if_msk.c revision 1.48 1 /* $NetBSD: if_msk.c,v 1.48 2015/04/13 16:33:25 riastradh Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.48 2015/04/13 16:33:25 riastradh Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120
121 void msk_update_int_mod(struct sk_softc *, int);
122
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(struct ifnet *);
126
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x) if (mskdebug) printf x
135 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
136 int mskdebug = MSK_DEBUG;
137
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148
149 /* supported device vendors */
150 static const struct msk_product {
151 pci_vendor_id_t msk_vendor;
152 pci_product_id_t msk_product;
153 } msk_products[] = {
154 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
155 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
157 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
158 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
159 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
182 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
183 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
184 };
185
186 static inline u_int32_t
187 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
188 {
189 return CSR_READ_4(sc, reg);
190 }
191
192 static inline u_int16_t
193 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
194 {
195 return CSR_READ_2(sc, reg);
196 }
197
198 static inline u_int8_t
199 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
200 {
201 return CSR_READ_1(sc, reg);
202 }
203
204 static inline void
205 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
206 {
207 CSR_WRITE_4(sc, reg, x);
208 }
209
210 static inline void
211 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
212 {
213 CSR_WRITE_2(sc, reg, x);
214 }
215
216 static inline void
217 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
218 {
219 CSR_WRITE_1(sc, reg, x);
220 }
221
222 int
223 msk_miibus_readreg(device_t dev, int phy, int reg)
224 {
225 struct sk_if_softc *sc_if = device_private(dev);
226 u_int16_t val;
227 int i;
228
229 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
230 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
231
232 for (i = 0; i < SK_TIMEOUT; i++) {
233 DELAY(1);
234 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
235 if (val & YU_SMICR_READ_VALID)
236 break;
237 }
238
239 if (i == SK_TIMEOUT) {
240 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
241 return (0);
242 }
243
244 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
245 SK_TIMEOUT));
246
247 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
248
249 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
250 phy, reg, val));
251
252 return (val);
253 }
254
255 void
256 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
257 {
258 struct sk_if_softc *sc_if = device_private(dev);
259 int i;
260
261 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
262 phy, reg, val));
263
264 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
265 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
266 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
267
268 for (i = 0; i < SK_TIMEOUT; i++) {
269 DELAY(1);
270 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
271 break;
272 }
273
274 if (i == SK_TIMEOUT)
275 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
276 }
277
278 void
279 msk_miibus_statchg(struct ifnet *ifp)
280 {
281 struct sk_if_softc *sc_if = ifp->if_softc;
282 struct mii_data *mii = &sc_if->sk_mii;
283 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
284 int gpcr;
285
286 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
287 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
288
289 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
290 /* Set speed. */
291 gpcr |= YU_GPCR_SPEED_DIS;
292 switch (IFM_SUBTYPE(mii->mii_media_active)) {
293 case IFM_1000_SX:
294 case IFM_1000_LX:
295 case IFM_1000_CX:
296 case IFM_1000_T:
297 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
298 break;
299 case IFM_100_TX:
300 gpcr |= YU_GPCR_SPEED;
301 break;
302 }
303
304 /* Set duplex. */
305 gpcr |= YU_GPCR_DPLX_DIS;
306 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
307 gpcr |= YU_GPCR_DUPLEX;
308
309 /* Disable flow control. */
310 gpcr |= YU_GPCR_FCTL_DIS;
311 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
312 }
313
314 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
315
316 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
317 SK_YU_READ_2(sc_if, YUKON_GPCR)));
318 }
319
320 #define HASH_BITS 6
321
322 void
323 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
324 {
325 char *addr = addrv;
326 int base = XM_RXFILT_ENTRY(slot);
327
328 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
329 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
330 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
331 }
332
333 void
334 msk_setmulti(struct sk_if_softc *sc_if)
335 {
336 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
337 u_int32_t hashes[2] = { 0, 0 };
338 int h;
339 struct ethercom *ec = &sc_if->sk_ethercom;
340 struct ether_multi *enm;
341 struct ether_multistep step;
342 u_int16_t reg;
343
344 /* First, zot all the existing filters. */
345 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
346 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
347 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
349
350
351 /* Now program new ones. */
352 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
353 reg |= YU_RCR_UFLEN;
354 allmulti:
355 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
356 if ((ifp->if_flags & IFF_PROMISC) != 0)
357 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
358 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
359 hashes[0] = 0xFFFFFFFF;
360 hashes[1] = 0xFFFFFFFF;
361 }
362 } else {
363 /* First find the tail of the list. */
364 ETHER_FIRST_MULTI(step, ec, enm);
365 while (enm != NULL) {
366 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
367 ETHER_ADDR_LEN)) {
368 ifp->if_flags |= IFF_ALLMULTI;
369 goto allmulti;
370 }
371 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
372 ((1 << HASH_BITS) - 1);
373 if (h < 32)
374 hashes[0] |= (1 << h);
375 else
376 hashes[1] |= (1 << (h - 32));
377
378 ETHER_NEXT_MULTI(step, enm);
379 }
380 reg |= YU_RCR_MUFLEN;
381 }
382
383 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
384 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
385 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
388 }
389
390 void
391 msk_setpromisc(struct sk_if_softc *sc_if)
392 {
393 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
394
395 if (ifp->if_flags & IFF_PROMISC)
396 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
397 YU_RCR_UFLEN | YU_RCR_MUFLEN);
398 else
399 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
400 YU_RCR_UFLEN | YU_RCR_MUFLEN);
401 }
402
403 int
404 msk_init_rx_ring(struct sk_if_softc *sc_if)
405 {
406 struct msk_chain_data *cd = &sc_if->sk_cdata;
407 struct msk_ring_data *rd = sc_if->sk_rdata;
408 int i, nexti;
409
410 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
411
412 for (i = 0; i < MSK_RX_RING_CNT; i++) {
413 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
414 if (i == (MSK_RX_RING_CNT - 1))
415 nexti = 0;
416 else
417 nexti = i + 1;
418 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
419 }
420
421 for (i = 0; i < MSK_RX_RING_CNT; i++) {
422 if (msk_newbuf(sc_if, i, NULL,
423 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
424 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
425 return (ENOBUFS);
426 }
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431
432 return (0);
433 }
434
435 int
436 msk_init_tx_ring(struct sk_if_softc *sc_if)
437 {
438 struct sk_softc *sc = sc_if->sk_softc;
439 struct msk_chain_data *cd = &sc_if->sk_cdata;
440 struct msk_ring_data *rd = sc_if->sk_rdata;
441 bus_dmamap_t dmamap;
442 struct sk_txmap_entry *entry;
443 int i, nexti;
444
445 memset(sc_if->sk_rdata->sk_tx_ring, 0,
446 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
447
448 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
449 for (i = 0; i < MSK_TX_RING_CNT; i++) {
450 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
451 if (i == (MSK_TX_RING_CNT - 1))
452 nexti = 0;
453 else
454 nexti = i + 1;
455 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
456
457 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
458 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
459 return (ENOBUFS);
460
461 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
462 if (!entry) {
463 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
464 return (ENOBUFS);
465 }
466 entry->dmamap = dmamap;
467 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
468 }
469
470 sc_if->sk_cdata.sk_tx_prod = 0;
471 sc_if->sk_cdata.sk_tx_cons = 0;
472 sc_if->sk_cdata.sk_tx_cnt = 0;
473
474 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
475 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
476
477 return (0);
478 }
479
480 int
481 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
482 bus_dmamap_t dmamap)
483 {
484 struct mbuf *m_new = NULL;
485 struct sk_chain *c;
486 struct msk_rx_desc *r;
487
488 if (m == NULL) {
489 void *buf = NULL;
490
491 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
492 if (m_new == NULL)
493 return (ENOBUFS);
494
495 /* Allocate the jumbo buffer */
496 buf = msk_jalloc(sc_if);
497 if (buf == NULL) {
498 m_freem(m_new);
499 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
500 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
501 return (ENOBUFS);
502 }
503
504 /* Attach the buffer to the mbuf */
505 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
506 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
507 } else {
508 /*
509 * We're re-using a previously allocated mbuf;
510 * be sure to re-init pointers and lengths to
511 * default values.
512 */
513 m_new = m;
514 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
515 m_new->m_data = m_new->m_ext.ext_buf;
516 }
517 m_adj(m_new, ETHER_ALIGN);
518
519 c = &sc_if->sk_cdata.sk_rx_chain[i];
520 r = c->sk_le;
521 c->sk_mbuf = m_new;
522 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
523 (((vaddr_t)m_new->m_data
524 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
525 r->sk_len = htole16(SK_JLEN);
526 r->sk_ctl = 0;
527 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
528
529 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
530
531 return (0);
532 }
533
534 /*
535 * Memory management for jumbo frames.
536 */
537
538 int
539 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
540 {
541 struct sk_softc *sc = sc_if->sk_softc;
542 char *ptr, *kva;
543 bus_dma_segment_t seg;
544 int i, rseg, state, error;
545 struct sk_jpool_entry *entry;
546
547 state = error = 0;
548
549 /* Grab a big chunk o' storage. */
550 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
551 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
552 aprint_error(": can't alloc rx buffers");
553 return (ENOBUFS);
554 }
555
556 state = 1;
557 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
558 BUS_DMA_NOWAIT)) {
559 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
560 error = ENOBUFS;
561 goto out;
562 }
563
564 state = 2;
565 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
566 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
567 aprint_error(": can't create dma map");
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 3;
573 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
574 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
575 aprint_error(": can't load dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 4;
581 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
582 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
583
584 LIST_INIT(&sc_if->sk_jfree_listhead);
585 LIST_INIT(&sc_if->sk_jinuse_listhead);
586 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
587
588 /*
589 * Now divide it up into 9K pieces and save the addresses
590 * in an array.
591 */
592 ptr = sc_if->sk_cdata.sk_jumbo_buf;
593 for (i = 0; i < MSK_JSLOTS; i++) {
594 sc_if->sk_cdata.sk_jslots[i] = ptr;
595 ptr += SK_JLEN;
596 entry = malloc(sizeof(struct sk_jpool_entry),
597 M_DEVBUF, M_NOWAIT);
598 if (entry == NULL) {
599 sc_if->sk_cdata.sk_jumbo_buf = NULL;
600 aprint_error(": no memory for jumbo buffer queue!");
601 error = ENOBUFS;
602 goto out;
603 }
604 entry->slot = i;
605 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
606 entry, jpool_entries);
607 }
608 out:
609 if (error != 0) {
610 switch (state) {
611 case 4:
612 bus_dmamap_unload(sc->sc_dmatag,
613 sc_if->sk_cdata.sk_rx_jumbo_map);
614 case 3:
615 bus_dmamap_destroy(sc->sc_dmatag,
616 sc_if->sk_cdata.sk_rx_jumbo_map);
617 case 2:
618 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
619 case 1:
620 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
621 break;
622 default:
623 break;
624 }
625 }
626
627 return (error);
628 }
629
630 /*
631 * Allocate a jumbo buffer.
632 */
633 void *
634 msk_jalloc(struct sk_if_softc *sc_if)
635 {
636 struct sk_jpool_entry *entry;
637
638 mutex_enter(&sc_if->sk_jpool_mtx);
639 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
640
641 if (entry == NULL) {
642 mutex_exit(&sc_if->sk_jpool_mtx);
643 return NULL;
644 }
645
646 LIST_REMOVE(entry, jpool_entries);
647 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
648 mutex_exit(&sc_if->sk_jpool_mtx);
649 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
650 }
651
652 /*
653 * Release a jumbo buffer.
654 */
655 void
656 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
657 {
658 struct sk_jpool_entry *entry;
659 struct sk_if_softc *sc;
660 int i;
661
662 /* Extract the softc struct pointer. */
663 sc = (struct sk_if_softc *)arg;
664
665 if (sc == NULL)
666 panic("msk_jfree: can't find softc pointer!");
667
668 /* calculate the slot this buffer belongs to */
669 i = ((vaddr_t)buf
670 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
671
672 if ((i < 0) || (i >= MSK_JSLOTS))
673 panic("msk_jfree: asked to free buffer that we don't manage!");
674
675 mutex_enter(&sc->sk_jpool_mtx);
676 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
677 if (entry == NULL)
678 panic("msk_jfree: buffer not in use!");
679 entry->slot = i;
680 LIST_REMOVE(entry, jpool_entries);
681 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
682 mutex_exit(&sc->sk_jpool_mtx);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 }
687
688 int
689 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
690 {
691 struct sk_if_softc *sc_if = ifp->if_softc;
692 int s, error = 0;
693
694 s = splnet();
695
696 DPRINTFN(2, ("msk_ioctl ETHER\n"));
697 error = ether_ioctl(ifp, cmd, data);
698
699 if (error == ENETRESET) {
700 error = 0;
701 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
702 ;
703 else if (ifp->if_flags & IFF_RUNNING) {
704 /*
705 * Multicast list has changed; set the hardware
706 * filter accordingly.
707 */
708 msk_setmulti(sc_if);
709 }
710 }
711
712 splx(s);
713 return (error);
714 }
715
716 void
717 msk_update_int_mod(struct sk_softc *sc, int verbose)
718 {
719 u_int32_t imtimer_ticks;
720
721 /*
722 * Configure interrupt moderation. The moderation timer
723 * defers interrupts specified in the interrupt moderation
724 * timer mask based on the timeout specified in the interrupt
725 * moderation timer init register. Each bit in the timer
726 * register represents one tick, so to specify a timeout in
727 * microseconds, we have to multiply by the correct number of
728 * ticks-per-microsecond.
729 */
730 switch (sc->sk_type) {
731 case SK_YUKON_EC:
732 case SK_YUKON_EC_U:
733 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
734 break;
735 case SK_YUKON_FE:
736 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
737 break;
738 case SK_YUKON_XL:
739 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
740 break;
741 default:
742 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
743 }
744 if (verbose)
745 aprint_verbose_dev(sc->sk_dev,
746 "interrupt moderation is %d us\n", sc->sk_int_mod);
747 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
748 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
749 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
750 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
751 sc->sk_int_mod_pending = 0;
752 }
753
754 static int
755 msk_lookup(const struct pci_attach_args *pa)
756 {
757 const struct msk_product *pmsk;
758
759 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
760 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
761 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
762 return 1;
763 }
764 return 0;
765 }
766
767 /*
768 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
769 * IDs against our list and return a device name if we find a match.
770 */
771 int
772 mskc_probe(device_t parent, cfdata_t match, void *aux)
773 {
774 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
775
776 return msk_lookup(pa);
777 }
778
779 /*
780 * Force the GEnesis into reset, then bring it out of reset.
781 */
782 void msk_reset(struct sk_softc *sc)
783 {
784 u_int32_t imtimer_ticks, reg1;
785 int reg;
786
787 DPRINTFN(2, ("msk_reset\n"));
788
789 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
790 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
791
792 DELAY(1000);
793 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
794 DELAY(2);
795 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
796 sk_win_write_1(sc, SK_TESTCTL1, 2);
797
798 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
799 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
800 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
801 else
802 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
803
804 if (sc->sk_type == SK_YUKON_EC_U) {
805 uint32_t our;
806
807 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
808
809 /* enable all clocks. */
810 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
811 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
812 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
813 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
814 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
815 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
816 /* Set all bits to 0 except bits 15..12 */
817 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
818 /* Set to default value */
819 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
820 }
821
822 /* release PHY from PowerDown/Coma mode. */
823 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
824
825 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
826 sk_win_write_1(sc, SK_Y2_CLKGATE,
827 SK_Y2_CLKGATE_LINK1_GATE_DIS |
828 SK_Y2_CLKGATE_LINK2_GATE_DIS |
829 SK_Y2_CLKGATE_LINK1_CORE_DIS |
830 SK_Y2_CLKGATE_LINK2_CORE_DIS |
831 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
832 else
833 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
834
835 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
836 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
837 DELAY(1000);
838 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
839 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
840
841 sk_win_write_1(sc, SK_TESTCTL1, 1);
842
843 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
844 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
845 CSR_READ_2(sc, SK_LINK_CTRL)));
846
847 /* Disable ASF */
848 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
849 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
850
851 /* Clear I2C IRQ noise */
852 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
853
854 /* Disable hardware timer */
855 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
856 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
857
858 /* Disable descriptor polling */
859 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
860
861 /* Disable time stamps */
862 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
863 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
864
865 /* Enable RAM interface */
866 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
867 for (reg = SK_TO0;reg <= SK_TO11; reg++)
868 sk_win_write_1(sc, reg, 36);
869 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
870 for (reg = SK_TO0;reg <= SK_TO11; reg++)
871 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
872
873 /*
874 * Configure interrupt moderation. The moderation timer
875 * defers interrupts specified in the interrupt moderation
876 * timer mask based on the timeout specified in the interrupt
877 * moderation timer init register. Each bit in the timer
878 * register represents one tick, so to specify a timeout in
879 * microseconds, we have to multiply by the correct number of
880 * ticks-per-microsecond.
881 */
882 switch (sc->sk_type) {
883 case SK_YUKON_EC:
884 case SK_YUKON_EC_U:
885 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
886 break;
887 case SK_YUKON_FE:
888 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
889 break;
890 case SK_YUKON_XL:
891 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
892 break;
893 default:
894 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
895 }
896
897 /* Reset status ring. */
898 memset(sc->sk_status_ring, 0,
899 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
900 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
901 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
902 sc->sk_status_idx = 0;
903 sc->sk_status_own_idx = 0;
904
905 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
906 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
907
908 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
909 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
910 sc->sk_status_map->dm_segs[0].ds_addr);
911 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
912 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
913 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
914 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
915 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
916 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
917 } else {
918 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
919 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
920 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
921 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
922 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
923 }
924
925 #if 0
926 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
927 #endif
928 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
929
930 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
931
932 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
933 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
934 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
935
936 msk_update_int_mod(sc, 0);
937 }
938
939 int
940 msk_probe(device_t parent, cfdata_t match, void *aux)
941 {
942 struct skc_attach_args *sa = aux;
943
944 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
945 return (0);
946
947 switch (sa->skc_type) {
948 case SK_YUKON_XL:
949 case SK_YUKON_EC_U:
950 case SK_YUKON_EC:
951 case SK_YUKON_FE:
952 case SK_YUKON_FE_P:
953 return (1);
954 }
955
956 return (0);
957 }
958
959 static bool
960 msk_resume(device_t dv, const pmf_qual_t *qual)
961 {
962 struct sk_if_softc *sc_if = device_private(dv);
963
964 msk_init_yukon(sc_if);
965 return true;
966 }
967
968 /*
969 * Each XMAC chip is attached as a separate logical IP interface.
970 * Single port cards will have only one logical interface of course.
971 */
972 void
973 msk_attach(device_t parent, device_t self, void *aux)
974 {
975 struct sk_if_softc *sc_if = device_private(self);
976 struct sk_softc *sc = device_private(parent);
977 struct skc_attach_args *sa = aux;
978 struct ifnet *ifp;
979 void *kva;
980 bus_dma_segment_t seg;
981 int i, rseg;
982 u_int32_t chunk, val;
983
984 sc_if->sk_dev = self;
985 sc_if->sk_port = sa->skc_port;
986 sc_if->sk_softc = sc;
987 sc->sk_if[sa->skc_port] = sc_if;
988
989 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
990
991 /*
992 * Get station address for this interface. Note that
993 * dual port cards actually come with three station
994 * addresses: one for each port, plus an extra. The
995 * extra one is used by the SysKonnect driver software
996 * as a 'virtual' station address for when both ports
997 * are operating in failover mode. Currently we don't
998 * use this extra address.
999 */
1000 for (i = 0; i < ETHER_ADDR_LEN; i++)
1001 sc_if->sk_enaddr[i] =
1002 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1003
1004 aprint_normal(": Ethernet address %s\n",
1005 ether_sprintf(sc_if->sk_enaddr));
1006
1007 /*
1008 * Set up RAM buffer addresses. The NIC will have a certain
1009 * amount of SRAM on it, somewhere between 512K and 2MB. We
1010 * need to divide this up a) between the transmitter and
1011 * receiver and b) between the two XMACs, if this is a
1012 * dual port NIC. Our algorithm is to divide up the memory
1013 * evenly so that everyone gets a fair share.
1014 *
1015 * Just to be contrary, Yukon2 appears to have separate memory
1016 * for each MAC.
1017 */
1018 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1019 val = sc->sk_rboff / sizeof(u_int64_t);
1020 sc_if->sk_rx_ramstart = val;
1021 val += (chunk / sizeof(u_int64_t));
1022 sc_if->sk_rx_ramend = val - 1;
1023 chunk = sc->sk_ramsize - chunk;
1024 sc_if->sk_tx_ramstart = val;
1025 val += (chunk / sizeof(u_int64_t));
1026 sc_if->sk_tx_ramend = val - 1;
1027
1028 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1029 " tx_ramstart=%#x tx_ramend=%#x\n",
1030 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1031 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1032
1033 /* Allocate the descriptor queues. */
1034 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1035 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1036 aprint_error(": can't alloc rx buffers\n");
1037 goto fail;
1038 }
1039 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1040 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1041 aprint_error(": can't map dma buffers (%zu bytes)\n",
1042 sizeof(struct msk_ring_data));
1043 goto fail_1;
1044 }
1045 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1046 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1047 &sc_if->sk_ring_map)) {
1048 aprint_error(": can't create dma map\n");
1049 goto fail_2;
1050 }
1051 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1052 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1053 aprint_error(": can't load dma map\n");
1054 goto fail_3;
1055 }
1056 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1057 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1058
1059 ifp = &sc_if->sk_ethercom.ec_if;
1060 /* Try to allocate memory for jumbo buffers. */
1061 if (msk_alloc_jumbo_mem(sc_if)) {
1062 aprint_error(": jumbo buffer allocation failed\n");
1063 goto fail_3;
1064 }
1065 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1066 if (sc->sk_type != SK_YUKON_FE)
1067 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1068
1069 ifp->if_softc = sc_if;
1070 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1071 ifp->if_ioctl = msk_ioctl;
1072 ifp->if_start = msk_start;
1073 ifp->if_stop = msk_stop;
1074 ifp->if_init = msk_init;
1075 ifp->if_watchdog = msk_watchdog;
1076 ifp->if_baudrate = 1000000000;
1077 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1078 IFQ_SET_READY(&ifp->if_snd);
1079 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1080
1081 /*
1082 * Do miibus setup.
1083 */
1084 msk_init_yukon(sc_if);
1085
1086 DPRINTFN(2, ("msk_attach: 1\n"));
1087
1088 sc_if->sk_mii.mii_ifp = ifp;
1089 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1090 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1091 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1092
1093 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1094 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1095 ether_mediachange, ether_mediastatus);
1096 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1097 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1098 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1099 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1100 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1101 0, NULL);
1102 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1103 } else
1104 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1105
1106 callout_init(&sc_if->sk_tick_ch, 0);
1107 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1108 callout_schedule(&sc_if->sk_tick_ch, hz);
1109
1110 /*
1111 * Call MI attach routines.
1112 */
1113 if_attach(ifp);
1114 ether_ifattach(ifp, sc_if->sk_enaddr);
1115
1116 if (pmf_device_register(self, NULL, msk_resume))
1117 pmf_class_network_register(self, ifp);
1118 else
1119 aprint_error_dev(self, "couldn't establish power handler\n");
1120
1121 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1122 RND_TYPE_NET, RND_FLAG_DEFAULT);
1123
1124 DPRINTFN(2, ("msk_attach: end\n"));
1125 return;
1126
1127 fail_3:
1128 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1129 fail_2:
1130 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1131 fail_1:
1132 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1133 fail:
1134 sc->sk_if[sa->skc_port] = NULL;
1135 }
1136
1137 int
1138 mskcprint(void *aux, const char *pnp)
1139 {
1140 struct skc_attach_args *sa = aux;
1141
1142 if (pnp)
1143 aprint_normal("sk port %c at %s",
1144 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1145 else
1146 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1147 return (UNCONF);
1148 }
1149
1150 /*
1151 * Attach the interface. Allocate softc structures, do ifmedia
1152 * setup and ethernet/BPF attach.
1153 */
1154 void
1155 mskc_attach(device_t parent, device_t self, void *aux)
1156 {
1157 struct sk_softc *sc = device_private(self);
1158 struct pci_attach_args *pa = aux;
1159 struct skc_attach_args skca;
1160 pci_chipset_tag_t pc = pa->pa_pc;
1161 pcireg_t command, memtype;
1162 pci_intr_handle_t ih;
1163 const char *intrstr = NULL;
1164 bus_size_t size;
1165 int rc, sk_nodenum;
1166 u_int8_t hw, skrs;
1167 const char *revstr = NULL;
1168 const struct sysctlnode *node;
1169 void *kva;
1170 bus_dma_segment_t seg;
1171 int rseg;
1172 char intrbuf[PCI_INTRSTR_LEN];
1173
1174 DPRINTFN(2, ("begin mskc_attach\n"));
1175
1176 sc->sk_dev = self;
1177 /*
1178 * Handle power management nonsense.
1179 */
1180 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1181
1182 if (command == 0x01) {
1183 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1184 if (command & SK_PSTATE_MASK) {
1185 u_int32_t iobase, membase, irq;
1186
1187 /* Save important PCI config data. */
1188 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1189 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1190 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1191
1192 /* Reset the power state. */
1193 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1194 "mode -- setting to D0\n",
1195 command & SK_PSTATE_MASK);
1196 command &= 0xFFFFFFFC;
1197 pci_conf_write(pc, pa->pa_tag,
1198 SK_PCI_PWRMGMTCTRL, command);
1199
1200 /* Restore PCI config data. */
1201 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1202 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1203 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1204 }
1205 }
1206
1207 /*
1208 * Map control/status registers.
1209 */
1210
1211 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1212 switch (memtype) {
1213 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1215 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1216 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1217 NULL, &size) == 0) {
1218 break;
1219 }
1220 default:
1221 aprint_error(": can't map mem space\n");
1222 return;
1223 }
1224
1225 sc->sc_dmatag = pa->pa_dmat;
1226
1227 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1228 command |= PCI_COMMAND_MASTER_ENABLE;
1229 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1230
1231 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1232 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1233
1234 /* bail out here if chip is not recognized */
1235 if (!(SK_IS_YUKON2(sc))) {
1236 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1237 goto fail_1;
1238 }
1239 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1240
1241 /* Allocate interrupt */
1242 if (pci_intr_map(pa, &ih)) {
1243 aprint_error(": couldn't map interrupt\n");
1244 goto fail_1;
1245 }
1246
1247 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1248 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1249 if (sc->sk_intrhand == NULL) {
1250 aprint_error(": couldn't establish interrupt");
1251 if (intrstr != NULL)
1252 aprint_error(" at %s", intrstr);
1253 aprint_error("\n");
1254 goto fail_1;
1255 }
1256
1257 if (bus_dmamem_alloc(sc->sc_dmatag,
1258 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1259 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1260 aprint_error(": can't alloc status buffers\n");
1261 goto fail_2;
1262 }
1263
1264 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1265 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1266 &kva, BUS_DMA_NOWAIT)) {
1267 aprint_error(": can't map dma buffers (%zu bytes)\n",
1268 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1269 goto fail_3;
1270 }
1271 if (bus_dmamap_create(sc->sc_dmatag,
1272 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1273 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1274 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1275 aprint_error(": can't create dma map\n");
1276 goto fail_4;
1277 }
1278 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1279 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1280 NULL, BUS_DMA_NOWAIT)) {
1281 aprint_error(": can't load dma map\n");
1282 goto fail_5;
1283 }
1284 sc->sk_status_ring = (struct msk_status_desc *)kva;
1285
1286
1287 sc->sk_int_mod = SK_IM_DEFAULT;
1288 sc->sk_int_mod_pending = 0;
1289
1290 /* Reset the adapter. */
1291 msk_reset(sc);
1292
1293 skrs = sk_win_read_1(sc, SK_EPROM0);
1294 if (skrs == 0x00)
1295 sc->sk_ramsize = 0x20000;
1296 else
1297 sc->sk_ramsize = skrs * (1<<12);
1298 sc->sk_rboff = SK_RBOFF_0;
1299
1300 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1301 sc->sk_ramsize, sc->sk_ramsize / 1024,
1302 sc->sk_rboff));
1303
1304 switch (sc->sk_type) {
1305 case SK_YUKON_XL:
1306 sc->sk_name = "Yukon-2 XL";
1307 break;
1308 case SK_YUKON_EC_U:
1309 sc->sk_name = "Yukon-2 EC Ultra";
1310 break;
1311 case SK_YUKON_EC:
1312 sc->sk_name = "Yukon-2 EC";
1313 break;
1314 case SK_YUKON_FE:
1315 sc->sk_name = "Yukon-2 FE";
1316 break;
1317 default:
1318 sc->sk_name = "Yukon (Unknown)";
1319 }
1320
1321 if (sc->sk_type == SK_YUKON_XL) {
1322 switch (sc->sk_rev) {
1323 case SK_YUKON_XL_REV_A0:
1324 sc->sk_workaround = 0;
1325 revstr = "A0";
1326 break;
1327 case SK_YUKON_XL_REV_A1:
1328 sc->sk_workaround = SK_WA_4109;
1329 revstr = "A1";
1330 break;
1331 case SK_YUKON_XL_REV_A2:
1332 sc->sk_workaround = SK_WA_4109;
1333 revstr = "A2";
1334 break;
1335 case SK_YUKON_XL_REV_A3:
1336 sc->sk_workaround = SK_WA_4109;
1337 revstr = "A3";
1338 break;
1339 default:
1340 sc->sk_workaround = 0;
1341 break;
1342 }
1343 }
1344
1345 if (sc->sk_type == SK_YUKON_EC) {
1346 switch (sc->sk_rev) {
1347 case SK_YUKON_EC_REV_A1:
1348 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1349 revstr = "A1";
1350 break;
1351 case SK_YUKON_EC_REV_A2:
1352 sc->sk_workaround = SK_WA_4109;
1353 revstr = "A2";
1354 break;
1355 case SK_YUKON_EC_REV_A3:
1356 sc->sk_workaround = SK_WA_4109;
1357 revstr = "A3";
1358 break;
1359 default:
1360 sc->sk_workaround = 0;
1361 break;
1362 }
1363 }
1364
1365 if (sc->sk_type == SK_YUKON_FE) {
1366 sc->sk_workaround = SK_WA_4109;
1367 switch (sc->sk_rev) {
1368 case SK_YUKON_FE_REV_A1:
1369 revstr = "A1";
1370 break;
1371 case SK_YUKON_FE_REV_A2:
1372 revstr = "A2";
1373 break;
1374 default:
1375 sc->sk_workaround = 0;
1376 break;
1377 }
1378 }
1379
1380 if (sc->sk_type == SK_YUKON_EC_U) {
1381 sc->sk_workaround = SK_WA_4109;
1382 switch (sc->sk_rev) {
1383 case SK_YUKON_EC_U_REV_A0:
1384 revstr = "A0";
1385 break;
1386 case SK_YUKON_EC_U_REV_A1:
1387 revstr = "A1";
1388 break;
1389 case SK_YUKON_EC_U_REV_B0:
1390 revstr = "B0";
1391 break;
1392 default:
1393 sc->sk_workaround = 0;
1394 break;
1395 }
1396 }
1397
1398 /* Announce the product name. */
1399 aprint_normal(", %s", sc->sk_name);
1400 if (revstr != NULL)
1401 aprint_normal(" rev. %s", revstr);
1402 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1403
1404 sc->sk_macs = 1;
1405
1406 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1407 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1408 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1409 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1410 sc->sk_macs++;
1411 }
1412
1413 skca.skc_port = SK_PORT_A;
1414 skca.skc_type = sc->sk_type;
1415 skca.skc_rev = sc->sk_rev;
1416 (void)config_found(sc->sk_dev, &skca, mskcprint);
1417
1418 if (sc->sk_macs > 1) {
1419 skca.skc_port = SK_PORT_B;
1420 skca.skc_type = sc->sk_type;
1421 skca.skc_rev = sc->sk_rev;
1422 (void)config_found(sc->sk_dev, &skca, mskcprint);
1423 }
1424
1425 /* Turn on the 'driver is loaded' LED. */
1426 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1427
1428 /* skc sysctl setup */
1429
1430 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1431 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1432 SYSCTL_DESCR("mskc per-controller controls"),
1433 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1434 CTL_EOL)) != 0) {
1435 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1436 goto fail_6;
1437 }
1438
1439 sk_nodenum = node->sysctl_num;
1440
1441 /* interrupt moderation time in usecs */
1442 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1443 CTLFLAG_READWRITE,
1444 CTLTYPE_INT, "int_mod",
1445 SYSCTL_DESCR("msk interrupt moderation timer"),
1446 msk_sysctl_handler, 0, (void *)sc,
1447 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1448 CTL_EOL)) != 0) {
1449 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1450 goto fail_6;
1451 }
1452
1453 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1454 aprint_error_dev(self, "couldn't establish power handler\n");
1455
1456 return;
1457
1458 fail_6:
1459 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1460 fail_5:
1461 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1462 fail_4:
1463 bus_dmamem_unmap(sc->sc_dmatag, kva,
1464 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1465 fail_3:
1466 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1467 fail_2:
1468 pci_intr_disestablish(pc, sc->sk_intrhand);
1469 fail_1:
1470 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1471 }
1472
1473 int
1474 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1475 {
1476 struct sk_softc *sc = sc_if->sk_softc;
1477 struct msk_tx_desc *f = NULL;
1478 u_int32_t frag, cur;
1479 int i;
1480 struct sk_txmap_entry *entry;
1481 bus_dmamap_t txmap;
1482
1483 DPRINTFN(2, ("msk_encap\n"));
1484
1485 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1486 if (entry == NULL) {
1487 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1488 return (ENOBUFS);
1489 }
1490 txmap = entry->dmamap;
1491
1492 cur = frag = *txidx;
1493
1494 #ifdef MSK_DEBUG
1495 if (mskdebug >= 2)
1496 msk_dump_mbuf(m_head);
1497 #endif
1498
1499 /*
1500 * Start packing the mbufs in this chain into
1501 * the fragment pointers. Stop when we run out
1502 * of fragments or hit the end of the mbuf chain.
1503 */
1504 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1505 BUS_DMA_NOWAIT)) {
1506 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1507 return (ENOBUFS);
1508 }
1509
1510 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1511 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1512 bus_dmamap_unload(sc->sc_dmatag, txmap);
1513 return (ENOBUFS);
1514 }
1515
1516 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1517
1518 /* Sync the DMA map. */
1519 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1520 BUS_DMASYNC_PREWRITE);
1521
1522 for (i = 0; i < txmap->dm_nsegs; i++) {
1523 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1524 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1525 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1526 f->sk_ctl = 0;
1527 if (i == 0)
1528 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1529 else
1530 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1531 cur = frag;
1532 SK_INC(frag, MSK_TX_RING_CNT);
1533 }
1534
1535 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1536 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1537
1538 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1539 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1540
1541 /* Sync descriptors before handing to chip */
1542 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1543 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1544
1545 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1546
1547 /* Sync first descriptor to hand it off */
1548 MSK_CDTXSYNC(sc_if, *txidx, 1,
1549 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1550
1551 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1552
1553 #ifdef MSK_DEBUG
1554 if (mskdebug >= 2) {
1555 struct msk_tx_desc *le;
1556 u_int32_t idx;
1557 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1558 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1559 msk_dump_txdesc(le, idx);
1560 }
1561 }
1562 #endif
1563
1564 *txidx = frag;
1565
1566 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1567
1568 return (0);
1569 }
1570
1571 void
1572 msk_start(struct ifnet *ifp)
1573 {
1574 struct sk_if_softc *sc_if = ifp->if_softc;
1575 struct mbuf *m_head = NULL;
1576 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1577 int pkts = 0;
1578
1579 DPRINTFN(2, ("msk_start\n"));
1580
1581 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1582 IFQ_POLL(&ifp->if_snd, m_head);
1583 if (m_head == NULL)
1584 break;
1585
1586 /*
1587 * Pack the data into the transmit ring. If we
1588 * don't have room, set the OACTIVE flag and wait
1589 * for the NIC to drain the ring.
1590 */
1591 if (msk_encap(sc_if, m_head, &idx)) {
1592 ifp->if_flags |= IFF_OACTIVE;
1593 break;
1594 }
1595
1596 /* now we are committed to transmit the packet */
1597 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1598 pkts++;
1599
1600 /*
1601 * If there's a BPF listener, bounce a copy of this frame
1602 * to him.
1603 */
1604 bpf_mtap(ifp, m_head);
1605 }
1606 if (pkts == 0)
1607 return;
1608
1609 /* Transmit */
1610 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1611 sc_if->sk_cdata.sk_tx_prod = idx;
1612 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1613
1614 /* Set a timeout in case the chip goes out to lunch. */
1615 ifp->if_timer = 5;
1616 }
1617 }
1618
1619 void
1620 msk_watchdog(struct ifnet *ifp)
1621 {
1622 struct sk_if_softc *sc_if = ifp->if_softc;
1623 u_int32_t reg;
1624 int idx;
1625
1626 /*
1627 * Reclaim first as there is a possibility of losing Tx completion
1628 * interrupts.
1629 */
1630 if (sc_if->sk_port == SK_PORT_A)
1631 reg = SK_STAT_BMU_TXA1_RIDX;
1632 else
1633 reg = SK_STAT_BMU_TXA2_RIDX;
1634
1635 idx = sk_win_read_2(sc_if->sk_softc, reg);
1636 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1637 msk_txeof(sc_if, idx);
1638 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1639 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1640
1641 ifp->if_oerrors++;
1642
1643 /* XXX Resets both ports; we shouldn't do that. */
1644 msk_reset(sc_if->sk_softc);
1645 msk_init(ifp);
1646 }
1647 }
1648 }
1649
1650 static bool
1651 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1652 {
1653 struct sk_softc *sc = device_private(dv);
1654
1655 DPRINTFN(2, ("mskc_suspend\n"));
1656
1657 /* Turn off the 'driver is loaded' LED. */
1658 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1659
1660 return true;
1661 }
1662
1663 static bool
1664 mskc_resume(device_t dv, const pmf_qual_t *qual)
1665 {
1666 struct sk_softc *sc = device_private(dv);
1667
1668 DPRINTFN(2, ("mskc_resume\n"));
1669
1670 msk_reset(sc);
1671 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1672
1673 return true;
1674 }
1675
1676 static __inline int
1677 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1678 {
1679 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1680 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1681 YU_RXSTAT_JABBER)) != 0 ||
1682 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1683 YU_RXSTAT_BYTES(stat) != len)
1684 return (0);
1685
1686 return (1);
1687 }
1688
1689 void
1690 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1691 {
1692 struct sk_softc *sc = sc_if->sk_softc;
1693 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1694 struct mbuf *m;
1695 struct sk_chain *cur_rx;
1696 int cur, total_len = len;
1697 bus_dmamap_t dmamap;
1698
1699 DPRINTFN(2, ("msk_rxeof\n"));
1700
1701 cur = sc_if->sk_cdata.sk_rx_cons;
1702 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1703 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1704
1705 /* Sync the descriptor */
1706 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1707
1708 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1709 if (cur_rx->sk_mbuf == NULL)
1710 return;
1711
1712 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1713 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1714 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715
1716 m = cur_rx->sk_mbuf;
1717 cur_rx->sk_mbuf = NULL;
1718
1719 if (total_len < SK_MIN_FRAMELEN ||
1720 total_len > ETHER_MAX_LEN_JUMBO ||
1721 msk_rxvalid(sc, rxstat, total_len) == 0) {
1722 ifp->if_ierrors++;
1723 msk_newbuf(sc_if, cur, m, dmamap);
1724 return;
1725 }
1726
1727 /*
1728 * Try to allocate a new jumbo buffer. If that fails, copy the
1729 * packet to mbufs and put the jumbo buffer back in the ring
1730 * so it can be re-used. If allocating mbufs fails, then we
1731 * have to drop the packet.
1732 */
1733 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1734 struct mbuf *m0;
1735 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1736 total_len + ETHER_ALIGN, 0, ifp, NULL);
1737 msk_newbuf(sc_if, cur, m, dmamap);
1738 if (m0 == NULL) {
1739 ifp->if_ierrors++;
1740 return;
1741 }
1742 m_adj(m0, ETHER_ALIGN);
1743 m = m0;
1744 } else {
1745 m->m_pkthdr.rcvif = ifp;
1746 m->m_pkthdr.len = m->m_len = total_len;
1747 }
1748
1749 ifp->if_ipackets++;
1750
1751 bpf_mtap(ifp, m);
1752
1753 /* pass it on. */
1754 (*ifp->if_input)(ifp, m);
1755 }
1756
1757 void
1758 msk_txeof(struct sk_if_softc *sc_if, int idx)
1759 {
1760 struct sk_softc *sc = sc_if->sk_softc;
1761 struct msk_tx_desc *cur_tx;
1762 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1763 u_int32_t sk_ctl;
1764 struct sk_txmap_entry *entry;
1765 int cons, prog;
1766
1767 DPRINTFN(2, ("msk_txeof\n"));
1768
1769 /*
1770 * Go through our tx ring and free mbufs for those
1771 * frames that have been sent.
1772 */
1773 cons = sc_if->sk_cdata.sk_tx_cons;
1774 prog = 0;
1775 while (cons != idx) {
1776 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1777 break;
1778 prog++;
1779 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1780
1781 MSK_CDTXSYNC(sc_if, cons, 1,
1782 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1783 sk_ctl = cur_tx->sk_ctl;
1784 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1785 #ifdef MSK_DEBUG
1786 if (mskdebug >= 2)
1787 msk_dump_txdesc(cur_tx, cons);
1788 #endif
1789 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1790 ifp->if_opackets++;
1791 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1792 entry = sc_if->sk_cdata.sk_tx_map[cons];
1793
1794 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1795 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1796
1797 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1798 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1799 link);
1800 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1801 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1802 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1803 }
1804 sc_if->sk_cdata.sk_tx_cnt--;
1805 SK_INC(cons, MSK_TX_RING_CNT);
1806 }
1807 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1808
1809 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1810 ifp->if_flags &= ~IFF_OACTIVE;
1811
1812 if (prog > 0)
1813 sc_if->sk_cdata.sk_tx_cons = cons;
1814 }
1815
1816 void
1817 msk_tick(void *xsc_if)
1818 {
1819 struct sk_if_softc *sc_if = xsc_if;
1820 struct mii_data *mii = &sc_if->sk_mii;
1821 uint16_t gpsr;
1822 int s;
1823
1824 s = splnet();
1825 gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1826 if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1827 SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1828 mii_tick(mii);
1829 }
1830 splx(s);
1831
1832 callout_schedule(&sc_if->sk_tick_ch, hz);
1833 }
1834
1835 void
1836 msk_intr_yukon(struct sk_if_softc *sc_if)
1837 {
1838 u_int8_t status;
1839
1840 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1841 /* RX overrun */
1842 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1843 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1844 SK_RFCTL_RX_FIFO_OVER);
1845 }
1846 /* TX underrun */
1847 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1848 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1849 SK_TFCTL_TX_FIFO_UNDER);
1850 }
1851
1852 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1853 }
1854
1855 int
1856 msk_intr(void *xsc)
1857 {
1858 struct sk_softc *sc = xsc;
1859 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1860 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1861 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1862 int claimed = 0;
1863 u_int32_t status;
1864 uint32_t st_status;
1865 uint16_t st_len;
1866 uint8_t st_opcode, st_link;
1867 struct msk_status_desc *cur_st;
1868
1869 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1870 if (status == 0) {
1871 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1872 return (0);
1873 }
1874
1875 status = CSR_READ_4(sc, SK_ISR);
1876
1877 if (sc_if0 != NULL)
1878 ifp0 = &sc_if0->sk_ethercom.ec_if;
1879 if (sc_if1 != NULL)
1880 ifp1 = &sc_if1->sk_ethercom.ec_if;
1881
1882 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1883 (ifp0->if_flags & IFF_RUNNING)) {
1884 msk_intr_yukon(sc_if0);
1885 }
1886
1887 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1888 (ifp1->if_flags & IFF_RUNNING)) {
1889 msk_intr_yukon(sc_if1);
1890 }
1891
1892 for (;;) {
1893 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1894 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1895 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1896 st_opcode = cur_st->sk_opcode;
1897 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1898 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1899 BUS_DMASYNC_PREREAD);
1900 break;
1901 }
1902 st_status = le32toh(cur_st->sk_status);
1903 st_len = le16toh(cur_st->sk_len);
1904 st_link = cur_st->sk_link;
1905 st_opcode &= ~SK_Y2_STOPC_OWN;
1906
1907 switch (st_opcode) {
1908 case SK_Y2_STOPC_RXSTAT:
1909 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1910 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1911 SK_RXQ1_Y2_PREF_PUTIDX,
1912 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1913 break;
1914 case SK_Y2_STOPC_TXSTAT:
1915 if (sc_if0)
1916 msk_txeof(sc_if0, st_status
1917 & SK_Y2_ST_TXA1_MSKL);
1918 if (sc_if1)
1919 msk_txeof(sc_if1,
1920 ((st_status & SK_Y2_ST_TXA2_MSKL)
1921 >> SK_Y2_ST_TXA2_SHIFTL)
1922 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1923 break;
1924 default:
1925 aprint_error("opcode=0x%x\n", st_opcode);
1926 break;
1927 }
1928 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1929 }
1930
1931 #define MSK_STATUS_RING_OWN_CNT(sc) \
1932 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1933 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1934
1935 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1936 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1937 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1938 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1939 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1940
1941 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1942 }
1943
1944 if (status & SK_Y2_IMR_BMU) {
1945 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1946 claimed = 1;
1947 }
1948
1949 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1950
1951 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
1952 msk_start(ifp0);
1953 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
1954 msk_start(ifp1);
1955
1956 rnd_add_uint32(&sc->rnd_source, status);
1957
1958 if (sc->sk_int_mod_pending)
1959 msk_update_int_mod(sc, 1);
1960
1961 return claimed;
1962 }
1963
1964 void
1965 msk_init_yukon(struct sk_if_softc *sc_if)
1966 {
1967 u_int32_t v;
1968 u_int16_t reg;
1969 struct sk_softc *sc;
1970 int i;
1971
1972 sc = sc_if->sk_softc;
1973
1974 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1975 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1976
1977 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1978
1979 /* GMAC and GPHY Reset */
1980 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1981 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1982 DELAY(1000);
1983
1984 DPRINTFN(6, ("msk_init_yukon: 2\n"));
1985
1986 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1987 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1988 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1989
1990 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1991 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1992
1993 DPRINTFN(6, ("msk_init_yukon: 3\n"));
1994
1995 /* unused read of the interrupt source register */
1996 DPRINTFN(6, ("msk_init_yukon: 4\n"));
1997 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1998
1999 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2000 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2001 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2002
2003 /* MIB Counter Clear Mode set */
2004 reg |= YU_PAR_MIB_CLR;
2005 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2006 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2007 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2008
2009 /* MIB Counter Clear Mode clear */
2010 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2011 reg &= ~YU_PAR_MIB_CLR;
2012 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2013
2014 /* receive control reg */
2015 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2016 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2017
2018 /* transmit control register */
2019 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2020
2021 /* transmit flow control register */
2022 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2023
2024 /* transmit parameter register */
2025 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2026 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2027 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2028
2029 /* serial mode register */
2030 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2031 reg = YU_SMR_DATA_BLIND(0x1c) |
2032 YU_SMR_MFL_VLAN |
2033 YU_SMR_IPG_DATA(0x1e);
2034
2035 if (sc->sk_type != SK_YUKON_FE)
2036 reg |= YU_SMR_MFL_JUMBO;
2037
2038 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2039
2040 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2041 /* Setup Yukon's address */
2042 for (i = 0; i < 3; i++) {
2043 /* Write Source Address 1 (unicast filter) */
2044 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2045 sc_if->sk_enaddr[i * 2] |
2046 sc_if->sk_enaddr[i * 2 + 1] << 8);
2047 }
2048
2049 for (i = 0; i < 3; i++) {
2050 reg = sk_win_read_2(sc_if->sk_softc,
2051 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2052 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2053 }
2054
2055 /* Set promiscuous mode */
2056 msk_setpromisc(sc_if);
2057
2058 /* Set multicast filter */
2059 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2060 msk_setmulti(sc_if);
2061
2062 /* enable interrupt mask for counter overflows */
2063 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2064 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2065 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2066 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2067
2068 /* Configure RX MAC FIFO Flush Mask */
2069 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2070 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2071 YU_RXSTAT_JABBER;
2072 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2073
2074 /* Configure RX MAC FIFO */
2075 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2076 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2077 SK_RFCTL_FIFO_FLUSH_ON);
2078
2079 /* Increase flush threshould to 64 bytes */
2080 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2081 SK_RFCTL_FIFO_THRESHOLD + 1);
2082
2083 /* Configure TX MAC FIFO */
2084 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2085 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2086
2087 #if 1
2088 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2089 #endif
2090 DPRINTFN(6, ("msk_init_yukon: end\n"));
2091 }
2092
2093 /*
2094 * Note that to properly initialize any part of the GEnesis chip,
2095 * you first have to take it out of reset mode.
2096 */
2097 int
2098 msk_init(struct ifnet *ifp)
2099 {
2100 struct sk_if_softc *sc_if = ifp->if_softc;
2101 struct sk_softc *sc = sc_if->sk_softc;
2102 int rc = 0, s;
2103 uint32_t imr, imtimer_ticks;
2104
2105
2106 DPRINTFN(2, ("msk_init\n"));
2107
2108 s = splnet();
2109
2110 /* Cancel pending I/O and free all RX/TX buffers. */
2111 msk_stop(ifp,0);
2112
2113 /* Configure I2C registers */
2114
2115 /* Configure XMAC(s) */
2116 msk_init_yukon(sc_if);
2117 if ((rc = ether_mediachange(ifp)) != 0)
2118 goto out;
2119
2120 /* Configure transmit arbiter(s) */
2121 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2122 #if 0
2123 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2124 #endif
2125
2126 /* Configure RAMbuffers */
2127 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2128 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2129 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2130 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2131 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2132 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2133
2134 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2135 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2136 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2137 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2138 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2139 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2140 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2141
2142 /* Configure BMUs */
2143 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2144 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2145 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2146 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2147
2148 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2149 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2150 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2151 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2152
2153 /* Make sure the sync transmit queue is disabled. */
2154 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2155
2156 /* Init descriptors */
2157 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2158 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2159 "memory for rx buffers\n");
2160 msk_stop(ifp,0);
2161 splx(s);
2162 return ENOBUFS;
2163 }
2164
2165 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2166 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2167 "memory for tx buffers\n");
2168 msk_stop(ifp,0);
2169 splx(s);
2170 return ENOBUFS;
2171 }
2172
2173 /* Set interrupt moderation if changed via sysctl. */
2174 switch (sc->sk_type) {
2175 case SK_YUKON_EC:
2176 case SK_YUKON_EC_U:
2177 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2178 break;
2179 case SK_YUKON_FE:
2180 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2181 break;
2182 case SK_YUKON_XL:
2183 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2184 break;
2185 default:
2186 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2187 }
2188 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2189 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2190 sk_win_write_4(sc, SK_IMTIMERINIT,
2191 SK_IM_USECS(sc->sk_int_mod));
2192 aprint_verbose_dev(sc->sk_dev,
2193 "interrupt moderation is %d us\n", sc->sk_int_mod);
2194 }
2195
2196 /* Initialize prefetch engine. */
2197 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2198 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2199 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2200 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2201 MSK_RX_RING_ADDR(sc_if, 0));
2202 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2203 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2204 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2205 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2206
2207 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2208 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2209 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2210 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2211 MSK_TX_RING_ADDR(sc_if, 0));
2212 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2213 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2214 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2215 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2216
2217 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2218 sc_if->sk_cdata.sk_rx_prod);
2219
2220 /* Configure interrupt handling */
2221 if (sc_if->sk_port == SK_PORT_A)
2222 sc->sk_intrmask |= SK_Y2_INTRS1;
2223 else
2224 sc->sk_intrmask |= SK_Y2_INTRS2;
2225 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2226 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2227
2228 ifp->if_flags |= IFF_RUNNING;
2229 ifp->if_flags &= ~IFF_OACTIVE;
2230
2231 callout_schedule(&sc_if->sk_tick_ch, hz);
2232
2233 out:
2234 splx(s);
2235 return rc;
2236 }
2237
2238 void
2239 msk_stop(struct ifnet *ifp, int disable)
2240 {
2241 struct sk_if_softc *sc_if = ifp->if_softc;
2242 struct sk_softc *sc = sc_if->sk_softc;
2243 struct sk_txmap_entry *dma;
2244 int i;
2245
2246 DPRINTFN(2, ("msk_stop\n"));
2247
2248 callout_stop(&sc_if->sk_tick_ch);
2249
2250 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2251
2252 /* Stop transfer of Tx descriptors */
2253
2254 /* Stop transfer of Rx descriptors */
2255
2256 /* Turn off various components of this interface. */
2257 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2258 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2259 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2260 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2261 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2262 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2263 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2264 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2265 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2266 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2267 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2268 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2269
2270 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2271 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2272
2273 /* Disable interrupts */
2274 if (sc_if->sk_port == SK_PORT_A)
2275 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2276 else
2277 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2278 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2279
2280 SK_XM_READ_2(sc_if, XM_ISR);
2281 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2282
2283 /* Free RX and TX mbufs still in the queues. */
2284 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2285 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2286 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2287 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2288 }
2289 }
2290
2291 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2292 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2293 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2294 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2295 #if 1
2296 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2297 sc_if->sk_cdata.sk_tx_map[i], link);
2298 sc_if->sk_cdata.sk_tx_map[i] = 0;
2299 #endif
2300 }
2301 }
2302
2303 #if 1
2304 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2305 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2306 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2307 free(dma, M_DEVBUF);
2308 }
2309 #endif
2310 }
2311
2312 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2313 NULL, NULL);
2314
2315 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2316 NULL, NULL);
2317
2318 #ifdef MSK_DEBUG
2319 void
2320 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2321 {
2322 #define DESC_PRINT(X) \
2323 if (X) \
2324 printf("txdesc[%d]." #X "=%#x\n", \
2325 idx, X);
2326
2327 DESC_PRINT(letoh32(le->sk_addr));
2328 DESC_PRINT(letoh16(le->sk_len));
2329 DESC_PRINT(le->sk_ctl);
2330 DESC_PRINT(le->sk_opcode);
2331 #undef DESC_PRINT
2332 }
2333
2334 void
2335 msk_dump_bytes(const char *data, int len)
2336 {
2337 int c, i, j;
2338
2339 for (i = 0; i < len; i += 16) {
2340 printf("%08x ", i);
2341 c = len - i;
2342 if (c > 16) c = 16;
2343
2344 for (j = 0; j < c; j++) {
2345 printf("%02x ", data[i + j] & 0xff);
2346 if ((j & 0xf) == 7 && j > 0)
2347 printf(" ");
2348 }
2349
2350 for (; j < 16; j++)
2351 printf(" ");
2352 printf(" ");
2353
2354 for (j = 0; j < c; j++) {
2355 int ch = data[i + j] & 0xff;
2356 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2357 }
2358
2359 printf("\n");
2360
2361 if (c < 16)
2362 break;
2363 }
2364 }
2365
2366 void
2367 msk_dump_mbuf(struct mbuf *m)
2368 {
2369 int count = m->m_pkthdr.len;
2370
2371 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2372
2373 while (count > 0 && m) {
2374 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2375 m, m->m_data, m->m_len);
2376 msk_dump_bytes(mtod(m, char *), m->m_len);
2377
2378 count -= m->m_len;
2379 m = m->m_next;
2380 }
2381 }
2382 #endif
2383
2384 static int
2385 msk_sysctl_handler(SYSCTLFN_ARGS)
2386 {
2387 int error, t;
2388 struct sysctlnode node;
2389 struct sk_softc *sc;
2390
2391 node = *rnode;
2392 sc = node.sysctl_data;
2393 t = sc->sk_int_mod;
2394 node.sysctl_data = &t;
2395 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2396 if (error || newp == NULL)
2397 return error;
2398
2399 if (t < SK_IM_MIN || t > SK_IM_MAX)
2400 return EINVAL;
2401
2402 /* update the softc with sysctl-changed value, and mark
2403 for hardware update */
2404 sc->sk_int_mod = t;
2405 sc->sk_int_mod_pending = 1;
2406 return 0;
2407 }
2408
2409 /*
2410 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2411 * set up in skc_attach()
2412 */
2413 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2414 {
2415 int rc;
2416 const struct sysctlnode *node;
2417
2418 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2419 0, CTLTYPE_NODE, "msk",
2420 SYSCTL_DESCR("msk interface controls"),
2421 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2422 goto err;
2423 }
2424
2425 msk_root_num = node->sysctl_num;
2426 return;
2427
2428 err:
2429 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2430 }
2431