if_msk.c revision 1.51.2.1 1 /* $NetBSD: if_msk.c,v 1.51.2.1 2017/01/07 08:56:33 pgoyette Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.51.2.1 2017/01/07 08:56:33 pgoyette Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120
121 void msk_update_int_mod(struct sk_softc *, int);
122
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(struct ifnet *);
126
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x) if (mskdebug) printf x
135 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
136 int mskdebug = MSK_DEBUG;
137
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148
149 /* supported device vendors */
150 static const struct msk_product {
151 pci_vendor_id_t msk_vendor;
152 pci_product_id_t msk_product;
153 } msk_products[] = {
154 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
155 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
157 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_1 },
158 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
159 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C055 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
182 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
183 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
184 };
185
186 static inline u_int32_t
187 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
188 {
189 return CSR_READ_4(sc, reg);
190 }
191
192 static inline u_int16_t
193 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
194 {
195 return CSR_READ_2(sc, reg);
196 }
197
198 static inline u_int8_t
199 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
200 {
201 return CSR_READ_1(sc, reg);
202 }
203
204 static inline void
205 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
206 {
207 CSR_WRITE_4(sc, reg, x);
208 }
209
210 static inline void
211 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
212 {
213 CSR_WRITE_2(sc, reg, x);
214 }
215
216 static inline void
217 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
218 {
219 CSR_WRITE_1(sc, reg, x);
220 }
221
222 int
223 msk_miibus_readreg(device_t dev, int phy, int reg)
224 {
225 struct sk_if_softc *sc_if = device_private(dev);
226 u_int16_t val;
227 int i;
228
229 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
230 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
231
232 for (i = 0; i < SK_TIMEOUT; i++) {
233 DELAY(1);
234 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
235 if (val & YU_SMICR_READ_VALID)
236 break;
237 }
238
239 if (i == SK_TIMEOUT) {
240 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
241 return (0);
242 }
243
244 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
245 SK_TIMEOUT));
246
247 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
248
249 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
250 phy, reg, val));
251
252 return (val);
253 }
254
255 void
256 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
257 {
258 struct sk_if_softc *sc_if = device_private(dev);
259 int i;
260
261 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
262 phy, reg, val));
263
264 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
265 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
266 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
267
268 for (i = 0; i < SK_TIMEOUT; i++) {
269 DELAY(1);
270 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
271 break;
272 }
273
274 if (i == SK_TIMEOUT)
275 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
276 }
277
278 void
279 msk_miibus_statchg(struct ifnet *ifp)
280 {
281 struct sk_if_softc *sc_if = ifp->if_softc;
282 struct mii_data *mii = &sc_if->sk_mii;
283 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
284 int gpcr;
285
286 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
287 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
288
289 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
290 /* Set speed. */
291 gpcr |= YU_GPCR_SPEED_DIS;
292 switch (IFM_SUBTYPE(mii->mii_media_active)) {
293 case IFM_1000_SX:
294 case IFM_1000_LX:
295 case IFM_1000_CX:
296 case IFM_1000_T:
297 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
298 break;
299 case IFM_100_TX:
300 gpcr |= YU_GPCR_SPEED;
301 break;
302 }
303
304 /* Set duplex. */
305 gpcr |= YU_GPCR_DPLX_DIS;
306 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
307 gpcr |= YU_GPCR_DUPLEX;
308
309 /* Disable flow control. */
310 gpcr |= YU_GPCR_FCTL_DIS;
311 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
312 }
313
314 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
315
316 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
317 SK_YU_READ_2(sc_if, YUKON_GPCR)));
318 }
319
320 #define HASH_BITS 6
321
322 void
323 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
324 {
325 char *addr = addrv;
326 int base = XM_RXFILT_ENTRY(slot);
327
328 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
329 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
330 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
331 }
332
333 void
334 msk_setmulti(struct sk_if_softc *sc_if)
335 {
336 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
337 u_int32_t hashes[2] = { 0, 0 };
338 int h;
339 struct ethercom *ec = &sc_if->sk_ethercom;
340 struct ether_multi *enm;
341 struct ether_multistep step;
342 u_int16_t reg;
343
344 /* First, zot all the existing filters. */
345 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
346 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
347 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
349
350
351 /* Now program new ones. */
352 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
353 reg |= YU_RCR_UFLEN;
354 allmulti:
355 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
356 if ((ifp->if_flags & IFF_PROMISC) != 0)
357 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
358 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
359 hashes[0] = 0xFFFFFFFF;
360 hashes[1] = 0xFFFFFFFF;
361 }
362 } else {
363 /* First find the tail of the list. */
364 ETHER_FIRST_MULTI(step, ec, enm);
365 while (enm != NULL) {
366 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
367 ETHER_ADDR_LEN)) {
368 ifp->if_flags |= IFF_ALLMULTI;
369 goto allmulti;
370 }
371 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
372 ((1 << HASH_BITS) - 1);
373 if (h < 32)
374 hashes[0] |= (1 << h);
375 else
376 hashes[1] |= (1 << (h - 32));
377
378 ETHER_NEXT_MULTI(step, enm);
379 }
380 reg |= YU_RCR_MUFLEN;
381 }
382
383 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
384 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
385 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
388 }
389
390 void
391 msk_setpromisc(struct sk_if_softc *sc_if)
392 {
393 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
394
395 if (ifp->if_flags & IFF_PROMISC)
396 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
397 YU_RCR_UFLEN | YU_RCR_MUFLEN);
398 else
399 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
400 YU_RCR_UFLEN | YU_RCR_MUFLEN);
401 }
402
403 int
404 msk_init_rx_ring(struct sk_if_softc *sc_if)
405 {
406 struct msk_chain_data *cd = &sc_if->sk_cdata;
407 struct msk_ring_data *rd = sc_if->sk_rdata;
408 int i, nexti;
409
410 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
411
412 for (i = 0; i < MSK_RX_RING_CNT; i++) {
413 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
414 if (i == (MSK_RX_RING_CNT - 1))
415 nexti = 0;
416 else
417 nexti = i + 1;
418 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
419 }
420
421 for (i = 0; i < MSK_RX_RING_CNT; i++) {
422 if (msk_newbuf(sc_if, i, NULL,
423 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
424 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
425 return (ENOBUFS);
426 }
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431
432 return (0);
433 }
434
435 int
436 msk_init_tx_ring(struct sk_if_softc *sc_if)
437 {
438 struct sk_softc *sc = sc_if->sk_softc;
439 struct msk_chain_data *cd = &sc_if->sk_cdata;
440 struct msk_ring_data *rd = sc_if->sk_rdata;
441 bus_dmamap_t dmamap;
442 struct sk_txmap_entry *entry;
443 int i, nexti;
444
445 memset(sc_if->sk_rdata->sk_tx_ring, 0,
446 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
447
448 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
449 for (i = 0; i < MSK_TX_RING_CNT; i++) {
450 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
451 if (i == (MSK_TX_RING_CNT - 1))
452 nexti = 0;
453 else
454 nexti = i + 1;
455 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
456
457 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
458 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
459 return (ENOBUFS);
460
461 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
462 if (!entry) {
463 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
464 return (ENOBUFS);
465 }
466 entry->dmamap = dmamap;
467 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
468 }
469
470 sc_if->sk_cdata.sk_tx_prod = 0;
471 sc_if->sk_cdata.sk_tx_cons = 0;
472 sc_if->sk_cdata.sk_tx_cnt = 0;
473
474 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
475 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
476
477 return (0);
478 }
479
480 int
481 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
482 bus_dmamap_t dmamap)
483 {
484 struct mbuf *m_new = NULL;
485 struct sk_chain *c;
486 struct msk_rx_desc *r;
487
488 if (m == NULL) {
489 void *buf = NULL;
490
491 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
492 if (m_new == NULL)
493 return (ENOBUFS);
494
495 /* Allocate the jumbo buffer */
496 buf = msk_jalloc(sc_if);
497 if (buf == NULL) {
498 m_freem(m_new);
499 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
500 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
501 return (ENOBUFS);
502 }
503
504 /* Attach the buffer to the mbuf */
505 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
506 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
507 } else {
508 /*
509 * We're re-using a previously allocated mbuf;
510 * be sure to re-init pointers and lengths to
511 * default values.
512 */
513 m_new = m;
514 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
515 m_new->m_data = m_new->m_ext.ext_buf;
516 }
517 m_adj(m_new, ETHER_ALIGN);
518
519 c = &sc_if->sk_cdata.sk_rx_chain[i];
520 r = c->sk_le;
521 c->sk_mbuf = m_new;
522 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
523 (((vaddr_t)m_new->m_data
524 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
525 r->sk_len = htole16(SK_JLEN);
526 r->sk_ctl = 0;
527 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
528
529 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
530
531 return (0);
532 }
533
534 /*
535 * Memory management for jumbo frames.
536 */
537
538 int
539 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
540 {
541 struct sk_softc *sc = sc_if->sk_softc;
542 char *ptr, *kva;
543 bus_dma_segment_t seg;
544 int i, rseg, state, error;
545 struct sk_jpool_entry *entry;
546
547 state = error = 0;
548
549 /* Grab a big chunk o' storage. */
550 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
551 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
552 aprint_error(": can't alloc rx buffers");
553 return (ENOBUFS);
554 }
555
556 state = 1;
557 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
558 BUS_DMA_NOWAIT)) {
559 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
560 error = ENOBUFS;
561 goto out;
562 }
563
564 state = 2;
565 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
566 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
567 aprint_error(": can't create dma map");
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 3;
573 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
574 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
575 aprint_error(": can't load dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 4;
581 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
582 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
583
584 LIST_INIT(&sc_if->sk_jfree_listhead);
585 LIST_INIT(&sc_if->sk_jinuse_listhead);
586 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
587
588 /*
589 * Now divide it up into 9K pieces and save the addresses
590 * in an array.
591 */
592 ptr = sc_if->sk_cdata.sk_jumbo_buf;
593 for (i = 0; i < MSK_JSLOTS; i++) {
594 sc_if->sk_cdata.sk_jslots[i] = ptr;
595 ptr += SK_JLEN;
596 entry = malloc(sizeof(struct sk_jpool_entry),
597 M_DEVBUF, M_NOWAIT);
598 if (entry == NULL) {
599 sc_if->sk_cdata.sk_jumbo_buf = NULL;
600 aprint_error(": no memory for jumbo buffer queue!");
601 error = ENOBUFS;
602 goto out;
603 }
604 entry->slot = i;
605 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
606 entry, jpool_entries);
607 }
608 out:
609 if (error != 0) {
610 switch (state) {
611 case 4:
612 bus_dmamap_unload(sc->sc_dmatag,
613 sc_if->sk_cdata.sk_rx_jumbo_map);
614 case 3:
615 bus_dmamap_destroy(sc->sc_dmatag,
616 sc_if->sk_cdata.sk_rx_jumbo_map);
617 case 2:
618 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
619 case 1:
620 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
621 break;
622 default:
623 break;
624 }
625 }
626
627 return error;
628 }
629
630 /*
631 * Allocate a jumbo buffer.
632 */
633 void *
634 msk_jalloc(struct sk_if_softc *sc_if)
635 {
636 struct sk_jpool_entry *entry;
637
638 mutex_enter(&sc_if->sk_jpool_mtx);
639 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
640
641 if (entry == NULL) {
642 mutex_exit(&sc_if->sk_jpool_mtx);
643 return NULL;
644 }
645
646 LIST_REMOVE(entry, jpool_entries);
647 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
648 mutex_exit(&sc_if->sk_jpool_mtx);
649 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
650 }
651
652 /*
653 * Release a jumbo buffer.
654 */
655 void
656 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
657 {
658 struct sk_jpool_entry *entry;
659 struct sk_if_softc *sc;
660 int i;
661
662 /* Extract the softc struct pointer. */
663 sc = (struct sk_if_softc *)arg;
664
665 if (sc == NULL)
666 panic("msk_jfree: can't find softc pointer!");
667
668 /* calculate the slot this buffer belongs to */
669 i = ((vaddr_t)buf
670 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
671
672 if ((i < 0) || (i >= MSK_JSLOTS))
673 panic("msk_jfree: asked to free buffer that we don't manage!");
674
675 mutex_enter(&sc->sk_jpool_mtx);
676 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
677 if (entry == NULL)
678 panic("msk_jfree: buffer not in use!");
679 entry->slot = i;
680 LIST_REMOVE(entry, jpool_entries);
681 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
682 mutex_exit(&sc->sk_jpool_mtx);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 }
687
688 int
689 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
690 {
691 struct sk_if_softc *sc = ifp->if_softc;
692 int s, error;
693
694 s = splnet();
695
696 DPRINTFN(2, ("msk_ioctl ETHER\n"));
697 switch (cmd) {
698 case SIOCSIFFLAGS:
699 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
700 break;
701
702 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
703 case IFF_RUNNING:
704 msk_stop(ifp, 1);
705 break;
706 case IFF_UP:
707 msk_init(ifp);
708 break;
709 case IFF_UP | IFF_RUNNING:
710 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
711 msk_setpromisc(sc);
712 msk_setmulti(sc);
713 } else
714 msk_init(ifp);
715 break;
716 }
717 sc->sk_if_flags = ifp->if_flags;
718 break;
719 default:
720 error = ether_ioctl(ifp, cmd, data);
721 if (error == ENETRESET) {
722 error = 0;
723 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
724 ;
725 else if (ifp->if_flags & IFF_RUNNING) {
726 /*
727 * Multicast list has changed; set the hardware
728 * filter accordingly.
729 */
730 msk_setmulti(sc);
731 }
732 }
733 break;
734 }
735
736 splx(s);
737 return error;
738 }
739
740 void
741 msk_update_int_mod(struct sk_softc *sc, int verbose)
742 {
743 u_int32_t imtimer_ticks;
744
745 /*
746 * Configure interrupt moderation. The moderation timer
747 * defers interrupts specified in the interrupt moderation
748 * timer mask based on the timeout specified in the interrupt
749 * moderation timer init register. Each bit in the timer
750 * register represents one tick, so to specify a timeout in
751 * microseconds, we have to multiply by the correct number of
752 * ticks-per-microsecond.
753 */
754 switch (sc->sk_type) {
755 case SK_YUKON_EC:
756 case SK_YUKON_EC_U:
757 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
758 break;
759 case SK_YUKON_FE:
760 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
761 break;
762 case SK_YUKON_XL:
763 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
764 break;
765 default:
766 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
767 }
768 if (verbose)
769 aprint_verbose_dev(sc->sk_dev,
770 "interrupt moderation is %d us\n", sc->sk_int_mod);
771 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
772 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
773 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
774 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
775 sc->sk_int_mod_pending = 0;
776 }
777
778 static int
779 msk_lookup(const struct pci_attach_args *pa)
780 {
781 const struct msk_product *pmsk;
782
783 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
784 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
785 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
786 return 1;
787 }
788 return 0;
789 }
790
791 /*
792 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
793 * IDs against our list and return a device name if we find a match.
794 */
795 int
796 mskc_probe(device_t parent, cfdata_t match, void *aux)
797 {
798 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
799
800 return msk_lookup(pa);
801 }
802
803 /*
804 * Force the GEnesis into reset, then bring it out of reset.
805 */
806 void msk_reset(struct sk_softc *sc)
807 {
808 u_int32_t imtimer_ticks, reg1;
809 int reg;
810
811 DPRINTFN(2, ("msk_reset\n"));
812
813 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
814 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
815
816 DELAY(1000);
817 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
818 DELAY(2);
819 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
820 sk_win_write_1(sc, SK_TESTCTL1, 2);
821
822 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
823 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
824 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
825 else
826 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
827
828 if (sc->sk_type == SK_YUKON_EC_U) {
829 uint32_t our;
830
831 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
832
833 /* enable all clocks. */
834 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
835 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
836 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
837 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
838 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
839 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
840 /* Set all bits to 0 except bits 15..12 */
841 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
842 /* Set to default value */
843 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
844 }
845
846 /* release PHY from PowerDown/Coma mode. */
847 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
848
849 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
850 sk_win_write_1(sc, SK_Y2_CLKGATE,
851 SK_Y2_CLKGATE_LINK1_GATE_DIS |
852 SK_Y2_CLKGATE_LINK2_GATE_DIS |
853 SK_Y2_CLKGATE_LINK1_CORE_DIS |
854 SK_Y2_CLKGATE_LINK2_CORE_DIS |
855 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
856 else
857 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
858
859 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
860 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
861 DELAY(1000);
862 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
863 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
864
865 sk_win_write_1(sc, SK_TESTCTL1, 1);
866
867 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
868 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
869 CSR_READ_2(sc, SK_LINK_CTRL)));
870
871 /* Disable ASF */
872 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
873 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
874
875 /* Clear I2C IRQ noise */
876 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
877
878 /* Disable hardware timer */
879 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
880 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
881
882 /* Disable descriptor polling */
883 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
884
885 /* Disable time stamps */
886 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
887 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
888
889 /* Enable RAM interface */
890 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
891 for (reg = SK_TO0;reg <= SK_TO11; reg++)
892 sk_win_write_1(sc, reg, 36);
893 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
894 for (reg = SK_TO0;reg <= SK_TO11; reg++)
895 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
896
897 /*
898 * Configure interrupt moderation. The moderation timer
899 * defers interrupts specified in the interrupt moderation
900 * timer mask based on the timeout specified in the interrupt
901 * moderation timer init register. Each bit in the timer
902 * register represents one tick, so to specify a timeout in
903 * microseconds, we have to multiply by the correct number of
904 * ticks-per-microsecond.
905 */
906 switch (sc->sk_type) {
907 case SK_YUKON_EC:
908 case SK_YUKON_EC_U:
909 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
910 break;
911 case SK_YUKON_FE:
912 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
913 break;
914 case SK_YUKON_XL:
915 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
916 break;
917 default:
918 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
919 }
920
921 /* Reset status ring. */
922 memset(sc->sk_status_ring, 0,
923 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
924 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
925 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
926 sc->sk_status_idx = 0;
927 sc->sk_status_own_idx = 0;
928
929 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
930 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
931
932 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
933 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
934 sc->sk_status_map->dm_segs[0].ds_addr);
935 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
936 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
937 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
938 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
939 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
940 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
941 } else {
942 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
943 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
944 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
945 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
946 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
947 }
948
949 #if 0
950 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
951 #endif
952 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
953
954 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
955
956 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
957 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
958 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
959
960 msk_update_int_mod(sc, 0);
961 }
962
963 int
964 msk_probe(device_t parent, cfdata_t match, void *aux)
965 {
966 struct skc_attach_args *sa = aux;
967
968 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
969 return (0);
970
971 switch (sa->skc_type) {
972 case SK_YUKON_XL:
973 case SK_YUKON_EC_U:
974 case SK_YUKON_EC:
975 case SK_YUKON_FE:
976 case SK_YUKON_FE_P:
977 return (1);
978 }
979
980 return (0);
981 }
982
983 static bool
984 msk_resume(device_t dv, const pmf_qual_t *qual)
985 {
986 struct sk_if_softc *sc_if = device_private(dv);
987
988 msk_init_yukon(sc_if);
989 return true;
990 }
991
992 /*
993 * Each XMAC chip is attached as a separate logical IP interface.
994 * Single port cards will have only one logical interface of course.
995 */
996 void
997 msk_attach(device_t parent, device_t self, void *aux)
998 {
999 struct sk_if_softc *sc_if = device_private(self);
1000 struct sk_softc *sc = device_private(parent);
1001 struct skc_attach_args *sa = aux;
1002 struct ifnet *ifp;
1003 void *kva;
1004 bus_dma_segment_t seg;
1005 int i, rseg;
1006 u_int32_t chunk, val;
1007
1008 sc_if->sk_dev = self;
1009 sc_if->sk_port = sa->skc_port;
1010 sc_if->sk_softc = sc;
1011 sc->sk_if[sa->skc_port] = sc_if;
1012
1013 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1014
1015 /*
1016 * Get station address for this interface. Note that
1017 * dual port cards actually come with three station
1018 * addresses: one for each port, plus an extra. The
1019 * extra one is used by the SysKonnect driver software
1020 * as a 'virtual' station address for when both ports
1021 * are operating in failover mode. Currently we don't
1022 * use this extra address.
1023 */
1024 for (i = 0; i < ETHER_ADDR_LEN; i++)
1025 sc_if->sk_enaddr[i] =
1026 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1027
1028 aprint_normal(": Ethernet address %s\n",
1029 ether_sprintf(sc_if->sk_enaddr));
1030
1031 /*
1032 * Set up RAM buffer addresses. The NIC will have a certain
1033 * amount of SRAM on it, somewhere between 512K and 2MB. We
1034 * need to divide this up a) between the transmitter and
1035 * receiver and b) between the two XMACs, if this is a
1036 * dual port NIC. Our algorithm is to divide up the memory
1037 * evenly so that everyone gets a fair share.
1038 *
1039 * Just to be contrary, Yukon2 appears to have separate memory
1040 * for each MAC.
1041 */
1042 chunk = sc->sk_ramsize - (sc->sk_ramsize + 2) / 3;
1043 val = sc->sk_rboff / sizeof(u_int64_t);
1044 sc_if->sk_rx_ramstart = val;
1045 val += (chunk / sizeof(u_int64_t));
1046 sc_if->sk_rx_ramend = val - 1;
1047 chunk = sc->sk_ramsize - chunk;
1048 sc_if->sk_tx_ramstart = val;
1049 val += (chunk / sizeof(u_int64_t));
1050 sc_if->sk_tx_ramend = val - 1;
1051
1052 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1053 " tx_ramstart=%#x tx_ramend=%#x\n",
1054 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1055 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1056
1057 /* Allocate the descriptor queues. */
1058 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1059 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1060 aprint_error(": can't alloc rx buffers\n");
1061 goto fail;
1062 }
1063 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1064 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1065 aprint_error(": can't map dma buffers (%zu bytes)\n",
1066 sizeof(struct msk_ring_data));
1067 goto fail_1;
1068 }
1069 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1070 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1071 &sc_if->sk_ring_map)) {
1072 aprint_error(": can't create dma map\n");
1073 goto fail_2;
1074 }
1075 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1076 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1077 aprint_error(": can't load dma map\n");
1078 goto fail_3;
1079 }
1080 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1081 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1082
1083 ifp = &sc_if->sk_ethercom.ec_if;
1084 /* Try to allocate memory for jumbo buffers. */
1085 if (msk_alloc_jumbo_mem(sc_if)) {
1086 aprint_error(": jumbo buffer allocation failed\n");
1087 goto fail_3;
1088 }
1089 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1090 if (sc->sk_type != SK_YUKON_FE)
1091 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1092
1093 ifp->if_softc = sc_if;
1094 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1095 ifp->if_ioctl = msk_ioctl;
1096 ifp->if_start = msk_start;
1097 ifp->if_stop = msk_stop;
1098 ifp->if_init = msk_init;
1099 ifp->if_watchdog = msk_watchdog;
1100 ifp->if_baudrate = 1000000000;
1101 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1102 IFQ_SET_READY(&ifp->if_snd);
1103 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1104
1105 /*
1106 * Do miibus setup.
1107 */
1108 msk_init_yukon(sc_if);
1109
1110 DPRINTFN(2, ("msk_attach: 1\n"));
1111
1112 sc_if->sk_mii.mii_ifp = ifp;
1113 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1114 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1115 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1116
1117 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1118 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1119 ether_mediachange, ether_mediastatus);
1120 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1121 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1122 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1123 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1124 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1125 0, NULL);
1126 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1127 } else
1128 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1129
1130 callout_init(&sc_if->sk_tick_ch, 0);
1131 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1132 callout_schedule(&sc_if->sk_tick_ch, hz);
1133
1134 /*
1135 * Call MI attach routines.
1136 */
1137 if_attach(ifp);
1138 if_deferred_start_init(ifp, NULL);
1139 ether_ifattach(ifp, sc_if->sk_enaddr);
1140
1141 if (pmf_device_register(self, NULL, msk_resume))
1142 pmf_class_network_register(self, ifp);
1143 else
1144 aprint_error_dev(self, "couldn't establish power handler\n");
1145
1146 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1147 RND_TYPE_NET, RND_FLAG_DEFAULT);
1148
1149 DPRINTFN(2, ("msk_attach: end\n"));
1150 return;
1151
1152 fail_3:
1153 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1154 fail_2:
1155 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1156 fail_1:
1157 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1158 fail:
1159 sc->sk_if[sa->skc_port] = NULL;
1160 }
1161
1162 int
1163 mskcprint(void *aux, const char *pnp)
1164 {
1165 struct skc_attach_args *sa = aux;
1166
1167 if (pnp)
1168 aprint_normal("sk port %c at %s",
1169 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1170 else
1171 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1172 return (UNCONF);
1173 }
1174
1175 /*
1176 * Attach the interface. Allocate softc structures, do ifmedia
1177 * setup and ethernet/BPF attach.
1178 */
1179 void
1180 mskc_attach(device_t parent, device_t self, void *aux)
1181 {
1182 struct sk_softc *sc = device_private(self);
1183 struct pci_attach_args *pa = aux;
1184 struct skc_attach_args skca;
1185 pci_chipset_tag_t pc = pa->pa_pc;
1186 pcireg_t command, memtype;
1187 pci_intr_handle_t ih;
1188 const char *intrstr = NULL;
1189 bus_size_t size;
1190 int rc, sk_nodenum;
1191 u_int8_t hw, skrs;
1192 const char *revstr = NULL;
1193 const struct sysctlnode *node;
1194 void *kva;
1195 bus_dma_segment_t seg;
1196 int rseg;
1197 char intrbuf[PCI_INTRSTR_LEN];
1198
1199 DPRINTFN(2, ("begin mskc_attach\n"));
1200
1201 sc->sk_dev = self;
1202 /*
1203 * Handle power management nonsense.
1204 */
1205 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1206
1207 if (command == 0x01) {
1208 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1209 if (command & SK_PSTATE_MASK) {
1210 u_int32_t iobase, membase, irq;
1211
1212 /* Save important PCI config data. */
1213 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1214 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1215 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1216
1217 /* Reset the power state. */
1218 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1219 "mode -- setting to D0\n",
1220 command & SK_PSTATE_MASK);
1221 command &= 0xFFFFFFFC;
1222 pci_conf_write(pc, pa->pa_tag,
1223 SK_PCI_PWRMGMTCTRL, command);
1224
1225 /* Restore PCI config data. */
1226 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1227 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1228 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1229 }
1230 }
1231
1232 /*
1233 * Map control/status registers.
1234 */
1235
1236 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1237 switch (memtype) {
1238 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1239 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1240 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1241 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1242 NULL, &size) == 0) {
1243 break;
1244 }
1245 default:
1246 aprint_error(": can't map mem space\n");
1247 return;
1248 }
1249
1250 sc->sc_dmatag = pa->pa_dmat;
1251
1252 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1253 command |= PCI_COMMAND_MASTER_ENABLE;
1254 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1255
1256 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1257 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1258
1259 /* bail out here if chip is not recognized */
1260 if (!(SK_IS_YUKON2(sc))) {
1261 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1262 goto fail_1;
1263 }
1264 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1265
1266 /* Allocate interrupt */
1267 if (pci_intr_map(pa, &ih)) {
1268 aprint_error(": couldn't map interrupt\n");
1269 goto fail_1;
1270 }
1271
1272 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1273 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1274 if (sc->sk_intrhand == NULL) {
1275 aprint_error(": couldn't establish interrupt");
1276 if (intrstr != NULL)
1277 aprint_error(" at %s", intrstr);
1278 aprint_error("\n");
1279 goto fail_1;
1280 }
1281
1282 if (bus_dmamem_alloc(sc->sc_dmatag,
1283 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1284 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1285 aprint_error(": can't alloc status buffers\n");
1286 goto fail_2;
1287 }
1288
1289 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1290 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1291 &kva, BUS_DMA_NOWAIT)) {
1292 aprint_error(": can't map dma buffers (%zu bytes)\n",
1293 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1294 goto fail_3;
1295 }
1296 if (bus_dmamap_create(sc->sc_dmatag,
1297 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1298 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1299 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1300 aprint_error(": can't create dma map\n");
1301 goto fail_4;
1302 }
1303 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1304 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1305 NULL, BUS_DMA_NOWAIT)) {
1306 aprint_error(": can't load dma map\n");
1307 goto fail_5;
1308 }
1309 sc->sk_status_ring = (struct msk_status_desc *)kva;
1310
1311
1312 sc->sk_int_mod = SK_IM_DEFAULT;
1313 sc->sk_int_mod_pending = 0;
1314
1315 /* Reset the adapter. */
1316 msk_reset(sc);
1317
1318 skrs = sk_win_read_1(sc, SK_EPROM0);
1319 if (skrs == 0x00)
1320 sc->sk_ramsize = 0x20000;
1321 else
1322 sc->sk_ramsize = skrs * (1<<12);
1323 sc->sk_rboff = SK_RBOFF_0;
1324
1325 DPRINTFN(2, ("mskc_attach: ramsize=%d (%dk), rboff=%d\n",
1326 sc->sk_ramsize, sc->sk_ramsize / 1024,
1327 sc->sk_rboff));
1328
1329 switch (sc->sk_type) {
1330 case SK_YUKON_XL:
1331 sc->sk_name = "Yukon-2 XL";
1332 break;
1333 case SK_YUKON_EC_U:
1334 sc->sk_name = "Yukon-2 EC Ultra";
1335 break;
1336 case SK_YUKON_EC:
1337 sc->sk_name = "Yukon-2 EC";
1338 break;
1339 case SK_YUKON_FE:
1340 sc->sk_name = "Yukon-2 FE";
1341 break;
1342 default:
1343 sc->sk_name = "Yukon (Unknown)";
1344 }
1345
1346 if (sc->sk_type == SK_YUKON_XL) {
1347 switch (sc->sk_rev) {
1348 case SK_YUKON_XL_REV_A0:
1349 sc->sk_workaround = 0;
1350 revstr = "A0";
1351 break;
1352 case SK_YUKON_XL_REV_A1:
1353 sc->sk_workaround = SK_WA_4109;
1354 revstr = "A1";
1355 break;
1356 case SK_YUKON_XL_REV_A2:
1357 sc->sk_workaround = SK_WA_4109;
1358 revstr = "A2";
1359 break;
1360 case SK_YUKON_XL_REV_A3:
1361 sc->sk_workaround = SK_WA_4109;
1362 revstr = "A3";
1363 break;
1364 default:
1365 sc->sk_workaround = 0;
1366 break;
1367 }
1368 }
1369
1370 if (sc->sk_type == SK_YUKON_EC) {
1371 switch (sc->sk_rev) {
1372 case SK_YUKON_EC_REV_A1:
1373 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1374 revstr = "A1";
1375 break;
1376 case SK_YUKON_EC_REV_A2:
1377 sc->sk_workaround = SK_WA_4109;
1378 revstr = "A2";
1379 break;
1380 case SK_YUKON_EC_REV_A3:
1381 sc->sk_workaround = SK_WA_4109;
1382 revstr = "A3";
1383 break;
1384 default:
1385 sc->sk_workaround = 0;
1386 break;
1387 }
1388 }
1389
1390 if (sc->sk_type == SK_YUKON_FE) {
1391 sc->sk_workaround = SK_WA_4109;
1392 switch (sc->sk_rev) {
1393 case SK_YUKON_FE_REV_A1:
1394 revstr = "A1";
1395 break;
1396 case SK_YUKON_FE_REV_A2:
1397 revstr = "A2";
1398 break;
1399 default:
1400 sc->sk_workaround = 0;
1401 break;
1402 }
1403 }
1404
1405 if (sc->sk_type == SK_YUKON_EC_U) {
1406 sc->sk_workaround = SK_WA_4109;
1407 switch (sc->sk_rev) {
1408 case SK_YUKON_EC_U_REV_A0:
1409 revstr = "A0";
1410 break;
1411 case SK_YUKON_EC_U_REV_A1:
1412 revstr = "A1";
1413 break;
1414 case SK_YUKON_EC_U_REV_B0:
1415 revstr = "B0";
1416 break;
1417 default:
1418 sc->sk_workaround = 0;
1419 break;
1420 }
1421 }
1422
1423 /* Announce the product name. */
1424 aprint_normal(", %s", sc->sk_name);
1425 if (revstr != NULL)
1426 aprint_normal(" rev. %s", revstr);
1427 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1428
1429 sc->sk_macs = 1;
1430
1431 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1432 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1433 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1434 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1435 sc->sk_macs++;
1436 }
1437
1438 skca.skc_port = SK_PORT_A;
1439 skca.skc_type = sc->sk_type;
1440 skca.skc_rev = sc->sk_rev;
1441 (void)config_found(sc->sk_dev, &skca, mskcprint);
1442
1443 if (sc->sk_macs > 1) {
1444 skca.skc_port = SK_PORT_B;
1445 skca.skc_type = sc->sk_type;
1446 skca.skc_rev = sc->sk_rev;
1447 (void)config_found(sc->sk_dev, &skca, mskcprint);
1448 }
1449
1450 /* Turn on the 'driver is loaded' LED. */
1451 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1452
1453 /* skc sysctl setup */
1454
1455 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1456 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1457 SYSCTL_DESCR("mskc per-controller controls"),
1458 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1459 CTL_EOL)) != 0) {
1460 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1461 goto fail_6;
1462 }
1463
1464 sk_nodenum = node->sysctl_num;
1465
1466 /* interrupt moderation time in usecs */
1467 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1468 CTLFLAG_READWRITE,
1469 CTLTYPE_INT, "int_mod",
1470 SYSCTL_DESCR("msk interrupt moderation timer"),
1471 msk_sysctl_handler, 0, (void *)sc,
1472 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1473 CTL_EOL)) != 0) {
1474 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1475 goto fail_6;
1476 }
1477
1478 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1479 aprint_error_dev(self, "couldn't establish power handler\n");
1480
1481 return;
1482
1483 fail_6:
1484 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1485 fail_5:
1486 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1487 fail_4:
1488 bus_dmamem_unmap(sc->sc_dmatag, kva,
1489 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1490 fail_3:
1491 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1492 fail_2:
1493 pci_intr_disestablish(pc, sc->sk_intrhand);
1494 fail_1:
1495 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1496 }
1497
1498 int
1499 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1500 {
1501 struct sk_softc *sc = sc_if->sk_softc;
1502 struct msk_tx_desc *f = NULL;
1503 u_int32_t frag, cur;
1504 int i;
1505 struct sk_txmap_entry *entry;
1506 bus_dmamap_t txmap;
1507
1508 DPRINTFN(2, ("msk_encap\n"));
1509
1510 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1511 if (entry == NULL) {
1512 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1513 return (ENOBUFS);
1514 }
1515 txmap = entry->dmamap;
1516
1517 cur = frag = *txidx;
1518
1519 #ifdef MSK_DEBUG
1520 if (mskdebug >= 2)
1521 msk_dump_mbuf(m_head);
1522 #endif
1523
1524 /*
1525 * Start packing the mbufs in this chain into
1526 * the fragment pointers. Stop when we run out
1527 * of fragments or hit the end of the mbuf chain.
1528 */
1529 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1530 BUS_DMA_NOWAIT)) {
1531 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1532 return (ENOBUFS);
1533 }
1534
1535 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1536 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1537 bus_dmamap_unload(sc->sc_dmatag, txmap);
1538 return (ENOBUFS);
1539 }
1540
1541 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1542
1543 /* Sync the DMA map. */
1544 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1545 BUS_DMASYNC_PREWRITE);
1546
1547 for (i = 0; i < txmap->dm_nsegs; i++) {
1548 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1549 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1550 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1551 f->sk_ctl = 0;
1552 if (i == 0)
1553 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1554 else
1555 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1556 cur = frag;
1557 SK_INC(frag, MSK_TX_RING_CNT);
1558 }
1559
1560 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1561 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1562
1563 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1564 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1565
1566 /* Sync descriptors before handing to chip */
1567 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1568 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1569
1570 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1571
1572 /* Sync first descriptor to hand it off */
1573 MSK_CDTXSYNC(sc_if, *txidx, 1,
1574 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1575
1576 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1577
1578 #ifdef MSK_DEBUG
1579 if (mskdebug >= 2) {
1580 struct msk_tx_desc *le;
1581 u_int32_t idx;
1582 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1583 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1584 msk_dump_txdesc(le, idx);
1585 }
1586 }
1587 #endif
1588
1589 *txidx = frag;
1590
1591 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1592
1593 return (0);
1594 }
1595
1596 void
1597 msk_start(struct ifnet *ifp)
1598 {
1599 struct sk_if_softc *sc_if = ifp->if_softc;
1600 struct mbuf *m_head = NULL;
1601 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1602 int pkts = 0;
1603
1604 DPRINTFN(2, ("msk_start\n"));
1605
1606 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1607 IFQ_POLL(&ifp->if_snd, m_head);
1608 if (m_head == NULL)
1609 break;
1610
1611 /*
1612 * Pack the data into the transmit ring. If we
1613 * don't have room, set the OACTIVE flag and wait
1614 * for the NIC to drain the ring.
1615 */
1616 if (msk_encap(sc_if, m_head, &idx)) {
1617 ifp->if_flags |= IFF_OACTIVE;
1618 break;
1619 }
1620
1621 /* now we are committed to transmit the packet */
1622 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1623 pkts++;
1624
1625 /*
1626 * If there's a BPF listener, bounce a copy of this frame
1627 * to him.
1628 */
1629 bpf_mtap(ifp, m_head);
1630 }
1631 if (pkts == 0)
1632 return;
1633
1634 /* Transmit */
1635 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1636 sc_if->sk_cdata.sk_tx_prod = idx;
1637 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1638
1639 /* Set a timeout in case the chip goes out to lunch. */
1640 ifp->if_timer = 5;
1641 }
1642 }
1643
1644 void
1645 msk_watchdog(struct ifnet *ifp)
1646 {
1647 struct sk_if_softc *sc_if = ifp->if_softc;
1648 u_int32_t reg;
1649 int idx;
1650
1651 /*
1652 * Reclaim first as there is a possibility of losing Tx completion
1653 * interrupts.
1654 */
1655 if (sc_if->sk_port == SK_PORT_A)
1656 reg = SK_STAT_BMU_TXA1_RIDX;
1657 else
1658 reg = SK_STAT_BMU_TXA2_RIDX;
1659
1660 idx = sk_win_read_2(sc_if->sk_softc, reg);
1661 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1662 msk_txeof(sc_if, idx);
1663 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1664 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1665
1666 ifp->if_oerrors++;
1667
1668 /* XXX Resets both ports; we shouldn't do that. */
1669 msk_reset(sc_if->sk_softc);
1670 msk_init(ifp);
1671 }
1672 }
1673 }
1674
1675 static bool
1676 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1677 {
1678 struct sk_softc *sc = device_private(dv);
1679
1680 DPRINTFN(2, ("mskc_suspend\n"));
1681
1682 /* Turn off the 'driver is loaded' LED. */
1683 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1684
1685 return true;
1686 }
1687
1688 static bool
1689 mskc_resume(device_t dv, const pmf_qual_t *qual)
1690 {
1691 struct sk_softc *sc = device_private(dv);
1692
1693 DPRINTFN(2, ("mskc_resume\n"));
1694
1695 msk_reset(sc);
1696 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1697
1698 return true;
1699 }
1700
1701 static __inline int
1702 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1703 {
1704 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1705 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1706 YU_RXSTAT_JABBER)) != 0 ||
1707 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1708 YU_RXSTAT_BYTES(stat) != len)
1709 return (0);
1710
1711 return (1);
1712 }
1713
1714 void
1715 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1716 {
1717 struct sk_softc *sc = sc_if->sk_softc;
1718 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1719 struct mbuf *m;
1720 struct sk_chain *cur_rx;
1721 int cur, total_len = len;
1722 bus_dmamap_t dmamap;
1723
1724 DPRINTFN(2, ("msk_rxeof\n"));
1725
1726 cur = sc_if->sk_cdata.sk_rx_cons;
1727 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1728 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1729
1730 /* Sync the descriptor */
1731 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1732
1733 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1734 if (cur_rx->sk_mbuf == NULL)
1735 return;
1736
1737 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1738 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1739 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1740
1741 m = cur_rx->sk_mbuf;
1742 cur_rx->sk_mbuf = NULL;
1743
1744 if (total_len < SK_MIN_FRAMELEN ||
1745 total_len > ETHER_MAX_LEN_JUMBO ||
1746 msk_rxvalid(sc, rxstat, total_len) == 0) {
1747 ifp->if_ierrors++;
1748 msk_newbuf(sc_if, cur, m, dmamap);
1749 return;
1750 }
1751
1752 /*
1753 * Try to allocate a new jumbo buffer. If that fails, copy the
1754 * packet to mbufs and put the jumbo buffer back in the ring
1755 * so it can be re-used. If allocating mbufs fails, then we
1756 * have to drop the packet.
1757 */
1758 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1759 struct mbuf *m0;
1760 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1761 total_len + ETHER_ALIGN, 0, ifp, NULL);
1762 msk_newbuf(sc_if, cur, m, dmamap);
1763 if (m0 == NULL) {
1764 ifp->if_ierrors++;
1765 return;
1766 }
1767 m_adj(m0, ETHER_ALIGN);
1768 m = m0;
1769 } else {
1770 m_set_rcvif(m, ifp);
1771 m->m_pkthdr.len = m->m_len = total_len;
1772 }
1773
1774 /* pass it on. */
1775 if_percpuq_enqueue(ifp->if_percpuq, m);
1776 }
1777
1778 void
1779 msk_txeof(struct sk_if_softc *sc_if, int idx)
1780 {
1781 struct sk_softc *sc = sc_if->sk_softc;
1782 struct msk_tx_desc *cur_tx;
1783 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1784 u_int32_t sk_ctl;
1785 struct sk_txmap_entry *entry;
1786 int cons, prog;
1787
1788 DPRINTFN(2, ("msk_txeof\n"));
1789
1790 /*
1791 * Go through our tx ring and free mbufs for those
1792 * frames that have been sent.
1793 */
1794 cons = sc_if->sk_cdata.sk_tx_cons;
1795 prog = 0;
1796 while (cons != idx) {
1797 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1798 break;
1799 prog++;
1800 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1801
1802 MSK_CDTXSYNC(sc_if, cons, 1,
1803 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1804 sk_ctl = cur_tx->sk_ctl;
1805 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1806 #ifdef MSK_DEBUG
1807 if (mskdebug >= 2)
1808 msk_dump_txdesc(cur_tx, cons);
1809 #endif
1810 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1811 ifp->if_opackets++;
1812 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1813 entry = sc_if->sk_cdata.sk_tx_map[cons];
1814
1815 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1816 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1817
1818 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1819 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1820 link);
1821 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1822 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1823 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1824 }
1825 sc_if->sk_cdata.sk_tx_cnt--;
1826 SK_INC(cons, MSK_TX_RING_CNT);
1827 }
1828 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1829
1830 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1831 ifp->if_flags &= ~IFF_OACTIVE;
1832
1833 if (prog > 0)
1834 sc_if->sk_cdata.sk_tx_cons = cons;
1835 }
1836
1837 void
1838 msk_tick(void *xsc_if)
1839 {
1840 struct sk_if_softc *sc_if = xsc_if;
1841 struct mii_data *mii = &sc_if->sk_mii;
1842 uint16_t gpsr;
1843 int s;
1844
1845 s = splnet();
1846 gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1847 if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1848 SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1849 mii_tick(mii);
1850 }
1851 splx(s);
1852
1853 callout_schedule(&sc_if->sk_tick_ch, hz);
1854 }
1855
1856 void
1857 msk_intr_yukon(struct sk_if_softc *sc_if)
1858 {
1859 u_int8_t status;
1860
1861 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1862 /* RX overrun */
1863 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1864 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1865 SK_RFCTL_RX_FIFO_OVER);
1866 }
1867 /* TX underrun */
1868 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1869 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1870 SK_TFCTL_TX_FIFO_UNDER);
1871 }
1872
1873 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1874 }
1875
1876 int
1877 msk_intr(void *xsc)
1878 {
1879 struct sk_softc *sc = xsc;
1880 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1881 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1882 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1883 int claimed = 0;
1884 u_int32_t status;
1885 uint32_t st_status;
1886 uint16_t st_len;
1887 uint8_t st_opcode, st_link;
1888 struct msk_status_desc *cur_st;
1889
1890 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1891 if (status == 0) {
1892 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1893 return (0);
1894 }
1895
1896 status = CSR_READ_4(sc, SK_ISR);
1897
1898 if (sc_if0 != NULL)
1899 ifp0 = &sc_if0->sk_ethercom.ec_if;
1900 if (sc_if1 != NULL)
1901 ifp1 = &sc_if1->sk_ethercom.ec_if;
1902
1903 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1904 (ifp0->if_flags & IFF_RUNNING)) {
1905 msk_intr_yukon(sc_if0);
1906 }
1907
1908 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1909 (ifp1->if_flags & IFF_RUNNING)) {
1910 msk_intr_yukon(sc_if1);
1911 }
1912
1913 for (;;) {
1914 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1915 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1916 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1917 st_opcode = cur_st->sk_opcode;
1918 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
1919 MSK_CDSTSYNC(sc, sc->sk_status_idx,
1920 BUS_DMASYNC_PREREAD);
1921 break;
1922 }
1923 st_status = le32toh(cur_st->sk_status);
1924 st_len = le16toh(cur_st->sk_len);
1925 st_link = cur_st->sk_link;
1926 st_opcode &= ~SK_Y2_STOPC_OWN;
1927
1928 switch (st_opcode) {
1929 case SK_Y2_STOPC_RXSTAT:
1930 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
1931 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
1932 SK_RXQ1_Y2_PREF_PUTIDX,
1933 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
1934 break;
1935 case SK_Y2_STOPC_TXSTAT:
1936 if (sc_if0)
1937 msk_txeof(sc_if0, st_status
1938 & SK_Y2_ST_TXA1_MSKL);
1939 if (sc_if1)
1940 msk_txeof(sc_if1,
1941 ((st_status & SK_Y2_ST_TXA2_MSKL)
1942 >> SK_Y2_ST_TXA2_SHIFTL)
1943 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
1944 break;
1945 default:
1946 aprint_error("opcode=0x%x\n", st_opcode);
1947 break;
1948 }
1949 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1950 }
1951
1952 #define MSK_STATUS_RING_OWN_CNT(sc) \
1953 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
1954 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
1955
1956 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
1957 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
1958 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1959 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
1960 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1961
1962 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
1963 }
1964
1965 if (status & SK_Y2_IMR_BMU) {
1966 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1967 claimed = 1;
1968 }
1969
1970 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1971
1972 if (ifp0 != NULL)
1973 if_schedule_deferred_start(ifp0);
1974 if (ifp1 != NULL)
1975 if_schedule_deferred_start(ifp1);
1976
1977 rnd_add_uint32(&sc->rnd_source, status);
1978
1979 if (sc->sk_int_mod_pending)
1980 msk_update_int_mod(sc, 1);
1981
1982 return claimed;
1983 }
1984
1985 void
1986 msk_init_yukon(struct sk_if_softc *sc_if)
1987 {
1988 u_int32_t v;
1989 u_int16_t reg;
1990 struct sk_softc *sc;
1991 int i;
1992
1993 sc = sc_if->sk_softc;
1994
1995 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1996 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1997
1998 DPRINTFN(6, ("msk_init_yukon: 1\n"));
1999
2000 /* GMAC and GPHY Reset */
2001 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2002 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2003 DELAY(1000);
2004
2005 DPRINTFN(6, ("msk_init_yukon: 2\n"));
2006
2007 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
2008 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2009 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2010
2011 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2012 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2013
2014 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2015
2016 /* unused read of the interrupt source register */
2017 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2018 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2019
2020 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2021 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2022 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2023
2024 /* MIB Counter Clear Mode set */
2025 reg |= YU_PAR_MIB_CLR;
2026 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2027 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2028 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2029
2030 /* MIB Counter Clear Mode clear */
2031 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2032 reg &= ~YU_PAR_MIB_CLR;
2033 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2034
2035 /* receive control reg */
2036 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2037 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2038
2039 /* transmit control register */
2040 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2041
2042 /* transmit flow control register */
2043 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2044
2045 /* transmit parameter register */
2046 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2047 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2048 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2049
2050 /* serial mode register */
2051 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2052 reg = YU_SMR_DATA_BLIND(0x1c) |
2053 YU_SMR_MFL_VLAN |
2054 YU_SMR_IPG_DATA(0x1e);
2055
2056 if (sc->sk_type != SK_YUKON_FE)
2057 reg |= YU_SMR_MFL_JUMBO;
2058
2059 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2060
2061 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2062 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2063 /* msk_attach calls me before ether_ifattach so check null */
2064 if (ifp != NULL && ifp->if_sadl != NULL)
2065 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2066 sizeof(sc_if->sk_enaddr));
2067 /* Setup Yukon's address */
2068 for (i = 0; i < 3; i++) {
2069 /* Write Source Address 1 (unicast filter) */
2070 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2071 sc_if->sk_enaddr[i * 2] |
2072 sc_if->sk_enaddr[i * 2 + 1] << 8);
2073 }
2074
2075 for (i = 0; i < 3; i++) {
2076 reg = sk_win_read_2(sc_if->sk_softc,
2077 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2078 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2079 }
2080
2081 /* Set promiscuous mode */
2082 msk_setpromisc(sc_if);
2083
2084 /* Set multicast filter */
2085 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2086 msk_setmulti(sc_if);
2087
2088 /* enable interrupt mask for counter overflows */
2089 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2090 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2091 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2092 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2093
2094 /* Configure RX MAC FIFO Flush Mask */
2095 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2096 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2097 YU_RXSTAT_JABBER;
2098 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2099
2100 /* Configure RX MAC FIFO */
2101 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2102 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2103 SK_RFCTL_FIFO_FLUSH_ON);
2104
2105 /* Increase flush threshould to 64 bytes */
2106 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2107 SK_RFCTL_FIFO_THRESHOLD + 1);
2108
2109 /* Configure TX MAC FIFO */
2110 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2111 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2112
2113 #if 1
2114 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2115 #endif
2116 DPRINTFN(6, ("msk_init_yukon: end\n"));
2117 }
2118
2119 /*
2120 * Note that to properly initialize any part of the GEnesis chip,
2121 * you first have to take it out of reset mode.
2122 */
2123 int
2124 msk_init(struct ifnet *ifp)
2125 {
2126 struct sk_if_softc *sc_if = ifp->if_softc;
2127 struct sk_softc *sc = sc_if->sk_softc;
2128 int rc = 0, s;
2129 uint32_t imr, imtimer_ticks;
2130
2131
2132 DPRINTFN(2, ("msk_init\n"));
2133
2134 s = splnet();
2135
2136 /* Cancel pending I/O and free all RX/TX buffers. */
2137 msk_stop(ifp,0);
2138
2139 /* Configure I2C registers */
2140
2141 /* Configure XMAC(s) */
2142 msk_init_yukon(sc_if);
2143 if ((rc = ether_mediachange(ifp)) != 0)
2144 goto out;
2145
2146 /* Configure transmit arbiter(s) */
2147 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2148 #if 0
2149 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2150 #endif
2151
2152 /* Configure RAMbuffers */
2153 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2154 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2155 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2156 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2157 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2158 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2159
2160 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2161 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2162 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2163 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2164 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2165 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2166 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2167
2168 /* Configure BMUs */
2169 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2170 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2171 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2172 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2173
2174 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2175 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2176 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2177 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2178
2179 /* Make sure the sync transmit queue is disabled. */
2180 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2181
2182 /* Init descriptors */
2183 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2184 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2185 "memory for rx buffers\n");
2186 msk_stop(ifp,0);
2187 splx(s);
2188 return ENOBUFS;
2189 }
2190
2191 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2192 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2193 "memory for tx buffers\n");
2194 msk_stop(ifp,0);
2195 splx(s);
2196 return ENOBUFS;
2197 }
2198
2199 /* Set interrupt moderation if changed via sysctl. */
2200 switch (sc->sk_type) {
2201 case SK_YUKON_EC:
2202 case SK_YUKON_EC_U:
2203 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2204 break;
2205 case SK_YUKON_FE:
2206 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2207 break;
2208 case SK_YUKON_XL:
2209 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2210 break;
2211 default:
2212 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2213 }
2214 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2215 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2216 sk_win_write_4(sc, SK_IMTIMERINIT,
2217 SK_IM_USECS(sc->sk_int_mod));
2218 aprint_verbose_dev(sc->sk_dev,
2219 "interrupt moderation is %d us\n", sc->sk_int_mod);
2220 }
2221
2222 /* Initialize prefetch engine. */
2223 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2224 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2225 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2226 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2227 MSK_RX_RING_ADDR(sc_if, 0));
2228 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2229 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2230 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2231 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2232
2233 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2234 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2235 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2236 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2237 MSK_TX_RING_ADDR(sc_if, 0));
2238 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2239 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2240 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2241 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2242
2243 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2244 sc_if->sk_cdata.sk_rx_prod);
2245
2246 /* Configure interrupt handling */
2247 if (sc_if->sk_port == SK_PORT_A)
2248 sc->sk_intrmask |= SK_Y2_INTRS1;
2249 else
2250 sc->sk_intrmask |= SK_Y2_INTRS2;
2251 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2252 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2253
2254 ifp->if_flags |= IFF_RUNNING;
2255 ifp->if_flags &= ~IFF_OACTIVE;
2256
2257 callout_schedule(&sc_if->sk_tick_ch, hz);
2258
2259 out:
2260 splx(s);
2261 return rc;
2262 }
2263
2264 void
2265 msk_stop(struct ifnet *ifp, int disable)
2266 {
2267 struct sk_if_softc *sc_if = ifp->if_softc;
2268 struct sk_softc *sc = sc_if->sk_softc;
2269 struct sk_txmap_entry *dma;
2270 int i;
2271
2272 DPRINTFN(2, ("msk_stop\n"));
2273
2274 callout_stop(&sc_if->sk_tick_ch);
2275
2276 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2277
2278 /* Stop transfer of Tx descriptors */
2279
2280 /* Stop transfer of Rx descriptors */
2281
2282 /* Turn off various components of this interface. */
2283 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2284 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2285 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2286 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2287 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2288 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2289 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2290 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2291 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2292 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2293 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2294 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2295
2296 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2297 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2298
2299 /* Disable interrupts */
2300 if (sc_if->sk_port == SK_PORT_A)
2301 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2302 else
2303 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2304 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2305
2306 SK_XM_READ_2(sc_if, XM_ISR);
2307 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2308
2309 /* Free RX and TX mbufs still in the queues. */
2310 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2311 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2312 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2313 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2314 }
2315 }
2316
2317 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2318 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2319 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2320 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2321 #if 1
2322 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2323 sc_if->sk_cdata.sk_tx_map[i], link);
2324 sc_if->sk_cdata.sk_tx_map[i] = 0;
2325 #endif
2326 }
2327 }
2328
2329 #if 1
2330 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2331 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2332 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2333 free(dma, M_DEVBUF);
2334 }
2335 #endif
2336 }
2337
2338 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2339 NULL, NULL);
2340
2341 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2342 NULL, NULL);
2343
2344 #ifdef MSK_DEBUG
2345 void
2346 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2347 {
2348 #define DESC_PRINT(X) \
2349 if (X) \
2350 printf("txdesc[%d]." #X "=%#x\n", \
2351 idx, X);
2352
2353 DESC_PRINT(letoh32(le->sk_addr));
2354 DESC_PRINT(letoh16(le->sk_len));
2355 DESC_PRINT(le->sk_ctl);
2356 DESC_PRINT(le->sk_opcode);
2357 #undef DESC_PRINT
2358 }
2359
2360 void
2361 msk_dump_bytes(const char *data, int len)
2362 {
2363 int c, i, j;
2364
2365 for (i = 0; i < len; i += 16) {
2366 printf("%08x ", i);
2367 c = len - i;
2368 if (c > 16) c = 16;
2369
2370 for (j = 0; j < c; j++) {
2371 printf("%02x ", data[i + j] & 0xff);
2372 if ((j & 0xf) == 7 && j > 0)
2373 printf(" ");
2374 }
2375
2376 for (; j < 16; j++)
2377 printf(" ");
2378 printf(" ");
2379
2380 for (j = 0; j < c; j++) {
2381 int ch = data[i + j] & 0xff;
2382 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2383 }
2384
2385 printf("\n");
2386
2387 if (c < 16)
2388 break;
2389 }
2390 }
2391
2392 void
2393 msk_dump_mbuf(struct mbuf *m)
2394 {
2395 int count = m->m_pkthdr.len;
2396
2397 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2398
2399 while (count > 0 && m) {
2400 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2401 m, m->m_data, m->m_len);
2402 msk_dump_bytes(mtod(m, char *), m->m_len);
2403
2404 count -= m->m_len;
2405 m = m->m_next;
2406 }
2407 }
2408 #endif
2409
2410 static int
2411 msk_sysctl_handler(SYSCTLFN_ARGS)
2412 {
2413 int error, t;
2414 struct sysctlnode node;
2415 struct sk_softc *sc;
2416
2417 node = *rnode;
2418 sc = node.sysctl_data;
2419 t = sc->sk_int_mod;
2420 node.sysctl_data = &t;
2421 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2422 if (error || newp == NULL)
2423 return error;
2424
2425 if (t < SK_IM_MIN || t > SK_IM_MAX)
2426 return EINVAL;
2427
2428 /* update the softc with sysctl-changed value, and mark
2429 for hardware update */
2430 sc->sk_int_mod = t;
2431 sc->sk_int_mod_pending = 1;
2432 return 0;
2433 }
2434
2435 /*
2436 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2437 * set up in skc_attach()
2438 */
2439 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2440 {
2441 int rc;
2442 const struct sysctlnode *node;
2443
2444 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2445 0, CTLTYPE_NODE, "msk",
2446 SYSCTL_DESCR("msk interface controls"),
2447 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2448 goto err;
2449 }
2450
2451 msk_root_num = node->sysctl_num;
2452 return;
2453
2454 err:
2455 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2456 }
2457