit ring. If we
1591 * don't have room, set the OACTIVE flag and wait
1592 * for the NIC to drain the ring.
1593 */
1594 if (msk_encap(sc_if, m_head, &idx)) {
1595 ifp->if_flags |= IFF_OACTIVE;
1596 break;
1597 }
1598
1599 /* now we are committed to transmit the packet */
1600 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1601 pkts++;
1602
1603 /*
1604 * If there's a BPF listener, bounce a copy of this frame
1605 * to him.
1606 */
1607 bpf_mtap(ifp, m_head);
1608 }
1609 if (pkts == 0)
1610 return;
1611
1612 /* Transmit */
1613 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1614 sc_if->sk_cdata.sk_tx_prod = idx;
1615 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1616
1617 /* Set a timeout in case the chip goes out to lunch. */
1618 ifp->if_timer = 5;
1619 }
1620 }
1621
1622 void
1623 msk_watchdog(struct ifnet *ifp)
1624 {
1625 struct sk_if_softc *sc_if = ifp->if_softc;
1626 u_int32_t reg;
1627 int idx;
1628
1629 /*
1630 * Reclaim first as there is a possibility of losing Tx completion
1631 * interrupts.
1632 */
1633 if (sc_if->sk_port == SK_PORT_A)
1634 reg = SK_STAT_BMU_TXA1_RIDX;
1635 else
1636 reg = SK_STAT_BMU_TXA2_RIDX;
1637
1638 idx = sk_win_read_2(sc_if->sk_softc, reg);
1639 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1640 msk_txeof(sc_if, idx);
1641 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1642 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1643
1644 ifp->if_oerrors++;
1645
1646 /* XXX Resets both ports; we shouldn't do that. */
1647 msk_reset(sc_if->sk_softc);
1648 msk_init(ifp);
1649 }
1650 }
1651 }
1652
1653 static bool
1654 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1655 {
1656 struct sk_softc *sc = device_private(dv);
1657
1658 DPRINTFN(2, ("mskc_suspend\n"));
1659
1660 /* Turn off the 'driver is loaded' LED. */
1661 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1662
1663 return true;
1664 }
1665
1666 static bool
1667 mskc_resume(device_t dv, const pmf_qual_t *qual)
1668 {
1669 struct sk_softc *sc = device_private(dv);
1670
1671 DPRINTFN(2, ("mskc_resume\n"));
1672
1673 msk_reset(sc);
1674 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1675
1676 return true;
1677 }
1678
1679 static __inline int
1680 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1681 {
1682 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1683 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1684 YU_RXSTAT_JABBER)) != 0 ||
1685 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1686 YU_RXSTAT_BYTES(stat) != len)
1687 return (0);
1688
1689 return (1);
1690 }
1691
1692 void
1693 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1694 {
1695 struct sk_softc *sc = sc_if->sk_softc;
1696 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1697 struct mbuf *m;
1698 struct sk_chain *cur_rx;
1699 int cur, total_len = len;
1700 bus_dmamap_t dmamap;
1701
1702 DPRINTFN(2, ("msk_rxeof\n"));
1703
1704 cur = sc_if->sk_cdata.sk_rx_cons;
1705 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1706 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1707
1708 /* Sync the descriptor */
1709 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1710
1711 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1712 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1713
1714 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1715 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1716
1717 m = cur_rx->sk_mbuf;
1718 cur_rx->sk_mbuf = NULL;
1719
1720 if (total_len < SK_MIN_FRAMELEN ||
1721 total_len > ETHER_MAX_LEN_JUMBO ||
1722 msk_rxvalid(sc, rxstat, total_len) == 0) {
1723 ifp->if_ierrors++;
1724 msk_newbuf(sc_if, cur, m, dmamap);
1725 return;
1726 }
1727
1728 /*
1729 * Try to allocate a new jumbo buffer. If that fails, copy the
1730 * packet to mbufs and put the jumbo buffer back in the ring
1731 * so it can be re-used. If allocating mbufs fails, then we
1732 * have to drop the packet.
1733 */
1734 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1735 struct mbuf *m0;
1736 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1737 total_len + ETHER_ALIGN, 0, ifp, NULL);
1738 msk_newbuf(sc_if, cur, m, dmamap);
1739 if (m0 == NULL) {
1740 ifp->if_ierrors++;
1741 return;
1742 }
1743 m_adj(m0, ETHER_ALIGN);
1744 m = m0;
1745 } else {
1746 m->m_pkthdr.rcvif = ifp;
1747 m->m_pkthdr.len = m->m_len = total_len;
1748 }
1749
1750 ifp->if_ipackets++;
1751
1752 bpf_mtap(ifp, m);
1753
1754 /* pass it on. */
1755 (*ifp->if_input)(ifp, m);
1756 }
1757
1758 void
1759 msk_txeof(struct sk_if_softc *sc_if, int idx)
1760 {
1761 struct sk_softc *sc = sc_if->sk_softc;
1762 struct msk_tx_desc *cur_tx;
1763 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1764 u_int32_t sk_ctl;
1765 struct sk_txmap_entry *entry;
1766 int cons, prog;
1767
1768 DPRINTFN(2, ("msk_txeof\n"));
1769
1770 /*
1771 * Go through our tx ring and free mbufs for those
1772 * frames that have been sent.
1773 */
1774 cons = sc_if->sk_cdata.sk_tx_cons;
1775 prog = 0;
1776 while (cons != idx) {
1777 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1778 break;
1779 prog++;
1780 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1781
1782 MSK_CDTXSYNC(sc_if, cons, 1,
1783 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1784 sk_ctl = cur_tx->sk_ctl;
1785 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1786 #ifdef MSK_DEBUG
1787 if (mskdebug >= 2)
1788 msk_dump_txdesc(cur_tx, cons);
1789 #endif
1790 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1791 ifp->if_opackets++;
1792 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1793 entry = sc_if->sk_cdata.sk_tx_map[cons];
1794
1795 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1796 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1797
1798 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1799 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1800 link);
1801 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1802 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1803 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1804 }
1805 sc_if->sk_cdata.sk_tx_cnt--;
1806 SK_INC(cons, MSK_TX_RING_CNT);
1807 }
1808 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1809
1810 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1811 ifp->if_flags &= ~IFF_OACTIVE;
1812
1813 if (prog > 0)
1814 sc_if->sk_cdata.sk_tx_cons = cons;
1815 }
1816
1817 void
1818 msk_tick(void *xsc_if)
1819 {
1820 struct sk_if_softc *sc_if = xsc_if;
1821 struct mii_data *mii = &sc_if->sk_mii;
1822 uint16_t gpsr;
1823 int s;
1824
1825 s = splnet();
1826 gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1827 if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1828 SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1829 mii_tick(mii);
1830 }
1831 splx(s);
1832
1833 callout_schedule(&sc_if->sk_tick_ch, hz);
1834 }
1835
1836 void
1837 msk_intr_yukon(struct sk_if_softc *sc_if)
1838 {
1839 u_int8_t status;
1840
1841 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1842 /* RX overrun */
1843 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1844 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1845 SK_RFCTL_RX_FIFO_OVER);
1846 }
1847 /* TX underrun */
1848 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1849 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1850 SK_TFCTL_TX_FIFO_UNDER);
1851 }
1852
1853 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1854 }
1855
1856 int
1857 msk_intr(void *xsc)
1858 {
1859 struct sk_softc *sc = xsc;
1860 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1861 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1862 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1863 int claimed = 0;
1864 u_int32_t status;
1865 uint32_t st_status;
1866 uint16_t st_len;
1867 uint8_t st_opcode, st_link;
1868 struct msk_status_desc *cur_st;
1869
1870 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1871 if (status == 0) {
1872 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1873 return (0);
1874 }
1875
1876 status = CSR_READ_4(sc, SK_ISR);
1877
1878 if (sc_if0 != NULL)
1879 ifp0 = &sc_if0->sk_ethercom.ec_if;
1880 if (sc_if1 != NULL)
1881 ifp1 = &sc_if1->sk_ethercom.ec_if;
1882
1883 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1884 (ifp0->if_flags & IFF_RUNNING)) {
1885 msk_intr_yukon(sc_if0);
1886 }
1887
1888 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1889 (ifp1->if_flags & IFF_RUNNING)) {
1890 msk_intr_yukon(sc_if1);
1891 }
1892
1893 for (;;) {
1894 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1895 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1896 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1897 st_opcode = cur_st->sk_opcode;
1898 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1899 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1900 BUS_DMASYNC_PREREAD);
1901 break;
1902 }
1903 st_status = le32toh(cur_st->sk_status);
1904 st_len = le16toh(cur_st->sk_len);
1905 st_link = cur_st->sk_link;
1906 st_opcode &= ~SK_Y2_STOPC_OWN;
1907
1908 switch (st_opcode) {
1909 case SK_Y2_STOPC_RXSTAT:
1910 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1911 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1912 SK_RXQ1_Y2_PREF_PUTIDX,
1913 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1914 break;
1915 case SK_Y2_STOPC_TXSTAT:
1916 if (sc_if0)
1917 msk_txeof(sc_if0, st_status
1918 & SK_Y2_ST_TXA1_MSKL);
1919 if (sc_if1)
1920 msk_txeof(sc_if1,
1921 ((st_status & SK_Y2_ST_TXA2_MSKL)
1922 >> SK_Y2_ST_TXA2_SHIFTL)
1923 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1924 break;
1925 default:
1926 aprint_error("opcode=0x%x\n", st_opcode);
1927 break;
1928 }
1929 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1930 }
1931
1932 #define MSK_STATUS_RING_OWN_CNT(sc) \
1933 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1934 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1935
1936 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1937 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1938 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1939 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1940 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1941
1942 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1943 }
1944
1945 if (status & SK_Y2_IMR_BMU) {
1946 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1947 claimed = 1;
1948 }
1949
1950 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1951
1952 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1953 msk_start(ifp0);
1954 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1955 msk_start(ifp1);
1956
1957 #if NRND > 0
1958 if (RND_ENABLED(&sc->rnd_source))
1959 rnd_add_uint32(&sc->rnd_source, status);
1960 #endif
1961
1962 if (sc->sk_int_mod_pending)
1963 msk_update_int_mod(sc, 1);
1964
1965 return claimed;
1966 }
1967
1968 void
1969 msk_init_yukon(struct sk_if_softc *sc_if)
1970 {
1971 u_int32_t v;
1972 u_int16_t reg;
1973 struct sk_softc *sc;
1974 int i;
1975
1976 sc = sc_if->sk_softc;
1977
1978 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1979 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1980
1981 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1982
1983 /* GMAC and GPHY Reset */
1984 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1985 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1986 DELAY(1000);
1987
1988 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1989
1990 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1991 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1992 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1993
1994 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1995 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1996
1997 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1998
1999 /* unused read of the interrupt source register */
2000 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2001 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2002
2003 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2004 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2005 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2006
2007 /* MIB Counter Clear Mode set */
2008 reg |= YU_PAR_MIB_CLR;
2009 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2010 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2011 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2012
2013 /* MIB Counter Clear Mode clear */
2014 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2015 reg &= ~YU_PAR_MIB_CLR;
2016 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2017
2018 /* receive control reg */
2019 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2020 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2021
2022 /* transmit control register */
2023 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2024
2025 /* transmit flow control register */
2026 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2027
2028 /* transmit parameter register */
2029 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2030 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2031 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2032
2033 /* serial mode register */
2034 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2035 reg = YU_SMR_DATA_BLIND(0x1c) |
2036 YU_SMR_MFL_VLAN |
2037 YU_SMR_IPG_DATA(0x1e);
2038
2039 if (sc->sk_type != SK_YUKON_FE)
2040 reg |= YU_SMR_MFL_JUMBO;
2041
2042 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2043
2044 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2045 /* Setup Yukon's address */
2046 for (i = 0; i < 3; i++) {
2047 /* Write Source Address 1 (unicast filter) */
2048 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2049 sc_if->sk_enaddr[i * 2] |
2050 sc_if->sk_enaddr[i * 2 + 1] << 8);
2051 }
2052
2053 for (i = 0; i < 3; i++) {
2054 reg = sk_win_read_2(sc_if->sk_softc,
2055 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2056 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2057 }
2058
2059 /* Set promiscuous mode */
2060 msk_setpromisc(sc_if);
2061
2062 /* Set multicast filter */
2063 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2064 msk_setmulti(sc_if);
2065
2066 /* enable interrupt mask for counter overflows */
2067 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2068 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2069 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2070 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2071
2072 /* Configure RX MAC FIFO Flush Mask */
2073 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2074 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2075 YU_RXSTAT_JABBER;
2076 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2077
2078 /* Configure RX MAC FIFO */
2079 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2080 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2081 SK_RFCTL_FIFO_FLUSH_ON);
2082
2083 /* Increase flush threshould to 64 bytes */
2084 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2085 SK_RFCTL_FIFO_THRESHOLD + 1);
2086
2087 /* Configure TX MAC FIFO */
2088 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2089 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2090
2091 #if 1
2092 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2093 #endif
2094 DPRINTFN(6, ("msk_init_yukon: end\n"));
2095 }
2096
2097 /*
2098 * Note that to properly initialize any part of the GEnesis chip,
2099 * you first have to take it out of reset mode.
2100 */
2101 int
2102 msk_init(struct ifnet *ifp)
2103 {
2104 struct sk_if_softc *sc_if = ifp->if_softc;
2105 struct sk_softc *sc = sc_if->sk_softc;
2106 int rc = 0, s;
2107 uint32_t imr, imtimer_ticks;
2108
2109
2110 DPRINTFN(2, ("msk_init\n"));
2111
2112 s = splnet();
2113
2114 /* Cancel pending I/O and free all RX/TX buffers. */
2115 msk_stop(ifp,0);
2116
2117 /* Configure I2C registers */
2118
2119 /* Configure XMAC(s) */
2120 msk_init_yukon(sc_if);
2121 if ((rc = ether_mediachange(ifp)) != 0)
2122 goto out;
2123
2124 /* Configure transmit arbiter(s) */
2125 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2126 #if 0
2127 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2128 #endif
2129
2130 /* Configure RAMbuffers */
2131 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2132 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2133 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2134 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2135 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2136 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2137
2138 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2139 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2140 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2141 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2142 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2143 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2144 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2145
2146 /* Configure BMUs */
2147 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2148 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2149 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2150 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2151
2152 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2153 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2154 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2155 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2156
2157 /* Make sure the sync transmit queue is disabled. */
2158 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2159
2160 /* Init descriptors */
2161 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2162 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2163 "memory for rx buffers\n");
2164 msk_stop(ifp,0);
2165 splx(s);
2166 return ENOBUFS;
2167 }
2168
2169 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2170 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2171 "memory for tx buffers\n");
2172 msk_stop(ifp,0);
2173 splx(s);
2174 return ENOBUFS;
2175 }
2176
2177 /* Set interrupt moderation if changed via sysctl. */
2178 switch (sc->sk_type) {
2179 case SK_YUKON_EC:
2180 case SK_YUKON_EC_U:
2181 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2182 break;
2183 case SK_YUKON_FE:
2184 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2185 break;
2186 case SK_YUKON_XL:
2187 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2188 break;
2189 default:
2190 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2191 }
2192 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2193 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2194 sk_win_write_4(sc, SK_IMTIMERINIT,
2195 SK_IM_USECS(sc->sk_int_mod));
2196 aprint_verbose_dev(sc->sk_dev,
2197 "interrupt moderation is %d us\n", sc->sk_int_mod);
2198 }
2199
2200 /* Initialize prefetch engine. */
2201 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2202 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2203 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2204 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2205 MSK_RX_RING_ADDR(sc_if, 0));
2206 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2207 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2208 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2209 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2210
2211 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2212 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2213 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2214 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2215 MSK_TX_RING_ADDR(sc_if, 0));
2216 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2217 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2218 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2219 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2220
2221 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2222 sc_if->sk_cdata.sk_rx_prod);
2223
2224 /* Configure interrupt handling */
2225 if (sc_if->sk_port == SK_PORT_A)
2226 sc->sk_intrmask |= SK_Y2_INTRS1;
2227 else
2228 sc->sk_intrmask |= SK_Y2_INTRS2;
2229 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2230 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2231
2232 ifp->if_flags |= IFF_RUNNING;
2233 ifp->if_flags &= ~IFF_OACTIVE;
2234
2235 callout_schedule(&sc_if->sk_tick_ch, hz);
2236
2237 out:
2238 splx(s);
2239 return rc;
2240 }
2241
2242 void
2243 msk_stop(struct ifnet *ifp, int disable)
2244 {
2245 struct sk_if_softc *sc_if = ifp->if_softc;
2246 struct sk_softc *sc = sc_if->sk_softc;
2247 struct sk_txmap_entry *dma;
2248 int i;
2249
2250 DPRINTFN(2, ("msk_stop\n"));
2251
2252 callout_stop(&sc_if->sk_tick_ch);
2253
2254 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2255
2256 /* Stop transfer of Tx descriptors */
2257
2258 /* Stop transfer of Rx descriptors */
2259
2260 /* Turn off various components of this interface. */
2261 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2262 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2263 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2264 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2265 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2266 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2267 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2268 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2269 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2270 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2271 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2272 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2273
2274 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2275 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2276
2277 /* Disable interrupts */
2278 if (sc_if->sk_port == SK_PORT_A)
2279 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2280 else
2281 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2282 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2283
2284 SK_XM_READ_2(sc_if, XM_ISR);
2285 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2286
2287 /* Free RX and TX mbufs still in the queues. */
2288 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2289 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2290 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2291 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2292 }
2293 }
2294
2295 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2296 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2297 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2298 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2299 #if 1
2300 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2301 sc_if->sk_cdata.sk_tx_map[i], link);
2302 sc_if->sk_cdata.sk_tx_map[i] = 0;
2303 #endif
2304 }
2305 }
2306
2307 #if 1
2308 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2309 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2310 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2311 free(dma, M_DEVBUF);
2312 }
2313 #endif
2314 }
2315
2316 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2317 NULL, NULL);
2318
2319 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2320 NULL, NULL);
2321
2322 #ifdef MSK_DEBUG
2323 void
2324 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2325 {
2326 #define DESC_PRINT(X) \
2327 if (X) \
2328 printf("txdesc[%d]." #X "=%#x\n", \
2329 idx, X);
2330
2331 DESC_PRINT(letoh32(le->sk_addr));
2332 DESC_PRINT(letoh16(le->sk_len));
2333 DESC_PRINT(le->sk_ctl);
2334 DESC_PRINT(le->sk_opcode);
2335 #undef DESC_PRINT
2336 }
2337
2338 void
2339 msk_dump_bytes(const char *data, int len)
2340 {
2341 int c, i, j;
2342
2343 for (i = 0; i < len; i += 16) {
2344 printf("%08x ", i);
2345 c = len - i;
2346 if (c > 16) c = 16;
2347
2348 for (j = 0; j < c; j++) {
2349 printf("%02x ", data[i + j] & 0xff);
2350 if ((j & 0xf) == 7 && j > 0)
2351 printf(" ");
2352 }
2353
2354 for (; j < 16; j++)
2355 printf(" ");
2356 printf(" ");
2357
2358 for (j = 0; j < c; j++) {
2359 int ch = data[i + j] & 0xff;
2360 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2361 }
2362
2363 printf("\n");
2364
2365 if (c < 16)
2366 break;
2367 }
2368 }
2369
2370 void
2371 msk_dump_mbuf(struct mbuf *m)
2372 {
2373 int count = m->m_pkthdr.len;
2374
2375 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2376
2377 while (count > 0 && m) {
2378 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2379 m, m->m_data, m->m_len);
2380 msk_dump_bytes(mtod(m, char *), m->m_len);
2381
2382 count -= m->m_len;
2383 m = m->m_next;
2384 }
2385 }
2386 #endif
2387
2388 static int
2389 msk_sysctl_handler(SYSCTLFN_ARGS)
2390 {
2391 int error, t;
2392 struct sysctlnode node;
2393 struct sk_softc *sc;
2394
2395 node = *rnode;
2396 sc = node.sysctl_data;
2397 t = sc->sk_int_mod;
2398 node.sysctl_data = &t;
2399 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2400 if (error || newp == NULL)
2401 return error;
2402
2403 if (t < SK_IM_MIN || t > SK_IM_MAX)
2404 return EINVAL;
2405
2406 /* update the softc with sysctl-changed value, and mark
2407 for hardware update */
2408 sc->sk_int_mod = t;
2409 sc->sk_int_mod_pending = 1;
2410 return 0;
2411 }
2412
2413 /*
2414 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2415 * set up in skc_attach()
2416 */
2417 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2418 {
2419 int rc;
2420 const struct sysctlnode *node;
2421
2422 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
2423 0, CTLTYPE_NODE, "hw", NULL,
2424 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
2425 goto err;
2426 }
2427
2428 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2429 0, CTLTYPE_NODE, "msk",
2430 SYSCTL_DESCR("msk interface controls"),
2431 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2432 goto err;
2433 }
2434
2435 msk_root_num = node->sysctl_num;
2436 return;
2437
2438 err:
2439 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2440 }
2441